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Abstract

We consider the problem of fairly allocating a set of m indivisible goods to n agents, given
the agents’ utilities for each good. Fair allocations in this context are those maximizing
the minimum utility received by any agent. We give hardness results and polynomial time
approximation algorithms for several variants of this problem. Our main result is a bicriteria
approximation in the model with additive utilities, in which a (1− 1

k
) fraction of the agents

receive utility at least OPT/k, for any integer k. This result is obtained from rounding a
suitable linear programming relaxation of the problem, and is the best possible result for
our LP. We also give an O(

√
n) approximation for a special case with only two classes of

goods, an (m − n + 1) approximation for instances with submodular utilities, and extreme
inapproximability results for the most general model with monotone utilities.
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1 Introduction

Economists have long studied many issues surrounding the allocation of goods and services
under various economic systems (See e.g. [5, 22, 24, 32, 33]). The two notions of efficiency
and fairness of allocations have played a central role in this research area. Despite this,
little is known about the computational aspects of finding efficient and/or fair allocations
in markets with indivisible goods – that is, goods that cannot be divided and fractionally
assigned to multiple agents. Previous work in economics on finding fair allocations has fo-
cused largely on the structural properties of markets with indivisible goods, for example,
the existence or non-existence of allocations with various properties [17, 4], or the minimum
amount of money to offset indivisibilities in the market [1, 9]. Other early work in operations
research focused on special cases that are tractable [12, 31], e.g. when there is only one type
of good and general utility functions as in [12], or on exponential time algorithms for general
models [21]. Yet another strain of research focused on techniques to solve general classes
of problems with fairness measures incorporated into the objective function [27, 30]. For
example, Sokkalingam and Aneja [30] solved a variety of optimization problems with lexico-
graphic objective functions, including bipartite matching. Such lexicographically maximal
matchings yeild a fair allocation when there is exactly one good per agent.

In computer science, work on finding fair allocations has focused on graph based problems
and load balancing. For example, Megiddo [23] considered the problem of finding flows in
a graph with multiple sources and sinks that fairly distribute the flow absorbed by each
sink, and Kleinberg, Rabani, and Tardos [16] consider the problem of finding allocations
of bandwidth that ensure fair routing. Fairness in load balancing has been studied for
several problems, such as scheduling jobs to unrelated machines to minimize the maximum
processing time of any machine [11, 19, 29], and facility location to minimize the maximum
distance from a client to its closest open facility [18].

Other work has focused on the complexity of finding allocations with other properties of
note. For example, Gale and Shapley [10] have investigated stability of allocations, Irving,
Leather, and Gusfield [13] considered finding fair stable marriages, Scarf and Shapley [28]
and Pál and Tardos [26] have investigated group strategy proofness, and Jain and Vazirani
[15] equitable cost shares. Recently, the question of finding envy-free or envy minimizing
allocations of indivisible goods has been investigated by Lipton et al. [20]. On the complexity
side, there has been work investigating the existence and computational complexity of finding
equilibria in markets [6, 7, 8, 14, 28].

In this paper, we investigate the complexity of finding fair allocations in markets com-
posed entirely of indivisible goods. We call an allocation maximizing the minimum utility
received by any agent max-min fair, and differentiate it from the notion of max-min fairness
commonly used in the literature, which requires an allocation to be utility-wise lexicograph-
ically maximum: that is, an allocation in which the minimum utility received by any agent
is maximized, and subject to this, the minimum utility received by the remaining agents is
maximized, and so on. We will call this latter notion of fairness strong max-min fairness. We
investigate this Max-Min Allocation (MMA) problem with several types of utility functions,
e.g. monotone and additive functions (see definitions below). Finding approximate max-min
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fair allocations for agents with additive utilities was considered independently by Bezáková
and Dani [3], who give a randomized 2 approximation for instances with two agents, and an
(m − n + 1) approximation for an instance with m goods and n agents. We improve upon
both of these results.

Summary of Results. For MMA with general monotone utilities, n agents, and m goods,
we show the task of computing an f(n, m) approximation, for any polynomial time com-

putable function f(n, m), is NP−hard and has communication complexity Ω(2mm− 1
2 ), even

with only two agents. These results force us to retreat to the case of simpler utility functions.
In the additive utility model, where the utility of an agent a for good g is denoted uag, we

give a deterministic algorithm yielding a bicriteria solution that given any k ∈ Z+ returns
an allocation giving at least

⌈
(1− 1

k
)n

⌉
agents utility at least OPT

k
. Our algorithm is based

on rounding a suitable linear programming relaxation of the problem. We also note that
this bicriteria result is the best result possible for our LP; in general there does not exist an
allocation rounded from the LP giving

⌈
(1− 1+ε

k
)n

⌉
agents utility at least 1+ε

k
OPT, for any

fixed k.
Using min-cut and feasible flow techniques, we obtain an O(

√
n) approximation for a

variant of MMA in which there are “small” goods that each agent values at zero or one, and
“big” goods that each agent values at zero or x, where x > 1 (this is called Big Goods/Small
Goods MMA).

We additionally prove it is NP−hard to (2−ε) approximate MMA in the additive utilities
model even with utilities in {0, 1, 2}. Note there is a 2 approximation in this case, since it
is easy to obtain a umax/umin approximation where umax and umin are the maximum and
minimum non-zero utility values, respectively.

We also show that finding strongly max-min fair allocations for the matching version of
MMA can be used to obtain a (m − n + 1) approximation for MMA instances where each
agent’s utility function is submodular. Strongly max-min fair matchings can be found by an
algorithm of Sokkalingam and Aneja [30], however we provide an alternative conceptually
simpler algorithm obtained via a reduction to max weight perfect matching. We note in
passing that our (very large) weights are essentially as small as possible for such a reduction.

Organization. The hardness results for MMA are presented in Section 2. The n-approximation
and bicriteria solution for additive MMA, based on LP rounding, are in Section 3. Section 4
contains the O(

√
n) approximation for Big Goods/Small Goods MMA, based on flow tech-

niques. Section 5 contains the algorithm to find strongly max-min fair matchings, and its
extension to a (m − n + 1) approximation for submodular MMA. All proofs not appearing
in their relevant sections are in the appendices.

Notation and Definitions. In this paper, n indicates the number of agents, and m the
number of goods. An allocation is a function π from agents A to sets of goods, such that
{π(a) | a ∈ A} is a partition of the goods, G. A utility function u : A× 2G → N, gives the
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utility of any agent for any subset of goods. We assume throughout that for any agent a,
u(a, ∅) = 0.

Definition 1. Given a set of n agents A, a set of m goods G, and a utility function u, the
Max-Min Allocation problem (MMA) is to output an allocation π maximizing mina∈A u(a, π(a)).

