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Abstract

This technical report contains six final project reports contributed by participants in CMU’s Spring 2005
Advanced Operating Systems and Distributed Systems course(15-712) offered by professor Garth Gibson.
This course examines the design and analysis of various aspects of operating systems and distributed
systems through a series of background lectures, paper readings, and group projects. Projects were done
in groups of two or three, required some kind of implementation and evalution pertaining to the classrom
material, but with the topic of these projects left up to eachgroup. Final reports were held to the standard of
a systems conference paper submission; a standard well met by the majority of completed projects. Some
of the projects will be extended for future submissions to major system conferences.

The reports that follow cover a broad range of topics. These reports present a characterization of
synchronization behavior and overhead in commercial databases, and a hardware-based lock predictor
based on the characterization; design and implementation of a partitioned protocol offload architecture
that provides Direct Data Placement (DDP) functionality and better utilizes both the network interface and
the host CPU; design and implementation of file indexing inside file systems for fast content searching
support; comparison-based server verification techniquesfor stateful and semi-deterministic protocols such
as NFSv4; data-plane protection techniques for link-staterouting protocols such as OSPF, which is resilient
to the existence of compromised routers; and performance comparison of in-band and out-of-band data
access strategies in file systems.

While not all of these reports report definitely and positively, all are worth reading because they
involve novelty in the systems explored and bring forth interesting research questions.
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Abstract 

Conservative locking of shared data or code regions can 

incur substantial overhead in shared-memory parallel 

programs. Optimistic concurrency techniques have been 

proposed to allow simultaneous access to shared regions 

while maintaining program correctness. Recently proposed 

hardware-based techniques are promising since they require 

no changes to an instruction set architecture for identification 

of critical regions. However, these techniques have not been 

evaluated with commercial workloads and assume easily 

identifiable critical section boundaries. Commercial 

applications such as online transaction processing (OLTP) 

are important due to their market dominance and may benefit 

through hardware-based optimistic concurrency since they 

are multithreaded. Protection of critical sections in such 

applications may employ complex locking that could 

necessitate more sophisticated detection of critical regions for 

allowing hardware-based optimistic concurrency. 

This paper addresses these unknowns by characterizing 

locking behavior in commercial databases (OLTP on DB2 and 

Oracle) using a combination of trace-driven and cycle-

accurate full-system simulation of a distributed shared-

memory system. We further characterize synchronization in 

Pthreads and the SHORE storage manager. Finally, we 

quantify opportunity for optimistic concurrency in the 

commercial databases and propose lock prediction hardware 

for enabling hardware-based optimistic concurrency. In our 

characterization, we found that (1) the majority of locks are 

test&set variants while the remainder employ more 

sophisticated locking, (2) synchronization overhead is a 

significant fraction of execution time (40% for system 

execution time and 18% for user execution time for DB2; 20% 

and 12% for Oracle), and (3) optimistic lock speculation using 

simple lock prediction in the absence of data conflicts could 

potentially improve average performance by 30% for system 

execution and 16% for user execution. 

 

Keywords: Lock Characterization, Synchronization, Lock 
Prediction, Optimistic Concurrency 
 

1. INTRODUCTION 

 Conservative locking of shared data or code regions in 
shared-memory parallel applications can incur a substantial 
overhead in execution time. To address this issue, researchers 
have revisited the idea of optimistic concurrency (in database 
transactions) [14] and allow simultaneous access to critical 
sections through speculation techniques in hardware.  

 Recently proposed techniques [2][3][4] have focused on 
providing hardware support for concurrent execution without 
changes to an instruction set architecture. This is 
accomplished by dynamically identifying lock boundaries and 
executing speculatively in a concurrent fashion when entering 
a shared region. The execution eventually commits if 
correctness is not compromised (e.g. no races detected). 
Otherwise, rollback is initiated.  

 These techniques are promising since they require no 
recompilation of existing binaries. However, many of these 
techniques have only been evaluated using open-sourced 
benchmarks and assume that shared region boundaries are 
protected by conservative locks with simple constructs that are 
easily identifiable dynamically (i.e. by detecting atomic load-
store pairs for lock acquire and release). 

 Due to the aforementioned reasons, the applicability of 
these techniques for commercial applications (e.g. databases) 
would rely on the assumption that shared regions are protected 
by dynamically identifiable locks. Commercial applications 
are important due to their market dominance and potentially 
could benefit the most through concurrent execution due to 
their multithreaded characteristics.  

 These commercial applications may not use open-source 
lock libraries such as the simple test&set synchronization 
primitives assumed in lock speculation hardware proposed by 
Rajwar et al. [2][3].  

 In this paper, we contribute a characterization of 
synchronization behavior and overhead in OLTP on DB2 and 
Oracle. We also propose a hardware-based lock predictor 
based on the insights gained from the characterization study. 
This lock predictor could potentially benefit hardware-based 
optimistic concurrency techniques that require annotated 
critical section boundaries [5][6] by avoiding the need for 
binary rewriting (annotation of critical region boundaries) or 
modification of an instruction set architecture. 

 More specifically, this paper seeks to: (1) statically 
characterize synchronization techniques used in operating 
systems and databases, (2) dynamically characterize locking 
behavior in commercial databases via full-system simulation, 
(3) characterize opportunity for optimistic concurrency by 
speculating on locks, and (4) develop a hardware lock 
predictor for supporting optimistic lock concurrency.  

 The rest of the paper is organized as follows. Section 2 
provides background on optimistic concurrency. Section 3 
discusses various lock constructs that have been proposed in 
literature. Sections 4 and 5 present our static and dynamic 
characterization of locks. Section 6 elaborates on the proposed 
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lock predictor hardware. Sections 7 and 8 provide implications 
for future work and concluding remarks. 

 

2. BACKGROUND  

2.1. Optimistic Lock Speculation 

 We refer to optimistic lock speculation as a hardware 
technique for dynamically identifying a critical section and 
executing within it without acquiring the locks needed. This 
dynamic execution can be thought of as a database transaction 
that commits only if atomicity and isolation properties can be 
guaranteed. Specifically, no two processors executing in a 
critical section should have their accesses appear non-atomic 
to one another. Both should have executed in the appearance 
of some serial order. By allowing such speculation, overall 
concurrency can increase when multiple threads execute the 
critical section simultaneously but operate on different sets of 
data. Bypassing of lock acquires and releases can also reduce 
execution time overhead, which can be costly in a distributed 
shared-memory system.  

 Figure 1 illustrates the process of optimistic lock 
speculation. Part a shows the normal lock execution without 
any speculation, where the lock acquire and release overhead 
is incurred. Part b shows the lock speculation when a race 
does not happen. In this case, the acquire and release are 
bypassed and their overheads are eliminated. In part c, the 
case where a data race occurs is shown. To maintain 
correctness when a data race is detected violating processors 
must rollback and restart. Note that if there is no data race 
(e.g. the store by CPU2 was to Y instead of X), simultaneous 
access to the critical regions as depicted in part c will not 
result in rollback and therefore, overall concurrency improves. 

2.2. Techniques for Optimistic Concurrency 

One of the earliest forms of eliminating lock maintenance 
appeared in Optimistic Methods for Concurrency Control [14] 
which propose to maximize the throughput of database 
transactions by allowing concurrent accesses to shared data 
between processors and providing a validation phase in order 
to ensure correctness. Although proposed in the context of 
transactions for databases, the key idea borrowed from this 
work is to optimistically enable a processor to buffer 
speculative data and release it (i.e. becoming visible to other 
processors) into the memory hierarchy if a transaction 
commits.  

 Herlihy and Moss were the first to apply this in hardware 
when introducing the Transactional Memory (TM) 
architecture that allowed custom read-modify-write operations 
to be defined by programmers to achieve a lock-free 
environment [1]. TM is implemented as an extension to the 
cache-coherence protocols in multiprocessor systems and by 
providing a small, fully-associative transactional cache to 
buffer speculative data in critical sections.  

 
Figure 1 – Optimistic Lock Speculation 

 
More recently, this idea was revived when Rajwar and 

Goodman observed that most of the time concurrent execution 
in lock-protected regions do not actually result in conflicts 
[2][3]. They propose Speculative Lock Elision (SLE) which 
predicts unnecessary synchronization and speculatively 
permits concurrent execution in critical regions. 
Misspeculation is detected using existing cache coherency 
mechanisms and recovery is accomplished by rolling back to 
the buffered register and memory state. In this case, the depth 
of SLE speculation is limited by the size of the store buffer, 
since speculative writes in a critical section are unreleased to 
the memory system until commit.  

As an extension to this work, Rajwar and Goodman [3] 
propose Transactional Lock Removal (TLR), which focuses 
on resolving synchronization conflicts. While original SLE 
would rollback in the presence of atomicity violations (i.e. 
without guaranteeing forward progress on lock transactions), 
SLE augmented with TLR would resolve the conflict by using 
timestamps to decide the conflict winner and defer response to 
synchronization messages such that delayed accesses to the 
shared data is achieved and rollback is avoided. However, 
since TLR assumes SLE as the underlying infrastructure, the 
SLE limitation for the depth of speculation exists. 

Martinez and Torrellas [4] propose Speculative 
Synchronization (SS), which utilizes Thread-Level 
Speculation (TLS) techniques to conduct speculations with 
respect to synchronization. With SS, a speculative thread is 
spawned for each speculation on a synchronization point (e.g. 
locks, barriers flags). One safe thread is kept at all times to 
ensure forward progress. SS utilizes the local cache hierarchy 
to buffer speculative data. Thus, the depth of speculation in SS 
is affected by the number of speculative threads that can be 
spawned and the size of the local cache(s).  

Hammond et al. [5] propose a new shared memory 
model, Transactional Memory Coherence and Consistency 
(TCC), at which the basic unit of parallel work is a transaction 
(an atomic set of instructions). This new model trades off 
inter-processor bandwidth with more tolerance to latency and 
simplicity. The supporting hardware relies on rollback and 
recovery mechanisms to deal with correctness violations. The 
depth of speculation in this scheme is dictated by the rollback 
capability of the supporting hardware.  

Ananian et al. [6] similarly propose Unbounded 
Transactional Memory (UTM), which extends the TM 
approach to allow for a large speculative window. This is 
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accomplished by allowing speculative data to spill into the L1 
cache and a special region in main memory, similar to the 
technique proposed by Gniady and Falsafi to enlarge the 
speculative history buffer space in L2 [7]. While UTM 
provides a deeper speculation window in comparison to 
previous proposals, the way the speculative data is spilled into 
main memory induces a substantial overhead for conflict 
detection in the event of overflow. To deal with storing 
speculative data in the cache, an extra speculative bit is added 
for each cache line. 

2.3. Characterizing Optimistic Concurrency  

 Despite the volume of research on optimistic concurrency 
for transactional execution of critical sections, no work has 
characterized how these concurrency schemes would perform 
on existing commercial workloads such as Online Transaction 
Processing (OLTP) or Decision Support Systems (DSS). 
Previous research in lock speculation has mostly been 
evaluated in the context of scientific workloads such as the 
SPLASH and SPLASH-2 benchmark suites [11], which are 
not representative of commercial workload behaviors [13].  

 A recent characterization of the effects on memory-level 
parallelism provided by Chou et al. [15] show that for three 
transaction-based workloads (database, SPECjbb2000, 
SPECweb99), a primary limiter in memory-level parallelism 
was generated by the presence of serializing or atomic 
instructions (e.g. Load-store, Compare-and-swap, Membar), 
which usually form the anatomies of locks, barriers, condition 
variables, etc. When a serializing instruction appears in a 
processor’s pipeline, all instructions are forced to drain before 
the serializing instruction is permitted to issue. For 
SPECjbb2000, serializing instructions on average appear in 
0.6% of all instructions (1 serializing instruction per 166 
instructions) which is a severe limiter in memory-level 
parallelism and therefore performance.  

Singhal et al. [18] also show that in an analysis of locking 
behavior in the IBM DB2 relational database system that 
locking contention is infrequent for two out of the three 
transaction categories they studied, which suggests that there 
is opportunity for lock speculation since lock conflicts are rare 
(and therefore data conflicts are infrequent). 

3. LOCK CONSTRUCTS 

This section describes several lock constructs that utilize a 
single lock variable. First, a simple test&set construct and its 
variants are discussed. Then, more sophisticated queuing locks 
are presented based on survey work by Michael L. Scott who 
originally proposed queue-based approaches to 
synchronization [19][20]. These queuing locks are beneficial 
in reducing lock overhead during contention and providing 
fairness. 

3.1. Test&Set Locking 

 In a test&set lock, a lock is represented by a shared 
Boolean variable indicating whether the lock is held. A 
processor attempting to acquire the lock performs a ‘test’ by 
reading the lock variable. If the variable returns false, it means 
that the lock is currently free. The processor then proceeds to 

‘Set’ the lock by writing true to the variable. If another 
processor later tries to acquire the lock, its ‘test’ operation will 
return true, indicating that lock is already held. In this case, 
the processor can wait by looping and testing the lock variable 
(i.e. spinning) until it reads the value of false indicating that 
the lock has been freed and that it can proceed with the ‘Set’ 
operation. Releasing the lock is done simply by writing the 
value of false to the lock variable.  The test&set operations 
have to be done atomically to ensure that the tested value has 
not been updated by another processor when the set is 
performed. Thus, the test&set is typically combined as a single 
atomic instruction (e.g. LDSTUB in SPARC).   

 The disadvantages of a simple test&set lock are that it 
does not provide fairness and there is a substantial overhead 
due to contention during spin. Fairness is not enforced when 
there are multiple processors contending for the lock; the one 
that performs the set the earliest after the lock is released will 
win the lock. Thus, a processor may be too late each time in 
getting the lock after the previous lock-owner releases. To 
provide fairness, the lock should be given to the next requestor 
based on the time each of the lock contenders perform the lock 
request. Queue-based locks that address this issue are 
described in the next subsections.  

 Spinning on a shared variable incurs substantial overhead 
during lock contention due to the atomicity of test&set 
instructions. Since this instruction is atomic, the test has to be 
followed by a set each time, even if the test turns out to be 
false. This incurs overhead for each spin event. In cache 
coherent multiprocessor systems, this set operation can 
continuously bounce a lock variable from cache to cache in 
the presence of contention. The test&test&set construct avoids 
this issue by employing an additional test independent (i.e. 
with a conventional load instruction) of the atomic test&set 
instruction. The test&set is executed only if the first test is 
true. 

 Another source of overhead during contention is the burst 
of succeeding lock acquires after a lock release in the presence 
of multiple contenders. This is because each contender 
attempts to obtain the lock right after it is released. A backoff 
technique can be used to reduce such burstiness. The idea is to 
have a contender wait (backoff) before attempting to obtain 
the lock. Each contender backs off with a different time, so 
lock acquiring is more distributed. 

3.2. Ticket-based Locking 

A ticket-based lock utilizes two unique addresses that 
processors modify and observe. The first address location, 
which we call the ticket counter, is used by processors trying 
to acquire a lock. When a processor requests a lock, it 
performs a fetch-and-increment on the ticket counter, which 
gives the processor a ticket number and increments the ticket 
counter atomically. The processor then spins on a second 
memory address, which we call the ticket release, and 
compares its own ticket value with the ticket release.  

As can be seen, each processor acquires a unique ticket 
number (provided that there is no wrap-around). The processor 
that has a matching ticket number with the ticket release is 
permitted to enter the critical section. When the processor 
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leaves the critical section, it commits an ordinary store to the 
ticket release that is the value of its own ticket plus one. This 
enables the subsequent ticket owner to acquire the lock.  

This mechanism relieves pressure on the lock variable and 
can reduce hot spots in the interconnection network. However, 
all of the processor still spin on a single local address. 

3.3. Array-based Locking 

An improvement to the previous technique is to use the 
ticket numbers to index into an array of boolean variables. All 
elements of the array are initialized to false save the first 
entry. When a processor acquires the ticket number, it will 
check against the index into the array using the ticket number 
(just like in the previous with a ticket release). When a 
processor releases a lock, it is responsible for freeing the 
subsequent ticket owner who is spinning on a separate boolean 
address. This technique is advantageous over the first since it 
distributes contention for the lock over an array of lock 
variables, which could reduce hot spots in an interconnection 
network. However, the only disadvantage is that the array has 
to be defined statically according to the number of possible 
locks initialized in the system. Both the ticket-based and 
array-based locks also ensure fairness in the system; it is 
guaranteed that no processor will suffer from livelock or 
starvation. The only disadvantage is the overhead of issuing an 
expensive fetch-and-op atomic instruction. 

3.4. List-based Locking 

List-based locking is designed to have the same properties 
as array-based synchronization methods but enable dynamic 
allocation of local variables a processor can spin on demand. 
By default, a global lock structure has its pointer value 
initialized to a null value. When a processor tries to acquire 
the lock, it will first dynamically allocate a special data 
structure called the q-node (“Queue Node”), which contains a 
local boolean variable and a local pointer. First, the processor 
will initialize its local pointer to the global lock variable and 
then perform a fetch-and-store on the lock variable, replacing 
it with a pointer to its own dynamic heap structure. As a 
consequence, any subsequent processors wanting to acquire 
the lock will repeat the aforementioned procedure on the 
global lock variable, chaining up in a linked list. The rules for 
acquiring a lock are as follows. When a processor detects that 
it has a null pointer (for example, it was the first to observe the 
global pointer after it was initialized to null), it has access to 
the critical section. If the lock pointer is not null, it will 
initialize its local boolean variable to false and spin on it. 
Embedded within the global lock is also a “next” pointer. Each 
processor that fails to acquire the lock will set this “next” 
pointer to itself. As a consequence, the lock owner who 
finishes with the critical section is responsible for freeing up 
the next processor on the linked list.  

The common theme to all of these queuing lock 
techniques is to enable contending processors to spin on 
unique memory addresses.  

4. STATIC ANALYSIS OF LOCKS 
4.1. Methodology 

  
/*  Acquire the mutex. Block and wait for up to timeout milliseconds 
 *  if some other thread is holding the mutex. */ 
w_rc_t smutex_t::acquire(int4_t timeout) { 
    sthread_t* self = sthread_t::me(); 
    w_rc_t ret; 
    if (! holder) { 
 /* No holder. Grab it. */ 
 holder = self;  
    } else { 
              …. 
 /*  Some thread holding this mutex. Block and wait. */ 
 ret = sthread_t::block(timeout, &waiters, name(), this); 
              …. 
    } 
    return ret; 
} 

 
/*  Release the mutex. If there are waiters, then wake up one. */ 
smutex_t::release() 
{ 
    …. 
    holder = waiters.pop(); 
    if (holder) { 
 W_COERCE( holder->unblock() ); 
    } 
} 

 
Note: The block() method will block the current thread and puts it on 
‘waiters’ list. The acquire() method has a variant that accepts no 
timeout value and blocks forever until awakens. 
 

 
Figure 2 – Handling Mutual Exclusion Variables in SHORE’s 

Thread Synchronization 
 

 The static analysis of locks is accomplished by looking at 
source codes or snippets of code presented in literature for 
database software and operating systems. Since commercial 
databases are closed-source, we investigated an open source 
experimental database library called SHORE [21]. For an 
operating system, we examined snippets of synchronization 
code for Linux as provided in the source code and descriptions 
from kernel development books [16][26]. To provide further 
insights, a qualitative survey of synchronization constructs in 
Solaris is also performed. The following subsections present 
the results of the analysis. 

4.2. SHORE Storage Manager 

The SHORE Storage Manager [21] is a set of libraries that 
can be used for building database software. SHORE has been 
widely used in research community for building experimental 
prototype software, such as in project Paradise [23], Predator 
[24], and Dimsum [25]. The wide use of SHORE makes it a 
good candidate for investigation for further understanding of 
how synchronization in typical experimental database 
prototypes is done. 

