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Abstract

Cyber foraging is the transient and opportunistic use of compute servers by mobile devices. The
short market life of such devices makes rapid modification of applications for remote execution an
important problem. We describe a solution that combines a “little language” for cyber foraging
with an adaptive runtime system. We report results from a user study showing that even novice
developers are able to successfully modify large, unfamiliar applications in just a few hours. We
also show that the quality of novice-modified and expert-modified applications are comparable in
most cases.
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1 Introduction

By a curious paradox, applications of highest value to a mobile user are the hardest to support
on lightweight and compact hardware with long battery life. Natural language translation and
speech recognition, for example, would be helpful to a traveller in a foreign country. Optical
character recognition of signs in a foreign script could help a lost traveller find his way. A wearable
computer with an eyeglass display and a camera for face recognition could serve as an augmented-
reality system for assisting an Alzheimer’s patient. Alas, the CPU, memory and energy demands
of these applications far outstrip the capacity of devices that people are willing to carry or wear
for extended periods of time. On such hardware, improving size, weight and battery life are higher
priorities than enhancing compute power.

One way to resolve this paradox is for a mobile device to perform remote execution on a nearby
compute server over a wireless link. Cheap commodity machines widely dispersed for public use
could act as compute servers for mobile devices in their vicinity. We refer to this transient and
opportunistic use of resources as cyber foraging. Although deployment of compute servers for
public use is not imminent, our work addresses future environments where they may be as common
as water fountains, lighting fixtures, chairs or other public conveniences that we take for granted
today. When public infrastructure is unavailable, other options may exist. For example, the body-
worn computer of an engineer who is inspecting the underside of a bridge may use a compute
server in his truck parked nearby.

Implementing cyber foraging involves three steps. First, a mobile device must find a compute
server. Second, it must establish trust in that server. Third, it must partition the application be-
tween local and remote execution. This decision may have to change with fluctuations in operating
conditions such as wireless bandwidth and battery level.

We focus on the third problem in this paper, deferring to others for solutions to the first two.
Service discovery [34] is an active area of research in pervasive computing, with solutions such as
Jini [49], UPnP [22], and Bluetooth proximity detection [19, 39]. Establishing trust in hardware is
a major goal of the security community, especially the Trusted Computer Group [47]. The recent
work on trusted platform modules at IBM [37, 38], and Chen and Morris’ work on tamper-evident
remote execution [7] are of particular relevance here.

Our goal is to enable rapid modification of applications for cyber foraging. This is important
because of the short useful life of mobile devices. Smart cell phones, wearable computers, PDAs
and other mobile devices are emerging at a dizzying rate that shows no sign of slowing [10, 17, 24,
50]. With a typical market life of barely a year, fast delivery of new hardware with a full suite of
applications is critical.

We propose a solution based on the well-known approach of little languages [2]. By developing
abstractions that are well-matched to the problem of cyber foraging, our solution makes possible a
compact static description of all the meaningful partitions of an application. Complementing this
static description is a powerful runtime system that provides the dynamic components necessary for
adaptation to fluctuating operating conditions. A stub-generation tool creates application-specific
interfaces to the runtime system.

We report results from a user study showing that novice developers can modify large, unfamiliar
applications in just a few hours. These applications span speech, natural language, and computer
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vision technologies and are relevant to domains such as travel, health care, and engineering. We
also report results showing that the quality of novice-modified and expert-modified applications
are comparable in most cases.

2 Design Considerations

2.1 Language-Independent & Coarse-Grained

An obvious design strategy for cyber foraging would require all applications to be written in a
language that supports transparent remote execution of procedures. Java would be an obvious
choice for this language, though other possibilities exist. The modified language runtime system
could monitor operating conditions, determine which procedures to execute remotely and which
locally, and re-visit this decision as conditions change. No application modifications would be
needed. This language-based, fine-grained approach to remote execution has been well explored,
dating back to the Emerald system [23] of the mid-1980s.

We rejected this strategy because of its restriction that all applications be written in a single
language. An informal survey of existing applications from the domains mentioned in Section 1
reveals no dominant language in which they are written. Instead, the preferred language depends
on the existence of widely-used domain-specific libraries and tools; these in turn depend on the
evolution history and prior art of the domain. For example, our validation suite in Section 4 in-
cludes applications written in C, C++, Java, Tcl/Tk and Ada.

Our decision to be language-independent had a number of consequences. First, it eliminated the
use of fully automated code-analysis techniques since these tend to be language-specific. Second,
it implied that applications had to be manually modified to use runtime support for cyber foraging.
Third, it led to a coarse-grained approach in which entire modules rather than individual procedures
are the unit of remote execution. Without language support, every procedure would need to be
manually examined to verify if remote execution is feasible, and then modified to support it. By
coarsening granularity, we lower complexity but give up on discovering the theoretically optimal
partitioning. This is consistent with our emphasis on reducing programmer burden and software
development time, as long as we are able to produce an acceptable cyber foraging solution.

2.2 Support for Runtime Adaptation

The fickle nature of resource availability in mobile computing environments has been well docu-
mented by researchers such as Forman et al. [13], Katz [25], and Satyanarayanan [40]. Dynamic
change of fidelity (application-specific output quality) has been shown to be effective in coping
with fluctuating resource levels by Fox et al [14], Noble et al. [32], de Lara et al [8] and Flinn et
al. [12].

These findings, including the causes of resource variation that underlie them, also apply to a
mobile device that uses cyber foraging. The device may be subject to additional resource variation
if its compute server is shared. Many factors affect this variation, including the demands of other
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mobile devices, the admission control policy used in service discovery, and the compute server’s
resource allocation policy.

Clearly, a good design for cyber foraging must support the concept of fidelity. It must also
include the runtime support necessary for monitoring resource levels and selecting an appropriate
fidelity. The selection mechanism must take user preference into account when there are multiple
dimensions of output quality. For example, a user in a casual conversation may prefer quick natural
language translation even if it involves some loss of accuracy; for a business negotiation, however,
accuracy may be much more important than speed.

2.3 Port Early, Port Often

Short device life and its implications for software development were dominant considerations in
our design. Our target context is a vendor who must rapidly bring to market a new mobile device
with a rich suite of applications. Some applications may have been ported to older devices, but
others may not. To attract new corporate customers, the vendor must also help them rapidly port
their critical applications. The lower the quality of programming talent needed for these efforts,
the more economically viable the proposition.

This leads to the central challenge of our work: How can novice software developers rapidly
modify large, unfamiliar applications for cyber foraging? We assume that application source code
is available; otherwise, the problem is intractable. Just finding one’s way around a large body of
code is time consuming. Our design must help a developer rapidly identify the relevant parts of
an unfamiliar code base and then help him easily create the necessary modifications for coarse-
grained remote execution. Obviously, the quality of the resulting port must be good enough for
serious use. In rare cases, a new application may be written from scratch for the new device. Our
design does not preclude this possibility, but we do not discuss this case further in this paper.