Definition 2. A utility function is monotone if ∀a ∈ A,∀S ′, S such that S ′ ⊆ S ⊆ G,
u(a, S ′) ≤ u(a, S). A utility function is submodular if ∀a ∈ A,∀S ′, S ⊆ G, u(a, S ∪ S ′) +
u(a, S ∩ S ′) ≤ u(a, S) + u(a, S ′). A utility function is additive if ∀a ∈ A,∀S ⊆ G, u(a, S) =∑

g∈S u(a, {g}). In this case, we write u(a, g) or uag as shorthand for u(a, {g}). A utility
function is value derived if it is additive, and there exists a function v : G → N such that
∀a ∈ A,∀g ∈ G, u(a, g) ∈ {0, v(g)}.

2 Hardness of Max-Min Allocation

All relevant proofs not appearing in this section are in Appendix A.

Theorem 1. Max-Min Allocation with general monotone utilities, is NP−hard to f(n, m)
approximate for any primitive recursive function f(n, m), even with only two agents.

Proof. Let S ⊂ N be an instance of the Partitioning problem. Let σ : 2S → N be defined
by σ(X) :=

∑
x∈X x. Recall the Partitioning problem is to determine if ∃X ⊂ S such that

σ(X) = 1
2
σ(S). Create a Max-Min Allocation instance with two agents, A = {1, 2}, goods

G = S and ∀X ⊆ S

u(1, X) = u(2, X) =

{
1 if σ(X) ≥ 1

2
σ(S)

0 otherwise

Clearly, there exists a 1-allocation iff ∃X ⊂ S such that σ(X) = 1
2
σ(S). Any allocation that

isn’t a 1-allocation is a 0-allocation, so an f(n,m) approximation algorithm can distinguish
between “yes” and “no” instances of Partition. The claim follows.

Theorem 2. Max-Min Allocation with general monotone utilities provided by access to an
oracle requires Ω(2mm−1/2) time to f(n, m) approximate for any primitive recursive function
f(n, m), even with only two agents.

Theorem 2 is a corrolary of the main result of [25], and can be proven directly using
Nisan and Segal’s techniques (see Appendix A for details).

In light of the severe inapproximability of MMA with monotone utilities, we consider
only MMA with submodular, additive, or value derived utilities for the remainder of the
paper. However, even in the Big Goods/Small Goods model, with the big goods valued at
zero or two, MMA remains hard.

Lemma 1. Max-Min Allocation is NP−hard to (2− ε) approximate for any ε > 0, even in
the Big Goods/Small Goods model, even if the utilities are derived from values v : G → {1, 2}.
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3 Additive Max-Min Allocation Via LP Rounding

We consider a linear programming relaxation of the associated integer program for MMA with
additive utilities. Using a deterministic rounding procedure, we obtain an n-approximation
in this fashion, and show that the linear program has integrality gap n. Lastly, we give an
efficient algorithm that, given any k ∈ Z+, computes an allocation giving

⌈
(1− 1

k
)n

⌉
agents

utility at least OPT
k

, and show that this is tight for the LP considered. All relevant proofs
not appearing in this section are in Appendix B.

3.1 The LP, and When It Works Well

The following IP, denoted IP0, represents additive MMA instances precisely.

maximize λ
xag ∈ {0, 1}, ∀a ∈ A, g ∈ G∑

a∈A xag = 1, ∀g ∈ G∑
g∈G uagxag ≥ λ, ∀a ∈ A

(1)

A solution ~x allocates good g to agent a iff xag = 1. Let IP ∗
0 ≡ OPT denote the maximum

λ for which the above IP has a solution. Let LP0 denote the LP relaxation obtained by
replacing xag ∈ {0, 1} with 0 ≤ xag ≤ 1 for all a and g. Let LP ∗

0 denote the maximum
obtainable λ in LP0. We make some observations about this LP.

We first show that if there is a solution X to LP0, then there is a solution X̂ giving
all agents at least as much utility as they received under X, and has the property that the
undirected graph GX̂ defined below is a forest. GX̂ has vertex set VX̂ = A ∪ G, and edges

EX̂ = {(a, g)|xag > 0}. Let ~U(X) be the vector of utilities received by agents under a

fractional allocation X, sorted in non-decreasing order, and let ~Ui(X) be the ith component

of ~U(X).

Lemma 2. Given feasible LP0 solution X, there is a polynomial time algorithm to compute
a solution X̂ such that for each i, ~Ui(X) ≤ ~Ui(X̂) and GX̂ is a forest.

Note that the integrality gap of LP0 is infinite. For consider an instance with agents
A = {1, 2, . . . , n} and one good, g, such that every agent values g at n, i.e. uag = n for
all agents a. Then the best integral allocation is a 0-allocation, and the best fractional
allocation, given by xag = 1

n
for all a ∈ A, is a 1-allocation. We circumvent this problem by

defining uκ
ag := min{κ, uag} for κ ∈ N, and letting LP (κ) be the following LP.

maximize λ
0 ≤ xag ≤ 1, ∀a ∈ A, g ∈ G∑

a∈A xag = 1, ∀g ∈ G∑
g∈G uκ

agxag ≥ λ, ∀a ∈ A

(2)

Let IP (κ) denote the corresponding integer program with xag ∈ {0, 1}. As before, define
LP (κ)∗ and IP (κ)∗ as the maximum obtainable λ for LP (κ) and IP (κ), respectively. Binary
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search for the maximum κ such that LP (κ)∗ ≥ κ. Let κ∗ be this value, and define LP1 :=
LP (κ∗), IP1 := IP (κ∗). We will work with LP1 rather than LP0, and demonstrate that
the integrality gap of LP1 is exactly n. First we must make some observations about LP1

and IP1. Note that Lemma 2 applies to LP1, since it applies to LP0 for any MMA instance
I, and for any LP1 we can construct an instance I ′ such that LP ′

0 = LP1. Lemma 11 in
Appendix B proves that IP ∗

0 ≤ LP ∗
1 = κ∗.

We can characterize especially hard instances of additive MMA as those in which some
agent must receive virtually all of its utility from a single good, by giving a constant factor
approximation algorithm if such is not the case.

Lemma 3. If for all (a, g) pairs uag ≤ β · LP ∗
0 then there is a polynomial time algorithm,

that returns a (1− β)LP ∗ allocation, and hence a 1
1−β

approximation for IP0.

We sketch the algorithm as follows: Solve the LP, obtaining an optimal solution X.
Convert X to X̂ such that GX̂ is a forest as described in Lemma 2. For each tree T in GX̂ ,
root T at any agent arbitrarily. Allocate each agent its children in T .

3.2 A n-Approximation Algorithm

Here we give an upper bound of n to the integrality gap of LP1 by giving an n approximation
algorithm. Call an agent c-happy if that agent receives utility at least c under the current
allocation. Let ρ(T ) := κ∗

|A∩V [T ]| .

Algorithm: Allocate()

Solve LP1 optimally, obtaining solution X.

