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Abstract

This thesis examines nonlinear axis scaling and its impact on the
modeling of inter-attribute relationships. Through automated methods,
the described system identifies possible scaling methods; decides which
attributes serve as inputs or outputs; and builds regression trees that
quantify these relationships. While the experiments focus on the accu-
racy and complexity of these models, both of which one can attempt to
quantitatively examine, the results also consider applicability towards the
inherently more qualitative task of rule-based outlier or anomaly detec-
tion. The results demonstrate that the use of nonlinear axis scaling, even
in an automated system, can provide significantly more accurate models
compared to the unscaled case without proportionally higher complexity
costs; and also can help reveal unusual tuples in which what is unusual
is not any individual value, but the combination thereof.
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Chapter 1

Introduction

This thesis focuses on automatically finding mathematical relationships between the
attributes of mostly-numerical data sets and expressing them through accurate and
compact functions. Furthermore, the described system is designed to search for a
mutually independent set of attributes for model inputs, rather than to require the
user to specify which attributes should be modeled with which others. In addition,
it does not assume that the original axis scales are appropriate for the model task,
but uses uniformity heuristics to identify suitable nonlinear axis scalings for both
independent input and dependent output attributes. Finally, the most accurate
models are then used to assist the search for interesting exceptions, or model-based
outliers.

Such functions may be directly used in prediction or classification. One obvious
example comes from the insurance business, since insurance companies need to esti-
mate their risk incurred when covering potential customers based on their histories
and current behavior. An auto insurance company might consider such factors as
sex, age, previous history in terms of accidents or moving violations, occupation, the
city of residence, or the model of automobile in deciding how much coverage they
can extend and what premium to demand. Passenger airlines and their resellers are
well-known for charging fares that differ significantly even within the same flight
and cabin class; the prices they charge likely depend not only on expenses such as
the costs of aviation fuel, aircraft maintenance and employing air crew but also the
prices charged by competitors, the availability of seating, the days remaining un-
til the flight, and the method used to purchase the ticket. In a market in which
coach-class tickets on competitive routes are essentially commodities, it would help
to know the relationship between fares and demand. The more fully understood such
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a relationship is, the easier it would be to define the related optimization problem.

Less obviously, there exist benefits besides predictions from building models that
describe the relationships between attributes. For instance, if a model accurately
predicts data exploiting a non-obvious relationship, it might be worthwhile to ex-
amine the possible causes. In cases where collecting data is expensive, potentially
harmful, or has other drawbacks, examining a model may also allow one to narrow
the scope of data collection if it performs well without using all attributes.

In addition, when strong relationships hold for most of the data, the few ex-
ceptions may be of keen interest. One example comes from the abalone data set
hosted by the UCI Repository [Murphy and Aha, 1994]. The data cover the physical
attributes of individuals from a particular variety of shellfish. The documentation
suggests that the number of rings – which varied from one to twenty-three – in the
shell of an abalone, added to 1.5, approximates its age. There’s also a gender at-
tribute, specified as male, female or infant. One might expect infant abalones to be
young; however, the models reveal a number of strange tuples including one allegedly
corresponding to a 20.5-year-old infant abalone. Neither its age nor its gender is by
itself strange, judging more from the data set rather than any knowledge regarding
shellfish, but their combination would seem to suggest either a data collection or
entry error, or developmental abnormalities. This is the type of anomaly which we
would expect an otherwise accurate model to detect through unusually high predic-
tion error.

ith data where most tuples consist of innocent behavior while a few may be
adversarial, such as a database of mostly honest borrowers while a few plan to defraud
the lender, rules which hold for normal behavior but not for the adversarial instances
would be extremely useful. In other domains, the opposite situation may hold in
which most data do not fit well with certain rules unless they’re exhibiting interesting
properties; for instance, if a pattern exists for system failures, adherence to that
pattern may be much more interesting than the opposite. In such a situation it may
be useful to search for rules on the anomalous cases, and exclude those which also
seem to hold for too many of the less interesting cases. This latter procedure is
difficult without labeled examples or domain expertise, however.

This work considers data mining from the perspective of model building in an
unsupervised domain, where the term ’model’ specifically refers to any equation that
approximates individual values of individual attributes as functions of the associated
values of other attributes; and ’unsupervised’ means that the system operates without
requiring input-output labels or being able to request additional data. The system is
also not permitted to assume that the original scales of the attributes are optimal for
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its purposes; for instance, it may be the case that an accurate model of acceptable
complexity would be easier to build if a logarithmic transformation were applied
to an attribute. To deal with this possibility, we must consider a space of possible
nonlinear axis scalings and attempt to determine which will help the model-building
process.

Consider the following example: the area and population of regions as defined
by the 2001 edition of the CIA World Factbook. Prior to any nonlinear scaling, the
set looks like Figure 1.1; after nonlinear but order-preserving and invertible scaling
on both axes as selected in experiments described in a later chapter, we get Figure
1.2. The latter seems more conducive to demonstrating both the existence of a
relationship between area and population, and in addition noting the presence of
regions that have unusually low or high population densities.
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Figure 1.1: Area and population data from the 2001 edition of the CIA World
Factbook.

The excerpts shown in Figures 1.3 and 1.4 show that the incomprehensibility
of Figure 1.1 is not merely due to a few outliers causing most of the data to fall
within a small region suitable for examination with a microscope; focusing only on
the densely populated region one arrives at Figure 1.3, which resembles the original
graph. Repeat the discarding and you reach 1.4 which again has a dense region
near the origin and not much more clarity than before. Clearly, this is not merely
a problem of a neat data cluster obscured by a few outliers; likewise, neither affine
transformations nor axis rotations would suffice. We therefore consider nonlinear
axis scaling – which frequently can help, and in this case does – a crucial instrument.

The current system may be divided into three major components: nonlinear
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Figure 1.2: Area and population data from the 2001 edition of the CIA World
Factbook, after nonlinear axis scaling.
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Figure 1.3: After discarding “outliers” by cropping sparsely-populated extremes in
the unscaled 2001 CIA World Factbook data.
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Figure 1.4: After another round of discarding “outliers” and cropping.

scaling, input attribute selection, and modeling. Each stage produces output that
may be of interest by itself; for instance, the choices of scalings or the division between
inputs and outputs may be of separate interest. However, the modeling stage is the
most amenable to quantitative analysis as we can assess the accuracy of the models
more easily than we can the benefits of knowing that a particular attribute seems best
scaled in a certain fashion, and is the most direct means of justifying the previous
stages; therefore, the experiments and analysis thereof focus on this aspect rather
than making more direct assessments of the selected axis scalings or choice of inputs
and outputs.
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Chapter 2

Design Questions

As noted in the previous chapter, this work describes a system designed at a data
mining in a unsupervised environment. We have tables of mostly numerical data,
where rows and columns correspond to instances and attributes; but we do not
necessarily have input-output labels. In addition, it may be easier to build a more
accurate model after nonlinearly scaling one or more if the attributes.

Ideally, such axis scalings, the determination of inputs and outputs, and the
resulting models should be built automatically with a minimum of tuning, so as to
supplement the useful but less-scalable expertise and attention of any human domain
expert. We want a fully-automated system for identifying the relationships between
inputs and outputs, and for evaluating how well data fits these relationships so we
can find interesting exceptions, when given a complete data set consisting primarily
of numerical attributes.

2.1 Four fundamental questions

In light of the above, for any given set we might consider the following questions.

1. What scaling is appropriate for each axis?

2. Which attributes should we model?

3. Which attributes should be the inputs for those models?

4. How should these models be chosen?
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Of these, first examine the second and third questions. These closely-related
queries stem from the fact that to fit a function requires both inputs and outputs.
For simplicity, let us restrict the solution space by requiring that each attribute
be either an input or an output, but not both. In addition, let us suppose that
our model builder can determine which attributes are most relevant among possible
inputs. This reduces the second and third questions to the problem of dividing the
set of attributes between inputs and outputs.

The fourth question also directly relates to the modeling problem. Even if one
has been given a fixed partition between inputs and outputs, one still needs to decide
how to model. The exact choice of the model class and the method for searching
that specific class matters. For instance, consider the problem of modeling a data set
that follows the relationship y = sin(x). For this data, a model class featuring linear
combinations of sine waves parameterized by amplitude and phase shift could be
expected to yield a solution with more accuracy and fewer parameters than a model
class composed of square waves, which might in turn do better in terms of accuracy
than a class of non-periodic functions such as piecewise linear models. While for a
finite data set all three of these classes could be used to approximate the data with
excellent accuracy, again efficiency might vary.

As noted above, one needs not only a model class but also a method for searching
that class. This complicates the design of fully automated systems. For instance,
while the weights in a neural network can be trained through methods such as back-
propagation, choosing the initial design in terms of nodes, activation functions and
connectivity is considerably more difficult. It may not even be obvious how many
times one should re-initialize and run until convergence.

Lastly, consider the first of the four questions – what to do about scaling. In the-
ory, if all one cared about were attaining precise and accurate models, many model
classes possess sufficient flexibility that scaling would not matter. In practice finding
optimal or even good models within sufficiently flexible model classes happens to be
quite difficult; thus, scaling can affect the end result even if the model class itself
contains accurate models for the unscaled data. In addition, scaling might affect
the efficiency of the models. Consider a two-attribute finite data set following the
formula y = ex. Even a piecewise linear model would work – but depending on the
range of x values, it might require a substantial number of line segments, and there-
fore a similarly high number of parameters. In addition, such a model would not
generalize to x, y tuples well outside the original range despite the simplicity of the
underlying rule. On the other hand, the application of a logarithmic transformation
ŷ = log y results in x = ŷ – a simpler relationship. This simplifying of the rela-
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tionship, however, does come at the cost of also scaling the noise distribution. It is
possible that in the unscaled case the noise obeyed something like a simple Gaussian
distribution, which after scaling would not even be symmetric, let alone Gaussian.
Scaling might also have an impact on the efficacy of input selection depending on
the methods used.
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Chapter 3

Related work

Between attempts to handle the curse of dimensionality and the desire to find pat-
terns and models, a substantial body of work proves relevant to the problems at
hand.

3.1 Dimensionality reduction

The problem of dividing a set of attributes into two disjoint sets, one of model
inputs and one of model outputs, seems related to the well-explored problem of
dimensionality reduction. Methods which label some attributes as worth keeping
and others not, provide such a binary partition usually based on some notion of
independence or utility.

This thesis does not explore methods in which the same attribute may be used
for inputs and outputs; however, clustering in local subspaces and subsequent parti-
tioning of the data set on row-based boundaries would provide at least some of this
functionality. Methods which perform dimensionality reduction on subsets such as
[Chakrabarti and Mehrotra, 2000], which performs clustering; [Agrawal et al., 1998]
and [hung Cheng et al., 1999], which look for clusters in subspaces; and [Keogh et al.,
2001], which uses contiguous regions within the temporal domain, all seem relevant.

Among more traditional dimensionality reduction methods, those based upon lin-
ear projection such as principal components analysis [Bartell et al., 1992] [Calvo et al.,
1998] [Jolliffe, 1986] [Partridge and Calvo, 1998], random linear projection [Dasgupta
and Gupta, 1999], and independent components analysis [Hyvärinen et al., 2001]
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[Hyvärinen, 1999] generate linear combinations of inputs rather than a partitioning.
The same holds for many nonlinear projection methods, such as principal curves
[Chang and Ghosh, 1998], kernel PCA [Schölkopf et al., 1998], neural network meth-
ods [Baldi and Hornik, 1989] [DeMers and Cottrell, 1993] [Jones, 1992] [Kramer, 1991]
[Takahashi and Tokunaga, 1999], locally linear embedding [Roweis and Saul, 2000],
and mapping methods like FastMap [Faloutsos and Lin, 1995], Kruskal’s multidimen-
sional scaling [Kruskal, 1964], Sammon maps [Sammon, 1969], Isomap [Tenenbaum
et al., 2000] and MetricMap [Wang et al., 1999].

We therefore restrict our search to feature selection methods. The maximum
entropy discrimination approach [Jebara and Jaakkola, 2000], provides a method
designed to act in accordance with some pre-existing goal such as classification or
rejection in the supervised case; that is, labels are both useful and necessary. In this
context, people have examined the merits of directly using labels to influence the
selection process [Kohavi and John, 1997] [Tsamardinos and Aliferis, 2003]. Another
method, generalized LASSO [Roth, 2002], selects relevant attributes in the domain
of gene microarrays. The generalized LASSO algorithm differs from our problem
domain in that it focuses on probabilistic classification rather than continuous pre-
diction.

In the domain of text information retrieval, some work has been performed iden-
tifying insignificant terms without requiring labels [Lang, 1995]. There, however,
vectors consist solely of frequency counts, which means that the data lie entirely
within the set of non-negative integers with rather similar meanings. In other do-
mains, different attributes may have wildly different scales and semantics.

The method of [Traina Jr. et al., 2000] seems appropriate as a starting point
as it deals with individual attributes and attempts to capitalize on even nonlinear
dependencies between them, without requiring labels. This algorithm and alterations
thereof shall be described in more detail later as it comprises an integral part of the
overall system.

3.2 Models

In addition to the neural network methods mentioned above, which perform function-
fitting in addition to possible nonlinear dimensionality reduction; and the principal
components methods (linear or otherwise) which also relate features to each other
through the necessary mathematical derivations; one can apply other algorithms
such as genetic programming methods [Choenni, 2000], and assorted regression tree
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methods such as CART [Breiman et al., 1984], SECRET [Dobra and Gehrke, 2002],
C4.5 [Quinlan, 1993] and RT [Torgo, 1999]. Rule-based regression function prediction
methods have also been explored, such as in [Weiss and Indurkhya, 1995]. Such
methods may be suitable after using feature selection or remapping techniques that
do not provide mathematical grounds for representing old features in the new space.

3.3 Model complexity

In the most general theoretical, optimistic, superficial sense, function fitting consists
of accepting inputs and accurately computing the corresponding outputs. However,
this absolutist formulation seems problematic for a variety of reasons. Among the
more obvious objections, there exists the possibility that noise, measurement or data
entry errors, nondeterminism, and factors not captured in the inputs will prevent a
perfect correspondence between inputs and outputs. Furthermore, even if one instead
aims for “the most accurate model possible, after data cleansing”, with accuracy
measured by some error metric, absurdities still present themselves as solutions as
per Figure 3.1.

Y

X

z=0 z=3
z=6

z=4 z=9

z=12

z=13

Figure 3.1: If you ignore complexity, you risk approving dimensionality reduction or
modeling through connecting the dots, where a single parameter plus a very complex
curve are used to approximate as high a dimensionality data set as you’d like.

There is a significant body of philosophically related work, all of which incor-
porate some form of Ockham’s Razor in the sense that they quantify the trade-off
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between accuracy and complexity. From the algorithmic complexity and compres-
sion fields, we find theories regarding Kolmogorov complexity, Solomonoff complexity,
minimum message length, minimum description length, and similar methods [Hansen
and Yu, 2001] [Rissanen, 1978] [Wallace and Dowe, 1999]. Simpler methods such as
the Bayesian and Akaike information criteria – BIC and AIC respectively – have also
been proposed [Akaike, 1974]. All of these methods have been applied towards select-
ing models while taking into account model complexity. For instance, the simplest
approaches, AIC and BIC, suggest selection from among the members of a model
class in order to minimize

AIC(θ) =
n

2
log ε + |θ|

or

BIC(θ) =
n

2
log ε +

|θ|

2
log n

with model parameter vector θ and number of instances n.

The more complex methods may be more applicable when considering a variety
of model classes with different properties. For instance, one algorithmic complexity
approach frames the problem as the determination of a two-part string of minimum
size that, provided to a specific universal Turing machine (UTM), returns the exact
symbol string we wish to model or compress. Whether or not the UTM needs to
halt immediately after properly outputting the string varies per from definition to
definition.

In the two-part framework, the input string needs to be composed of two con-
secutive non-intersecting parts with different purposes. The first part encodes a hy-
pothesis for the UTM, while the second part defines parameters required to generate
this input from that hypothesis. More specific conditions formalizing this partition-
ing scheme may be found in [Wallace and Dowe, 1999]. One may also use one-part
schemes which do not explicitly differentiate between the encoding of the hypothesis
and specific inputs. In either case, the objective remains minimizing the length of
the complete input string.

The brief discussion above neglects certain practical issues, such as whether or not
such methods are computable – in the general case determining the exact Kolmogorov
complexity is not – and how one designs the initial UTM. With regards to the second
issue, we note that the choice of UTM affects the solution. In fact, the problem of
choosing the UTM resembles the dilemma of choosing model classes; in both cases,
just because different choices may each be capable of modeling the data does not
mean that they actually will do so with similar efficiency, accuracy and ease.

A recent approach by Keogh, Lonardi and Ratanamahatana [Keogh et al., 2004]
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replaces the UTM selection problem involved in Kolmogorov complexity with the
problem of selecting lossless compression methods such as the algorithms behind
gzip or bzip2, and uses these methods to approximate algorithmic complexity. For
continuous, real-valued numbers the authors suggest discretization.

As with dimensionality reduction, significant differences appear between the prob-
lem we have in mind and the problem covered by the aforementioned methods of
comparing models. Specifically, we wish to model unordered sets of vectors that
may contain either integers or floating-point numbers, instead of a single sequence
of symbols. In addition, we expect errors and imperfect models on realistic data; the
problem is modeling, not lossless compression. Furthermore, we focus on the values
of the data, and not their representations; we find relationships between attributes
of greater interest than the relative frequency of bit strings used in a particular
serialization of the data as encoded in a specific format in memory.

3.4 SPARTAN

The SPARTAN system comprises the previous work closest to our problem [Babu
et al., 2001]. SPARTAN first builds Bayesian networks to identify dependencies.
A Bayesian network is simply a directed acyclic graph with exactly one node per
attribute, and where each node contains a probability distribution for the corre-
sponding attribute conditioned on the attributes whose nodes have edges leading to
it. A Bayesian network, then, expresses dependencies without requiring an explicit
instantiation of the full joint probability table. The algorithm used by SPARTAN
returns usable ones within O(m4) given m attributes [Cheng et al., 1997]. Taken
as a whole, SPARTAN in practice scales approximately linearly with the number of
tuples sampled [Babu et al., 2001].

Bayesian nets assist the search for models for each attribute by suggesting depen-
dencies. For any attribute A and it corresponding vertex, define the Markov blanket
as the set containing its parents, its children, and the other parents of those children.
Figure 3.2 show a simple example. Given full information on the attributes in the
Markov blanket, attribute A will be independent of all the other attributes. Thus,
when considering how to model A, a reasonable start is to first look at the Markov
blanket.

Instead of being used directly for modeling, the Bayesian network leads to another
graph. In this graph, the vertices again represent attributes. Undirected edges
connect vertices wherever SPARTAN would consider one a candidate predictor of the
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Figure 3.2: A Bayes net for Boolean attributes A, B, C, D, E, F. A, B and D are
independent of all other attributes, while probability tables exist for C in conditioned
on A and B; E, conditioned on D; and F, conditioned on C and E. The Markov blanket
for C consists of all attributes except D; A and B are parents of C, F is a child of C,
and E is a parent of F.

other – for instance, when one attribute references the other as part of the former’s
Markov blanket. Thus, the Bayesian network serves to limit the connectivity of this
second graph.

This limitation proves important because initially, the final phase treats the sec-
ond graph as a weighted maximum independent set (WMIS) problem in which the
weight of each vertex reflects the immediate gain from modeling the corresponding
attribute using its neighbors. However, unlike ordinary WMIS, SPARTAN edits the
graph while it iterates to permit models to be generated using inputs that originally
lacked adjacency to the attributes to be modeled. For instance, an attribute A need
not be materialized just because SPARTAN chose a neighbor B to be predicted, so
long as the remaining materialized neighbors of A plus the still-materialized neigh-
bors of B can themselves provide a sufficiently accurate and efficient model.

For the underlying model, SPARTAN uses piecewise-constant CART trees [Breiman
et al., 1984]. These classification and regression trees provide a divide-and-conquer
approach which allows significant flexibility in modeling, at the cost of increased
complexity. Here, the regression trees use single-attribute tests in the internal nodes
and constant labels in the leaves. To maintain strict error tolerances, SPARTAN
also stores outliers in the leaves, where SPARTAN defines outliers as data instances
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for which the proposed model, given the corresponding inputs, would produce values
whose error exceeded tolerances. The user specifies these tolerances as fractions of
each attribute’s range.

SPARTAN also makes use of “fascicles” [Jagadish et al., 1999] in order to further
compress the materialized, or predictor, attributes. Again, SPARTAN takes care to
ensure that this lossy compression does not cause cascading errors to exceed error
tolerances.

For assessment purposes, SPARTAN uses storage cost – feasible as it assumes
discrete data, thus enabling the use of prefix-free codes. The cost model ignores
errors within tolerances, while errors beyond them accrue cost due to the need to
explicitly store outliers. The CART trees themselves require storage. For every node,
one must store data that identifies the type of the node as well as any test data such
as which attribute gets tested against what value, and the labels of the child nodes
corresponding to positive and negative results of the test – or predicted values. Since
SPARTAN only uses one class of models, CART trees, and the system focuses on
semantic compression, more complicated assessment schemes may be inappropriate.

3.5 Fasicles and ItCompress

Fascicles [Jagadish et al., 1999] and the more recent ItCompress [Jagadish et al., 2004]
provide alternative semantic compression methods, where they define “semantic”
compression as compression that focuses on the values within the numerical data
rather than the bit strings that represent those values for any particular encoding
scheme.

Both systems produce a compressed representation in which references to a dictio-
nary of tuples stand in for individual rows. With fascicles, tuples whose compressed
representations do not meet error tolerances need to be explicitly stored as outliers.
ItCompress refines this by storing a bitmap for each tuple that specifies which at-
tributes’ values did not meet error tolerances so that individual values instead of
entire tuples get stored as outliers. Both methods focus on compressing finite, static
sets and do not attempt to derive models useful for prediction. This focus limits the
amount of information that one can learn from running either system; for instance,
the dictionary of representative tuples does not provide rules governing relationships
between the attributes. Thus, while from a pure compression perspective ItCompress
may perform well even compared to model-based methods like SPARTAN [Jagadish
et al., 2004], from a data mining perspective the latter may be a more useful and
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informative choice.
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Chapter 4

System Design

Consider the system as designed and implemented. The system consists of three
stages – scaling, selection and modeling. Each of these stages processes the data
with the intent of eventually returning efficient, accurate models demonstrating the
relationships between attributes, and may return additional information regarding
the nature of the data. The name Briareus seems somewhat appropriate; the system
tries numerous possible axis scalings for each numerical attribute, and does not
commit to any particular axis scalings for model outputs until their relative impact
can be assessed during model selection.

However, unlike SPARTAN (Figure 4.1(a)), this system (Figure 4.1(b)) separates
input-output determination from modeling. SPARTAN involves more complexity
in determining inputs and outputs, and allows the generated models to affect its
labels; this thesis project uses a simpler workflow of splitting the attribute set once
into inputs and outputs without first generating models, but introduces complexity
through the use of nonlinear scaling as well as a more complicated model class.
Section 4.4 gives a more detailed qualitative comparison of the two systems.

