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Abstract

Certified code is native machine code that is annotated with an automatically checkable certificate
attesting to the conformance of the program to a specified safety policy. Certified code frameworks
have been built based on first-order logic (PCC) and on types (TAL). Compilers generating certified
code have been built for safe subsets of C and for Java(tm).

Type-preserving compilers such as the TILT/ML compiler implement compilation as transfor-
mations on typed internal languages. Types are used by the compiler for internal verification, and for
optimization purposes. Type analysis can be used to implement optimizations such as non-uniform
data representation and tag-free garbage collection. However, none of the existing type-preserving
compilers for full-scale languages maintain type information all the way to the machine-code level,
and hence are not yet able to generate certified code.

In this thesis, I demonstrate that certified compilation is possible in a type analysis framework
by extending the TILT/ML compiler to generate certified code in the form of typed assembly lan-
guage without compromising the existing optimizations of the compiler. This work demonstrates
that a compiler can use types to generate certified binaries for a full modern language even in the
presence of agressive type-analysis based optimization.
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Chapter 1

Introduction

1.1 Types in compilation

It is an unfortunate fact about the state of programming that even good programs sometimes go
wrong. It is not uncommon for programs to crash or misbehave, whether accidentally, or with
malicious intent. This problem has been greatly compounded in recent years by the proliferation
of mobile code. More and more of the code that is run is downloaded in bits and pieces from
various sources. Examples of this include Java-script and Java(TM) programs downloaded into a
web browser, applications downloaded directly over the internet, and code run on behalf of others
(such as the SETI@HOME project, which uses donated spare processor cycles to further the search
for extra-terrestrial life). The proliferation of mobile code is expected only to increase as networked
technology becomes more a part of everyday life.

However, it is particularly hard to trust the behavior of this sort of code. The code producer
may be unknown to the code consumer, or the identity of the producer may be spoofed. Moreover,
even trusted producers occasionally produce programs that go wrong.

It would certainly seem desirable to be able to rule out programs that are unsafe. Unfortunately,
determining the safety of arbitrary machine code is undecidable. A compromise solution that has
been in existence for several decades, is to restrict ourselves to programming in a language which
has the property that all programs are safe. The resulting compiled code is therefore safe by
construction, modulo the correctness of the compiler. Languages such as LISP, ML and Java all
have this property: that all programs written in these languages are guaranteed with some level of
certainty not to produce undefined and unsafe behavior.

Unfortunately for the purposes of mobile code, the safety properties enjoyed by these languages
are only guaranteed at the source level: once the source code has been compiled to machine in-
structions, the safety guarantee lies only in the implicit property of being in the image of the safe
language under compilation. One solution to this is to ship around instead something tantamount
to source code, allowing the consumer to validate the code independently. This is in essence the
Java(TM) byte-code solution. This places much of the burden of compilation on the code consumer,
who must still in turn trust that their own compiler is correct.

The two most commonly used solutions then, are either to accept arbitrary machine code based
on trust in the producer of the code, or to accept only annotated high-level code and to trust the
local compiler. Both of these solutions leave much to be desired.

To better this, several systems have been proposed for annotating machine code in such a way
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that safety remains checkable. Along with the code, the code consumer receives a certificate that
can be used to check that that the code conforms to the correctness assertions that it claims. The
only software that the code consumer must still trust is the checker itself. Two notable examples of
this include Proof Carrying Code (PCC) from CMU [Nec98] and Typed Assembly Language (TAL)
from Cornell [MWCG98]. The PCC system provides for machine code to be annotated with proofs
of safety properties done in first-order logic. The code consumer simply checks that the proofs are
indeed correct – a relatively simple procedure. This system is very general, in that it can be used
to certify any property which can be expressed in the logic. TAL on the other hand specializes to
the particular property of type safety. TAL provides for a machine code which is annotated with
types, which can then be type checked by the code consumer.

A certifying compiler is one which produces, along with its normal output, a certificate which
can be used to check that the generated code is safe according to some policy. Certifying compilers
have been written translating safe subsets of C to both PCC and TAL [MCG+99, NL98]. More
ambitiously, a full scale Java(TM) compiler has been written targeting PCC [CLN+00].

The TILT (TIL Two) compiler is an optimizing compiler developed at CMU that implements
the full Standard ML ’98 definition and includes support for separate compilation. Important ideas
pioneered in TILT and its predecessor TIL include using intensional polymorphism [HM95] to
reduce the cost of implementing polymorphism and garbage collection. Compilation proceeds as
a series of typed transformations into successively lower level typed languages. Type information
is used to allow for optimized data representations and to do “almost tag-free” garbage collection.
Prior to this work however, type information was mostly erased in TILT well before the transfor-
mation to machine code was made, and hence safety properties of the resulting code could only be
asserted - not checked.

TILT uses types during compilation for optimization purposes, and consequently requires an
intermediate language with a very expressive type theory. Previous work on typed assembly lan-
guages has primarily focused on preserving type information for certification purposes. I claim that
these two uses of low level typed languages are compatible. A compiler can use types to generate
certified binaries while retaining the ability to perform complicated type based optimizations on a
full modern language.

I have demonstrated this by extending the TILT-ML compiler to maintain type information used
in the intermediate passes of the compiler all the way through code generation, producing certified
binaries without sacrificing the ability to perform type analysis optimizations. This dissertation
gives a careful theoretical description of the key elements of the compilation process, and proves
soundness theorems for the translations between the major intermediate languages. A description
is also given of the actual implementation, including some empirical results.

It is becoming increasingly clear that type preserving compilation, in addition to serving as a
mechanism for enabling safe mobile code, also provides great benefits in its own right as a compiler
engineering technique. Just as type safe languages allow programmers to write correct code more
quickly, type preserving compilation allows compiler implementers to write correct compilers more
quickly. Type checking the intermediate representations of programs within the compiler allows
many or most compiler bugs to be caught during compilation and to be localized to the particular
point of failure in the compiler. Whole classes of pernicious compiler bugs (such as those that
involve stack or memory corruption) can be eliminated by producing checkably type safe code.
One of the results of this thesis is to provide further evidence of the efficacy of this technique, and
to add to the body of experience in the engineering of type preserving compilers. This aspect of
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the implementation experience is discussed further in section 10.1.4.

1.2 The non-certifying TILT compiler

The past years have seen a great deal of interest in the idea of “typed compilers” that maintain
type information deep into the compilation process. Such type information can be exploited by
the compiler internally to allow for optimized data representations and to do tag-free garbage
collection, as well as providing the compiler with a basis for internal correctness checks. This
work was pioneered in the TIL compiler at CMU [TMC+96], and has been adopted by numerous
other compilers, including the Glasgow Haskell Compiler. Other recent work has also suggested the
possibility of maintaining type information through to the machine code as a form of certification
[MWCG97].

The TIL compiler clearly demonstrated that typed compilation was both feasible and desirable.
However, TIL compiled only the core language of Standard ML: the powerful modular features
that are one of the most important elements of SML were not dealt with. The TIL Two (TILT)
compiler was aimed at addressing this shortcoming.

Figure 1.1 depicts the structure of the non-certifying TILT compiler. Its architecture is based
around two typed intermediate languages. The initial elaboration from SML source targets a
structures calculus called the HIL (High Intermediate Language). This language is relatively close
to SML, and among other things provides the interface language used for separate compilation.
After elaboration (and hence typechecking), the HIL is translated to a second typed language
called the MIL (Middle Intermediate Language) through a process called phase splitting [HMM90].
The phase splitting process maps each SML structure into separate type and term level records,
representing the static and dynamic portions of the structure. Similarly, SML functors are mapped
to type and term level functions. In this fashion, modular programs are translated into programs
containing only lambda calculus terms.

The MIL is the language in which almost all of the optimization passes implemented in TILT
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are done. This constrains the design of the MIL, since it must be possible to express the results of
all of the desired optimizations in a typed fashion. In particular, it is important that primitives for
data representation optimizations be present at this level. By “hiding” type analysis inside of a few
primitives, the MIL avoids the need for a general typecase construct as used in the λML

i calculus.
Nonetheless, the fact that some MIL primitives do indeed analyze their types mandates a type
passing interpretation for the MIL operational semantics.