SHORE-based software runs as a collection of SHORE 
threads. The fundamental synchronization primitives are 
implemented via synchronization features of these SHORE 
threads.  A SHORE thread provides two techniques for 
synchronization: mutual exclusion (mutex) and condition 
variables (cond). The mutex synchronization uses two 
methods, acquire() and release(). The snippets of code relevant  
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/*  Wait for a condition. Current thread release mutex and  
 * wait up to timeout milliseconds for the condition to fire. 
 * When the thread wakes up, it re-acquires the mutex 
 * before returning. */ 
w_rc_t scond_t::wait(smutex_t& m, int4_t timeout) 
{ 
    w_rc_t rc; 
    … 
    m.release(); 
    rc = sthread_t::block(timeout, &_waiters, name(), this); 
    W_COERCE(m.acquire()); 
    …   
    return rc; 
} 

 
/*  Wake up one waiter of the condition variable. */ 
void scond_t::signal() 
{ 
    sthread_t* t; 
    t = _waiters.pop(); 
    if (t)  { 
 W_COERCE( t->unblock() ); 
    } 
} 

 
/*  Wake up all waiters of the condition variable. */ 
void scond_t::broadcast() 
{ 
    sthread_t* t; 
    while ((t = _waiters.pop()) != 0)  { 
 W_COERCE( t->unblock() ); 
    } 
}

 
Note: refer to Figure 2 for description on block(), release(), and 
acquire() methods 
 

 
Figure 3 – Handling Condition Variables in SHORE’s 

Thread Synchronization 
 

for these methods are shown in Figure 2. Note that SHORE 
assumes a uniprocessor environment, thus spinning is not used 
when waiting for synchronization variable since the waiter 
will always be put on a list. This also seems to be the reason 
that the ‘holder’ variable in Figure 2 is not protected since 
there can only be one reader/writer to it due to the 
uniprocessor assumption. 

Figure 3 shows snippets of methods used in dealing with 
condition variables. Mutex primitives in figure 4 are used in 
the implementation of condition variables. The wait() method 
is used when a thread is waiting for a particular condition 
variable. This method releases the mutex it holds and blocks 
waiting for the condition variable to trigger. When it does, the 
thread unblocks and acquires the mutex again, and wait() 
completes. The signal() method is used to wake up a waiter 
that is on top of the list when the waited condition variable 
becomes true. The broadcast() method has similar function, 
except that it wakes up all waiters instead of just one. Note 
that SHORE also provides a database-lock-like locking 
mechanism called a latch, which allows more than one holder. 
The implementation of a latch also uses mutex primitives (i.e. 
acquire(), release()) and will not be described here for brevity. 

While SHORE thread synchronization does not use spin 
locks, SHORE does have a spin lock capability for providing 
non-blocking I/O. Disk accesses are handled by a “diskrw”  

 
class spinlock_t { 
    …. 
    void acquire()      { while (tsl(&lock, 1)); } 
    …. 
    void release()      { tsl_release(&lock); }     
    …. 
};

 
// Note: tsl implementation for Solaris2 
PROC(tsl) 
 retl 
 ldstub [%o0],%o0 /* in delay slot */ 
 
PROC(tsl_release) 
 retl 
 stb %g0,[%o0] 
 

 
Figure 4 – Spin Lock for share-memory queue 

synchronization in SHORE 
 

 
Write lock: 

// set highest-order bit of rwlp->lock  
// (make it negative) 
1: lock; btsl $31, rwlp     
 // if old value was 1, lock was busy, go to 2 to spin 
    jc 2                             
 // no write lock, check for readers (if rwlp > 0) 
    testl $0x7fffffff, rwlp   
 // no readers, go ahead w/ read  
    je 3                             
 // readers exist, release write lock and spin 
    lock; btrl $31, rwlp     
// spin until lock becomes 0  
2: cmp $0, rwlp              
    jne  2 
    jmp 1 
3: 

Write unlock: 
  // clear bit 31 of rwlp (make it positive) 

lock; btrl $31, rwlp  
 
Note: negative (i.e. sign bit) rwlp indicates write lock is held, other bits 
of rwlp indicate that reader(s) exists. 
 

 
Figure 5 – An Implementation of a Write Lock in Linux.  

 
process, which deals with reading and writing to a disk. A 
process is forked for each of the disks used. The 
communication between the “diskrw” process and the server 
(software that uses the SHORE library) in UNIX is done by 
means of a shared-memory queue and a pipe. The spin lock 
capability is needed for synchronization on the shared-
memory queue. An implementation of the spin lock for Solaris 
2 is shown in Figure 4. The acquire() is a test&set with 
‘ldstub’ instruction, which fetches the current content of the 
lock and replaces the contents with ‘lock held’, or xFF. The 
release() is a store of ‘lock not held’ (x00) to the lock variable. 

The bottom line is that the synchronization primitives 
simplify down to conventional test-and-set mechanisms. This 
is an interesting observation since we expected that in 
contemporary systems there would be larger use of more 
sophisticated locking mechanisms. Investigating SHORE 
reveals the potential of simple test&set lock prediction. 

4.3. Linux and Solaris 
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 Linux kernel synchronization supports kernel 
semaphores, spin locks, and read-write locks [16][22]. The 
semaphore uses a typical wait and signal model and is 
implemented using atomic decrement and increment. The spin 
and read locks are implemented using test&test&set 
constructs, and write locks are implemented using two 
test&test&set locks to check for both readers and writers. An 
example of a write lock implementation is shown in figure 5. 

 Solaris 2 uses condition variables, read-write locks, and 
adaptive mutexes [17][26]. Adaptive mutexes are configurable 
locks that are used for critical data items in Solaris 2, which 
are typically less than hundreds of instructions. They spin 
when waiting on locks held by a running thread and block 
while waiting on non-running threads. 

5. DYNAMIC ANALYSIS OF LOCKS 

5.1. Methodology 

 Our dynamic analysis is accomplished by observing the 
run-time behavior of locks in Pthread-based microbenchmarks 
and commercial workloads for a distributed shared-memory 
system. The SimFlex timing model, which is built on top of 
the Virtutech Simics full-system simulator [27][28], is used to 
simulate our Pthreads microbenchmark and an OLTP 
workload (i.e. TPC-C-like) running on IBM DB2 and Oracle. 
Timing results are collected using a sampling-based 
methodology as proposed in TURBOSMARTS [31]. 

In investigating lock constructs used by the workloads 
under study, run-time traces are collected and analyzed. 
Specifically, we search for instruction sequence patterns that 
resemble lock constructs presented in section 3. 
Characterization of locks is accomplished by adding 
instrumentation code to the simulator to collect statistics on 
lock events of interest (e.g. lock acquire, release, number of 
addresses touched in critical region). Table 1 shows our 
simulator configuration. Table 2 shows the configuration of 
the OLTP workloads used in this study. 

 
System 16 way DSM 

CPU 4-Ghz uSparcIII ISA 8way-OOO-CPUs 

Core 256 ROB, LSQ, STB 

L1 2-way 64KB 

L2 8-way 8MB 

Main 
memory 

Memory: 3GB, 16bank for each module, 60 ns 
access per bank 

 
Table 1 – System Configuration in SimFlex. 

 

IBM DB2 100 Warehouses (10GB) striped over 32 disk 
partitions 

 64 clients, 450MB buffer pool space 

Oracle 100 Warehouses (10GB), 16 clients, 1.4GB 
SGA 

 
Table 2 – Commercial workload parameters 

 

5.2. Pthread Microbenchmark 

As a first step towards understanding how locks behave 
at the assembly level, we wrote a series of microbenchmarks 
that exercised conventional locking with varying degrees of 
contention and number of threads. The microbenchmark 
source code is annotated to have the simulator insert 
breakpoints during trace generation that indicate the 
boundaries of lock acquires and releases. By analyzing the 
traces, we observe how locks behave in Pthread applications. 
Figure 6 illustrates the assembly.  

 

 
Pthread_mutex_lock: 
 // Register %o1 = 0xff (setting the lock to held) 
 ldstub [lock address], %o1           
 // %o1 is now the old lock value, 0x00 if free  
 // orcc sets a condition variable indicating  

// if lock was held    
orcc %g0, %o1, %g0                    

 // The branch instruction tests the condition code 
 be, address                                   
 
Pthread_mutex_unlock: 
 // Register %o5 = 0x0 before, %o5 = 0xff after 
 swap [lock address], %o5             
 

 
Figure 6 – Pthread Lock in Assembly 

 

It is surprising to discover that Pthread locks are nothing 
but simple test&set locks. It was our expectation that Pthread 
locks would at least employ a test&test&set algorithm in order 
to reduce system traffic and added latency by allowing 
processes to spin on cached lock values. From these results, it 
is likely that lock-based applications built using Pthreads have 
predictable locks.  

It is also interesting to observe that the unlock procedure 
is implemented using a swap instruction. A swap instruction 
can impact performance in a conventional Out-of-Order 
processor that implements a relaxed memory consistency 
model such as TSO, RMO, or RC since the pipeline is forced 
to flush at any instance of an atomic instruction. Forcing the 
pipeline to drain at every lock release can have consequences 
for performance. We conclude that the lock library writers 
used swap as a release mechanism in order to consolidate two 
instructions (STORE and MEMBAR) into one. Since 
MEMBARs are placed optionally to guarantee memory 
ordering in an RMO or TSO model for a SPARC system, the 
swap instruction conservatively guarantees appropriate 
memory ordering for any consistency model.   

5.3. Synchronization overhead in DB2 and Oracle 

 Figure 7 shows the breakdown of execution time for DB2 
and Oracle running an OLTP workload separated into system 
and user modes. The synchronization overheads are the 
categories highlighted by the boxes. Overall, the 
synchronization overheads account for a significant fraction of 
the execution time. DB2 spends 40% of its system mode 
execution time and 18% of its user mode execution time in  
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Figure 7. Synchronization Overhead for OLTP running on 
DB2 and Oracle. 
 
synchronization. For Oracle, the system execution time is 20% 
and the user execution time is 12%. The only case where lock 
spinning is significant is in the DB2 system mode execution. 
This is possibly due to the kernel locks that DB2 exposes 
during its run. However, the effect of spinning may be 
exaggerated depending on how well DB2 is tuned for a given 
number of processors. For example, the size of our database 
table space is 10GB, which could be insufficiently large to 
maximize the throughput. Excluding the spinning overhead, 
the rest of the synchronization overheads can be eliminated by 
the optimistic lock speculation because lock acquires and 
releases can be avoided or value-predicted (i.e. speculate 
ahead while waiting for the lock value to return). Thus, 
optimistic lock speculation can potentially yield a 40% and 
18% speedup for system and user execution respectively in 
DB2 and 20% and 12% for Oracle simply by eliminating the 
overhead of atomic instructions used in lock acquires and 
releases. Note that these results bound how much 
synchronization overhead is possibly removable and does not 
account for even additional concurrency achievable. 
Additional opportunity for further improvement from the 
fraction of lock spins that do not actually incur data races is 
open for further study. 
 

5.4. Anatomy of Locks in DB2 and Oracle 

 This section describes the dominant locking behavior we 
observed in OLTP on DB2 and Oracle when looking at 
dynamic traces using an accurate timing model.  

 Table 3 shows that in DB2 (Pattern 1), the majority of 
spin was generated by a single lock address (possibly an OS 
scheduler) which on average took each processor 100,000 
cycles to resolve. The time to do work in the critical section 
was only 10,000 cycles on average by comparison. The second 
pattern in DB2 mostly consisted of accesses to various lock 
addresses with little contention. In Oracle, there was 
practically no contention for locks with accesses to many 
different addresses. In all cases, the bulk of locks were made 
out of ldstub-swap or ldstub-store pairs, implying the 
dominance of test&set and test&test&set locking. 

 

  DB2 Pattern 1 DB2 Pattern 2 Oracle Pattern 
Acquire time 

(cycles) ~100k ~10k ~10k 

Release time 
(cycles) ~10k ~20k ~20k 

Critical 
section 
(cycles) 

~10k ~100k ~100k 

1 address, highly 
contended 

Various 
addresses, little 

contention 
Many addresses, 
little contention Comments 

ldstub, swap (75-80%) >> CAS (20-25%) 
 

Table 3 – Characterization of locking in DB2 and Oracle 

This section’s analysis allows us to conclude that lock 
prediction for test&test&set variants is necessary to 
successfully remove the overhead of atomic instructions and 
to increase the overall amount of concurrency in the system. In 
the next section, we discuss lock prediction 

6. LOCK PREDICTION 

In this section, we discuss existing techniques for lock 
prediction and show that they are only able to predict specific 
classes of synchronization. Finally, we propose a generalized 
lock prediction mechanism that dynamically identifies critical 
sections that are protected by any arbitrary locking construct.   

6.1. Silent-Store Lock Prediction 

 Rajwar et al. showed in [3] that lock prediction for 
test&set locking can be achieved through the detection of 
silent-store pairs. An observation is made that all lock acquire 
and release pairs are usually made up of a single store to a 
lock address followed by a “restoring” operation to the same 
address. For example, when writing a lock to be held, a 
processor will write “held” to the lock and “unheld” after it 
finishes in the critical section. Therefore, a pair of stores to an 
address that effectively keeps the value unchanged can be 
called a “silent-store pair”. By ignoring these stores, program 
correctness is not affected as long as the lock address values 
are never used and a silent-store pair actually happened. This 
invariant guarantees that ignoring two stores to the same 
address (that is not a lock) will not affect program correctness.  
To achieve this, a load must be executed on the “silent-store” 
address and checked later in order to guarantee the invariant.  

 However, this method is only applicable to simple 
test&set locks. If a test&test&set lock is used (which is 
common in the commercial workloads we evaluated), the 
silent-store pair detection does not eliminate the overhead of 
the “test” phase, which is simply an ordinary load. Executing 
this ordinary load can take hundreds of cycles in a distributed 
shared memory before the remaining test&set can execute.   

 Furthermore, a lock predictor’s purpose is to dynamically 
identify the beginning and the end of a critical section for the 
purposes of optimistic lock speculation.  Figure 9 shows why 
SLE may not work in the presence of complicated locking 
constructs. 

 In this ticket lock example, the notion of a lock is defined 
at a higher semantic level by the programmer. The actual 
locking primitives (ticket_lock_acquire, ticket_lock_release)  
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Lock_acquire() 
 ticket_lock_acquire() 
  my_ticket = ticket_issued; 
  ticket_issued++; 
 ticket_lock_release() 
 
Entering a critical section 
while(my_ticket != now_serving) ; //idle loop until my ticket is valid 
CRITICAL SECTION 
 
Lock_release() 
 now_serving++;             
 

 
Figure 8. Example why SLE does not accurately predict a 
critical section. 
 
are used to form protected access to a ticket counter, which are 
likely built out of some variant of test&set. In this case, SLE 
would only elide the process of acquiring and incrementing 
the ticket. However, each processor will still spin when a 
node’s number is not the same as the now_serving ticket. In 
this situation, SLE has failed since processors are executing 
the critical section in a completely serial manner. 
 The fundamental problem is that critical sections are not 
always associated with a corresponding set of atomic 
primitives. In the previous two cases, SLE is unable to predict 
the critical sections that test&test&set and ticket locks protect. 
What is needed is a predictor capable of detecting entry and 
exit points to a critical section and not necessarily the 
associated atomic primitives.  

 Another disadvantage to this approach is the lack of 
guarantees on forward progress. Since all processors are 
speculating, there is no guarantee that all processors will make 
forward progress in the face of repeated violations in a critical 
section. To solve this problem, timestamps were used in [3] to 
allow transactions to make forward progress in a serial order. 

6.2. Last-value Lock Prediction 

A non-silent-store approach for lock prediction is possible 
through the use of last-value prediction on atomic primitives. 
Two key advantages to this approach is the unnecessary 
detection of silent-store pairs and guarantees on forward 
progress. Last-value prediction has been proposed in literature 
for eliminating data-dependencies in a conventional pipeline 
[29]. 

The idea here is to keep a table of last-value predictions 
for atomic primitives only. For example, an atomic instruction 
“load-store” that stores the value X to address A and returns 
the value Y would have a map entry (A, Y) kept on each 
update to A. The key idea is that when a load-store instruction 
appears in the pipeline, the hardware switches into lock 
speculation mode (buffering updates to memory) and proceeds 
to issue the load-store instruction. In the shadow of the time 
needed for the load-store instruction to complete (1000s of 
cycles), the processor proceeds to execute any subsequent 
instructions. When the load-store instruction returns with the 
load value, the prediction is checked against the returned 
value. If the prediction was correct, the processor commits all 
of its speculative state; otherwise, it re-executes the load-store 
instruction non-speculatively. 

This approach is simple since it only relies on a single 
value-prediction made on some address when an atomic 
instruction executes. Furthermore, it guarantees that one 
processor will make forward progress in the presence of 
contention since all load-stores are still being executed by all 
processors. This contrasts to the SLE approach, which does 
not issue the atomic instruction (e.g. through elision).  

However, in the absence of contention, load-value 
prediction on atomic primitives degenerates to SLE in its 
ability to predict critical sections. As shown earlier, predicting 
atomic instructions does not necessarily correlate to 
speculating into a critical section. Therefore, load-value 
prediction can only do as well as SLE provided that there is no 
lock contention. 

Load-value prediction would perform worse than SLE in 
the presence of lock contention. High lock contention (such as 
the one observed in DB2’s kernel lock) would force 
misspeculation even if there was no real data contention. In 
this case, SLE can still perform better if a lock’s granularity 
were large enough such that two processors would not be 
touching the same critical addresses at the same time.   

This approach does have some good properties. First, no 
notion of a lock needs to be present to execute this correctly. It 
works very well if there are only test&set locks (e.g. a 
program written in Pthreads). Secondly, no matching “silent-
store” pairs need to be detected. Finally, forward progress 
guarantees can be made since all processors are still issuing all 
their atomic instructions. However, like SLE, there is still no 
way to guarantee prediction of a “true” critical section.  

6.3. Value-Based Lock Prediction with Spin 

Detection 

This approach is designed to address the shortcomings of 
the previous two proposals. All forms of locking are centered 
on some kind of “spinning” on a global (e.g. test&set) or local 
(e.g. queue-based, ticket-based) variable.  This type of 
spinning can be manifested through repeated execution of 
atomic instructions (e.g. load-stores) or sequences of loads to 
some address to spin on. This address may or may not 
necessarily correspond to a lock variable.  

If we assume that all critical sections are preceded by 
some form of spin code, there is a possible way to predict the 
presence of a critical section.  

In the presence of spin, there can be sequences of either 
atomic instructions (e.g., load-stores) or loads. If the 
sequences are made up of atomic instructions, the value-based 
lock prediction approach (section 6.2) can easily handle this. 
The more difficult scenario is how to handle a sequence of 
ordinary loads (e.g. how to distinguish this from regular 
program execution). A hardware predictor would identify a 
sequence of loads being executed as a candidate “spin 
variable” if those loads were being repeatedly sent to the same 
address and possibly being invalidated (if some other 
processor changes the value of the lock). Once a candidate 
“spin variable” is selected, its address and value prediction can 
be placed in a lock prediction table for future use. What actual 
value to use will be described later. Once a candidate lock has 
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been chosen and if a future load reappears executing on a 
previously recorded address and value, a value prediction is 
made on that load. Presumably, this value prediction would 
permit the processor to bypass the spin variable and execute 
within the critical section.  

However, speculation can only proceed and finish based 
on two conditions: (1) if there is no data contention in the 
critical section, and (2) the load value prediction eventually 
matches the load request. 