4.1 Axis scaling

How should one scale data? In practice, this question has sometimes been entirely
ignored; for instance, the SPARTAN system operates on the data as-is [Babu et al.,
2001], which is reasonable when using piecewise-constant models such as CART
trees. It may also be sometimes be the case that we have a priori knowledge that
the current axes suffice for model-building. However, in the general case we cannot
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(a) SPARTAN (b) Briareus

Figure 4.1: High-level diagrams of SPARTAN and the described system, Briareus.

assume such. For instance, recall the area and population data from the 2001 edition
of the CIA World Factbook. In the unscaled data of Figure 1.1 is unclear whether
there is any relationship between area and population; the scaled version in Figure
1.2 suggests both the existence of some such relationship, and also the presence of
a non-trivial number of cases which deviate from it. As described earlier, this is
an example of a data set for which nonlinear axis scaling will be of far more help
than affine transformations, axis rotations, or clustering and outlier detection in the
unscaled space.

Adding nonlinear scaling to the modeling problem obviously complicates the
search space. While the above example shows that nonlinear scaling can help, to
actually perform it one must not only declare a set of nonlinear scalings to con-
sider, but also to describe a process for selecting which methods to apply on specific
attributes and specific subsets. The set of possible nonlinear scalings for even one
attribute is infinite; similarly innumerable might be the possible criteria for prefer-
ring one subset over another. The particular choices made have been based on a
pragmatic approach; rather than opt for an elegant minimalist approach, the axis
scaling system aims for comprehensiveness through the following computationally
intensive but highly flexible approach.

Briareus currently limits the realm of possible scalings to the cross-product of
two finite sets – one set of Box-Cox transformations, and one set of cumulative
distribution functions selected by estimation on the data – plus the identity function.
For instance, one possible scaling function that can be returned is the composition of
the logarithmic function, a Box-Cox transformation, and the cumulative distribution
function Fµ,σ of a given normal distribution:
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x′ = Fµ,σ (log x)

The rest of this section discusses these methods, their justification, and the meth-
ods for choosing among them.

Box-Cox transformations represent “traditional” nonlinear axis scaling methods.
Since Box-Cox transformations require strictly positive values, a constraint not nec-
essarily obeyed by the original data, the Briareus uses a two-parameter (λ, ∆) form
as follows. For each numerical value x:

If λ /∈ {0, 1},

f(x) =
(x + ∆)λ − 1

λ

If λ = 0,

f(x) = log(x + ∆)

If λ = 1,

f(x) = x

To permit iterative search, Briareus limits the set of λ values to a fixed set –
arbitrarily defaulting to {0, 1

5
, 1

4
, 1

3
, 1

2
, 1} – and chooses ∆ based on the minimum

xmin. If xmin < 10−10, Briareus sets ∆ = 10−10 − xmin; otherwise, ∆ = 0. These
transformations provide a range between the identity function and the frequently
available and chosen logarithmic transformation.

4.1.1 Reasons for using cumulative probability distribution
functions

The cumulative distribution functions of univariate probability distributions, while
rather less traditional choices for axis scaling, have the following desirable properties.

Monotonicity Just like Box-Cox transformations, univariate cumulative distri-
bution functions (CDFs) possess monotonicity. For any given CDF F (x), either
∀a∀b : a < b → F (a) ≤ F (b) or ∀a∀b : a < b → F (a) ≥ F (b), and in either case
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strict equality should be restricted to cases of zero density over [a, b]. This last con-
dition can happen with functions distributions restricted to integer outcomes or to a
given truncated range, or due to implementation issues such as the lack of arbitrary-
precision arithmetic or the use of approximations. An monotonic axis scaling locally
stretches or compresses an attribute, but preserves any ordering.

Likelihood of occurrence Popular probability distributions are usually thus be-
cause they model common behavior. For instance, the Gaussian or ’normal’ dis-
tribution actually models real processes, such as the summation of a large number
of independent identically distributed random variables. Scaling methods that take
into account some possible generative process or family of such would be useful in
identifying any instances; in addition, should such a distribution be correctly iden-
tified, the resulting cumulative distribution function should transform the data into
something considerably more uniform. It seems possible that this would assist mod-
eling enough to make CDFs a useful tool. Similarly, the Box-Cox transformations
may be helpful for the same reasons that people study power laws.

Known estimation methods For many distributions there exist closed-form esti-
mators. Some distributions require numerical methods; for instance, the well-known
mixture of normals may be estimated using the iterative expectation-maximization
method [Dempster et al., 1977], but no reasonable closed-form estimator exists. As
long as these methods can be automated, they can be used. Some distributions have
incremental estimators, which would be advantageous when considering stream data
or even static sets when ordinary multi-pass methods would require too much mem-
ory. For instance, the Scalable EM algorithm incrementally estimates a mixture of
univariate or multivariate normals. It may be also more practical than the original
EM method on large databases, as it summarizes data in order to avoid repeated
iteration over the original set [Bradley et al., 1999].

Known evaluation methods Among other methods, those seeking to evalu-
ate how well a given distribution fits data can consider χ2 testing, log-likelihood,
Anderson-Darling, or the Bayesian information criterion (BIC). Again, Briareus
needs to use automated methods instead of constantly prompting users for judg-
ment calls. As implemented, the current system considers two metrics:

1. The A2 value involved in computing Anderson-Darling scores,
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A2 = −N −

∑N

i=1(2i− 1) (log F (xi) + log (1− F (xN−i+1)))

N

with the data x1 to xN sorted in ascending order, and estimated cumulative
distribution function F .

2. The correlation between the actual data and the predicted quantiles based
on F−1 at 197 evenly distributed percentiles, 1% to 99% inclusive. Keeping
the range thus avoids issues related to numerical approximations and certain
distributions’ percentage-point functions; not all such functions are defined at
0% and 100%, and the approximations may break down in the vicinity of those
percentages.

Since the distribution parameters have been estimated from the data rather than
as an a priori hypothesis, the A2 value does not lead to a valid significance level from
the usual tables of critical values. However, the raw values still provide a basis for
comparison without requiring discretization, unlike methods aimed at discrete dis-
tributions such as the χ2 test. Furthermore, since it uses the cumulative distribution
function instead of the density, a single outlier seems unlikely to dramatically alter
the results. This contrasts with likelihood-based tests such as the BIC, which risk
being dominated by the low likelihood of a single extremely improbable value.

The scaling phase iterates through pairs of permitted Box-Cox transformations
and probability distributions. Thus, it proves necessary to have an automated
method for filtering out unacceptable scalings. For this, it uses both the A2 value
and the quantile-quantile correlation; the higher (worse) the A2 value, the higher
(better) the minimum acceptable correlation.

Estimates as summaries The choice of distribution and associated parameters
can serve as a summary that informs the user of specific, perhaps useful properties.
The partitioning of the summary into a scaling component and a distribution compo-
nent means that each should be readily interpretable compared to their combination.

Flexibility Given enough components, a mixture of normals can approximate any
continuous distribution within arbitrary positive error tolerances, while still hav-
ing well-known and reasonably tractable estimation techniques such expectation-
maximization [Bradley et al., 1999] [Johnson and Kotz, 1970] [Xu and Jordan, 1996].
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4.1.2 Choosing among probability distributions

Ideally, the choice of distributions would reflect accurate priors in order to avoid
unnecessary computation and produce more likely axis scalings. However, for the
purposes of evaluation Briareus relies on a fixed list of distributions with an implied
equal weighting; it does not currently take into account the relative likelihoods of
different distribution classes beyond the binary weighting of whether or not a dis-
tribution is implemented and enabled. This seems appropriate when assuming the
absence of domain knowledge. Instead, distributions were chosen with an eye towards
flexibility, frequency, and ease of estimation.

Briareus uses only univariate distributions in order to support axis scaling. Un-
less otherwise noted, the parameterizations and estimators used match those found in
[Johnson and Kotz, 1970]. Estimators exist for other distributions such as multivari-
ate normals and mixtures thereof, but these do not nearly as readily lend themselves
to attribute scaling or selection.

1. Exponential: While the exponential distribution could be subsumed by the
also-included gamma distribution, the two-parameter exponential distribution
used happens to be much easier to estimate.

2. Gamma: The system includes the gamma distribution by default because of its
considerable flexibility. The implementation of this distribution employs the
chi-square distribution, which in turn uses the normal distribution.

3. Generalized lambda: This implementation can only be considered partial, due
to the incompleteness of the tables necessary for estimation [Karian et al.,
1996]. As with the gamma, it was implemented for flexibility more than expected
frequency.

4. Normal and variations thereof: Normals, doubly-truncated normals, mixtures
of normals and mixtures of truncated normals are included. Ordinary normals
can be estimated simply using the method of moments. Normals with up
to two unknown truncation points, possibly both on one side of the mean
of the underlying non-truncated normal, can be estimated using integration
and simultaneous solving of nonlinear equations [Cohen Jr., 1950]; however,
more robust estimation performance was observed when using a Levenberg-
Marquardt search in order to minimize sum of squared deviations of estimated
versus observed quantiles. Therefore, the described system uses the latter
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method. Details and a brief empirical comparison may be found in Appendix
A.

The mixture model families implemented arbitrarily limit the number of com-
ponents to twenty to ensure termination within a reasonable time. In practice,
this limit was never reached.

For mixtures of ordinary normals, Briareus uses the standard expectation-
maximization algorithm [Dempster et al., 1977]; if scalability or incremental
updates were more of an issue methods such as SEM [Bradley et al., 1999],
Sato’s algorithm [Sato, 1999] and Thiesson’s incremental EM [Thiesson et al.,
2001] may be used. One might also accelerate the process using binned data.
The number of components starts at two, then increases until either it reaches
the hard limit or the Bayesian information criterion worsens. For each number
of components tried, the estimator runs multiple passes with a variety of initial
states since a poor start may lead to convergence at an unacceptable local
minimum.

Mixtures of independently, doubly-truncated normals are far harder and more
expensive to estimate for a variety of reasons. Primarily out of curiosity and
as an attempt at thoroughness this investigator made an attempt, which is
described in more detail in Appendix B. An understanding of that method
is not not necessary for following the rest of this thesis, and the estimator in
practice never proved to be a factor except possibly consuming excessive CPU
time – in contrast to the single doubly-truncated normal, which turned out
to be the second-most frequent distribution among those which survived the
goodness-of-fit criteria, behind the mixture of normals and ahead of the usual
normal.

5. Pareto:

The two-parameter form chosen happens to be well-known and inexpensive to
estimate.

6. Uniform:

The endpoints of the distribution are set just outside the range of observations.

A cumulative distribution function for a distribution that exactly models
the data density nonlinearly scales that data to a uniform distribution
within the range [0, 1]. The hope is that uniform distributions within uniform
ranges helps find dependencies and models.
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An obvious suggestion might be to use quantiles, if achieving uniformity is so
helpful. This was considered but rejected as a scaling method for the following
reasons:

1. Such a mapping still requires other forms of estimation or interpolation for
values between observations.

2. Extrapolation to data outside the observed range is even harder; linear extrap-
olation, for instance, will do a poor job on data if the distribution is highly
non-uniformly distributed per a lognormal or similar.

3. These mappings are highly parametric and cannot be considered summaries;
nor are they as intuitive or readily interpretable as common distributions such
as normals.

4.1.3 Integer variations

In recognition of the frequent appearance of all-integer data, the system determines
whether the original unscaled attribute contains only integers. In such cases, instead
of explicitly including a discrete version of each probability distribution, the scaling
code uses wrappers to create new versions of the probability functions to reflect the
shift in density

∀x ∈ Z g(x) =

∫ x+1

x

f(x)dx

and thus
∀x /∈ Z g(x) = 0

The scaler then uses the Nelder-Mead simplex algorithm to adjust the parameter
estimates to better reflect the discretized probability functions and the observations
by maximizing log-likelihood [Nelder and Mead, 1965]. Other metrics might suggest
other methods.

In summary, the axis scaling system examines attributes individually. For each
attribute, it considers the full cross-product of two sets: a set of Box-Cox transforma-
tions, limited by possible values of λ; and a set of probability distributions, each with
its own estimator and generator functions for the cumulative distribution, probability
density, and percentage-point functions. It evaluates every triple of transformation,
estimated fit and attribute according to Anderson-Darling A2 score and quantile-
quantile correlation. Surviving triples proceed to the next phase. In addition, the
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scaling system always preserves the original, unscaled data regardless of whether any
scaled version survives the filtering criteria. For example, on a small data set con-
taining area and population of 235 regions in the world, 12 different scaled versions
of the area attribute and 13 different scaled versions of the population attribute
survived in addition to the original versions; with the small size of the set. The logs
include specifications for each attribute and its attendant scaling; thus

population-scaled-18: integer

+original=population [1]

+bc_lambda=0.333333333333333

+bc_shift=0

+d_name=gamma [DISCRETE]

+d_params=0 1.45281863128665 376.542767985729

+qq=0.995833093322018

+A2=0.963965799859636

+chi2=0.01

+ll=-2559.12532341356

+BIC=5141.88019766682

declares that scaled attribute population-scaled-18 is an integer attribute
based originally on population, with a 1

3
-power Box-Cox transformation with no

shift, and after the application of the cumulative distribution function of a gamma
distribution with location, shape and scale parameters of 0, 1.453, and 376.54 respec-
tively. The quantile-quantile correlation, Anderson-Darling A2, χ2, log-likelihood and
Bayesian information criterion scores all reflect specific goodness-of-fit tests; of these,
Briareus uses the quantile-quantile correlation and the A2 score, but leaves the rest
for informational purposes. Figure 4.2 shows this particular function.

4.2 Model input selection

The axis scaling phase results in one or more versions of each original attribute, where
each version corresponds to either an identity transformation or a pairing between
a particular Box-Cox transformation and a probability-based scaling. The input
selection phase decides which versions of which attributes serve as model inputs with
which scalings, discards alternative versions of the input attributes, and labels the
remainder as possible outputs. Models will later be built with the input attributes for
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Figure 4.2: The axis scaling function applied to the population attribute of the CIA
World Factbook 2001 data. The original distribution, as indicated by the marks,
is highly skewed towards low values; therefore, most of the scaled range is assigned
to only a small part of the unscaled domain.
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each of the possible outputs, to be selected among based on criteria to be described
later.

Exhaustive searches of the space of possible labelings is clearly impractical, as the
input-output assignment space grows exponentially with the number of attributes.
Therefore, one needs to apply a more directed search. In addition, the selected
model class of piecewise-linear regression trees is fairly expensive to evaluate; hence,
this phase could use a faster heuristic to estimate the desirability of any particular
input-output mapping.

Two significant issues, then, are

1. How to evaluate a set of input/output labels less expensively than building and
evaluating the resulting models.

2. How to use this evaluation to search the solution space of input/output label
assignments.

4.2.1 Evaluating an input/output assignment

For the first problem, Briareus employs the D2 fractal dimension. Given distance
metric d, let the D2 value of data set X be

D2(X) =
∂ log pr (X)

∂ log r

where

pr (X) = |{(x, y) |x, y ∈ X ∧ d (x, y) ≤ r}|

The above only strictly holds for perfectly self-similar infinite sets. For finite sets,
one can use a variety of arbitrary criteria to determine a range of radii for which
the relevant partial derivative appears sufficiently stable. This system examines all
contiguous sets of half-plus-one of the 〈log r, log pr〉 pairs, and computes the slope of
the set with the lowest least-square error from the best-fit line.

Let us consider this in more concrete terms to convey an intuition as to the
meaning of D2. For a trivial example, suppose we have an infinite point set in which
the points fall uniformly on a line in a 1-dimensional space: thus we might have
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X = {−∞, ..., 1, 2, 3, ...,∞}

For a radius of r = 1, every point is within r of itself and two neighbors. For a
radius of r = 2, every point is within r of itself and four other neighbors. Quadruple
the radius to r = 4, and now every point has eight other qualifying neighbors. Every
time the radius doubles, so does the number of “other neighbors” doubles. Hence,
the pr ∝ r, log pr ∝ log r, and D2(X) = 1. And the above would hold true regardless
of the embedding dimensionality; it depended on the linear relationship, not the
unidimensional nature of the overall space.

For a infinite plane X with uniform density, the number of points that qualify as
other neighbors is proportional to the square of the radius. Then pr ∝ r2, log pr ∝
2 log r, and D2(X) = 2 – regardless of how many dimensions are involved. Again,
what matters is that the point set was planar.

For point sets with different properties, fractional D2 values are possible. Thus,
for the famous Sierpinski triangle set of Figure 4.3, the D2 fractional dimension would
ideally be log 3

log 2
if the set were infinite; Figure 4.3 only shows the first 3,280 points

in the series. Figure 4.4 shows the corresponding graph of log pr versus log r, and a
linear fit for most of those points with a slope of 1.6557.

Figure 4.3: The Sierpinski triangle.
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In general, for any given point set the more dimensions necessary to define the
data, the higher the D2 fractal dimension should be, regardless of the embedding
dimensionality. Data defined by many independent attributes should have a high
log pr versus log r; sets which can be captured by a few independent factors, such that
they exist on lower-dimensional manifolds, should have a lower D2 fractal dimension.
A crucial caveat, however, sans scaling, one attribute can overwhelm another through
a distribution with a spread of far higher magnitude. Take a square and stretch it
too much in one dimension, and it resembles a lower-dimensional line; likewise, its
D2 fractal dimension will drop towards that of a line.

This relates to the attribute selection or labeling problem for the following reason:
we can use it to assess how valuable a (possibly nonlinearly scaled) attribute is for
an input. If we have a set of already-selected inputs, possibly empty, and we add
another possible input, then the change in D2 should reflect whether or not this
attribute acts as a significantly independent factor that may help us define the space
– or whether it instead adds little due to correlations with already-selected inputs.
This hypothesis led to the methodology described in the following section.
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4.2.2 Using the D2 fractal dimension

Let us note that the D2 fractal dimension may be estimated with a computational
cost that varies linearly with the data set cardinality. The particular details may be
found in Appendix C.

Let X be the data set, with set of attributes A. The algorithm needs
to choose the set of materialized attributes M ⊆ A. M = ∅ is per-
missible if and only if all attributes contain no information due to being
constant; the extreme of M = A should only happen if all attributes
have significant independent content.

FDR has one parameter, τ , which provides a hard threshold on the max-
imum acceptable per-attribute D2 penalty.

Let D2(A) denote the D2 fractal dimension of X projected onto A. Then,
FDR works as follows.

1. InitializeM = A, D = D2(A). M is the current choice of attributes
to retain, while D is its fractal dimension.

2. Find a, Da such that Da = maxa∈M D2 (M\ {a}). That is, a is the
attribute whose removal which causes the least reduction or greatest
gain in D2.

3. If D −Da > τ , terminate and return AM .

4. If D −Da ≤ τ , update D ← Da andM←M\ {a}.

5. If |M| = 0, terminate and return ∅; no attributes remain.

6. Otherwise, return to step 2.

Figure 4.5: The fractal dimension reduction (FDR) algorithm

That said, the question remains of how to use it. One possible approach is
to use the fractal dimension reduction (FDR) algorithm previously developed by a
group including this investigator for fast feature selection [Traina Jr. et al., 2000].
The FDR algorithm as per Figure 4.5 enumerates the steps. FDR performs greedy
backwards-elimination; starting from the state where all attributes are to be retained,
it iteratively and greedily removes attributes from that set until it sees an unaccept-
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able reduction in the fractal dimension. When all remaining attributes cannot be
removed from the present projection without such a reduction, the algorithm con-
cludes that it has a set of attributes such that all have non-trivial independence from
each other and should therefore be kept; the dropped attributes, on the other hand,
have been dropped without significant loss and should be correlated with those that
remain.

The problem dealt with by the FDR algorithm does differ significantly from that
specified by this thesis, however. One of the more obvious and significant differences
is that courtesy of the axis scaling phase, multiple versions of each original attribute
may well exist. Thus, the embedding dimensionality and the redundancy may be
far higher to start. This is problematic for backwards-elimination; while it may be
tractable to as high as the sixteen attributes of one set [Traina Jr. et al., 2000], it is
less clear that it would apply well to 233 different versions of 30 attributes as results
from applying the axis scaling to the Dow Jones Industrials data set described in
the next chapter as the fractal dimension be needed to be computed on projections
involving many attributes. The first step would require the computation of the frac-
tal dimension on 233 dimensions; then, there are 233 possible projections involving
exactly 232 of those attributes, and so forth. With forwards selection, we can con-
strain the projection size by stipulating that there be at most one version of each
original unscaled attribute in any projection under consideration.

Nor does the FDR algorithm explicitly prohibit choosing to keep two different
versions of the same attribute; while it should be unlikely, it is theoretically possible.
A selection approach, on the other hand, can enforce this outright by not allowing the
selection of one when another has already been chosen. Finally, the work in [Traina
Jr. et al., 2000] and the motivation for FDR treated the D2 fractal dimension as
one of the primary metrics. Here, the emphasis lies with modeling the relationships
between attributes, and we prefer a bias towards selecting a few attributes and
modeling the rest if possible.

Therefore, for the purposes of choosing inputs – including ensuring the selec-
tion of at most one version of each original attribute as an input – this phase uses
the multistate hill-climbing forwards-selection approach shown in Figure 4.6. It’s a
greedy forwards-selection iterative search – hill-climbing – but rather tracking just
the single best state, it maintains a priority queue of candidate states limited in size
to the original number of unscaled attributes in order to reduce the probability of
greedy selection converging on a poor local minimum.

In the case of the CIA World Factbook 2001 data, the selector must choose its
model inputs from the 27 different versions of the two original attributes. From the
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1. Initialize Q = {(∅, 0)}, Q is a priority queue sorting combinations of attributes
by fractal dimension in descending order. In order to limit run time, it will
hold at most |A| combination-fractal dimension pairs.

2. Initialize T = ∅. T is a table that tracks which combinations have been
explored.

3. InitializeM as the best solution found so far, ∅, with fractal dimension D = 0.

4. Let O : a → b be the relationship that maps attributes a to unscaled version
b, and permit the obvious extension for sets.

5. Until Q is empty:

(a) Let D′ be the highest fractal dimension currently in Q.

(b) Select and dequeue a pair (S, D′). Decide ties arbitrarily.

(c) Let X be the set of possible “next” states;

X = {S ∪ b‖ (b ∈ A) ∧ (O {(b)} /∈ O {S})}.

(d) Filter X so that X = X \ (X ∩ T ).

(e) For each combination C in X , compute the fractal dimension DC and
add (C, DC) to Q. Ignore if gain is lower than 0.7; this is a rather high
threshold that could be lowered if one wants more accurate models, but
fewer of them and dependent on more inputs.

(f) If |Q| > |A|, set Q to contain only the |A| best entries according to the
already-computed D2 values. Break ties arbitrarily.

6. Use the best-known solution M with fractal dimension D.

Figure 4.6: Multiple-state hill climbing.
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initial empty state, it considers the fractal dimensions of each individual version; the
top two choices are a previously mentioned version of population, scaled with a 1

3
-

power Box-Cox transformation and a gamma cumulative distribution function (CDF)
with a fractal dimension of 0.9197; and a version of area, scaled with a logarithmic
transformation and the CDF of a three-component normal for a fractal dimension
of 0.9137. It proceeds by examining every pair of the former with each scaled ver-
sion of the area attribute, rejecting every pair due to their fractal dimensions not
being higher than 0.9197 + 0.7 = 1.6197. The same process occurs for the successor
states of the selection of that particular scaled form of area, again yielding no pairs
meeting the threshold. The search terminates with just that particular scaled form
of population having been selected; the other versions for population are ignored,
and each of the 13 different versions of area are possible model outputs.