2.4 Rejected Strawman Solutions

Cyber foraging was proposed because seemingly obvious solutions proved to be unacceptable. For
example, an obvious solution would be to run all applications completely on fast remote servers.
The mobile client would then connect to these servers using ssh, VPN, or other methods. This
solution requires no application changes and allows mobile clients to run any application. However,
this solution is unacceptable as every input on the mobile client must be sent to the remote server.
This latency quickly becomes unacceptable; especially if the remote server is located far away.
Even if a nearby server is available, battery concerns or lack of wireless bandwidth may prevent the
server from being used. Another obvious solution is to run all the applications locally. This solution
does not incur any latency overhead and is not dependent on available bandwidth. However, it
simply fails as many useful applications cannot be run locally on lightweight and compact mobile
devices.
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3 Our Solution

3.1 Properties of a Good Solution

Given these considerations, how can we tell if we are successful? What defines a good solution?
Such a solution would enable novice developers to do the following:

• Face complex applications confidently with little training. Less required training is always
better, of course, but some training will be needed before a novice can use our solution.
About an hour of training is acceptable in commercial settings, and is probably close to the
minimum time needed to learn anything of substance.

• Modify complex applications quickly. It is not easy to become familiar with the source code
of a complex new application, and then to modify it for adaptation and cyber foraging. Based
on our own experience and that of others we expect the typical time for this to be on the order
of multiple weeks. Shortening this duration to a day or less would be a major improvement.

• Modify complex applications with few errors. Since programming is an error-prone activity,
it is unrealistic to expect a novice to produce error-free code with our solution. A more
realistic goal is a solution that avoids inducing systematic or solution-specific coding errors
by novices. The few errors that do occur should only be ordinary programming errors that
are likely in any initial coding attempt.

• Produce modified applications whose quality is comparable to those produced by an expert.
When fidelity and performance metrics are carefully examined under a variety of cyber for-
aging scenarios, the adaptive applications produced by novices using our solution should be
indistinguishable from those produced by an expert.

3.2 Solution Overview

Our solution is in three parts. First, we provide a “little language” called Vivendi for expressing
application-specific information that is relevant to cyber foraging. A developer examines the source
code of an application and creates a Vivendi file called the “tactics file.” The tactics file contains
the function prototype of each procedure deemed worthy of remote execution, and specifies how
these procedures can be combined to produce a result. Each such combination is referred to as a
remote execution tactic or just tactic. For many applications, there are only a few tactics. In other
words, the number of practically useful ways to partition the application is a very small fraction
of the number of theoretical possibilities. A tactics file has to be created once per application. No
changes are needed for a new mobile device.

The second part of our solution is a runtime system called Chroma that provides support for
resource monitoring, adaptation, and learning-based prediction. Chroma supports history-based
predictive resource management in a manner similar to that described by Narayanan et al. for the
Odyssey system [29]. A call to Chroma allows the application to discover the tactic and fidelity it
should use for the next compute-intensive operation. Chroma bases its estimate on current resource
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levels and predicted resource consumption of the next operation. Chroma has to be ported once to
each new mobile device, and is then available to all applications.

The third part is the Vivendi stub generator, which uses the tactics file as input and creates a
number of stubs. Some of these stubs perform the well-known packing and unpacking function
used in remote procedure calls [3]. Other stubs are wrappers for Chroma calls. Calls to stubs are
manually placed in application source code by the developer.

Although not a tangible artifact, there is an implicit fourth component to our solution. This is a
set of application-independent instructions to developers to guide them in using the three solution
components mentioned above. This includes documentation, as well as a checklist of steps to
follow when modifying any application.

To modify an application for cyber foraging, a developer proceeds as follows. She first ex-
amines the application source code and creates the tactics file. Next, she runs the Vivendi stub
generator to create stubs. Then she modifies the application by inserting calls to the stubs at ap-
propriate points in the source code. Finally, she compiles and links the modified application, stubs
and Chroma. On occasion, there may be an additional step of modifying the user interface of an
application for a new mobile device. Our work does not address this step, but defers to ongoing
work on automated user interface generation [9, 30]. We describe our solution components in more
detail in Sections 3.3 to 3.5.

3.3 Vivendi

Vivendi enables concise description of the tactics and fidelities of an application. Figure 1 shows
the tactics file for a hypothetical application called graphix. Each application code component
that may benefit from remote execution is called a remoteop (short for “remote operation”) and
is identified in Vivendi by the tag REMOTEOP. A remoteop’s size and complexity determine the
granularity at which cyber foraging occurs. We expect only a few remoteops for each application,
possibly just one. For example, Figure 1 shows a single remoteop called render for the application
graphix.

Next, the tactics file specifies the critical variables that influence the amount of resources con-
sumed by executing this remoteop. In language translation, for example, the number of words in
the sentence to be translated is the (single) critical variable. A scene illumination application may
have two such variables: the name of the 3D image model and its current viewing position. We
refer to such variables as parameters of the remoteop. Figure 1 shows a single parameter, called
size for the remoteop render. Vivendi passes parameter information to Chroma, which uses this
knowledge in its history-based resource prediction mechanism. Chroma’s prediction specifies the
fidelity at which the remoteop should be executed. Figure 1 indicates that quality is the vari-
able corresponding to fidelity for the remoteop render. Parameters and fidelities are specified
like C variables, with the keyword IN indicating parameters and OUT indicating fidelities. Vivendi
supports a full suite of C-like primitive data types.

The developer next specifies the RPCs, much like standard function prototype definitions, of the
application, using the RPC tag. These are the application functions that perform the computational
aspects of the remoteop and should thus be remotely executed. In this case, the remoteop requires
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APPLICATION graphix;

REMOTEOP render;

IN int size DEFAULT 1000; // parameters

OUT float quality FROM 0.0 TO 1.0; // fidelities

// TACTIC definitions

// do step 1 followed sequentially by step 3

TACTIC do_simple = step_1 & step_3;

// do steps 1 & 2 in parallel followed by step 3

TACTIC do_all = (step_1, step_2) & step_3;

// RPC definitions

RPC step_1 (IN string input, OUT string buf1);

RPC step_2 (IN string input, OUT string buf2);

RPC step_3 (IN string buf1, IN string buf2,

OUT string final);

Figure 1: Example Tactics File in Vivendi

executing three functions called step 1, step 2, and step 3. Although we omit the details here,
a wide range of basic data types can be used as RPC arguments. This includes uninterpreted binary
data objects and file variables.

The developer then specifies, using the TACTIC tag, the tactics of the application. Each tactic
represents a different way of combining RPCs to produce a remoteop result. Chroma selects the
appropriate tactic and the binding of RPCs to compute servers. These choices are frozen for the
duration of a remoteop, but are re-evaluated for the next remoteop. Vivendi syntax allows any
combination of sequential and parallel RPCs to be specified as a tactic. It also provides control
over placement of specific RPCs on servers. This might be useful, for example, where a later RPC
has to be run on the same server as an earlier RPC to take advantage of a warm cache or to avoid
shipping a large intermediate result. For brevity, we omit these syntax details. A taste of the syntax
can be obtained from Figure 1, which specifies two tactics: do simple and do all. Sequential
RPCs are separated by an & operator while parallel RPCs are separated by commas and appear
within parentheses.