Convert X to X̂ as described in Lemma 2.
for each tree T of GX̂

Root T at some agent arbitrarily.
for each agent a of T from the bottom of the tree up (e.g. in postfix order)

Allocate an agent a’s leaf goods to it.
if an agent is ρ(T )-happy under the partial assignment

then remove it and its leaf children.

else

{
allocate its parent to it, as well as its leaf children,
and remove it, its parent, and its leaf children.

Theorem 3. The above algorithm yields an n approximation.

Proof. Since LP ∗
1 = κ∗, an optimal solution X̂ gives every agent utility at least κ∗. WLOG,

assume GX̂ is a single tree T , and n = |A ∩ V [T ]|. Since we will not need to consider X

further, let xag be the fractional amount of g that X̂ gives to a. Note that agents cannot
be leaves, unless they are allocated all of a good they esteem at κ∗ and nothing else. In the
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latter case, merely allocate them the good the LP did, and nothing else. Otherwise, since the
LP gives them utility at least κ∗ and (∀a, g) uag ≤ κ∗, they must get at least some fractional
part of multiple goods. Thus they have degree at least two, and are internal nodes in T .

As the algorithm progresses, an agents’ internal children may be removed. An internal
good is removed in this way only when it is allocated to one of its children. We call such an
internal child good taken from its parent, and the (fractional) utility to the parent stolen.
Thus, if good g was taken from agent a by agent b, then the stolen utility amounts to uagxag.
The other two components of an agent’s utility in T are its remaining children and its parent.
Fix some execution of the algorithm. Let ca be the utility given to agent a by its non-stolen
children in the allocation computed by the algorithm, and let pa be the utility its parent
gives it in T , i.e. if g is the parent of a, pa = uagxag. Let sa denote the utility stolen from a.

Thus sa + pa + ca ≥ κ∗, since X̂ is an optimal solution to LP1.
An agent a gets less than κ∗

n
utility iff ca < κ∗

n
and a’s parent good g is allocated to one

of a’s siblings, b. Agent b can only be allocated g if cb < ca < κ∗

n
. However, we will show

max{ca, cb} ≥ 3κ∗

2n
. Note that a and b must have an agent ancestor since the tree is rooted

at an agent, and thus sa + sb ≤ da+db

n
κ∗ ≤ (1− 3

n
)κ∗ by Lemma 4. Further, g can provide at

most κ∗ utility in total, so pa + pb ≤ κ∗, and sa + ca + pa + sb + cb + pb ≥ 2κ∗ since X̂ is a
κ∗ fractional allocation. Thus ca + cb ≥ 3κ∗

n
. So every agent gets utility at least κ∗

n
.

The following lemma is crucial for the proof of Theorem 3.

Lemma 4. Fix any tree T of GX̂ , and root it at an agent. Let n′ = |A ∩ V [T ]|. For each

agent a ∈ V [T ], let da be the number of agent descendants of a (excluding a) in T . If X̂ is
a fractional κ∗-allocation, then in any fixed execution of Algorithm Allocate(), sa ≤ da

n′
κ∗

for all agents a.

Proof. Consider any tree T in GX̂ and let n′ = |A ∩ V [T ]|. Proceed by induction on da. For
the basis, consider an agent a with da = 0. It’s only children are leaf goods, since GX̂ is
bipartite. Thus sa = 0 ≤ da/n since only non-leaf goods can be stolen from an agent. For
the induction step, consider an agent a with internal children goods {g1, . . . , gt} taken by
agents {1, 2, . . . , t}. Agent i could only have taken good g = gi from a if ci < κ∗

n′
. By the

induction hypothesis, si ≤ di

n′
, thus ci + pi + si ≥ κ∗ implies uigxig = pi > (1− di+1

n′
)κ∗. This

in turn implies uagxag < di+1
n′

κ∗. Therefore the total utility stolen from a is

sa =
t∑

i=1

uagi
xagi

< κ∗
t∑

i=1

di + 1

n′
≤ dr

n′
κ∗

which completes the induction. Note that if di > 0, then in fact si < di

n′
κ∗.

Lemma 5. The integrality gap of LP1, the maximum of
LP ∗

1

IP ∗
1

over all MMA instances, is

exactly n.
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3.3 Allowing for Poverty: Bicriteria Solutions

Here we consider the case when there exist other mechanisms to compensate some fixed
fraction of the agents, or when it is acceptable for some of the agents to receive nothing.
Call such agents poor. Given some number of agents that we may mark as poor, we seek
to maximize the minimum utility received by those agents not marked poor. In this, the
main result of the paper, we show that the deterministic algorithm below gives

⌈
(1− 1

k
)n

⌉
agents utility at least OPT

k
, for any k ∈ Z+, and that our LP precludes any better results via

rounding. We annotate the algorithm to simplify the proof. The significance of the tokens
is explained below.

Algorithm: Bicriteria-Allocate(k)

Construct LP1 and find an optimal acyclic solution X̂ for it as in Algorithm Allocate()
for each tree T in GX̂

Root T at some agent arbitrarily.
for each agent a of T , in postfix order

Allocate an agent a’s leaf goods to it.
if a is now κ∗

k
-happy

then remove it and its leaf goods from the graph.
else if giving agent a its parent good p as well will not make it κ∗

k
-happy

then mark agent a “poor” and remove it and its leaf goods.

else


if p is currently unallocated

then allocate p to a and remove a and all goods allocated to it.
else mark agent a as “waiting for siblings.”

if all of a’s siblings are either waiting for siblings or have been removed

then

{
mark agent a and all its waiting siblings poor, remove them, and add b
tokens to p’s parent agent a′, where ua′gxa′g ∈ (κ∗ b−1

k
, κ∗ b

k
].

The algorithm finds κ∗ and constructs LP1, solves it and converts the solution into an
“acyclic” solution (i.e., one in which GX is a forest). The algorithm then proceeds up the
tree, in e.g. a postorder traversal of the agents, allocating an agent’s leaf goods to it, checking
if this makes it κ∗

k
-happy, and allocating its parent good to it if not. The algorithm continues

in this way until it cannot make an agent κ∗

k
-happy in this way, either because its remaining

children and parent are insufficient (denoted event I), or because its parent has already been
allocated to some other agent (called event II). In either event, simply mark the agent as poor,
remove it and the goods allocated to it, and continue. (We make the distinction between
event I and event II only to facilitate the proof.) Ideally, at most 1/k fraction of the agents
from each subtree would be marked poor. Since this is not the case, an accounting mechanism
is needed, in which subtrees donate and receive agents from other subtrees. The tokens in
the algorithm serve this purpose; each token denotes a donated agent. Thus if don(T ) agents
are donated by a tree T (i.e. added to some agent’s account not in T when an agent in T
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was removed), rec(T ) agents are received by T from other subtrees, and poor(T ) agents in
T are marked poor, the algorithm ensures that |A ∩ V [T ]|+ rec(T )− don(T ) ≥ k · poor(T ).

