
Algorithmic and Domain Centralization in Distributed
Constraint Optimization Problems

John P. Davin

CMU-CS-05-154
July 2005

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Pragnesh Jay Modi, Co-Chair

Manuela Veloso, Co-Chair

Stephen F. Smith

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c
�

2005John P. Davin

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under
Contract No. NBCHD030010. Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency
(DARPA), or the Department of Interior-National Business Center (DOI-NBC).

Keywords: multiagent systems, distributed optimization, DCOP, Adopt, OptAPO

Abstract

A class of problems known as Distributed Constraint Optimization Problems (DCOP)

has become a growing research interest in computer science because of its difficulty

(NP-Complete) and many real-world applications (meeting scheduling, sensor net-

works, military planning). In this thesis we identify two types of centralization rel-

evant to DCOPs:algorithmic centralization, in which a DCOP algorithm actively

centralizes part (or all) of the problem structure, anddomain centralization, in which

inherent centralization already exists in the domain specification.

We explore algorithmic centralization by empirically studying Adopt and OptAPO,

two DCOP algorithms which differ in the amount of centralization they use. Our re-

sults show that centralizing a problem’s structure decreases communication overhead,

but increases local computation. We compare the algorithmsthrough our contribution

of a new performance metric, Cycle-Based Runtime, which takes both communication

costs and local computation time into account.

We then explore domain centralization by studying meeting scheduling, which has

problem structure clustered at scheduling agents. We present a novel variant of Adopt,

called AdoptMVA, which uses a centralized search within agents to take advantage of

the partially centralized structure. We show that when agent ordering is controlled for,

AdoptMVA outperforms Adopt in situations where communication costs are high. We

contribute a Branch & Bound search heuristic which works well for meeting schedul-

ing problems with multiple variables per agent. We also empirically experiment with

meeting scheduling, showing that meeting size is in some cases a better indicator of

solution difficulty than the number of agents in a problem.

Acknowledgments

I would like to thank my advisor Manuela for her always insightful perspective and guidance on

the challenges present in calendar scheduling and its real-world applicability. Her passion for

agent-based systems is an inspiration. I thank Roger Mailler for helpfully providing his implemen-

tation of OptAPO, which made possible much of my investigation of algorithmic centralization.

I especially am grateful to Jay for his valuable advice, brainstorming conversations and ideas on

problems encountered during my work. His knowledge of Adoptand DCOP and facility for teach-

ing were instrumental to my work.

v

Contents

List of Tables .. ix

List of Figures .. . xi

1 Introduction 1

1.1 Distributed Constraint Optimization Problems 2

1.2 Taxonomy of Centralization 3

1.3 Thesis Overview and Contributions 4

2 Algorithmic Centralization in DCOPs 7

2.1 Evaluation Metrics 7

2.1.1 Cycles . 8

2.1.2 Concurrent Constraint Checks 9

2.1.3 Cycle-Based Runtime .9

2.2 DCOP Algorithms .11

2.2.1 Adopt Algorithm . 11

2.2.2 OptAPO Algorithm . 12

2.2.3 Level of Centralization in Adopt and OptAPO 13

2.3 Results .13

2.3.1 Cycle-Based Runtime of Adopt and OptAPO 14

2.3.2 Centralization in OptAPO .. . 16

2.3.3 Distribution of Computation in Adopt and OptAPO 17

2.3.4 Tradeoffs Between Communication Latency and Centralization 19

2.4 Conclusions .. 20

vii

3 Domain Centralization in DCOPs 21

3.1 Motivating Domain: Meeting Scheduling 21

3.1.1 Multiagent Agreement Problem 23

3.2 Adopt with Multiple Variables per Agent (AdoptMVA) 24

3.2.1 Details of AdoptMVA Algorithm .. . 26

3.2.2 Discussion of Branch & Bound search 27

3.2.3 Intra-agent variable ordering heuristics 28

3.2.4 Inter-agent ordering heuristics 30

3.3 Results .31

3.3.1 Performance of AdoptMVA versus Adopt 32

3.3.2 Comparison of agent ordering heuristics 35

3.3.3 Comparison of intra-agent search heuristics 37

3.3.4 Meeting Scheduling as agents and meeting size are scaled 40

3.4 Related Work .41

3.5 Conclusions .. 43

4 Conclusions 45

4.1 Future Work .46

Bibliography 47

viii

List of Tables

3.1 Classification of intra-agent search ordering heuristics 30

3.2 Inter-agent ordering heuristics in meeting scheduling. 36

3.3 Inter-agent ordering heuristics in graph coloring 36

3.4 Intra-agent search heuristics in low density meeting scheduling 37

3.5 Intra-agent search heuristics in high density meeting scheduling 39

3.6 Intra-agent search heuristics in graph coloring 40

ix

List of Figures

1.1 Dimensions of Centralization 4

2.1 Concurrent constraint checks 9

2.2 Cycle-Based Runtime representation 10

2.3 Main result: OptAPO uses fewer cycles than Adopt, but requires greater local

computation . 14

2.4 Adopt and OptAPO on low density graph coloring 15

2.5 Adopt and OptAPO on high density graph coloring 16

2.6 Amount of OptAPO centralization 17

2.7 Distribution of computation in Adopt and OptAPO 18

2.8 Adopt, OptAPO, and centralized search at different communication latencies . . . 19

3.1 Adopt and AdoptMVA variable hierarchies 25

3.2 AdoptMVA versus Adopt using equivalent agent orderingson high density meeting

scheduling . 32

3.3 AdoptMVA versus Adopt using equivalent agent orderingson graph coloring . . . 33

3.4 Inter-agent ordering heuristics on meeting scheduling. 35

3.5 Inter-agent ordering heuristics on graph coloring 36

3.6 Intra-agent search heuristics on low density meeting scheduling 37

3.7 Intra-agent search heuristics on high density meeting scheduling 38

3.8 Intra-agent search heuristics on graph coloring 39

3.9 Meeting scheduling as number of meeting attendees varies 41

xi

Chapter 1

Introduction

Multi-agent systems are becoming a pervasive element of real-world computing applications. They

have the potential to be much more robust and fail-safe than centralized systems, and apply nat-

urally to a number of problems such as scheduling, military planning, and search and rescue. In

many multi-agent systems, constraint optimization is one of the key capabilities required. For

example, an office assistant agent would need to optimize meeting scheduling problems. Or, field-

based agents for the postal service might need to optimize delivery schedules.

The Distributed Constraint Optimization Problem (DCOP) [1] provides a natural framework

for handling these types of optimization problems which areby nature distributed across multiple

agents. DCOP can model rich constraint interactions between agents, allowing it to be applied to

many types of multi-agent optimization problems. Further,there exist several DCOP algorithms

for optimally solving these constraint problems. Some algorithms partially or fully centralize the

problem in order to use traditional search procedures on theproblem. DCOP algorithms can be

classified along a spectrum ofalgorithmic centralizationranging from fully distributed algorithms

to fully centralized algorithms. A DCOP domain also can include inherentdomain centralization

in which agents naturally have control of multiple variables.

This thesis primarily seeks to address the questions:

� How is performance influenced by the amount of algorithmic centralization used in a DCOP

search?

� And, how can we take advantage of domain centralization which occurs in problems such as

meeting scheduling?

1

1.1 Distributed Constraint Optimization Problems

Constraint Satisfaction Problems (CSP) have been a longstanding part of computer science theory

and applications. CSP is a model for problems in which a set ofvariables is constrained in some

way by a set of constraints on the variables’ values. A solution to a CSP is one which satisfies all

the constraints.

CSP has traditionally been solved in a centralized fashion,on a single computer. However, this

is fairly limiting because it does not extend well to large distributed networks. Multi-agent systems

are becoming increasingly important given their many applications in business, military planning,

team-based games and other areas. The Distributed Constraint Satisfaction Problem (DisCSP) [2]

models these types of problems for a distributed framework.This allows us to solve CSP in a

distributed system.

The constraint satisfaction model is still somewhat restrictive because it only applies to prob-

lems which can be represented in a way where success is a yes orno decision. Satisfaction is a

boolean solution which often does not apply in real world situations - solutions can fall along a

large range of qualities, where almost-perfect may be an acceptable answer.

In reality, we want to optimize the solution to a given constraint problem - we want to find the

best possible solution, even if a fully satisfying solutionis not possible. Constraint optimization,

which is more general than constraint satisfaction, allowsus to do exactly that. Distributed Con-

straint Optimization Problems (DCOP), as defined in [1], provide a formal model for optimizing a

set of variables in a distributed manner.

A DCOP is defined as:
� set of� agents, � � �� � � � � � 	 	 	 � �
 �.
� set of� variables, � �� � ��� � 	 	 	 � �� �.
� set ofdomains� � �� � � � � �	 	 	 � �� �, where the value of�� is taken from��. Each�� is

assumed finite and discrete.

� set ofcost functions� � ��� � 	 	 	 � �� � where each�� is a function�� � � � �� � � � � � � � �� �
� � � . Cost functions are also calledconstraints.

� a distribution mapping� � � � assigning each variable to an agent.� ��� � � � � means
that�� is responsible for choosing a value for��. �� is given knowledge of��, �� and all��
involving ��.

� anobjective function� , generally defined as the total cost of constraints for a given solution
� : � �� � � !" �!# $% ��� �&� � &� �

2

An optimal solution to a DCOP is an assignment of values to thevariables such that total cost

� is minimized. DCOP is known to be NP-Complete, making it a challenging and rich problem,

particularly when we try to scale to large problems.

In some domains centralization of external constraints is undesirable because of privacy con-

cerns. In meeting scheduling, a model called Private Eventsas Variables (PEAV) [3] takes into

account the fact that human agents often do not want to share full calendar information with other

participants.

1.2 Taxonomy of Centralization

Definition: Centralizationof a DCOP refers to the aggregation of problem informa-

tion in a single agent. This aggregation results in a larger local search space at the

agent. A problem can be fully centralized, or partially centralized if only certain parts

of the problem are shared.