Finally, the RPCs used in tactics are specified using a syntax similar to that for standard func-
tion prototype definitions. The tag RPC identifies the RPCs of remoteop render in Figure 1.
Although we omit the details here, a wide range of basic data types can be used as RPC arguments.
This includes uninterpreted binary data objects and file variables.

3.4 Chroma

Chroma provides resource measurement, prediction and fidelity selection functions that comple-
ment Vivendi. Through integration with Linux, Chroma is able to perform these functions even
when concurrent applications use cyber foraging. Figure 2 shows the main components of Chroma.

At the heart of Chroma is a solver that responds to queries from Vivendi stubs regarding the
tactics and fidelity to use for a remoteop. The solver constructs a solution space of tactic-fidelity
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combinations and then exhaustively searches this space for the current optimum. The space is
relatively small since there are few tactics. The goodness of a specific point in this space is com-
puted by a utility function that quantifies informal directives such as “conserve battery”, “maximize
quality” or “give best quality under 1 second”. Our prototype uses closed-form utility functions
provided by an entity outside Chroma. A more complete system would derive the utility function
from current user preferences.

The inputs to the solver include resource supply measurements and resource demand predic-
tions. The supply measurements are provided by the resource monitors shown in Figure 2. These
are software sensors in the mobile client and compute server that report values of network band-
width, CPU utilization, memory usage, battery level and so on. As shown in Figure 2, resource
demand predictions are made by a history-based predictor. This predictor continuously improves
its accuracy by comparing previous predictions with actual resource usage, and refining its predic-
tion model. The predictor can be initialized using off-line training or history from an older mobile
device. Parameter values from the Vivendi stub are factored into the prediction model.

3.5 Generated Stubs

The Vivendi stub generator creates two kinds of stubs from a tactics file: standard RPC stubs and
wrapper stubs. The standard RPC stubs perform packing and unpacking of arguments. They also
provide a server listener loop with opcode demultiplexing. We omit further discussion of these
since they follow well-known RPC practice. The wrapper stubs simplify application modification
by customizing the Chroma interface to the application.

Figure 3 shows the wrapper stubs for the tactics file shown in Figure 1. A developer inserts
graphix render register at the start of the application and graphix render cleanup just
before its exit. She inserts graphix render find fidelity just before the code that performs
the render remoteop. Right before this, she inserts set size to set the parameter value for
this remoteop. Right after this, she inserts get quality to obtain the fidelity recommended by
Chroma. Finally, she removes the actual body of code for the remoteop and replaces it by a call to
graphix render do tactics. This will create the client that performs the operation remotely,
using a tactic selected by Chroma.

To create the server, starting with an unmodified application, she inserts two API calls,
service init and run server into the application’s main routine to initialize the server and to
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/* APIs to interface with adaptive runtime */

int graphix_render_register ( );

int graphix_render_cleanup ( );

int graphix_render_find_fidelity ( );

int graphix_render_do_tactics (char *input,

int input_len, char *final, int *final_len);

/* Parameters and fidelity variables */

void set_size (int value);

float get_quality ( );

Figure 3: Vivendi Wrapper Stubs for Chroma Interactions
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start the server’s listening loop respectively. Finally, she creates the required RPC server functions
using the remoteop code removed from the client.

3.6 Using The Solution

Figure 4 shows how the three parts of the solution, using the Panlite application (described in
Section 4.1.2), are combined in a 4-step process that allows developers to rapidly retarget appli-
cations. The four steps are as follows; first, the developer describes, using Vivendi, the adaptive
capabilities of the application to be retargeted. The help of a domain expert, who provides high
level domain information about possible parameters and fidelities, is useful here. Second, the stub
generator uses this description to create the code to interface the application with the runtime sys-
tem (Chroma). The stub also generates application-specific APIs that need to be manually inserted
into the application. Third, the developer manually inserts these APIs, using a well-defined series
of tasks (shown in Table 2), to create the client and server components of the application. Finally,
the components are compiled with the stub generated code and runtime libraries to create the final
retargeted application that can connect to Chroma and participate in cyber foraging.
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4 Validation Approach

The primary goal of our validation study was to assess how well our solution meets the goodness
criteria laid out in Section 3.1. A secondary goal was to gather detailed process data to help identify
areas for future research. Our approach combines well-established user-centric and system-centric
evaluation metrics. User-centric metrics for programmers focus on measures such as ease-of-use,
ease-of-learning, and errors committed [43]. System-centric metrics focus on measures such as
application latency or lines of generated code.

We combined these techniques in a laboratory-based user study with two parts. In the first
part, novice developers modified a variety of real applications for cyber foraging. We describe this
part in Section 4.1 and report its results in Sections 5 to 7. In the second part, we compared the
performance of these modified applications to their performance when modified by an expert. We
describe this part in Section 4.2 and report its results in Section 8

4.1 User-Centric Evaluation

Following the lead of Ko et al. [27] and Klemmer et al [26], we took user-centric evaluation meth-
ods originally developed for user interface investigations and adapted them to the evaluation of
programming tools.

4.1.1 Control Group

In designing the user study, a major decision was whether to incorporate a control group in our
design. When there is substantial doubt about whether a tool or process improves performance, it
is customary to have one condition in which the tool is used and a control condition where subjects
perform the task without the tool. This allows reliable comparison of performance. However, the
practicality and value of control groups is diminished in some situations. For example, it is difficult
to recruit experimental subjects for more than a few hours. Further, the value of a control group
is negligible when it is clear to task experts that performing a task without the tool takes orders of
magnitude longer than with it.

Our own experience, and that of other mobile computing researchers, convinced us that modi-
fying real-world applications for adaptive mobile use is a multi-week task even for experts. Given
this, our goal of one day is clearly a major improvement. Running a control condition under these
circumstances would have been highly impractical and of little value. We therefore chose to forego
a control group.

4.1.2 Test Applications

We chose eight applications of the genre mentioned at the beginning of this paper. Table 1 shows
their salient characteristics. The applications were: GLVU [46], a virtual walkthrough application
that allows users to navigate a 3D model of a building; Panlite [15], an English to Spanish trans-
lator; Radiator [51], a 3D lighting modeler; Face [41], a face recognition application; Janus [48],
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Face (Face Recognizer) 20K 105 Ada w/C interface 0 1 1 2 1

Flite (Text to Speech) 570K 182 C 0 1 1 2 1

GLVU (3D Visualizer) 25K 155 C++, OpenGL 1 15 1 18 1

GOCR (Character Recognizer) 30K 71 C++ 0 1 1 2 1

Janus (Speech Recognizer) 126K 227 C, Tcl/Tk, Motif 1 1 3 9 2

Music (Music Finder) 9K 55 C++, Java 0 2 1 2 1

Panlite (Lang Translator) 150K 349 C++ 0 1 4 11 7

Radiator (3D Lighting) 65K 213 C++, OpenGL 2 1 1 4 1
Table 1: Overview of the Test Applications

a speech recognizer; Flite [4], a text to speech converter; Music [20], an application that records
audio samples and finds similar music on a server; and GOCR [42], an optical character recognizer.