Theorem 4. Given any k ∈ Z+, the above algorithm yields an allocation giving at least⌈
(1− 1

k
)n

⌉
agents utility at least OPT

k
.

Given an LP solution X, we say an algorithm respects X if its output allocation π gives
g ∈ G to a ∈ A only if xag > 0.

Theorem 5. Given any k ∈ Z+ and any optimal LP solution X, no algorithm respecting
X can yield an allocation giving at least

⌈
(1− 1+ε

k
)n

⌉
agents utility at least 1+ε

k
OPT for any

ε > 0.

4 Big Goods/Small Goods Max-Min Allocation.

In this section we consider flow based algorithms. We give an x approximation in the
case that uag ∈ {0} ∪ [1, x] for some x ≥ 1, and an O(

√
n) approximation algorithm for

the Big Goods/Small Goods MMA variant, in which goods can be partitioned into two
sets G = GB ] GS such that for some x > 1, for all agents a ∈ A, gB ∈ GB, gS ∈ GS,
u(a, gS) ∈ {0, 1} and u(a, gB) ∈ {0, x}. All relevant proofs not appearing in this section are
in Appendix C. We begin with the following observations.

Lemma 6. Max-Min Allocation instances in which uag ∈ {0, 1} for all a ∈ A, g ∈ G can be
solved in polynomial time, using max-flow computations.

Corollary 1. Max-Min Allocation instances in which there exists x > 1 such that uag ∈ {0} ∪ [1, x]
for all a ∈ A, g ∈ G can be x-approximated in polynomial time, by solving the instance exactly
using utilities u′ag = min{uag, 1}.

The following is a generalization of Hall’s theorem that will be needed.

Lemma 7. Given a set A of n agents, nV goods, and additive utilities uag ∈ {0, 1}, let
Sa := {g | uag = 1}, SI := {g | (∃a ∈ I)(uag = 1)} = ∪a∈ISa, and f(I) := |SI |. If
(∀I ⊆ A, I 6= ∅)(f(I) ≥ V |I|) then there exists a V -allocation on these goods.

Given an instance of Big Goods/Small Goods MMA, with uag ∈ {0, 1, x} for all a and
g, we assume that the optimum satisfies OPT ∈ [x, 2x] and that x ≥

√
n. We justify these

assumptions later, in the proof of Theorem 6. For now, let b be the number of agents
receiving big goods in some x allocation (henceforth called “big agents”), and s = n − b
be the number of agents receiving only small goods in that x allocation (henceforth called
“small agents”).

Lemma 8. There is a polynomial time algorithm that yields a bx
s
c allocation.
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Proof. Let AB be the set of agents i with |Si| < x. The algorithm is as follows: Find a
maximum cardinality matching from big goods to agents containing AB in the matching,
and allocate the big goods accordingly. Let A′

B be the set of agents receiving big goods.
Allocate the small goods to the remaining agents, AC := A−A′

B, in the fairest way possible,
via a feasible flow algorithm.

The agents in A′
B have utility x. Note that |A′

B| ≥ b, so |AC | ≤ s. Since each agent i in
AC has |Si| ≥ x, (∀I ⊆ A, I 6= ∅)(f(I) ≥ x). We conclude that (∀I ⊆ AC)(f(I) ≥ x

|AC |
|I|).

Applying Lemma 7 with V = x
|AC |

, there must be a b x
|AC |
c allocation on the agents of AC

using only small goods. Since s ≥ |AC |, and the uag ∈ {0, 1} case is solved exactly, the above
algorithm returns a bx

s
c allocation.

The O(
√

n) approximation algorithm splits up the instance into two subproblems. In
one of these subproblems, a large fraction of the agents (at least 1 − 1√

n
) will receive big

goods. The other subproblem can be approximated adequately with only small goods. Recall
Sa := {g | uag = 1}, SI := ∪a∈ISa, and f(I) := |SI |. The following is a useful subroutine to
find the maximum cardinality subset J ⊆ A such that f(J) ≤ c|J |.

Construct a bipartite graph G on the agents and goods, with (a, g) ∈ E[G] if uag = 1,
having unit capacity. Add a sink node t with (g, t) ∈ E for each good g, also having unit
capacity. Finally add a source node s, with edges (s, a) to all agents a of capacity c. Compute
a min-cut, and output the set of agents in the source side of the min-cut.

Algorithm: root-N-Approx()

comment: Let AB = {i | (|Si| < x)}. These agents must be big in any x allocation.

Remove AB from the instance for now. Let AR be the set of agents that remain.

Find the max cardinality subset J ⊆ AR such that f(J) ≤ x|J |√
n

as described above.

comment: Subproblem 1 contains agents in J ∪ AB, all big goods, and goods in SJ .

Solve subproblem 1 using the bx
s
c approximation algorithm given above.

comment: Subproblem 2 will involve all the other agents and all the leftover small goods.

Solve subproblem two directly using the flow algorithm.

Lemma 9. The algorithm above yields a b x√
n
c allocation.

Proof. Consider subproblem 1. Since f(J) ≤ x|J |√
n
, in the x allocation fewer than |J |√

n
agents

in J are small. Thus in this instance s ≤ |J |/
√

n ≤ n/
√

n =
√

n, and we can obtain a b x√
n
c

allocation for the agents in this subproblem (i.e. J ∪AB). Now consider subproblem 2. Let

J := AR − J . Note that for all K ⊆ J , it must be that |SK − SJ | > x|K|√
n

. If not, then

f(J ∪ K) ≤ (x|J |/
√

n) + (x|K|/
√

n). Since |J | + |K| = |J ∪ K|, this would violate the
maximality of J . Applying Lemma 7, there is a b x√

n
c allocation in this subproblem using

only small goods not wanted by any agents in J . Since it uses only small goods, we can solve
it directly using the flow algorithm to obtain such an allocation.
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Theorem 6. There is a polynomial time O(
√

n) approximation algorithm for Big Goods/Small
Goods Max-Min Allocation.

Proof. Assuming OPT ∈ [x, 2x] and x ≥
√

n, Root-N-Approx returns a b x√
n
c allocation,

and so x ≥
√

n and OPT ≤ 2x imply b x√
n
c > x

2
√

n
≥ OPT

4
√

n
. So under these assumptions, we

obtain a 4
√

n approximation. We can dismiss these assumptions as follows: If OPT ≥ 2x,
then by Lemma 3, we can obtain a 2 approximation with a LP based algorithm. If x <

√
n,

we can obtain a
√

n approximation via Corollary 1. Finally, if OPT < x, we can run the
algorithm again using u′ag = x

2
if uag = x, and u′ag = uag otherwise.

5 Finding Strongly Max-Min Fair Matchings.

We conclude our algorithmic investigations of MMA with a polynomial time algorithm to
find strongly max-min fair allocations when m = n.