It may be noted that while this algorithm restricts the final set of attributes
to only one version per attribute, nothing prohibits the use of a model class which
itself uses multiple versions of the attributes it receives. For example, an algorithm
for estimating polynomials might involve multiple powers of the same attribute. It
should also be stated that while in theory the “explored-state” table T could grow
excessively large should the multistate hill-climbing explore too many states, this
does not seem to have been an issue in practice.

Both the original FDR algorithm and the priority queue-driven version have non-
trivial drawbacks. Three of the most obvious issues originate with the use of the D2

fractal dimension. First, categorical data poses problems. For the original definition
of D2 to apply, one would need a heterogeneous distance function such as those
found in [Wilson and Martinez, 1997]. Furthermore, the “nested grid” family of
fractal dimension computation methods would no longer be relevant, barring a full
symbol hierarchy. The design chosen bypasses this problem by always materializing
nominal attributes and thus never involving them in the selection phase.

Second, both algorithms may incur substantial computational cost. Every it-
eration requires D2 computations on numerous different projections, and these D2

computations will be more expensive the more attributes are involved in the projec-
tion.

Third and perhaps most serious, D2 lacks clear definition when the current pro-
jection results in a non-self-similar data set. This case can be detected through
measuring the linearity, or lack thereof, in the point set defined by the estimated
log p (r) and log r values. Unfortunately, detection of such a condition does not im-
ply the existence of a solution. This system currently ignores the offending projection
and notes this occurrence. A quick grep through logs shows that of 22,313 fractal
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dimension computations involved in the attribute selection over the original and axis-
scaled versions of nine data sets, 1,799 estimates were rejected due to having too low
correlation.

A different issue arises with the separation of modeling from attribute selection.
The system attempts to select attributes by independence, but this is an incomplete
picture; two attributes may be very dependent on each other and similarly uniform
on their respective projections, but one attribute may be a far superior choice to the
other for the purposes of function fitting. Such a pathological case can be seen in
Figure 4.7. To completely avoid this without relying on human interaction, it may
be necessary to incorporate some form of model construction at this stage – perhaps
on a small sample, so as to avoid excessive computational cost.
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Figure 4.7: A pathological case for the attribute selector. The projections along the
two attributes are equally uniform, but x makes far more sense as an input than y.

4.3 Modeling

The final stage performs modeling. As per the previous section, we may divide the
set of attributes into three sets: the specific scaled versions of attributes selected
for materialization, the non-selected other versions of attributes selected, and all
versions of attributes which have not been materialized in any form. The first set
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provides the possible inputs for the models; the second set may be ignored; and the
third set defines what attributes Briareus will model, although for each underlying
attribute only the best model need be selected – for any given definition of ’best’.

urrently, the modeling phase uses regression trees with linear or constant mod-
els in the leaves as implemented by the RT system [Torgo, 1999]. Little actually
constrains the choice of modeling system here, other than the need to work on con-
tinuous attributes and to be usable with minimal human intervention. For instance,
it would not be reasonable for the modeling system to be frequently querying the
user about how many hidden units should be used by a neural network or how they
should be connected. Prior versions used a research version of RT due to its flex-
ibility, availability and capacity for automation [Torgo, 1999]; discontent with the
limited pruning coupled with unavailability of the source code led this investigator
to implement a regression tree system based on SECRET [Dobra and Gehrke, 2002]
but with a much more aggressive pruning system that considers complexity in addi-
tion to accuracy. To further reduce overfitting, a form of four-fold cross-validation
is performed. Details about the major differences between this tree and SECRET,
and the cross-validation procedure, may be found in Appendix D.

In most sets, at least one attribute will not be selected as an input in any given
axis scaling. For each such attribute, the modeler must select a model targeted at
one particular axis scaling among those that survived the goodness-of-fit checks at
the end of the axis scaling phase. The approach taken consists of iterating through
the possibilities. For each candidate version, the set of possible inputs consists of the
specific transformed attributes that were chosen. There are two main categories of
metrics which traditionally influence this sort of selection: complexity and accuracy.

4.3.1 Complexity / compression

As described in Chapter 3, there exists a substantial body of work devoted towards
considering the complexity of models as a method for choosing either within or
among model classes. These methods assess costs for storing the model, such as its
structure and parameters; in addition, they may either operate solely on discrete
output and require perfection, thus eliminating any need to directly add accuracy
and storage costs in a single metric, or they may permit inaccuracy at a price, such
as by assessing the number of bits used for storing enough information to correct an
error to within a demanded error tolerance.

Methods which cover model classes that accept input data, such as the attributes
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that have been labeled inputs in this domain, also should be accounted for when
dealing with cases in which this cost may change. For instance, with Briareus there
is no guarantee that the number of attributes labeled as inputs will not differ between
the scaled and unscaled cases.

The experimental results in the next section do partly describe the complexity
of the model in terms of how many nodes exist in the regression trees, as this can
be readily quantified. However, there are numerous different ways one may decide
to assess the complexity of scaling methods – arithmetic operations, cycles required,
lines or bytes of code in a given language and implementation – and none is canonical.
Likewise, to use a method that deals in bit costs requires greater care with floating-
point numbers.

This thesis focuses on the values within the data, not the bits used to represent
the values. Therefore, while tree sizes are reported for comparison purposes in terms
of the number of nodes, it does not suggest any particular encoding or balance be-
tween accuracy and complexity as canonical, or attempt to provide sufficient different
such methods as to seem comprehensive. Their relative merit will depend upon the
application.

That said, for the few attributes used which happen to be completely integers,
numbers are provided which correspond to bit costs involving standard prefix-free
codes for the integers, and IEEE 64-bit doubles for floating-point numbers among
model parameters. These numbers stem from tree selection influenced by this metric,
and do not necessarily relate to performance of the trees selected by the metric of
the next subsection. They are also presented only for the curious, rather than as
results to be significantly analyzed.

4.3.2 Accuracy

The evaluation therefore rests primarily on accuracy. Fundamentally, this is the
problem of deciding “how good” a model M and scaling function S when dealing
with input tuple x̂ and output datum y. This is more complicated than it seems.

Scaling: For instance, many error metrics might give different rankings among model
classes depending on whether one evaluates in the original space

S−1 (M (x̂)) ∼ y

or scaled space
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M (x̂) ∼ S (y)

due to the nonlinear nature of S. Figures 4.8 and 4.9 present such a pair;
they both describe the same data and the same model with the only difference
being that the latter presents the results in the same scaled space in which
the model was generated. Intuition suggests that since both cases cover the
same model on the same data, differing only by a reversible transformation,
that they should be considered equally good. Barring an assumption about the
goodness of either the original scaling or the method under evaluation, it seems
best to specifically devise a method which is reasonably scaling-invariant.
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Figure 4.8: From the CIA World Factbook 2001, actual versus predicted area in the
original space but based on a model generated in a scaled space.

Carelessness regarding this constraint can lead to rewarding extremely perverse
data if evaluating in the scaled space. For instance, methods based on abso-
lute error could be tweaked by scaling an axis such that most of the correct
outputs end up with low-magnitude values, while relative error metrics suggest
arbitrarily shifting the data by adding a ludicrously huge constant to every
desired output and prediction such that the errors get reduced by the much
higher denominators.
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Figure 4.9: From the CIA World Factbook 2001, actual versus predicted area in the
scaled space where the relevant model was built.

Reals: The metric must work on real numbers, not just integers. While integer-focused
metrics may be usable after discretization, actually choosing and justifying any
given discretization scheme is non-trivial in the absence of specific application
constraints and domain knowledge.

Resolution: For any given attribute, the distribution of the observations therein might be of
highly variable density. It seems unreasonable to propose that error tolerances
be tighter in areas of high density, and can be more relaxed in areas of sparser
density, as the same error in absolute terms may cause more confusion in a
dense region than a sparse region.

Deriving the quantile metric Thus, the investigator designed a quantile-based
error metric rather than more well-known metrics such as the sum-of-squared error
and relative-error variants thereof. For instance, SPARTAN [Babu et al., 2001] relies
on the data – inputs and outputs – being discrete, and therefore can penalize accuracy
by assessing the bit cost of storing the integer corrections. There are a number of ways
to extend this to reals involving discretization, but the schemes may give different
results – and in addition it leaves unanswered such questions as why linear shifts will
affect costs unevenly at different values in the data range, and whether to test in
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the original or scaled spaces. If one adds a constant that is several trillion times the
maximum observed value to all outputs and predictions, for instance, their relative
bit costs will become much closer to each other regardless of accuracy.

For the output attribute ŷ = (y1, ..., yn)T , input matrix X = (x̂1, ..., x̂n)T with x̂i the
k-dimensional input vector for output yi, scaling function S : R → R, and modeler
M : Rk →R, the quantile error metric is computed as follows.

1. Define mapping Q : R → R2 as follows:

Map every yi value to the range defined by the minimum and maximum ob-
served rank of yi. For instance, if the highest 10% of the ŷ attribute all consists
of the same value v, but the next-highest value differs, then for all i such that
yi = v, the quantile range Q(yi) = [0.9, 1]. Values which only occur once in ŷ
will have the same value defining both extrema of the “range”.

For values not in yi, let either Q linearly interpolate based on the neighbors on
either side, or linearly extrapolate based on the relevant extrema and second
most-extreme point. In both cases, it should map to ranges containing only a
single value.

2. For assessing the goodness of any one prediction, examine Q(yi) versus
Q (S−1 (M (x̂i))). Use the absolute magnitude of the closest distance between
the ranges.

If the quantile ranges intersect, the distance is 0; otherwise, use the lesser of
the distances between the maximum quantile of one and the minimum quantile
of the other.

3. For assessing the combination of M and S, sum the squared errors in Q space.

Figure 4.10: Quantile error metric.

Figure 4.10 gives the procedure for computing the quantile error. Note that the
procedure transforms data into a space defined by Q, which is based on the observed
quantiles. This has the effect of stretching dense regions and compressing sparse
regions, since this is based on ranks more than absolute value. If, for instance, the
maximum observation were increased arbitrarily, it would still be mapped to 1 and
the next-highest would still be mapped to n−1

n
. In fact, the only mappings that would

change would be for values exceeding the second-highest observation, and the effect
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would be limited for any value that was at or below the original observed maximum.
Likewise, linear shifts do not affect results so long as the same shift applies to both
the predictions and the observations.

Even the choice of scaling S has a limited impact so long as it is order-preserving.
For values in the original data set, S has no effect; for unscaled values not in the
original data set, the need to interpolate to estimate their ranks based upon the
closest data means S affects the results slightly.

Using the quantile metric Computing errors in Q-space lets us present multiple
types of results. First, to assess the overall combination of input selection, axis
scalings (for both inputs and outputs), and model, we can present the sum-of-squared
Q errors.

Second, to give a more detailed instance, median quantile errors are also fre-
quently provided. These can be readily interpreted in terms of rank; for instance,
a median quantile error of 0.05 means that half the time, the errors were no more
than 5% of the data set off – in terms of rank, not absolute value. A trivial baseline
is that a constant model which always predicts the median observation should have
a median quantile error of 0.25, or less if there are duplicates.

Third, for yet more detail graphs can be generated which show rank versus quan-
tile error for a single model so that their distribution is clearer. For a good model
one may expect most of the quantile errors to be low followed by a sharply increasing
tail encompassing major exceptions to the rule.

Fourth, individual quantile errors can help flag tuples that have much higher er-
rors than their brethren. For instance, recall that applying nonlinear axis scaling and
the input selector to the two-attribute CIA World Factbook 2001 data set yields the
selection of a particular scaled form of population as an input, and thirteen versions
of area as possible outputs. The most accurate of these models is a single-node tree
of the form

area km2-scaled-3← 7.926× 10−2 + 0.8508× population-scaled-18

with the data domain files providing sufficient information to interpret the spec-
ified scalings. If one computes the individual quantile errors for all 235 tuples, a
striking gap emerges in that the highest quantile error has a magnitude of 0.7121,
but all other quantile errors are 0.4560 or below. It is therefore obvious that one
particular tuple is being modeled extremely poorly compared to the rest.
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Quantile transformation before modeling? Given the use of the quantile
transformation for evaluation, an obvious question is whether the models themselves
should be built using the quantile transformation. One could consider applying this
to all the attributes instead of the aforementioned nonlinear scaling phase; alter-
nately, it could be applied to only the outputs.

From the perspective of minimizing eventual quantile error, this may make sense.
It should be noted, however, that quantile-based scaling has its own issues, such
as a complete lack of interpretability, difficulty extrapolating when working with
potentially open-ended distributions, and the need to do de facto density estimation
for interpolation. The interpolation and extrapolation issues have more potential
impact when building a model that may later be applied to new data, especially
outside the previously observed ranges.

4.4 Comparison with SPARTAN – Design

At this point, it seems relevant to compare and contrast with SPARTAN [Babu et al.,
2001]. First, SPARTAN does not use any form of scaling on the data, instead working
on it as-is. Thus, the number of attributes does not change, and no issues arise with
multiple versions of the same original attribute. Second, SPARTAN follows the
“wrapper” design concept instead of the “filter” concept; instead of using a separate
heuristic, SPARTAN employs the actual modeler – CART-based regression trees
with constant values in the leaves – when evaluating which attributes do not need
to be stored as inputs. To reduce the computational cost, SPARTAN samples the
data. SPARTAN also discretizes the data, then applies a Bayes network construction
algorithm in order to identify dependencies and make an initial determination of
which attributes would be useful for modeling which attributes. SPARTAN may
alter the choice of inputs in later iterations to reflect which attributes have previously
been chosen to be modeled, but the Bayes net provides the start configuration.

In theory, SPARTAN’s wrapper design should provide superior models compared
to a three-phase, acyclic design. On the other hand, its lack of scaling combined with
piecewise constant models versus nonlinear scaling and piecewise linear models may
make the models less efficient in the presence of sufficiently complex dependencies,
and SPARTAN only applies to discrete data. In addition, the CART trees do not
generalize to output values beyond that of the original set; it does not interpolate or
extrapolate.

One obvious question comes to mind: Could the scaling phase proposed here sim-
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ply be prepended to a version of SPARTAN rebuilt around piecewise-linear regression
trees, and modified to take into account transformation parameter costs? Without a
substantial reorganization of SPARTAN, the answer is no; SPARTAN relies heavily
on Bayesian networks and the discrete nature of the data, whereas Briareus concerns
itself with attributes on continuous domains. In addition, even if a discretization
method were specified, SPARTAN would need to be modified to deal intelligently
with multiple versions of each original attribute. Also, if the data were discretized
to enable SPARTAN-style attribute selection, one would have to decide whether to
retain piecewise-constant trees, or to use the non-discretized data to build piecewise-
linear trees while knowing that the Bayesian-based selector does not even consider
the order of values for each attribute let alone the relative magnitude of the gaps
between them. Thus the domain difference results in systems that do not appear to
be well-suited for straightforward combination or perhaps even direct comparison.

Finally, the systems use different metrics of success. SPARTAN focuses on com-
pression, and therefore uses error metrics that translate errors into bit costs; Briareus
treats the modeling accuracy as more important, and endeavors to use a metric that
takes into account local data density in exchange for ignoring compression costs.
While SPARTAN with scaling enabled would favor certain perverse scaling methods
that would provide extremely dense regions, the quantile-error metric was designed
to not reward this.

4.5 Scalability

As with any complex system, it would be of interest to know just how long execution
might take, and whether Briareus would scale to large data sets either as-is or with
moderate modification. One might want to know what a worst-case scenario is.
Briareus appears to be sufficiently complex that an empirical analysis would be more
tenable, however.

4.5.1 Numerical methods

The scaling methods used frequently involve the solution of problems for which no
acceptable closed-form approximation exists. For instance, the cumulative distribu-
tion function of a single univariate Gaussian involves integration over (−∞, x] for
some x ∈ R. This is not amenable to a perfect closed-form solution. Iterative numer-
ical integration methods exist, such as the well-known Romberg rule and Simpson’s
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method, but these have two major issues in that execution time is related to ar-
bitrary convergence criteria and that the theoretical guarantees of correctness and
convergence of other algorithms may not hold when given approximate values.

The worst case is that convergence which should occur, does not, and that ex-
isting checks for this behavior do not suffice. In that theoretical case the worst-case
complexity would be infinite. The existing checks aimed at avoiding this do cause
certain failures; for instance, the approximations in the current implementation have
failed on computing the percentage-point function of a Gaussian distribution when
the percentile in question is very close to either extreme. That latter computation
involves not only numerical integration, but also numerical searching to invert the
integration-based cumulative distribution function for specific values.

The same holds at a higher level, such as for certain distributions. Expectation-
maximization is used to estimate univariate mixtures of normals. Barring issues
related to numerical approximations causing non-ideal behavior, EM will converge
to local minima – but the guaranteed bounds are loose. For any given data set,
convergence could occur much more rapidly depending on the initial state and the
actual density of the data; thus, even if Briareus recorded the times spent on scaling,
extrapolation to other sets would be unreliable. This method could, however, be
replaced with first taking time linear in the number of tuples to generate a constant-
sized histogram, followed by constant-time estimation.

The construction of SECRET trees involves the estimation of binary mixtures of
multivariate normals [Dobra and Gehrke, 2002]. The current implementation uses
SEM [Bradley et al., 1999] bootstrapped by a k-means clustering algorithm; while
SEM scales reasonably well after initialization due to its use of summaries, k-means
is less predictable. If all or almost all of the data would be associated with a single
cluster by k-means, it may take a considerable number of iterations to discover the
second cluster, if any. Different initialization methods might be more predictable.

Based on the timing experiments presented in Section 5.4 of the next chapter,
the modeling phase – which includes the construction, pruning, selection, and final
evaluation of the SECRET trees – completely dominates computational cost with
the current implementation.

4.5.2 Inability to predict the number of retained inputs

The number of transformed attributes that survive filtering depends on the number
of transformations allowed, as well as how close each particular attribute is to any
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given distribution and how one tweaks the estimation of each distribution and the
goodness-of-fit criteria. It is possible that minor tweaks would have a significant
impact here even with the basic algorithms otherwise unchanged.

The number of transformed attributes greatly affects the potential worst-case
complexity of the scaling system, as more attributes increases the space it has to
search. However, if the attributes are highly correlated, then the search may ter-
minate early as the incremental fractal dimension changes drop below the built-in
arbitrary threshold. Hence, one needs to know more than the number of attributes
here; yet, in the general case this number cannot be predicted merely by knowing
the dimensions of the data set.

Likewise, the number of attributes selected as inputs affects the complexity of
the generation of each model in multiple ways. More inputs mean larger sets for
regression, but it may also make it easier to construct a sufficiently accurate model
with fewer pieces; however, more inputs means fewer outputs and therefore fewer
models to construct.

4.5.3 Complex tree construction process

If one assumes the successful termination of computation of split points, including
the aforementioned use of the Scalable Expectation Maximization (SEM) algorithm
[Bradley et al., 1999] for binary multivariate normal estimation to generate pseudo-
class labels, and likewise for the estimation of linear models via either the singular
value decomposition or an approximation based on recursive least-squares; then the
tree construction will terminate as every node split requires that the child nodes each
relate to strictly fewer data than the parent. The maximum number of nodes even
without other checks such as stipulating minimum number of data to even consider
a split would therefore be twice the number of tuples, less one – every split resulting
in a child for a single-tuple leaf and a child for the rest of the data.

The above assumptions, however, do not shed much light on either worst or
average case stability. Even for execution on a single data set, holding constant the
size of the data and the number of inputs versus outputs, the observed time for
generation of a tree might conceivably vary considerably due to variations in the
number of splits required and therefore the number of other computations.
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4.5.4 Estimates

With the above in mind, one can suggest at least some guidelines for the individual
stages.

First, consider the nonlinear axis scaling stage. As all the estimators are applied
independently to each attribute, the nonlinear axis scaling phase should scale linearly
with the number of attributes m – if all the attributes are similarly expensive to
process. If all the supplied distribution estimators are enabled, by far the most
computationally expensive should be the estimators for the univariate mixture of
normals, and for the univariate mixture of truncated normals. The former currently
relies on standard expectation-maximization and presumably converges at the same
rate, but could be modified to operate on binned data for essentially performance
linear in the number of tuples n. The latter, as implemented, could in theory require
at least time cubic in the number of tuples if the breakpoint divisions proved to be
completely pathological, but this worst case may actually not be attainable. It would
be worth considering the removal of this last estimator for sets of significant size, or
refining it for improved scalability.

Second, we can examine the attribute scaling phase. Each invocation of the
fractal dimension code in practice scales linearly with both the number of tuples
and the number of attributes attributes. For an older version based on a pure
single-state forward-selection search, without axis scaling, one could overestimate
the computational cost in the worst case based on the number of tuples n, number of
attributes m, and number of attributes eventually selected as inputs k as O(mnk2)
– the number of iterations is k, and the final iteration requires computing fractal
dimensions on m− k + 1 projections of dimensionality k each. The actual algorithm
used is less predictable, since no projection needs to be computed using two or more
different scalings for the same attribute, and the system tracks more than one best
state. Thus, if T is the number of possible axis scaling functions per attribute, we
might very loosely estimate the complexity as O(Tmnk2).

Third, we have the modeling phase. One can at least note that the number of
models which need to be built scales linearly with the number of outputs – m − k
in the unscaled case, something more complicated in the scaled case – and that
the dimensionality that these models need to be built in scales linearly with the
number of inputs. With reasonably efficient algorithms, one might expect the model
construction time to vary approximately linearly with the number of tuples; thus,
O(T (m−k)kn) may be plausible. It is left to the experiments to check this conjecture.

It may be noted that regardless of the difficulty of assessing the scalability through
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theoretical analysis, the experiments documented in Chapter 5, Section 5.4 suggest
that each section incurs a computational cost that scales linearly with the number of
tuples. Judging from those same experiments, it is the final O(T (m−k)kn) modeling
time that dominates, although if k ∼ m the O(Tmnk2) of the input selection would
actually scale worse.
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Chapter 5

Experiments

To attempt a theoretical proof regarding the performance of such a collection of
approximations and heuristics with respect to a problem with few assumptions would
seem foolhardy. Hence, experimental testing seems appropriate.

5.1 Implementation

The system exists primarily in Perl 5 scripts and modules as well as some C++
code. Including internal documentation but excluding interpreters, other libraries
and other pre-existing code, this consists of over 50,000 lines of code between the
statistics software, the fractal dimension package, attribute selector, the modeling
system, and assorted test harnesses. While numerous components have parameters
that can be tweaked, for the purposes these experiments all such parameters were
left at their general-purpose defaults – no per-set tuning was performed.

Testing proceeded on a single machine with two Intel Xeon 2.8 GHz processors
and 1 GB of memory running Linux. With the relatively small sets used, processing
power was far more important than memory. No attempt was made to exploit parallel
computing.

5.2 Usage

As noted, while there exist numerous opportunities for adjusting parameters to best
suit each data set none were taken. For any given data set, the procedure was as
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follows.

1. Write a “domain” file that labeled each attribute as continuous, nominal

(symbolic), integer, or in a very few cases ignore. Certain attributes which
were naturally outputs based on the set’s purpose were labeled thus, as noted
in the sections to come.