All of the intermediate languages of the TILT compiler up to and including the MIL are
typed, and all of the compiler passes on these languages are type-preserving in the sense that
they map well-typed programs to well-typed programs. Unfortunately for certification purposes,
the subsequent languages from the MIL on down are not typed, and hence the generated code
cannot in general be proven safe. This dissertation replaces this un-typed backend with a new
type-preserving backend that produces certified code.

1.3 The certifying TILT compiler

One of the major goals of certifying compilation is to ensure that the certifying compiler is type-
preserving: that is, that it maps well-typed programs in the source language to well-typed programs
in the target language. In order to show that this is the case, I spend the first part of this dissertation
presenting idealized versions of the compiler intermediate languages, and proving the soundness of
the translations between them. The next two sections describe the idealized compiler and its
relation to the implementation.

1.3.1 The theoretical compiler

The theoretical portion of this dissertation describes the framework for a translation mapping the
original TILT internal language (the MIL, described in chapter 2) down to a typed assembly
language that I call TILTAL (Typed Assembly Language for TILT). This translation uses as
an intermediate stage a new internal language called the LIL (Low Level Language). The LIL is
an impredicatively typed lambda calculus based on Crary and Weirich’s LX [CW99]. Figure 1.2
describes the structure of the theoretical compiler.

The LIL, described in chapter 3, provides a very rich type system in which the type analysis of
TILT can be represented using term level constructs. In addition to various engineering benefits,
this fact allows us to take a type erasure interpretation, instead of the type passing interpretation
apparently mandated by the MIL primitives. The fact that we can embed type analysis into the
term level reflects in a typed fashion exactly the techniques already used in an untyped fashion
for implementing type passing languages. Chapter 4 gives a brief introduction to the type analysis
methodology of the LIL via a worked example.

The translation from MIL to LIL serves to make type analysis and type representations explicit
in the term language. This translation is described in detail in chapter 5. A subsequent pass
mapping LIL terms to LIL terms performs closure conversion. The closure conversion translation
is described in chapter 6.

Finally, I give a translation from the LIL into TILTAL. TILTAL code is essentially machine
code with type annotations added allowing it to be typechecked. Currently, there are in addition to
the standard assembly language instructions several typed primitives corresponding to assembler
macros. These primitives handle memory allocation (and hence the interaction with the garbage
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collector) and array bounds checking. The TILTAL language is introduced in chapter 7, and the
translation from LIL programs to TILTAL programs is given in chapter 8.

The theoretical LIL is actually very close to the LIL as implemented in the compiler, mostly
lacking only an extended set of basic primitive operations. The presentation of the TILTAL target
language is intended to suggest how the ideas used to implement type analysis in the LIL trans-
late down to the assembly code level. The actual TALx86 implementation departs significantly
from that given here. However, for the most part the theoretical translations between the various
languages are designed to capture all or most of the essential details of the implementation. In
particular, the LIL to TILTAL translation of chapter 8 attempts as much as possible to account
for the actual code generation techniques used by the implementation.

The main result of the theoretical portion of this dissertation is a proof that the compilation
of LIL programs into TILTAL programs preserves types, in the sense that each of the individual
translations is proved to map well-typed terms to well-typed terms. Proofs of soundness for the
various translation phases are given in the chapters in which they are defined.

1.3.2 Compiler implementation

The second half of this thesis is an actual implementation of a certifying compiler for Standard
ML. The theoretical compiler discussed in the previous section is intended as a model for the
implementation. Where the original architecture (see figure 1.1) switches to an untyped language,
the new implementation must instead take the typed output and continue the compilation process
in a typed setting, as shown in figure 1.3. The certifying TILT implementation is discussed in
chapter 9.
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The implementation of certifying TILT required the addition of essentially five additional com-
piler stages.

• MIL singleton elimination

• Translation to LIL

• Closure conversion

• Optimization

• Translation to TALx86

To simplify the meta-theory of the LIL, I have chosen not to support the singleton kinds of
the original MIL as implemented in the compiler. Therefore, before (or concurrent with) the
translation to LIL, singletons must be eliminated from MIL code. A proof that this is possible,
and a simple algorithm for doing so has been given by Crary [Cra00]. The implementation of this
algorithm and its effects on compiled code are discussed in section 9.1.

The translation to LIL is described in detail in chapter 5. The most interesting part of this
translation is the process of making type analysis explicit. The MIL has no general notion of
type analysis, instead using type analyzing primitives to implement specific optimizations such as
floating point array unboxing and flattening function arguments into records. The translation to
LIL compiles these primitives into uses of a general type analysis mechanism.

The MIL implements all of the optimizations that TILT supports, so extended optimization
of LIL code is mostly unnecessary. However, the translations tend to produce code that can
be improved significantly by a simple optimizer: for example, the closure converter frequently
introduces dead code and projections from known records. Rather than making other phases do
significantly more work to avoid this, it was simpler and cleaner to implement a basic optimization
pass for the LIL. Note that the optimizer does not have a counterpart in the theoretical model.

It would be appealing to rely as well on the MIL closure converter, and only translate closure
converted code. Unfortunately, the MIL notion of closure conversion is not easily compatible with
the LIL notion, since the MIL must closure-convert types as data. Translating closure converted
MIL code would require “de-closure converting” types, which is not appealing. For this reason,
a separate closure conversion pass for the LIL was implemented, closely modeled on the formal
closure conversion translation from chapter 6.

In order to allow intermediate code to be validated, it was also useful to implement a type checker
for the LIL language. This allows the output of the various phases of the compiler to be checked
for errors internally. The ability to check type correctness of internal program representations has
proved valuable in the development of TILT.

Lastly, a translation is given mapping LIL programs into TALx86 programs. Note that here,
the implementation diverges significantly from the formal model described in chapter 8 in that
the TILTAL and TALx86 languages are quite different. However, the theoretical model was
carefully designed to capture many of the interesting algorithmic approaches used in the actual
implementation.

The final portion of the dissertation gives a basic quantitative evaluation of the implementation,
including measurements of the size of the generated code and certificates to get a feeling for the
overhead of certification. Some measurements of run time behavior of the compiled programs are
also given.
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It is important to state here that while I measure these quantities to gain some understanding
of the cost of my approach, optimizing for small certificates and fast certification time is beyond the
scope of this dissertation. The purpose of this work is to demonstrate the feasibility of using types
to certify type analyzing code generated from a full-scale, general purpose language. Engineering
the representations, while certainly important for making the compiler practical, was not a primary
goal.

1.4 Overview

In the next chapter, I provide a brief introduction to a simplified version of the MIL intermediate
language which is the original source language for the compilation process described in this disser-
tation. Chapter 3 describes the LIL language which serves as the main intermediate language of
the new backend. The complete static semantics of the MIL and the LIL are given in appendixes
A and B, respectively. Chapter 4 gives an introduction to the style of type-analysis used in the LIL
via an extended example. The translation from MIL to LIL is described in detail in chapter 5, and
a proof of soundness is given. Closure conversion of LIL terms is described and proved sound in
chapter 6. Chapter 7 introduces the TILTAL typed assembly language which serves as the target
of the theoretical compiler. A translation from LIL programs to TILTAL programs is described
and proved sound in chapter 8. Finally, the implementation and its relation to the theoretical
presentation is discussed in chapter 9, and some empirical results about the implementation are
presented.
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Chapter 2

MIL

I describe the MIL here only briefly, as the theoretical and practical aspects of this calculus have
been discussed in detail elsewhere [PCHS00, SH99, VDP+03]. For the purposes of the translation,
I assume that singletons have already been eliminated [Cra00], although in practice it may be
desirable to do this concurrently with the translation. The syntax of the singleton free MIL is
given in figure 2.1. The MIL is a predicative lambda calculus based on Girard’s Fω, extended with
primitives for type analysis. The intention is that these primitives are definable in terms of the λML

i

calculus of Harper and Morrisett [HM95]. In the untyped TILT back-ends, these primitives are
only compiled directly after moving to an untyped calculus. The complete static semantics for the
MIL are given in appendix A and are fairly straightforward. The remainder of this section gives
a high-level overview of the structure of the language and describes the type-analysis methodology
it employs.

2.1 Kinds and constructors

The kind structure of the MIL is relatively simple in the absence of singletons, with function
and product kinds to classify constructor functions and tuples, and the base kind T32 to classify
constructors which classify terms. The notation T32 indicates that the terms classified by construc-
tors of this kind are intended to be represented by a 32 bit quantity after compilation. I use the
term “constructor” in preference to the term “type” when refering to constructors of arbitrary or
unspecified kind. I reserve the standard terminology “type” for constructors of kind T32.