Condition 1 is the same condition for all lock prediction 
approaches. Condition 2 is interesting because of the 
“eventual” outcome. Consider the ticket-based lock example. 
In the conventional situation, processors would spin by 
comparing their ticket values to the globally shared ticket until 
their values matched. This ensures a serial execution of all 
processors waiting on the spin variable since only one 
processor can have the matching ticket value at any given 
time. The key observation is that “eventually” all processors 
will have a matching ticket value since the globally shared 
ticket will eventually reach them. Our approach attempts to 
bypass this by having each processor value-predict past the 
load that forces them to spin. Specifically, each processor 
predicts that its load value matches the globally shared ticket. 
In the absence of data contention, each processor’s value 
prediction will eventually become true, albeit possibly some 
time down the future.  

However, it is obvious that only one processor would ever 
receive a confirmation that their value prediction was correct 
(e.g. there can only be one true ticket owner). Other processors 
instead of rolling back and re-executing non-speculatively 
when they receive non-matching loads, can ignore the result 
returned to them through the load value prediction and re-

issue the load in hopes that some time in the future, their 
predictions will match. This of course, also increases the 
window of vulnerability since true data contention can force 
multiple processors to rollback. However, to our knowledge, 
this is the only technique that can reliably detect the presence 
of a critical section and permit optimistic lock speculation in 
the face of any kind of locking mechanism. Through similar 
reasoning, one can show that this approach works for 
test&test&set variants or array-/queue-based locks, which can 
possibly generate load sequences in a spin. Both of the 
previous approaches could not address this type of locking 
construct.  

So far, no mention has been made on how to make 
accurate value predictions. Selecting what value to place in the 
table requires special care. For example, in ticket-based 
locking, the ticket values that force a processor to spin may be 
different on each instance of a processor’s attempt to access 
the critical section. For example in Figure 8, this means that 
the my_ticket value can be different on each instance of 
acquiring access to the critical section. One way to solve this 
problem is to realize that the ticket value being compared 
against is likely to be sitting in a processor’s cache already 
(e.g. the my_ticket variable which is kept in the cache). To 
create accurate value predictions, dynamic run-time analysis 
of branch and load patterns can be used to identify candidate 

cache block values that would be placed in the lock prediction 
table. 

Finally, we discuss the approach for detecting critical 
sections in the absence of spin. In the ticket- or queue-based 
approaches, lock prediction is unnecessary in the absence of 
lock contention. For example, a processor trying to compare a 
ticket lock would acquire it immediately since it is the only 
processor accessing the critical section. This leaves behind the 
case of test&test&set in the absence of lock contention. One 
way to bypass the critical section would be to continuously 
monitor any atomic instructions in the dynamic instruction 
stream. Any addresses and values received while executing 
atomic instructions are stored in a map table with address 
value pairs. On subsequent loads (e.g. the test portion of 
test&test&set), a value prediction can be made. This approach 
essentially builds upon the technique proposed in section 6.2.   

7. IMPLICATIONS FOR FUTURE WORK 

Characterizing synchronization behavior in commercial 
workloads leads us to believe that lock prediction is highly 
feasible and can potentially yield substantial improvements in 
performance with no changes to existing software. In light of 
this, we propose a new technique for lock prediction that 
addresses the shortcomings of previous approaches. In the 
future, we would like to evaluate this new approach by 
implementing a model in our full-system simulator framework 
and running it for scientific and commercial workloads. 

Having a lock predictor also opens the door to new 
opportunities such as enhancements for Streaming [30] 
applications. The ability to dynamically identify critical 
sections permits hardware-based streaming of data in a critical 
section to next-in-line processors, which could effectively 
remove all coherence misses in commercial workloads.  

8. CONCLUSION 

In this paper, we presented a characterization of 
synchronization overhead and locking behavior in commercial 
workloads for investigating the opportunity of optimistic 
concurrency for OLTP. It was found that in DB2, nearly 40% 
of system mode execution time and 18% of user mode 
execution time is spent in synchronization. For Oracle, the 
system execution time is 20% and the user execution time is 
12%. The majority of locks observed in DB2 and Oracle 
consist of test&set variants. Investigation of the remaining 
lock types are left for future study. Finally, we analyzed 
existing lock prediction approaches and addressed their 
inability to predict critical sections correctly by proposing a 
Value-based lock predictor with spin detection.  
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Abstract

Transport protocol offload moves all protocol pro-
cessing from the host CPU down to an intelligent
network interface. The main advantage of this ar-
chitecture is a reduction in host CPU load, since
the network interface handles most of the protocol
processing tasks traditionally performed by the op-
erating system on the host CPU. However, much
existing research shows that the benefit from this
reduced CPU load is minimal. Furthermore, net-
work interfaces have their own performance limi-
tations, which makes it difficult for them to keep
up with traffic on high-bandwidth network connec-
tions. What meager benefits that have been derived
from existing protocol offload implementations is at-
tributed almost entirely to the architecture’s abil-
ity to reduce memory copies through Direct Data
Placement (DDP) functionality.

This situation calls for a new protocol offload ar-
chitecture that is able to provide DDP functional-
ity, yet relieves the reliance on the processing power
of the network interface. In this work, we present
a partitioned protocol offload architecture in which
separate portions of the protocol processing are per-
formed on the network interface and the host CPU.
These two components work together in order to
provide complete protocol processing functionality.
We provide a proof-of-concept implementation of
this architecture and evaluate its effectiveness. Our
results indicate that a partitioned offload architec-
ture is able to maintain throughput in comparison
to fully offloaded implementations, but significantly
increases RPC response time.

1 Introduction

In the past decade, end-system memory copies and
other data touching operations have been identi-
fied as the primary bottlenecks in high-bandwidth
bulk data transfer [8, 10, 17], leading to the recent
standardization of Direct Data Placement (DDP)
and Remote Direct Memory Access (RDMA) pro-
tocols and hardware interfaces [4]. Direct Data
Placement is recognized by many researchers as
the only justification for transport protocol offload:
it has been shown that transport offload in itself
provides meager benefits and may even backfire,
since network interface hardware usually lags be-
hind common general-purpose CPU’s in terms of
performance [20,25,26]. As it currently stands, com-
plete transport protocol offload has been an unwrit-
ten rule guiding the design of DDP-capable network
interfaces, and RDMA NIC’s typically implement a
full protocol stack beneath the direct data place-
ment logic.

We believe that such designs leave room for im-
provement, since direct data placement functional-
ity does not eliminate the fundamental problem of
resource limitations in network interfaces. In this
paper, we propose a new method for achieving direct
data placement that partitions transport protocol
processing between the host system and the network
interface. The aim of this new architecture is to re-
duce the amount of work that must be performed
on the network interface, while still achieving direct
data placement functionality for host applications.
An additional benefit of this approach is a reduc-
tion in the amount of resources needed on the net-
work interface, which would create room for other
features such as application-specific optimizations.
We have developed a proof-of-concept implementa-
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tion that partitions UDP/IP processing between the
host kernel and a programmable network proces-
sor in order to determine the effectiveness of this
architecture. Our evaluations indicate that, while
the partitioned architecture can maintain through-
put in comparison to a fully offloaded architecture,
it significantly increases response time. Addition-
ally, since the functionality that logically remains
on the network interface is the most significant por-
tion of protocol processing, our implementation did
not achieve resource savings as intended.

The rest of this paper is organized as follows. Sec-
tion 2 describes the related work in this area. This
includes both research aimed at determining the
shortcomings of transport protocol offload as well as
existing DDP solutions. We then provide a detailed
description of our system architecture and outline
the method by which transport protocol processing
is partitioned in Section 3. The methodology and re-
sults of our evaluation of the proposed architecture
are presented in Section 4. Finally, we conclude and
describe future directions for this work in Section 5.

2 Related Work

2.1 Transport Protocol Offload

Transport protocol offload engines1 implement the
transport protocol and the layers beneath within
the network interface subsystem, in contrast to tra-
ditional software implementations on host CPU’s.
Proponents of transport offload have argued that
such solutions reduce the load placed on host CPU’s
by protocol processing tasks, which can be substan-
tial for gigabit and faster networks. However, TCP
offload engines have repeatedly fallen short of ex-
pectations; Mogul [20] discusses several reasons for
their failure.

The most prominent of these reasons are funda-
mental performance limitations of network inter-
face hardware, which typically lags a year or more
on the Moore’s Law curve behind high-speed host
CPU’s. As a result, such computationally-limited

1In this context, the offloaded transport protocol is typi-

cally TCP or another reliable transport. Since we are focus-

ing on the UDP protocol, we will restrict our attention to

features these protocols have in common.

offload engines can actually reduce performance.
Sarkar et al. [25] demonstrate this phenomenon in
the context of an iSCSI workload; the analysis pre-
sented by Shivam and Chase [26] shows that the
benefits of protocol offload are bounded by the the
disparity in processing power between offload hard-
ware and the host CPU.

Another reason is the structure of the protocol pro-
cessing workload. Transport offload engines operate
under the assumption that protocol processing is in-
herently computationally expensive, which over the
years has been shown to be largely untrue. The
landmark paper by Clark et al. [11] shows that the
TCP fast path requires comparatively few instruc-
tions (excluding operating system overhead) and
that overall TCP overhead is dominated by copy
and checksum operations. Recent work [8, 10, 15]
confirms this result; it is now widely believed that
protocol processing in itself is not a major source
of overhead for bulk transfer workloads, and that
the cause of the end-system bottleneck lies in the
per-byte costs.

In light of the above, Mogul suggests that transport
protocol offload is effective only as an enabler of
DDP-capable network interfaces, “since to rely on
the host OS stack would defeat the purpose” [20];
Shivam and Chase formalize this notion in terms of
structural improvements to the offload architecture
that eliminate some of the overheads “rather than
merely shift them to the NIC” [26]. It is interest-
ing to note that Mogul mentions simple NIC exten-
sions (e.g., hardware checksumming and copy reduc-
tion support) that can enable very efficient trans-
port implementations, albeit not capable of true
zero-copy, but stresses the need for full transport
offload beneath DDP logic. We believe that the
partitioning of protocol processing on which such
devices rely—namely, outboard buffering and check-
summing [17,29] are applicable to DDP-capable net-
work interfaces as well.

2.2 Existing DDP Hardware

Direct data placement hardware available today
typically falls in two domains. One can be roughly
categorized as Memory-to-Memory interconnects
for high-performance distributed applications, and
uses the RDMA protocol [4]. The other is IP block
storage, in which solutions are offered in the form
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iSCSI Host Bus Adapters (HBA’s); often a single
network interface can support both classes of pro-
tocols. Though both types of applications assume
a reliable transport layer beneath the DDP logic
(e.g., [12, 13]), these NIC’s do not necessarily fea-
ture a fully-offloaded transport; indeed, some de-
signs partition protocol processing functionality in
ways similar to our proposal.

We first mention some of the full-offload solutions
on the market. The Chelsio T110-CX Protocol En-
gine [9] offers support for both iSCSI and RDMA,
and features nearly complete transport protocol of-
fload, including TCP congestion control, connec-
tion setup and teardown, IP path MTU discovery—
in addition, of course, to the complete data path.
The LeWiz Communications Magic2020 Multi-Port
HBA [18] is similar, and offloads absolutely all as-
pects of transport protocol processing. These solu-
tions are extreme; they lie at the opposite end of
the spectrum from software-based transport imple-
mentations.

More similar to our work are solutions that of-
fload only the protocol processing fast path, typi-
cally based on the Microsoft Chimney offload archi-
tecture2. The Broadcom BCM5706 Ethernet Con-
troller [5] provides RDMA and iSCSI functionality,
and offloads the TCP fast path including checksum-
ming and segmentation; the slow-path protocol pro-
cessing tasks execute in a host software driver. The
NetEffect NE01 iWARP Ethernet Channel Adapter
[21] operates similarly, as do the Alacritech Accel-
erator products [2, 3]. The main difference between
these solutions and our proposal is that we advo-
cate partitioning the protocol fast path as well—i.e.,
we envision non-data-intensive fast-path operations
executing on the host processor, with the network
interface handling only those operations for which
host CPU architectures are poorly suited.

3 Architecture

In this section we summarize the architecture of
the complete system. The description given here
is mostly normative: the only design issues and
tradeoffs we discuss relate to the placement of trans-

2The Microsoft Chimney API is not scheduled to come

out until mid-2005; no reference is available at this time.

port protocol processing functionality. In the inter-
est of brevity, we avoid discussing design decisions
pertaining to other system components, communi-
cation interfaces, and overall programming model;
instead, we treat those features as immutable and
simply describe their structure.

The remainder of this section consists of two parts.
Section 3.1 serves to provide architectural back-
ground and context for our work, and focuses on
intelligent data placement proper. In Section 3.2,
we describe our variations on the basic architecture
in support of transport protocol functionality parti-
tioning, and justify those variations as appropriate.

3.1 Baseline Architecture and Pro-
gramming Model

Our project is being carried in the context of in-
telligent data placement (IDP) research [16], from
which we borrow the basic architectural framework.
Intelligent data placement can be thought of as a
generalization of RDMA [4] hardware—as opposed
to the RDMA protocol suite. A network with in-
telligent data placement support does not prescribe
a particular wire protocol, and in particular does
not require the exchange of buffer references among
connection endpoints in order to achieve direct data
placement, as is the case with, e.g., RDMA-based
distributed filesystems [6,14]. Instead, IDP-capable
networks strive to support non-RDMA-aware peers
using standard wire protocols such as NFS [7,27,28].
This requires that an IDP NIC parse the conven-
tional upper-level wire protocol in order to infer
destinations in host memory locally, which in turn
requires the NIC to have knowledge of the layout
of application data structures and their locations in
physical memory.

These requirements are realized by partitioning an
application on the IDP-capable host into compo-
nents executing in two distinct domains: the host
processor and what is referred to in [16] as the data
engine. The components executing on the data en-
gine (in our case, the embedded processor on the
NIC) are first-class “delegates” of the application:
they encapsulate knowledge of one or more applica-
tion data structures and associated wire protocols,
and cooperate with the application in manipulat-
ing those data structures. We refer to these com-
ponents as the application’s data proxies. A data
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proxy is primarily responsible for orchestrating the
direct placement of bulk data into the application’s
address space without host CPU involvement. Ad-
ditionally, it can perform application-specific data-
intensive tasks that do not necessarily require the
data to traverse the I/O bus, e.g., computing sim-
ple digests; indeed, some data proxies may perform
no DDP at all.

There are two types of communication that take
place between a data proxy and its parent appli-
cation: streaming bulk data transfers and the ex-
change of control, synchronization, and application-
logic-related information. These are decoupled in
the spirit of Thekkath [30], though on a much tighter
scale, with the I/O bus replacing the network. All
synchronization and control transfer is in the form
of message passing; we do not consider shared ad-
dress space architectures at the present. The con-
tent of messages exchanged in this fashion is en-
tirely application-specific—the system provides only
a generic message queue abstraction.

3.1.1 Target Applications

Although a large cross-section of data-intensive dis-
tributed applications can benefit from intelligent
data placement hardware, RPC-based applications
constitute our primary target. The XDR-encoded
[28] ONC RPC [27] wire protocol is fairly straight-
forward to parse; moreover, the NFS protocol fam-
ily [7] is RPC-based. This project therefore focuses
on RPC server applications, which lend themselves
to a natural data proxy partitioning.

A typical RPC server can be thought of a dispatch
loop which accepts framed procedure invocations
from the underlying transport, extracts procedure
IDs and unmarshalls the XDR-encoded parameters,
invokes the corresponding procedure, marshals the
result, and finally transmits the response to the
client. We cast this process into the IDP framework
as follows. The RPC server’s data proxy assumes re-
sponsibility for unmarshalling procedure arguments,
separating those that require direct placement from
the rest and depositing them into pre-posted appli-
cation buffers (e.g., NFS write file data is placed
into pre-registered buffer cache entries), and signal-
ing the host server process with the RPC transac-
tion and procedure IDs, inline arguments, and ref-
erences to application buffers into which bulk argu-

ments had placed. Additionally, the proxy main-
tains transient state for the RPC transaction—in
particular, it pre-allocates NIC memory (the stag-
ing buffer) for the RPC response, into which the
host server can deposit bulk data for transmission.
Upon receipt of a message, the host server simply
extracts the necessary information and dispatches
the application handler; when the procedure com-
pletes, the server signals the proxy with the location
of bulk return data, the remaining results and the
return status. The proxy completes the transaction
by marshalling the results and transmitting the re-
sponse back to the client.

In this paper, we focus on a simple RPC server
we call NFS-lite that mimics the wire protocol
and data path of a full-featured NFS server. The
NFS-lite protocol supports the following RPC pro-
cedures:

• void write(file, offset, length,

data<>);

• data<> read(file, offset, length);

where file is a unique file identifier similar to
the NFS file handle. In response to a write call,
an NFS-lite server deposits the opaque file data
from the RPC argument buffer into a data struc-
ture reminiscent of the Linux page cache, wherein
each file is represented in memory as a collection
of discontiguous page-sized blocks. The SunRPC
implementation performs this function by means of
one or more memcpy operations. The IDP imple-
mentation performs it in two steps: first, the data
proxy queries the host server for the physical ad-
dresses of page cache entries corresponding to the
given file, length, and offset; then, it initiates a
scatter/gather DMA of the data payload into those
buffers and notifies the host server of completion.
Note that the IDP implementation is thus com-
pletely copy-free. (The implementation of the read

procedure is symmetric in both cases.)

3.1.2 Hardware Platform and Software

Module Decomposition

Our prototype IDP-capable network interface is
the ENP-2611 PCI board from Radisys [24], con-
trolled by the Intel r© IXP2400 network proces-
sor [1]. The IXP2400 contains 8 RISC-like 8-way
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Figure 1: Hardware Platform and Basic Architecture. Data proxies execute on the IXP2400 micro-
engines, staging I/O to the host or the link from SDRAM-based buffers. Remote memory is never read by either
the applications or their proxies; all data are written remotely and read locally. Control and synchronization
traffic is in the form of short messages and is kept separate from streaming bulk data.

multithreaded CPU cores known as microengines,
well-suited to perform memory-intensive operations,
and an Intel r© XScale control processor. The mi-
croengines typically communicate using hardware-
assisted rings in the 16K on-chip scratchpad mem-
ory. The IXP2400 also contains a PCI controller
which allows external access to ENP-2611 mem-
ory resources, and provides three DMA channels
for access to host memory. The ENP-2611 fea-
tures 256 MB of DDR SDRAM, 8 MB of QDR II
SRAM, and three Gigabit Ethernet ports controlled
by dual PCM Sierra PM3386 MAC devices. The
board connects to the host’s PCI subsystem via an
Intel r© 21555 nontransparent PCI/PCI bridge.

Figure 1 shows how the conceptual IDP architec-
ture outlined above maps to the ENP-2611 plat-
form. Unsurprisingly, the IXP2400 microengine be-
come the data engines on which the data proxies
execute; the XScale control processor does not par-
ticipate in the data path and is used for initial-

ization only. The ENP-2611 SDRAM, normally
used for streaming packet data, contains the stag-
ing buffers. Due to the peculiarities of the PCI bus,
the proxy-to-application messaging infrastructure is
partitioned across the system’s memory resources:
queues carrying messages from data proxies reside in
host memory, whereas those carrying messages from
host applications are placed in ENP-2611 SDRAM,
making all cross-PCI communication take place in
the form of writes.3

The software infrastructure supporting this sys-
tem is partitioned as follows. Besides the data
proxies, the IXP2400 dedicates additional micro-
engines to (1) Ethernet packet reception and buffer-
ing, (2) Ethernet packet transmission, and (3)
IXP2400 DMA engine management. These modules
(subsequently referred to as Ethernet Receive, Eth-
ernet Transmit, and DMA Manager each occupy a

3The queues read by data proxies can also be placed in

ENP-2611 SRAM in order to reduce latency.
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single microengine. The Ethernet Receive module,
in addition to interacting the IXP2400 link inter-
face for packet reception, is responsible for demul-
tiplexing incoming application-level frames and as-
signing them to contiguous staging buffer storage;
this is accomplished using a light-weight packet fil-
ter mechanism [19]. The DMA Manager module is
responsible for placing bulk data into host-memory
using the IXP2400 DMA engines in response to data
proxy requests. It also has the capability of placing
a data proxy’s message into the appropriate applica-
tion queue upon the completion of a DMA transfer,
for the purposes of synchronizing the host’s access
to these data. Of particular interest is the UDP/IP
module; it is responsible for all UDP/IP processing,
may occupy multiple microengines, and the trans-
port protocol processing partitioning we have im-
plemented takes place here. This decomposition of
IXP2400 firmware and its organization into a soft-
ware data path is illustrated in Figure 2-a.