None of these applications was written by us, nor were any of them designed with remote
execution, adaptation, or mobile computing in mind. As Table 1 shows, the applications ranged
in size from 9K to 570K lines of code, and were written in a wide variety of languages such as
Java, C, C++, Tcl/Tk, and Ada. The application GOCR, was used only for training participants;
the others were assigned randomly.

4.1.3 Participants and Setup

We selected participants whose characteristics match those of novice developers, as discussed in
Section 2.3. In many companies, the task of porting code falls to junior developers. We modeled
this group by using undergraduate seniors majoring in computer science. In addition, we used a
group size large enough to ensure the statistical validity of our findings. While the exact numbers
depend upon the variability within the participants and the overall size of the effects, widely ac-
cepted practices recommend between 12 and 16 users [31]. We used 13 participants, which falls
within this range and represents the limit of our resources in terms of time (six hours per data
point).

On average, our participants were about 21 years old. Our selection criteria required them
to know C programming and be available for a contiguous block of six hours. None of them
were familiar with the research of our lab, any of the tools under development, or any of the test
applications. Table 8 shows the assignment of participants to applications. As the table shows,
several participants returned for additional applications. In keeping with standard HCI practice,
we counter-balanced the assignment of participants to applications to avoid any ordering effects.
These additional data allowed us to investigate learning effects and to determine whether our one-
time training was adequate.
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Participants were compensated at a flat rate of $120 for completion of a task. We stressed that
they were not under time pressure, and could take as long as they needed to complete the task. We
made certain that they understood the motivation was quality and not speed. This was a deliberate
bias against our goal of short modification time.

The participants worked alone in a lab for the duration of the study. We provided them with
a laptop and allowed them to use any editor of their choice. The displays of the participants were
captured throughout the study using Camtasia Studio [45]. This provided us with detailed logs of
user actions as well as accurate timing information.

4.1.4 Experimental Procedure

Training Process: Upon arrival, participants were given a release form and presented with a
brief introduction to the user study process. They were told that they were going to be making
some existing applications work on mobile devices, and that they would be learning to use a set
of tools for making applications work within an adaptive runtime system. The participants were
then introduced to the concepts of remoteops, parameters, fidelities, RPCs and tactics. We then
conducted a hands-on training session using the GOCR application where we demonstrated how
to identify and describe these concepts in Vivendi. The participants were provided with docu-
mentation on Vivendi syntax, with many examples. We then guided the participants in modifying
GOCR. Training sessions lasted less than one hour in all cases.

Testing Process: After training, each participant was randomly assigned to an application to
be modified. They were given all accompanying documentation for the application written by
the original application developer that explained how the application worked and explained the
functional blocks that made up the application. This documentation did not mention anything
about making the application adaptive as that was not the original developer’s intention. The
participants were also provided with domain information from which it was possible to extract
the parameters and fidelity variables. For example, the domain information might say that for 3D
graphics applications, the name of the model, the size of the model, the current viewing position
and current perspective affect the resource usage of the application. It was up to the participants to
determine exactly which application variables these general guidelines mapped to.

Task Structure: We provided participants with a structured task and a set of general instruc-
tions. The task structure consists of three stages, as shown in Table 2. In Stage A, the primary
activity is creating the tactics file; in Stage B, it centers on creating the client code component;
in Stage C, it centers on creating the server component. We wanted to cleanly isolate and in-
dependently study the ability of novices to perform each of these stages. We therefore provided
participants with an error-free tactics file for use in Stages B and C. This ensured that errors made
in Stage A would not corrupt the analysis of Stages B and C.

As Table 2 shows, each stage consists of a structured sequence of subtasks. For each subtask,
participants were given a general set of instructions, not customized in any way for specific appli-
cations. After completion of each subtask, we asked participants to answer a set of questions about
it.
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Stage A Stage B Stage C
Tactics file Client component Server component

Read docs Read docs Read docs
Application Include file Include file header

In Register service init API call
Out Cleanup Create RPCs
RPC Find Fidelities run server API call

Tactic Do Tactics Compile and fix1

Compile and fix1

This table shows the task stages and the subtasks within each stage. 1 Note that in Stages B and C, the
participants compiled their code, but did not run it.

Table 2: Task Stages

4.1.5 Data Collected

Timing: Using Camtasia recordings, we obtained completion times for each subtask. These
could be aggregated to find completion times for stages or for the overall task.

Task Process: From Camtasia recordings, we collected data on how participants completed all
of the subtasks, noting where they had trouble, were confused, or made mistakes.

Self-Report: We collected questionnaire data of several types, including quality of training,
ease of use of our solution, and performance in each subtask.

Solution Errors: We noted all errors in the participants’ solutions. We fixed only trivial errors
that kept their code from compiling and running. This allowed us to collect performance data from
their solutions.

4.2 System-Centric Evaluation

The goal of the system-centric evaluation was to understand whether rapid modification by a novice
resulted in adequate application quality. For each application, we asked an expert who had a good
understanding of our solution and the application to create a well-tuned adaptive version of the
application. The performance measurements from this expert-modified application were then used
as a reference against which to compare the performance of novice-modified applications under
identical conditions.

4.2.1 Testing Scenarios

Ideally, one would compare novice-modified and expert-modified applications for all possible re-
source levels and user preferences. Such exhaustive testing is clearly not practical. Instead, we
performed the comparisons for six scenarios that might typically occur in cyber foraging.
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ID Load BW User Prefs Typical Scenario
Q Low High Highest quality result Conducting an important business meeting using

a language translator
T Low High Lowest latency result Field engineer just wanting to navigate a quick

3D model of a building to understand the build-
ing’s dimensions

LH Low High Highest quality result
within X s

Sitting in an empty cafe with plentiful bandwidth
and unused compute servers

HH High High Highest quality result
within X s

Bandwidth is available in cafe but long lived re-
source intensive jobs are running on the compute
servers

LL Low Low Highest quality result
within X s

Cafe’s compute servers are unused but other cafe
users are streaming high bitrate multimedia con-
tent to their PDAs

HL High Low Highest quality result
within X s

The cafe is full or people either streaming mul-
timedia content or using the compute servers for
resource intensive jobs

Load is the compute server load. BW is the available bandwidth. User Prefs are the User Preferences. X
is 20s for Face, 25s for Radiator, and 1s for the rest.

Table 3: Scenario Summary

These six scenarios are shown in Table 3. We used two values of load on compute servers:
light (1% utilization) and heavy (95% utilization). We used two bandwidth values: high (5 Mb/s)
and low (100 Kb/s), based on published measurements from 802.11b wireless networks [28]. This
yielded four scenarios (labeled “LH,” “HH, “LL” and “HL” in Table 3). All four used the same
user preference: return the highest fidelity result that takes no more than X seconds, where X is
representative of desktop performance for that application. X was 1 second except for Face (20 s)
and Radiator (25 s). The other two scenarios are corner cases: scenario “Q,” specifying highest
fidelity regardless of latency; and scenario “T,” specifying fastest result regardless of fidelity.