A strongly max-min fair matching is defined as follows. For any allocation π, let U(π) =

{u(a, π(a)) | a ∈ A} be the multiset of utilities received by the agents. Let ~U(π) ∈ Nn be the

vector of utilities in U(π), sorted in non-decreasing order. Let ~Ui(π) denote the ith coordinate

of ~U(π). We write π is fairer than π′, denoted π � π′, if ∃j such that ~Uj(π) > ~Uj(π
′) and

∀i < j, ~Ui(π) = ~Ui(π
′). We write π is as fair as π′, denoted π � π′ if π � π′ or ~U(π) = ~U(π′).

An allocation π is strongly max-min fair if ∀π′, π � π′.
Note that for the special case that m = n, a strongly max-min fair allocation corresponds

exactly to a lexicographically maximal matching in a suitably weighted bipartite graph.
Such a matching can be found in polynomial time via an algorithm of Sokkalingam and
Aneja [30]. We provide an alternative, conceptually simpler algorithm based on reducing
lexicographically maximal matchings to maximum weight matchings. A similiar technique
is used by Irving et al. [13] to find “lexicographically maximum stable marriages.”

The Algorithm: Given a bipartite graph (A,G, E), with edge (a, g) weighted by uag,
delete all edges (a, g) such that g is not among agent a’s n favorite (highest utility) goods.
Let E ′ be the remaining edges. Let V := {uag|(a, g) ∈ E ′} be the set of utility values on the
remaining edges. If uag is the ith smallest element of V , let φ(uag) := i. Define τ : N → N
by τ(k) :=

∑k
i=1 n(n2−i), and compute a maximum weight matching on the graph (A,G, E ′)

with edge weights wag := τ(φ(uag)).

Theorem 7. The above algorithm returns a strongly max-min fair allocation when m = n.

Proof. In this proof, we equate matchings and allocations, since any allocation that isn’t a
matching is a 0-allocation. For a matching M , define its weight to be w(M) =

∑
(a,g)∈M wag.

It suffices to prove that for any two matchings M and M ′, M �M ′ implies w(M) > w(M ′).
Suppose that M �M ′. We will show w(M)− w(M ′) > 0.

Let ~U(M ′) = ~x, ~U(M) = ~y. We extend the definition of � to relate pairs of vectors in

Rn whose values are sorted in non-decreasing order in a natural way: ~a � ~b iff (∃j, ∀i <

10



j) (ai = bi and aj > bj), and ~a � ~b if ~a � ~b or ~a = ~b. Given a fixed MMA instance
determining φ, let V = {uag|a ∈ A, g ∈ G} as before, and define f(a) = τ(φ(a)) for a ∈ V
and f(~a) :=

∑n
i=1 τ(φ(ai)) for ~a ∈ V n. We give vectors ~r, ~s such that ~x � ~r ≺ ~s � ~y and

show w(M ′) = f(~x) ≤ f(~r) < f(~s) ≤ f(~y) = w(M).
Suppose that for all i < k, xi = yi and xk < yk. Let umax = maxa,g{uag}. Let ~r =

(x1, x2, . . . , xk−1, xk, umax, umax, . . . , umax), let ~s = (y1, y2, . . . , yk−1, yk, yk, yk, . . . , yk). Then,
since f is strictly increasing, it is clear that f(~x) ≤ f(~r) and f(~s) ≤ f(~y). So it suffices to
prove f(~r) < f(~s), which can be done with a strait-forward calculation.

A (m − n + 1) Approximation for Submodular Max-Min Allocation. Merely in-
terpreting an instance of MMA with submodular utilities u as one with additive utilites
u′ag = u(a, {g}) and obtaining a max-min fair matching yields an (m−n+1) approximation
to the original instance, even though the matching leaves m−n goods unallocated. We defer
the proof of Lemma 10 to Appendix C.

Lemma 10. Given a submodular instance I of MMA, a max-min fair matching M on
utilities u′ag = u(a, {g}) is a (m− n + 1) approximation to I.

Near Optimality of Edge Weights. Our algorithm uses nearly optimally sized weights.
Consider any function f : N→ N, obeying the following property: if the weight of a matching,
M , is defined as w(M) =

∑
(a,g)∈M f(uag), then every maximum weight matching is a strongly

max-min fair allocation. The proof of the following theorem appears in Appendix C.

Theorem 8. For any function f satisfying the above property, there exists an x such that
f(x) ≥ nn2−2n+1.

6 Conclusions

We have given improved approximation algorithms and hardness results for several variants
of the problem of finding max-min fair allocations of indivisible goods. However, there
remain many interesting open problems pertaining to the allocation of indivisible goods.
For example, there is still a large gap in the known approximation hardness of the additive
and value derived variants of the Max-Min Allocation problem. The highly constrained Big
Goods/Small Goods variant in particular may yield insight into at least one core source of
hardness in the problem. Lastly, it remains open whether there exists a way to strengthen
the LP for additive Max-Min Allocation with polynomial time separable constraints, to
overcome the deficiencies inherent in the basic LP formulation.
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discussions and thoughtful guidance, and Kedar Dhamdhere for helpful suggestions. I addi-
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A Hardness Proofs

Proof of Theorem 2. This proof is inspired by work in [25]. Let G be a set of goods with |G| = 2k.
Let S̄ = G − S for S ⊆ G. Consider utility functions of type u : A × 2G → {0, 1} obeying the
following property for every a ∈ A and S ⊆ G

u(a, S) =


0 if |S| < k
1 if |S| > k
(u(a, S̄) + 1) mod (2) if |S| = k

Consider the utility function for a fixed agent, i.e. let ua(S) := u(a, S). A simple argument given
in [25] shows there to be exactly 2(2k

k ) such functions ua. Given any such function ua : 2G → {0, 1}
obeying the above property and any sized k set of goods, S∗, we can construct a function ub : 2G →
{0, 1} such that ∀S ⊆ G, S 6= S∗, ub(S) = ua(S) and ua(S∗) = (ub(S∗) + 1) mod (2). Consider
the instance of MMA with A = {a, b} and utilities u(a, S) = ua(S), u(b, S) = ub(S). WLOG,
assume u(a, S∗) = 1. Then allocating S∗ to a and S̄∗ to b is a 1-allocation, whereas everything else
is a 0-allocation. To obtain a 1-allocation, any algorithm must thus search for a S∗ among

(
2k
k

)
possible size k subsets of G. This must take Ω(

(
2k
k

)
) oracle accesses, and thus Ω(

(
2k
k

)
) time. Since(

2k
k

)
≈ 1√

πk
22k via Stirling’s approximation, any algorithm must take Ω(2|G|(|G|−1/2)) time. Since

any f(n, m) approximation algorithm must compute a 1-allocation, the claim follows.