These details are abstracted from host applications
behind a messaging framework and a light-weight
resource management infrastructure. The latter
provides host applications with protected user- or
kernel-space access to ENP-2611 memory resources
and facilities for the allocation of DMA buffers in
host memory. The messaging framework builds on
the resource management infrastructure to provide
a bare-bones message delivery service with polling-
based notification.

3.2 Transport Protocol Placement

3.2.1 Protocol Processing Requirements

Our target workload consists of NFS traffic, which
contains RPC commands transferred over UDP in
several IP fragments. This composition of proto-
cols requires a various levels of protocol processing
within our system.

At the network layer, we must perform IP header
validation and fragment reassembly in accordance
with the IP specification [23]. Header validation
requires ensuring the checksum is correct and that
the destination address applies to the network in-
terface. Fragment reassembly requires maintaining
data structures to determine when all portions of
the packet have arrived, as well as keeping a timer
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Figure 2: Data Path Comparison. (a) shows the
components along the data path for a fully offloaded
architecture and (b) shows the components required
for the minimal offloaded architecture. Solid lines in-
dicate bulk data flow and dashed lines indicate control
messages. The vertical queues indicate control traffic
between the ENP-2611 and the host system over PCI.
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to ensure fragments of uncompleted packets can be
freed after a timeout period.

At the transport layer, we must perform UDP
header and payload validation according to the UDP
specification [22]. The UDP checksum must be com-
puted across the actual UDP header, its pseudo-
header, and the entire UDP payload. Additionally,
it is necessary to forward the payload to the correct
application based on the destination port.

At the application layer, we must inspect the RPC
command as specified in the RPC specification [27].
Once the RPC command is known, it is possible
to perform direct data placement into preregistered
host buffers.

3.2.2 Placement of Functionality

The protocol processing functionality can be located
in various components within the system. A tra-
ditional network stack is implemented entirely on
the host system within the operating system ker-
nel. This approach is appealing for its straightfor-
ward design, but usually requires excessive memory
copies, thus decreasing performance. An extreme al-
ternative to this approach is to have complete proto-
col offload onto the network interface, which places
the necessary intelligence to perform protocol pro-
cessing and data placement directly on the network
interface’s network processors. Our architecture fo-
cuses on utilizing an approach that falls between
these two, partitioning the protocol processing so
that portions are performed on both the host and
network interface. The aim of this partitioning is
to minimize the protocol offload to the network in-
terface, while still achieving the benefits of direct
data placement that comes with the fully offloaded
approach. Architectural diagrams showing each of
the components involved for the full and minimal
offload approaches are shown in Figure 2.

The full offload approach is shown in Figure 2-a.
As shown in the diagram, there is a separate com-
ponent for each of the required protocols. The Eth-
ernet Receive module receives the data frame on the
network link and provides it to the UDP/IP mod-
ule; symmetrically, the Ethernet Transmit module
places data received from the UDP/IP module on to
the network link. The UDP/IP module handles all
checksum calculation and verification, header vali-

dation, and fragment creation and reassembly. The
Data Proxy module on the network interface deter-
mines the RPC command, marshalls and unmar-
shalls arguments, and communicates with the host
application via PCI control messages to determine
buffer addresses reading and placing data. A sep-
arate DMA Manager module will then handle the
bulk data transfer to host memory. Note that the
only processing done on the host system is the de-
termination of the buffer addresses.

The minimal offload approach is shown in Figure 2-
b. The Ethernet Receive, Ethernet Transmit, Data
Proxy, and DMA Manager modules have the same
functionality in both approaches. The key differ-
ence in this architecture is that the transport pro-
tocol processing located in the UDP/IP module has
been partitioned between a microengine on the net-
work interface and a module running within the host
kernel. Data intensive operations including calcu-
lating and verifying IP header and UDP payload
checksums are performed on the network interface.
The host UDP/IP module handles all other opera-
tions, namely the computational tasks of fragment
creation and reassembly4 and determining the cor-
rect application based on the IP addresses and UDP
ports. Together, these two components perform all
of the UDP and IP processing necessary. A single
message is sent over the PCI bus from the network
interface to the host module that contains the neces-
sary header fields required for the host to complete
its processing tasks. When done, the host sends a
message back to the network interface so that it can
drop the packet or forward it to the correct loca-
tion as appropriate. This message exchange adds a
single round-trip over the PCI bus to the protocol
processing procedure. We conjecture that the re-
duction in UDP/IP functionality that is performed
on the network interface would enable merging the
Ethernet Received and UDP/IP microengines, thus
saving resources and decreasing the reliance on the
processing power of the network interface.

4Due to the decreased importance of IP fragmentation on

today’s networks, the proof-of-concept implementation did

not implement this feature. We include it in our architecture

description for completeness.
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4 Evaluation

Below, we perform a comparative evaluation of the
IDP implementation of the NFS-lite server with a
partially-offloaded UDP stack against the Sun RPC
implementation, and an IDP implementation with
a fully-offloaded stack. Our chief metrics of interest
include (a) the base response time on an unloaded
system, (b) the maximum achievable application-
level data throughput, and (c) ENP-2611 buffer
space usage. We report results for the following two
classes of experiments:

• Single-client Null RPCs. The client performs a
large number of consecutive null RPC calls.

• Multi-client MTU-sized NFS-lite writes. The
client machines each run a number of indepen-
dent threads generating consecutive MTU-size
NFS-lite write calls.

We present no results for NFS-lite read perfor-
mance due to the fairly dismal PCI read bandwidth
of which our experimental system is capable.

4.1 Experimental Setup

Client 2

Client 1

GigE

ENP2611

Server
Client 3

Figure 3: Experimental Network Topology.

The server machine hosts the ENP-2611 and a tra-
ditional Gigabit Ethernet NIC. The clients connect to
server NICs via a Gigabit Ethernet switch.

The experimental setup is shown in Figure 3. The
server machine is an Intel r© Pentium IV clocked at
1.5 GHz, with a 256 KB L2 cache, a 100 MHz front-
side bus, and 256 MB of ECC RDRAM clocked

Table 1: Null RPC Response Time.

Sun RPC 118 µs
IDP (full) 68 µs
IDP (partial) 1000 µs

at 400 MHz; the server runs SuSE Linux 9.0 with
a 2.4.21 kernel. The server hosts both the ENP-
2611 for IDP traffic and a D-link DGE550-SX
Gigabit Ethernet fiber adapter for Sun RPC traf-
fic. For measurements of NFS-lite performance
over Sun RPC and IDP with a fully-offloaded stack,
the NFS-lite server is the highest-priority runnable
process in the system. For partially-offloaded-stack
IDP experiments, the NFS-lite server and the host-
based UDP stack kernel thread are the highest-
priority runnable processes.

The server’s PCI bus is 32 bits wide, clocked at 33
MHz. We have measured a maximum sustained
bandwidth of 680 Mbps for PCI writes from the
ENP-2611 to the host PCI subsystem, and a short-
message roundtrip time from the host to the ENP-
2611 of 3 µs.

We use three client machines featuring the same
hardware configuration as the server for generat-
ing NFS-lite traffic. The clients were observed to
saturate their transmit paths at roughly 300 Mbps
application-level throughput. The NFS-lite client
implementation is Sun RPC-based, and is the same
regardless of the server implementation. The clients
connect to the server’s NICs via a Gigabit Ethernet
copper switch; we use Milan fiber media converters
to connect D-link and ENP-2611 optical ports to
the copper ports on the switch.

4.2 Null RPC Response Time

We measure the null RPC response time for the
three NFS-lite server implementations in order to
gauge the base amount of time an RPC call spends
in the system. This latency directly affects the num-
ber of independent clients required to saturate the
system: the synchronous nature of RPC requires an
independent client for each outstanding request. In
turn, the number of simultaneous outstanding re-
quests directly affects packet buffer space usage, as
we demonstrate below.
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Null RPC response times for the three NFS-lite

server implementations are summarized in Table 1.
We observe a factor of 15 increase in the base
RPC response time for the implementation with a
partially-offloaded stack compared to that with a
fully-offloaded stack. We attribute this increase pri-
marily to the peculiarities of the Linux scheduler—
more specifically, scheduling granularity and context
switch overhead.

4.3 NFS-lite Write Throughput

In this experiment, we evaluate the maximum
achievable write throughput for the three NFS-lite

server implementations. Figure 4 shows the ob-
served throughput scaling properties.

We observe that the Sun RPC implementation sat-
urates at 263 Mbps application-level throughput,
being fundamentally limited by the host CPU at
this data rate (CPU utilization numbers are not
shown). In contrast, both IDP implementations sat-
urate the PCI bus—the fully offloaded transport
implementation at 644 Mbps, and the partially-
offloaded implementation at 622 Mbps. (The figure
of 680 Mbps sustained PCI write bandwidth quoted
earlier refers to the raw bandwidth, and does not
take into account control and synchronization traf-
fic; the partially-offloaded implementation adds a
control message round-trip to the data path.)

Quite noteworthy is the base RPC response time
for the three implementations, and consequently the
number of client threads required to achieve peak
throughput. The partially-offloaded implementa-
tion requires 73 client threads in order to saturate
the PCI bus, for a response time of 1295 µs at a peak
throughput of 622 Mbps—both a factor of 5 greater
than 13 client threads and a 221 µs response time
at 644 Mbps write throughput for the fully-offloaded
implementation, as shown in Table 2. In the next
section, we examine the effect on this phenomenon
on packet buffer space usage.

4.4 Resource Usage

We now consider the effect of partitioning the UDP
stack on ENP-2611 buffer space utilization. Fig-
ure 5 shows buffer space usage for the two IDP im-
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Figure 4: NFS-lite Throughput Scaling. Fig-
ure (a) shows the throughput saturation point for the
three implementations in terms of the write response
time; Figure (b) presents the same data in terms of
the number of independent client threads generat-
ing write calls. The Sun RPC implementation sat-
urates the CPU at 263 Mbps; both IDP implemen-
tations saturate the PCI bus at 644 and 622 Mbps,
respectively. The IDP implementation with a partially-
offloaded transport requires many more client threads
to achieve the same level of throughput as the fully-
offloaded-transport implementation.

Table 2: Maximum Write Throughput.

Impl. T-put Resp. Time Clients

Sun RPC 263 Mbps 255 µs 6
IDP (full) 644 Mbps 221 µs 13
IDP (part) 622 Mbps 1295 µs 73
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plementations of NFS-lite. We observe that buffer
space usage is directly proportional to the number of
simultaneously-active independent clients, as shown
in Figure 5b. A direct consequence of this fact, illus-
trated in Figure 5a, is that the partially-offloaded-
stack implementation requires 5 times the buffer
space of the fully-offloaded version at the same level
of application throughput.
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Figure 5: NFS-lite ENP-2611 Buffer Space Us-

age. Each outstanding request in the system corre-
sponds to a 2048-byte packet buffer; total buffer space
usage is thus determined by the number of simultane-
ous outstanding requests, or client threads, as shown
in (b). Figure (a) shows buffer space usage for a given
level of application data throughput.

4.5 Discussion

We see that both IDP implementations of NFS-lite
maintain comparable peak throughput over twice
that of the SunRPC implementation. The through-
put observed for the IDP implementation with a
partially-offloaded UDP stack is marginally lower
than that of the fully-offloaded implementation; this
is due to the fact that the partially-offloaded im-
plementation requires more PCI traffic in support
of protocol processing, and this additional traffic
consumes a small fraction of the raw PCI band-
width. This difference in throughput among the
IDP implementations, albeit small, leads us to be-
lieve that PCI is not the right interconnect for IDP
applications—as the complexity of IDP applications
grows, the amount of control traffic (perhaps in the
form of shared memory accesses) can be expected
to grow as well, and should not adversely affect ap-
plication data rates.

On the other hand, we see that our implementa-
tion of the partitioned UDP stack significantly in-
creases the base RPC response time, and that buffer
space usage in the ENP-2611 increases proportion-
ally. We believe that the UDP stack in the partially-
offloaded solution should not be implemented as
a regularly-scheduled thread polling for frame ar-
rivals, since we hold Linux scheduling granularity
and context switch overhead to be the primary rea-
sons for the increased latency. Instead, some com-
bination of polling and interrupts might serve bet-
ter, or a single-process implementation in which the
UDP stack is combined with the application.

We are unable to demonstrate either performance
improvements or resource savings we expected to
achieve with a partially-offloaded stack implemen-
tation. The main reason for this is the minimal na-
ture of UDP: the UDP payload checksum is the only
computationally-expensive element of UDP process-
ing. We expected to be able to implement the
ENP-2611-resident portion of the UDP stack in the
partially-offloaded version in fewer instructions than
the fully-offloaded implementation, and perhaps to
even combine it with the link receive and transmit
logic. We have found, however, that UDP checksum
computation is the most expensive element of the
UDP pipeline not only in terms of running time, but
also instruction counts; since the UDP checksum
must be computed by the NIC in both implementa-
tions, significant code space savings are not possible
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without hardware support. Whereas it is trivial to
compute the incremental UDP checksum in hard-
ware for arriving packets (in fact, the IXP2400 MSF
subsystem has this feature), adding this logic to the
transmit path is not easy, since the UDP checksum
resides in the UDP header. We believe that a PCI
bus interface with a capability to compute an in-
cremental 16-bit ones-complement checksum would
allow a truly light-weight NIC-resident UDP stack
implementation.

5 Conclusions and Future Work

In this paper, we have shown that a network inter-
face need not implement a full transport protocol
stack in order to effectively perform Direct Data
Placement. Our implementation of a prototype
NIC supporting Intelligent Data Placement with
a partially-offloaded UDP stack achieves through-
put comparable to the throughput achieved by a
similar implementation with a fully-offloaded UDP
stack. On the other hand, our implementation ex-
hibits much longer RPC response times, and conse-
quently uses much more packet buffer memory than
the fully-offloaded implementation—a phenomenon
we attribute to Linux task scheduling granularity
and context switch overhead.

In the future, we would like to experiment
with alternative implementations that avoid that
overhead—e.g., combining the UDP stack with the
RPC server process, or using a combination of
polling and interrupts in the UDP pipeline. Addi-
tionally, we would like to examine a more elaborate
transport protocol than UDP and attempt to show
the computational resource savings we listed as a
goal of this work.

Finally, we intend to construct a full-featured NFS
server implementation within the IDP framework
in order to be able to perform a more meaning-
ful end-to-end performance evaluation with a tradi-
tional filesystem benchmark suite. Going forward,
we would also like to investigate application classes
other than RPC servers.
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Abstract

Indexed searching of desktop documents has recently become pop-

ularized by applications from Google, AOL, Yahoo!, MSN and others.

However, each of these is an application separate from the file system.

In our project, we explored the performance tradeoffs and other issues

encountered when implementing file indexing inside the file system. We

developed a novel virtual-directory interface to allow application and user

access to the index. In addition, we found that by deferring indexing

slightly, we could coalesce file indexing tasks to reduce total work while

still getting good performance.

1 Introduction

Searching has always been one of the fundamental problems of computer science,
and from their beginnings computer systems were designed to support and when
possible automate these searches. This support ranges from the simple-minded
(e.g., text editors that allow searching for keywords) to the extremely powerful
(e.g., relational database query languages). But for the mundane task of per-
forming searches on users’ files, available tools still leave much to be desired.
For the most part, searches are limited to queries on a directory namespace—
e.g., Unix shell wildcard patterns are useful for matching against small numbers
of files, and GNU locate for finding files in the directory hierarchy. Searches
on file data are much more difficult. While from a logical point of view, grep
combined with the Unix pipe mechanisms provides a nearly universal solution
to content-based searches, realistically it can be used only for searching within
small numbers of (small-sized) files, because of its inherent linear complexity.

However, fast searches on file content are possible if an indexing structure is
maintained. Recently, programs that build such indexing structures to allow
fast searches have attracted a lot of attention. Popular examples are Google
Desktop Search and X1 Desktop Search.

For our project, we designed and implemented a file system for efficient data-
indexed searches. When text files are written, the file system automatically
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indexes the files and the file system provides a virtual directory structure for
users and applications to access the index.

There are many advantages to having a data-indexing file system rather than
specialized programs that sit on top of it, and one of the motivations for our
project was to explore the design space. In particular, we were interested in
issues such as ensuring consistency of the index with respect to the actual data
in the file system, performance tradeoffs, and cross-application index sharing.

An important feature of our system is that we update the index incrementally,
almost immediately after a file modification. Since our indexing scheme is built
into the file-system it is easy to be notified when a file is modified. One im-
portant practical result of such a dynamic scheme is that the index is always
consistent and up-to-date. Though the usefulness is obvious, it is hard to mea-
sure the significance of having a current index.

Also difficult to measure are the benefits that come from having a centralized
index. As described in Section 2.1, many current applications build and keep
track of partial indexes of some portion of a user’s data. By providing an index-
ing service from within the file system, applications do not have to keep track of
indexes themselves (which involves tracking when files are moved, deleted, re-
named, created, their contents changed, and other complexities), simplifying the
applications and allowing more new applications to take advantage of content
indexing for speed and functionality enhancements.

Finally, there are many possible performance gains from being able to include
the index in the file system. By updating the index quickly after files are written,
we can ensure that the indexed file will already be in cache, while indexing at a
later time will likely result in a cache miss. By delay indexing, we can coalesce
multiple writes to the same file into a single indexing operation. By blocking
searches while there is still data queued for indexing, we can ensure consistency.

The next section explores work related to our project, Sections 3 and 4 describe
the design and implementation of our file system, Section 5 evaluates the per-
formance of different versions of our file system, and the concluding sections
offer ideas for future work and lessons to be drawn from our experience.

2 Related Work

The prior work related to our project generally falls within the scope of two
distinct domains. On the one hand there has been a recent spate in applications
that index file content for fast searches, but none of these have been implemented
as file systems. On the other hand, there is a long history of “semantic” file
systems, which associate with files more semantically-relevant metadata, i.e.
descriptions like “source code”, or “picture of a dog”. While such file systems
do not attempt to index and search the entire byte contents of files, they do in
a sense maintain abstractions of those contents.
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2.1 Applications that index and search file content

In the past six months several free software applications have popularized the
indexing of files for fast content-based searching. Google Desktop, released in
October of 2004, indexes the content of certain types of files in certain folders
and provides a webpage front-end similar to its web search engine. Since then,
MSN, Yahoo! and AOL have all released or announced similar new index-based
file search tools. These offerings represent a growing of interest in a market
that was previously left to smaller companies such as Copernic. Beagle [1] is an
open-source project similar to Google desktop.

In addition to complete file system indexers, there has been a trend seen in sev-
eral new applications do their own file-monitoring and indexing of file “meta-
data”. For example, Apple’s iTunes and Google’s Picasa build and maintain
databases of attributes associated with a user’s music or pictures, respectively,
and use these for faster browsing or indexing of (specific types of) files. The
application-specific creation of indices, even if only for such attributes, offers
motivation for a system-wide indexing service integrated into the file system or
operating system, available to any application that needs it.

All of these tools differ from our project by being separate from the file system
and operating system. This has ramifications in: when the indexing is done;
which applications can use the index; and how incremental the indexing can be.