Most of the the base constructors are completely standard, with the exception of the treatment
of sums and the constructs for type analysis. The sum type encodes the number of non value-
carrying fields directly, instead of simply using unit as the carried value. In addition, the MIL has
a known sum type, corresponding to the type of a sum for which the branch inhabited is known.
A special projection operation projects the carried value out of a known sum. This allows the case
construct to avoid destructing its value which may be unnecessary if the arm doesn’t actually use
the carried value.

Type analysis is present at the type level in the form of the Vararg construct and implicitly
in the Array type. The Vararg type classifies the term-level vararg construct, which is used to
implement non-standard calling conventions for functions which take tuples as arguments. In TILT
tuple arguments to functions are always flattened into registers if the number of fields in the tuple is
small. In order to make this work with polymorphic functions, it is necessary to use type analysis.
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κ :: = T32 | κ1→ κ2 | κ1 × κ2

c :: = α | Int | Boxf | (~c)→ c | c1 × . . .× cn

| µ(α, β).(c1, c2) | 〈c1, c2〉 | π1 c | π2 c | λ(α::κ).c | c1c2

| Varargc1→c2
| Varargc1→tc2

| Sumi(~c) | Sumj
i (~c)

| Arrayc | Farray | Exn | Dyntagc

τ :: = T (c) | ∀[ ~α::κ](~τ)(i)→ τ | ∀[ ~α::κ](~τ)(i)→t τ | τ1 × . . .× τn

fv :: = r | xf

sv ::= x | i | rollc sv | unrollc sv
| inj tagj

Sumi(~c)

opr ::= sv | varargc1→c2
sv | oneargc1→c2

sv
| boxf fv | unboxf sv | fv
| proji sv | injj

Sumi(~c)
sv

| 〈 ~sv〉 | selecti sv
| case(sv)(x1.e1, . . . , xn.en) | handleτ (e1, x.e2)
| sv [~c]( ~sv)(~fv) | inj dync(sv1, sv2)
| raiseτ sv | mkexntagc

| exncaseτ (sv)(sv1 ⇒ x1.e1, ⇒ e2)
| subc(sv1, sv2) | fsub(sv1, sv2)
| updc(sv1, sv2, sv3) | fupd(sv1, sv2, fv)
| arrayc(sv1, sv2) | farray(sv , fv)

e ::= sv | letτ recτ f [ ~α::κ]( ~x:τ)( ~xf ).e in e
| letτ x = opr in e | letτ xf = opr in e

∆ ::= • | ∆, α:κ
Γ ::= • | Γ, x:τ | Γ, x64

Figure 2.1: MIL syntax
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The Vararg type can be thought of as simply a type level typecase in a λML
i like language which

branches on the argument type of a function type. If the argument type is a small tuple, it returns
a multi-argument function type where the fields of the tuple have been flattened. Otherwise, it
leaves the function type unchanged.

The Array type implicitly distinguishes between arrays of boxed floating point numbers and
other arrays, in order to flatten the boxed float arrays. This is discussed in more detail below. The
rest of the constructor level is a standard typed lambda calculus, classified by the function and
product kinds.

2.2 Proper types

Also described in figure 2.1 is the syntax for the type level. Unlike the constructor level which
corresponds to the notion of types as data, the type level in a predicative system corresponds to the
notion of types as classifiers. The constructor level is included into the type level via an explicit
inclusion T (c). The type level also contains classifiers for polymorphic functions and tuples of
terms. The duplication of the tuple type at the type level indicates the possibility of constructing
pairs containing polymorphic functions which is not provided for by the constructor level.

2.3 Terms

For the most part, the term-level MIL is a standard lambda calculus with a few non-standard
primitives. The presentation here restricts the syntax to a named form [FSDF93, Mog89] to reflect
the form used internally in the TILT compiler. Named form forces incremental calculations to be
given names via variable binding (hence named form) which is important for various compiler passes
and code generation. Unlike most lambda calculi, the MIL also includes low level data represen-
tation primitives (such as float boxing and unboxing primitives). This allows data representation
optimizations to be expressed at the level of the MIL.

A key optimization that TILT implements is the use of non-uniform data representation. Many
implementations of languages with polymorphism require that all values fit into a word. In par-
ticular, array elements must always be word-sized, which means that arrays of 64 bit floats (for
example) must actually be arrays of pointers to floats. This is unfortunate because of the wasted
space, the extra indirections to access the data, and because of the consequent loss of data locality.
TILT avoids this by incorporating type analysis into the array primitives. By passing types at
runtime and allowing code to dispatch on them, unboxed floating point arrays can be used with
the appropriate subscript stride chosen at runtime.

The MIL calculus differs from the λML
i calculus of [HM95] in that it does not contain an explicit

type analysis construct such as typerec or typecase. This does not mean however that the idea of
intensional type analysis has been abandoned: rather, the type analysis has been hidden inside the
primitives that need to use it.

For example, TILT deals with floating point numbers by syntactically distinguishing between
boxed and unboxed floats, with appropriate term level conversions between them. This allows
the optimizer to deal directly with data representation optimizations, even at the relatively high
level of the MIL. The syntactic restriction on unboxed floats prevents polymorphic functions from
being instantiated with the unboxed float type, so that all polymorphic values take up 32 bits.
All unboxed floating point arguments are segregated so that they may be passed in float registers.
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A special Farray type is provided corresponding to the type of arrays of unboxed floats, with
corresponding term-level operations farray, fsub and fupd.

One obvious problem with this is that arrays of values whose type is not statically known
to be Float would seem to have to use a boxed representation. By using type analysis in the
array constructor as well as the subscript operator however, at least some of the difficulty can be
avoided. Essentially, the Array constructor incorporates a typecase which selects the appropriate
array representation based on the type of the carried values. Similarly, the term-level subscript
and update operations must dispatch on the type to select the appropriate operation. In the case
that the type turns out to be Boxf, the subscript operation will also be forced to re-box the float
before returning it, since subscripting into an array of boxed floats returns a value of type Boxf.

Type analysis is also encoded into the vararg and onearg primitives which implement special
calling conventions for single argument functions whose argument type is a small record type. For
example, the term varargc1→c2

sv corresponds roughly to the following code using an explicit λML
i

style typecase:

typecase c1 of
Record[] => lambda[]. sv <>

| Record[t] => lambda[x;t]. sv <x>
| Record[t1,t2] => lambda[x1;t1,x2;t2]. sv <x1,x2>
| => f

The onearg construct is the inverse of vararg, turning a variable argument function back to a
normal function. The maximum number of fields that can be flattened (here shown as two) is a
machine dependent parameter of the type theory.

The MIL hides type analysis by replacing certain stylized uses of typecase with primitives that
analyze their type arguments. At some point however, it becomes necessary to make this analysis
explicit. Currently in the compiler, this happens when the MIL is translated to a low-level untyped
language. One of the major challenges in pushing type information down to the machine level in
TILT is making this analysis explicit in a typed language that is amenable to translation to a
typed assembly language. The next chapter discusses a strategy for doing this by reflecting type
analysis into the term level of a more powerful lambda calculus.
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Chapter 3

LIL

There is an apparent disparity between the type-passing model of type analysis and the constructs
available at the machine level. Evaluation of terms depends on the type arguments as well as the
term arguments, but real machine processors are untyped. The ad-hoc solution originally used in
TILT is to translate to an untyped setting, choosing term-level representatives for the type data in
the process. Type analysis then becomes simple branches on the values chosen to represent various
types. This untyped approach was taken because of the absence of a well-understood type system
for typing such code.

In order to make this ad-hoc solution viable for producing typed certified code, Crary, Weirich,
and Morrisett describe a type theory that permits term-level representation of types and type
analysis in a typed setting [CWM98] using primitive terms to represent types. Crary and Weirich
subsequently extend this notion [CW99] to a type theory in which representation of types is defin-
able using only the ordinary lambda calculus term constructs with an enriched type system. The
LIL adopts this idea for its treatment of type analysis, and also extends the MIL with constructs
for representing closures.

3.1 The LIL syntax and static semantics

Figure 3.1 describes the complete syntax of the LIL. As with the MIL, the language is syntactically
restricted to named form. This is not particularly necessary for theoretical purposes, but matches
more closely the implementation.