4.2.2 Experiment Setup

To model a resource-poor mobile device, we used an old Thinkpad 560X laptop with a Pentium
266 MHz processor and 64 MB of RAM. We modeled high and low end compute servers using two
different kinds of machines: Slow, with 1 GHz Pentium 3 processors and 256 MB of RAM, and
Fast, with 3 GHz Pentium 4 processors and 1 GB of RAM. The mobile client could also be used as a
very slow fallback server if needed. All machines used the Debian 3.1 Linux software distribution,
with a 2.4.27 kernel for the client and a 2.6.8 kernel for the servers. To avoid confounding effects
due to Chroma’s history-based mechanisms, we initialized Chroma with the same history before
every experiment.

13
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Figure 5: Self-Reported Uncertainty Scores
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Figure 6: Measured Application Completion Times
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Figure 7: Self-Reported Task Difficulty Scores

4.2.3 Procedure

Each novice-modified and expert-modified application was tested on 3 valid inputs in each of the 6
scenarios above. These 18 combinations were repeated using fast and slow servers, yielding a total
of 36 experiments per application. Each experiment was repeated 5 times, to obtain a mean and
standard deviation for metrics of interest. Our system-centric results are presented in Section 8.
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5 Results: Little Training

The first criterion for a good solution relates to training duration, as listed in Section 3.1: “Can
novices face complex applications confidently with little training?” Our training process was pre-
sented in Section 4.1.4. As stated there, the training session was one hour or less for all participants,
thus meeting the above criterion. What is left to be determined is whether this training was ad-
equate. The ultimate test of adequate training is task performance, as shown by the success our
participants have in actually modifying applications. These results are reported in the rest of the
paper. A secondary test is the subjective impression of participants. We asked participants several
questions after task completion to help us judge whether they felt adequately prepared.

Our questions probed directly about the value of the training and training materials. Participants
responded on a 5-point Likert scale (1 – Helped immensely, 2 – Quite a lot, 3 – Somewhat, 4 –
A little bit, 5 – Didn’t help at all). In response to the question, “Was the training helpful?” the
average participant response fell between 1 (Helped immensely) and 2 (Quite a lot), with a mean
value of 1.33 and a standard deviation of 0.48. The results were similar for the question “Was the
documentation helpful?” The mean response was 1.64 and the standard deviation was 0.76.

In addition, after every subtask of Table 2, we probed participants’ confidence in their work
through the question, “How certain are you that you performed the subtask correctly?” Responses
were provided on a 7-point Likert scale (1 – Incredibly certain to 7 – Completely uncertain). As
shown in Figure 5, participants reported a high degree of confidence across the range of applica-
tions. The mean response ranged from 1.3 for Face, to 2.2 for Music.

These self-report ratings correlate highly with the task performance times presented in Sec-
tion 6. The correlation coefficient (r) is 0.88, indicating a strong positive correlation. The p value
of 0.009 indicates that it is highly unlikely this correlation would occur by chance. We will dis-
cuss these results in more detail in Section 10, where we identify opportunities for improving our
solution. Overall, these results suggest that the participants believed their training prepared them
well for the modification tasks they faced.

6 Results: Quick Modifications

In this section, we address the second criterion listed in Section 3.1: “Can novices modify complex
applications quickly?” To answer this question, we examined overall task completion times across
the range of applications in our validation suite. We found that the average completion time was
just over 2 hours, with a mean of 2.08 and a standard deviation of 0.86. Figure 6 shows the
distribution of task completion times, and Table 4 presents the breakdown of these times across
task stages. These data show mean completion times ranging from 70 to 200 minutes, with no
participant taking longer than 4 hours for any application. For two applications, some participants
only needed about an hour.

The proportion of the original code base that was modified is another measure of task simplic-
ity. Table 5 shows the relevant data. These data show that only a tiny fraction of the code base was
modified in every case, and that there was roughly ten times as much stub-generated code as hand-
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App Stage A Stage B Stage C Total

Face 10.3 (1.7) 36.6 (4.5) 33.6 (17.8) 80.5 (22.7)

Flite 12.6 (7.8) 37.7 (6.7) 20.6 (16.4) 70.9 (20.4)

Janus 29.3 (14.0) 31.0 (6.5) 42.1 (10.2) 102.4 (26.2)

GLVU 66.3 (20.8) 65.1 (22.5) 40.3 (7.7) 171.7 (33.8)

Music 49.6 (15.7) 68.2 (17.1) 83.0 (23.0) 200.8 (45.4)

Panlite 36.2 (7.7) 48.7 (20.2) 32.8 (14.7) 117.8 (36.6)

Radiator 17.2 (6.0) 45.3 (8.7) 39.4 (7.0) 101.9 (11.7)

Each entry gives the completion time in minutes for a task stage, averaged across all participants who were
assigned that application. Values in parentheses are standard deviations.

Table 4: Completion Time by Task Stage

App Lines File Tactic Stage B: Client Modifications Stage C: Server Modifications

of Code Count File Lines Lines Stub Files Lines Lines Stub Files

Size Added Removed Lines Changed Added Removed Lines Changed

Face 20K 105 10 31 – 68 12 – 15 556 2 26 – 45 15 – 24 186 2

Flite 570K 182 10 29 – 39 1 – 5 556 2 13 – 30 3 – 87 186 2

GLVU 25K 155 38 62 – 114 3 – 21 1146 2 88 – 148 12 – 32 324 2

Janus 126K 227 25 28 – 47 2 – 7 1538 3 59 – 130 7 – 70 434 4

Music 9K 55 11 61 – 77 4 – 6 1127 2 131 – 269 23 – 147 203 2

Panlite 150K 349 21 30 – 66 1 – 39 1481 3 12 – 73 18 – 39 406 3

Radiator 65K 213 15 41 – 51 1 – 47 643 2 49 – 106 17 – 32 202 2

Any a–b value indicates a lower bound of a and an upper bound of b. Lines of Code and File Count show
the size and number of files in the application. Tactic File Size gives the number of lines in the application’s
tactics file. The Lines Added and Removed columns show how many lines were added and removed when
performing the task. Stub Lines gives the number of stub-generated lines of code. Files Changed gives the
maximum number of files that were actually modified by the participants.

Table 5: Application Modifications

written code. In addition to the reduction in coding effort, the use of stubs allowed participants to
get away with minimal knowledge of Chroma.

Finally, we asked participants the question “How easy did you find this task?” Responses were
provided on a 7-point Likert scale (1 – Really easy to 7 – Incredibly hard). As Figure 7 shows,
the responses were heavily weighted toward the easy end of the scale for all applications. These
self-report ratings also correlate highly with the task completion times reported earlier (r = 0.82,
p = 0.02), increasing our confidence that these results are meaningful. As an additional validation,
the self-reported confidence and task difficulty scores were also strongly correlated (r = 0.88, p =
0.01). Taken together, these pieces of evidence converge to suggest that the participants were able
to quickly and easily modify the complex applications represented in our validation suite.
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7 Results: Low Error Rate

In this section, we examine the third criterion listed in Section 3.1: “Can novices modify complex
applications with few errors?” Since programming is an error-prone activity, we expect novice-
modified applications to contain ordinary programming errors of the types described by Pane et
al. [33]. In addition, we expect a few additional simple errors because participants could not test
their solution, except to verify that it compiled cleanly. We divide the analysis into two parts; errors
in creating tactics files (Stage A); and errors in modifying application code (Stages B and C). An
expert scored both parts through code review.