By integrating an indexer into the file system, we support immediate indexing of
files when they are changed or created. This provide the benefits of a completely
consistent index, as well as potential performance gains. By indexing the files
while they are still in cache, we avoid additional disk accesses in the indexing
process. In addition, by seeing exactly what data in a file has changed, and how,
a file-system based indexer has more possibilities for incrementally indexing a
file. And of course by providing a standardized file-system indexing API, we
allow new applications to leverage the index for database-like UIs without the
overhead of creating their own index.

2.2 Semantic file systems

Sheldon et al. introduced the concept of “semantic file systems” in [2]. Their
basic idea was to replace the ubiquitous directory-based hierarchical approach to
file system organization with something more database-like, using key-attribute
pairs. This approach has been further developed in various projects, such as the
HAC file system [3] and DBFS [4], and is rumored to be a feature of Microsoft’s
“Longhorn” release.1 However, one of the difficulties in designing such semantic
file systems is coming up with appropriate attributes. In [2], these were supplied
by the user upon file creation—an approach with obvious deficiencies not only in

1
see http://msdn.microsoft.com/data/default.aspx?pull=/msdnmag/issues/04/01/

WinFS/default.aspx
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terms of scalability, but because when a user creates a file they may not yet know
what attributes they will want to use to locate it in the future. The problem
of assigning attributes to files automatically has been studied in [8]. Finally, in
[6], the authors explore the implications of a semantic file system that does have
full content-based indexing. Interestingly, in exploring the design space they
independently come up with many of the same ideas we had. However, their
paper is only an ideas paper, with no implementation and very little theoretical
work.

3 Design and Implementation

3.1 Basic architecture

The Searchable-by-Content File System (SCFS) was written with the FUSE
toolkit [9] for user-level file systems in Linux, which is in turn based on the
Virtual File System layer (VFS). VFS is sufficiently abstract to enable writing
file systems without a physical presence on disk. For example procfs exports
a directory /proc that is used to get and set information about the running
system. It is also possible to write a virtual file system that simply serves as
a mount point for a different location on the file system, translating requests
relative to the mount point into requests relative to that location (cf. BSD’s
nullfs [7]). This is the way SCFS is structured: it wraps a layer of content-
indexing around an already existent location on the file system. When files
are created or changed through the SCFS mount point, the index is updated
accordingly. SCFS also exports a virtual directory “/index” as an interface for
performing keyword queries; the virtual index directory will be described in
Section 4.

The index itself is maintained as a Berkeley DB, mapping keywords to lists
of files containing those keywords. The basic procedure for indexing a file in-
volves parsing it to extract keywords (alphanumeric strings) and then inserting
the appropriate mappings into the DB. However there are a number of finer
issues involving indexing: What should be indexed? When should indexing be
performed? How is index consistency maintained after destructive updates of
files?

3.2 Deciding what to index

An issue that naturally arises for content-indexing file systems is that indexing
clearly must be selective. It would almost always be useless to index temporary
files, for example, or to attempt to directly index the binary content of graphics
or music files. The indexing scheme must also be able to distinguish between
normal files and devices or directories (e.g. indexing /dev/zero would be a bit
(actually infinitely many repetitions of a bit) counterproductive). Sometimes,
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the file system organization can provide hints as to whether (and how) a file
should be indexed—on Windows, for instance, file name extensions can be used
to distinguish executables—which should not be indexed—from text files and
also more structured text files (e.g. HTML or Word documents) that could be
indexed given a suitable parser. In Unix it does not make much sense to use
file name extensions, though. So instead, SCFS uses XFS extended attributes
(cf. attr(5)) as flags for whether to index a file. Setting the “index” extended
attribute to 1 for a file causes it (and all future versions of it) to be indexed,
and setting the attribute for a directory causes all future files created in that
directory to be indexed. Another possibility would have been to adopt Beagle’s
approach of letting the presence of a file “.noindex” indicate that files in a
directory should not be indexed.

3.3 Deciding when to index

Whenever the file system is modified, such as after a write or a delete, the
index must be updated to reflect the change. This update can either occur
immediately after performing the corresponding system call (i.e. write, unlink,
etc.) and before returning the system call’s result, which we call synchronous
behavior, or it could be queued for execution by a separate thread, possibly after
a delay, which we call asynchronous behavior. While synchronous indexing has
the virtue of always ensuring consistency of the index, it is ultimately untenable
because of the mismatch between file sizes and the granularity of updates. The
operation of copying a one megabyte file typically results in 256 writes of four
kilobyte blocks, rather than a single one megabyte write. Synchronous indexing
would therefore result in the file being reindexed 256 times, each time reading
and parsing the entire file. This is a huge amount of wasted effort, since the
index presumably will not be queried until the final write is completed.

On the other hand, it is easy to set up asynchronous indexing so that the queue
is not flushed immediately (only every second, in our implementation). By
then making the queue idempotent (i.e. enqueueing a file multiple times results
in only one indexing operation), we create a “slack process” in the sense of
Hauser et al. [5] that eliminates all of the unnecessary work performed by the
synchronous indexing scheme. This asynchronous slack process is illustrated in
Figure 1.

3.4 Destructive updates

Writes to a file that overwrite other data require that the old associations in
the index somehow become invalidated. There are at least two unsatisfactory
solutions to this problem: perform a traversal of the entire index looking for
keyword entries containing the given file (horrible time complexity); or main-
tain an inverse mapping from files to keywords (horrible space complexity). The
approach taken in SCFS is based on the idea that rather than physically remov-
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Figure 1: Asynchronous indexing with an idempotent queue.

ing old mappings from the database, it is possible to logically invalidate them.
The index is in fact not simply a mapping from keywords to lists of files, but
from keywords to lists of versions of files. A destructive update creates a new
version of a file, and the file is parsed to find the keyword mappings to this new
version. Nothing needs to be removed from the index database, and in our pro-
totype implementation it actually grows monotonically; pruning the database
of defunct mappings is a simple garbage collection problem, which we leave to
future work.

3.5 Non-destructive updates

In the case of non-destructive updates, such as appends, since no keywords are
being removed from the file it is not necessary to invalidate old mappings, and
it is only necessary to add new mappings corresponding to the new keywords
resulting from the append. This can almost be performed by just parsing the
buffer sent into the appending write (i.e. without any disk reads) but there is
a complication: a keyword can begin before the start of an append. To deal
with this case, we must read as many bytes before the start of the append
as the maximum keyword length. However, this is still a major improvement
important for dealing with appends to large files, such as Berkeley mailboxes.

4 The Virtual Index Directory

We take advantage of being inside the file system to make searches possible by
regular directory and file reads inside a special virtual directory called “index”.
The files viewable in this directory correspond to the keywords in the database.
So, for example, after indexing one file named “mydoc.txt” with one line that
reads:
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"Hello," said the hippopotamus.

The index directory would look like:

/mnt/index$ ls

hippopotamus

hello

said

the

These files are virtual—i.e. they only exist as an abstraction exported by
SCFS—but since they are files you can apply all sorts of cute Unix tricks to
them, like tab completion. So, for example, by typing “hi<tab>” the word is
completed in this case to hippopotamus. This is functionality we get for free
from Unix.

To list the files that include a phrase, one can simply read the virtual file:

/mnt/index$ cat hippopotamus

/scfs/tmp/mydoc.txt

Though not yet implemented, multiple keyword searches could be provided with
special operators. For example, the file “hello,hippopotamus” would contain the
names of files containing both keywords.

This mechanism fits well into the small, pluggable architecture of Unix, and
provides simple access for users, script writers and application developers. It
could also be used as the basis for a more standard web-based or other GUI
interface.

5 Evaluation

For small files, or small appends to large files, indexing is very fast and the
overhead a user experiences when updating files is neglible. However, there are
real-world scenarios when a large amount of data needs to be indexed in a short
time—for example, untar’ing a large source code package.

Our tests do not try to build artificial files to index. We simply use popular
packages that contain a lot of text files and examine how our indexing schemes
perform when untar’ing them. Our test packages vary in size and this helps to
evaluate the performance as the data size increases.

Our metrics for performance evaluation was the total time spent indexing, buffer
cache performance, and the overhead of performing indexing with a cold cache.
Timing is the most important factor as far as the users of the system are con-
cerned. Buffer cache performance was monitored using the sar profiling tool.
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Figure 2: Plot showing running times for indexing OS STUFF
(0.58MB), FUSE (1.55MB), Cytoscape (2.11 MB), War and Peace
(3.28 MB), and Twelf (5.5 MB)

The cold cache overhead gives a measure of the advantage of performing in-
dexing dynamically with a short delay after file updates, since the cache is
always warm. We timed SCFS with the three different variants of indexing
(synchronous, asynchronous, and asynchronous indexing with an idempotent
queue) which were described in section 3.3.

5.1 Results

As mentioned earlier, we tested our program by untar’ing publicly available
packages. The packages that we tested include the source code for FUSE, Twelf
and Cytoscape, the book ‘War and Peace’ and the well-researched readings
and project files of the CMU operating systems course 15-712 (OS STUFF). We
will present the comparisons of the variants of SCFS for OS STUFF, since it is
considerably smaller than the others. We also present the running times for the
above files using the asynchronous, coalescing variant.

The timing results shown below are just for the indexing functions. A clock is
started when we begin the indexing routine and it is stopped when the routine
completes. We also maintain a cumulative integer of the number of microseconds
spent in indexing. The cache results shown below correspond to the number of
physical disk accesses performed. This does not include the read on the zip file
performed during the untar’ing operation since it is common for all the tests.
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Figure 3: Plot showing running times for in-
dexing Twelf source code with a warm and
cold buffer cache.

Figure 4: Plot showing running times for in-
dexing OS STUFF.
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Figure 5: Plot showing the number of pages
swapped out to disk while indexing.

In Figure 2, we compare the performance of the indexing scheme as the size
of the packages increase. It is hard to extrapolate too much information from
the plot since the packages contain different types of files. It is however clear
that the indexing scheme is practical and the running time does not increase
dramatically with the file sizes.

In Figure 3, we compare the performance of the indexing schemes when we have
a warm cache versus a cold cache. As we verified with sar, untar’ing always
results in a warm cache, since the writes swap the files and subsequent indexing
just read them out of the buffer cache. Hence to obtain cold cache numbers,
we untar’d the files with indexing turned off, manually polluted the cache, and
then directly indexed the untar’d directory. The difference in the running times
provides an estimate of the time spent in fetching blocks from disk.

In Figure 4, we have timing information for the three variants of SCFS. It is
clear that coalescing work with an idempotent queue greatly helps in improving
the performance of the indexing scheme. Most of the improvement is due to the
fact that large files in the packages are written out in blocks which results in
indexing the same file multiple times if coalescing is not used.

In Figure 5 we compare the number of pages swapped out for the different
variants. This plot matches well with the timing results. Note these are pages
swapped out, not swapped in—as mentioned above, every variant has perfect
buffer cache performance when reading in files to index.

6 Future Work

One of the possibilities created by an indexing file system that we did not
have time to explore was that of a persistent indexing file system. Logging file
systems like the Elephant Filesystem have the ability to remember all versions
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of a file. By combining this with automatic and immediate content indexing
in the file system, a persistent indexing file system would allow one’s entire file
system history to be quickly searched. By indexing inside the file system, we
can track every write that happens and ensure that every version of a file will be
indexed. External indexing applications would not be able to guarantee this and
might miss intermediate versions of a file that occurred between indexing passes.
Our implementation of the index database was built to support persistence by
keeping track of multiple version of each file and not removing old entries from
the file system. However, we have not yet implemented the other code needed to
have a persistent file system. Also, there are interesting user interface issues that
need to be explored of how to display results of such searches. If a file included
a keyword for some but not all of its lifetime, the search results display could
identify each different version of the file as a different match, each consecutive
period of time when the file did or didn’t match the keyword, or employ some
more graphical timeline to represent the history of that file or the entire file
system. A persistent indexing file system would offer new functionality and open
up interesting new user interface issues of how to best provide this functionality.

Automatic indexing of text is one step away from the idea of a file system
as storing arbitrary bits and closer toward having semantic knowledge of its
contents. With knowledge of other structured file formats such as HTML and
PDF documents, we could support searching over more types of data and also
provide smarter searches that weight matches differently (e.g. if a match occurs
in the title).

7 Conclusions

Indexing the content of local file searching allows for very fast file searches. We
built a file system that automatically indexes files’ contents, providing several
advantages. First, the file system is a central location for different applications
to share the same index, removing the need for individual applications to create
and maintain their own index. Second, by being in a file system we can offer
access to the index by way of a novel virtual directory structure that takes
advantage of existing Unix capabilities and lets applications or users easily make
use of the index for searching. Third, by indexing in the file system we can
index files shortly after they are written to insure the consistency of the index.
Fourth, the greater flexibility to decide when and how to index allows us to
make informed performance tradeoffs that let us balance cache performance,
file-update coalescing and system responsiveness.

Our evaluation showed that some amount of file-update coalescing was necessary
to avoid frequent indexing caused by file writes being automatically broken up
into many individual 4KB writes. We think that content indexing will continue
to be a valuable service, have demonstrated that placing it inside the file system
offers several advantages, and hope that our experience in implementing and
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testing it will be valuable to those working on content indexing and file systems
in the future.
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Comparison-based server verification has been shown to
be an useful tool for debugging servers. However, cur-
rent implementations only allow for debugging of servers
that use stateless and deterministic protocols. Given
the current push towards complex stateful and semi-
deterministic protocols, it is interesting to see if we can
realize the benefits of comparison-based verification for
these more complicated protocols. In this paper, we de-
tail the implementation of a comparison-based verifica-
tion tool known as the Tee for NFS Version 4 (NFSv4),
which is both stateful and semi-deterministic.

1 Introduction

Debugging servers is tough [12]. Although the client-
server interface is usually documented in a specification,
there are often vague or unspecified aspects. Isolating
specification interpretation flaws in request processing
and in responses can be a painful activity. Worse, a server
that works with one type of client may not work with an-
other, and testing with all possible clients is not easy.

The most common testing practices are RPC-level test
suites and benchmarking with one or more clients. With
enough effort, one can construct a suite of tests that exer-
cises each RPC in a variety of cases and verify that each
response conforms to what the specification dictates.
This is a very useful approach, but it is time-consuming
to develop and difficult to perfect in the face of specifi-
cation vagueness. Popular benchmark programs such as
SPEC SFS [10] for NFS servers, are often used to stress
test servers and verify that they work for the clients used
in the benchmark runs.

Another interesting method of testing servers is
Comparison-Based Server Verification as introduced
in [12] and shown in Figure 1. In this method, clients
send requests to a Tee that relays the requests to both
a Reference Server and System-Under-Test (SUT). Re-
sponses from both servers are captured by the Tee and
differences flagged. If the reference server is chosen
based on the belief that it works correctly, it can be used
as a “gold standard” against which the SUT’s correctness
can be evaluated.

Unmodified

Clients

SUT

Reference

Server

Server

Tee

RPC Requests

Responses

Figure 1: The server Tee is interposed between unmodi-
fied clients and the unmodified reference server, relaying
requests and responses between them. The Tee also sends
the same requests to the system-under-test and compares
the responses to those from the reference server.

Comparison-based server verification yields two distinct
advantages to regular testing. First, it ensures bug-
compatibility. Second, it allows for live testing. These
advantages are described in further detail below.

Bug Compatibility: A given server implementation may
become so widely used that it introduces a de facto stan-
dard. Any new servers wishing to compete with this
popular implementation must emulate all of its nuances
regardless of whether they are discussed in the original
protocol specification. Comparison-based server verifi-
cation allows verification of such “bug compatibility” by
comparing responses from both the popular server and
new server.

Live Testing: Benchmarks such as SPEC SFS work
by stress testing servers with high intensity static work-
loads over a short period of time. If the server does
not crash and returns results correctly over this period,
it is deemed to be correct. This testing approach has
two critical flaws: (1) The testing period is over a pe-
riod of hours or days at best. Hence, these benchmarks
will not reveal bugs related to system degradation that oc-
curs over very longer periods. (2) The workload is static
and hence may not “tickle” a bug which will be exposed
by some real workload that the SUT will see when de-

41



ployed. Comparison-based server verification addresses
these shortcomings by allowing a new server to be added
quickly in an existing live environment as a SUT without
risk of failure affecting the client. Client data is safely
stored on the proven reference server and clients are
oblivious to the existence of the SUT. Both clients and
the reference server continue working normally while
SUT responses to the live workload requests are captured
and compared with reference server responses.

Though comparison-based server verification does pro-
vide clear advantages to regular testing, current imple-
mentations are limited to testing servers that implement
stateless and deterministic protocols such as NFSv3 [4].
However, new emerging client/server protocols are both
stateful and semi-deterministic1. Statefulness allows the
server to make better use of client side caching and locks.
Since the server keeps track of which clients are access-
ing various files, it can delegate complete control of un-
shared files to the clients that are exclusively accessing
them. Lock management is also made more robust by
requiring statefulness. Semi-determinism allows various
server implementations the ability to choose when they
should issue such delegations and locks. This allows var-
ious servers to optimize for the workload they expect to
see.

Given the current push towards more complex stateful
and semi-deterministic protocols, it is compelling to see
if it is possible to realize the benefits of comparison-
based server verification for these more complicated pro-
tocols. In attempting to do so, we find that there are two
major issues that must be addressed. The first is a prob-
lem of state-keeping at the Tee. The second is a prob-
lem of performing comparison verifications for a semi-
deterministic protocol in which two servers are allowed
to respond differently to the same request.

The problem of state-keeping arises because a Tee for a
stateful protocol is simply not privy to certain state infor-
mation that it needs about clients and servers in order to
perform its function. An example of such state is the file
currently being accessed by each client. A Tee for a state-
less protocol would see such information over the net-
work because clients would have to retransmit such state
with every request. A Tee for a stateful protocol does
not see this information because it is hidden within the
server and never broadcast over the network. Hence, a
Tee for a stateful protocol must somehow scan the client
request stream and via some heuristics, opportunistically
recreate the necessary state.

The problem of semi-determinism arises because with
a stateful protocol, it is not valid to assume that replies

1A semi-deterministic server is a server that is free to choose be-
tween one of several valid replies and states given some input

from two servers for the same request will be identical.
A semi-deterministic protocol allows two servers that see
the same request stream to end up in different valid states
and generate different valid replies. Hence, the question
that is posed here is whether comparison-based verifica-
tion is possible for a semi-deterministic protocol and if
so, what accommodations must be made.

In this paper, we describe the creation of a comparison-
based verification tool called the NFSv4 Tee for the NFS
version 4 protocol [11] [8] which is a semi-deterministic
and stateful. The main contribution of this paper is a
description and analysis of how we handle the problem of
state-keeping at the Tee. In the future works section, we
describe how we accommodate non-determinism within
the context of comparison based server verification.

The rest of this paper is organized as follows. Section 3
describes the components of a generic Tee along with
detailed information about the NFSv3 protocol, previous
work in creating a Tee for NFSv3, and the NFSv4 pro-
tocol. Section 2 describes other work similar to compar-
ison based server verification. Section 4 describes how
we handle the problem of keeping state at the NFSv4
Tee. Section 5 describes the basic architecture of the
NFSv4 Tee. Section 6 evaluates our architecture and the
data structures needed to keep state. Section 7 describes
work that is left to be done. This includes handling the
semi-deterministic features of NFSv4 such as locks, del-
egations, and callbacks. Finally we conclude with Sec-
tion 8.

2 Related Work

We believe that the concept of comparison-based veri-
fication as a means by which to debug servers is new.
However, there has been a large amount of previous re-
search done in the field of debugging techniques. Ad-
ditionally, the Tee itself is an application of proxy-
clustering which is a technique that has been used for
many other applications.