Kinds form the top of the syntactic hierarchy, and are generally written using the meta-variable
κ. Kinds classify the constructors, for which the meta-variables c is generally used. In addition
the meta-variables τ and φ are used to distinguish constructors of kind T32, T64 respectively.
This is purely a presentational distinction however and does not correspond to an actual syntactic
distinction.

At the term level, the classes of small 32 bit and 64 values are notated as sv and fv respectively;
32 bit and 64 bit operations are notated as opr and fopr respectively; and expressions are notated
using the meta-variable e. Note that the distinction between 32 and 64 bit values is a syntactic
distinction and not merely a notational convention, and similarly for operations.

LIL programs (p) consist of a mutually recursive set (d) of heap bindings (hval), and an exe-
cutable expression e. In the theoretical presentation here, code functions are the only heap values
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κ ::= T32 | T64 | 1 | κ1→ κ2 | κ1 × κ2

| +[κ1, . . . , κn] | j | µj.κ | ∀j.κ

c, τ, φ ::= ∗ | α | λα:k.c | c1c2

| 〈c1, c2〉 | π1 c | π2 c

| inj+[ki]
i c | case(c, [α1.c1, . . . , αn.cn])

| foldµj.k c | pr(j, α:κ, ρ:(j→ κ′), ι: in c)
| Float | Int | Boxed | Void | × | → | Code
| c[κ] | Λj.c | ∃ | ∀ | Rec |

∨
| Array32 | Array64 | Dyntag | Dyn | Tag

fv ::= x64 | r
sv ::= x | ` | i

| inj unionc sv | inj dynτ (sv1, sv2)
| unrollτ sv | rollτ sv
| pack sv as ∃α:κ.τ hiding c | sv [c] | tagi

fopr ::= fv | unbox sv | subφ(sv1, sv2)
opr ::= sv | selecti sv

| case(sv)(x.e1, . . . , x.en)
| dyncase(sv)(sv1 ⇒ x1.e1, ⇒ e)
| dyntagτ | raiseτ sv | handleτ (e1, x.e2)
| box fv | 〈 ~sv〉
| sv( ~sv)(~fv) | call sv( ~sv)(~fv)
| arrayτ (sv1, sv2) | arrayφ(sv , fv) | subτ (sv1, sv2)
| updφ(sv1, sv2, fv) | updτ (sv1, sv2, sv3)

e ::= let recτ f [α1::κ1, . . . , αn::κn](x1:τ1, . . . , xm:τm)(z1:φ1, . . . , zk:φk).e in e
| sv | letτ x = opr in e | letx64 = fopr in e
| let [α, x] = unpack sv in e | let 〈β, γ〉 = c in e
| let (foldβ) = c in e
| let (inji β) = (c, sv) in e

hval ::= codeτ [α1::κ1, . . . , αn::κn](x1:τ1, . . . , xm:τm)(z1:φ1, . . . , zk:φk).e
d ::= ε | d, `:τ 7→ hval
p ::= letrec d in e

Ψ ::= • | Ψ, `:τ
∆ ::= • | ∆, j | ∆, α:κ
Γ ::= • | Γ, x:τ | Γ, x64:φ

Figure 3.1: LIL syntax
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permitted: however, in practice additional statically allocated data is placed in the heap section.1

The next several sections discuss some of the interesting syntactic aspects of the LIL and
introduce the relevant typing judgements. The complete static semantics for the LIL can be found
in appendix B. Many of the constructs described here are also discussed in detail by Crary and
Weirich [CW99].

3.1.1 Typing contexts

Context judgements
Heap contexts ` Ψ ok
Constructor contexts ` ∆ ok
Term contexts ∆ ` Γ ok

There are three sorts of typing contexts for the LIL: heap contexts Ψ, constructor contexts
∆, and term contexts Γ. Heap contexts associate closed types with labels and are derived from
the top level heap of a program. Constructor contexts actually serve two purposes: they bind free
kind variables, and they bind free constructor variables at kinds (which may refer to previously
bound kind variables). In principle these two contexts could be separated, but since kind variables
are uni-typed it seems unnecessary. Term contexts bind 32 and 64 bit term variables at types,
which may refer to previously bound constructor variables. I assume that variables for each of
the different syntactic classes (constructors, kinds, 32 bit terms and 64 bit terms) are drawn from
mutually disjoint infinite sets.

A heap context is well-formed if all of the labels in its domain are distinct, and if each of the
types in its range is well-formed in an empty constructor context. This latter constraint reflects
the fact that heap values are bound at the top-level of programs.

A constructor context is well-formed if all of the kind variables in its domain are distinct; and if
all of the constructor variables in its domain are distinct, and if each type in its range is well-formed
in the context preceding its binding.

A term context is well-formed if all of the 32 bit variables in its range are distinct, each type at
which a 32 bit variable is bound is well-formed at kind T32; and if all of the 64 bit variables in its
range are distinct, and if each type at which a 64 bit variable is bound is well-formed at kind T64.

3.1.2 Constructors and Kinds

Constructor and kind judgements
Kinds ∆ ` κ ok
Constructors ∆ ` c :κ
Equivalence ∆ ` c ≡ c′ :κ

The constructor and kind typing judgements are unsurprising. The judgement ∆ ` κ ok defines
what it means for a kind κ to be well-formed in a constructor context ∆. The judgement ∆ ` c :κ

1The practice of referring to the static data segment of LIL programs as a “heap” reflects the standard terminology
of the literature in this area: however, this usage is slightly misleading since in practice a LIL “heap” is understood to
correspond more closely to the code and data segments of an executable image, rather than to dynamically allocated
heap space. Nonetheless, since this distinction is not apparent in the dynamic semantics of TILTAL, and since the
usage has become standard in the literature, I will continue to refer to this portion of a LIL program as the heap.
Sorry Bob!
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Constants and their kinds
Float:T64 Int:T32 Void:T32

Array32:T32→ T32 Array64:T64→ T32 Boxed :T64→ T32

Tag :nat→ T32 Dyntag :T32→ T32 Dyn :T32

×:T32list→ T32 → :T32list→ T64list→ T32→ T32∨
:T32list→ T32 Code :T32list→ T64list→ T32→ T32

∀:∀j.(j→ T32)→ T32 ∃:∀j.(j→ T32)→ T32

Rec :∀j.((j→ T32)→ (j→ T32))→ j→ T32

Figure 3.2: Constructor constants and their kinds

defines what it means for a constructor c to be well-formed at a kind κ in a context ∆. And the
judgement ∆ ` c ≡ c′ :κ defines when two constructors are equivalent. Note that the kind and the
context in the equivalence judgement are present for technical reasons: they should not change the
set of equivalences on well-formed constructors (though they do rule out equivalences on ill-formed
constructors). The complete definitions of these judgements are given in appendix B.

The most important change from the MIL is the enrichment of the kind structure: most
importantly, the addition of sum kinds with corresponding introduction and elimination forms at
the constructor level. Universal kinds (∀j.κ) and inductive kinds (µj.κ) are also provided. Kind
variables bound by inductive kinds are restricted to occur only positively. In order to provide for
the possibility of more general 64 bit types, the LIL uses an explicit kind distinction, providing
kinds T32 and T64 corresponding to the kind of the types of 32 and 64 bit expressions respectively.

The meta-variables c, τ and φ are used to represent constructors of arbitrary kind, kind T32

and kind T64 respectively. The lambda calculus portion of the constructor level contains the usual
introduction and elimination forms for sums, pairs, lambdas, unit, and kind abstraction. These
constructs are entirely standard. Inductive kinds are introduced with a fold construct, foldµj.κ c,
which injects a constructor c of kind κ[µj.κ/j] into the kind µj.κ.

The elimination form for inductive kinds is one of the most complex constructs in the LIL
and requires some explanation. The essential idea is to provide a form of primitive recursion over
inductive kinds at the constructor level. A primitive recursive constructor pr(j, α:κ, ρ:(j → κ′).c)
recursively defines a function from µj.κ to κ′[µj.κ/j], with the body of the function give by c.
The variable α is the argument to the function, and stands for the unfolded argument (nominally
of kind κ[µj.κ/j]). However, in order to ensure that the function is only recursively called on a
sub-component of the argument (and hence is guaranteed to terminate), α is bound at kind κ with
occurrences of j left abstract, and the recursive variable ρ always has j as its domain kind.