2. Run the axis scaling system on the data file.

3. Run the model-input selection system on both the unscaled and scaled versions.

4. Run the model-building and selection system for both cases.

5. Use additional scripts to compute quantile error for each tuple and associate
them with the line numbers in the data set for reference.

6. Check the logs for aggregate error statistics.

7. Check the tree files for the number of nodes in each.

8. Start the outlier search by examining the tuples with the highest quantile errors,
especially when these errors are much higher than the others or are within the
same general time period where applicable.

5.3 The impact of nonlinear scaling

Earlier sections of this work contend that nonlinear scaling should be capable of
having a significant positive impact on the accuracy and efficiency of the models.
With a piecewise linear model such as those fit by RT and SECRET, nonlinear
scaling might enable higher accuracy, greater efficiency, or both.

Regardless of one’s expectations, it seems relevant to examine at least the follow-
ing potential areas of observation.

Q1. What is the impact of nonlinear scaling on the attribute selection
process? The implemented nonlinear axis scaling scheme has a definite bias to-
wards increasing uniformity through its goodness-of-fit tests. The attribute selector,
using the D2 fractal dimension, prefers uniform and independent attributes. It there-
fore reasonable to suspect that more attributes will be selected as inputs after the
application of the nonlinear scaling.
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Whether or not this happens is certainly important, given that more selected
attributes require more bits to store but may also be enable better models. Where one
draws the line between storage cost and model accuracy depends on the application
and must be left to the user.

Q2. How good are the resulting models? As suggested in the chapter on
system design, two different mindsets – compression and modeling – suggest two
different methods for assessing goodness.

With integer data, the traditional MDL or MDL-like approaches can be used
to combine model complexity and model accuracy into a single metric measured
in bits. The complexity of a model can be assessed in terms of the bits necessary
for encoding the structure and parameters given a specific encoding scheme, and
one can also devise schemes for assessing accuracy according to the cost of storing
correction data. Such a model was described in the previous chapter; results using it
are reported for the few cases of modeled integer attributes. These values should not
be considered without remembering the problems inherent in such a model, such as
the implicit assumption of the correctness of the original scaling. In addition, these
bit costs do not apply well to floating-point outputs. Therefore, with both integer
and floating-point data models the experiments also perform model evaluation and
selection according to the quantile-based error method.

The quantile method does not take into account model size, so it also seems
reasonable to report the number of nodes in the selected regression trees.

Q3. What else can we find out? For instance, should the sum of quantile errors
for a particular model seem unreasonably high, one might examine the distribution.
If most errors are in fact quite low, while a few errors far exceed the rest, we may
have identified what we might term a “semantic outlier”; while not necessarily an
outlier in terms of traditional metrics such as distance from neighbors, such a tuple
represents a combination of values whose relationship has not been properly captured
and may therefore be of unusual interest. In other cases, simple scalings or tiny but
accurate regression trees may exist that provide useful information about the data.

The following experiments have been run using data sets involving factors not
known to the experimenter. A variety of data sets from different domains has been
used in order to reduce the likelihood of deriving conclusions that rely on unusual
traits or coincidences. This section describes the results.

Some experiments have also been run with the same data sets, but restricted
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to strictly linear models instead of piecewise-linear models. These experiments are
described in Appendix E.

5.3.1 Abalone

The Abalone set [Nash et al., 1994] hosted by the UCI Repository [Murphy and
Aha, 1994] contains 4,177 9-dimensional tuples regarding the physical characteristics
of abalones. The dimensions include a nominal attribute, sex, which can be either
male, female or infant; multiple continuous attributes, namely length, diameter,
height, whole weight, shucked weight, viscera weight, and shell weight; and
one integer attribute, rings. The task originally associated with the set was to
predict the number of rings; hence, this attribute was flagged as an output.

Without nonlinear axis scaling Without using nonlinear scaling, the system
chose to retain three attributes as inputs – sex, length and height. Median quantile
errors for these attributes ranged from 2.3946×10−4 for rings and 1.6705×10−2 for
diameter, to 4.1562 × 10−2 for shucked weight. For reference, the mean squared
error on rings was 6.9871. As only rings is an integer attribute, the other attributes
lack bit cost results.

Attribute Bit cost
∑

Q error2 Nodes

Diameter N/A 8.8500 1
Whole weight N/A 16.675 7
Shucked weight N/A 30.808 5
Viscera weight N/A 28.905 7
Shell weight N/A 26.433 7
Rings 20,391 91.129 1

Table 5.1: Errors for the abalone set, without nonlinear scaling. Bit costs reflect
the tree cost as well as errors, while quantiles do not.

With nonlinear axis scaling With nonlinear scaling enabled, three attributes
were retained – sex; shucked weight, with a truncated normal; and viscera weight,
again scaled with a truncated normal.

Regarding the output attribute, the 3-node tree for an untransformed ring at-
tribute accrued a total of 93.720 in squared quantile errors, delivering somewhat
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similar results. The mean sum-of-squared error in the original, unscaled space was
6.8078; if we label all attributes as inputs, and use the accuracy-focused pruner in-
stead of the balanced pruner, the resulting 25-node tree has a mean squared error
of 4.361 rings, a sum-of-squared quantile error of 53.55, a median quantile error of
2.3946× 10−4, perfect prediction on 1,041 cases.

Table 5.2 summarizes the quantitative scores for the models in the case of nonlin-
ear scaling. The quantile scores may seem worse; however, median quantile errors in
both cases are quite small. For instance, the median quantile error for shell weight

increases from 3.5026×10−2 in the unscaled case to 4.5170×10−2 in the scaled case;
the maximum quantile error, however, has dropped from 0.76991 to 0.74054, and
in the scaled case the maximum is substantially above the second-worst of 0.51826.
In the case of diameter, with the worst relative penalty, the median quantile error
still remains 2.9571 × 10−2. In no attribute does the median quantile error exceed
4.8428×10−2 in the scaled case – this worst case occurring with height and the me-
dian quantile error did drop from 2.9680× 10−2 to 1.8352× 10−2 for whole weight.
Recall that a median quantile error of 5 × 10−2 means that the predicted output
would have a rank error of less than 5% half the time.

It should be noted that the six models in the general unscaled case require a total
of 28 nodes in their trees, with a total sum-of-squared quantile error of 202.8, while
the six models after nonlinear scaling take 20 nodes to deliver a total sum-of-squared
quantile error of 232.4. If one considers the models post-scaling to be sufficiently
good, then the size benefit is obvious and substantial.

Distribution of errors One who prefers to look at the error results in more detail
might end up generating per-attribute percentage-point function curves such as those
in Figure 5.1. Figure 5.1 shows that errors tend to be smaller in the scaled case than
in the unscaled case. For a reasonably accurate model, we expect a smooth curve
where most errors are low, and with a sharp rise in the magnitude of errors for the
few exceptions to the rule. In such graphs, if the scaled and unscaled curves mostly
coincide, they deliver similar performance; a broad divergence, on the other hand,
indicates that the model behind the lower curve has a much better distribution of
errors. Figure 5.2 shows only the worst-modeled cases from Figure 5.1; in both the
scaled and unscaled cases there are a few exceptionally badly modeled tuples.

5.3 shows the corresponding results for the rings attribute; as one might expect
for a discrete attribute, these percentage-point functions are step functions.
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Figure 5.1: Percentage-point curves for quantile error in the unscaled and scaled
cases for the whole weight attribute of the abalone set. A percentile of 50% means
the median quantile error; 100%, the maximum. While the curve for the scaled case
lies below the unscaled case, the differences are minimal except among the more
serious errors. In both cases, the worst errors – percentiles 95% and up, for instance
– are much worse than most errors.
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Figure 5.2: Percentage-point curves for the very worst quantile errors in the unscaled
and scaled cases for the whole weight attribute of the abalone set. In both the
unscaled and scaled cases, the worst errors are quite high relative to the rest.
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Figure 5.3: Percentage-point curves for quantile error in the unscaled and scaled
cases for the rings attribute of the abalone set. The curves are step functions
because rings has few distinct values.
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Outliers The abalone set contains notable outliers. For instance, the model for
the scaled version of height reports a quantile error of 0.79615 on one tuple; the
next worst for that model is 0.63438. The two generating tuples claim to represent
the following slightly odd abalones:

• A female abalone with a height of 3mm, a length of 127mm, a diameter of
99mm, and a weight of 231g – very long and wide, but incredibly flat. This is
row 1175 in the data set.

• A female abalone with a height of 226mm, a length of 91mm, a diameter of
71mm, and a weight of 66.4g – very large, but among the lightest in the bunch.
This is row 2052 of the data set.

These two tuples are both strange enough to be among the top five worst errors
for the shell weight model in the unscaled case. Figure 5.4 shows just how extreme
these two tuples are when considering height and whole weight.

In both the unscaled and scaled cases, the worst result for the shell weight

belongs to row 3997, one of two infant abalones with heights of 0 – the other being
row 1258. That’s impressively small for abalones with non-zero length and diameter,
weight and ring count.

Attribute Bit cost
∑

Q error2 Nodes

Length N/A 19.817 5
Diameter N/A 22.237 1
Height N/A 51.434 3
Whole weight N/A 7.514 5
Shell weight N/A 37.633 3
Rings 20,016 93.721 3

Table 5.2: Errors for the abalone set, with nonlinear scaling. Bit costs reflect the
tree cost as well as errors, while quantiles do not. Comparison with the results in the
unscaled case show that in both cases, the models are actually quite good in general.

In short, abalone is a data set in which for most of the attributes most of the
values can be predicted quite well in both the unscaled and scaled cases according
to such statistics as the median quantile error; but some tuples deviate extremely so
from the mainstream.
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Figure 5.4: Abalone: Height versus whole weight. While there is a bit of a general
trend, there are a number of extreme outliers.

5.3.2 Baseball

The ’baseball’ data set contains 365 17-dimensional tuples. Each tuple contains a
set of statistics for an individual player and the 1996 Major League Baseball season.
These statistics listed were those in Table 5.3.

Of these, the avg stats are continuous attributes and the rest contain only non-
negative integers.

Without nonlinear axis scaling Without scaling, two attributes were retained
– CS and E. Table 5.4 summarizes the quantitative results both the unscaled and
scaled models, all of which are single-node trees. Many of the attributes contain
only integers, so bit costs based on traditional compression-related objectives do
apply; these costs as listed correspond to the bit costs of trees selected with this
specific objective in mind. While more complex trees might have enabled better
prediction, with the small amount of data the regression tree algorithm is reluctant
to split.
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BA Batting avg 3B Triples
SLG Slugging pct BB Bases on balls
OBA On-base avg HR Home runs
G Games BB Bases on balls
AB At-bats SO Strikeouts
R Runs SB Stolen bases
H Hits CS Caught stealing
TB Total bases E Errors
2B Doubles

Table 5.3: Statistics in the baseball data.

Triples: easy to predict Certain of these results deserve explanation. The num-
ber of triples, for instance, is most likely relatively easy to predict due to the extreme
skew. Fully 133 players had no triples, while 92 had only one triple, and player
counts fall sharply as the number of triples increases; none had more than 10. The
median quantile error for 3B was rather low at 3.7538 × 10−2; other than for SB

at 7.4380 × 10−2, every other median quantile error exceeded 0.15 and three – BA,
SLG and OBA exceeded 0.22. Recall that a constant median predictor should have a
median quantile error of 0.25, or fewer when there are duplicate values.

With nonlinear axis scaling In the case of nonlinear scaling, two attributes
were selected – the on-base average, after a square root and scaling derived from
the estimation of a two-component mixture of normals; and strikeouts, scaled with
a gamma distribution.

For each model common to both the unscaled and scaled cases except 3B and SB,
the sum-of-squared quantile errors has improved; those that increase, do so slightly.
Median quantile errors now are all below 0.1 except for BA, SLG and G, which are
approximately 0.14293, 0.16291, and 0.11019 respectively. The largest reduction in
∑

Q2 appears for BB; the unscaled model

BB← 17.8370 + 2.6642× CS + 1.4897× E

does poorly compared to

B̂B← 6.01926× 10−2 + 0.29904× ˆOBA + 0.53628× ŜO
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Unscaled Scaled
Attribute Bit cost

∑

Q error2 Bit cost
∑

Q error2

BA N/A 28.685 N/A 15.278
SLG N/A 30.405 N/A 17.342
OBA N/A 29.684 (input)

G 4,698 17.656 4,275 9.0864
AB 6,089 16.895 5,623 7.7681
R 4,359 17.107 3,896 6.4066
H 4,848 16.430 4,348 7.9507
TB 5,543 20.155 4,909 6.0356
2B 3,319 16.135 3,009 7.7607
3B 1,784 3.8928 1,934 4.3396
HR 3,333 23.002 2,940 5.8189
RBI 4,456 21.428 3,992 6.3872
BB 4,154 21.568 3,743 5.1402
SO 4,584 20.830 (input)

SB 2,507 12.449 3,073 13.810
CS (input) 2,306 8.7654
E (input) 2,694 12.318

Table 5.4: Errors for the baseball set, without and without nonlinear scaling. Em-
phasized text indicates the better performance when the same attribute is modeled
in both the unscaled and scaled cases. All trees were single-node; with small sets,
the regression tree builder needs to see substantial accuracy improvements to accept
a split. Bit costs reflect the tree cost as well as errors but not the cost of the inputs,
and is measured on trees specifically chosen by bit cost rather than the quantile
metric.
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where B̂B has been scaled via a truncated lognormal, ˆOBA by a 1
2
-power Box-Cox

transformation and a two-component normal, and ŜO by a gamma distribution. The
latter formula has a median quantile error of approximately 6.6115 × 10−2 versus
0.1860 in the unscaled case.

Distribution of errors Figure 5.5 shows percentage-point curves for the quantile
error in the case of TB, for both the unscaled and scaled versions. As with most of
the other such graphs for the baseball set – with 3B being a bit of a step function
due to the low range – the curve in the scaled case shows a slow and steady increase
for most of the errors, and a sharper increase for the worst cases. In the unscaled
case, the rate of increase is much more even; thus, the great bulk of the quantile
errors are lower in the scaled case despite the fact that both regression trees have
but a single node.
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Figure 5.5: Percentage-point curves for quantile error in the unscaled and scaled
cases for the TB attribute of the baseball set. The large gap between the unscaled
(upper) and scaled (lower) curves show that while the best- and worst- case errors
are similar in magnitude for both, at any other given percentile the scaled case has
lower errors. For instance, 90% of the quantile errors for the scaled case are below
0.25; only about 65% of those for the unscaled case are below that same threshold.

Table 5.4 shows that of the 13 attributes modeled in both the unscaled and scaled
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cases, all the models keep the same number of nodes in both cases and the models
with scaling are more accurate in 11 of them. Overall, this data set supports the
contention that the added flexibility can improve modeling performance. It may
also be noteworthy that for many of the attributes, the bit cost metric and the
quantile score agree on whether or not nonlinear axis scaling helped despite making
fundamentally different judgments on how to evaluate errors.

5.3.3 Building

The building set comes from the PROBEN1 benchmark collection [Prechelt, 1994],
which in turn cites the original Great Energy Predictor Shootout[Kreider and Haberl,
1993]. The version used includes 4,208 tuples featuring nine attributes. record id

is ignored; hour is an integer; the environmental conditions temp, humid, solar and
wind are continuous. The three objectives for the Shootout, wbe (whole-building
electrical energy), wbcw (whole-building cold water) and wbhw (whole-building hot
water) are also continuous attributes.

Without nonlinear axis scaling Without using nonlinear scaling, the attribute
selector keeps temp and wind as inputs.

Attribute Bit cost
∑

Q error2 Nodes

hour 85,430 2.9319× 102 1
humid N/A 1.9975× 102 5
solar N/A 4.9109× 102 3
wbe N/A 3.5245× 102 1
wbcw N/A 74.649 1
wbhw N/A 62.211 3

Table 5.5: Errors for the building set, without nonlinear scaling. Bit costs reflect
the tree cost as well as errors, while quantiles do not.

Table 5.5 summarizes the quantitative results for the models generated without
the use of nonlinear scaling. Median quantile errors ranged from 6.9159× 10−2 for
wbcw and 8.3675× 10−2 for wbhw, to 0.22201 for wbe.

With nonlinear axis scaling In the scaled case, three attributes are selected –
hour, linearly normalized only; humid, with a quarter-power Box-Cox transformation
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and scaling based on a mixture of normals; and wind, no transformation.

Table 5.6 shows the tree sizes and sum-of-squared quantile errors for the resulting
models. The comparative results are mixed; the aggregate quantile scores for wbcw

and wbhw have worsened, while the same scores for wbe and solar have improved.
The median quantile errors have become more even; other than solar, which had a
median quantile error of 6.0054× 10−2, the medians range from 0.11529 for temp to
0.14946 for wbhw.

Attribute
∑

Q error2 Nodes

temp 1.4224× 102 5
solar 46.270 9
wbe 2.4256× 102 5
wbcw 1.5121× 102 1
wbhw 1.8242× 102 1

Table 5.6: Errors for the building set, with nonlinear scaling. All of the modeled
attributes were continuous; hence no bit costs are listed. Compare with 5.5 regarding
solar.

Distribution of errors Figure 5.6 compares percentage-point curves for the quan-
tile errors when in the unscaled and scaled cases of modeling solar. The scaled error
has far lower quantile error at every percentile possibly excepting the smallest errors.

5.3.4 CIA World Factbook (2001)

Extracting area (in km2; continuous) and population (in individuals) from the 2001
edition of the CIA World Factbook [Central Intelligence Agency, 2001] yielded a set
with 235 tuples and the two specified attributes. Most tuples correspond to nations,
although some belong to territories and other entities.

Without nonlinear axis scaling In the unscaled case, the system chooses to
retain population as the input. The model for area uses only one node and results
in a sum-of-squared quantile error of 16.901; individual quantile errors range from
4.8381× 10−3 to 0.52949, with the median at 0.20891. In other words, the unscaled
area predictor is not much better than a ideal constant-median predictor.
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Figure 5.6: Percentage-point graphs for quantile error in the unscaled and scaled
cases for the solar attribute of the building set. The curve for the scaled case is
much lower than the curve for the unscaled case. Over 90% of the quantile errors
from the scaled case are below the median quantile error of the unscaled case.
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With nonlinear axis scaling With nonlinear scaling enabled, the system again
selects population as an input, but with a 1

3
-power Box-Cox transformation and

a gamma-based transformation. The single-node tree for modeling area achieves
a sum-of-squared quantile error of 6.0886; individual quantile errors range from
1.5408× 10−4 to 0.71214, with the median at 9.1444× 10−2. The expanded range is
interesting in that not only have most of the errors declined, but the magnitude of
the highest observed quantile error has increased dramatically – and usefully.

It may be noteworthy that while in the unscaled case, the progression of errors
when sorted by magnitude appears smooth, while the scaled case the magnitude of
the worst quantile error, 0.71214, greatly exceeds that of the second-worst, 0.45605.
Examination of the data suggests that this worst case belongs to the territory of
Greenland; with its area of 2,175,600 km2 and a population of 56,352 this extremely
sparsely-populated territory should be an outlier. In the unscaled case, it isn’t very
much of one, with a quantile error of 0.41404 leaving it below 34 others.

Outliers The low dimensionality of this set makes it feasible to graph the effects
of scaling. Figures 5.7 and 5.8 show the before-and-after comparison; in the scaled
case, the axes graphed are the scaled version selected by the attribute partitioning
scheme and the scaled version associated with the best-performing model.

Figures 5.9 and 5.10 show some annotations for the unscaled and scaled cases,
respectively. In the former case, the only points that stand out are those with unusu-
ally high area; in the latter case, we can actually label the ten-worst modeled points
according to the quantile metric. Looking at the latter it is clear that Greenland is
an extreme outlier; indeed, it receives the single-highest quantile error after applying
a 1

2
-power Box-Cox and gamma distribution to the area, and a 1

3
-power Box-Cox and

gamma to the population.

Mongolia, another sparsely populated state with an area of 1.565×106km2 and a
population of 2, 654, 999, accounts for the second-worst score. Namibia, Mauritania,
and Svalbard round out the top five; all seem to have unusually low population
densities. By comparison, the People’s Republic of China is modeled reasonably
well, with a quantile error of only 4.5272×10−2; it is highly unusual in terms of both
area and population, but the relationship between the two is normal. The same holds
for India; the quantile error is a mere 3.4981×10−2. In the unscaled case, China and
India are modeled with quantile errors of 3.1532×10−2 and 3.7028×10−2; acceptable
in both cases and a push when comparing.

On the other hand, in the unscaled case the worst-modeled area is that of Monaco,
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with a quantile error of 0.52949, followed closely by the Vatican at 0.52498, Gibraltar
at 0.52443, Macau at 0.52267, and Tokelau at 0.51221. In the scaled case, these
tiny areas received quantile errors of 0.20639, 4.98682× 10−2, 0.19175, 0.27043, and
0.04209, respectively. These tend to be tiny states; however, Tokelau’s population
density of 144.5 people per km2 is not extreme, with 68 densities greater, 165 less,
and one other approximately identical – Andorra. In neither the unscaled case nor
the scaled case is Andorra considered an outlier.
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Figure 5.7: Area and population data from the 2001 edition of the CIA World
Factbook. It would not be advisable to estimate the relationship between area

and population from this scaling.

Distribution of errors Figure 5.11 shows the percentage-point functions for the
quantile error when modeling area, in both the unscaled and scaled cases. The
unscaled errors are again usually much lower across the board, although the difference
narrows with the very extremes; in fact, the worst case is ’worse’ in the scaled model.
This might be explained by the exceptional nature of Greenland when handled as a
separate entry from Denmark, and its incredibly low population for its huge area.
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Figure 5.8: Area and population data from the 2001 edition of the CIA World
Factbook, after nonlinear axis scaling. While the trend is far from perfect, this
graph does suggest a broad and positive correlation between area and population;
and also suggests the existence of a few extreme exceptions.
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Figure 5.9: Before axis scaling, with annotations. One might classify all of the named
regions as outliers, using a traditional cluster-based definition.
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Figure 5.10: After axis scaling, with annotations. The named points do not neces-
sarily correspond to extrema, but to nations which deviate from the general trend
relating area and population. Hong Kong, for instance, is extremely densely pop-
ulated.
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Figure 5.11: Percentage-point curves for quantile error in the unscaled and scaled
cases for the area attribute of the Factbook set. The much lower curve for the scaled
quantile errors shows the degree of improvement; approximately 80% of the quantile
errors in the scaled case fall below the median quantile error of the unscaled case.
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5.3.5 DJ30

The DJ30 set is the DJ1985-2003 submitted by Danilo Careggio to StatLib [Careg-
gio]. This set contains stock data for each stock that was a component of the Dow
Jones 30 Industrials in October 2003, split-adjusted, over a period consisting of 2,529
trading days from January 2, 1985 to October 30, 2003. While one attribute was
labeled CO, I refer to it as KO on the suspicion that – CO not having been a DJIA
component while KO was – this was a labeling error. The truth of the matter has few
ramifications other than the fact that CO and KO operated in different markets and
presumably have different dependencies. The data set description indicates that the
data was originally collected from Yahoo!.