Ballista [7] is a tool developed at Carnegie Mellon Uni-
versity to evaluate the robustness of a system. Ballista
aims to comprehensively test SUTs by generating an ex-
haustive sequence of inputs and monitoring the resulting
output. In this sense, Ballista is much more comprehen-
sive than a Tee that performs comparison-based verifi-
cation. Where the Tee only aims to guarantee that the
SUT is as robust as the reference server, Ballista aims to
guarantee that the SUT is completely devoid of any fail-
ures. Ballista’s drawback lies in the fact that it is hard to
create a set of completely comprehensive inputs. A Tee
avoids this problem by assuming that the live workload
on which testing is performed will sufficiently encom-
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pass most of the comprehensive input set.

Version Manager [2] is a tool that facilitates software up-
grades by employing a cluster proxy to redirect incoming
requests to both the old version and the new version of
the software. In this way, availability and compatibility
are both preserved during and after the upgrade process.

Cuckoo [6], Slice [3], Z-Force NAS Aggregation
switches [13], and Rainfinity Rainstorage devices [9]
all use the concept of proxy-clustering in order to per-
form their function. Cuckoo uses proxy-clustering to
affect a form of load balancing among monolithic NFS
servers. Slice uses proxy clustering to reroute client re-
quests based on request type. Proxy clustering is used
in slice to reroute metadata operations, small I/Os, and
large I/Os to different servers that are optimized for each
workload. Z-Force and NAS aggregation switches and
Rainfinity Rainstorage devices use proxy clustering to
virtualize independent NFS servers.

3 Background

3.1 Major Components of a Tee

Any implementation of comparison-based server verifi-
cation will have four common components: relay, dupli-
cation, comparison, and synchronization.

Relay: The relay is the component that handles com-
munication between the client and the reference server.
When it receives a client request, it forwards it to the
reference server, waits for the reply, and sends the reply
back to the client.

Depending on the RPC protocol, the relay may have to
modify some fields. Because it is effectively funneling
multiple client requests into a single relay-to-reference
server connection, the relay must be able to uniquely
identify each response so that it can be sent to the cor-
rect client.

Duplication: The duplication module makes a copy of
each original client request, modifies it as necessary, and
forwards it to the SUT. The duplication module may have
to modify any requests with fields that are specific to the
reference server so that they have the proper effect when
set to the SUT.

Comparison: The comparison module matches the ref-
erence server’s reply to the associated SUT reply. Then,
using its knowledge of the protocol, the comparison
module parses the responses and compares the fields. For
some fields such as the file data, the fields are bitwise
compared when looking for discrepancies. For some
fields like timestamps, however, special rules may be em-
ployed to ensure that they are similar but not necessar-

ily identical. These fields are called loosely comparable
fields. Finally, some fields contain data that is specific to
the server and are simply not comparable.

Synchronization: In order for a comparison on requests
to an object to be meaningful, the object in question must
be in the same state on both the reference server and the
SUT. The synchronization of objects is beyond the scope
of this paper.

3.2 NFS Version 3 Protocol

The Network File System version 3 protocol implements
a simple network filesystem. Clients mount the remote
filesystem and use it as if it were local by issuing a com-
mand at a time through RPCs. NFSv3 supports UNIX
like filesystem semantics by offering an interface with
commands such as open, read, write, delete, and readdir.

NFSv3 is a stateless protocol, meaning the servers retain
no knowledge of their clients. As a result, server imple-
mentations can be very simple; they merely translate the
request RPC to a request on the local filesystem. The
client, then, must provide with each request the com-
plete set of information required to allow the server to
perform the operation. This information may include a
unique and persistent file identifier called a filehandle, or
a parent directory path followed by a file name.

In addition to being stateless, the NFSv3 protocol is
highly deterministic; only when a client has sent a re-
quest does it expect a single, consistent, and reasonably
quick reply.

3.3 NFS Version 3 Tee

The NFSv3 Tee is designed to do debugging while in a
live environment. To facilitate this, the code is divided
into two major components called the relay and the plu-
gin (Figure 2). The relay component is the same as the
one described above. It waits for the client request and
forwards it to the reference server. It then waits for the
reply and sends it back to the client. The plugin, which
communicates with the relay via shared memory, con-
tains the rest of the Tee components: duplication, com-
parison, and synchronization.

The separation of the relay from the rest of the system
allows for live testing. Any failures on the part of the
SUT or the plugin are isolated and therefore do not af-
fect the client’s ability to communicate with the refer-
ence server. The separation also allows the plugin and
SUT to be added, removed, or restarted at any time.

The stateless nature of the NFSv3 protocol influences the
design of the plugin. In a stateless protocol, the server
remembers nothing about the clients and therefore the
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client must provide all necessary state with each request.
In NFSv3, an operation on a file requires the client to in-
clude a unique and persistent file identifier called a file-
handle. Since the Tee sees all client requests, any meta-
data can easily be stored by keying it on this filehandle.

Because the NFSv3 protocol is stateless and determin-
istic, the implementation of comparisons for the Tee is
fairly straightforward.

3.4 NFS Version 4 Protocol

The Network File System version 4 protocol aims to im-
prove NFSv3 performance over high latency low band-
width networks such as the Internet. A new operation,
called a compound request, improves Internet perfor-
mance by reducing the number of low level RPCs re-
quired to complete a high level task. Several NFS re-
quests are combined into a single RPC packet. A conse-
quence of this is that the server must now store per-client
state. Consider, for example, a compound request that
contains a file open and a file write. The file open, in
NFSv3, returns a filehandle which allows the client to
identify the file when it issues the write command. How-
ever, because the write is packaged into the compound
along with the open, the client is unable to include the
filehandle because it does not know it yet. This is just
one reason the server stores the notion of the current file-
handle2.

The current filehandle automatically changes based on
the request stream so that the server correctly operates
on the file that the client expects.

In addition to compound requests, NFSv4 includes some
semi-deterministic features that the servers may imple-
ment. Because of these features, an NFSv4 Tee imple-
mentation will be more complicated than a NFSv3 Tee
implementation and comparisons will not be as simple.

Byte Level Locking: This mutual exclusion feature is
now built into the protocol whereas it was an external in
NFSv3.

Delegations: A server issues a delegation to a client to
signify that the client has exclusive access to the file. The
client may cache the file locally and use it without check-
ing for updates at the server. When a different client
wishes to access the object, the server sends a callback
to the client with the delegation to revoke it and force the
data to be written back to the server. To accomplish this,
the server must store more state; the location of the client
holding each delegation.

Volatile Filehandles: In NFSv3, filehandles were unique

2The current filehandle is the filehandle that the client is currently
accessing. The server stores this state for each client so that the client
does not have to include it in successive requests for the same object.

and persistent file identifiers. In NFSv4, the designers
did not want to burden servers with the need to track per-
sistent and unique identifiers in the event that the back-
ing store did not easily support such a thing. As a re-
sult, NFSv4 has different types of filehandles: the famil-
iar persistent filehandles and also filehandles that expire.
For filehandles that expire, the client must be prepared to
deal with the fact that the use of a filehandle may return
an error message indicating that the filehandle is stale.

4 Storing State

The NFSv4 Tee must store state for each client and file
on both the reference server and SUT. This is because
NFS server replies to certain requests contain opaque
field values that must be saved by clients and returned to
the server on subsequent calls. The opaque field values
returned by the reference server are stored by the clients
and hence do not need to be stored by the Tee. How-
ever, because the Tee does not forward SUT replies to
clients, the Tee must save these opaque field values itself
and insert them into new SUT calls as appropriate. Ta-
ble 1 shows all of the opaque fields that can be returned
by NFSv4 servers.

Figure 3 demonstrates the need for keeping state at the
Tee. In step one, a OPEN call is issued by a client for file
A��� , the version of file A stored on the reference server.
This call is captured by the Tee and immediately for-
warded to the reference server. In step two, the Tee dupli-
cates the OPEN call and sends this duplicated call to the
SUT. The OPEN call sent to the SUT instructs the SUT to
open file A���, the version of file A stored on the SUT. In
step three, the reference server responds with its reply to
the OPEN. The reply contains an opaque stateid4��� field
value. In step four, the SUT responds with its reply to the
OPEN. This reply contains a stateid4���. field value that
need not be the same as stateid4��� . Subsequent calls for
file A��� from must contain stateid4��� , whereas the du-
plicated version of these calls sent to the SUT must con-
tain stateid4���. The Tee must hence store stateid4���

and replace stateid4��� with stateid4��� in calls it dupli-
cates to the SUT for file A.

The scenario shown above shows that the Tee must store
a mapping between files on the reference server and the
corresponding opaque field values that must be inserted
in calls that reference the same file on the SUT. We only
need to save the opaque field values returned by the SUT
as the clients handle the opaque field values sent by the
reference server.

Notice that the scenario presented above is a simplifica-
tion of the state keeping problem. The opaque field val-
ues are unique to files and clients. Hence, the Tee must
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Figure 2: Software architecture of an NFS Tee. To minimize potential impact on clients, we separate the relaying functionality from the other
three primary Tee functions (which contain the vast majority of the code).

Figure 3: A case for storing state at the Tee.

store the opaque field values for each file on the reference
server and for each client that accesses these fields.

Section 4.1 describes how we keep track of state in both
the NFSv3 and NFSv4 Tee along with why keeping track
of state in the NFSv4 Tee is so much harder than doing
the same in the NFSv3 Tee. Section 4.2 details describes
the architecture of the namespace tree, our statekeeping
solution for the NFSv4 Tee.

4.1 Tracking state in NFSv3 and NFSv4

In stateless protocols like NFSv3, state keeping in the
Tee is trivial. Each operation on a file contains a unique
and persistent identifier for the file call the filehandle.
The NFSv3 tee simply keeps a mapping of reference
server filehandle to SUT opaque field values.

State keeping in NFSv4 is not so easy. No persistent or
unique identifier of a file is ever sent in NFSv4 calls and
replies. Instead, NFSv4 servers keep track of the current

file each client is accessing in a current fh����	� variable.
The NFS operations shown in Table 2 implicitly change
current fh����	� on the server. All other NFS operations
are assumed to operate on the filehandle stored in cur-
rent fh����	�.

Our solution to the problem of keeping track of state in
the NFSv4 Tee involves mirroring the reference server
namespace in a tree (we call this tree the Namespace
Tree. This namespace tree contains nodes that corre-
spond to directories and files on the reference server.
Each node contains the opaque field values for the cor-
responding file on the SUT. This solution presents many
problems that are not present when using filehandles for
the mapping. Most importantly is the fact that we must
“reconstruct” a copy of the reference server namespace
solely from viewing NFSv4 calls and replies.
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Mapping Data
Types Purpose

stateid4 Used to share state between clients & servers
nfs fh4 Uniquely identifies a file at a server

verifier4 Identifies lock state held by client for a file
nfs cookie4 Identifies the last read directory entry

Table 1: Set of opaque field types that are unique to NFS Servers All of these types correspond to values that are returned by a NFS server to
clients as opqaque. Servers expect these opaque values to be passed back to the server during certain NFS requests.

NFSv4 Requests that may implicitly modify the current filehandle
CREATE LOOKUP LOOKUPP OPEN
OPENATTR PUTROOTFH RENAME RESTOREFH

Table 2: NFSv4 Requests that may change the current filehandle on a server without any notification.

4.2 Namespace Tree Implementation

Our implementation of the namespace tree is based
around a copy of the reference server’s namespace. Each
node in the namespace contains the required mapping in-
formation to convert a reference server call to a SUT call.
A second tree mirrors the SUT namespace and each node
is a pointer to the corresponding object in the reference
server namespace tree. The need for the two trees arises
from the fact that requests to the two servers are sent
asynchronously; the namespaces for the two trees may
diverge for a short period of time.

Calls which refer to files by name, such as LOOKUPP or
OPEN, provide information about the file namespace on
a server and are used to construct this tree. Another set of
calls, GETFH and SETFH, refer to objects by filehandle
rather than file name. A hash table is used to translate a
filehandle to the appropriate file name in the namespace
tree.

5 NFSv4 Tee Architecture

The NFSv4 Tee is broken up into two major components:
the Relay and the Plugin. The relay is solely responsible
for the communication path between the reference server
and clients and is capable of functioning even in the face
of plugin and SUT failure. The Plugin handles commu-
nications with the Plugin and contains the duplication,
and comparison modules.

In the following sections, we describe the architecture
of both the relay and plugin in more detail. We discuss
the relay in detail in Section 5.1 and the plugin in Sec-
tion 5.2.

5.1 NFSv4 Tee Relay Architecture

The relay architecture for the NFSv4 Tee relay is sim-
ple and is mostly unchanged from the NFSv3 Tee relay.
Requests from clients are captured, made available over
shared memory to the plugin, and forwarded to the ref-
erence server. Correspondingly, replies from the refer-
ence server are also captures, mode available over shared
memory to the plugin, and forwarded back to the appro-
priate client. A more detailed description of the relay can
be found in [12].

5.2 NFSv4 Tee Plugin Architecture

Figure 4 shows the basic architecture of the NFSv4 plu-
gin. Individual boxes in the diagram correspond to var-
ious plugin modules. To maximize performance, mod-
ules are asynchronous with regards to each other. Com-
munications between modules is performed via IPC and
concurrency is handled by the Netscape State Threads
Package [1]. Below, we list a description of each mod-
ule listed in the figure. Please note that since we have
not yet implemented support for the semi-deterministic
features of NFSv4 (such as callbacks, delegations, and
locks) that Figure 4 and module descriptions listed be-
low do not take into account these features. The archi-
tecture diagram presented also does not currently show
the modules needed for synchronization.

SUT Forwarder: The SUT forwarder serves as the du-
plication module for the NFSv4 Plugin. It receives client
requests over shared memory from the relay. For each re-
quest it receives, it looks up the current reference server
file that the client which sent the request is currently op-
erating on. This is the file the request currently being
processed by the SUT forwarder is operating on. The
SUT forwarder looks up the current reference server file
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in the reference server namespace tree to retrieve the as-
sociated server specific fields for the corresponding file
on the SUT. The SUT forwarder modifies the request by
inserting in the server specific fields for the SUT and
sends the modified request to the RPC Send module and
SUT Reply Matcher module. It also sends the original
unmodified calls that it receives from shared memory to
the Plugin Reference Input Matcher.

RPC Send Module: This module simply sends the RPCs
it receives to the SUT.

Plugin Reference Input Matcher: The sole function of
this module is synchronization. Though we do not need
the reply for a request sent to the reference server before
relaying that request to the SUT, we do need to wait for
the reference server reply before modifying the reference
server namespace tree. Hence, this module simply waits
for reference server calls sent to it by the SUT Forwarder
and reference server replies sent to it over shared mem-
ory by the relay. When it receives a matching call and
reply, it concatenates both into the same data structure
and passes this along to the Reference Server Namespace
modifier.

Reference Server Namespace Modifier: The names-
pace modifier receives matched calls and replies from
the Plugin Reference Input Matcher. If the result of a
RENAME, or a DELETE is success, then it modifies the
reference server namespace tree accordingly. A RENAME
corresponds to moving a subtree of the reference server
namespace tree from one node to another note. A delete
corresponds to removing the corresponding node for that
file from the tree. Because it is possible for us not to
have heard a reply from the SUT for the same request yet,
that modifications to the reference server namespace tree
might make this tree inconsistent with the namespace of
the SUT. This is the primary reason why we keep both
a reference server namespace tree and a SUT namespace
tree. After potential modification of the reference server
namespace tree, the Reference Server Namespace Modi-
fier passes the matched reference server calls and replies
to the SUT Reply Matcher.

Receive RPCs Module: This module simply receives
RPCs from the SUT and forwards these replies to the
SUT Reply Matcher.

SUT Reply Matcher: The function of the SUT reply
matcher is similar to that of the Plugin Reference Input
Matcher. This module receives matched reference server
calls and replies from the Namespace Modifier and SUT
calls from the SUT Forwarder. It waits for SUT replies
from the Receive RPCs module and matches SUT calls
and replies with the corresponding matched reference
server calls replies. It also saves the server specific data
sent to it by the SUT by inserting into the SUT names-

pace tree using the SUT current file variable. Finally, it
sends this newly matched data to both the Comparator
and SUT Namespace Modifier.

SUT Namespace Modifier: The SUT namespace mod-
ifier performs the same function as the Reference Server
Namespace Modifier except for the SUT namespace tree.

Comparator: This module compares corresponding
replies from the SUT and reference server and flags dif-
ferences.

6 Preliminary Evaluation

6.1 Performance impact

We use PostMark to measure the impact that theTee has
on a client. Because the relay runs as a seperate process
from the plugin, it is the only part of the Tee that affects
the client. It is sufficient therefore to run PostMark on
the Tee without the plugin portion activated (We assume
that we are using a multiprocessor system in which the
operation of the plugin has a negligable impact on the
performance of the relay).

PostMark was designed to measure the performance of
a file system used for electronic mail, netnews, and web
based services [5]. It creates a large number of small
randomly-sized files (between 512 B and 9.77 KB) and
performs a specified number of transactions on them.
Each transaction consists of two sub-transactions, with
one being a create or delete and the other being a read or
append.

The experiments are done by running a variable number
of clients on a single machine mounting an NFSv4 server
over a gigabit ethernet link. We compare the through-
put of the clients when the clients directly mount the
NFS server and when the clients mount the NFS server
through the Tee. The machines used in this experiment
are all Pentium 4 class machines at 2.66ghz with 512MB
of RAM.

Figure 5 shows that using the Tee reduces client through-
put when compared to a direct NFS mount. Performance
hardly scales with increased client concurrency and the
through-tee performance stays around 75-80 percent of
the direct mount case.

The NFSv4 Tee’s performance hit of 20-25 percent when
compared to the direct NFS mount is an improvement
over the NFSv3 Tee’s performance hit of up to 60 per-
cent. Curiously however, the NFSv4 server’s overall per-
formance is around 15-30 percent of the NFSv3 server’s.
This reduction in performance may be a result of the in-
fancy of the NFSv4 Linux code and may explain the rea-
son that PostMark performance does not scale with the
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Figure 5: Performance with and without the Tee.

number of clients.

6.2 Namespace tree performance

We ran workloads of various sizes to determine the per-
formance of the namespace tree. Five different live
filesystems were used including a small /var filesystem of
a typical bsd system, a typical / filesystem, a /usr filesys-
tem, a large source tree, and a whole workstation in-
cluding diverse installations and lots of deep directories
and several hundred thousand files. These experiments
were done on a Pentium-3 1ghz machine with 512 MB
of RAM. File lookups or opens were done on all files in
the filesystems in order to populate the namespace tree,
and getfh operations were subsequently done to lookup
entries in the namespace tree as well as exercise the file-
handle hash tables. Figure 7 shows that the time it takes
to lookup every object in the system scales reasonably
as well. The plateau is an artifact of a particular work-
load; real filesystems were used and each had its own
structure. Particularly unbalanced directory trees would
increase the average lookup time for paths going through
them. This behavior is comparable to a real filesystem
which has the same issue as it stores a tree structure im-
posed on it externally.

For workloads of reasonable size, the namespace table
is more than capable of storing the mapping data that is
needed for each file. With 250k files in the system, the
table required 37 megabytes of memory and supported
lookup operations at a rate of over 17,500 per second.

7 Future Work

The complexity of the NFSv4 protocol when compared
to NFSv3 prevented us from implementing much more
than the low level infrastructure and the namespace tree.
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Figure 7: Performance of the namespace tree.

Our NFSv4 Tee design, however, was not done without
consideration for some of the other NFSv4 changes.

7.1 Delegations and Callbacks

In NFSv3, the reference server and the SUT, from the
Tee’s perspective, were mostly deterministic. That is,
when the Tee sent a client request to both servers, it could
reasonably expect similar replies. In NFSv4 however, the
server is given much more freedom to choose options. It
is up to the server, for example, to determine the circum-
stances under which to issue a delegation. Differing im-
plementations at the reference server and the SUT could
easily cause problems at the Tee’s comparison module.