The constructors classifying the term level are presented in the LIL as constants of higher kind.
These constructors, given in figure 3.2, include constants for impredicative universal and existential
types, general parameterized recursive types, arrays, tagged values, sums, integers, floating point
numbers, boxed 64 bit values, pairs, and functions. Formulating these constructors as higher order
constants makes the interaction with type analysis easier to deal with. The kinds of several of the
constants refer to the kind of lists of constructors. This is defined as list[k] = µj′.1 + k × j′.
Throughout this dissertation I will frequently use the usual ML list syntax for constructor lists.
The kind nat describing the encoding of natural numbers is definable directly in the LIL in the
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usual fashion, and is used in the typing rules as well. When n is a natural number, I write n for
the constructor of kind nat representing n.

For the most part, the constructor constants are fairly straightforward. For example, ×c cor-
responds to the type of a tuple, the types of the fields of which are given by the elements of c. If
c = [τ1, τ2], then this corresponds to τ1 × τ2 in a more standard notation. Similarly, the arguments
to the → constructor correspond to the types of the 32 bit and 64 bit arguments of the function,
and its return type. Hence, →([τ ])([φ])(τ) corresponds to (τ ;φ)→ τ .

This higher-order abstract syntax methodology is very convenient for both the theory and the
implementation but can interfere with readability. For example: the type of the polymorphic
pairing function written in this style appears as

∀[T32](λ(α:T32).∀[T32](λ(β:T32).→ [a][](→[b][](×[a, b]))))

(Note that even here I have used derived notation for lists). To enhance readability, I will frequently
make use of more standard notation. So in this example, I would write the type as:

∀[α:T32, β:T32].α→ β→ (α× β)

This practice is also done extensively in the actual implementation via libraries which provide
defined forms implementing the more standard type constructors in terms of the HOAS style
constructors.

The Tag constructor classifies sum tags, and takes as its argument a constructor of kind nat
indicating which branch of the sum the value inhabits.

Sum types are dealt with in the LIL using union types. In principle we allow injection into
any union type. However, the case construct limits its arguments to have union types composed
solely of tags or tagged records for which the tags are disjoint, and cover the full range of tags from
the zero to the largest tag. So for example, the type

∨
[Tag(0),×[Tag(1), τ ]] is inhabited by terms

which are either tag0 or a pair containing a τ in its second field, tagged with tag1 in the first field.
This union type therefore describes a valid argument to case. In point of fact, the tag on the pair
is not necessary and could be elided. More generally, when τ is a pointer, then both the tag and
the pointer indirection can be eliminated. Note though that in the presence of unknown types such
an optimization again requires type analysis. The actual implementation of sums in TILT in fact
performs this optimization. However, since it adds nothing new to the problem, the theoretical
discussion here assumes a simple treatment of sums in which all value-carrying arms are tagged.

The universal and existential constructors take as arguments a kind indicating the domain
of quantification and a constructor function giving the body. The standard ∀(α:κ).c becomes
∀[κ](λ(α::κ).c), and similarly for the existential. Finally, parameterized recursive types are defined
with the Rec constructor. Rec[κ](λ(ρ:κ→T32).λ(α:κ).c)(c′) (where c′ has kind κ) corresponds to re-
cursively defining a constructor of kind κ→T32 and applying it to c′. Within the body of c, ρ stands
for the recursively defined constructor, and α stands for the parameter. Therefore, the unfolding
of such a type is given by cr(λ(α:κ).(Rec[κ](cr)(α)))(c′), where cr = (λ(ρ:κ→ T32).λ(α:κ).c).

In order to allow closure conversion to be done within the LIL language, two “function” types
are given. The → primitive type constructor when applied to arguments classifies functions in the
usual sense. The Code primitive on the other hand, classifies “code” functions: that is, code that
is closed.
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3.1.3 Terms

Term judgements
Small values Ψ;∆; Γ ` sv : τ
64 bit values Ψ;∆; Γ ` fv :φ
32 bit Operations Ψ;∆; Γ ` opr : τ opr32

64 bit Operations Ψ;∆; Γ ` fopr :φ opr64

Expressions Ψ;∆; Γ ` e : τ exp
Heap values Ψ ` h : τ hval
Heaps Ψ ` d ok
Programs Ψ ` p : τ

The expression level of the LIL is divided into five syntactic classes: 64 bit values (fv), 32 bit
values (sv), 32 bit operations (opr), 64 bit operations (fopr) and expressions (e). Programs are
syntactically restricted to a named form where all intermediate computations are named in the
usual fashion. In addition to the five classes making up expressions, there are an additional three
syntactic classes making up full LIL programs: heap values (hval), heaps (d), and programs (p).

The well-formedness judgements for the five expression classes are all of the same essential
form, defining what it means for a term to be well-formed at a type τ (or φ) in heap context
Ψ, constructor context ∆, and term context Γ. The other three judgements apply to heaps and
programs which do not have free variables of any sort. Therefore, the only context present in these
judgements is the heap context, which describes the free labels of a heap or a program. As usual,
any heap value may refer to the label bound to any other heap value: that is, all the heap values
are mutually recursively defined. The presence of a heap context in the program well-formedness
judgement leaves open the possibility of compiling programs against externally defined labels.

Small values

Values include variables, constants, polymorphic instantiation, and existential introduction. Sum
tags tagi are made explicit, and a coercion is introduced to inject terms into the union type.

64 bit values

The only 64 bit values present in the LIL are 64 bit float constants and variables.

32 bit operations

Operations are computations that return values, and are bound to variables within expressions.
For simplicity, I include values into the operations to unify let binding into a single mechanism.
Other operations include unrolling of recursive types, tuple introduction and tuple selection, boxing,
sum case, known sum projection, exception constructs, and boxing of 64 bit values. Array update
and creation operations are provided for both 32 and 64 bit arrays, along with the array subscript
operation for 32 bit arrays. Note that all memory allocation in the LIL is explicit and present in this
level, whether through the tuple introduction, the box primitive or the array creation primitives.
The only exception to this is function introduction which implicitly allocates a closure: this is dealt
with via closure conversion which turns uses of functions into uses of tuples and code. This is
described in detail in chapter 6 and section 9.3.
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64 bit operations

The 64 bit operations include unboxing of 64 bit values and 64 bit array subscripts, as well as the
inclusion of 64 bit values.

Expressions

Expressions in the LIL are either small values, or let bindings of any of several forms. Recursive
function binding, 32 bit variable binding, and 64 bit variable binding are provided. Existential
unpacking is also included at this level. The most interesting expressions however, are the type
refinement bindings that support the technology upon which type analysis in the LIL is built.

The most important of these is the vcase, or “virtual case” construct. Crary and Weirich
[CW99] describe a system for implementing type analysis as case analysis on constructor-level
sums, essentially defining typecase in terms of more standard type theoretic constructs. They also
describe a variant of their system which allows for a type erasure interpretation but still supports
type analysis as a programming idiom. In this variant, term-level sums are used to stand for
analyzable constructors. The vcase construct provides a mechanism whereby information about
the identity of types encoded as terms can be reflected back into the type level.

To understand how this works, consider a value v of type case(α, β1.c, β2.Void). According to
the type given, v is either of type c or of type Void depending on whether α gets instantiated with
a left or a right injection. But since there are no closed values of type Void, it is apparent that α
can not be instantiated with a right injection, since to do so would imply that v has type Void. In
essence, v serves as a witness to the fact that α will be instantiated with the left injection.

This fact can be propagated back into the type system by using vcase. When the argument
to vcase is a variable, its arms are type-checked with the variable replaced with the appropriate
injection in the context and in the body of the arm (that is, in the left arm, the variable is
replaced with the left injection, and similarly with the right). Therefore, in the second branch of
the expression vcase(α, β1.e, β2. dead v) the value v has type Void, which implies that this branch
cannot be reached and is dead code. Within the body of e, α is known to be the left injection, and
v is known to have type c. When types are erased, it is sound to erase the vcase as well, since one
arm is known to be dead code. The vcase construct is the key to implementing type analysis, as
the subsequent section will show.

In addition, two special binding forms exist for refining constructor paths into variables for
analysis. When α has kind κ1 × κ2, the pair refinement operator let〈β, γ〉 = α in e replaces all
occurrences of α in e with the pair 〈β, γ〉. This means that projections from α can be turned
into variables. The vcase construct can only refine the type of its argument when the argument
is a variable: this pair refinement construct allows this to be extended to paths as well. The
let(foldβ) = α in e expression serves a similar purpose when α has a recursive kind.