Table 6 shows the errors for Stage A. The parameter, RPC, and tactic errors were due to spec-
ifying too few parameters, RPC arguments, and tactics respectively. Too few parameters can lead
to poor predictions by Chroma. Too few tactics could hurt application performance because the
tactics-fidelity space is too sparse. Too few RPC arguments results in a functionally incorrect so-
lution. There were also 4 harmless errors that would not have caused any performance problems.
In particular, the participants specified extra fidelities that Chroma would ignore.

For Stages B and C, we classified the errors found as either trivial or non-trivial. Trivial errors
are those commonly occurring in programming assignments. Examples include being off by one on
a loop index, or forgetting to deallocate memory. Trivial errors also include those that would have
been detected immediately if our procedure allowed participants to test their modified applications.
An example is forgetting to insert a register API call to Chroma. All other errors were deemed
non-trivial.

Table 7 shows the error distribution across applications. A total of 25 trivial errors were found,
yielding an average incidence rate of one trivial error per modification attempt. The bulk of these
errors (80%) were either a failure to register the application early enough or an incorrect specifica-
tion of the output file. The register error was due to participants not placing the register call at the
start of the application. This prevented the application from connecting to Chroma. The output file
errors were due to incorrect use of string functions (a common programming error); this resulted
in the application exiting with an error when performing an RPC. Both of these errors would have
been discovered immediately if the participants had been able to test their applications.

A total of 10 non-trivial errors were found, giving an incidence rate of 0.4 per modification
attempt. These took two forms: incorrectly setting parameter values, or incorrectly using fidelities.
The parameter errors appeared across many applications while the fidelity errors occurred only in
GLVU. Neither of these errors would be immediately apparent when running the application. We
examine the performance impact of these errors in Section 8.

In summary, we achieved a good success rate with 72% (18 of 25) of the Stage A tactics files
having no harmful errors and 64% (16 of 25) of the Stage B and C novice-modified applications
having no non-trivial errors. At first glance, these numbers may seem unimpressive. However,
no novice-modified application had more than 1 non-trivial error. This is very low given that
the applications being modified consisted of thousands of lines of code and hundreds of files.
We are confident that any manual attempt, even by experts, to modify these applications would
result in far larger numbers of non-trivial errors. This low error rate is also an upper bound as
the participants were not able to actually test their modified applications — they only confirmed
that it compiled cleanly. The low error rate also substantially improves standard testing phases as
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Apps Params RPCs Tactics Harmless # Apps Okay

Face 0 0 0 0 3 3

Flite 1 0 0 0 3 2

GLVU 1 1 0 3 5 4

Janus 0 0 0 1 3 3

Music 0 1 0 0 3 2

Panlite 0 0 2 0 5 3

Radiator 0 2 0 0 3 1

Total 2 2 0 4 25 18

The # Apps column lists the no. of tactics files created for each app. Okay lists how many tactic files had
no harmful errors.

Table 6: Total Errors for Stage A Across All Participants

the applications are mostly correct. In addition, any errors caught during testing can be rapidly
traced to the offending code lines, because relatively few lines of code were inserted or deleted. In
Section 10 we examine ways to reduce this error rate even further.

8 Results: Good Quality

The fourth criterion listed in Section 3.1 pertains to the quality of modified applications: “Can
novices produce modified applications whose quality is comparable to those produced by an ex-
pert?” To answer this question, we conducted the system-centric evaluation described in Sec-
tion 4.2.

For each novice-modified application, we conducted 36 experiments comparing its perfor-
mance to that of the same application modified by an expert. As explained in Section 4.2.3, these
36 experiments explored combinations of compute server loads, network bandwidths, user prefer-
ences, and server speeds. For each experiment, we report fidelity and latency of the result. Fideli-
ties are normalized to a scale of 0.01 to 1.0, with 0.01 being the worst possible fidelity, and 1.0 the
best. Fidelity comparisons between different versions of the same application are meaningful, but
comparisons across applications are not. We report latency in seconds of elapsed time.

We deemed applications to be indistinguishable if their performance on all 36 experiments
came within 1% of each other on both fidelity and latency metrics. This is obviously a very high
bar. Data points differing by more than 1% were deemed anomalies. We evaluated the performance
of client and server components of each application separately. No anomalies were observed for
server components: all 25 were indistinguishable from their expert-modified counterparts.

Table 8 presents our client component results. The table entry for each participant, and appli-
cation modified by that participant, gives the percentage of the 36 experiments for which novice-
modified and expert-modified applications were within 1%. A score of 100% indicates indistin-
guishable applications; a lower percentage indicates the presence of anomalies. Table 8 shows that
novice- and expert-modified applications were indistinguishable in 16 out of 25 cases.
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Trivial Errors Non-Trivial

Errors

Apps Reg. Output Output Mem. Other Params Fids

Late File Space Freed

Face 0 3 0 0 0 1 0

Flite 0 3 0 0 1 0 0

GLVU 3 0 1 0 1 1 4

Janus 1 2 0 0 0 0 0

Music 1 0 0 2 0 1 0

Panlite 4 0 0 0 0 1 0

Radiator 2 1 0 0 0 2 0

Total 11 9 1 2 2 6 4

Observed trivial errors include: did not register application early enough; did not create output file prop-
erly; did not allocate enough space for output; freed static memory. Observed non-trivial errors include:
did not set parameters correctly; did not use fidelities to set application state properly

Table 7: Total Errors for Stages B and C Across All Participants

Table 9 shows details of the anomalies. To save space, it only shows the performance of one
anomalous version of GLVU; the other 3 anomalous versions were similar. For each application,
we provide the relative fidelity and latency obtained for all 3 inputs in all 6 scenarios. The relative
fidelity is expressed as H (Higher), S (Same), or L (Lower) than the expert-modified version.
Latency is given as a ratio relative to the expert. For example, a value of 11.9 indicates that the
novice-modified application had 11.9 times the latency of the expert-modified application, for the
same input.

We observe that GLVU was the source of most of the anomalies. The novices’ solutions se-
lected an inappropriately high fidelity resulting in their solutions exceeding the latency goals for the
T, LH, HH, LL, and HL scenarios. Code inspection of the anomalous versions of GLVU revealed
that all 4 anomalous versions made the same mistake. To successfully modify GLVU, participants
needed to use a fidelity value returned by Chroma to set the application state before performing the
chosen tactic. In all 4 cases, the participants read the value of the fidelity but forgot to insert the 2
lines of code that set the application state. As a result, these 4 applications always performed the
chosen tactic using the default fidelity, and were unable to lower fidelity for better latency.