Consider what happens if one server issues a delegation
for a file but the other server does not. There are two
combinations in which this can happen.

Reference delegation, no SUT delegation: If the refer-
ence server alone issues a delegation to a client, it will
take advantage of it and use the file locally. Neither the
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reference server nor the SUT will see writes, which does
not cause any problems. When the delegation ends, the
reference server alone sends a callback to the client and
the states of the two servers again converge.

SUT delegation, no reference delegation: If the SUT
alone issues a delegation, the client will never receive it
since the SUT response ends in the Tee. As a result, the
client may continue to issue writes to the network which
the duplication module will forward to the SUT, possi-
bly causing it to become confused. When the delegation
ends, the SUT will issue a callback which the client again
will not receive. The server states again converge.

It would be trivial to require that the two servers be-
ing compared implement similar policies regarding del-
egations, but that limits the number of server combina-
tions that are testworthy. We would like to compare any
two servers without forcing them to be implemented in
any particular way. Fortunately, detection of delegations
should be straightforward: the client issues a request af-
ter one server has returned a delegation but before the
other server has issued a delegation. Unfortunately, once
the Tee detects the problem, it can do nothing more.
Comparing requests on this object while there is only
one delegation outstanding may give us may false pos-
itives. Although the Tee can still perform comparisons
on other objects, this object does not provide any useful
comparisons until their delegation states converge again.

7.2 Locks

Because the Tee merely acts as an intermediary, it sim-
ply sends client lock requests to both servers. If an unau-
thorized client attempts to access the locked data, both
servers should return the same errors. Comparisons for
the locking of and for locked objects should be straight-
forward.

7.3 Volatile Filehandles

Volatile filehandles introduce a difficulty similar to that
caused by delegations and callbacks. One server may
generate a persistent filehandle while the other server
does not. A future client request may result in one server
returning a stale filehandle error while the other server
executes the request. When we see that one server has
returned a stale filehandle error when the other has not,
we must update the Tee’s namespace tree (this is easy be-
cause we have separate trees representing each of the two
servers). Depending on which server returned the error,
which server executed the request, and the idempotency
of the request, the Tee may have to resynchronize the ob-
ject state before comparisons are allowed to continue.

8 Conclusion

From [12] it is clear that comparison-based server veri-
fication offers many advantages to current server debug-
ging techniques when debugging stateless and determin-
istic servers. Some of these advantages include the abil-
ity for live-testing and bug-compatibility.

In this paper, we have shown that complex stateful and
semi-deterministic protocols can also enjoy the benefits
offered by comparison-based verification. We have also
identified the major problems associated with creating
a comparison-based verification tool for these complex
protocols.
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Figure 4: The NFSv4 Tee Plugin Architecture This diagram shows all of the components of the NFSv4 Tee Plugin
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Recovering from Intrusions in the OSPF Data-plane

Elaine Shi Yong Lu Matt Reid

Abstract
In this paper, we propose CONS-ROUTE, a data-plane intrusion recovery

mechanism for securing the OSPF routing protocol. CONS-ROUTE allows
routers to perform intrusion detection in a distributed manner. The intrusion
detection outcome can be used globally to reevaluate routing decisions in a
way that is resilient to the slandering attack, where a malicious router claims
that a legitimate router is misbehaving. We evaluate CONS-ROUTE through
simulation and compare it with several simple OSPF data plane resilience
techniques.

1 Introduction

1.1 The OSPF Routing Protocol

OSPF is one of the predominant link state routing protocols in today’s Internet.
The invention of link state routing protocols was partly to overcome the limitations
of distance vector routing protocols. A link state routing protocol works roughly
as follows: Upon initialization or network topology changes, a router generates a
Link-State Advertisement (LSA) to reflect the new link states on that router. The
link-state advertisement will be broadcast to the entire network of routers through
flooding. As a result, each router in the network possesses complete knowledge of
the entire network’s topology. Then each router uses a shortest path algorithm, e.g.,
Dijkstra, to calculate a Shortest Path Tree to all destinations. The destinations, the
associated cost and the next hop to reach those destinations will form the IP routing
table.

Unfortunately, OSPF was designed for a trusted environment, and there is no
guarantee as to its robustness in the presence of compromised routers. Recently,
researchers have systematically studied the potential vulnerabilities of the OSPF
routing protocol [14, 7]. In addition, various defense mechanisms have been pro-
posed. In Section 4, we shall survey related work in the space.

We consider any routing protocol to consist of a control plane and a data plane.
Control plane The control plane is where routing information is exchanged in
order for the routers to set up the topology information needed to calculate routes.
In the case of OSPF, the control plane is where the LSAs are broadcast.
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Data plane By contrast, the data plane refers to the actual packet forwarding.
When a router receives a packet for forwarding, it indexes into its routing table
based on the packet’s destination address and looks up the packet’s next hop. The
packet will then be forwarded to the corresponding outgoing interface.

Though this paper studies OSPF as a subject, the algorithms proposed in this
paper works in general for other link state routing protocols (e.g., IS-IS) as well.

1.2 Systematic Framework for Securing Routing

Three types of techniques are commonly used to secure a routing protocol, preven-
tion, detection and recovery, and resilience.

Prevention. The prevention approach seeks to harden the network protocol it-
self, typically through means of cryptography, to render attacks computationally
infeasible.

Detection and recovery. Detection involves monitoring of the real-time behavior
of protocol participants. Once malicious behavior is detected, we resort to recov-
ery techniques to eliminate malicious participants, and restore network order and
functionality that may have been impaired.

Resilience. The resilience technique seeks to maintain a certain level of availabil-
ity even in the face of attacks. Here a desirable property is graceful performance
degradation in the presence of compromised network participants, i.e., the commu-
nication availability of the network should degrade no faster than a rate approxi-
mately proportional to the percentage of compromised participants. Examples in
this category include redundancy mechanisms, such as multipath routing.

1.3 A Data-plane Recovery Technique for Securing OSPF

In this paper, we focus on data plane security. We propose a data-plane intrusion
recovery technique for the OSPF protocol.

In the data plane, a severe attack is the blackhole/greyhole attack. The blackhole
attack is where a malicious router drops all packets they are supposed to forward.
On the other hand, the greyhole attack is a selective forwarding attack where the
malicious router drops packets of its choice.

Previous work has proposed Secure Traceroute [9], an intrusion detection tech-
nique for detecting malicious routers that drop packets. Secure Traceroute allows
an endhost to set a complaint bit in the packet header when its packets are being
dropped. When a router sees the complaint bit, it can initiate a Secure Traceroute
request to a downstream router. The Secure Traceroute packet is cryptographically
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secured such that it is indistinguishable from a regular packet. Secure Traceroute
allows a router to pinpoint where the misbehaving router is located downstream.

Our goal is to provide an automated recovery mechanism after intrusions have
been detected. The basic idea is to pick an alternative route to circumvent the
malicious routers when the default route fails. The following properties are desired
in the reroute algorithm:
Globally consistent reroute decision. While each router performs intrusion de-
tection independently, the final rerouting decision has to be made in a globally
consistent manner. In other words, when an alternative path becomes effective for
a packet, all routers in the network must be immediately informed of the decision.
Global consistency ensures loop-free routing.
Resilience to the slandering attack. Intrusion recovery mechanisms must be care-
fully designed to avoid the slandering attack. When intrusion detection is per-
formed in a distributed manner, we often need to communicate each router’s local
intrusion detection outcome to other routes in the network in order for the detection
outcome to be globally useful.

Ideally, if a well-behaved router detects a misbehaving neighbor, it should an-
nounce its decision to the rest of the world so all other routers can preclude the
malicious router in the route evaluation, and in the case of OSPF, the shortest path
tree computation. Unfortunately, this approach is susceptible to the slandering
attack, where a malicious router claims that a well-behaved router is malicious.

A simple mechanism to defend against the slandering attack is to perform ma-
jority voting. Unfortunately, majority voting is usually expensive, and it fails when
the majority of voters are malicious.
Efficiency When misbehavior is detected, routers need to reevaluate routing de-
cisions. The router reevaluation algorithm needs to be efficient. In particular, we
would like its running time to be a low-degree polynomial.

The algorithm we propose is based on the idea of distrusting node pairs. When
one router blames another, it may be a well-founded blame, or it may well be a
malicious router slandering a good one. It is not always possible for a third router
to judge which of the two is a well-behaved. Therefore, our algorithm declares
these two routers as distrusting routers, and the path selection algorithm tries to
avoid going through a pair of distrusting routers simultaneously.

This strategy gives us the following properties:

• Resilience to slandering attacks: If a malcious router slanders many good
routers, it will effectively detach itself from the network, hurting the attacker
itself.

• Cheating routers eventually get eliminated: Though there is a chance that
a newly selected route contains the malicious router of a distrusting pair,
if the malicious router continues to drop packets, other good routers will
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then be able to detect it, and in time, the malicious router accumulates many
complaints and effectively detaches itself from the network.

• If any good path exists between two nodes, there is a high chance of finding
a working path even if the majority of routers are malicious.

2 Problem Formulation and Algorithm

2.1 Intuition

We consider a distributed intrusion detection framework. In the routing example,
routers collaborate when delivering a packet from the source to the destination. A
router is able to detect whether a downstream collaborating router is misbehaving
and dropping packets. Each router performs intrusion detection independently.

Ideally, if a well-behaved router detects a misbehaving neighbor, it should an-
nounce its decision to the rest of the world so all other routers can preclude the
malicious router in the route evaluation, and in the case of OSPF, the shortest path
tree computation. Unfortunately, this approach is susceptible to the slandering
attack, where a malicious router claims that a well-behaved router is malicious.

To avoid the slandering attack, a router should only trust itself. Therefore it only
trusts the outcome of the local intrusion detection process. However, the route
reevaluation has to be done in a globally consistent manner. And how is this possi-
ble if each router uses a different set of intrusion detection outcome? Without com-
municating the misbehavior detection outcome to the rest of the network, global
consistency cannot be assured. This can result in routing loops in newly evaluated
routes.

To address these problems, we propose the following CONS-ROUTE algorithm
for recovery from detected intrusions.

We argued that it is dangerous to allow a router to blacklist any other router.
We know that if router A broadcasts a complaint about router B, either router A is
maliciously slandering router B; or router A is well-behaved in which case router
B must be the malicious router.

When router C receives a complaint about router B from router A, it would be
nice if router C could tell which of A and B is the good router. This is sometimes
possible through some investigation on router C’s part. However, in many cases,
C may not be able to judge between A and B. Meanwhile, because in routing we
require all routers in the network to make consistent routing decisions so as to avoid
routing loops, hence we want all routers to be able to independently reach the same
conclusion in order to make use of that information.

Instead of blacklisting A or B or both, we can use the following strategy: When
A complains about B, all the routers in the network set A and B as hostile routers.
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We would like the property that any path that goes through A does not go through
B.

2.2 Problem Formulation

We now present a theoretical formulation of the problem:
Shortest Path Routing with Constraints

We have a directed graph with non-negative weights on edges, and a list of
incompatible constraints, each constaint being a pair (u, v) stating that any path
must not go through u and v at the same time. We would like to find the shortest
path in between a pair of nodes satisfying the list of constraints.

Unfortunately, we prove that this theoretical formulation is NP-Complete. Please
refer to Appendix A.

In Appendix B, we show a gap-preserving polynomial time reduction from set
cover to the routing under constraints problem. Because set cover is O(log n)-hard
to approximate, the routing under constraint is also O(log n)-hard to approximate.

2.3 Heuristic Algorithm

Because this problem is NPC, we propose the following heuristic algorithm. The
algorithm we propose is similar to an algorithm that has been used in the literature
for network partitioning [4].

First we consider a non-oblivious version of the routing problem. We assume
the router determines the next hop based on the packet’s source and destination
address.

Consider the following variation of the CONS-ROUTE problem: We would like
to look for a path that violates the minimium number of constraints from s to t.

We use the following strategy: each time we delete one node that causes a vio-
lation of constraints from the graph. And we compute the shortest path from s to t
in the new graph. The following algorithm decribes which node to delete:

In each round, pick a node that
1) appears on the current shortest path between s and t;
2) violates a constraint;
3) if we delete that node, the decrease in the number of violated constraints is

maximized.
Now we delete that node from the graph, and delete all constraints pertaining to

that node.
Continue this process until either
1) we found a path that violates 0 constraints;
2) if we delete any node s and t will be disconnected.
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In any step, when we delete a node, the decrease in the number of violated
constraints can be negative, i.e., violated constraints increase. At the very end of
this process, we pick the best path we found in history.

3 Evaluation

3.1 Comparison against Simple Alternative Routing Algorithms

We will compare our scheme with a few simple alternative path routing algorithms.
We implemented the following three algorithms for the purpose of comparison:

Node-disjoint path The simple node-disjoint path algorithm does not use intru-
sion detection results when it reevaluates routes. It simply picks an alternative
path that is node-disjoint from the default path. The algorithm fails when no node-
disjoint path exists. This algorithm requires non-oblivious routing, i.e., routing
decisions are dependent on both the source and destination addresses.

Alternative next-hop The alternative next-hop algorithm requires that the edge
router closest to the sender to pick an alternative next hop other than the default
one.

Simple Secure Traceroute based alternative path In this algorithm, whenever
an endhost detects packet dropping and sets the complaint bit, the edge router
closest to the sender performs Secure Traceroute and detects the first misbehav-
ing router downstream on the path. Then it picks an alternative route to go around
that malicious router. This algorithm requires strict source routing, i.e., the edge
router must encode the new path in the packet header.

3.2 Simulation Setup

We construct a simulator capable of representing a static network topology and its
link metrics. A combination of synthetic and actual network topologies of various
sizes are used for evaluation [1].

The simulator will randomly select a set of faulty nodes from the topology.
These malicious nodes uniformly drop all packets in the data plane.

For small network topologies, an exhaustive simulation is performed: all sets
of endpoints will be tested. However, for larger networks, we randomly sample a
certain percentage of source and destination pairs.
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3.3 Metrics Evaluated

Success rate: The number of pairs of nodes that can communicate using our
algorithm divided by the number of pairs that can communicate assuming we have
perfect knowledge which are the compromised nodes.

Alternative path stretch: The stretch is defined as the path length between s and
t found by our algorithm divided by the shortest path length found by an offline
omniscient algorithm that knows exactly which routers are malicious.

Response time: We shall evaluate the response time of our recovery mechanism.
Our CONS-ROUTE routing algorithm tries to find a path that does not traverse two
distrusting nodes simultaneously. If the new route happens to include the malicious
node of the distrusting pair, the new route still does not work. However, now more
routers will initiate intrusion detection, and as that malicious router gets complaints
from more routers, it is less likely to be included in an alternative path.

The response time of our recovery mechanism can be characterized by the num-
ber of failed rounds before a new working route is found. Note that the response
time is also dependent on the real-time traffic pattern, i.e., which pairs of nodes
are talking to each other. If only a single pair of nodes are talking to each other, it
may conceivably take longer to isolate a malicious node than when many pairs of
nodes are talking to each other. Since when there are many pairs of communicat-
ing nodes, a malicious node will be detected on more paths, and since routers on
all these paths will be initiating intrusion detection simutaneously, the malicious
router will accumulate complaints more quickly than the single pair case.

Ideally, we would like to use real traffic traces to evaluate the response time.
However, before we are able to obtain such data, we use a simplified model here,
where we have t pairs of communicating nodes, and assume synchronized intrusion
detection rounds. We evaluate how the response time varies with respect to the
number of communicating pairs.

3.4 Results

Figure 1 and Figure 2 compare various alternative path routing algorithms in terms
of the success rate. The figures plot the ratio of improvement over the non-secured
version of OSPF against various percentage of randomly compromised nodes.

Figure 3 plots the path stretch of the CONS-ROUTE algorithm. Both the maxi-
mum and the mean stretch are plotted.

Figure 4 plots the response time of the CONS-ROUTE algorithm. The response
time is expressed in terms of the number of failed routes before a working path is
found. Both the maximum and mean response time are plotted.
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Figure 1: Success rate: 22 node campus network
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4 Related Work

4.1 OSPF Control-plane Vulnerabilities

Researchers have systematically evaluated the control plane vulnerabilities of the
OSPF routing protocol [14, 7]. In particular, we make the distinction between
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outsider attacks and insider attacks. Outsider attacks come from unauthenticated
parties who try to inject or alter routing updates. Outsider attacks can be addressed
by a broadcast authentication [3, 11] or a one-time signature [10, 12] scheme. On
the other hand, insider attacks come from compromised routers. Cryptography
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alone does not suffice to counter insider attacks, for compromised routers possess
the legitimate keys required to disguise as authenticated participants.

4.2 Securing OSPF

Table 1 summarizes the related work in the space of securing OSPF.

Flavors of security
Prevention Detection Recovery/Resilience

Control plane efficient broadcast authentication [3, 11], [2, 13]
one-time signatures [10, 12]

Data plane Secure TraceRoute [9] [15, 5, 6]

Table 1: Literature Survey

Control-plane prevention techniques The following cryptographic construc-
tions can be employed to authenticate link-state advertisements.
Efficient broadcast authentication TESLA offers an efficient broadcast authenti-
cation mechanism for securing LSU flooding. Cheung et al. [3] also proposed a
similar LSU authentication scheme.

TESLA assumes weak time synchronization between routers, and offers delayed
authentication.

To get around delayed authentication, we can build the authenticators before
they are needed:

In OSPF each router periodically broadcasts LSUs unless triggered by changes
in network dynamics. In OSPF, a router may already predict what its next LSU is
before sending it out. Therefore, it can build an authenticator for its future LSA
and disseminate the authenticator before the LSU is broadcast. When the LSA is
broadcast, the advertising router reveals the new key used to compute the authenti-
cator. In this way, we can achieve instant authentication.

This technique can be used when one of the following conditions is true:
1) Network condition is stable, and consecutive LSUs remain stable.
2) The LSA has a small number of discrete multiple values. For example, when

the link metric remains stable and each LSA only announces whether the link is up
or down. In this case, an advertising router can just reveal all possible authentica-
tors for the next LSA, and reveal the key when the LSA is broadcast.1

1The OSPF specification does not specify how the metric should be defined. On some routers,
the metric is statically configured on each router interface.
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This technique does not work when the metric changes dynamically as link uti-
lization changes, and when the network conditions are not stable. Under such cir-
cumtances, a router may not be able to predict what its next LSA will be. However,
fast convergence is particularly important when network conditions are unstable.
To achieve instant authentication in such circumtances, we need to use a more ex-
pensive one-time signature scheme as described below.
Using One-Time Signatures Potential one-time signature schemes we can use in-
clude hash chains, Merkle hash trees, BIBA and HORS. Among them HORS offers
shorter signature length and more efficient generation/verification. Using one-time
signature is more expensive than TELSA-like broadcast authentication, however it
offers the property of instant authentication.

Control-plane intrusion detection techniques Researchers proposed intrustion
detection techniques for OSPF. In particular, Chang et al. proposed the JiNao [2,
13] intrustion detection system for securing OSPF. JiNao is designed to detect con-
trol plane attacks. Several attacks that JiNao detects are outsider attacks and can
easily be prevented through broadcast authentication. So instead of detecting these
attacks after they happen, we should prevent them from happening at all. JiNao
uses a combination of statistical and rule-based techniques. In this project, we will
look at both control plane and data plane intrusion detection, and more importantly,
we will look at how to combine intrusion detection with data plane alternative path
routing techniques, to achieve automated attack response.

Data-plane resilience techniques Prior work has developed a number of meth-
ods of establishing routes that act as alternatives to the shortest path. These meth-
ods have been used in the past to relieve congestion on the shortest path; they may
also be used to avoid faulty/attacking routers.