Heap values

The only heap values currently supported in the theoretical treatment of the LIL are code functions,
which are necessary for closure conversion. Each heap value is required to be closed with respect
to variables, but may refer to any other heap value via its label.
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Heaps

A heap is a collection of mutually recursively defined heap values. A heap is well-formed in a heap
context if each of its constituent heap values is well-formed at the type at which its label is bound.
Note that I require that all of the heap labels be present in the heap context: for non-recursive
functions this is not strictly necessary, but it serves the additional purpose of enforcing the property
that all labels in the heap are distinct (via well-formedness check on heap contexts).

` Ψ ok

Ψ ` ε ok

Ψ[`:τ ] ` hval : τ hval
Ψ[`:τ ] ` d ok

Ψ[`:τ ] ` d, `:τ 7→ hval ok

Programs

LIL programs consist of a heap, which binds labels to heap values, and an expression which
computes the “value” of the program. Since the heap values are (potentially) mutually recursive,
the heap is checked in a context including bindings for all of the labels in the heap. For notational
purposes, I define an operation on heaps, Ψ(d), that corresponds to the heap context produced by
taking the label and type from each binding in a heap

Ψ(ε) def= •
Ψ(d, `:τ 7→ hval) def= Ψ(d), `:τ

The well-formedness rule for program simply checks the heap and the expression portion of the
program in the heap context extended with the bindings from the heap.

Ψ,Ψ(d) ` okΨ,Ψ(d) ` d ok
Ψ,Ψ(d); •; • ` e : τ exp

Ψ ` letrec d in e : τ

3.2 Useful properties of the LIL

Subsequent proofs rely on certain properties of the LIL: in particular, that well-typedness is
preserved under substitution and that weakening for typing contexts is admissible.

Lemma 1 (LIL Substitution)
If ∆, α:κ′ ` c :κ and ∆ ` c′ :κ′ then ∆ ` c[c′/α] : κ.

Proof: (By induction on c)
We proceed by cases on the last rule of the derivation.

1. If c is a constant or ∗, then c[c′/α] = c. By assumption, ∆, α:κ1 ` c :κ, so by strengthening,
∆ ` c :κ.
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2. ∆[α:κ′] ` α′ :κ

• α′ = α. Then c[c′/α] = c1. By assumption, ∆ ` c′ :κ′ and ∆, α:κ′ ` α :κ. But by
inspection of the typing rules, it is clear that the derivation must end in a use of the
variable rule, so κ = κ′, and hence ∆ ` c′ :κ

• α′ 6= α. Then the result follows as in the constant case above.

3. ∆[α:κ′] ` λ(β:κβ).c :κβ → κr. Then by assumption, ∆, α:κ′, β:κβ ` c :κr. By induction,
∆, β:κβ ` c[c′/α] : κr. (Note that we assume that β is chosen appropriately to avoid capture.)
Then by the lambda rule, ∆ ` λ(β:κβ)(c[c′/α]) : κ, and hence by definition of substitution,
∆ ` (λ(β:κβ)c)[c′/α] : κ.

4. ∆[α:κ′] ` c1 c2 :κ. Then by assumption, ∆, α:κ′ ` c1 :κ2 → κ and ∆, α:κ′ ` c2 :κ2. By
induction, ∆ ` c1[c′/α] : κ2→ κ and ∆ ` c1[c′/α] : κ2. The result follows directly then from
the application rule and the definition of substitution: ∆ ` (c1 c2)[c′/α] : κ.

5. ∆[α:κ′] ` 〈c1, c2〉 :κ1 × κ2. Then by assumption ∆, α:κ′ ` c1 :κ1 and ∆, α:κ′ ` c2 :κ2. By
induction, ∆ ` c1[c′/α] : κ1 and ∆ ` c2[c′/α] : κ2. The result follows directly then from the
pair rule and the definition of substitution: ∆ ` 〈c1, c2〉[c′/α] : κ.

6. ∆[α:κ′] ` π1cp :κ1. Then by assumption ∆, α:κ′ ` cp :κ×κ2. By induction, ∆ ` cp[c′/α] : κ×
κ2. The result follows from the the projection rule and the definition of substitution.

7. ∆[α:κ′] ` π2cp :κ2. As for π2.

8. ∆[α:κ′] ` inji c : + [κ1, . . . , κn]. Then by assumption ∆, α:κ′ ` c :κi. By induction, ∆ `
c[c′/α] : κi. Finally, by the injection rule and the definition of substitution:

∆, α:κ′ ` (injic)[c
′/α] : + [κ1, . . . , κn]

9. ∆[α:κ′] ` case c[(α1.c1, . . . , αn.cn)] : κ. By assumption:

• ∆, α:κ′ ` c : + [κ1, . . . , κn]

• ∆, α:κ′, αi:κi ` ci :κ

By induction:

• ∆ ` c[c′/α] : + [κ1, . . . , κn]

• ∆[αi:κi] ` ci[c′/α′] : κ

(Note that the αi may always be chosen to avoid capture). Then by the case rule and the
definition of substitution, ∆ ` (case c[(α1.c1, . . . , αn.cn)])[c′/α] : κ

10. ∆[α:κ′] ` foldµj.κ c :µj.κ. Then by assumption, ∆[α:κ′] ` c :κ[µj.κ/j] and ∆[α:κ′] ` µj.κ ok.
By induction, ∆[α:κ′] ` c[c′/α] : κ[µj.κ/j], and so by the fold rule and the definition of
substitution, ∆[α:κ′] ` (foldµj.κ c)[c′/α] : κ[µj.κ/j]
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11. ∆[α:κ′] ` pr(j, β:κ1, ρ:(j→ κ2), in c) :µj.κ1→ κ2 Then by assumption,

∆[α:κ′] ` pr(j, β:κ1, ρ:(j→ κ2), in c) :µj.κ1→ κ2

By induction
∆, j, β:κ1, ρ:(j→ κ2) ` c[c′/α] : κ2

Note that we can choose variables appropriately to avoid capture, and hence by the primitive
recursion rule and the definition of substitution

∆[α:κ′] ` pr(j, β:κ1, ρ:(j→ κ2), in c)[c′/α] : µj.κ1→ κ2

12. ∆[α:κ′] ` c[κ] : κ2[κ/j].

Then by assumption:
∆[α:κ′] ` c :∀j.κ2

By induction:
∆ ` c[c′α] : ∀j.κ2

By the kind application rule and the definition of substitution:
∆ ` c[κ][c′/α] : κ2[κ/j]

13. ∆[α:κ′] ` Λj.c :∀j.κ. Then by assumption, ∆[α:κ′], j ` c :κ. By induction ∆, j ` c[c′/α] : κ.
Hence by the kind abstraction rule and the definition of substitution ∆ ` (Λj.c)[c′/α] : κ.

A few structural properties of LIL contexts are important as well. I state the weakening property
and give a sketch of the proof. I remain informal about re-ordering properties of typing contexts
throughout, but in the absence of dependent types or kinds it is straightforward (though tedious)
to formalize them. I will also occasionally informally use simultaneous weakening to combine whole
contexts: e.g. ∆,∆′ where the intersection of the domains is empty. It should be clear that this
form of weakening can also be formalized by an induction on the second context, appealing to the
unary forms of the weakening lemmas to incrementally construct the new context.

Lemma 2 (LIL Weakening)
1. If ∆ ` κ ok and j /∈ ∆, then ∆, j ` κ ok.

2. If ∆ ` κ ok and ∆ ` κ′ ok and α /∈ ∆, then ∆, α:κ′ ` κ ok.

3. If ∆ ` c :κ and ∆ ` κ′ ok and α /∈ ∆ then ∆, α:κ′ ` c :κ.

4. If ∆ ` c ≡ c′ :κ and ∆ ` κ′ ok and α /∈ ∆ then ∆, α:κ′ ` c ≡ c′ :κ.

Proof (Sketch): Each of the proofs proceeds similarly by induction on the structure of typing
derivations. For each typing rule, I inductively construct new sub-derivations for each premise and
use the original rule to construct the new derivation. The side-condition on binding sites does not
follow immediately: it is necessary to observe that it is always possible to use alpha-variance to
choose an appropriate bound variable different from α. For premises of the form ` ∆ ok, note that
the derivation of ` ∆, α:κ′ ok follows directly from the assumptions and the definition of context
well-formedness.