From this set, I used the split-adjusted closing prices. While the sequential nature
of the data would have allowed it, no experimentation was performed with exploiting
temporal correlations. For instance, a model for the closing price of American Express
(AXP) did not use any historical prices for American Express, and could use only
the closing prices of the other Dow Jones 30 components for that same day. One
could obviously perform considerable experimentation attempting to predict thirty
concurrent and non-independent time series.

Without nonlinear axis scaling Without nonlinear scaling, only a single stock
was chosen as an input – IP, or International Paper. Table 5.7 lists the tree sizes
and sum-of-squared quantile errors for the remaining attributes.

Let us consider the results from various angles. First, most of the sum-of-squared
quantile errors are on the order of 100 to 200, with a few notable exceptions. The least
occurred with DuPont (DD); there, a 5-node tree had a maximum quantile error of
0.48280, and a median quantile error of 7.3211×10−2. The model for Caterpillar (CAT)
is almost as accurate, with median and maximum quantile errors of 9.2970×10−2 and
0.49715 respectively. For Proctor & Gamble (PG), the slightly worse score reflects
median and maximum quantile errors of 9.99612× 10−2 and 0.57122; Philip Morris
(MO; now Altria), 9.7920× 10−2 and 0.54149. By the time the score reaches that of
Johnson & Johnson (JNJ), the median quantile error has reached 0.14822, more than
twice that of DuPont.

With nonlinear axis scaling With nonlinear scaling enabled, the system selects
two attributes – International Paper, with a third-root Box-Cox and a truncated
normal; and JP Morgan, with a mixture of normals.
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Stock
∑

Q2 Nodes Stock
∑

Q2 Nodes

AA 1.0201× 102 11 JNJ 1.0607× 102 9
AXP 1.1884× 102 7 JPM 97.925 7
BS 1.3244× 102 3 KO 1.4506× 102 5
CAT 52.337 7 MCD 1.0858× 102 5
CI 1.1298× 102 7 MMM 1.0348× 102 9
DD 43.6504 5 MO 75.273 9
DIS 1.2681× 102 3 MRK 1.1442× 102 11
EK 1.7651× 102 5 MSFT 1.1252× 102 3
GE 1.2157× 102 9 PG 64.729 5
GM 1.2142× 102 1 SBC 1.1358× 102 1
HD 1.2567× 102 7 T 1.7226× 102 5
HON 76.534 7 UTX 1.0692× 102 9
HPQ 1.7325× 102 11 WMT 1.5867× 102 5
IBM 1.0122× 102 5 XOM 1.2756× 102 11
INTC 1.2795× 102 11

Table 5.7: Errors for the DJ30 set, without nonlinear scaling. All of the modeled
attributes were continuous, hence no bit costs are listed. BS is Bethlehem Steel,
acquired after the period of data collection. The models range considerably in size
and accuracy.
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Table 5.8 presents the model statistics after enabling nonlinear scaling. In all 28
models common to both the scaled and unscaled cases, the sum-of-squared quantile
error has dropped. The median of the median quantile errors for all the models is
down from 0.14890 to 7.4698× 10−2; the maximum median quantile error dropped
from 0.20833 to 0.14980, with these maximum medians belonging to WMT in both the
scaled and unscaled cases.

Stock
∑

Q2 Nodes Stock
∑

Q2 Nodes

AA 57.609 11 INTC 29.184 3
AXP 42.130 9 JNJ 68.910 13
BS 70.430 13 KO 92.650 13
CAT 46.381 3 MCD 28.461 9
CI 41.522 11 MMM 75.824 9
DD 30.926 1 MO 49.874 11
DIS 23.447 11 MRK 34.258 11
EK 1.3611× 102 9 MSFT 29.300 11
GE 42.347 5 PG 55.928 5
GM 27.394 5 SBC 21.837 11
HD 45.104 3 T 1.0389× 102 9
HON 19.474 7 UTX 57.333 11
HPQ 35.822 9 WMT 91.253 5
IBM 67.7805 5 XOM 51.123 13

Table 5.8: Errors for the DJ30 set, with nonlinear scaling. All of the modeled at-
tributes were continuous, hence no bit costs are listed. Compare with Table 5.7; the
sum-of-squared quantile errors are lower in every case, with some increase in model
complexity.

Studying the time series The sequential nature of the data, the dates, and the
availability of news articles about these stocks and the stock market in general give
us an opportunity to study these data in more detail, and in some cases to attempt
to explain any observations. Consider Figure 5.12. The two curves in that figure
show the daily median quantile error across all output attributes in the unscaled and
scaled cases as time goes by. While the scaled case does not completely lie below
the unscaled case, it is generally lower and never reaches the heights that the scaled
case. Since these are median quantile errors across a group of outputs, a sudden spike
would likely correspond to either a significant event affecting an input attribute, or
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affecting at least half the outputs. For instance, the largest spikes in the unscaled
case occur around September to October 2000; there does not seem to be a similar
spike in for the scaled case. This may be reflecting news specific to IP, which at the
time was dealing with the aftermath of acquisitions and capacity reduction; while it
was an input in the scaled space as well, the presence of another input JPM may have
reduced this. Alternately, the scaling of IP may have mitigated its effects.

Temporal locality In the scaled case, the errors of quite a few models increase
sharply around the middle of September to early October of 2002. This may be re-
lated to problems afflicting JPM at that time, notably fallout from its well-publicized
involvement and possible liability in the Enron, Adelphia, and MCI Worldcom scan-
dals. Many of the worst quantile errors – for instance, the top 9 errors for IBM; the
top 3 for MO; 15 of the top 20 for PG – fell between September 17 and October 9.
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Figure 5.12: Daily median quantile error across all the DJ30 outputs, in both the
unscaled and scaled cases. The curve for the scaled case is more stable and usually
lower, while the unscaled curve has occasional sharp spikes indicating substantial
problems with at least half the models.

One can also examine the errors of individual models. For example, let us consider
the 5-node regression tree that models DD. 18 of its top 25 worst errors occur from
August 8, 2001 to September 6, 2001. These errors, in the range (0.3201, 0.3872),
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are all much greater than the median quantile error of 6.0691 × 10−2. In June,
the company had announced the sale of its pharmaceutical unit to Bristol-Myers
Squibb; in late July, they announced that job cuts would be larger than expected,
and admitted to losing money in a quarterly report. For another model, CAT, 8 of the
13 worst errors occur on the eight trading days from April 9, 2003 to April 22, 2003.
All of these errors exceed 0.3700 in quantile space; the median was 7.3458× 10−2. It
may be noted that in early April S&P downgraded CAT to 2 stars (avoid) from 3 stars
(hold), labeling its rise in share price an overreaction [BWO, 2003]. The two worst
quantile errors for SBC, of magnitudes 0.5077 and 0.5362, fall on the 20th and 21st
of September, 2001, and vastly exceed the third worst error of magnitude 0.3551.
On the 21st, it had announced plans to purchase outstanding shares of Prodigy
Communications; this may have relevance.

Honeywell In the scaled case, the most accurate model according to the sum-of-
squared quantile error belongs to Honeywell (HON); in the unscaled case, the corre-
sponding model scores decently relative to the others but is not the best. Figures
5.13 and 5.14 each show two curves and a set of impulses where the two curves
correspond to the actual and estimated split-adjusted closing prices, as per the left
Y axis; the impulses track quantile errors for the daily estimations on the right Y
axis. In the scaled case, the estimates appear to track the actual closing prices much
better than in the unscaled case; this improved performance makes it much more
interesting to examine the exceptions. Figure 5.15 shows the actual model in scaled
space.

According to the quantile metric, the scaled model’s worst mispredictions occurs
on October 23, 2000 with a score of 0.42820; this is the peak of a series of quantile
errors exceeding 0.1 starting on October 9, 2000 and ending by December 21, 2000
with respites on October 13 and 18. On October 23, it was announced that General
Electric had agreed to buy Honeywell International, beating a prior bid by United
Technologies [Hackley]. Rumors of the UTX bid had been officially confirmed by
October 19, 2000 [Johnson, 2000]. Another period of interest might be April 10 to
April 17 of 2002, when the quantile errors for the scaled model briefly increased,
peaking at 0.24880 on April 12; Honeywell did gain sharply on April 10, enough to
be mentioned in articles [Greenwald, 2002], but searching did not reveal any specific
reason.

DuPont After nonlinear scaling, the “best bargain” model would have to be DD,
or DuPont. The model for DD has an acceptably low sum-of-squared quantile error
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HON:  Actual and estimated prices versus quantile error

Actual Modeled Quantile error

Figure 5.13: Actual and modeled prices for Honeywell HON using the left Y-axis; daily
quantile error, using the right Y-axis. The curves diverge considerably at times, thus
accounting for the high quantile errors noted by the taller impulses.
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HON (scaled):  Actual and estimated prices versus quantile error
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Figure 5.14: Actual and modeled prices for Honeywell HON (scaled) using the left
Y-axis; daily quantile error, using the right Y-axis. The curves track each other very
well most of the time, indicating good prediction.
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IP vs. JPM vs. HON, scaled, actual vs. predicted
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Figure 5.15: Scaled model for HON using IP and JPM. The observations, indicated by
the crosses, are well-modeled by the surfaces depicting the regression tree.

of 30.926, a median quantile error of 6.0691× 10−2, and a maximum quantile error
of 0.3871, making it more accurate than every model in the unscaled case – and with
a single node.

With IP scaled via a 1
4
-power Box-Cox transformation and a truncated normal,

JPM scaled via a seven-component mixture of normals, and DD scaled via a logarithmic
transformation and a mixture of two normals, the “tree” consisted solely of one
equation:

D̂D← −1.2420× 10−2 + 0.66000× ÎP + 0.35426× ˆJPM

It’s not the most accurate model in the list – the scaled models for DIS, GM,
HON, INTC, MCD, MSFT, and SBC have lower

∑

Q2 error – but it’s still quite accurate
and is the least complex. A possible explanation lies in the fact that DuPont and
International Paper both count paper goods as nontrivial parts of their product lines.

Eastman Kodak The corresponding graphs for the scaling’s worst case, Eastman
Kodak (EK) are Figures 5.16 and 5.17. In the unscaled case, the model has essen-
tially collapsed to the point of in places being practically a constant predictor. The
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unsurprising result is that the quantile errors are very high. The scaled case fares
better, but still completely fails with certain trends – such as modeling a steep de-
cline instead of a sharp rise circa July 1998 with the greatest discrepancy perhaps
on October 8, 1998 when the model predicts a closing price of $31.25 instead of the
actual price of $64.55. It seems relevant that a very sharp climb in share price had
started on July 15, 1998 when EK closed at $67.23 a share (split-adjusted) – much
higher than the $60.10 a share of the preceding day. On that day, EK reported a very
positive earnings surprise – $1.38 a share for the second quarter, versus expectations
of $1.13 and actual earnings of $1.11 for the same quarter in the previous year. The
stock peaked a week later at $71.71 a share, and by March 19, 1999 had fallen to
$55.35 a share – close to the scaled model’s estimate of $53.82 s share based on IP

and JPM.
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EK:  Actual and estimated prices versus quantile error
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Figure 5.16: Actual and modeled prices for Eastman Kodak EK using the left Y-axis;
daily quantile error, using the right Y-axis. The curves diverge rather often and
significantly, and the high impulses indicate substantial quantile errors.

SBC Communications SBC Communications (SBC) offers an interesting example
of the improvements made possible by nonlinear scaling. Tables 5.7 and 5.8 note that
the sum-of-squared quantile error has improved significantly for SBC; the median
quantile error has dropped from 0.16600 to 5.2031× 10−2. On the other hand, the
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EK (scaled):  Actual and estimated prices versus quantile error
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Figure 5.17: Actual and modeled prices for Eastman Kodak EK (scaled) using the
left Y-axis; daily quantile error, using the right Y-axis. While there are still periods
of significant divergence and high quantile errors, the scaled model tracks somewhat
better than the unscaled model shown in Figure 5.16.
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scaled model shown in Figure 5.18 requires two inputs and eleven nodes instead of
one input and one node.

Figure 5.19 shows the closing prices of IP and SBC, unscaled. A cursory examina-
tion shows that SBC’s closing price must depend on something other than IP; since
the unscaled case resulted in selecting only IP as an input, SBC could not have been
modeled well. It therefore becomes natural to ask whether or not the inclusion of
JPM would suffice. Figure 5.20 shows the outcome, should one force this selection
and build a regression tree with these inputs and output; the resulting 5-node tree
has a median quantile error of 7.1377× 10−2 and a sum-of-squared quantile error of
30.619; smaller but less accurate than the model derived with nonlinear scaling.

IP vs. JPM vs. SBC, scaled, actual vs. predicted
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Figure 5.18: IP and JPM versus SBC, scaled. The observations, marked by crosses,
are well-tracked by the model.

INTC Intel (INTC) shows a similar case. As Figure 5.21 shows, the single input
chosen in the unscaled case cannot be expected to produce a reasonable piecewise
linear model; the sum-of-squared quantile error of 1.2795 × 10−2 and the median
quantile error of 16.269 reflect this even after using 11 nodes in the regression tree.
Compare that with the results of the scaled case using both IP and JPM as inputs,
as per Figure 5.22; with three nodes, the model has a sum-of-squared quantile error
of 29.184 and a median quantile error of 6.0731× 10−2. For comparison, Figure 5.23
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Figure 5.19: IP versus SBC, unscaled. Clearly one needs more than IP to model SBC.
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Figure 5.20: IP and JPM versus SBC, unscaled. This model is fairly accurate, but not
as accurate as that of the scaled case shown by Figure 5.18.
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shows the model that would have resulted if the unscaled case had permitted both
IP and JPM as inputs instead of only the former. This five-node two-input model
has slightly more complexity than in the scaled case, and a slightly better median
quantile error of 5.7527× 10−2, but a worse sum-of-squared quantile error of 39.540.
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Figure 5.21: IP versus INTC, unscaled. One needs more than IP to model INTC.

Distribution of errors With the number of attributes involved and the nature of
the data – some companies and their stock prices are much more related than others,
plus some may have had substantial rumors or events specific to them – it seems
useful to present multiple graphs comparing percentage-point curves. Figures 5.24,
5.25, 5.26, and 5.27 show them for GM, DIS, CAT and EK respectively. GM presents the
usual example of the scaled case dominating the unscaled in terms of lower quantile
error throughout. With DIS, the gap seems unusually large; with CAT, the difference
is minimal. EK is unusual in that neither the scaled model or the unscaled is all that
accurate.

5.3.6 Housing

The housing data set can be found at the UCI Repository [Murphy and Aha, 1994],
but originated with the research described in [Harrison and Rubinfeld, 1978]. Sub-

80



IP vs. JPM vs. INTC, scaled, actual vs. predicted
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Figure 5.22: IP and JPM versus INTC, scaled. The model’s surfaces track the obser-
vations quite well.

IP vs. JPM vs. INTC, unscaled, actual vs. predicted
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Figure 5.23: IP and JPM versus INTC, unscaled. The model here is more complex than
that of the scaled case per Figure 5.22, but with mixed results regarding accuracy –
the median quantile error has declined slightly but the sum-of-squared quantile error
has increased.
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Figure 5.24: Percentage-point curves for quantile error in the unscaled and scaled
cases for GM from DJ30. The scaled case, reflected by the lower curve, produces much
lower errors overall than the unscaled case.
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Figure 5.25: Percentage-point curves for quantile error in the unscaled and scaled
cases for DIS from DJ30. Again, the lower curve for the scaled case shows much lower
quantile errors than for the unscaled case.
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Figure 5.26: Percentage-point curves for quantile error in the unscaled and scaled
cases for CAT from DJ30. The nearly coincident curves occur because the models are
approximately equally good.
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Figure 5.27: Percentage-point curves for quantile error in the unscaled and scaled
cases for EK from DJ30. The curves are similar, and in both cases there is less of a
pronounced rise towards the end. Neither model is especially good.
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sequent research in the originating domain has questioned the encoding [Gilley and
Pace, 1996]. However, since the the point of this testing is to assess the effects of
nonlinear scaling on the modeling process, and not to draw conclusions about the
Boston housing market circa 1970, let us ignore this and any other disputes regarding
its accuracy.

This set contains only 506 tuples, each of which has fourteen attributes. The
original problem consisted of predicting median home value based on a variety of
factors. Twelve attributes are continuous, including the designated output MEDV;
one attribute is binary; and one is an integer.

Without nonlinear axis scaling Absent the enabling of nonlinear scaling, the
system selected three attributes – CHAS, a binary, and thus automatically selected,
attribute specifying whether the land borders the Charles River; and NOX, a contin-
uous attribute specifying the concentration of nitric oxides in parts per 10 million;
and RM, the average number of rooms per dwelling.

Table 5.9 gives the basic results for the models in the unscaled case. All the trees
are quite small, as expected due to the small size of the data set and the regression
tree builder’s bias against large trees.

We first examine the few most accurate models. The lowest sum-of-squared
quantile error occurs with ZN. This apparent best case has a median quantile error of
only 1.8746×10−3, and 500 of the quantile errors are 0.23025 or below; the remaining
six range from 0.84601 to 1.1675. With INDUS, a tree with a single expression,
INDUS = −0.95378+40.922×NOX, the median error is higher, at 7.9642×10−2, and
the maximum is 0.48230 with no outstanding outliers. The table suggests that LSTAT
should be slightly less accurate with LSTAT = 37.461+24.453×NOX−6.0014×RM;
the median quantile error was 0.12140, and the maximum is 0.86884.

Extremely large errors The most interesting cases here are B and AGE, with their
large sum-of-squared quantile errors and high median errors of 0.31245 and 0.16353,
respectively. A median quantile error in excess of 0.25 is high indeed; a model that
always predicts the true median should score no worse than that threshold. For B,
59 of the tuples produce quantile errors in the range of [1.0607, 9.4382]. AGE also has
24 tuples producing quantile errors in the range of [1.2612, 3.8620]. These outliers
account for the unusually poor

∑

Q2 scores of their models.
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Attribute Bit cost
∑

Q error2 Nodes

CRIM N/A 35.724 5
ZN N/A 7.3285 3
INDUS N/A 15.511 1
AGE N/A 2.4482× 102 1
DIS N/A 21.470 1
RAD 3991 24.332 1
TAX N/A 26.492 1
PTRATIO N/A 29.179 1
B N/A 1.3684× 102 1
LSTAT N/A 17.603 1
MEDV N/A 21.114 1

Table 5.9: Errors for the housing set, without nonlinear scaling. As with the
baseball data, the small size of the set makes it difficult to justify splitting nodes
in the regression tree. Note B and AGE.

With nonlinear axis scaling The system retains more input attributes after the
enabling of nonlinear scaling. Specifically, it chose CRIM, with a mixture of lognor-
mals; CHAS, identity, as is mandatory for a binary attribute; RM, with a fifth-root
Box-Cox transformation and mixture of normals; AGE, with a mixture of lognormals;
and B, with a fifth-root Box-Cox transformation and mixture of normals.

Table 5.10 summarizes the quantitative measurements of the models built with
the assistance of nonlinear scaling. Of obvious note is that none of the sum-of-
squared quantile costs suggests the existence of extreme outliers, unlike B and AGE

in the unscaled case. It’s also notable that for every attribute modeled in both the
scaled and unscaled case, these sum-of-squared quantile errors are lower for the scaled
case – sometimes significantly – and the trees are no larger except for TAX, which
grew from 1 to 3 nodes.

Consider the apparent best and worst cases. With ZN, modeled after a quarter-
power Box-Cox transformation and estimation using mixture of normals, a single-
node tree yielded a tiny median quantile error of 1.4519 × 10−3, and a maximum
quantile error of 0.26535. 382 tuples were modeled with quantile errors below 0.5%
The worst case of PTRATIO still has a median quantile error of 0.11952 and a maximum
quantile error of 0.66749; in the unscaled case, these scores were 0.14510 and 0.79040,
respectively. The score for RAD has improved significantly; this is corroborated by
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a median quantile error of 1.9802× 10−3 (down from 8.1312× 10−2 in the unscaled
case) and a maximum quantile error of 0.31485 (down from 0.70144).

For the curious, the model for ZN simply encodes

ẐN← 0.68972− 0.24887× ˆCRIM + 0.14531× R̂M− 3.5944× 10−2 × B̂

where the output ZN has been scaled via a 1
4
-power Box-Cox transformation and

a six-component mixture of normals.

Attribute Bit cost
∑

Q error2 Nodes

ZN N/A 2.6516 1
INDUS N/A 13.282 1
NOX N/A 8.8122 1
DIS N/A 12.494 1
RAD 3,049 3.6755 1
TAX N/A 14.443 3
PTRATIO N/A 26.575 1
LSTAT N/A 13.038 1
MEDV N/A 16.778 1

Table 5.10: Errors for the housing set, with nonlinear scaling. Attributes modeled
in both cases have lower sum-of-squared quantile errors, without a corresponding
gain in model complexity except for an additional two nodes for TAX.

Distribution of errors The one unusual unusual quantile-error percentage-point
function is for RAD, the “index of accessibility to radial highways”. For this attribute,
the only values in the data set are the integers 1 through 8, and 24. Hence, Figure
5.28 shows a step function.

5.3.7 Liver

The liver disorders set may also be found at the UCI Repository [Murphy and
Aha, 1994], which credits it to BUPA Medical Research Ltd. This data set has 345
7-dimensional tuples. Five attributes – mcv, the mean corpuscular volume; alkphos,
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Figure 5.28: Percentage-point curves for quantile error in the unscaled and scaled
cases for RAD from housing. RAD has few discrete values, hence the step function.
The curves show that the scaled model has much lower quantile errors than the
unscaled model.
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the alkaline phosphotase concentration; sgpt, same for alamine aminotransferase;
sgot, aspartate aminotransferase; and gammagt, gamma-glutamyl transpeptidase –
contain continuous values. The sixth attribute, drinks, was originally a numerical
attribute with steps of 0.5, so it was multiplied by two and treated as an integer.
The seventh attribute, selector, is an attribute with only two possible values – 1
or 2 – to be predicted and was coded as an integer output, since the system does not
currently support unordered (nominal) outputs. For selector, 145 tuples registered
1 and the remaining 200 had a value of 2.

Without nonlinear axis scaling Absent scaling, the system chose to retain
alkphos and gammagt. Table 5.11 presents basic results for the remaining five at-
tributes. Quantile results for selector would be misleadingly low, as the quantile
metric was designed for many values rather than two different values with adjacent
quantile ranges; however, classification accuracy is summarized in Appendix F. With
regards to the other attributes, the next best performance appears to be on drinks,
with median and maximum quantile errors of 0.15262 and 0.60320, respectively; for
the worst of mcv, these are 0.22149 and 0.69551.

Attribute Bit cost
∑

Q error2

mcv N/A 24.462
sgpt N/A 21.109
sgot N/A 21.112
drinks 2,870 13.409
selector 1,126 N/A

Table 5.11: Errors for the liver set, without nonlinear scaling. All trees were single-
node, as would be expected from the set size and the tree pruning algorithm.

With nonlinear axis scaling With nonlinear scaling, the selector chooses three
inputs. These are alkphos, with a mixture of normals; sgpt, scaled with a single
lognormal; and gammagt, which received a quarter-power Box-Cox transformation
and scaling via the cumulative distribution function of a gamma distribution.