Proof of Lemma 1. We reduce (3,B2)-SAT to MMA. (3,B2)-SAT is the set of 3-SAT instances in
which every literal occurs exactly twice. That it is NP−hard follows immediately from [2] in which
MAX-(3,B2)-SAT is shown to be NP−hard even to approximate beyond some constant. Let F
be a (3,B2)-SAT instance with variables {x1, . . . , xn} and clauses {C1, . . . , Ck}. Create 2n agents
A = {(xi, v)|1 ≤ i ≤ n ∧ v ∈ {true, false}}. Let v̄ indicate “not v.” Create three groups of goods:
n goods with value 2, GB = {gB

1 , . . . , gB
n }, k “clause” goods with value 1, GC = {gC

1 , . . . , gC
k }, and

2n − k = 2n
3 “dummy” goods with value 1, GD = {gD

1 , . . . , gD
2n−k}. The utilities are as follows:

u(a, gB
i ) = 2 if a ∈ {(xi, true), (xi, false)}, u(a, gC

i ) = 1 if a = (xj , v) and the boolean assignment of
xj to v causes Ci to evaluate to true, and u(a, g) = 1 for all a ∈ A, g ∈ GD. All other utilities u(a, g)
are zero. Now note that there is a 2-allocation iff F has a satisfying assignment A. For suppose π
is a 2-allocation. Since there are n “big” goods GB, and 2n “small” goods GC ∪ GD, a conservation
of utility argument implies π gives each agent utility exactly two. Thus every goods g ∈ GC is
allocated to an agent not receiving a big good. It follows that A = {(xi, v)|gB

i ∈ π((xi, v̄))} is an
assignment satisfying F , since every clause is satisfied by some agent receiving only small goods,
and one of (xi, 0) or (xi, 1) must receive a big good. Conversely, any allocation A gives a 2-allocation
π: allocate gB

i to (xi, v) if (xi, v̄) ∈ A. Let AB be the agents receiving some big good gB
i . Allocate

goods in GC to any agent not in AB obtaining utility one from them, and goods in GD to the
remaining agents with utility less than 2. Let AC be those receiving utility at least 2 from goods
in GC . Agents in AB clearly have utility 2. Further, AB ∩ AC = ∅, and since each literal appears
exactly twice in F , no agent in AC is allocated more than 2 goods from GC . Let AD = A−AB∪AC .
Collectively, AD get k−2|AC | goods in GC . Thus 2|AD|−(k−2|AC |) = 2(|AC |+ |AD|)−k = 2n−k
goods valued at one by everyone suffices to “fill in the gaps” and create a 2 allocation. GD does
the trick. Furthermore, if there is no 2-allocation, the optimal is then at best a 1-allocation. Thus,
for any ε > 0, a (2 − ε) approximation can distinguish satisfiable instances of (3,B2)-SAT from
unsatisfiable ones, completing the proof.
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B LP Related Proofs

B.1 Properties of LP0 and LP1

Proof of Lemma 2. Suppose there is a cycle, C, in GX . We remove it without decreasing the utility
received by any agent by pushing flow around C in order to eliminate an edge e as follows: Suppose
C = a1g1a2g2 . . . akgka1, where a1, . . . , ak are the agents of the cycle, and g1, . . . , gk are the goods.
Suppose a1 takes ak’s share of gk, i.e. set x1k ← x1k + xkk. We consider this as a flow, and set
f0 = xkk. To keep a1’s utility fixed, a1 gives up u1kxkk utility in the form of g1 to a2. That is,
set x11 ← x11 − f1 and x21 ← x21 + f1, where f1 = u1k

u11
xkk. To keep a2’s utility fixed, a2 gives up

u21f1 utility in the form of g2 to a3, and so on. In general, fi = ui,i−1

uii
fi−1 for i > 0. Agent ak thus

receives uk,k−1fk−1 utility from its additional portion of gk−1 in exchange for giving its fraction of
g1 to a1. Thus agent ak gains utility uk,k−1fk−1 − ukkf0. If this quantity is zero, we have a new
allocation achieving the same utilities for each agent, such that xkk = 0 and so an edge of C has
been removed without adding any edges. If the quantity is positive, ak is better off than before, and
every other agent has the same utility as before. If the quantity is negative, we can merely reverse
the direction of flow. That is, we give f0 units of gk from a1 to ak, f1 units of g1 from a2 to a1,
and so on. If any agent ai does not have fi−1 units of gi−1 to give, we can simply multiplicatively
scale down all flows by xi,i−1

fi−1
. This is acceptable since for each i and j, fi = cijfj for some constant

cij . Now the flow is routable, at least one edge is deleted, the utility of ak increases, and the utility
of the other agents remains the same. Repeating this process at most |E[GX ]| times, we find a
solution X̂ with GX̂ acyclic and thus a forest.

Lemma 11. LP ∗
1 = κ∗ and IP ∗

0 ≤ LP ∗
1 .

Proof. By definition, LP ∗
1 = LP (κ∗)∗ ≥ κ∗. Note that LP (α)∗ ≤ LP (β)∗ if α ≤ β. Thus if

LP (κ∗)∗ = κ∗ + ε for some ε > 0, then LP (κ∗ + ε)∗ = κ∗ + ε, contradicting the maximality of κ∗.
So LP ∗

1 = κ∗. Suppose IP ∗
0 > LP ∗

1 , so that IP ∗
0 = κ∗ + ε for some ε > 0. Restricting the utility

any good gives to any agent to be under IP ∗
0 cannot change the value of the optimum, and thus

LP (κ∗+ ε)∗ ≥ IP (κ∗+ ε)∗ = κ∗+ ε. This contradicts the maximality of κ∗, and so IP ∗
0 ≤ LP ∗

1 .

Proof of Lemma 3. Let LP ∈ {LP0, LP1}. Solution X̂ is optimal, so each agent a receives
∑

g uagxag ≥
LP ∗ utility. Let p be the parent of a in GX̂ , if it exists. The allocation given by the algorithm gives
agent a utility at least LP ∗− uapxap ≥ LP ∗− uap ≥ LP ∗− β ·LP ∗ = (1− β)LP ∗. Thus any agent
receives (1− β)LP ∗ utility. Additionally, IP ∗

0 ≤ LP ∗
0 trivially, and IP ∗

0 ≤ LP ∗
1 by Lemma 11, and

so IP ∗
0

(1−β)LP ∗ ≤ 1
1−β , proving the second part of the claim.