In this thesis we define two types of centralization:

� algorithmic centralization- a DCOP algorithm actively centralizes parts of the problem

structure that are not already naturally centralized. Thiscan allow the algorithm to use a

centralized search procedure on the information that was centralized within an agent.

� domain centralization- the domain inherently has some of the problem structure centralized

at each agent. In other words, the problem is presented to us already partially centralized.

The meeting scheduling domain is an example in which structure is partially centralized,

since agents can have control over multiple meetings. Each agent has knowledge of all the

meetings within its own calendar and the constraints between those meetings.

These two types of centralization can be used to classify DCOP algorithms and domains along a

spectrum ranging from fully distributed to fully centralized. Figure 1.1 graphically represents these

two dimensions, with several algorithms and domains placedat locations along the spectrum. For

example, Adopt is at the low end of algorithmic centralization because it doesn’t actively centralize

the problem. On the other hand, a DCOP algorithm that communicated the problem structure and

then used a Branch & Bound search is a fully centralized approach. OptAPO is roughly in the

3

Algorithms

Adopt OptAPO Branch & Bound

Graph Coloring

(1 var per agent)

Meeting

Scheduling

(Multiple vars

per agent)

CSP

(All vars in

1 agent)

D
o

m
ai

n
s

increasing centralization -->

<

--
 i

n
cr

e
a

si
n

g
 c

e
n

tr
a

li
za

ti
o

n

Figure 1.1: This figure shows the two dimensions of DCOP centralization - algorithmic and domain, along
with labels marking approximately where certain algorithms or domains fall on the spectrum.

middle because it uses partial centralization. Along the domain centralization spectrum, graph

coloring with one variable per agent is a fully distributed domain, while traditional CSP is a fully

centralized domain. Meeting scheduling is somewhere in between because parts of the problem

can be centralized.

Sometimes an algorithm handles domain centralization by reducing the problem into a fully

distributed problem which can be solved as a typical DCOP. For example, the individual variables

controlled by an agent can be represented as pseudo-agents [1] which each control a single variable

and act independently.

1.3 Thesis Overview and Contributions

This thesis makes several contributions to our understanding of distributed constraint optimization

problems:

� We define algorithmic and domain centralization, two dimensions along which DCOP algo-

rithms and domains can be classified. This taxonomy providesa guide for classifying types

of centralization, and emphasizes that centralization is an important aspect to consider in

DCOP research.

4

� We explore both dimensions of centralization: Algorithmiccentralization is studied by em-

pirically comparing three algorithms which use different levels of centralization (Adopt,

OptAPO, and Branch & Bound) [Chapter 2]. We study domain centralization by formulat-

ing a modified Adopt algorithm called AdoptMVA which uses partially centralized search to

take advantage of problem structure [Chapter 3].

� We develop the CBR performance metric, which takes both communication cycles and lo-

cal computation time into account. The metric provides researchers with a tool to more

accurately compare performance of DCOP algorithms. [Chapter 2]

� We empirically study meeting scheduling problems, and find that meeting size can be an

equally important performance factor as the number of agents in the problem. [Chapter 3]

The work here addresses the graph coloring and meeting scheduling domains. Some of the

results may extend to other domains, and we will attempt to make note of ways in which they may

or may not extend to other domains.

The data used in developing this thesis represent over 3000 runs of meeting scheduling prob-

lems, totaling over 800 hours of processor time, and close tothe same in graph coloring. It there-

fore provides an unprecedented view of these domain’s behaviors, particularly the effects of algo-

rithmic and domain centralization on performance.

This document consists of two main sections. Chapter 2 illustrates the effect of algorithmic

centralization by comparing three DCOP algorithms which differ in amount of centralization. We

present results from graph coloring problems using a new metric which more accurately represents

the runtime of distributed algorithms. Chapter 3 extends our interest in centralization by examin-

ing domain centralization which occurs naturally in problems such as meeting scheduling. A new

algorithm based on Adopt is proposed for taking advantage ofthe problem structure that is natu-

rally available to agents. A key difference between Chapters 2 and 3 is that the first deals solely

with agents that control a single variable, while the seconddeals with agents that control multiple

variables. Chapter 4 presents our conclusions and discusses possible future directions.

5

Chapter 2

Algorithmic Centralization in DCOPs

In this chapter we discuss several metrics which are used to evaluate DCOP algorithms, and formu-

late a new metric which addresses problems with the ones usedpreviously. We then use this metric

to compare three DCOP algorithms which differ in the amount of algorithmic centralization they

utilize. We show the effects of centralization on algorithmperformance, and provide an analysis

of performance at several different levels of communication efficiency.

2.1 Evaluation Metrics

Often, DCOP algorithms are initially evaluated on graph coloring problems, since they provide a

simple testbed for comparing performance. Graph coloring is a well studied domain and can be

easily compared to prior results. We follow prior work by using 3-coloring problems and varying

the number of variables and link density to affect solution difficulty.

Ideally, one would test DCOP algorithms in a truly distributed setup, which is the setting they

are designed for in practice. However, there are several practical issues that make it difficult to test

an algorithm fully distributed across a cluster of computers:

� hardware availability - researchers often do not have access to a cluster of a sufficient number

of computers.

� communication variability - inter-agent communication latency may be more variable across

a network than it would be within a single computer.

� inconsistency of execution - due to the large number of random execution paths that can

be taken when executing an algorithm asynchronously, each execution will produce slightly

7

different performance times. This makes it difficult to givereliable performance estimates

and comparisons to other algorithms.

The most realistic method for providing repeatable execution is to use synchronous timesteps.

For example, the Multi Agent Survivability Simulator (MASS) [4] is an event-based simulator

which can distribute agents across a cluster of computers, but the execution is synchronized in

order to avoid consistency problems. They use a simulation pulse to represent time and to tell

agents when to execute.

2.1.1 Cycles

The acknowledged method of measuring synchronous execution is with discretecycles[5], where

a cycle is defined as such:

Definition: A cycle is defined as one unit of algorithm progress in which all agents,

in parallel, process their incoming messages, perform any required computation, and

send their outgoing messages. Importantly, a message sent in cycle ' is not received

until cycle ' ().

Cycles are convenient for comparing DCOP algorithms because they are independent of ma-

chine speed, network conditions, and other factors external to the algorithm. They provide us with

a method for measuring the amount of communication performed by an algorithm. However, this

does not measure the amount of pure computation done by an algorithm. In other words, the to-

tal cycle count does not tell us anything about the length of acycle or the total runtime of the

algorithm.

On initial consideration it might seem that the amount of computation could be accurately

measured by the process’s runtime on a single computer. However, since the agents must take

turns using the processor and cannot execute in parallel as they would in a distributed system, the

runtime may not accurately reflect the actual distributed performance. If the agents solving the

problem do not share the computational burden relatively evenly, then they will not take advantage

of the parallelism of distributed problem solving.

8

com
m

.

agent1

agent2

agent3

one cycle

constraint checks (cc)

Figure 2.1: When agents execute in parallel, the length of the cycleas measured by concurrent constraint
checks is determined by the maximum number of constraint checks of the agents.

2.1.2 Concurrent Constraint Checks

A common measure of computation in traditional constraint optimization algorithms is thecon-

straint check, which is the act of evaluating a constraint between N variables. Constraint checks

are considered representative of computational cost because they are the most basic operator of

constraint optimization and scale in proportion to the sizeof the problem. When extended to dis-

tributed algorithms, this measure is calledconcurrent constraint checks[6] and is computed by

selecting the maximum constraint checks from the agents during a cycle. The maximum is used

because the length of a cycle in a distributed algorithm is determined by the slowest agent during

that cycle (see Fig 2.1).

2.1.3 Cycle-Based Runtime

Given that synchronous cycles as discussed previously do not account for the local computation

performed in a DCOP algorithm, we desire a metric that more accurately approximates the total

runtime of an algorithm. Intuitively, we can capture an estimate of local computation costs by

formulating a metric that includes concurrent constraint checks. We begin with a simple definition

of runtime:

+,- ./�*'0 1 +� 0 23 2-14 �
56
�78

*'0 1 � +. 23 2-1 9 (2.1)

Now, we need a definition for the time of a cycle. A cycle involves communication followed

by computation (see Fig 2.2). Let: denote the time required in a cycle to deliver all messages sent

9

computationcomm.

cycle

i

cycle

i+1

cccL

Figure 2.2: We model a cycle as being composed of communication (represented by L) and computation
(measured with concurrent constraint checks).

in the previous cycle. We call this thelatencyof the underlying communication environment.: is

algorithm independent. So we have:

'0 1 � +. 23 2-1 9 � : (2+0;/,*'+� *'0 1 '� 23 2-1 9 (2.2)

We can now define the time to complete a cycle in terms of the number of constraint checks

made in that cycle. Let22 �� � � 9 � be the number of constraint checks performed by agent�� in cycle

9. Then the computation time of cycle k is defined as:

2+0; /*,*'+� *'0 1 '� 23 2-1 9 � <=>!" $% 22 �� � � 9 � � * (2.3)

where
*

is the time required for one constraint check.
*

is a property of the underlying comput-

ing hardware and is algorithm independent. The max over all agents is used to compute concurrent

constraint checks because the agents are conceptually executing in parallel. The length of a cycle

is determined by how long the longest running agent took to complete. Substituting 2.3 into 2.2,

we have

*'0 1 � +. 23 2-1 9 � : (<=>!" $% 22 �� � � 9 � � * (2.4)

Now substituting 2.4 in 2.1,

+,- ./�*'0 1 +� 0 23 2-14 �
56
�78 �: (<=>!" $% 22 �� � � 9 � � *� (2.5)

Finally, the total number of concurrent constraint checks (ccc) performed by an algorithm over

m cycles is defined as:

222 �0 � �
56
�78 < =>!" $% 22 �� � � 9 � (2.6)

10

Substituting 2.6 in 2.5, we arrive at our final equation for the time of0 cycles, called Cycle-

Based Runtime (CBR):

? @A �0 � � : � 0 (222 �0 � � * (2.7)

Note that the CBR metric is parameterized according to two environmental factors: the com-

munication latency between cycles (:) and the speed of computation (
*
). Using this parameterized

model, we can evaluate algorithm performance over a range ofenvironments that vary in their rel-

ative speeds of communication and computation. Time required to transmit a message is usually

greater than the time for a constraint check in most environments, so for simplicity we assume that

a constraint check is the smallest atomic unit of time (
* �)), and assume: is given relative to

*
.