Table 5.12 presents the main results for the remaining four attributes. Classifi-
cation results again are listed in Appendix F. The sum-of-squared quantile scores
for the other attributes also suggest not much of a change. For drinks, the median
quantile error has dropped slightly to 0.13517 from 0.15262, and the maximum has
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actually increased to 0.67449, although only one tuple has a quantile error of above
0.5596. The median and maximum quantile errors for mcv are still poor at 0.22095
and 0.62213 as well.

Attribute Bit cost
∑

Q error2

mcv N/A 23.564
sgot N/A 15.675
drinks 2975 12.920
selector 1,156 N/A

Table 5.12: Errors for the liver set, with nonlinear scaling. All trees were single-
node. Comparing with 5.11, the models for mcv and drinks have not significantly
different results but the scaling has allowed a more accurate sgot model.

Distribution of errors On the liver set, then, we see only marginal improvement
from scaling. This is borne out by the percentage-point graphs for the quantile-error
statistic, such as Figure 5.29. The curves shown there are unusual in that while the
scaled model does better for most cases, the unscaled model actually delivers better
results in the percentiles range of 0.1 to 0.2.

5.3.8 Page-blocks

The page-blocks data is another data set from the UCI Repository [Murphy and
Aha, 1994], and is attributed there to a Donato Malerba at the University of Bari
[Esposito et al., 1994].

This set has 5,473 tuples, each of which corresponds to a block from a segmented
document. In the original version, each tuple has values for eleven attributes includ-
ing a five-valued class attribute. In lieu of explicitly adding classification capability to
the regression tree system, I expanded this class attribute into five integer attributes,
each of which was valued at 0 or 1 depending on whether the tuple had been as-
signed to that class. This seemed appropriate as the classes have no ordering among
them and therefore directly using regression in a single class attribute would make
no sense. Thus, this version has fifteen attributes including five integer outputs. Six
of the inputs are integers; these include the height, length and area of the block
as well as three statistics – blackpix, the number of black pixels; blackand, the
number of black pixels after smoothing; and wb trans, the number of white-black
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Figure 5.29: Percentage-point curves for quantile error in the unscaled and scaled
cases for SGOT in the liver set. The curves diverge somewhat, reflecting the moderate
improvements allowed by scaling.

transitions. The remaining inputs – eccen, the eccentricity of the block; p black,
the percentage of black pixels; p and, the percentage of black pixels after smoothing;
and mean tr, the mean number of white-black transitions – are all continuous.

Without nonlinear axis scaling Absent nonlinear scaling, only two attributes
were retained – p black, the percentage of black pixels with that block; and p and,
the percentage of black pixels after a application of a particular smoothing algorithm.
Table 5.13 describes the general results for the modeled attributes in this unscaled
case, except for classification results which may be found in Appendix F.

Unusually large errors Regarding the other attributes, logs show that even in
the best case of wb trans, the median and maximum quantile errors were rather
high – 0.17379 and 1.2673, respectively. For the similarly scoring height model,
these scores were 6.4327× 10−2 and 0.91210, respectively; there were more quantile
errors close to the maximum in the latter case, while in the former case all but two
of the quantile errors were at 0.82695 or below. The next best case of length ranges
has median and maximum quantile errors of 0.20395 and 0.84192. With blackpix,
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the model with the worst sum-of-squared quantile error, the median quantile error is
0.21217 and the top 142 quantile errors range from 1 to 9.2147, although all but the
top are at 7.4292 or below. As with the housing data, while these tuples may be of
interest due to their extremely bad modeling the utter lack of annotation makes it
fruitless to speculate on possible explanations. blackand also generated fifty quantile
errors ranging from 1 to 3.695, and had an even higher median error of 0.21354. The
highest median quantile error of 0.22582 came from the area model.

Attribute Bit cost
∑

Q error2 Nodes

height 31,949 4.7900× 102 3
length 77,035 5.2081× 102 1
area 116,170 6.0553× 102 3
eccen N/A 7.1550× 102 19
mean tr N/A 6.1628× 102 3
blackpix 98,668 2.0657× 103 11
blackand 111,803 8.9800× 102 11
wb trans 79,427 4.6687× 102 7
class1 7,186 N/A 1
class2 6,829 N/A 1
class3 5,926 N/A 1
class4 6,106 N/A 1
class5 6,458 N/A 3

Table 5.13: Errors for the page-blocks set, without nonlinear scaling. The five-
class class attribute from the original set has been broken down into five binary
attributes.

With nonlinear axis scaling In the scaled case, the attribute selector retained
p and, with a severely asymmetric truncated normal; mean tr, with a 1

2
-power Box-

Cox transformation and a mixture of normals; and blackand, with a 1
3
-power Box-

Cox transformation and another asymmetric truncated normal.

Table 5.14 summarizes the non-classification results after the application of non-
linear scaling; classification results are relegated to Appendix F.

The median quantile errors have dropped dramatically; area is now extremely
precise at 1.0965 × 10−3, blackpix and wb trans have median quantile errors of
approximately 1.8458×10−2 and 1.7361×10−2, length is not much worse at 3.3443×
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10−2, and even the worst median quantile error found via height is 0.12555.

Attribute Bit cost
∑

Q error2 Nodes

height 29, 916 3.9885× 102 1
length 52, 420 53.841 5
area 43, 031 1.2202 37
eccen N/A 2.1420× 102 5
p black N/A 1.3170× 102 7
blackpix 57,171 9.0255 3
wb trans 47,328 10.824 11
class1 7,521 N/A 3
class2 7,248 N/A 3
class3 6,671 N/A 5
class4 6,525 N/A 3
class5 6,330 N/A 1

Table 5.14: Errors for the page-blocks set, with nonlinear scaling. Sum-of-squared
quantile attributes have improved, in some cases extremely – for instance, compare
area, blackpix, length and wb trans here and in Table 5.13.

Anomaly: area There’s an anomaly in the page-blocks set. With most of the
data sets and their attributes, the regression trees for the same attribute – when an
attribute was not chosen for use as an input regardless of the use of the nonlinear
scaling module – the trees do not differ greatly in size. The tree for the scaled version
of area has far more nodes than the tree for the unscaled version. The extra nodes
do appear to benefit modeling, however; accuracy on area has gone from useless to
extremely precise.

Distribution of errors Among the notable percentage-point curves for the quan-
tile error are those for area and eccen, as seen in Figures 5.30 and 5.31. Figure
5.30 shows a dramatic improvement in the modeling of area. In the unscaled case,
only p and and p black are retained as inputs; one cannot derive area from these
regardless of the model class. Even if all attributes but area were selected as in-
puts, in which case sufficient information would be available as area = blackand

p and ,

the piecewise-linear nature of the model class combined with a lack of scaling might
have led to an even larger model than was necessary in the scaled case. Figure 5.31
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shows that eccen is one of those attributes for which neither the scaled nor unscaled
model provides completely satisfactory performance; still, at least the scaled model
dominates here.
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Figure 5.30: Percentage-point curves for quantile error in the unscaled and scaled
cases for area in the page-blocks set. The curve for the scaled model, nearly
coincident with the percentile axis for most of its length, shows extreme accuracy
whereas the curve for the unscaled model shows the opposite.

Bit costs This is one of the few sets used which has quite a few integer attributes,
some of which serve as outputs in both the scaled and unscaled cases. Thus, we
have multiple bit cost scores which can be compared, and which by definition take
into account both the storage costs required for the models themselves and the bits
required for a particular error correction scheme that permits perfect reconstruction
of the target attribute. It should be noted that the differing metrics do involve
different trees, as the MDL-inspired bit cost metric does not take into account skew.
Even so, it seems that nonlinear scaling can affect it positively.
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Figure 5.31: Percentage-point curves for quantile error in the unscaled and scaled
cases for eccen in the page-blocks set. The lower curve for the scaled model reflects
its improved accuracy.

5.3.9 Wind

The wind data set contains average wind speeds measured at twelve meteorological
stations in Ireland [Haslett and Raftery, 1989]. Specifically, the data set contains
6,574 tuples, each of which has fifteen attributes. The first three attributes encode
the year, month and day in integer format. I set the metadata to ignore the year and
day attributes, but to leave the month attribute as a mandatory input to account for
seasonal factors. The remaining twelve attributes are continuous and encode average
wind speeds at the stations denoted RPT, VAL, ROS, KIL, SHA, BIR, DUB, CLA, MUL,
CLO, BEL, and MAL.

Without nonlinear axis scaling Of these, the system keeps ROS and CLA, as well
as the mandatory input of month.

Table 5.15 provides the main quantitative results for the modeled attributes. No
bit costs are provided as all of the modeled attributes are continuous and therefore the
usual prefix-free codes do not apply. Median quantile errors range from 7.7777×10−2

for BIR to 0.11698 for MAL.
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Attribute
∑

Q error2 Nodes

RPT 1.7934× 102 1
VAL 1.9154× 102 1
KIL 1.3538× 102 1
SHA 1.3409× 102 1
BIR 1.1226× 102 1
DUB 1.9003× 102 1
MUL 1.3232× 102 1
CLO 1.2511× 102 1
BEL 1.3918× 102 1
MAL 2.2865× 102 5

Table 5.15: Errors for the wind set, without nonlinear scaling. All modeled attributes
were continuous, so no bit costs are listed. The single-node trees may reflect a difficult
set, as there are more than enough tuples for the pruning algorithm to allow splits.

Possible outliers Examining the error logs suggest that a couple of tuples may be
difficult for the BIR model; the quantile errors on November 20, 1964 and November 1,
1968 for BIR are both approximately 0.6276, while the remainder of the top 15 errors
for that model range from 0.45069 to 0.53956. For VAL, the top three quantile errors
of magnitudes ranging from 0.83021 to 0.91693 fall on March 18, 1969; December
11, 1963; and February 6, 1966; the next highest quantile error for VAL is 0.71662.

With nonlinear axis scaling With scaling enabled, the selector chooses four
inputs – month, ROS, SHA and BEL.

Table 5.16 lists the main results. Some of the models have significantly lower
sum-of-squared quantile errors, notably RPT, VAL, KIL; while others have smaller
improvements. Only one attributed modeled in both cases yielded a worse total
score, CLO, and the degradation here was insignificant. Median quantile errors ranged
from a low of 6.2893×10−2 for BIR and a similar 6.5026×10−2 for CLA, to two similar
high medians of 0.11203 and 0.11275 for DUB and MAL, respectively. The remaining
median quantile errors range from 7.3948 × 10−2 for KIL to a cluster of the four
remaining models at from 8.3733× 10−2 to 8.8094× 10−2. These median errors are
generally close to those in the unscaled case.
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Attribute
∑

Q error2 Nodes

RPT 1.1907× 102 1
VAL 1.2791× 102 3
KIL 94.551 1
BIR 79.689 3
DUB 1.7620× 102 1
CLA 77.873 1
MUL 1.2202× 102 1
CLO 1.3054× 102 1
MAL 1.9771× 102 5

Table 5.16: Errors for the wind set, with nonlinear scaling. All modeled attributes
were continuous, so no bit costs are listed. Model complexity has increased in two
cases, VAL and BIR; but the sum-of-squared quantile errors drop for not only those
but also RPT, KIL, DUB and MAL.

Possible outliers Examining the error logs in the scaled case, the occasional tuple
may still catch the eye. For CLO, the top quantile error of 0.68449 on November 7,
1967 stands out, as the next-highest error is a bit lower at 0.55752. The MAL model
also has difficulty on a particular tuple – the error for this model reaches 0.81374
on May 3, 1969, while the second-largest quantile error is 0.71975. The separation
between worst and ordinary is most pronounced for the VAL model; its errors exceed
0.83159 on December 11, 1963 and January 10, 1966, while the next-worst error for
VAL is 0.56880. It may be of interest that December 11, 1963 is a poor case for VAL in
the unscaled case, as well. That particular day has a fairly low average wind speed
for VAL, although it’s not the lowest; it was, however, significantly lower than that of
the previous day while average wind speeds for nine of the other stations increased.

Distribution of errors For each of the attributes modeled in both cases, nonlinear
scaling has made only modest changes to the sum-of-squared quantile error. This
is borne out by the percentage-point curves. For instance, the percentage-point
comparison graphs for this set range from the closeness of the models for CLO as
shown in Figure 5.32, to the slight difference for RPT as per Figure 5.33.
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Figure 5.32: Percentage-point curves for quantile error in the unscaled and scaled
cases for the CLO attribute of the wind set. Coincident curves reflect models of nearly
identical performance.

5.4 How long did it take?

This is really two questions: how long did it take for each set in total, and how well
does the system scale with the cardinality of a data set.

5.4.1 Processing entire sets

Tables 5.17 and 5.18 provide the timing results for the whole data sets. Timing
results consist of CPU time results collected via Perl’s Benchmark package for each
individual stage as well as total times. All times should be accurate to the stated
figures, and were collected on the same, previously described test platform. For
reference, Tables 5.19 and 5.20 specify for each listed data set the number of tuples,
total used attributes, and the number of selected or labeled inputs in the unscaled
and scaled cases respectively. The latter table also specifies the number of possible
outputs; that is, the number of scaled versions of attributes for which no scaled
version has been selected as an input.

Timings for the scaling stage, where included, include time spent reading the
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Figure 5.33: Percentage-point curves for quantile error in the unscaled and scaled
cases for the RPT attribute of the wind set. The improvements in RPT appear to
come mostly for errors worse than the median; the lower curve, corresponding to the
scaled model, is coincident with the upper curve elsewhere.
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data; applying Box-Cos transformations; estimating parameters for the assorted dis-
tributions; applying goodness-of-fit tests; and writing out scaled data and metadata.
The selection timings include time spent reading the data; iterating through as-
sorted candidate combinations of attributes and computing their fractal dimensions;
and writing out the selected data and metadata. Finally, modeling results include
time spent reading the data; splitting attributes into segments for the purposes of
cross-validation; building, pruning and evaluating trees on different subsections of
the data; evaluating selected trees on the full data; and recording the trees and
their results. For the results below, the class attributes have re-encoded as was de-
scribed elsewhere, with the exception of abalone; while the five-class attribute of
page-blocks has been expanded to five outputs, and the liver set has had drinks

converted to counting half-drinks rather than drinks, the rings attribute of abalone
retains its original and reasonable 27-value formulation. Input-output determination
was also mostly left to the selector, other than an input label for month in wind;
and output labels for rings in abalone, wbe, wbcw, wbhw in building; and the class
attributes of abalone, liver, and page-blocks.

5.4.2 Difficulty predicting times

Among the more interesting conclusions, it should be noted that the total time for a
set varies quite widely for seemingly similar dimensions. Note that the total time for
page-blocks greatly exceeds that for abalone and building. It’s also noteworthy
that most of the time in both the scaled and unscaled cases the modeling phase
dominates, and that the scaling as implemented greatly increases the time spent
building or evaluating models. At least part of this must stem from the capability of
the nonlinear scaling model to produce multiple versions of each attribute. Since the
system builds models for every version of every output attribute, the nonlinear scaling
phase as implemented substantially increases the amount of trees that get built.
Scaling also appears to encourage a slight increase in the number of attributes used as
inputs, which means that each tree involves more work as every computation involves
more dimensions. There is also the additional overhead of applying or inverting
scaling as need be. The overall effect appears to be, very roughly, a 10-fold increase
in computation time. This could presumably be reduced by using stricter goodness-
of-fit tests to lessen the currently drastic impact on dimensionality, or even placing
arbitrary limits on the number of versions permitted per attribute.

One rough rule of thumb appears to be for any given data set, the use of nonlinear
axis scaling increases the absolute amount of time spent modeling in proportion to
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the increase of the product between the number of inputs and outputs. This is,
however, a very rough guideline, and is not useful for prediction across sets.

Data Selection Modeling Total

abalone 10.76 5,592.97 5,603.73
baseball 5.79 593.71 599.50
building 6.52 5,543.15 5,549.67

CIA World Factbook 0.07 16.98 17.05
DJ30 99.36 7,773.36 7,787.72

housing 3.10 763.67 766.77
liver 0.91 201.70 202.61

page blocks 39.79 10,942.47 10,982.26
wind 146.87 19,684.43 19,831.30

Table 5.17: Timing results in the unscaled case. All times are CPU times expressed
in seconds. The modeling phase is obviously the most expensive portion, as imple-
mented.

5.4.3 Scalability

If one fixes the data set, it also would be useful to know how well the system scales.
This was examined by timing executions of different samples the page-blocks set.

For each sample fraction from 10% to 80% at 10% intervals, five independent
samples were drawn. These samples were then processed with and without nonlinear
axis scaling. Figures 5.34 and 5.35 shows the results for each individual selection,
scaling or modeling phase as well as total times with and without nonlinear scaling.
In both cases, CPU time required scales linearly with sample size and is dominated
by the modeling phase.

This linearity does suggest one approach for determining the feasibility of apply-
ing the system to any particular data – perform scaling and selection on the full data,
and then build models on samples of a few sizes. If the trend is just as linear as for
page-blocks, then it should provide a good estimate of the amount of time required
for building a model on the full data; in addition, the improvements in accuracy from
larger samples, or lack thereof, may be informative as to the value of doing so.

Figures 5.36 and 5.37 show similar tests while sampling over the DJ30 set. The
results without scaling follow the same pattern of minuscule selection time and mod-
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Data Scaling Selection Modeling Total

abalone 529.13 778.04 37,450.88 38,758.05
baseball 359.31 1,365.47 8,142.70 9,867.48
building 625.03 158.60 39,008.61 39,792.24

CIA World Factbook 26.62 1.61 209.87 238.10
DJ30 1,891.80 7,429.93 78,490.96 89,812.69

housing 365.56 264.30 9,746.95 10,376.81
liver 100.54 112.26 1,958.47 2,171.27

page blocks 1,890.11 3,022.71 112,886.66 117,799.48
wind 1,223.67 4,039.61 246,994.80 252,258.08

Table 5.18: Timing results in the scaled case. All times are CPU times expressed
in seconds. Again, the modeling phase is extremely expensive compared to the rest.
The increased costs versus Table 5.17 likely reflect the greater dimensions resulting
from multiple versions of scaled attributes.

Data # Tuples # Attr # Input

abalone 4,177 9 3
baseball 365 17 2
building 4,208 8 3

CIA World Factbook 235 2 1
DJ30 2,529 30 1

housing 506 14 3
liver 345 7 2

page blocks 5,473 11 2
wind 6,574 15 3

Table 5.19: Size of each unscaled data set. Dimensions given relate strictly to the
original data less any attributes set to ’ignore’. For unscaled data, the number of
outputs is the number of non-ignored attributes less the number of inputs.
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Data Tuples #Attr #Scaled # In # Out

abalone 4,177 9 66 3 45
baseball 365 17 253 2 209
building 4,208 8 69 3 42
CIA WF 235 2 27 1 13

DJ30 2,529 30 235 2 208
housing 506 14 122 5 95
liver 345 7 101 3 44

page blocks 5,473 11 125 3 92
wind 6,574 15 173 4 117

Table 5.20: Size of each scaled data set. Dimensions given relate strictly to the
original data less any attributes set to ’ignore’, such as the year attribute of the wind
data. The number of possible outputs is the total number of versions of attributes
for which no scaled version was an input; for each such version, trees must be built
and tested.
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Figure 5.34: Timing runs at different sampling frequencies over the page-blocks set,
without nonlinear axis scaling. Error bars indicate minimum and maximum timings.
For each sampling size, the bars reflect selection time – basically nothing compared
to modeling time – modeling time, and total time. The total time appears to scale
linearly with sample size.
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Figure 5.35: Timing runs at different sampling frequencies over the page-blocks set,
with nonlinear axis scaling. Error bars indicate minimum and maximum timings.
Again, individual bars reflect scaling, selection, modeling and total time. The total
time shows a linear correlation with sampling size.
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Figure 5.36: Timing runs at different sampling frequencies over the DJ30 set, without
nonlinear axis scaling. Error bars indicate minimum and maximum timings. For
each sampling size, the bars reflect selection time – basically nothing compared to
modeling time – modeling time, and total time. The total time appears to scale
linearly with sample size.
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Figure 5.37: Timing runs at different sampling frequencies over the DJ30 set, with
nonlinear axis scaling. Error bars indicate minimum and maximum timings. Again,
individual bars reflect scaling, selection, modeling and total time. The total time
shows a linear correlation with sampling size.
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eling time that scales linearly with the sample size; the results with nonlinear axis
scaling are more unstable, but this appears almost entirely due to variance with the
selection time. This may be related to the large number of attributes compared to
the relatively small amount of data involved. As the sampling size grows, the model-
ing time continues to grows proportionally; were the set larger, we would expect the
modeling time to eventually dominate total time much as it does with page-blocks.
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Chapter 6

Discussion

Recall that the major concerns of the experiments were the following.

1. What is the impact of nonlinear scaling on the attribute selection process?

2. How good are the resulting models?

3. What else can we find out?

The first two points encompass the major point of this thesis, which was to
quantitatively evaluate the impact of a particular automated nonlinear scaling system
and its heuristics on the overall behavior of a modeling system. Attribute selection
came into play in order to enable dealing with cases in which attributes have not
already been labeled as inputs or outputs. The third point deals with the possibility
of other information noted either from or about the system.

Results described in the previous chapter lead this investigator to a few basic con-
clusions. First, nonlinear scaling generally led the attribute selector to select slightly
more attributes – although not necessarily an exact superset, nor that many more.
Two, model performance as measured by the quantile error often improved signifi-
cantly, while model complexity remained fairly stable in most cases. Tests with SBC

and INTC in the DJ30 set suggest that nonlinear scaling can impact model accuracy
even when one constrains the unscaled input selection to use the unscaled forms of
the inputs selected from the unscaled case. Third, there were some interesting trends
such as the dominance of the mixture-of-normals distribution and the odd anomaly.
The rest of the chapter goes into greater detail regarding these conclusions.
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6.1 Impact on attribute selection

For each continuous or integer attribute in the original set, the system produces
another version per enabled Box-Cox transformation. Estimation of each probabil-
ity distribution followed by Anderson-Darling and χ2 goodness-of-fit tests for the
purposes of filtering poor fits results in the computation of cumulative distribution
functions, each of which acts as a scaling function for that particular transformed
version. In theory, cumulative distribution functions that result from reasonable dis-
tribution fits should reduce skew. These transformed, scaled forms plus the original
version of each attribute define the list of attributes which the attribute selector may
choose.

Recall that the attribute selector operates on the basis of the fractal dimension.
This metric serves as a method for assessing the intrinsic dimensionality of a multidi-
mensional self-similar point-set. While the requirement of self-similarity may impact
applicability, it does allow for efficient computation as well as the ability to handle
sets that may confound more conventional methods such as those that rely solely on
linear components.

The attribute selector greedily selects attributes to maximize fractal dimensional-
ity. By attempting to increase the fractal or intrinsic dimensionality, or equivalently
the ideal number of parameters necessary for defining the relevant manifolds, the
system should prefer uniformity within each attribute, and independence from at-
tributes it has previously selected. If the scaling system described earlier in this
document does actually reduce skew and increase uniformity, we may then expect
that attribute selector chooses more attributes. In the experiments conducted, with
nonlinear scaling enabled the selector module always chose at least as many attributes
as without nonlinear scaling. It did not, however, necessarily choose a superset, nor
did it ever choose many more attributes than in the unscaled case. Furthermore,
should any improvements in model accuracy be credited to the selection of more
inputs, that latter selection can itself be ascribed to the use of nonlinear scaling.