The other 5 anomalies (1 Face, 1 Flite, 1 Panlite and 2 Radiator versions) were due to mis-
specified parameters. In 4 of the 5 cases, the participants set a parameter value that was too small.
For Panlite, the parameter was set to the length of the entire input string instead of just the number
of words in the input string. For Flite, the participant forgot to set the parameter value, which
then defaulted to a value of 0. For Face, the parameter was set to input file name length instead
of file size. For Radiator (participant 12), the parameter was set to a constant value of 400 instead
of the number of polygons in the lighting model. These mis-specifications of parameter values
led Chroma to recommend fidelity and tactic combinations that exceeded the scenario latency
requirements.
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Participant Number
1 2 3 4 5 6 7 8 9 10 11 12 13

Face 100% 100% 67%

Flite 100% 100% 67%

GLVU 44% 44% 44% 100% 44%

Janus 100% 100% 100%

Music 100% 100% 100%

Panlite 100% 83% 100% 100% 100%

Radiator 94% 100% 78%

A score of 100% indicates that the participant’s client version matched the performance of the expert in all
36 experiments. A blank entry indicates that the participant was not asked to create a modified version of
that application.

Table 8: Relative Performance of Novice-Modified Client Component

In the last case (Participant 4’s version of Radiator), the parameter was set to a far higher value
than reality. In particular, it was set to the size of the model file on disk instead of just the number
of polygons in the model being used. This caused Chroma to be more pessimistic in its decision
making than it should have been. So this application version achieved lower fidelity than it could
have.

In summary, our results confirm that novice-modified application code is of high quality. All
25 of the server components, and 16 of the 25 client components modified by participants were
indistinguishable from their expert-modified counterparts. Where there was divergence, analysis
of the anomalies give us ideas for improving our solution. We discuss these improvements in
Section 10.

9 Why Our Solution Works

At first glance, the results of the previous sections seem too good to be true. Modifying a complex
application for cyber foraging, a task that one expects will take a novice multiple weeks, is ac-
complished in just a few hours. The modified application performs close to what one could expect
from an expert. Yet, it is not immediately clear what accounts for this success. Vivendi, Chroma
and the stub generator are each quite ordinary. Somehow, their combined effect is greater than the
sum of the parts. What is the magic at work here?

The key to explaining our success is to recognize the existence of a deep architectural unifor-
mity across modified applications. This is in spite of diversity in application domains, program-
ming languages, modular decompositions, and coding styles. It arises from the fact that, at the
highest level of abstraction, we are dealing with a single genre of applications: mobile interactive
resource-intensive applications.

In a mobile environment, all sensible decompositions of such applications place interactive
code components on the mobile client, and resource-intensive components on the compute server.
This ensures low latency for interactive response and ample compute power where needed. This
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Scenarios
Q T LH HH LL HL

Slow . . . S, 5.24 S, 5.22 . . . . . . . . .

. . . S, 5.26 S, 5.24 . . . . . . . . .

. . . S, 5.20 S, 5.25 . . . . . . . . .

Fast . . . S, 14.21 S, 14.22 . . . . . . . . .

. . . S, 14.37 S, 14.29 . . . . . . . . .

. . . S, 14.17 S, 14.25 . . . . . . . . .

Scenarios
Q T LH HH LL HL

Slow . . . . . . S, 2.33 . . . S, 2.45 . . .

. . . . . . S, 2.77 . . . S, 2.74 . . .

. . . . . . S, 2.51 . . . S, 2.42 . . .

Fast . . . . . . S, 2.91 . . . S, 2.97 . . .

. . . . . . S, 3.56 . . . S, 3.23 . . .

. . . . . . S, 3.16 . . . S, 3.38 . . .

(a) Face (Participant 11) (b) Flite (Participant 12)

Q T LH HH LL HL

Slow . . . H, 11.26 . . . H, 3.04 . . . H, 3.06

. . . H, 13.29 H, 1.16 H, 4.65 H, 1.15 H, 4.61

. . . H, 8.31 . . . H, 2.47 . . . H, 2.45

Fast . . . H, 11.34 . . . H, 3.06 . . . H, 3.02

. . . H, 13.40 . . . H, 4.59 . . . H, 4.67

. . . H, 7.85 . . . H, 2.46 . . . H, 2.48

Q T LH HH LL HL

Slow . . . . . . H, 7.68 . . . H, 7.57 . . .

. . . . . . H, 6.89 . . . H, 6.93 . . .

. . . . . . H, 7.54 . . . H, 7.49 . . .

Fast . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

(c) GLVU (Participant 1) (d) Panlite (Participant 4)

Q T LH HH LL HL

Slow . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . L, 0.17 . . . . . . . . .

Fast . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . L, 0.05 . . . . . . . . .

Q T LH HH LL HL

Slow . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . H, 3.98 H, 1.14 H, 1.10 H, 1.15

Fast . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . H, 1.11 H, 1.12 H, 1.16 H, 1.14

(e) Radiator (Participant 4) (f) Radiator (Participant 12)

Each entry consists of a relative fidelity followed by a relative latency for a single input. The relative
fidelity is either L–lower than expert, S–same as expert, or H–higher than expert. The relative latency
gives the ratio between the participant’s version versus the expert. E.g., a latency of 11 indicates the
participant’s version had 11 times the latency of the expert. Only the anomalous values are presented. All
other values are replaced by the symbol “. . . ” to avoid visual clutter.

Table 9: Detailed Results for Anomalous Application Versions
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space of decompositions is typically a tiny fraction of all possible procedure-level decompositions.
The challenge is to rapidly identify this “narrow waist” in an unfamiliar code base.

In examining a broad range of relevant applications, we were surprised to observe that every
unmodified application of interest to us was already structured to make such decomposition easy. In
hindsight, this is not so surprising. Code to deal with user interaction is usually of a very different
flavor from code that implements image processing, speech recognition, and so on. Independent of
mobile computing considerations, a capable programmer would structure her application in a way
that cleanly separates these distinct flavors of code. The separation would be defined by a small
procedural interface, with almost no global state shared across that boundary — exactly the criteria
for a narrow waist.

In addition to this similarity of code structure, there is also similarity in dynamic execution
models. First, there is a step to obtain input. This could be a speech utterance, a natural language
fragment, a scene from a camera, and so on. Then, resource-intensive processing is performed on
this input. Finally, the output is presented back to the user. This may involve text or audio output,
bitmap image display, etc.

In modifying such an application for mobile computing, the main change is to introduce an
additional step before the resource-intensive part. The new step determines the fidelity and tactic
to be used for the resource-intensive part. It is in this step that adaptation to changing operational
conditions occurs. A potential complication is the need to add the concept of fidelity to the appli-
cation. Fortunately, this has not been necessary for any of our applications. Most applications of
this genre already have “tuning knob” parameters that map easily to fidelities — another pleasant
surprise.

Our solution exploits these similarities in architecture and execution model. The architectural
similarity allows us to use a “little language”(Vivendi) to represent application-specific knowledge
relevant to cyber foraging. This knowledge is extracted by a developer from the source code of an
application and used to create the tactics file. The similarity in execution model allows us to use a
common runtime system (Chroma) for adaptation across all applications. The use of stubs raises
the level of discourse of the runtime system to that of the application. It also hides many messy
details of communication between mobile device and compute server.

The net effect of executing the solution steps using a checklist is to quickly channel attention
to just those parts of application source code that are likely to be relevant to cyber foraging. At
each stage in the code modification process, the developer has a crisp and narrow goal to guide
his effort. This focused approach allows a developer to ignore most of the bewildering size and
complexity of an application.