We will explore four types of environments where communication costs are increasing by order of

magnitude relative to computation, i.e.,: � *, : �)B*, : �)BB*, : �)BBB*.
Note that CBR does not take into account number of messages orthe time required to process

messages. In other words, we assume that message processingtime per cycle is not a significant

differentiating feature between algorithms under comparison. We believe this is true for the al-

gorithms compared in this paper. While Adopt uses many more messages than OptAPO, this is

explained by its higher cycle count, i.e, the number of messages communicated per cycle is about

the same between the two algorithms. Also, we assume the timeto process each message is similar

for both algorithms.

2.2 DCOP Algorithms

We used two DCOP algorithms in our work - Adopt, and OptAPO. Wewill provide background

on the algorithms and explain how they differ.

2.2.1 Adopt Algorithm

Adopt [7], or Asynchronous Distributed OPTimization, is a complete and asynchronous DCOP

algorithm developed by Jay Modi et al. The algorithm is fullygeneral and can work with unary,

binary, and n-ary constraints.

Adopt is a backtracking search that maintains a lower and upper bound at each variable during

its search. It progressively narrows the range between themin order to arrive at the optimal so-

11

lution, and terminates execution when the lower bound equals the upper bound at the root agent.

Adopt constructs a priority ordering of the variables during an initialization phase. This ordering,

which can be structured as a tree or as a simple chain, determines the parent and children of each

variable.

Agents communicate their current value to all neighboring agents lower in the priority tree by

passing down VALUE messages (agents are neighbors if they have a constraint between them).

After locally computing a lower and upper bound based on available knowledge, an agent sends

a COST message up to its parent. The COST message contains thenewly computed lower and

upper bounds, and the variable context that those costs are dependent on (variables that were used

to compute the cost).

The stored costs can then be used in future iterations to develop a more accurate estimate of

the optimal solution cost. These costs are dependent on the values of the agent’s ancestor variables

at the time the cost was computed. Therefore, when an ancestor changes its value, the costs

dependent on it become invalid and are deleted. This can impact solution time because costs need

to be recomputed; Adopt’s variable ordering heuristic is intended to reduce the negative impact of

these context switches. The variable ordering used by Adopthas a large impact on search difficulty,

and thus it is important to choose a good order. The importance of variable ordering was observed

experimentally in this thesis and will be discussed in Chapter 3.

2.2.2 OptAPO Algorithm

OptAPO [8], or Optimal Asynchronous Partial Overlay, is an alternative complete and asyn-

chronous DCOP algorithm designed by Mailler and Lesser. Thealgorithm uses an approach termed

cooperative mediationin which an agent is dynamically chosen as a mediator and temporarily put

in charge of collecting constraints for a subset of the problem. OptAPO thus partially centralizes

the problem within the mediator, and then uses a centralizedsearch to optimize the subproblem.

Election of the mediator is done in an intelligent way using dynamic priorities determined

during problem solving. The mediator uses the centralized Branch & Bound search of Freuder and

Wallace [9] to compute the optimal solution for the variables and constraints it has knowledge of.

Agents in OptAPO use a novel cost justification technique to drive the communication of con-

straints. This technique avoids centralization when it is deemed unjustified based on problem

structure. As an OptAPO agent receives constraints from other agents in the problem, it adds the

12

other agents to a data structure called itsgoodlist. The goodlist is a list of all the agents centralized

within a given agent during problem solving, and we will later use this to measure the amount of

centralization in OptAPO.

2.2.3 Level of Centralization in Adopt and OptAPO

A key difference between Adopt and OptAPO is the level of algorithmic centralization each use.

OptAPO communicates information about variables and constraints that are not directly connected

to the agent - i.e., the agent gains information about variables that are not within its set of neighbors.

This relies on the assumption that an agent can communicate with all other agents in the problem.

While in practice this is not true of all domains, it can be accomplished by using a multi-hop

message passing strategy, at the cost of increased communication.

OptAPO’s centralization gives an agent broader knowledge of the problem, potentially allow-

ing it to take advantage of this in its local optimization. Adopt on the other hand, does not centralize

problem structure because agents only use knowledge of their direct neighbors, which can be as-

sumed to be freely available. Adopt and OptAPO are two pointson a spectrum of centralization,

with Adopt at the no centralization end, a fully centralizedalgorithm like Branch & Bound at the

other end, and OptAPO somewhere in the middle.

This centralization property has significant implicationson load balancing and the amount of

computation that each agent must perform during problem solving. In the case of OptAPO, as

the size of an agent’s subproblem grows, more local computation (search) is required to find the

optimal solution to the larger subproblem. In OptAPO, we mayexpect that the computational load

at some agents will grow as problem solving progresses and their sub-problems grow. On the other

hand, in an algorithm which does not communicate constraints, such as Adopt, we may expect that

the computational load at each agent will remain constant during problem solving.

2.3 Results

We evaluated Adopt and OptAPO in a simulator framework instrumented to measure concurrent

constraint checks and cycles. Following previous work [1, 8], we then ran OptAPO and Adopt on a

set of randomly generated 3-coloring problems. The problems were generated with problem sizes

of n=8, 12, 16, or 20, and a link density of either 2n or 3n. Eachproblem size had 50 generated

13

problems (for a total of 8*50 = 400). The same set of randomly generated graphs was used for

each algorithm.

(a) Number of Cycles (b) Concurrent Constraint Checks (c) Cycle-Based Runtime

Figure 2.3: Main result: (a) OptAPO requires fewer cycles than Adopt, as shown in previous research,
(b) But requires an increased amount of computation as measured by constraint checks. (c) When both
constraint checks and communication latency (with L=100) are accounted for, Adopt outperforms OptAPO.

2.3.1 Cycle-Based Runtime of Adopt and OptAPO

Constraint checks and cycle counts were logged and used to compute the value of CBR in Equa-

tion 2.7 for four different values of:. As described in Section 2.1.3,: represents the time re-

quired by the communication environment to deliver messages between cycles specified relative

to the time for a constraint check. For example if: �), we are assuming communication is very

fast and on the same order of magnitude as a constraint check.If : �)BBB, we are assuming

communication takes three orders of magnitude longer than aconstraint check.

Our experiments showed that OptAPO completes in fewer cycles than Adopt (see Fig 2.3a),

as would be expected given prior research [8] and the fact that OptAPO is partially centralized.

However, from Figure 2.3b we see that OptAPO actually requires many more constraint checks

than Adopt and this results in a higher CBR at L=100.

14

Figure 2.4: Comparison of Adopt and OptAPO using the CBR metric on graphs of low density. Each graph
represents a different L value.

Figures 2.4 and 2.5 show four graphs generated from a single set of experiments on problems

of link density 2n and 3n respectively. Each datapoint represents the average of the 50 problems.

In Figure 2.4, we see that when: is 1, 10, and 100, Adopt outperforms OptAPO. At: �)BBB,
Adopt performs slower than OptAPO on the four problem sizes we tested. However, we extended

the experiment to 24 variables for a smaller set of problems (20 problems at density 2, and 10 at

density 3). We used a smaller dataset because the large problems have much longer runtimes. The

performance on these problems has been shown with a dotted line on the: �)BBB graph, and

indicates that Adopt may outperform OptAPO on large problems even at: �)BBB.
We conclude that while Adopt requires more cycles than OptAPO, each OptAPO cycle takes

significantly longer than each Adopt cycle.: provides a parameter to vary the relative cost between

number of cycles and length of each cycle. For a significant range of:, Adopt performs better than

15

OptAPO, and as problem size grows this range increases.

Figure 2.5: Comparison of Adopt and OptAPO using the CBR metric on graphs of high density. Each graph
represents a different L value.

2.3.2 Centralization in OptAPO

We have hypothesized that the degree of centralization is the reason that OptAPO’s cycles take

much longer than an Adopt cycle. To verify this, we recorded the amount of centralization that the

OptAPO agents reached by termination, as represented by thesize of the OptAPOgoodlist, which

contains the other agents whose constraints have been centralized within an agent.

We computed the average, minimum, and maximum goodlist sizes across the agents in a prob-

lem at termination. We obtained similar results to the centralization data reported in Mailler’s

thesis [10]. As seen in Figure 2.6, on low density problems OptAPO agents on average have cen-

tralized at least half of the problem by the time a solution isfound. On highly dense graphs, which

are more difficult and time-consuming to solve, OptAPO on average centralizes nearly all of the

16

problem.

Figure 2.6: OptAPO centralization as measured by goodlist size. Wedisplay the minimum, maximum, and
average amount of centralization of all the agents in a problem. The upper line above each bar marks n (#
of variables), which is the maximum possible centralization at each problem size. Each measurement is the
average of 50 problems.

The Max bars show that in high density graphs, almost all problems had at least one agent

that fully centralized the problem. In low density problems, on average there was at least one

agent who centralized about 75% of the problem. These results confirm our belief that OptAPO’s

centralization is a dominant feature of the algorithm whichwe believe explains the computational

characteristics seen when computing CBR.

2.3.3 Distribution of Computation in Adopt and OptAPO

So far we have found that OptAPO does more computation, basedon our measurement of the

concurrent constraint checks performed across the agents during each cycle. However, we would

also like to determine whether the higher maximum constraint checks is due to OptAPO simply

doing more computation inall the agents during a cycle, or if it is due to uneven distribution of the

computational load.