It should also be noted that the selector was always provided with the original
version of each attribute in addition to any version whose nonlinear scaling passed
goodness-of-fit tests. That only three of the 26 selected inputs from the scaled sets
had just the identity transformation strongly suggests that the data was not often
uniformly distributed among its axes.
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6.2 Impact on the resulting models

While the scaling and selection may itself provide some useful information, the con-
struction and evaluation of regression trees allows the prospective user to evaluate
the overall system through the error metric of his choice. In addition, the models
themselves may be useful in their own right or the exceptions to them could be of
interest; however, the utility of a model or its exceptions does not readily lend itself
towards quantitative assessment. Instead, material such as the discovery of explain-
able anomalies consists primarily of anecdotal evidence and is relegated to the next
section of this chapter.

That noted, regarding the performance of the modeling system I have presented
three basic types of statistics where applicable. These concern the size of the re-
gression trees, the errors produced by the trees when evaluated against the data
sets, and classification accuracy where appropriate. Table 6.1 aggregates high-level
results for the first two areas, counting attributes modeled in both the unscaled and
scaled cases according to whether the models were more accurate according to the
sum-of-squared quantile error, and whether they were more efficient in terms of the
number of nodes in the regression trees. The 41 models which either have supe-
rior accuracy with the same or fewer nodes, or which have fewer nodes at the same
or better accuracy are improvements, modulo the computational complexity of the
scaling itself; the five models which are either of inferior accuracy or worse efficiency
and without improvements in the other aspect are clearly worse. For four models,
neither efficiency nor accuracy has changed much. The 25 remaining models with
either better accuracy and worse efficiency or vice-versa would need to be considered
more carefully in order to fairly assess their merit.

Classification, while never a main focus of this thesis, is discussed in Appendix
F.

6.2.1 Model size

The first class consists of the number of nodes in the selected binary regression tree,
from which one may deduce the number of test nodes and leaf nodes. The storage
cost of a regression tree as implemented is currently dominated by the leaf node cost.
Each test node stores a single attribute index indicating the test attribute and either
a single value (for a numerical test; almost all tests were thus) or a set of symbolic
values (for a membership test). Every leaf node stores a linear equation containing
an additive constant and one coefficient per input attribute. The cost of the tree is
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Better
∑

Q2 Same
∑

Q2 Worse
∑

Q2

Fewer nodes total 11 total 0 total 2
abalone 1 abalone 1
DJ30 6 building 1
housing 1
page-blocks 3

Same # nodes total 30 total 4 total 4
baseball 11 liver 2 abalone 1
CIA-WF 1 wind 2 baseball 2
DJ30 7 building 1
housing 6
liver 1
wind 4

More nodes total 23 total 1 total 0
building 2 abalone 1
DJ30 15
housing 1
page-blocks 3
wind 2

Table 6.1: Tallies for all attributes modeled in both the unscaled and scaled cases.
The columns indicate whether or not the version with nonlinear scaling has better,
approximately the same (5% difference), or worse results; the rows, whether the
model after scaling has fewer, the same, or more nodes than in the unscaled case.
The results are shown in both totals and per data set. In most of the cases, scaling
helps; this is clearer when one considers that in the case of “more accurate but more
complex” models, generally the models are much, much more accurate for not much
more complexity.
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conditionally independent of the use of nonlinear scaling given the tree structure, the
number of attributes selected, and the number of attributes available for selection.

In practice, the majority of trees selected had 11 nodes or fewer, which means 6
or fewer linear equations and 5 or fewer test nodes. Storage costs would therefore
be quite small as befits small data sets, on which a larger tree would risk overfitting.
Also of note is that scaling as applied rarely had much of an effect on the number
of nodes. Any benefit or penalty in modeling accuracy, therefore, could not broadly
be attributed to a substantial change in the model complexity other than any addi-
tional metadata defining the actual scaling. There were exceptions, such as the area
attribute in the page-blocks set. That attribute received an inaccurate 3-node tree
without nonlinear scaling, and a very precise 23-node tree with.

More directly related to tree size than the hypothetical use of nonlinear scaling
would be the regression tree building algorithm; in particular, the splitting and
pruning criteria. The system as implemented uses a particular set of rules intended to
have fairly compact trees; other users may have different opinions on an appropriate
balancing point. These decisions, however, were held constant regardless of the use
of scaling or the choice of data set and while they introduce the possibility of differing
results with other systems, within the scope of these tests the use of nonlinear scaling
or the lack thereof is the single major experimental variable.

6.2.2 Errors

Without explicitly presenting the trees, data, source code and per-tuple errors, I
have endeavored to present an acceptable description and analysis of how well the
models performed in their most fundamental task of regression.

Where attributes have contained only integer values, a cost model has been ap-
plied that considers the cost of both the model – using rather basic accounting such
as assuming IEEE 64-bit double-precision floating-point numbers for some fields and
ordinary prefix-free codes for others – and any additional storage necessary for iden-
tifying both the tuple index and the magnitude of any errors. This methodology
comes from the semantic compression point of view, and allows one to balance stor-
age cost and model accuracy in accordance with a well-known practice. Few sets
used had many integer attributes, however; the two exceptions are baseball and
page-blocks. Noting the limited basis for comparison, it still seems fair to suggest
that nonlinear scaling has generally reduced the bit costs, particularly so on the
page-blocks set on attributes such as area.
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With continuous attributes, the task of fairly measuring model performance be-
comes considerably more complicated. I have presented a quantile-based metric
designed to look solely at model accuracy from the point of view of a disambigua-
tion task, and which therefore varies expected accuracy with the local data density.
Greater precision is necessary in ranges in which more tuples fall, and less for sparser
regions.

The previous chapter presents the sum-of-squared quantile errors. Results on the
real data have also included median and maximum magnitudes of quantile errors,
and the occasional note as to the possible cause of apparent anomalies. In general,
the reported quantile errors are better with nonlinear scaling than without, and any
increase in the tree size has usually been fairly limited. The occasional exception
such as the length attribute in the page-blocks set shows itself.

6.3 Other findings

Here, we discuss other findings both from and about the system. The former has
already been hinted at in terms of investigation about anomalies and the use of
different metrics. For instance, the models revealed multiple unusual specimens in
the abalone set. Other anomalies included a page-blocks tuple pertaining to an
unusually large block with very few white-black transitions, and possibly explicable
errors in the DJ30 set. For instance, the DJ30 set provides a case where anomalies in
an input attribute might be suspected due to sudden jumps in errors across a wide
variety of models. Likewise, for some of its models there exist substantial blocks of
time which result much worse error compared to the usual, and for which the nature
of the data lets us speculate on a cause. The World Factbook area and population
data also provides some examples; while with scaling, there exists at least a broad
but simple trend between area and population, the model and quantile error allows
one to highlight territories and nations that break the trend – such as Greenland,
which has a remarkably low population density if you separate it from Denmark.

Evidence from the baseball and page-blocks sets where integer attributes are
common suggests that while there is no clear method that relates quantile errors to
a more traditional bit cost system, that there does seem to be relationship as there
should be. When scaling aids modeling generation and selection, it seemed to do so
for both a traditional integer-only bit-cost scheme and a more general quantile-based
error metric.

About the system itself, running numerous experiments has shown a number of
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interesting facts. For instance, the most commonly chosen probability distribution
was a mixture of normals; through its use of multiple components it was significantly
more flexible than anything else I included other than the extremely difficult-to-
estimate mixture of independently doubly-truncated normals. Truncated normals,
single normals, uniform distributions, and the gamma distribution also were selected,
but less frequently.

The fractal dimension selector may have been set to be too strict; more attributes
would likely have reduced quantile errors further, although in some cases such as RAD
in the housing set and blackpix of page-blocks set the modeling was already
extremely accurate.

A separate issue from correctness is performance. Timing tests suggest that in
the current implementation, the modeling phase requires by far the most CPU time
of any segment in the system, and that nonlinear scaling greatly increased the time
spent there. Any effort spent on improving speed would be best directed at this
phase. The timing results also suggest that merely knowing the dimensions of the
original data set would not suffice to accurately estimate the required time; note,
for instance, the drastic difference in required time for the similarly sized abalone,
page-blocks and wind sets. In addition, the CPU time required appears to scale
linearly with the number of tuples in the data set, at least on samples of page-blocks,
in both the scaled and unscaled cases.
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Chapter 7

Conclusions

This thesis involved the design, implementation, and examination of a system for
the automatic discovery of patterns – functions relating attributes to each other
– and their outliers. This encompasses the nonlinear scaling of axes; the labeling
of attributes as either inputs or outputs; and the modeling of the mathematical
relationships between inputs and outputs, all in an automated fashion with no per-
set tuning. Chapter 5 describes the experiments used to analyze the performance of
this system in terms of both the accuracy and complexity of the resulting models,
as well as the scalability of the system, and Chapter 6 summarizes the results.

As Table 6.1 makes clear, the application of nonlinear axis scaling has indeed
helped. The use of scaling enabled more accurate models with the same or less
number of nodes in the regression tree 41 out of 75 times; another 23 times, the
use of scaling resulted in a more accurate but larger regression tree. In two cases,
scaling resulted in the opposite trade-off of a less accurate but smaller model. Four
attributes resulted in ties, with trees of the same size and essentially unchanged
accuracy. Only in five cases did the system do worse in either accuracy or complexity
with no improvement in the other.

The generation of more accurate models also revealed outliers – the exceptions
to the otherwise accurate rules. Recall, for instance, Greenland in the CIA World

Factbook data. It’s very sparsely populated, and thus is unusual against the usual
relationship between area and population – as is obvious with nonlinear axis scaling.
Without the scaling, the model for area performs much worse and the worst errors
appear to be concentrated only in the tiniest regions, regardless of whether their
population density is unusual or not. Likewise, axis scaling certainly helped the
models in DJ30, which in turn revealed a variety of periods of anomalous behavior in
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individual equities; anomalous behavior that, armed with dates and a search engine,
could frequently be linked to events that might plausibly influence the prices in
question and cause an individual stock to break away from the usual patterns. With
inaccurate models, too many tuples look poor to justify searching for exceptions; but
nonlinear axis scaling, even when automated without domain knowledge or data-
specific tuning, can improve those models to the point that interesting exceptions
can emerge.

In short, nonlinear axis scaling can help – a lot. It’s not guaranteed to do so, and
it adds significantly to computational cost, but it’s a powerful tool and one worth
serious consideration in addition to simpler methods such as affine transformations
solely for normalization.
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Appendix A

Doubly-truncated normals

As described in the main body, there exists a long-known estimator for the normal
with zero, one or two independent truncation points using the number, extrema,
mean, second moment, and standard deviation of the observations [Cohen Jr., 1950].
It requires the simultaneous solution of two nonlinear equations, both of which involve
integration, and all of which requires great care when judging convergence or lack
thereof.

Perhaps more of a result of implementation-specific decisions rather than any
flaw in the published algorithm, this method did not seem to perform especially well
relative to the computational cost. Sample results are included below.

Thus, this experimenter designed and implemented an estimator based on a
Levenberg-Marquardt numerical search. This estimator first extracts a number of
quantiles – either 500 or the number of observations, whichever is less – and the
corresponding percentiles. This numerical search operates over the parameter space
defined by the unknown mean and standard deviation of the untruncated normal,
while trying to minimize the sum of squared error between the observed quantiles and
those predicted. The remaining parameters, the two truncation points, are solved for
under the assumption that the observed extrema are each above or below 1

n
of the

data where n is the number of observations. Truncation points which would truncate
0.1% or less of the original untruncated distribution are considered nonexistent; that
is, the distribution is not truncated in that direction.

To bootstrap estimation, the search begins with the mean and standard deviation
of the quantiles. It runs until it reaches a specified number of iterations, it achieves
a particular error tolerance, or the sum-of-squared error fails to improve at least a
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certain amount, whichever comes first; it then will randomly select either its current
or its best-known state, possibly alter either or both parameters by up to 10%; and
resume searching, for a total of ten executions. The estimator then uses the best-
known parameter set. The randomness, while depending on arbitrary parameters,
should in theory reduce the odds of returning a poor result due to converging on a
highly suboptimal local minimum.

For comparison, I generated a set of 5000 points drawn independently from the
60% to 90% percentiles of a standard unit normal. These truncation points are
approximately 0.2526 and 1.2821 original standard deviations above the original
mean.
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Figure A.1: This figure shows the probability distribution functions (PDFs) for both
test and estimated distributions. In this case, the test distribution is a normal
truncated at the 60% and 90% percentiles. Here, the Cohen estimator gives very
similar results to that of the standard method-of-moments for an untruncated normal,
while the Levenberg-Marquardt estimated PDF is essentially coincident with the test
distribution.

Figure A.1 shows the estimation results. An ordinary method-of-moments es-
timator for the non-truncated distribution yields a mean of 0.6960 and a standard
deviation of 0.2864 in approximately 0.1 seconds. The moments-based estimator of
[Cohen Jr., 1950] consumed 24.8 seconds, and estimated a truncated normal based
on an untruncated normal with mean 0.6753, standard deviation 0.3255; it placed

118



the truncation points 1.298 original standard deviations below and 1.863 deviations
above the original mean. The numerical search described above consumed 5.8 sec-
onds, and estimated the original untruncated mean to be 4.307×10−3 with a standard
deviation of 0.9716; repeated executions showed a number of other local minimal with
similar PDFs. The truncation points were estimated to be 0.2645 and 1.3238 origi-
nal standard deviations above the original mean; while not the same as the original
generation parameters, this is considerably closer than the moments-based method.

To test a case with truncation points on either side of the mean, I generated
another set. Again, 5000 points; this time, the truncation points were set at the 20%
and 70% percentiles, or approximately 0.8403 original standard deviations below and
0.5231 above the original untruncated mean.
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Figure A.2: This figure shows the probability distribution functions (PDFs) for both
test and estimated distributions. In this case, the test distribution is a normal
truncated at the 20% and 70% percentiles. Again, the Cohen estimator gives similar
results to that of the standard method-of-moments for an untruncated normal, while
the Levenberg-Marquardt estimated PDF matches the test distribution very well.

Figure A.2 shows the estimation results for this test. The standard estimator
for the untruncated normal took approximately 0.13 seconds to estimate a mean
of -0.1412 and a standard deviation of 0.3843. The moments-based estimator for
the doubly-truncated normal of [Cohen Jr., 1950] required 33.9 seconds to estimate
untruncated mean and standard deviation of -0.1343 and 0.4521 respectively, setting
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truncation points 1.555 and 1.448 original standard deviations below and above the
mean, respectively. The search-based method took 5.64 seconds to yield the closest
estimate: mean of 2.019× 10−2, standard deviation of 1.257, and truncation points
0.6850 and 0.4003 original standard deviations below and above the untruncated
mean.

Finally, I generated another 5000-point set, again based on a standard unit normal
but with truncation points 1.282 standard deviations below and above the mean,
corresponding to approximately the 10% and 90% percentiles. The standard normal
estimator took 0.14 seconds to estimate a mean of 2.370 × 10−3 and a standard
deviation of 0.6537. After 43.68 seconds, the moments-based estimator suggested an
original mean and standard deviation of 3.217× 10−3 and 0.7483 respectively, with
truncation points 1.7174 and 1.708 original standard deviations below and above the
untruncated mean. Last, the search-based method took 4.38 seconds to estimate
untruncated mean and standard deviation of 5.695 × 10−3 and 0.9665 respectively,
with truncation points 1.333 and 1.320 original standard deviations below and above
the untruncated mean.

Thus, while the search-based algorithm lacks a certain elegance possessed by
analytical methods, it seems to work well on the three types of cases described above
– a highly asymmetric truncation with both truncation points above the mean, a
middle case with truncation points on either side but asymmetrically placed, and a
simple case with truncation points equally far from the mean.

With respect to applicability, it may be noted that of the 1,171 axis scalings
over nine data sets that survived the goodness-of-fit tests in the axis-scaling phase,
237 involved a truncated normal. This made it the second-most common scaling,
behind 564 uses of the mixture of normals and ahead of 126 invocations of the single
non-truncated normal.
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Figure A.3: This figure shows the probability distribution functions (PDFs) for both
test and estimated distributions. In this case, the test distribution is a normal
truncated at the 10% and 90% percentiles. The Cohen estimator and the untruncated
normal estimator both select significantly smaller standard deviations than the test
data, resulting in more density assigned towards the mean; the Levenberg-Marquardt
estimator again tracks the test distribution very well.
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Appendix B

Mixtures of truncated normals

Mixtures of univariate normals may be estimated through a variety of means, pri-
marily expectation-maximization (EM) as described in [Dempster et al., 1977] and
[Johnson and Kotz, 1970], and a variation thereof as per [Bradley et al., 1999].

Expectation-maximization for a multicomponent distribution can be summarized
as the following procedure.

1. Identify the number of components k. In practice, this may be expensively
considered by repeating the rest of the algorithm with different numbers of
components and determining which is best according to a suitable metric. The
Bayesian information criterion may be considered as a way to balance the
complexity of additional components with improvements in log-likelihood.

2. For each component i = 1..k, estimate the initial parameters Θi with corre-
sponding probability density function fi, and the component’s mixture proba-
bility pi; the sum of the mixture probabilities must sum to 1.

EM frameworks may leave this as an exercise to the reader, and it can be
helpful to adopt a policy of random initialization and multiple executions.

3. Then repeat the following loop until convergence according to some metric such
as log-likelihood:

(a) For value xj, j = 1..n with n the set cardinality, and each of the k com-
ponents, compute non-normalized weights wi,j = pifi(xj).

(b) Then compute Wi,j =
wi,j

∑k
l=1

wl,j

. These are the normalized responsibilities

that component i has for datum j.
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(c) For each component i = 1..k, re-estimate Θi and the corresponding fi

using the weighted data, and recompute pi =
∑n

j=1
Wi,j

n
.

4. Return the best known set of pi and Θi.

This works well for mixtures of ordinary normals. However, it does not directly
apply to normals with independent truncation points unless one knows how to es-
timate the truncation points of the individual components. If a component has
non-zero responsibility Wi,j for some datum due to that datum being inside the
truncation points, it would be up to the component estimator to decide whether
to truncate the point by moving the truncation point inwards. Two methods were
explored during the course of this work; neither is satisfactory at this stage, but
perhaps one will provide a basis for a more reasonable method.

B.1 Modified EM

Perhaps the most obvious approach is to adjust the Wi,j estimation. For instance,
for any component i one can compute the narrowest range [α, β] such that

xjin [α, β]→Wi,j ≥ max (T , W1,j, ..., Wk,j)

for some responsibility threshold T , such as 0.3. In other words, a component is
at least partly responsible for all points in which it is either the most responsible, or
has at least T responsibility, but for no others.

One can then set Wi,j = 0 for other values of j, set the truncation points accord-
ingly, and re-normalize all Wi,j weights for new pi mixture probabilities after all Wi,j

truncation has been performed. Choosing T provides an obvious difficulty, as does
undoing the truncation of a point from any component’s area of responsibility.

B.2 Windowing

A second approach sacrifices much of the theoretical flexibility by ignoring the pos-
sibility of significant overlap between components. This reduction in theory should
permit a divide-and-conquer approach while still allowing some distributions that
might be ugly to model using a mixture of ordinary normals.
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The first priority of the windowing method is to identify potential boundaries
between components; let us call these potential boundaries “breakpoints”. To do
this, the system starts by using a Gaussian kernel to estimate density at every datum.
The local minima of the results, or regions of unusually low density, provide the first
set of breakpoints as they may correspond to areas between components.

The estimator then applies a natural logarithm to the estimated densities. The
logarithms of the density function of a normal have a certain resemblance to a
parabola. Parabolas can be modeled via quadratic equations, which conveniently
can be iteratively fit using an algorithm called recursive least-squares (RLS). RLS
has a parameter which controls the stability of the estimation with respect to up-
dates and shifting trends; therefore, running to RLS estimators on the same data
with different stability estimates and checking for divergence may provide a way of
estimating when one parabola – or component – begins and another ends. So long
as the estimate the same parabola as previously, both models should have similar
values; when shifting from one to another they may jump at different points. There-
fore, areas of sharp divergence suggest breakpoints, and then the RLS models are
reset.

This yields a set of breakpoints which defines a segmentation of the data. The
windowing estimator then starts at an extrema, and greedily looks for the largest
consecutive set of segments including that extrema which can be plausibly estimated
with a single truncated normal according to goodness-of-fit tests. The longest set
with a satisfactory fit is then removed, and the estimation continues.

This process is clearly rather computationally expensive and sacrifices flexibility;
practice suggests that performance, applicability or both is still far inferior to that
of the standard mixture of normals.
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Appendix C

Estimating the fractal dimension

Recall that the D2 fractal dimension is defined as

D2(X) =
∂ log pr (X)

∂ log r

where

pr (X) = |{(x, y) |x, y ∈ X ∧ d (x, y) ≤ r}|

for an infinite, perfectly self-similar set; under such conditions, the partial deriva-
tive is constant over varying r. Finite sets force the use of such techniques as looking
for a maximally linear contiguous subset of the < log r, log pr > pairs of a minimum
size.

The naive implementation requires checking every possible pair of values, and is
clearly quadratic. For data sets of realistic size, this is not a reasonable approach.

Fortunately, there are quite serviceable approximations with better scalability.
Among these are the two following methods; while both in practice scale linearly
with the data set size, the former likely has a lower constant factor, while the latter
requires far less storage and may be performed incrementally.
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C.1 Box-counting

The first and more well-known of the two has been called “box-counting” [Schroeder,
1991] [Traina Jr. et al., 2000]. A basic version of this algorithm is described in Figure
C.1.

1. Define a geometric series of distances ri = αβi such that β ∈ Z+ ∧ β ≥ 2 and
i ∈ Z. The distances ri should ideally be chosen with some respect to the data
set X ∈ Rk.

2. For each ri, perform the following steps.

(a) Define a k-dimensional hypergrid with cells of length ri along each of the
k axes. A simple approach is to compute a coordinate xj ∈ R into an
index b

xj

ri
c.

(b) Assign every k-attribute tuple into its cell.

(c) Compute the sum-of-squared cell occupancies Cri
(X) =

∑

c2
j .

3. Compute the approximation

D̂2(X) =
∂ log Cr (X)

∂ log r

Figure C.1: The box-counting algorithm.

The algorithm described in [Traina Jr. et al., 2000] improves performance by using
a hierarchical data structure to store and compute counts at multiple resolutions r
instead of requiring one pass per radius and without simultaneously, explicitly storing
|{ri}| hypergrids.

Likewise, one could use a database for storing cell counts, and iterate over oc-
cupied cells at one radius r to compute the counts for a coarser radius βr. The
computational cost of the basic algorithm and variations thereof may all be expected
to scale approximately linearly with the data cardinality, but at a potentially high
storage cost depending on how one tracks cell occupancies.

128



C.2 Tug-of-war

This investigator was among those involved in the work described in [Wong et al.,
2003] and [Wong et al., 2005] which focused on developing an algorithm for approx-
imating the fractal dimension that used a minimal amount of storage space with
respect to the number of tuples, could be performed incrementally, and still pos-
sessed a linear scalability in terms of computational cost versus the number of tuples
involved.