In addition to reducing programmer burden, there is also a significant software engineering
benefit to the clean separation of concerns implicit in our design. The application and the runtime
system can be independently evolved, with many interface changes only requiring new stubs.

10 Improving the Solution

Our solution could be improved in several ways: eliminating all errors, further reducing the time
required, and ensuring it applies to the widest possible range of potential mobile applications. In
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Figure 8: Time and Difficulty of Each Individual Subtask

order to chart out these future directions, we analyze all the non-trivial errors, examine how the
subjects spent their time, and examine the differences in applying the solution to the range of
applications. Since our solution is already fast, we focus on improving the solution quality.

The non-trivial errors in Stage A took 3 forms; specifying too few parameters, specifying too
few RPC arguments, and specifying too few tactics. These errors were distributed randomly across
participants and applications.

All of the non-trivial errors in Stages B and C occurred in one subtask, “Find Fidelities”,
while creating the client, and were of only two types. In one type of error, all for GLVU, novices
successfully read the fidelity values returned by Chroma, but failed to use those values to set the
application state. In the other cases, novices failed to set the parameters correctly to reflect the size
of the input. There were no errors associated with any other subtask involved in creating either the
client or server.

In order to eliminate these errors, we need to determine whether the programmers were unable
to understand the task or simply forgot to complete all necessary steps. If the latter, straightforward
improvements in the instructions may be sufficient to eliminate all observed errors. An examination
of the evidence summarized in Figure 8 suggests that forgetfulness is the likely cause. Subjects
did not report that the “Find Fidelities” subtask was particularly difficult, rating it only 2.6 on
a 7-point difficulty scale where 4 was the midpoint. They also did not report a high degree of
uncertainty (not shown) in their solution, giving it a 1.7 on a 7-point uncertainty scale (midpoint
at 4). Table 8 shows that, of the seven programmers who made at least one non-trivial error, five
successfully modified a second application with no errors. Of the other two, one modified only a
single program, and the other made non-trivial errors on both programs they modified. Together,
these results suggest that nearly all the subjects were capable of performing all tasks correctly. This
implies forgetfulness was the problem. This analysis leads us to believe that forcing developers to
pay more attention to these error-prone parts of the “Find Fidelities” task, perhaps with an extended
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checklist, will eliminate most of the errors.
Figure 8 also suggests that the difficult and time-consuming tasks vary considerably across

application types. For example, GLVU required more time in the “In” and “RPC” subtasks of
Stage A as it had a large number of parameters and RPC arguments as shown in Table 1. It also
had larger times for the “Find Fidelities” and “Do Tactics” subtasks of Stage B as “Find Fidelities”
required participants to set each of the parameters while “Do Tactics” required participants to
manage each of the RPC arguments. Similarly, Panlite required more time during the “Tactic”
subtask of Stage A as it had a large number of tactics that had to be identified and described. In
each of these cases, we suspect that instructing programmers on how to keep track of the minutiae
of these subtasks, and ensuring that each is completed, would be of substantial benefit.

Finally, Music had a very large “Compile and fix” time for Stage C. This was because Mu-
sic was originally written as a non-adaptive, desktop oriented client–server application. Thus it
already used a specific on-wire data format that participants had to reuse, requiring them to write
large amounts of relatively simple buffer manipulation code. Trivial errors in this code led to the in-
creased subtask times. This suggests that there will be issues specific to some types of applications
that may make them less amenable to our solution.

11 Related Work

Our work spans mobile computing, software engineering and HCI. At their juncture lies the prob-
lem of rapid modification of resource-intensive applications for cyber foraging. To the best of our
knowledge, we are the first to recognize the importance of this problem and propose a solution.
Our solution and its validation build upon work in three areas: little languages, adaptive systems,
and HCI evaluation methods.

The power of little languages was first shown by early versions of the Unix programming
environment. Make [11] is perhaps the best-known example of a little language. As Bentley
explains [2], the power of a little language comes from the fact that its abstractional power is
closely matched to a task domain. Our use of tactics and the design of Vivendi apply this concept
to cyber foraging.

Chroma’s approach to adaptation builds on ideas first proposed in Odyssey [32]. Its use of
history-based prediction follows the lead of Narayanan et al. [29] and Gurun et al [18]. The use
of remote execution to overcome resource limitations has been explored by many researchers,
including Rudenko [36] and Flinn [12].

We used well-established techniques from HCI to conduct our user-centric evaluation. Nielsen [31]
gives a good overview of these techniques. Ko et al. [27] and Klemmer et al. [26] show how these
techniques could be applied to the evaluation of programming tools.

From a broader perspective, our work overlaps with automatic re-targeting systems such as
IBM’s WebSphere [6] and Microsoft’s Visual Studio [52]. These systems allow developers to
quickly port applications to new target systems. Unfortunately, they use a language-specific ap-
proach, which runs counter to our design considerations.

Finally, dynamic partitioning of applications has a long and rich history in distributed systems
and parallel computing. In the space available, we cannot fully attribute this large body of prior
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work. A sampling of relevant work includes Mentat [16], Jade [35], Nesl [5], Abacus [1] and
Coign [21]. None of these efforts focus specifically on mobile computing.

12 Conclusion

Mobile computing is at a crossroads today. A decade of sustained effort by many researchers
has developed the core concepts, techniques and mechanisms to provide a solid foundation for
progress in this area. Yet, mass-market mobile computing lags far behind the frontiers explored
by researchers. Smart cell phones and PDAs define the extent of mobile computing experience
for most users. Laptops, though widely used, are best viewed as portable desktops rather than
true mobile devices that are always with or on a user. Wearable computers have proven effective in
industrial and military settings [44, 53], but their impact has been negligible outside niche markets.

An entirely different world, sketched in the first paragraph of this paper, awaits discovery. In
that world, mobile computing augments the cognitive abilities of users by exploiting advances
in areas such as speech recognition, natural language processing, image processing, augmented
reality, planning and decision-making. This can transform business practices and user experience
in many segments such as travel, health care, and engineering. Will we find this world, or will it
remain a shimmering mirage forever?

We face two obstacles in reaching this world. The first is a technical obstacle: running resource-
intensive applications on resource-poor mobile hardware. Remote execution can remove this ob-
stacle, provided one can count on access to a compute server via a wireless network. The second
obstacle is an economic one. The effort involved in creating applications of this new genre from
scratch is enormous, requiring expertise in both the application domain and in mobile computing.
Further, there is no incentive to publicly deploy compute servers if such applications are not in
widespread use. We thus have a classic deadlock, in which applications and infrastructure each
await the other.

Our work aims to break this deadlock. We lower the cost of creating resource-intensive mobile
applications by reusing existing software that was created for desktop environments. Using our
approach, relatively unskilled programmers can do a credible job of rapidly porting such software
to new mobile devices. Even if the result is not optimal in terms of performance, it is typically good
enough for real use. We have validated our approach on seven applications. The next step is, of
course, to enlarge the suite of applications. This will help us broaden the validity of our approach,
and improve it along the lines discussed in Section 10. If these efforts meet with continued success,
we are confident that our work can help stimulate the transformation of mobile computing.
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