As discussed in Section 2.1.3,22 �� � � 9 � is the number of constraint checks performed by agent

�� in cycle 9. Then, the distribution of computation within a cycle, which we will call
-+,& �9 �,

can be represented by the ratio of the maximum constraint checks to the total constraint checks in

a cycle:

17

Figure 2.7: A measure of the distribution of computation in Adopt and OptAPO. The peaks on the OptAPO
line indicate that in those cycles a single agent did most of the computation.

-+,& �9 � � <=>!" $CDE�FG 22 �� � � 9 �
 !" $CDE�FG 22 �� � � 9 � (2.8)

This equation represents the fraction of work that the maximum computing agent did during

the cycle. A value of 1.0 means one agent did all of the computation in that cycle, and a lower

value indicates the load was more balanced.

In Figure 2.7, the load ratio for OptAPO and Adopt is graphed for the execution of one repre-

sentative graph coloring problem with 8 variables and a density of 2n. The x-axis is the execution

time in cycles, and the y-axis is the load as defined in Eqn 2.8.The line for OptAPO shows spikes

at cycles where an agent, the mediator, did a Branch & Bound search and accounted for most or all

of the computation in that cycle. On the other hand, Adopt hadvery consistent distribution of com-

putation, with most agents doing a similar number of constraint checks for most of the algorithm’s

duration.

This chart illustrates that OptAPO finished in a fewer numberof cycles than Adopt, but the

computation during those cycles is less evenly distributedamong the agents, which results in longer

time per cycle.

18

Figure 2.8: Adopt, OptAPO, and centralized search at 4 different L values. Each graph is based on 50
random problems of 20 variables.

2.3.4 Tradeoffs Between Communication Latency and Centralization

As our analysis has shown, a non-centralized algorithm likeAdopt uses more communication

cycles but has a lower computational cost per cycle. OptAPO,a partially centralized algorithm,

has relatively low communication cycles but higher computational cost per cycle. We now ask

how does a partially centralized approach like OptAPO and a decentralized approach like Adopt,

compare with a completely centralized approach using CBR asan evaluation metric?

For the centralized approach, we assume one agent starts thealgorithm with full knowledge

of the problem, and simply invokes an optimization search procedure. We used OptAPO’s imple-

mentation of centralized Branch & Bound search and measuredthe number of constraint checks

required to find the optimal solution. We ignored the overhead cost that would be required in a truly

distributed setting of electing a centralizer and all agents communicating the problem information

to it. In the worst case, this cost is only some small factor ofthe width of the communication

graph.

Figure 2.8 shows the three algorithms at different L values.As expected, the centralized al-

gorithm is insensitive to varying L values because no communication is required. For both graph

densities, Adopt is the best performing algorithm at L values less than 100. The crossover point

occurs between L=100 and L=1000. These crossover points areimportant because they tell us

at what point communication becomes too expensive for Adoptto operate efficiently, and tell us

which algorithm should be used for a given communication environment.

For density 2, the OptAPO performance curve outperforms itsown centralized solver using

19

the CBR metric. These results agree qualitatively with the results using a serial runtime metric

reported by Mailler and Lesser [8]. On density 3, the fully centralized approach had a lower CBR

than OptAPO, which we believe may be explained by the fact that OptAPO does repeated multi-

ple Branch & Bound searches, which could become more costly on dense graphs. The OptAPO

searches partially reuse past searches, but this partial reuse does not completely recover the cost

of the previous searches. From our analysis, we conclude that on high density graphs OptAPO

eventually centralizes most of the problem, but does so witha higher cost than doing a simple

centralization in the first step of the algorithm.

Figure 2.8 provides initial guidance to a researcher seeking to apply a DCOP algorithm to a

new domain. The figure gives an estimate of which algorithm would be the most efficient for a

given communication model and constraint density, although results in other domains may vary.

2.4 Conclusions

We have investigated two algorithms for DCOP - OptAPO and Adopt - that vary in the amount

they centralize the problem in order to find the optimal solution. We developed a metric, CBR,

for more accurately comparing these algorithms by taking into account communication latency

between cycles and the length of each cycle. We have shown that while OptAPO requires fewer

cycles than Adopt, OptAPO’s cycles are longer because they require more computation. For do-

mains with low communication latency compared to time to do acomputation, Adopt outperforms

OptAPO because in such domains agents are able to communicate efficiently and Adopt is able to

take advantage of it by more evenly distributing the work of solving the DCOP. We have created

graphs of the relative performance of Adopt, OptAPO, and centralized search under environments

with varying communication latencies, providing the ability to choose the most effective level of

centralization for each environment.

20

Chapter 3

Domain Centralization in DCOPs

As discussed in section 1.2, domain centralization is a feature of the problem as it is presented to us,

and is essentially free to take advantage of since there is noloss of privacy and no communication

is necessary. This led to our interest in determining whether a modified DCOP algorithm could

benefit from the natural centralization in meeting scheduling.

In this chapter we present an alternative Adopt algorithm called AdoptMVA which takes ad-

vantage of domain centralization by using a local search procedure within agents that control mul-

tiple variables. The details of the algorithm are covered, and several heuristics for both the agent

ordering and the intra-agent search ordering are compared.We show that when agent ordering

is controlled for, AdoptMVA completes in fewer cycles than Adopt. We then present empirical

analysis of the meeting scheduling domain showing its performance as the number of agents and

meetings increases and as meeting size increases.

3.1 Motivating Domain: Meeting Scheduling

In many organizations, scheduling meetings among a group ofpeople with busy schedules is a

difficult and time consuming task. It usually involves a series of communications over email or

phone to settle on a time that works for all required attendees. The negotiation becomes more

complicated when participants have to bump around other meetings in order to accommodate the

present one.

Furthermore, there are inherent privacy constraints in scheduling because some participants

are unable or unwilling to reveal their entire schedule to others. In hierarchical organizations,

members at certain levels may not want all of their availabletimes to be known, and may have

21

varying degrees of flexibility towards accommodating a meeting depending on how important it is.

Given the natural distributed nature of this problem, distributed optimization algorithms are well

suited for it.

Distributed optimization allows us to automatically schedule meetings using computer pro-

cesses, and still preserve the privacy of a user’s information. This would save valuable time in

the workplace, and might even result in schedules that are more optimal than what humans would

devise. However, there are a number of challenging issues that must be addressed first. Scheduling

algorithms need to be fast enough to solve large optimization problems in a reasonable amount of

time. This is a difficult problem given that scheduling is NP-Complete and grows exponentially

as problems become larger. The good news is that there is a practical limit on the size of meeting

problems that will need to be solved. It is unlikely that anyone will ever have an infinite number of

meetings (though it might seem so), so we can assume an eventual limit on calendar size (eg., 100,

or 1000). With the help of good DCOP algorithms and heuristics, optimal meeting scheduling may

become a very tractable problem.

Another research area for scheduling is that algorithms need to be flexible enough to model the

diverse types of scheduling situations that occur. Meetings often have varying levels of importance,

attendance may be optional rather than required, and sometimes a substitute person (an assistant

for example) can go in place of the requested person.

While the graph coloring domain has been explored fairly extensively with several DCOP

solvers, meeting scheduling has not been explored as thoroughly. In some sense, the domain is

more interesting because it has a slightly greater number ofcomplexity dimensions which can be

varied:

� � , number of agents

� H , number of meetings per agent

� � , domain size (number of hours available for scheduling)

� � , number of attendees per meeting (size of the meeting)

We have explored several of these dimensions, using Cycle-Based Runtime (CBR) [11] as the

metric for comparing performance. Since the distributed algorithms were run in a synchronous

22

mode on a single computer, CBR is appropriate for taking boththe cycles and local computation

into account.

The meeting scheduling domain is also interesting because it has a distribution of problem

structure in which several variables (meetings) are clustered at individual agents. In other words,

while graph coloring is generally treated in a fully distributed manner with each agent controlling

only one variable, meeting scheduling agents control multiple variables. A primary focus of this

chapter concerns exploring ways in which this domain centralization can be taken advantage of.

3.1.1 Multiagent Agreement Problem

Recent work in meeting scheduling has led to the developmentof a formal model for problems

in which multiple agents must agree on a set of decisions. TheMultiagent Agreement Problem

(MAP) [12] is a special class of DisCSP [2] in which a variablecan be shared among multiple

agents. The model can be made equivalent to DisCSP however bysimply giving copies of the

variable to each agent and using inter-agent equality constraints to ensure agreement. The compo-

nents of MAP are defined as follows:

� I � �� � � � � � 			� �� � is a set ofagents.

� J � � � � � � 			� 5 � is a set ofvariables.

� K � �&� � &� � 			� &� � is a set ofvalues. Each value can be assigned to any variable.

� participants�� � L I is the set of agents assigned the variable�. The participants are

responsible for choosing the value of�.
� vars�� � � L J is the set of variables assigned to agent��.
� For each agent��, ?� is an intra-agentconstraint that evaluates to true or false. It must be

definedonlyover the variables invars�� � �.
� For each variable�, aninter-agent“agreement” constraint is satisfied if and only if the same

value fromK is assigned to� by all the agents inparticipants�� �.

We will use the MAP definitions to aid in explaining experiments described in this chapter.

The MAP model can be used to represent the meeting schedulingproblem, with the variables

23

J analogous to meetings, and the domainK equal to the set of timeslots that meetings can be

scheduled for. The attendees of a meetingH� are represented byMNOPQRQM NSPT �� �. Inter-agent

equality constraints are used to ensure that attendees agree on the meeting start time, and inequality

constraints within an agent (intra-agent) are used to ensure that none of the agent’s meetings

conflict.