The tug-of-war algorithm relied on a result from [Alon et al., 1996], which showed
a way to compute the second moment of the frequencies of a set, incrementally and
inexpensively, with probably-approximately correct (PAC) bounds. The Tug-of-War
algorithm uses this approach to approximate the Cri

=
∑

c2
j second-moments that

would otherwise be computed during box-counting.

As noted above, for relevant theory and experimental results see [Alon et al., 1996]
[Wong et al., 2003] [Wong et al., 2005]. The above algorithm in practice does return
good approximations with minimal storage costs and computational cost linear in
the number of tuples, although the constant factor is likely higher due to the amount
of calculations. For a large data set that would risk overwhelming box-counting due
to excessive storage costs, tug-of-war would be a reasonable choice.
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1. Set parameters s1, s2 ∈ Z
+. s1 reflects the level of approximation, and s2 the

related probability. Setting λ =
√

16
s1

and ε = e−
s2
2 , the probability that the

estimate of the second moment has a greater relative error than λ will be at
most ε.

2. Generate s1s2R random four-wise independent hash functions, where R =
|{ri}| or the number of radii.

Each hash function is based on a four-tuple of random, distinct primes
(π1, π2, π3, π4) as well as a large and distinct prime q which need not vary
per function. Then, for a tuple that would have a k-dimensional hypergrid in-
dex of (g1, ..., gk) where gj = bxj

ri
c, the hash function returns -1 or 1 depending

on the parity of the number of 1s in the value result where

result =

k
∑

j=1

πk
1g

3
j + π2g

2
j + π3gj + πj

4modq

3. Associate each of the hash functions with a counter initialized at zero.

4. For every tuple, increment or decrement every counter based on the result from
the corresponding function.

5. To estimate Cr for a given radius r:

(a) Partition the s1s2 counters into s2 sets of s1 counters each.

(b) Compute the square of each counter.

(c) Compute the arithmetic mean of the squares in each subset.

(d) Compute the median of the means. This is the estimate.

6. The D2 fractal dimension can then be estimated at any time by estimating the
Cr values as above, and then performing the usual partial derivative computa-
tion.

Figure C.2: The tug-of-war algorithm.
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Appendix D

Regression trees

The phase which performs the actual modeling uses a piecewise-linear regression tree
based upon the SECRET system described in [Dobra and Gehrke, 2002], but with
substantial differences. This appendix provides more details about the construction,
pruning and use of the tree.

D.1 Construction

As with SECRET, the modeling phase produces piecewise-linear binary regression
trees through separate construction and pruning phases. The current implementation
adopts the same procedure of estimating a mixture of two multivariate normals in
order to apply pseudoclass labels for the purposes of split-point selection; here, the
estimator is the method of [Bradley et al., 1999].

Only axis-aligned splits are currently supported. For these, we again follow the
logic of SECRET and rely on either the Gini index, for splitting along discrete
attributes; or the method of [Loh and Shih, 1997], for continuous attributes. There
may also be differences in certain criteria which limit the growth of the tree, such
as not splitting a node which covers only 10 or fewer tuples. The linear models
themselves are computed at each node using either recursive least-squares, when
dealing with more than 50 tuples; or the singular value decomposition, otherwise.

Otherwise, however, tree construction should be rather similar to the normal
SECRET method. Both processes result in binary trees where internal nodes contain
tests – whether the value of a continuous attribute is less than or equal to a threshold,
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or whether the value of a symbolic attribute is within a certain set – and leaf nodes
contain linear models based on all data that reached that leaf.

D.2 Pruning

The most significant differences occur here. The published tests with SECRET use
Quinlan’s resubstitution error pruning as per [Quinlan, 1993].

In addition to cross-validation techniques described in the next section, the ver-
sion written for this thesis uses a pruning metric that explicitly converts error mag-
nitudes into bits in order to compare the presumably equal or lower error of splitting
a node into two with the increased cost of storing the parameters for the two chil-
dren. To do this, it needs a profile of the likely error distribution at any given node.
It would be too expensive to recompute error profiles on the basis of individual
prune/split decisions, so instead the system summarizes errors based on the space-
efficient approximate quantizer of [Greenwald and Khanna, 2001] to provide profiles
of the distribution of error magnitudes. If a split is pruned, the error profile originally
computed using the model in the parent is used; if not, it can be estimated from the
at-most fifty error magnitudes stored in each profile and the relative population sizes
of the children.

To convert error magnitudes into bits, the system first normalizes them by divid-
ing them by the range of the data covered by the node in question. These fractions
are then multiplied by 1000 and rounded down, resulting in non-negative integers
which can be assessed in terms of standard prefix-free codes. The total cost of an
error profile can then be counted in bits and compared against the cost of storing
parameters for the relevant subtrees. Setting this balance has obvious issues, but
the current setting should prevent pruning from being excessive when the benefits in
reduced errors are not trivial compared to the number of inputs and thus the number
of parameters required per child.

D.3 Cross-validation

As an additional hedge against overfitting, the model builder performs four-fold
cross-validation as follows.

A data set is randomly partitioned into four segments of equal size. The system
then runs four independent trials, each of which selects two segments for building
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the regression tree, one segment for pruning it, and the final segment for evaluating.
The tree builder returns the tree which had the lowest sum-of-squared error on its
evaluation segment. It would seem reasonable to change this to evaluate on the whole
data set, however, and perhaps to use the quantile metric espoused in other parts as
well.

D.4 Quick comparison

For comparison, I checked the abalone data set from the UCI repository [Murphy and
Aha, 1994] using the data as-is with all attributes except rings labeled as inputs,
and rings as the output. This mirrors one of the tests executed in [Dobra and
Gehrke, 2002], where numerous trials achieved a mean squared error of 4.76 when
modeling rings whether or not using oblique splits; the complexity of the resulting
tree was unfortunately not published.

In addition to the pruning method described above, I also evaluated a more
traditional pruning method that cares only about accuracy, and thus reduces over-
fitting only due to the use of a holdout set for pruning or selecting among multiple
trees. This investigator’s code with the ‘balanced’ and storage-aware pruning above,
and the four-fold cross-validation and tree-selection process yielded a single-node
tree with a worse prediction error of 5.011; the use of scaling barely reduced this
to 4.9461 from a single-node tree. With the accuracy-only pruning method and
the cross-validation harness, the model builder selected a 13-node tree which had a
mean squared error of 4.602 sans scaling. Combining the accuracy-only pruner and
the nonlinear scaling, a 25-node tree was obtained with a mean squared error of 4.361
rings.

The Boston data set referenced in the evaluation of SECRET is the same as the set
labeled housing elsewhere in this document. Using the same encoding as SECRET –
original data, all attributes as inputs except the median house value MEDV – on which
SECRET’s piecewise-linear trees with oblique splits yielded a mean squared error of
26.11, and 30.91 when restricted to axis-orthogonal splits. The single-node tree using
the balanced pruner had a mean-squared error of 24.50, and with the accuracy-only
pruner a seven-node tree was found that had a mean squared error of 15.17 – without
using orthogonal splits, since none have been implemented. Combining nonlinear
scaling and the accuracy-only pruner, the mean squared error rose to 23.69 from 5
nodes.
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Appendix E

Linear models

One obvious question might be “What if we discarded the nominal attributes and
built only linear models?”. Linear models, while obviously far less versatile than
the piecewise-linear trees built in Chapter 5, do have some advantages; these lines
are fast to compute, may be readily interpreted in terms of inputs and outputs, and
require no judgments regarding pruning or split criteria.

Does nonlinear axis scaling improve the performance of these simpler models?
And how well do these models perform, compared to the more versatile but more
complex models discussed elsewhere?

E.1 Experiments

To answer these questions, we can build linear models on the same data sets and
consider the results. The choice of nonlinear axis scalings and of inputs remains the
same, as does the use of the quantile metric. Cross-validation was not used; instead,
regression was performed on the full data.

E.1.1 Abalone

Table E.1 shows the results for linear models for the abalone set. Comparing with
Tables 5.1 and 5.2, it is striking how close in accuracy the post-nonlinear scaling linear
models are to the more complicated models described in Chapter 5. The unscaled
linear models are more often significantly less accurate than their piecewise-linear
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counterparts.

∑

Q error2

Attribute Unscaled Scaled

Length (input) 19.854
Diameter 8.7731 22.106
Height (input) 52.123
Whole weight 25.815 7.5109
Shucked weight 41.032 (input)
Viscera weight 39.281 (input)
Shell weight 34.074 38.348
Rings 87.237 96.912

Table E.1: Quantile errors for linear models on the abalone data set, with and
without nonlinear axis scaling. Emphasized numbers indicate lower (better) sum-
of-squared quantile errors for attributes modeled in both the unscaled and scaled
cases.

E.1.2 Baseball

Since the original models described in Table 5.4 are all linear, the table in Table E.2
reflects only the stability of the model-building process. Clearly the use of samples
for the purposes of cross-validation in the original model building process generally
had little impact on the accuracy compared to building the model on the entire data.
The trend of the nonlinear axis scaling improving accuracy is quite clear here.

E.1.3 Building

The accuracy results for the linear models in Table E.3 may be compared with
Tables 5.5 and 5.6. For the models which were linear even in the unconstrained case
– unscaled hour, wbe and wbcw, scaled wbcw and wbhw – the model performances
reported here are only insignificantly changed. The other models, however, have
suffered to varying degrees. The nine-node model for a scaled version of solar, for
instance, has a sum-of-squared quantile error of only 46.270. The five-node model
for the unscaled version of humid, however, is not that much of an improvement with
a sum-of-squared quantile error of 1.9975× 102.
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∑

Q error2

Attribute Unscaled Scaled

BA 28.405 15.284
SLG 30.052 16.371
OBA 28.867 (input)
G 17.386 9.0858
AB 16.258 7.6846
R 16.221 6.4394
H 16.379 7.9469
TB 18.936 6.0344
2B 16.330 7.8002
3B 4.1074 4.5415
HR 24.407 5.8400
RBI 21.511 6.3525
BB 20.523 5.1025
SO 19.906 (input)
SB 12.026 13.390
CS (input) 9.0217
E (input) 12.347

Table E.2: Quantile errors for linear models on the baseball data set, with and
without nonlinear axis scaling. Emphasized text reflects better scores.

∑

Q error2

Attribute Unscaled Scaled

hour 2.9825× 102 (input)
temp (input) 1.7441× 102

humid 2.1083× 102 (input)

solar 6.3164× 102 2.9427 ×102

wbe 3.5329× 102 2.8951 ×102

wbcw 74.540 1.5151× 102

wbhw 66.743 1.8206× 102

Table E.3: Quantile errors for linear models on the building data set, with and
without nonlinear axis scaling. Emphasized scores are the better of the two – unscaled
or scaled.
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E.1.4 CIA World Factbook (2001)

In the unconstrained case, with or without scaling, a single linear model was built.
Re-running this model without cross-validation therefore serves only as a stability
check, not for evaluating whether or not a more powerful model would have been
more useful.

In both the unscaled and scaled cases, the sole model was for area. The sum-
of-squared quantile errors are 33.991 and 6.0865, for the unscaled and scaled cases,
respectively. Interestingly, the score for the unscaled case is quite different from the
original score of 16.901; the use of cross-validation, or lack thereof, can clearly make
a difference. The scaled score, however, is essentially identical with the original of
6.0886.

E.1.5 DJ30

The sum-of-squared quantile errors for the strictly linear models may be found in
Table E.4. As per the piecewise linear models described in Tables 5.7 and 5.8,
nonlinear axis scaling improves the accuracy for every attribute modeled in both
cases.

Few of the unconstrained models were linear. In the unscaled case, these were
GM and SBC; in the scaled case, DD. In all three cases, the sum-of-squared quantile
errors are quite similar with and without cross-validation. For the remaining cases,
the piecewise linear models are quite frequently significantly better with some of the
piecewise linear models reducing the sum-of-squared quantile error by 50% or more
versus their linear counterparts.

E.1.6 Housing

Table E.5 shows sum-of-squared quantile errors for linear models on the housing

data. Table 5.9 shows that of the unscaled unconstrained models, all but CRIM and
ZN were already linear; the linear versions of CRIM and ZN produce sum-of-squared
quantile errors that are approximately three and six times the sum-of-squared quan-
tile errors for the piecewise-linear models. For the remaining models, the sum-of-
squared quantile errors have changed little except for B; the original model for that
set, built only on a sample rather than the full data, performs extremely poorly on
a large number of tuples.
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∑

Q error2

Attribute Unscaled Scaled

AA 1.1546× 102 78.020
AXP 1.4554× 102 64.860

BS 1.4868× 102 1.1393 ×102

CAT 69.824 53.718
CI 1.2675× 102 67.078
DD 49.783 30.857
DIS 1.3179× 102 31.149

EK 1.9299× 102 1.8490 ×102

GE 1.4953× 102 56.475
GM 1.2261× 102 36.928
HD 1.4023× 102 62.095
HON 82.922 20.819
HPQ 1.3815× 102 48.449

IBM 1.7232× 102 1.4963 ×102

INTC 1.2494× 102 38.427

JNJ 1.4938× 102 1.2124 ×102

JPM 1.0605× 102 (input)

KO 2.0656× 102 1.9234 ×102

MCD 1.1191× 102 31.586

MMM 1.2533× 102 1.1757 ×102

MO 1.5020× 102 1.1180 ×102

MRK 1.6696× 102 52.027
MSFT 1.2779× 102 46.582
PG 99.837 68.998
SBC 1.1269× 102 35.528

T 2.0627× 102 1.8909 ×102

UTX 1.4751× 102 1.0385 ×102

WMT 1.7422× 102 1.1318 ×102

XOM 1.8783× 102 99.841

Table E.4: Quantile errors for linear models on the DJ30 data set, with and without
nonlinear axis scaling. Emphasized scores are the better of the two – unscaled or
scaled.
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With respect to the scaled models as per Table 5.10, all the original unconstrained
models except for TAX were already linear. The linear model for scaled TAX performs
comparably to the 3-node (single-split) model; the other linear models perform quite
similarly to the original linear models built using cross-validation, with deviations of
up to approximately 10% in sum-of-squared quantile error.

∑

Q error2

Attribute Unscaled Scaled

CRIM 1.1706× 102 (input)
ZN 42.406 2.7931
INDUS 14.337 13.096
NOX (input) 8.7608
AGE 2.0387× 102 (input)
DIS 22.230 12.471
RAD 22.975 4.2139
TAX 28.401 16.173
PTRATIO 28.503 26.861
B 5.1174× 102 (input)
LSTAT 15.732 12.886
MEDV 21.988 16.673

Table E.5: Quantile errors for linear models on the housing data set, with and
without nonlinear axis scaling. Emphasized scores are the better of the two – unscaled
or scaled.

E.1.7 Liver

Table E.6 shows the results for the strictly linear models for the liver set. Tables
5.11 and 5.12 note that the original models were also strictly linear, so this serves
as test of sensitivity to sampling versus building a model on the entire data. The
differences in sum-of-squared quantile errors between those results and these are
approximately 5% or less.
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∑

Q error2

Attribute Unscaled Scaled

mcv 24.288 23.365
sgpt 20.448 (input)
sgot 20.633 15.575
drinks 12.946 12.448

Table E.6: Quantile errors for linear models on the liver data set, with and without
nonlinear axis scaling. Emphasized scores are the better of the two – unscaled or
scaled.

E.1.8 Page-blocks

Table E.7 shows accuracy results for strictly linear models built using the full page-blocks
data, sans cross-validation. These may be compared with the results for the unre-
stricted, cross-validated models found in Tables 5.13 and 5.14. Among the uncon-
strained models for these non-class attributes, only length (unscaled) and height

(scaled) used linear models; the rest ranged from 3 to a remarkably high 37 nodes.

The sum-of-squared quantile errors has deviated somewhat for the scaled version
of height, with the model described here having approximately a 10% lower sum-of-
squared quantile error. The deviation for the unscaled variant of length, however,
was significantly lower.

We can also examine the performance differences between the multi-node trees
built using cross-validation and the linear models built on all the data. For the
unscaled outputs, there are large deviations for area, eccen, blackpix, blackand
and wb trans; with area, blackpix and blackand, the multi-node models are ac-
tually worse. For the scaled outputs, all of the linear models are worse than their
multi-node counterparts – extremely so for area, where the use of 37 nodes instead
of 1 reduces the sum-of-squared quantile error by a factor of 71.6, and wb trans for
which the 11-node model reduces the sum-of-squared quantile error by a factor of
approximately 22.0.

E.1.9 Wind

Table E.8 shows the sum-of-squared quantile errors for the linear models for the
wind set. These may be compared with Tables 5.15 and 5.16. Among the original
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∑

Q error2

Attribute Unscaled Scaled

height 5.7438× 102 3.5837 ×102

length 5.2446× 102 67.553
area 1.3623× 103 87.561

eccen 8.1249× 102 2.5596 ×102

p black (input) 1.8553× 102

mean tr 6.7501× 102 (input)
blackpix 1.3003× 103 11.252
blackand 7.1588× 102 (input)

wb trans 5.6019× 102 2.2591 ×102

Table E.7: Quantile errors for linear models on the page blocks data set, with and
without nonlinear axis scaling. Emphasized scores are the better of the two – unscaled
or scaled.

unconstrained models for the unscaled outputs, only MAL has a multi-node model;
for the scaled outputs, multi-node models exist for VAL, BIR, and MAL.

For the unscaled outputs, the linear models produce quite similar results regard-
less of whether or not they are built on the full data set. The 5-node model for MAL
has approximately 10% lower sum-of-squared quantile-error than the 1-node model.

Considering the scaled outputs, we see that the linear models built on the full
set produce essentially the same sum-of-squared quantile errors as the linear models
built using cross-validation and pruning sets, for RPT, KIL, DUB, CLA, MUL and CLO.
The 3-node model for scaled VAL is barely more accurate; the 3-node model for scaled
BIR is insignificantly worse; and the 5-node model for scaled MAL is again has roughly
10% lower error than the linear model.

E.2 Summary

A few notable conclusions can be drawn from these constrained tests.

First, it is clear that should the model class be constrained to strictly linear
regression, the use of nonlinear axis scaling almost always allowed improved model
accuracy. This can be true even for sets such as baseball, for which the number of
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∑

Q error2

Attribute Unscaled Scaled

RPT 1.7886× 102 1.1906 ×102

VAL 1.9118× 102 1.3050 ×102

KIL 1.3592× 102 94.548
SHA 1.3380× 102 (input)
BIR 1.1179× 102 78.384

DUB 1.8963× 102 1.7609 ×102

CLA (input) 77.736

MUL 1.3235× 102 1.2201 ×102

CLO 1.2504 ×102 1.3026× 102

BEL 1.3977× 102 (input)

MAL 2.5007× 102 2.1876 ×102

Table E.8: Quantile errors for linear models on the wind data set, with and without
nonlinear axis scaling. Emphasized scores are the better of the two – unscaled or
scaled.

inputs for the models remained unaffected by the use of scaling.

Second, based upon the comparison between these models – built using the full
data set, with no cross-validation – and the linear models that sometimes resulted
from the full cross-validation process, for many of these attributes there was no
significant difference in accuracy – but for a few the differences were quite drastic.
It is not clear whether this could be readily predicted outside of actually taking
multiple samples, although the presence of extreme outliers relative to the regression
results on the full set would presumably be one circumstance that could cause such a
gap. In a couple of cases, the model built using cross-validation was actually worse,
which suggests perhaps a poor choice of sample for the test phase. Using sampling
only for the allocation of tuples between building and pruning, but testing on all the
data, may be a better choice.

Third, in many cases the multi-node models do significantly better than the
strictly linear models – even though the linear models are actually built on all the
data while the multi-node models have been built on half the data, pruned on a
quarter, and selected from based on evaluations on the last quarter. In extreme
cases, the sum-of-squared quantile error from the linear models can be many times
that of the multi-node models.
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Appendix F

Classification

First, it is important to note that this thesis project by design did not focus on
classification. Classification differs strongly from regression, with the most obvious
difference being that regression requires accurately predicting along an ordered con-
tinuum while classification stipulates a possibly unordered discrete set of outcomes.
Regression lends itself to regression trees, but the application of such trees to classifi-
cation is much more complicated. Should one create multiple trees, one per class, and
declare that the prediction matches the tree with the highest answer? In addition,
do the heuristics commonly used to build regression trees, such as those designed to
minimize the sum-of-squared error, actually make any sense on a classification task?
It would be more logical to use a tree built with a heuristic aimed at classification,
such as the Gini index or Shannon information gain.

However, the abalone, liver and page-blocks data sets do have specific classi-
fication tasks, and it is an obvious question as to how well the regression trees could
be made to classify, and how much of an impact if any nonlinear axis scaling had on
these tasks. The results are quite mixed; for instance, with page-blocks combin-
ing the accuracy-only pruner and axis scaling gives a much more efficient solution
for the same accuracy as without scaling, but case of abalone and liver the same
comparison leads to the opposite conclusion. Given the impact it can have, however,
it may be of interest to examine how it can be better applied.
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F.1 Abalone

The documentation with the abalone set notes that the previous experiments in
classification aggregated the 29 distinct values for the rings attribute into three
classes. After doing so, a backpropagation neural network with five hidden units
scored approximately 64% correct [Murphy and Aha, 1994]. This set has also been
used for regression testing without the three-value aggregation; see Appendix D for
the tests involving SECRET and this modeler’s trees.

When the selector was set to regard all other attributes as inputs, and the re-
gression tree set to prune only based on accuracy, both the unscaled and scaled trees
performed on par – 64% accuracy, using 37 and 47 nodes respectively. Using the
balanced pruner, both the unscaled and scaled trees yielded single-node trees, with
the former scoring 55.47% and the latter 60.57%.

F.2 Liver

With the liver set and the binary selector attribute, classification performance
was measured by treating the binary selector attribute as an integer attribute.
This resulted in automatic rounding of the regression output to the nearest integer.

Treating all other attributes as inputs and using the balanced pruner, 71.3%
accuracy was achieved without scaling; 68.7% with. Both cases involved single-node
trees. Using the accuracy-only pruner, performance increased to approximately 74%
in both cases with a five-node tree in the unscaled case and a nine-node tree in the
scaled case.

The documentation does not specify any previous classification accuracy [Murphy
and Aha, 1994]; a constant majority-class predictor would achieve a classification
accuracy of 57.97%.

F.3 Page-blocks

On the page-blocks set, the class attribute was originally encoded as an integer
from 1 to 5 corresponding to the unordered set of classes text, horizontal line,
graphic, vertical line, and picture.

Therefore, the class attribute was split into five binary integer attributes cor-
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responding to the five different classes. The models were collectively considered to
have classified correctly if and only if the correct model for the corresponding class
returned 1 and the other four models 0; a less strict approach would have been to
use continuous outputs and select the class according to the maximal output while
marking ties as incorrect.

The distribution among the classes is extremely skewed, with fully 4,913 of the
5,473 tuples labeled as text and only 28 of the tuples labeled as graphic. Hence, a
constant majority-class predictor would achieve 76.6% accuracy.

Setting all other attributes as inputs, the system achieved a 94% classification
accuracy without nonlinear scaling with a total of 35 nodes, but only 51.00% accuracy
from 33 nodes with using the balanced pruner – a bizarre result given the skewed
distribution of the classes.

With the accuracy-only pruner, both cases yielded a classification accuracy of
94%, but the axis scaling allows a more efficient solution with a total of 43 nodes
instead of the 57 nodes in the unscaled scale.
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