I also state an inversion property of LIL operations.
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Lemma 3 (LIL inversion)
1. If D is a derivation of Ψ;∆; Γ ` opr : τ opr32, then D has a unique last rule for any choice of

opr .

2. If D is a derivation of Ψ;∆; Γ ` fopr :φ opr64, then D has a unique last rule for any choice
of opr .

Proof: By inspection. No two operation rules apply to the same syntactic construct.
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Chapter 4

Example: Floating point array
flattening

4.1 An optimized array strategy

The use of the LIL type refinement operations discussed in the previous chapter is somewhat
non-intuitive. Before attempting to give a full account of the translation of the MIL, it is useful
to consider a small example demonstrating the type-analysis methodology used in the LIL. The
optimization I will describe here, floating point array flattening, is one of several implemented by
the TILT compiler. In this scheme, an array of boxed floating point numbers is implemented not
as an array of pointers, but as an array of the actual 64-bit values. Polymorphic array operations
dispatch on the type of the array contents to determine which primitives to use. In an informal
λML

i style notation, this corresponds to defining the following type:

Arrayopt(α) = Typecase(α) of Boxed(φ)⇒ Array64(φ)
| ⇒ Array32(α)

As an example, I will show how to write a term level array constructor arrayopt that can be used
to construct such arrays.

4.2 LIL implementation of optimized arrays

Type analysis in the LIL is based on the idea of first encoding types as abstract syntax trees, and
then writing functions that use the encodings to reconstruct the actual types or to choose different
branches of code. In fact, it is not necessary to encode entire types: we may choose an encoding
that captures only the information that is useful for our purposes.

More concretely, we first choose an encoding strategy that captures the features of interest
about a type. For every type of interest (that is, every type which is to be analyzed) we construct
two object level items: a constructor which serves as a static encoding of the type (SE), and a term
which serves as a dynamic encoding of the type (DE). Static encodings of types are used during
typechecking to reconstruct the encoded type and to connect the type to its dynamic encoding.
Dynamic encodings are used to perform the actual runtime dispatch. For each of these two encod-
ings, there must also be a corresponding classifier describing it: the static encoding of a type is
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classified by the static encoding kind (SEK), and the dynamic encoding of a type is classified by
its dynamic encoding type (DET).

4.2.1 Static encodings

At the kind level, sums and recursive kinds are used to build a type’s static encoding. For the
purposes of this example optimization, the encoding can be very simple: we need only to be able
to distinguish between boxed 64-bit types and other types. This is reflected in the static encoding
kind for our example:

Topt
def= T64 + T32 (* Boxed of (φ) | Other of (τ)*)

The Topt kind classifies static encodings. The comment is meant to suggest the intuitive corre-
spondence between this definition and an ML-style representation of an abstract syntax tree.

Constructors of kind Topt encode types. In order to take advantage of these encodings, we re-
place all constructors by their encodings. For example, polymorphic functions must expect encoded
types as their type arguments. In order to be able to typecheck applications of these functions, we
must be able to reconstruct the original type from its encoding. This is done by writing an object
level function to interpret static encodings into the types they encode. For the example at hand,
this function simply boxes up the 64 bit types and leaves the 32 bit types unchanged. Hence:

interp : Topt→ T32
def= λ(α:Topt). caseα of inj1 β ⇒ Boxed(β)

| inj2 β ⇒ β

The use of this interpretation function can be seen by considering the static encodings of boxed
64-bit floats and 32-bit ints:

CBF : Topt
def= inj

Topt
1 Float

CI : Topt
def= inj

Topt
2 Int

Notice that the interpretation function maps each of these back to the original type. This allows
us to reconstruct the original type from the encoding. An important point to note here is that
this scheme does not guarantee that all boxed floating point types will be represented as a first
injection: it is perfectly possible to stuff Boxed(Float) into the second arm of the sum. This is not
a problem, since it merely causes arrays of such types to be represented in un-flattened form. In
fact, one could look at this as a feature, since the optimization does not force you to choose one
representation or the other.

Of course, simply writing the interpretation is fairly uninteresting by itself since it merely gets
us back to where we were before we encoded types. The real benefit of encoding types in this fashion
comes from other useful functions that we can write using encodings of types. In particular, the
actual type of specialized arrays that was given informally above can now be written down directly.

Arrayopt:Topt→ T32
def= λ(α:Topt). caseα of inj1 β ⇒ Array64(β)

| inj2 β ⇒ Array32(β)

The Arrayopt constructor is a function that maps encoded types to optimized array types. It takes
advantage of the additional information present in the encoded types to represent arrays of boxed
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floats more efficiently. When the encodings are statically known, the optimized array type can be
reduced directly to an underlying primitive array type.

Arrayopt(CBF ) ≡ Array64(Float)
Arrayopt(CI) ≡ Array32(Int)

When the actual encoding is abstract (for example in a polymorphic function) the composite array
constructor can not be reduced definitively to a primitive array type, since it is not statically known
which sort of array can be expected.

4.2.2 Dynamic encodings

Static encodings account for type analysis at the type level by representing types as constructor
level abstract syntax trees and by writing functions which analyze the structure of encodings to
produce optimized results. Type analysis at the term level is accounted for in an analogous fashion
using dynamic encodings. In addition to encoding every type at the constructor level, we also give
a dynamic encoding of every type at the term level. The DE of a type can then be used to dispatch
at runtime. A key point of this methodology is that the dynamic and static encodings of a type are
not independent: they are related via the dynamic encoding type. This allows information gained
via tests on the dynamic encoding to be reflect back onto the static encoding.

In fact, the DET of a type is simply another object level type function operating on the SE
of the type in the same fashion as the interpretation function and the optimized array functions.
For the example at hand, the type of the dynamic encoding of a type whose static encoding is c is
given by R(c), where R is defined as follows:

R : Topt→ T32
def= λ(α:Topt).(caseα of inj1 β ⇒ Unit | inj2 β ⇒ Void)

+(caseα of inj1 β ⇒ Void | inj2 β ⇒ Unit)

This definition is a bit subtle, and is worth examining in detail. The principle high-level point is
that dynamic encodings of types will be values of sum type, which can be dispatched on using the
term level case construct. The subtlety arises in the types given for the two arms of the sum type
here. Metaphorically speaking, each arm of the sum here can be thought of as serving as a “proof”
of the identity of α. The reasoning behind this is to observe that there are no closed values of type
Void. This tells us that any closed value of type case c of inj1 β ⇒ Unit | inj2 β ⇒ Void must in
fact be unit. But this in turn tells us (informally) that c can only be of the form inj1 τ .

So the informal reasoning of the previous paragraph tells us that after dispatching on the
dynamic encoding of a type, we can informally infer information about its static encoding. In
particular, if the dynamic encoding is a left injection, then the static encoding must similarly be a
left injection; and similarly for right injections. In fact, as we shall see, the vcase constructs gives
us a formal method for using this information.

Dynamic encodings of types are terms whose types are given by the operation of R on their
static encoding. So for example, the dynamic encodings of boxed 64-bit floats and of 32-bit ints
are given as follows:

VBF :R(CBF ) def= inj1 ∗
VI :R(CI)

def= inj2 ∗
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4.2.3 Type analyzing terms

To re-cap, static encodings of types (such as CBF ) provide type level representations of the abstract
syntax of the analyzable types. Dynamic encodings of types (such as VBF ) provide term level
representations of the abstract syntax of the analyzable types, and are classified by types which
depend on the static encoding of the type.

In this framework, functions which analyze types (given in the MIL by special primitives) simply
become functions which take as arguments the static and dynamic encodings of the analyzable types
and dispatch on them appropriately. The type of the function to construct flattened arrays reflects
this:

arrayopt : ∀(α:Topt).R(α)→ Int→ interp(α)→ Arrayopt(α)

The type argument and the first term argument correspond to the static and dynamic encodings
of the type of the contents of the array. The type of the initial value for the array is obtained by
interpreting the encoded type using the interp function, and the return type is given by interpreting
the encoded type using the Arrayopt function.