3.2 Adopt with Multiple Variables per Agent (AdoptMVA)

As discussed in section 1.2, the current Adopt algorithm treats variables within an agent as pseudo-

agents, running them in separate processes which are viewedas independent agents. However, this

approach does not allow sharing of information beyond what Adopt already communicates and

does not take full advantage of domain centralization.

A natural modification to this approach would be to create a single Adopt process for each

scheduling agent, allowing it to control all of the meetingsowned by that agent. Then, a local

search procedure could be used to find the optimal local solution for the agent’s calendar. We call

this AdoptMVA , for Multiple Variables per Agent, since a single Adopt agent controls multiple

variables. Figure 3.1 shows the new approach, in contrast tothe standard Adopt pseudo-agent

approach. The intuitive conjecture is that by breaking the problem up into smaller subproblems

which are solved locally, the overall task could perhaps be solved quicker.

The algorithm was designed with meeting scheduling in mind,but could apply to other domains

which have multiple variables per agent. We model AdoptMVA as an extension of the Adopt

algorithm, but it requires a few new definitions in order to convert from a one variable per process

paradigm to multiple variables.

In the Adopt formalism, a value assignment to a set of variables is called a context and is

defined by Jay Modi in his thesis [7] as:

� Definition: A contextis a partial solution of the form���� � &� � � ��� � &� � 			�. A variable can

not appear in a context more than once. Two contexts arecompatibleif they do not disagree

on any variable assignment.CurrentContextis a context which holds an agent’s current

knowledge of variable values for higher priority neighbors.

As defined in MAP, we letvars�� � � L J denote the variables owned by agent��. We then

24

Original Problem Adopt Hierarchy AdoptMVA Hierarchy

var2 var3

var1 var2 var3

agent2

agent1

var2 var3

var1 var2 var3

var1

var2

var3

var3

var2

agent1

agent2

agent1

agent2

Figure 3.1: We show the original formulation of a meeting scheduling problem, and then a possible hi-
erarchy of pseudo-agents that Adopt would use. We then show an agent hierarchy that could be used by
AdoptMVA.

denote a context4 U V whereV is the set of all possible assignments to variables inWNOT �� � � and

4 is a particular one of those assignments.

Whereas previously the local cost of an agent was determinedsimply by its constraints with

other agents, we now must define a function that also includesthe cost of constraints between

variableswithin an agent. We define thelocal costX for a particular value assignment4 made by

agent�� for the variables it owns:

X �4� � 6
Y!# �Z# [$G

6
Y!" �Z" [$G ��

� �&� � &� � (6
Y!# �Z# [$\]^^E�F\ _�FE!F

6
Y!" �Z" [$G ��

� �&� � &� � (3.1)

The first half of the definition sums the constraints between every possible pairing of variables

within an agent, and the second half evaluates the constraints between each of the agent’s variables

and all of the external variables in itsCurrentContext.

An agent computes alower bound for a solution susing lower bound costs received from its

children, denoted as
-` �4 � � a �.

� Definition: :@ �4� � X �4� (!b $\ c�aZ^E� -` �4 � � a � is a lower boundfor the subtree rooted at

�� when�� chooses solution4 U V .

Similarly for anupper bound on solution s:

25

� Definition: d @ �4� � X �4� (!b $\ c�aZ^ E� /` �4 � � a � is anupper boundfor the subtree rooted

at�� when�� chooses solution4 U V .

The overall lower and upper bounds for�� are the minimums over the bounds for all possible

solutions inV :

� Definition: :@ � 0 '�G$e :@ �4� is a lower boundfor the subtree rooted at��.
� Definition: d @ � 0 '�G$e d @ �4� is anupper boundfor the subtree rooted at��.

The above definitions are based on the original Adopt definitions [7] with the main change

being that lower and upper bounds are now conditioned on a solution context rather than a single

variable value. Also, the most important change to the localcostX is that it now includes the cost

of intra-agent constraints.

3.2.1 Details of AdoptMVA Algorithm

We implemented AdoptMVA by using the existing Adopt code andmodifying it to assign all of

an agent’s variables to a single Adopt process. In order to properly communicate the values of an

agent’s variables to the other agents in the problem, we had to slightly modify Adopt’s VALUE

messages and its handling of COST messages.

VALUE messages must now include the values of all variables owned by the agent, rather than

just a single variable value. Therefore, we extend VALUE messages to include a solution context:

� Definition: VALUE(4� � ���� � &� � � ��� � &� � � 			�) is the form of the new VALUE messages

sent to neighbors lower in the tree.

No change needs to be made to the content of the COST messages,but we do need to change the

way receiving agents process them. The lower and upper boundcosts reported in a COST message

are now dependent on the aggregate of variables owned by the parent agent. Therefore we store

children’s costs attached to a solution context4 U V , which is equal to the set of the current agent’s

variables assigned to the values that were used when its child computed its reported cost. This

previous assignment of values can be retrieved from the context reported in the COST message.

Note that the set of all possible solution contextsV is the set of all permutations of the values

of the variables inWNOT �� � �. The total number of permutations is equal to:

26

Algorithm 1 : AdoptMVA Branch & Bound search

&1; *f gh B
2+4* gh B`14*? +4* gh �
procedure search(4 U V , depth, cost):
if depth == s.size()then`14*V +-/*'+� gh 4`14*? +4* gh 2+4*

return ;
end
� gh variable atdepth(order determined by variable ordering)
�+0,'� gh ��
Reorder�+0,'� with best-first heuristic (move current value of� in best known solution
to be first)
for &� U � +0,'� do

4�� � gh &�
2+4*(� Y!# �Z# [$G ��� �&� � &� � (Y!# �Z# [$\]^^E�F\ _�FE!F ��� �&� � &� �
if &1; *f �� 4 	4'i 1 �� h) then

2+4* gh 2+4* (!b $\ c�aZ^E� -` �4 � � a �
end
if 2+4* j `14*? +4* then

search(s, depth+1, cost)
end
4�� � gh �/--

end

+,- 4+-/*'+� 2+�*1�*4 � +. ,k 1�* � � � lK lmvarsYC " [m (3.2)

This number is potentially much higher than the number of solution contexts in traditional

Adopt, which is limited tolK l. From our experiments it appears that in some cases, this large

number of contexts slows down the algorithm’s progress.

3.2.2 Discussion of Branch & Bound search

The agent uses a local Branch & Bound search [9] to find the optimal solution to its variables, given

the values of its ancestors in the Adopt hierarchy, and knowledge of the costs of its children. The

search is used to calculate both the lower and upper bounds (LB and UB) on the agent’s variables.

Algorithm 1 shows pseudo code for the lower bound search (upper bound search is identical except
-` �4 � � a � is replaced with

/` �4 � � a �).
27

Note that the cost function used within the search is not exactly the same as theX function

in Equation 3.1. Rather, cost for each variable is accumulated as the search proceeds down the

tree, so that we don’t redundantly calculate the entire costat each recursion. The actual cost of

X is reached at the bottom of the recursion, and we then add in lower or upper bounds from our

children to get the actual bound (if a bound for a child at the given solution4 is not known, the

lower bound defaults to 0 and the upper bound to�). Efficiency of the search could possibly

be improved by attempting to apply the children’s bounds higher in the search, to allow greater

pruning of the tree. However, in order to compute a correct bound using a partial solution, the

agent must have knowledge of all (or most) bounds for the set of possible solution contexts, which

appears to happen fairly infrequently based on our observation of the algorithm.

We observed that although the algorithm must do a separate search for lower and upper bounds,

there are some cases where these bounds are equal. We included some basic optimizations to avoid

doing the upper bound search in certain cases. There are two cases where we skip the upper bound

search:

� If the agent has no children in the hierarchy (it is a leaf), it’s upper bound can automatically

be set to equal the lower bound.

� If all known upper bounds received from children are alreadyset to� , then the upper bound

can automatically be set to� .

However, it would be possible to further improve the search.For example, a memoization

structure could be used to cache results from previous cycles during the algorithm’s progression.

There are also known search heuristics which might further improve the Branch & Bound effi-

ciency [13].

Despite not having the fastest possible search procedure, it was sufficient for producing a num-

ber of interesting experimental results, which we believe could be improved even more with faster

search techniques.

3.2.3 Intra-agent variable ordering heuristics

We included two heuristics in the Branch & Bound algorithm tocontrol: 1) ordering of variables,

and 2) ordering of domain values. The value ordering is a simple best-first heuristic that puts the

28

best domain value first in the search order for a given variable, where the best value is taken from

the current best solution (if known).

The variable ordering heuristic determines the search depth at which each variable is optimized,

and thus influences how much pruning can be done. We tested several heuristics, and present

experimental results on them in section 3.3.3. The heuristics are:

1. Lexicographic - variables are ordering alphabetically.

2. Random - ordering is randomly selected each time a search is performed. Unlike the other

heuristics we used, this order is different each time a search is executed and we therefore

call it a randomly varying heuristic, as opposed to a static order.

3. Brelaz - This is based on the Brelaz heuristic [14]. We order by number of links to other

variables within the agent, with higher link counts meaninghigher ordering. We first com-

pare number of links with already chosen variables, and if there is a tie we order by links

with unchosen variables.

This is only used for graph coloring. It is not useful for meeting scheduling with multiple

variables per agent because within an agent, all agents havethe same number of intra-agent

constraints and the ordering would be arbitrary.

4. MVA-AllVars - order by number of links to external variables, considering all external

variables in the problem. Higher link counts are ordered first.

5. MVA-LowerVars - order by number of links to external variables, considering only lower

priority variables.

6. MVA-HigherVars - order by number of links to external variables, considering onlyhigher

priority variables.

These heuristics cover several qualitative dimensions as outlined in Table 3.1. The random

heuristic is interesting because it is the only one that has adifferent ordering each time search

is executed, and might have some success in finding solution paths that the other ones were not

fortunate enough to find. We did not develop a heuristic that is both informed and randomly varies,

but this would be an avenue for future work.