Proof of Lemma 5. Since Algorithm Allocate() rounds the LP solution to obtain an n approxi-
mation, the integrality gap is at most n. We now show that the integrality gap is at least n. Consider
the following value derived MMA instance: A = {1, 2, . . . , n}, G = GS∪GB where GS = {gS

1 , . . . , gS
n}

are small goods with value v(g) = 1, and GB = {gB
1 , . . . , gB

n−1} are big goods with value v(g) = n.
Set uag = n for all a ∈ A, g ∈ GB, and uag = 1 if g = gS

i and a = i, and uag = 0 otherwise. Clearly,
IP ∗ = 1, since some agent will receive only small goods, and each agent only values one small good
at positive utility. However, LP ∗

1 ≥ n, since we can allocate gS
i to agent i for all i, and for each big

good gB
i , we can allocate 1

n of it to agent n, and n−1
n of it to agent i. Figure 1 shows the associated

LP solution as a graph with edge (a, g) weighted by uagxag.
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Figure 1: An LP solution with value n. Edges (a, g) are weighted by uagxag. Agents are
squares and goods are circles

Proof of Theorem 5. Consider the tree in figure 1. Let Tn be that tree with n agent nodes. Given
any k ∈ Z+, consider an MMA instance with n = ck for some c ∈ Z+, with LP solution X such
that GX consists of c copies of Tk. Clearly, LP ∗ = k. Consider any tree Tk. If the root agent
values all small goods, instead of just one in the case of the proof of Lemma 5, all the small goods
can be given to the root, and the big good gB

i can be given to agent i. This yields an integral k
allocation. However, any allocation given by an algorithm respecting X obtains minimum utility at
most one. Thus, for such an algorithm to give all non-poor agents utility at least 1+ε

k OPT = 1 + ε,
at least one agent from each copy of Tk must be poor. Thus at least n

k agents must be poor. But
if ε > 0 then

⌈
(1− 1+ε

k )n
⌉

= (n − c + 1) and at most n − c agents are non-poor. So it cannot be
that

⌈
(1− 1+ε

k )n
⌉

agents get utility at least 1+ε
k OPT.

B.2 Bicriteria Related Proofs

Proof of Theorem 4. By Lemma 11, OPT ≡ IP ∗
0 ≤ κ∗, so it suffices to prove that

⌈
(1− 1

k )n
⌉

agents
receive utility at least κ∗

k . Suppose the algorithm above runs Algorithm Allocate() and neither
of events I or II occur. Then the algorithm makes every agent κ∗

k -happy, and we are done.
If event I or event II occur, the algorithm will by then have removed some portion of T from

the instance, declared some agents poor, compensated others, and in the case of event II, stolen
utility from portions of the tree not yet removed. Fix some execution ξ of the algorithm, and
suppose that between initialization and the first event in {I, II} the algorithm removes a subtree
of T called T1, and between future consecutive events it removes subtrees T2, . . . , Tq labelled in
the order they are removed. Thus T =

⋃
i Ti. Let poor(Ti) be the number of agents in V [Ti]

marked poor during execution ξ, and let A(Ti) := A ∩ V [Ti]. We desire that poor(Ti)
|A(Ti)| ≤

1
k for each

Ti. Since this is not always the case, an accounting mechanism is required, so that subtrees with
k · poor(Ti) = |A(Ti)| − b can “donate” up to b agents to subtrees Tj with k · poor(Tj) > |A(Tj)|.
The tokens keep track of such donations in the following way: if the algorithm gives b tokens to
agent a ∈ Tj upon removing the final elements of Ti, then Ti is said to donate b agents to Tj . We
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show that for any i, if Ti donated x agents to another subtree under ξ and received y agents as
donations from other subtrees under ξ, then poor(Ti)

|A(Ti)|+y−x ≤
1
k . This is sufficient to prove poor(T )

|A(T )| ≤
1
k .

Proving all agents not marked poor are κ∗

k -happy completes the proof.
For agent a ∈ A(Ti) we define ca, sa and pa as before but on the tree Ta :=

⋃
j≥i Tj . For

example, sa is the utility stolen from a by agents in Ta. The quantities ca and pa remain the same
as before. Define rec(Ti) :=

∑
a∈A(Ti)

reca, the number of agents donated to Ti, and define don(Ti)
to be number of agents Ti donates to other subtrees. The algorithm maintains two invariants:

1. When Ti is removed, poor(Ti)
|A(Ti)|+rec(Ti)−don(Ti)

≤ 1
k .

2. For each agent a, (ca + pa + sa + κ∗

k reca) ≥ κ∗.

The first invariant ensures that with the corrections made by the accounting mechanism, each
subtree removed marks at most 1/k of its agents poor. The second invariant says that the algorithm
compensates agents for “inter-subtree theft” sufficiently so that they still have κ∗ utility if each
token is worth 1

k utility.
We proceed by induction up from the leaves of the tree. For the base case, there is nothing

to prove for invariant one, and since rec(T1) = 0 and X̂ is a fractional κ∗-allocation, invariant two
holds.

For the induction step, we require a generalization of Lemma 4. For the purpose of bounding
sa for a ∈ A(Ti), we can essentially treat tokens in reca′ as descendants of a′. Define Desc(a′, T )
as the descendants of agent a′, not including a′, in tree T . Then by Lemma 12,

sa ≤
κ∗

k

∑
a′∈Desc(a,Ti)

(1 + reca′)

Suppose the algorithm removes the remains of Ti upon the occurrence of event I. Note (ca +
pa + sa + κ∗

k reca) ≥ κ∗, which implies (sa + κ∗

k reca) > κ∗(1− 1
k ). Applying Lemma 12 yields

κ∗
(
1− 1

k

)
< (sa + κ∗

k reca)
≤ κ∗

k

∑
a′∈Desc(a,Ti)

(1 + reca′) + κ∗

k reca

= κ∗

k (rec(Ti) + |A(Ti)| − 1)

This implies rec(Ti)+ |A(Ti)| > k. Since poor(Ti) = 1 and don(Ti) = 0, invariant one is maintained.
Since no utility is stolen from other subtrees, invariant two is maintained.

Lastly, suppose the algorithm removes the remains of Ti upon the occurrence of event II. Some
good g has r ≥ 2 children 1, . . . , r such that ci < κ∗

k for all i ∈ {1, 2, . . . , r}. Let a be g’s parent
in T , and suppose uagxag ∈ (κ∗ b−1

k , κ∗ b
k ]. Let S = {1, 2, . . . , r}, and N = |A(Ti)| + rec(Ti). Using

invariant two, and summing over all agents in S, we obtain rκ∗ ≤
∑

a∈S(ca + pa + sa + κ∗

k reca).
Combining ci < κ∗

k for all i with
∑

a∈S pa ≤ κ∗ − uagxag < κ∗(1 − b−1
k ) yields rκ∗ < rκ∗

k + κ∗(1 −
b−1
k ) +

∑
a∈S(sa + reca). With the bound on sa given by Lemma 12, we conclude

rκ∗ < rκ∗

k + κ∗(1− b−1
k ) +

∑
a∈S(sa + reca)

≤ rκ∗

k + κ∗(1− b−1
k ) +

∑
a∈S reca +κ∗

k

∑
a∈S

∑
a′∈Desc(a,Ti)

(1 + reca′)
= κ∗(1− b−1

k ) + rκ∗

k + κ∗

k (|A(Ti)| − r) + κ∗

k rec(Ti)
= κ∗(1− b−1

k ) + κ∗

k (|A(Ti)|+ rec(Ti))
= κ∗(1− b−1

k ) + N κ∗

k
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Thus rk < N + (k − b + 1) and so N > (r − 1)k + b− 1. Since N is an integer, N ≥ (r − 1)k + b.
The first invariant is maintained because don(Ti) = b and poor(Ti) = r − 1. The second invariant
is maintained as well, because uagxag ≤ κ∗ b

k . We conclude that at most 1
k fraction of the agents

are marked poor. Finally, the algorithm explicitly guarantees that every agent not marked poor is
κ∗

k -happy, and thus the algorithm gives
⌈
(1− 1

k )n
⌉

agents utility at least κ∗

k .