Prior methods have provided similar solutions aimed at minimizing alternate
route computation time. Wang and Crowcroft proposed a solution of providing
“emergency exits” [15] whenever possible to provide an alternative route to the
shortest path, while Nelson, Sayood, and Chang proposed a very similar method of
selecting alternative next hop routers [8].

5 Conclusion and Future Work

In this paper, we propose CONS-ROUTE, an intrusion recovery technique for se-
curing the data-plane of the OSPF routing protocol. While the theoretical for-
mulation of the CONS-ROUTE problem is NPC, we propose a simple heuristic
algorithm. Simulation results show that the heuristic allows us to achieve near
optimal results under realistic network topologies.
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In our future work, we would like to extend the heuristic algorithm to support
oblivious routing, where routing decisions only rely on the destination address of
a packet. In addition, we would like to fully optimize the data structures in the
implementation of the algorithm to exploit maximum performance. We also plan to
implement the algorithm using an event-based simulator such as ns-2, and measure
the real-time behavior of the algorithm.
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A Proof of NP-Completeness

Instead of proving that finding the shortest path under a set of constraints is NP-
Complete, we prove an easier version that finding any path satisfying a set of con-
straints is NP-Complete.

We reduce SAT to our problem which we refer to as PATH-CONS henceforth.
Assume we have a SAT instance (x1 ∨ x̄2 ∨ x3)∧ (x̄1 ∨ x̄2 ∨ x3), in poly-time, we

can transform it into a PATH-CONS instance as in Figure 5 with the following set
of constraints:

(x1,1, x̄1,1), (x1,2, x̄1,1), (x1,1, x̄1,2), (x1,2, x̄1,2);
(x2,1, x̄2,1), (x2,2, x̄2,1), (x2,1, x̄2,2), (x2,2, x̄2,2).
It is easy to show that if the SAT instance is satisfiable, we have a path from s0

to s2 satisfying the above constraints. On the other hand, if we have a path from s0
to s2 satisfying the above constraints, it maps back to a satisfying assignment for
the SAT instance.

X1,1 X2,1 X3,1

X1,1 X2,1 X3,1

X1,2 X2,2 X3,2

X1,2 X2,2 X3,2

s0 s1 s2

Figure 5: NPC Proof
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B Reducing Set Cover to PATH-CONS

In this section, we show a gap-preserving polynomial time reduction from Set
Cover to PATH-CONS, since Set Cover is O(log n)-hard to approximate, so is
PATH-CONS.

In Set Cover, we have a universe U = {u1,u2, . . . ,un}, sets S1,S2, . . . ,Sn ⊆ U ,
we ask the question: does there exist a set V ⊆U , s.t. ∀i,Si ∩V �= ø, and |V | ≤ k.

We consider the following version of the PATH-CONS problem: Given di-
rected graph G = (V,E), a set of constraints C = {(u1, v1), (u2, v2), . . . , (um, vm)},
a source s and a destination t, we ask the question: does there exist a path from s
to t that violates ≤ k constraints?

s

u1

u1

u2

u2

...

un

un

u1,1 u1,2 u7,1 u7,2 u9,1 u9,2

...

Figure 6: Reducing Set Cover to PATH-CONS

Given a Set Cover instance S1 = {u1,u7,u9},S2 = . . ., Figure 6 shows a poly-
nomial time reduction to the PATH-CONS problem. The set of constraints are:

(s,u1), (s,u2), . . . , (s,un)

(u1,1, ū1), (u1,2, ū1), (u7,1, ū7), (u7,2, ū7), (u9,1, ū9), (u9,2, ū9), . . .

Intuitively, if we look at a path from s to t (s being the leftmost node, and t being
the rightmost node) in this graph, if the path traverses u1, then u1 is included in V ;
else if the path traverses ū1, then u1 is not included in V .

It is easy to prove that if the Set Cover instance has a solution V = {ui1,ui2 . . .uir},
s.t., |V | = r ≤ k, then ∃ a path from s to t in the corresponding PATH-CONS in-
stance that violates r ≤ k constraints. The path goes through ui1,ui2 . . .uir in the
first half, and for the latter half, pick just any path.

On the other hand, if the PATH-CONS instance has a path from s to t that vio-
lates ≤ k constraints, and if that path goes through ūi and ui,1,ui,2, we can always
replace ūi with ui, and the number of constraints violated does not change. After
we perform this kind of replacement, we can find a path from s to t that never
violates the latter type of constraints. Then ∀i, if the path traverses ui then ui is
included in V . It is easy to show that the V constructed in this way is always a valid
set cover, and of size ≤ k.
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We are trying to answer the following question: “When is out-of-band 

access to data better than the traditional way (in-band) to access it (e.g. in 

NFS)”. Our ultimate aim is to make this decision at the application level 

as opposed to the site level. Given a scenario or an application defined by 

parameters like file size, access patterns, we argue whether the traditional 

or the out-of-band distributed file system model will be more suitable for it 

in terms of I/O throughput and scalability. 

 

1. Introduction 
Data intensive applications like data mining, video conferencing have caused a shift in 

the data types towards richer ones like audio and video. This has resulted in continuous 

increase in the demands for storage bandwidth. Many efforts have been made to enable 

storage systems to deliver linearly scalable I/O bandwidth i.e. a performance linearly 

proportional to the number of clients and number of disks [Gibson98, lustre03, Panasas, 

Nagle04]. One such popular approach is asymmetric shared file system approach 

[Okefee98]. This approach separates the data and the control path allowing the aggregate 

I/O bandwidth to scale with the number of clients and number of disks. 

In such systems a client typically makes a request through a file manager running on a 

separate machine. The file manager, also known as a metadata server, is responsible for 

managing the file system metadata, checking file access permissions and providing 

clients layout information indicating how data is present on the actual storage. Once a 

client is approved by the file manager, the former can directly transfer data to and from 

the storage device. Such architecture involves a message passing overhead in terms of the 
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aforementioned initial messages that flow between the three entities: the client, the file 

                  
  (a) In-Band                   (b) Out-of-Band 
Figure 1: Two ways of data access in a file level network attached storage. The in-band approach does not 

scale as it might get bottlenecked at the network link and/or the server. In the out-of-band scenario, the 

clients make requests to the server. The server hands them a “layout” of the requested file on disk. The 

client then uses this layout to access the storage directly for the data it needs. 

 

manager and the device. These overheads are offset in some scenarios by the benefits that 

this model offers in terms of scalable I/O bandwidth due to the separation of the control 

and data paths. Here we investigate the cost to benefit argument for the parallel model 

given different scenarios. In particular, we analyze different scenarios based on the 

following set of parameters: 

• Access Patterns 

• File Size 

• Access Size 

• Concurrency 

• Metadata Commits 

• Read/Write Ratio 

 Currently, we have carried out experiments for the first two parameters. 

2. Background and Related Work 
Traditional file servers 

Traditionally, file servers using NFS follow a simple deployment form where all the data 

and control goes directly through the central file server. This model has obvious 

scalability problems due the network and server bottleneck. 
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Parallel file server architecture 

Demands for storage bandwidth are increasing due to various reasons like improved 

client performance, data intensive applications, etc [Gibson98].  Various bottlenecks limit 

the traditional storage architecture from satisfying these demands.  A main reason for the 

bottlenecks is the presence of a single store-and-forward type file server. There have been 

many research projects dealing with the idea of avoiding the single server bottleneck 

[gibson98, thekkat94].  

Thekkath et al. discussed how separation of control and data transfer paths eliminate un-

necessary control transfers and help distributed systems give a better throughput better 

than the traditional model [thekkat94]. Gibson et al. built a storage architecture build on 

top of object based storage that enabled the clients to talk to the storage subsystem 

directly without the overhead of going through the file server again and again [Gibson98]. 

Their NASD implementation provides storage bandwidth that is linearly scalable with the 

increasing number of clients and storage devices. 

Another project on the initiated in recent times is Parallel NFS or pNFS[Gibson00]. This 

project aims at creating an extension to NFSv4 to adapt it to the out of band architecture.  

3. Parameters of Interest 
Access Patterns 

Various workloads access files in different ways. For example, a multimedia workload is 

more likely to read a file sequentially from beginning to end. Database applications on 

the other hand are likely to access the file in fixed size chunks and in a random fashion. 

Alternatively, a supercomputing application where a large amount of parallel access is 

the focus, the data will be accessed in large blocks and in parallel.  

A large number of small files: This scenario represents a typical real-life workload 

especially mail servers, web servers. If the file size involved here is small and the number 

of files is sufficiently large, we have a larger metadata to data ratio. The file manager in 

the parallel model is still the central entity which could be subject to bottlenecks. This 

problem is addressed by distributing the task in between multiple file managers. 
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File Size 

Large file sizes: This scenario is more suited to the parallel model. In this case, there will 

be a large number of data requests as opposed to metadata requests. Thus, the 

involvement of the metadata server is fairly low. This exposes the file server bottleneck 

in the traditional model even more. 

We consider the following parameters interesting to evaluate the relative performance of 

both the models, though we have not carried out any experiments related to them. 

Access Size 

The size of the requests is another parameter of interest. The smaller the request size, the 

larger will be the number of requests to the file. This means a larger number of metadata 

requests and transfers. The larger the request size, the greater the data to metadata ratio 

and hence a better amortization of the metadata overhead. 

Concurrency 

In this parameter, we try to cover two aspects: 

• Number of Clients: The number of clients that can access the storage 

simultaneously is an important parameter. The major concern is how the storage 

system scales with respect to the increase in number of clients. 

• Overlapping Data: Another issue is that of overlapping data. When data accessed 

by clients overlaps, it becomes necessary to bring in some sort of locking protocol. 

Often, this can become highly contented and the overhead of a distributed locking 

protocol makes it harder. 

Metadata Commits 

When the clients need to access data, they get the file layouts from the metadata server. 

Whenever a client modifies the file to change the metadata, the changes exist only on the 

local copy at the client. This needs to be reflected on the metadata server so that the other 

clients accessing this file can see the changed metadata. 

In order to do this, the metadata is committed at intervals. While increasing this interval 

increases performance by reducing the number of round trips, it decreases concurrency as 

fewer clients can see the latest copy of the metadata. 

Read Write Ratio 

The Read/Write ratio is another parameter that can affect the performance of the parallel 

model. For instance a low Read/Write ratio (large number of writes) will result in data 
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being constantly changed. As a result, there is a lesser chance for caching as the number 

of invalidations will be high. On the other hand a high Read/Write ratio means that there 

is less invalidation and the client can aggressively cache, reducing the number of round 

trips. 

4. Panasas Storage Architecture 
We do the evaluation using Panasas Active Scale Storage Cluster. The reason for 

choosing this product is its ability to simultaneously support both modes of data access: 

the DirectFlow data path (PanFS) and the NFS data path [Panasas].  

PanFS is an ideal example of the parallel model - it decouples the data path from the 

control path. The storage devices are network attached Object-based Storage Devices 

(OSDs). Metadata is stored in a metadata server called the Director Blade.  

The Panasas Storage Cluster has 5 major components: 

• The object that is stored on the OSD 

• The OSD itself (StorageBlade) 

• The metadata server (DirectorBlade) 

• The Panasas Filesystem client module 

• The Gigabit Ethernet interconnect 

The Panasas filesystem is implemented on the clients via the PanFS module. The module 

performs the following functions: 

• Provides a POSIX filesystem interface 

• Disk caching 

• Striping/RAID 

• iSCSI protocol support 

We plan to carry out our experiments using a single PanFS shelf – which is a 

configuration containing 10 OSD’s and one node for running the MDS. A Panasas shelf 

is typically linked to the customer network via 4 Gigabit Ethernet aggregated links 

[Nagle04]. 

5. Hypothesis 
As mentioned earlier, asymmetric shared file systems involve an additional overhead of 

extra metadata messages passing during operations like file creation. The effect of this 

overhead depends on the type of implementation. These additional costs are often 
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overshadowed by the benefits offered by such file systems. Having said that, there are 

also scenarios where the costs involved in this model do not justify its benefits.  

Larger data sizes (file and access size) will mean that more data gets amortized over the 

metadata transfers. It, hence, follows that the parallel model will be more beneficial than 

a traditional model when the size of data transferred is large as compared to the metadata 

transfers. We expect the direct mode of PanFS to perform better for big block I/O access 

patterns as well as for larger file sizes. As opposed to this, a scenario involving accesses 

by a large number of small files is less likely to justify the need of the direct mode of 

PanFS because of a small data to metadata ratio. 

A higher read/write ratio shows off the benefits of aggressive caching of layouts or 

delegations in case of PanFS in direct mode. By this logic, PanFS direct mode is expected 

to perform (scale) better than the in-band mode for higher read/write ratios.  

An I/O pattern that is sequential allows prefetching of data. Random I/O patterns do not 

allow this, and prefetching is largely wasted. We expect the in-band model to perform 

worse than the parallel mode on Random I/O as the lack of prefetching opportunity will 

result in a large number of acceses to the file server, thus making the server bottleneck 

faster. In the sequential case, we expect the performance to be comparable to the parallel 

case until the server bottlenecks due to a large number of clients. 

6. Benchmarks Used 
The project involves benchmarking the performance of the two models of data access 

using existing benchmarks and applications representative of typical loads. 

We are using the following benchmarks for conducting our experiments: 

Iozone: Iozone is a file system benchmark that generates and measures different file 

operations on varying file sizes [Iozone]. We use Iozone to measure the effects of file 

size on the two data access models. We also carry out random I/O experiments using 

Iozone. 

PostMark: Postmark is a filesystem benchmark developed by Network Appliance. The 

benchmark is targeted at looking at filesystem performance when posed with a workload 

consisting of a large number of small files also known as ISP workloads. We felt this was 

relevant as this is the type of workloads that are posed to servers such as mail servers and 

Web servers. 
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We find the following benchmarks relevant for carrying out experiments for the 

remaining scenarios: 

Iometer: Iometer is a tool to obtain performance measurements of an I/O subsystem for 

single and clustered systems [Iometer]. This tool provides good support for varying the 

read/write ratios accesses carried out. 

Bonnie++: Bonnie++ is another tool used to perform various simple tests on a file system 

to measure its performance. We find Bonnie++ relevant for sequential and random data 

transfers. The benchmark allows use of large file sizes [Bonnie++]. 

IOR (Interleaved or Random): This benchmark represents a well formed I/O workload 

which involves large block transfers with less metadata transfers compared to the 

interactive workloads like email servers. IOR performs parallel writes and reads to/from a 

file using POSIX or MPI-IO calls and reports the throughput rates [IOR]. 

OSDB (Open Source Database Benchmark): Database accesses represent a very 

important type of workload with characteristics of random I/O operations. We chose 

OSDB since it is freely available [OSDB]. 

7. Experiments 
7.1 Configuration 

We carried out our experiments on a single Panasas shelf containing 1 Director Blade and 

10 Storage Blades. We used a standard linux box with 2.4 GHz Intel P4 and 1GB of 

RAM on it (kernel version 2.4.24). The Director Blade is a 2.4GHz Intel Xeon with 4GB 

of DDR RAM and an 80GB ATA-100 Drive. Each Storage Blade is a 1.2GHz Intel 

Celeron with 512MB of SDR RAM and 500GB of storage capacity (2 X 250GB Serial-

ATA Drives). We have used NFSv3 over TCP for our experiments. 

All experiments were carried with a single client running a single thread. An important 

future task for us is to carry out experiments with multiple clients running multiple 

threads. 

7.2 File Size 

We used Iozone to perform this experiment. RAID5 was used to store the data. 

71



Writer Report

59714 60145 59439 59034 59479

45403
38536 35306 34403 33683

0

10000

20000

30000

40000

50000

60000

70000

104
857

6

20
97

152

41
94

304

838
860

8

167
772

16

File  Size

Th
ro

ug
hp

ut
 (K

B
ps

)
PanFS

NFS

 
Figure 2: Sequential Write Performance for large file sizes 
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Figure 3: Sequential Read Performance for large file sizes 

We took large file size to overcome the cache effects (as mentioned earlier, the NFS 

server under test had a large buffer cache size of around 2GB). As we see from figure 2 

and 3, PanFS sustains an I/O bandwidth around 56-61 Mbps for large file sizes. NFS, on 

the other hand, suffers for large file sizes and performs worse than PanFS. This is due to 

the fact that the server side cache on the NFS is not in the picture. Thus, the I/O 

bandwidth that is seen is the raw disk bandwidth. For PanFS, this data is accessed by the 

client directly without going to the DirectorBlade. For NFS, every single byte of data is 

going through the server causing it to bottleneck. 
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We also compared NFS and PanFS for smaller file sizes, which turned out to be an 

implementation comparison as opposed to a protocol comparison. 

Figure 4 shows that for smaller file sizes, we end up comparing the client side caching 

implementations for NFS and PanFS rather than the two protocols. The sharp dip in the 

throughput for NFS and PanFS towards the 1GB file size is because it overwhelms the 

buffer cache on the client (the client under consideration has 1GB of RAM). We are 

getting an anomaly towards the file sizes after 1GB where NFS is performing better than 

PanFS. This experiment does not contribute towards a solution to the problem that we are 

addressing but we thought it was interesting to mention the anomaly. The graphs clearly 

show that the NFS client side caching scores a big win over PanFS for smaller file sizes 

(which fit in the client buffer caches). 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Sequential reads with small file size 
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larger file sizes, when the cache effect is nullified. (We did not run these tests on larger 

file sizes as we ran into technical issues with the equipment with respect to Random 

writes) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 

Figure 5: Random Reads/Writes 
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Figure 6: Create and Delete Performance 

Figure 6 shows the create performance on both PanFS and NFS. It is observed that PanFS 

does better than NFS for 1000 and 1000 thousand files. However, NFS does better for 

100,000 files. We speculate that this is a caching effect. The disk writes caused by the 

creation/deletion of the files are cached by the NFS server and the OSDs. The 

independent data and control paths on PanFS help it do better than NFS for 1000 and 

10,000 files. However, when the number of files increases to 100,000, the writes are 

flushed to media on the OSDs because of the limited cache size. However, the large 

cache on the NFS server prevents this from happening in the case of NFS. 

 

   

 

 

              

        

 

 

 

 

 
Figure 7: Read and Write Performance for large number of small files 
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We see a similar pattern in Reads and Writes as well. The separate data path of PanFS 

allows for higher bandwidth, but the moment PanFS is forced to go to disk, its bandwidth 

drops by nearly half. 

In all, we believe that caching effects play a major role in our tests and using these results 

to draw inferences about the protocols would be incorrect. We would have liked to 

increase the number of files to a larger figure, but Postmark didn’t seem to support it. 

8. Logistics 
Course Material Relationships 

This project is relevant to the course material since we are dealing with evaluating two 

different storage architectures for different scenarios. The issues we are addressing come 

under the scope of Operating Systems and Distributed Systems which is the theme of the 

course. 

9. Lessons Learnt 
This experiment was an invaluable learning experience to us. During the course of the 

experiments, we realized that at many occasions, we came dangerously close to 

comparing two implementations against each other rather than the underlying protocols 

and architecture.  

Also, this was our first attempt at benchmarking filesystems. We realized that there are 

many variable factors involved and the results we see could be heavily affected by them. 

10. Conclusion 
In our experiments, we found that out of band is better than in-band for sustained I/O 

bandwidth requirements for small file sizes. However, when small file sizes are involved, 

caching plays a huge role on the bandwidth seen by the clients. All in all, there is no 

silver bullet – it is a sum of many tradeoffs. 

11. Future Work 
An immediate next step is to carry out experiments on the remaining parameters: 

read/write ratio, concurrency, metadata commits. We envision a tool that will take the 

decision of the type of data access (in-band or out-of-band) per application. This can be, 

for example, a library which when linked with an application will act as a switch 

choosing one of the two data access types depending on the parameters that we 

mentioned. 
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