29

informed uninformed

static MVA-*, Brelaz Lexicographic
stochastically varying - Random

Table 3.1: A comparison of the differing characteristics of the intra-agent search ordering heuristics.

The MVA heuristics are novel as far as we know, and were designed to address the fact that the

Brelaz heuristic is not applicable to meeting scheduling for AdoptMVA. In meeting scheduling, the

MVA-AllVars heuristic mirrors meeting size, since the number of links a variable has to external

variables is equal to the number of attendees in that meeting. This results in ordering large meetings

at the top of the order, with smaller meetings at the bottom.

The other two MVA heuristics serve to investigate whether all external variables have impact on

search cost, or if it is only lower priority or higher priority variables (where priority is determined

by the AdoptMVA agent ordering). Our hypothesis was that theMVA-HigherVars heuristic would

perform the best. In the AdoptMVA algorithm, higher priority variables are more influential on an

agent’s local search because the agent knows the values of higher priority variables (from VALUE

messages) but does not directly know the values of lower priority variables (COST messages are

only used at the bottom of the search). Section 3.3.3 presents experimental results which show that

this hypothesis held true.

3.2.4 Inter-agent ordering heuristics

Another important performance factor for AdoptMVA is the agent ordering - i.e., the macro-level

variable ordering which determines the Adopt hierarchy. Weonly tested chain orders; this simpli-

fied our analysis, and tree hierarchies have been studied in other research [3].

We present experimental results in section 3.3.2 for the following four heuristics:

� Lexicographic - Agents are ordered alphanumerically by agent name. This isan uninformed

heuristic.

� Inter-agent links heuristic - this is a modification of Adopt’s regular ordering, which orders

by the number of links to chosen variables, and then by the number of links to unchosen

variables. This heuristic is the same, expect we only count links to other agents (i.e., inter-

agent links). It is analogous to the popularity of the agent -a person involved in many large

meetings will be ordered higher because he will have more inter-agent links.

30

� AdoptToMVA-Max - Adopt’s standard variable ordering is computed, and then converted

into an agent ordering for AdoptMVA. The agent priorities correspond to themaximumpri-

ority variable within each agent in the Adopt ordering.

� AdoptToMVA-Min - This is the same as AdoptToMVA-Max except that agent priorities

correspond to theminimumpriority variable within each agent.

The AdoptToMVA orderings were created based on the theory that since the Adopt variable

ordering works fairly well, converting it to an agent ordering might produce similar results for

AdoptMVA. We convert an Adopt variable ordering to an agent ordering by assigning agent pri-

orities based on the Adopt variable priorities (higher priority indicates higher placement in the

chain). For an agent��, using AdoptToMVA-Max,; . '+. '*3 �� �� � 0,�n%# $op^ G YC " [; . '+. '*3 �� �.
For the AdoptToMVA-Min heuristic we simply replace the max function in the above equation

with min. The AdoptToMVA-Min ordering was introduced because initial experiments indicated

that it sometimes performed better than AdoptToMVA-Max.

3.3 Results

We conducted an extensive number of experiments on both the graph coloring and meeting schedul-

ing domains, with the goals of: a) determining the best heuristics for AdoptMVA, and b) gaining a

more general understanding of meeting scheduling performance for a variety of DCOP algorithms.

We now discuss the experimental methodology used. Data in our results are based on the

average of at least 20 randomly varied problems. Statistical t-tests are used to determine whether

differences are significant, and we will present the resultsof these tests. We used scripts to generate

problems which have a randomized constraint structure while keeping the problem size and density

that was specified. For meeting scheduling problems, an 8 hour day is modeled by using 8 discrete

timeslots, and the number of attendees in each meeting is randomly generated from a geometric

progression. Unless otherwise noted, all meeting scheduling problems are fully schedulable (zero

unscheduled meetings in the optimal solution) and graph coloring problems range from a solution

cost of 0 up to 3 constraint violations.

The experiments were run on several Pentium 4 dual 3.0GHZ machines. We present results in

terms of the Cycle-Based Runtime metric, which is independent of processor speed. As described

in Equation 2.7, the formula for CBR is
? @A � ? 32-14 q : (? ? ? , where cycles is the number

31

(a) Cycles (b) CBR

Figure 3.2: Using equivalent lexicographic agent orderings, on high density meeting scheduling problems
with 4 meetings per agent, AdoptMVA outperforms Adopt in terms of cycles and in CBR at L=1000. 20
problems per datapoint. Y-axis is on a log scale.

of synchronous cycles, L is a factor indicating the relativecommunication speed, and CCC is the

total concurrent constraint checks.

On some of the largest problems that we tested on, they did notterminate within our test time

limit, which was set to 5 hours (in order to insure that experiments finished in a reasonable amount

of time). This only occurred on a small number of cases, and inthese cases we still collected cycle

and CCC counts from the job. These counts are a lower bound on the runtime of the problem.

Therefore they still provide an estimate of the job length, and at worst the true counts would be

higher than the measured ones. In general this would only make our results stronger because the

high runtimes from non-terminations generally occurred with reference heuristics (eg., random)

which we have concluded are the least efficient (and hence they caused the long runtimes).

3.3.1 Performance of AdoptMVA versus Adopt

Our initial tests showed when we compared AdoptMVA to Adopt,with each one using their own

agent ordering heuristics, the results were inconclusive.We therefore wanted to compare Adopt-

MVA to Adopt on a level playing field, controlling for agent ordering so that any performance

difference could not be attributed merely to the different ordering heuristics. We used a static

lexicographic agent ordering for both algorithms, giving them exactly the same ordering on all

problems. The intra-agent search heuristic used in AdoptMVA was the MVA-HigherVars heuris-

tic.

32

(a) Cycles (b) CBR

Figure 3.3: Using equivalent lexicographic agent orderings, on graph coloring problems with 4 variables
per agent and link density 2, AdoptMVA outperforms Adopt in terms of cycles and in CBR at L=1000. 20
problems per datapoint. Y-axis is on a log scale.

We found that when agent ordering is controlled for, AdoptMVA has a lower cycle count than

Adopt in high density meeting scheduling and graph coloringproblems (see Figs 3.2a and 3.3a).

This result is consistent with our understanding of centralization, since in general, algorithms that

use more centralization can terminate in a lower number of cycles (but with higher total constraint

checks). Since AdoptMVA uses fewer communication cycles, it would perform better than Adopt

in systems with a high communication cost (eg., L=1000 in Fig3.2b). The difference in CBR was

statistically significant (p
j

0.05) for all problem sizes except one case. For meeting scheduling

at # agents = 5, high variance on the larger problem size caused higher p values. We ran a larger

dataset of 40 problems for that problem size which brought the p value down from 0.22 to 0.09.

We believe a larger dataset of around 100 problems would reduce the p value to below 0.05.

We did not present results for AdoptMVA on low density meeting scheduling because the

improvement in cycles for that class of problems is minor. With only 2 variables per agent, it is

nearly the same as Adopt’s 1 variable per agent. This is a factor to consider when choosing a DCOP

algorithm; AdoptMVA is more beneficial when agents have morethan 2 variables per agent.

AdoptMVA compared to OptAPO

Note that our results with AdoptMVA are similar to our findingin Chapter 2 that OptAPO would

be more efficient than Adopt at high communication costs (L=1000 or higher). AdoptMVA, like

OptAPO, uses partial centralization to reduce the communication cycles. However, the important

33

difference between these algorithms is that AdoptMVA only makes use of the centralization that

already exists in the problem, while OptAPO centralizes variables external to an agent. Another

difference is that the cost of local search in AdoptMVA is more controlled, because the local search

will never be larger than the number of meetings owned by an agent. OptAPO, on the other hand,

can centralize up to as many variables in the entire problem,which can be much more costly than

AdoptMVA’s smaller searches. If OptAPO could be modified in the future to restrict its centralizing

action to only variables that are already available to an agent, it might be a viable alternative to

AdoptMVA.

Agent ordering

In this experiment we used a lexicographic ordering for bothAdopt and AdoptMVA and found

that AdoptMVA had fewer cycles than Adopt. In other initial experiments where we used different

agent ordering heuristics for each algorithm, it was inconclusive whether Adopt or AdoptMVA

performed better. In some cases Adopt performed better, buton other cases AdoptMVA performed

better.

This raised the question: does there exist a heuristic for AdoptMVA which on average will

outperform Adopt? Our experiment in section 3.3.2 brought progress towards determining a good

heuristic for AdoptMVA, but the heuristics there do not yet consistently outperform Adopt’s best

heuristic.

We hypothesize that the reduced granularity of the AdoptMVAagent ordering could prevent

it from attaining an optimal ordering on par with the finer granularity Adopt ordering. An agent

ordering inherently has a coarser granularity than the ordering that can be used in traditional Adopt.

This was illustrated previously in Figure 3.1 which showed that Adopt has the ability to construct

an ordering on the agents’ variables, including the possibility of interleavingtwo agent’s variables.

The AdoptMVA ordering is more limited because it can only order agents. It is conceivable that

this makes it impossible in some cases to capture the finer grain constraint relationships that Adopt

can account for. However, it is also possible that further research on heuristics for AdoptMVA

could reveal one that addresses this problem.

34

(a) low density (b) high density

Figure 3.4: Performance of four agent ordering heuristics on low density (a) and high density (b) meeting
scheduling problems. Datapoints are based on the average of20 problems.

3.3.2 Comparison of agent ordering heuristics

One of the important components of an Adopt based algorithm is the ordering of the agents. During

initial tests of AdoptMVA we found the ordering had a large effect on performance.

To gain a better understanding of the heuristics (implemented according to the descriptions in

section 3.2.4), we compared their performance on meeting scheduling and graph coloring prob-

lems. For the Branch & Bound intra-agent ordering, we used the MVA-HigherVars heuristic be-

cause the experiment discussed in the next section showed itto be the most efficient.