Lemma 12. For ca, pa, sa and Desc(a, T ) defined in the proof of theorem 4, under any fixed ex-
ecution of algorithm Bicriteria-Allocate(), for every agent a in subtree Ti removed between
consecutive events,

sa ≤
κ∗

k

∑
a′∈Desc(a,Ti)

(1 + reca′)

Proof. Proceed by induction. Let Υa :=
∑

a′∈Desc(a,Ti)
(1 + reca′). Lemma 4 takes care of the

base case in which agent a has reca = 0 and reca′ = 0 for all descendants a′ of a. For the
induction step, Consider an agent a ∈ Ti, where Ti is one of the trees removed by the algorithm
between events. Suppose agent a has children goods {1, 2, . . . , r} taken by agents {1, 2, . . . , r}
in Ti. Agent j could only have taken good j from a if cj < κ∗

k By the induction hypothesis,
sj ≤ κ∗

k Υj . Since cj + pj + sj + κ∗

k recj ≥ κ∗, it follows that pj > κ∗

k (k − 1− recj −Υj), which
implies uajxaj ≤ κ∗ − pj < κ∗

k (1 + recj +Υj). The utility stolen from a by agents in Ti is thus
bounded by sa ≤

∑r
j=1

κ∗

k (1 + recj +Υj) = κ∗

k Υa, completing the proof.

C Other Results

Proof of Corollary 1. Let π∗ be an optimal solution to the original instance. Use the flow algorithm
given above for the case that all utilities lie in {0, 1} with the modified utilities u′ag = min{uag, 1}.
Let the resulting output be π. Suppose the minimum utility received by any agent under π∗ is V ,
i.e. mina u(a, π∗(a)) = V . Then mina u′(a, π∗(a)) ≥ V/x, and so by the optimality of π (in the
modified instance), π is a V/x allocation in the modified instance. It immediately follows that π is
a V/x allocation in the original instance, and thus an x approximation.

Proof of Lemma 7. Consider a flow network with source s, sink t, edges (s, a) of capacity V to
for each agent a, edges (g, t) of unit capacity for each good g, and edges {(a, g)|uag = 1} of unit
capacity. Since there exists an integral maximum flow, there is an V allocation iff there is a flow
of value nV . Clearly, a V allocation can be easily obtained from a flow of value nV . So suppose
by way of contradiction that (∀I ⊆ A, I 6= ∅)(f(I) ≥ V |I|) and there is a cut (S, S̄) of capacity
cap(S, S̄) < nV . Let AS = A∩S. Then for each a /∈ AS , (s, a) ∈ ∂S and contributes V to the cut’s
capacity. Additionally, the agents in AS must contribute at least f(AS) to the cut’s capacity. Thus
cap(S, S̄) < nV implies |A − AS |V + f(AS) < nV , and so f(AS) < |AS |V , a contradiction.

Proof of Lemma 10. Let M be any max-min fair matching, and π∗ be the optimal allocation in
the original (submodular) instance. Suppose by way of contradiction that the above claim is
false. By submodularity, for each agent a, and set of goods S u(a, S) ≤

∑
g∈S u(a, g). Label the

agents such that agent i is the ith worst off agent under π∗. For each i, ~Ui(π∗) ≤
∑

g∈π∗(i) u(i, g),

and so maxg∈π∗(i){u(i, g)} ≥ 1
|π∗(i)|

~Ui(π∗). In any non-trivial instance, every agent receives at

least one good in π∗, so no agent receives more than m − n + 1 goods. Let VM = ~U1(M) be
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the minimum utility received by any agent under M . Each agent receives utility at least (m −
n + 1)VM + ε under π∗, for some ε > 0. It follows that for each agent i, maxg∈π∗(i){u(i, g)} ≥
(m−n+1)VM+ε

m−n+1 > VM . This contradicts the max-min fairness of M , since some matching M ′ ⊆
{(a, g)|g = arg maxg∈π∗(a){u(a, g)}} obtains a higher minimum utility.

Proof of Theorem 8. Note that if M is strongly max-min fair with utilities uag, then M is strongly
max-min fair with utilities u′ag = φ(uag); The total ordering on the utilities uag, and not their values,
determine what the strongly max-min fair allocations are. Thus WLOG we may consider functions
f from {1, 2, . . . , n2} to N. We will show that there exists an x ≤ n2 such that f(x) ≥ nn2−2n−1.

For fixed a, b, c, n ∈ N, such that 0 < a ≤ n2−2n+1 we construct instance In(a, b, c) as follows.
Create n agents A = {1, 2, . . . , n}, and n goods G = {1, 2, . . . , n}. Let u11 = a, uii = c for all i > 1,
and uij = b if j = (i+1) mod (n). Set the remaining utilities uij to be in {1, 2, . . . , a−1}, such that
for each v ∈ {1, 2, . . . , a−1}, uij = v for some (i, j) pair. This is possible since a−1 ≤ n2−2n. Note
that applying φ to the utilities will leave In(a, b, c) unaltered if c = b + 1 = a + 2. Suppose further
that a < b < c ≤ n2 − 2n + 3. Let M ′ = {(i, (i + 1) mod (n))|1 ≤ i ≤ n}, M = {(i, i)|1 ≤ i ≤ n}.
Note that M is the unique strongly max-min fair matching, and thus must be assigned maximum
weight. In particular, w(M) > w(M ′). Observe w(M) = nf(b) and w(M ′) = f(a) + (n − 1)f(c).
Thus nf(b) > f(a) + (n − 1)f(c), which implies f(c) − f(a) > n(f(c) − f(b)). Setting b = a + 1
yields f(c)− f(a) > n(f(c)− f(a + 1)). It follows that for any k < c

f(c)− f(1) > n(f(c)− f(2)) > n2(f(c)− f(3)) > ... > nk(f(c)− f(k + 1))

and in particular, f(c) − f(1) > nc−2(f(c) − f(c − 1)). Clearly, f must be strictly increasing in
the range [1, n2 − 2n] (consider instance In(x, x − 1, x) with x ≤ n2 − 2n to see why), and so
f(c) − f(c − 1) ≥ 1. It follows that f(c) > nc−2 if 3 ≤ c ≤ n2 − 2n + 3, and so f(n2 − 2n + 3) ≥
nn2−2n+1.
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