We compared four agent ordering heuristics, on low and high density meeting scheduling

(Fig. 3.4), and graph coloring (Fig. 3.5). As expected, we saw that the agent ordering can make

a tremendous difference - for some of the problems in Figure 3.4, the difference between two

heuristics is one or two orders of magnitude in size.

As can be seen in Tables 3.2 and 3.3, AdoptToMVA-Min was the best performing heuristic on

8 out of the 11 problem sizes tested. This difference was significant in some of the cases. On the

other cases, wide variance in the runtimes caused the p values to be greater than 0.05. From this

we believe the AdoptToMVA-Min heuristic is a good agent ordering heuristic, though future work

may find one that does better with less variability.

35

Agents Best Heuristic Lexicographic Inter-agent links AdoptToMVA-Max AdoptToMVA-Min
4 AdoptToMVA-Min 0.11 0.05 0.29 -
8 AdoptToMVA-Min 0.21 0.20 0.20 -
12 AdoptToMVA-Min 0.04 0.15 0.03 -
16 AdoptToMVA-Min r0.001 0.14 0.01 -
2 none - - - -
3 AdoptToMVA-Max 0.26 0.02 - 0.10
4 AdoptToMVA-Min 0.09 0.09 0.31 -
5 AdoptToMVA-Min 0.20 0.72 0.21 -

Table 3.2: A list of the best performing agent ordering heuristicsin Figure 3.4, with low density meeting
scheduling at the top followed by high density meeting scheduling. The p value presented is the paired
t-test value when comparing the best heuristic to each of theother heuristics. Bold text indicates statistically
significant results (ps 0.05).

Figure 3.5: Performance of four agent ordering heuristics on graphcoloring problems with 4 variables per
agent. Datapoints are based on the average of 20 problems.

Agents Best Heuristic Lexicographic Inter-agent links AdoptToMVA-Max AdoptToMVA-Min
2 AdoptToMVA-Min 0.21 0.33 0.34 -
3 AdoptToMVA-Min 0.04 0.12 0.93 -
4 AdoptToMVA-Max 0.08 0.02 - 0.15

Table 3.3: A list of the best performing agent ordering heuristicson graph coloring problems from Fig-
ure 3.5. The p value presented is the paired t-test value whencomparing the best heuristic to the next best
heuristic.

36

(a) (b)

Figure 3.6: Intra-agent search heuristics on low density meeting scheduling (2 meetings per agent). 20
problems per datapoint.

3.3.3 Comparison of intra-agent search heuristics

In order to reduce the number of constraint checks used by theAdoptMVA Branch & Bound search,

we experimented with the intra-agent variable ordering heuristics described in section 3.2.3. For

all of the tests, the inter-agent ordering was the AdoptToMVA-Min order since our previous exper-

iment indicated it performed best more often than the other heuristics.

Agents Best Heuristic Lexicographic Random MVA-AllVars MVA-LowerVars MVA-HigherVars
4 MVA-HigherVars 0.03 0.002 0.59 0.005 -
8 MVA-HigherVars 0.005 0.01 0.13 0.001 -
12 MVA-HigherVars 0.005 r0.001 0.44 r0.001 -
16 MVA-HigherVars r0.001 0.002 0.13 r0.001 -
20 MVA-HigherVars 0.02 r0.001 0.02 0.001 -
24 MVA-HigherVars r0.001 r0.001 0.13 0.055 -

Table 3.4: A list of the best performing intra-agent search ordering heuristics on low density meeting
scheduling, according to the average CCC per cycle from Figure 3.6. The p values are for a paired t-test
between the best heuristic and each of the other heuristics.

To determine the efficiency of each heuristic at improving the search pruning, we collected

the total CCC. However, constraint checks are correlated with the number of total cycles (since

more cycles will result in more constraint checks). Since our heuristics affected the number of

cycles, we can compare their actual computational efficiency by using their average CCC per cycle

(t +*,-? ? ? ut +*,-? 3 2-14).
37

(a) (b)

Figure 3.7: Intra-agent search heuristics on high density meetingscheduling (4 meetings per agent). 20
problems per datapoint.

Meeting Scheduling

From Figures 3.6b and 3.7b, we see that MVA-HigherVars had the lowest average CCC per cycle

in all cases. This difference is statistically significant in nearly all cases (see Tables 3.4 and 3.5),

excluding comparison to MVA-AllVars. MVA-AllVars was frequently almost as efficient as MVA-

HigherVars because MVA-AllVars is the combination of heuristics MVA-LowerVars and MVA-

HigherVars. Therefore it is sometimes able to benefit from the influence of MVA-HigherVars.

We can see that the MVA-LowerVars heuristic does not contribute useful information because it

performed the worst in most cases. We can conclude that MVA-HigherVars is the best intra-agent

search heuristic of the five we compared, because it has the lowest average computation per cycle.

Another interesting result this experiment produced is that the intra-agent heuristics slightly

affected the number of cycles which it took the algorithm to terminate (see Fig 3.6a). Since the

variable ordering within the Branch & Bound search only directly affects the search, not the exter-

nal Adopt algorithm, one might expect that the ordering would only influence constraint checks,

not cycles. However, the heuristics do in fact affect cyclesbecause they change the optimal solu-

tions which are produced by the search. There often may be several solutions that have the same

cost, and a different variable ordering can enable us to find an alternative one that provides a faster

path to the final solution.

38

Agents Best Heuristic Lexicographic Random MVA-AllVars MVA-LowerVars MVA-HigherVars
2 MVA-HigherVars 1.0 r0.001 1.0 1.0 -
3 MVA-HigherVars 0.001 0.005 0.18 r0.001 -
4 MVA-HigherVars 0.04 r0.001 0.98 0.01 -
5 MVA-HigherVars 0.08 r0.001 0.44 0.02 -
6 MVA-HigherVars 0.004 r0.001 0.07 r0.001 -

Table 3.5: A list of the best performing intra-agent search ordering heuristics on high density meeting
scheduling, according to the average CCC per cycle from Figure 3.7. The p values are for a paired t-test
between the best heuristic and each of the other heuristics.The results for # Agents = 2 were not significant
because most of the heuristics on such a small problem were identical.

From the high density meeting scheduling (Fig 3.7a) we see that the random heuristic took

fewer cycles in several cases, particularly the problem sizes with agents = 5 and 6. Although

random is an uninformed heuristic, the fact that it picks a different random order each cycle may

help it to find the optimal solution faster simply because it got “lucky” and found a good solution

path. Indeed, researchers have found that randomization heuristics sometimes outperform the best

known informed heuristics [15].

(a) (b)

Figure 3.8: Intra-agent search heuristics on graph coloring problems. 20 problems per datapoint.

However, our random heuristic did not have the lowest constraint checks, and from it’s high

average CCC per cycle we can conclude that it is not efficient for minimizing computational cost.

A interesting future task would be to attempt creating an informed heuristic with a small amount of

randomness, which might maintain efficiency while also benefiting from the random exploration.

39

Graph Coloring

For graph coloring problems, we tested only with the lexicographic, random, and Brelaz heuristics,

since the MVA heuristics are not intended for graph coloring.

From Figure 3.8b it is apparent that the Brelaz heuristic is the most efficient computationally,

and this difference is statistically significant (Table 3.6). This confirms that the Brelaz heuristic,

as we would expect, is a good heuristic for graph coloring problems with multiple variables per

agent.

Agents Best Heuristic Lexicographic Random Brelaz
2 Brelaz 0.04 0.01 -
3 Brelaz 0.04 0.006 -
4 Brelaz 0.01 0.008 -

Table 3.6: A list of the best performing intra-agent search ordering heuristics on graph coloring, according
to the average CCC per cycle from Figure 3.8. The p values are for a paired t-test between the best heuristic
and each of the other heuristics.

3.3.4 Meeting Scheduling as agents and meeting size are scaled

In order to gain a better understanding of meeting scheduling performance as certain properties are

scaled, we also conducted experiments in which the number ofattendees per meeting was varied.

We constructed a set of meeting scheduling problems with 2 meetings per agent (M), and varied

the number of agents (N) and the number of attendees per meeting (A). Increasing the number of

attendees per meeting increases the link density of the problem. The dataset included 10 problems

per problem size.

Figure 3.9a shows the CBR measurements for Adopt at 3 different values of A. Several of the

initial points for Adopt at A=3 and A=4 are very high because one or two of the problems in each

dataset were outliers. They took two orders of magnitude longer than the other problems in the

same class, so we believe that the inter-agent ordering usedin those cases was detrimental. When

we remove the outliers from the dataset, we have Figure 3.9b which is easier to interpret. We

define outliers as cases which were more than two standard deviations away from the mean.

40

(a) (b)

Figure 3.9: Meeting scheduling as number of agents and number of attendees per meeting (A) are increased.
Adopt’s CBR (at L=10) for three levels of A (2, 3, and 4) is shown. (a) shows the original results, and (b)
shows the results after several outliers were removed. The size of the meetings appears to have a significant
effect on performance.

From Figure 3.9b we see that increasing the number of attendees causes performance to become

slower at all problem sizes. In many cases, increasing the size of the meetings detriments the

runtime more than increasing the number of agents. For example, at # Agents = 32 and A=2,

increasing the meeting size to A=4 has as much of a performance impact as if we had doubled the

number of agents to 64. We therefore believe that meeting size is an important factor to consider

when designing meeting scheduling problems, since it can have a surprisingly large effect on

solution difficulty.

3.4 Related Work

A good deal of prior work has been done in building personal assistants [16][17][18]. Although

most have not used fully complete optimization algorithms,they address many of the human-

computer interface issues that arise. The Electric Elves [18] agent assistance technology identified

the importance of “adjustable autonomy” - the need for agents to vary their level of autonomy,

sometimes leaving important decisions to humans.

The CMRADAR project [19] is engaged in building tools for automatically scheduling meet-

ings and determining the user interfaces that will work bestfor this application. It also aims to

account for individual scheduling preferences (for example, one may prefer meetings in the after-

noon).

Oh and Smith have developed methods for learning a user’s time preferences for schedul-

41

ing [20]. Their learning agents observe a user’s decisions during scheduling, and use this infor-

mation to construct an accurate statistical model of the user’s preferences. Preferences such as

these could be applied to the algorithms used in this thesis,which are modeled as a DCOP. Since

a DCOP is based on a cost function which allows us to assign arbitrary costs to variables, it can

easily model meeting scheduling situations in which meetings have different priorities (costs).

Modi and Veloso have investigated the effect of rescheduling, or bumping meetings, on the

scheduling problem[12]. Bumping refers to the act of rescheduling a previously scheduled meet-

ing in order to accommodate a new meeting. They found that an informed heuristic based on

scheduling difficulty can reduce the total number of bumps used. The scheduling difficulty of an

agent is computed from the density of its calendar, following from the intuition that participants

with sparser schedules are easier to reschedule and therefore are preferred bump candidates.

An extension to the MAP model called Private, Incremental MAP (piMAP) [12] takes into

account the incremental nature of meeting scheduling and the privacy concerns. The incremental

aspect allows for new variables and constraints to be added to the problem over time. The privacy

requirement says that any agent inMNOPQRQM NSPT �� � can not communicate information about vari-

able� to any agent who is not inMNOPQRQM NSPT �� �. In other words, the agents participating in a

given meeting can not provide information about that meeting to agents who are not involved with

the meeting.

Adopt improvements

Research on Adopt has found preprocessing techniques that provide agents with improved ini-

tial lower bounds that can speed up the algorithm by an order of magnitude [21]. The authors

used dynamic programming techniques which reduced the number of partial solutions that Adopt

generates and revisits in graph coloring and distributed sensor networks.

The Adopt algorithm has recently been applied by Maheswaran, et al. to the meeting schedul-

ing domain, with two particularly notable results [3]:

� Meeting scheduling problems took much longer to solve than graph coloring problems with

comparable number of variables and constraints. This may indicate that the applied problem

of meeting scheduling is fundamentally different from the abstract graph coloring domain

from a computational perspective.

42

� Preprocessing and runtime heuristic optimizations allowed an order of magnitude speedup.

The authors use apassupheuristic to precompute lower bounds estimates in a distributed man-

ner, and thus decrease the amount of search that the Adopt execution needs to do. Each variable in

the constraint tree performs local optimizations to determine a lower bound, and then passes up the

estimate to its parent which can use it to make a more informedestimate of its own lower bound.

They also use an improved tree hierarchy for the constraint graph. Since Adopt’s normal DFS tree

may not be a minimum depth tree, they use MLSP trees which are often shorter and experimentally

were shown to speed up the Adopt algorithm.

The results we presented here do not include the authors’ heuristics, but we use several other

simple optimizations which were sufficient to support our conclusions. The precomputation of

bounds and improved tree hierarchy could still be applied infuture applications to gain larger

improvements.

3.5 Conclusions

We have developed a modified algorithm called AdoptMVA for DCOP domains that have mul-

tiple variables per agent. When applied to meeting scheduling using a generic agent ordering,

AdoptMVA completes in fewer cycles than Adopt, and has a lower Cycle-Based Runtime at high

communication latencies. Although none of the agent orderings tested were decisively superior,

future work may uncover a heuristic to address this.

We empirically determined a meeting scheduling Branch & Bound search heuristic that is

statistically better than the other heuristics that were tested. This finding is supported by logically

reasoning that higher priority variables, the ones the heuristic considers, have a more important

impact on the local search. Finally, we have provided a snapshot of how the meeting scheduling

problem scales as number of agents and meeting size are increased.

43

Chapter 4

Conclusions

This work has focused on the effect of centralization in DCOPs, and makes several contributions

to our understanding in that area. The key conclusions we reached were:

� Algorithmic centralization can reduce communication cycles, but increases local computa-

tion costs, potentially making the algorithm more expensive than one that communicates

more. We contributed the Cycle-Based Runtime (CBR) metric to aid in comparing algo-

rithms that use differing amounts of centralization. UsingCBR we found that the Adopt

algorithm performs better than OptAPO on graph coloring problems, assuming reasonably

inexpensive communication is available.

� Domain centralization, such as in meeting scheduling, naturally lends itself to algorithms

that take advantage of local information. We outline an alternative algorithm called Adopt-

MVA which uses centralized search within agents to make better use of the problem struc-

ture. When we control for inter-agent ordering, AdoptMVA completes in fewer cycles than

Adopt. We also develop a Branch & Bound search heuristic for meeting scheduling which

empirically is the most efficient of the ones tested.

� Based on the results of our work, we believe that in order for partially centralized algorithms

to be practical, we need ways of limiting the amount that is centralized. Otherwise, as was

seen in Chapter 2 with OptAPO, the search problem can grow to large sizes which are very

expensive to solve. AdoptMVA on the other hand limits its centralization to the number of

variables that are already available within an agent and this provides a cap on the size of the

local search. Future work involving DCOP centralization should continue to consider ways

of limiting the size of the centralized search.

45

4.1 Future Work

Meeting scheduling, due to its exponential nature, will likely remain a challenging problem for

some time. An important direction will lie in finding the right heuristics and algorithms to be able

to solve very large scheduling problems in a reasonable time.

We believe improvements to AdoptMVA could be made by furtherresearching the search

heuristics:

� During our experiments with agent ordering heuristics for AdoptMVA, it was observed that

certain heuristics worked well sometimes, but not all the time. While there was no clear

superior heuristic, it might be possible to combine heuristics to obtain the best aspects of all

of them. A future task would be to identify what features, if any, could be used to determine

which heuristic to use.

� For the Branch & Bound search heuristics for meeting scheduling, it would be worth de-

veloping a heuristic that is both informed and randomly varied. This could help reduce

communication cycles by increasing the chances of finding a fast solution path, while still

keeping the computational costs efficient by using an informed ordering.

It would also be interesting to test DCOP algorithms in a fully distributed setting. This might

confirm whether CBR holds up as a good representation of distributed runtime, and would provide

an estimate of what communication overhead (L value) is realistic.

46

Bibliography

[1] Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint

optimization with quality guarantees. Artificial Intelligence Journal (2005)

[2] Yokoo, M.: Distributed Constraint Satisfaction:Foundation of Cooperation in Multi-agent

Systems. Springer (2001)

[3] Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P.,Varakantham, P.: Taking dcop to the

real world: Efficient complete solutions for distributed multi-event scheduling. In: AAMAS

’04: Proceedings of the Third International Joint Conference on Autonomous Agents and

Multiagent Systems, Washington, DC, USA, IEEE Computer Society (2004) 310–317

[4] Horling, B., Lesser, V., Vincent, R.: Multi-Agent System Simulation Framework. 16th

IMACS World Congress 2000 on Scientific Computation, Applied Mathematics and Simula-

tion (2000)

[5] Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction

problem: Formalization and algorithms. Knowledge and DataEngineering10 (1998) 673–

685

[6] Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing Performance of Distributed

Constraints Processing Algorithms. In: Proc. Workshop on Distributed Constraint Reasoning

(AAMAS). (2002)

[7] Modi, P.J.: Distributed Constraint Optimization for Multiagent Systems. PhD thesis, Univer-

sity of Southern California (2003)

[8] Mailler, R., Lesser, V.: Solving Distributed Constraint Optimization Problems Using Coop-

erative Mediation. In: Proceedings of Third InternationalJoint Conference on Autonomous

Agents and Multiagent Systems (AAMAS), IEEE Computer Society (2004) 438–445

47

[9] Freuder, E.C., Wallace, R.J.: Partial constraint satisfaction. Artif. Intell. 58 (1992) 21–70

[10] Mailler, R.: A Mediation-Based Approach to Cooperative, Distributed Problem Solving.

PhD thesis, University of Massachussetts at Amherst (2004)

[11] Davin, J., Modi, P.: Impact of problem centralization in distributed constraint optimization

algorithms. In: Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS).

(2005)

[12] Modi, P., Veloso, M.: Bumping strategies for the multiagent agreement problem. In: Pro-

ceedings of Autonomous Agents and Multi-Agent Systems (AAMAS). (2005)

[13] Wallace, R.: Enhancements of branch and bound methods for the maximal constraint sat-

isfaction problem. In Jampel, M., Freduer, E., Maher, M., eds.: OCS’95: Workshop on

Over-Constrained Systems at CP’95, Cassis, Marseilles (1995)

[14] Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM22

(1979) 251–256

[15] Cicirello, V.A., Smith, S.F.: Amplification of search performance through randomization of

heuristics. In: CP ’02: Proceedings of the 8th International Conference on Principles and

Practice of Constraint Programming, London, UK, Springer-Verlag (2002) 124–138

[16] Maes, P.: Agents that reduce work and information overload. Communications of the ACM

37 (1994)

[17] Mitchell, T.M., Caruana, R., Freitag, D., McDermott, J., Zabowski, D.: Experience with a

learning personal assistant. Communications of the ACM37 (1994) 80–91

[18] Chalupsky, H., Gil, Y., Knoblock, C., Lerman, K., Oh, J., Pynadath, D., Russ, T., e, M.T.:

Electric elves: Applying agent technology to support humanorganizations. In: Proceedings

of Innovative Applications of Artificial Intelligence Conference. (2001)

[19] Modi, P.J., Veloso, M., Smith, S., Oh, J.: Cmradar: A personal assistant agent for calendar

management. In: Agent Oriented Information Systems, (AOIS). (2004)

48

[20] Oh, J., Smith, S.: Learning user preferences for distributed calendar scheduling. In: Proc.

5th International Conference on Practice and Theory of Automated Timetabling (PATAT),

Pittsburgh, PA (2004)

[21] Syed Ali, Sven Koenig, M.T.: Preprocessing techniquesfor accelerating the dcop algorithm

adopt. In: Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS). (2005)

49