The actual implementation of the array creation function simply case analyzes the dynamic
encoding to determine the appropriate primitive array operation to use. The code itself is straight-
forward: the subtlety lies in understanding why the code is well-typed.

arrayopt
def= Λ(α:Topt).λ(xα:R(α)).λ(i:Int).λ(y: interp(α)).

casexα

of inj1 r⇒ vcaseα of inj1 β1 ⇒ array64[β1](i, unbox(y))
| inj2 β2 ⇒ dead r

| inj2 r ⇒ vcaseα of inj1 β1 ⇒ dead r
| inj2 β2 ⇒ array32[β2](i, y)

As expected, the type argument α has the kind of encoded types, Topt. Similarly, the term
argument xα has the type of dynamic encodings of α, and will be instantiated with the dynamic
encoding of α. The actual type of the contents of the array can only be referred to via the interp
function, since it is unknown at compile time. Therefore, the y argument with which the array is
to be initialized is given type interp(α). Similarly, the return type Arrayopt(α) gives the type of
the returned array as a function of what α turns out to be.

The key to understanding how this all works out is to observe the effect that the vcase constructs
have on the types of the variables in the function. Consider just the first branch of the case analysis
on xα, where the body of the arm does a virtual case analysis of α. According to the typing rule
for vcase, the second arm of the vcase will be type-checked with inj2 β2 substituted everywhere
for α, including in the context. This means that whereas outside the arm the variable r has type

caseα of inj1β ⇒ Unit | inj2β ⇒ Void

within the arm it has type

case inj2β2 of inj1β ⇒ Unit | inj2β ⇒ Void

which is equivalent to simply Void. This satisfies the typing rule for vcase, which requires the
dead branch to exhibit a value of type Void as proof that the branch is in fact dead.
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To illustrate this further, the following table shows the types for the variables r and y inside
and outside of the first vcase, at the occurrences indicated in bold in the definition above.

Outside of vcase Inside of vcase
y: caseα of inj1 β ⇒ Boxed(β)

| inj2 β ⇒ β
y: Boxed(β1)

r: caseα of inj1β ⇒ Unit | inj2β ⇒ Void r:Void

As an exercise, the reader may verify that when called with the appropriate arguments, the
optimized array function defined above does in fact reduce to the appropriate 32 or 64-bit array
primitive based on the representation of the type chosen.

arrayopt[CBF ](VBF )(10)(box(0.0)) 7→∗ array64[Float](10, 0.0)
arrayopt[CI ](VI)(10)(0) 7→∗ array32[Int](10, 0)
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Chapter 5

The MIL to LIL translation

The translation from the MIL into the LIL language is primarily interesting in that it makes the
uses of type analysis in the MIL primitives explicit and adds representations for types so that this
analysis can be done at the term level. This implements in a typed fashion what is done currently in
an untyped setting. The type analysis methodology for this is essentially the same as that described
in the previous chapter, but extended to handle additional type analyzing operations.

The first section of this chapter gives a high-level overview of the translation, introducing the
relations and stating some of the major typing properties. These translations are developed in
detail in successive sections, along with proofs of their soundness.

5.1 Translation overview

The translation of MIL programs in to LIL programs is defined by several inductively defined
relations between elements of the MIL syntactic classes and their correspondents in the LIL.
These relations may be broadly grouped into four classes: those concerned with the static encoding
of constructors, those concerned with the dynamic encoding of constructors, those concerned with
proper MIL types, and those concerned with the expression translation itself.

The first group consists of the kind and constructor translations, and the corresponding trans-
lation on constructor typing contexts.

Static encoding translations
SEK |κ| • ` |κ| ok
SE context |∆| ` |∆| ok
SE |c| |∆| ` |c| : |κ|

The kind translation replaces MIL kinds (closed by definition) with closed LIL kinds classifying the
translation of MIL constructors of the original kind. The static encoding translation for contexts
(|∆|) simply applies the kind translation across the range of a MIL typing context. This allows
the statement of the desired typing property of the constructor translation: that if ∆ ` c :κ, then
|∆| ` |c| : |κ| (theorem 2). (There are of course a number of other auxiliary typing properties to be
shown: these are covered in more detail in subsequent sections.)

The second group, primarily concerned with the dynamic encoding of constructors, consists
of additional translations on constructors and typing contexts and a relation on constructors and
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kinds.
Dynamic encoding translations

DET �c:κ� |∆| `�c:κ� : T32

DE context �∆� |∆| `�∆� ok
DE �c� •; |∆|; �∆�`�c� : �c:κ� exp

The first translation, �c:κ�, is a relation between MIL constructor/kind pairs and LIL types. It
defines the dynamic encoding type for a constructor c of kind κ. The inhabitants of this type are
the dynamic encodings of constructors, and are produced by a relation between MIL constructors
and LIL expressions: �c�. The dynamic encoding translation for contexts maps LIL constructor
contexts to MIL term contexts. The domain of the new context is constructed using an injection
from type variables to term variables, while the range is constructed using the static encoding type
translation. It should be the case that if ∆ ` c :κ, then Ψ; |∆|; �∆�`�c� : �c:κ� exp (theorem 3)

The third group is concerned with the translation of proper MIL types (as opposed to con-
structors).

Type translations
Types |τ | |∆| ` |τ | : T32

Term context |Γ| |∆| ` |Γ| ok

The type translation is a relation between proper MIL types and LIL constructors of kind T32, and
the term context translation simply maps this translation across the range of MIL term contexts.
It should be the case that if ∆ ` τ ok, then |∆| ` |τ | : T32.

The final group of translations relates MIL terms of various syntactic classes to their corre-
sponding LIL terms.

Term translations
Small values ∆; Γ ` sv : τ ; sv ′ Ψ; |∆|; �∆�, |Γ| ` sv ′ : |τ |
Float values ∆; Γ ` fv : Float ; fv ′ Ψ; |∆|; �∆�, |Γ| ` fv ′ : Float
Operations ∆; Γ ` opr : τ ; opr ′ Ψ; |∆|; �∆�, |Γ| ` opr ′ : |τ | opr32

64 bit Operations ∆; Γ ` fopr : Float ; fopr ′ Ψ; |∆|; �∆�, |Γ| ` fopr ′ : Float opr64

Expression ∆; Γ ` e : τ ; e′ Ψ; |∆|; �∆�, |Γ| ` e′ : |τ | exp

It is convenient to phrase these as typed translations since the additional type information is some-
times required in order to construct the appropriate LIL syntax. The intended typing properties
of these translations should be clear. For example, it should be the case that if ∆; Γ ` e : τ and
∆; Γ ` e : τ ; e′ then Ψ; |∆|; �∆�, |Γ| ` e′ : |τ | exp (for appropriate heap contexts Ψ, theorem 8).

5.2 Static encodings of constructors

.
A static encoding is a LIL constructor which encodes information about the MIL constructor

which it represents. The static encoding can be analyzed at the type level to determine what type
it represents. It can also be translated by an object level interpretation function to determine the
actual LIL type corresponding to the MIL type that it represents. This section develops these
mechanisms, beginning with the translation of kinds.
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5.2.1 The kind translation

The choice of what information to capture in the encoding depends entirely on the kind of type
analysis optimization that is desired. In the MIL, there are two major uses of type analysis:
an array flattening optimization and the vararg optimization. The array optimization is almost
exactly as described in chapter 4, and requires the encoding strategy to distinguish between boxed
floats and other types. The vararg optimization is described in chapter 2, and requires the ability
to distinguish between records of various widths and other types so that the vararg and onearg
operations can choose an appropriate calling convention. For the purposes of this translation then,
it is sufficient for the encoding to capture three classes of types: records (with their widths), boxed
floating point numbers, and all other types. In fact, the actual implementation sub-divides the last
category into pointer types and non-pointer types in order to implement a further optimization on
sums that is not discussed here, as it adds nothing substantial to the discussion.

This division of types into categories is apparent in the static encoding kind that we choose for
the translation:

Tmil
def= T32list + 1 + T32

Intuitively, Tmil corresponds to an ML datatype as such:

datatype Tmil= Record of T32list| BFloat | Other of T32

For presentational purposes, I will often use ML pattern matching style notation using this intuitive
correspondence.

Recall that the SEK is the kind that classifies static encodings. What this definition tells us
is that encoded constructors are either a list of types corresponding to the types of the fields of a
record, a boxed floating point number, or some other unknown type. Note that since the only 64
bit type in the MIL is Float, it is not necessary to include any information in the second arm of
the sum. If we wished to allow arbitrary 64 bit types to be flattened into arrays, we could replace
the 1 in the second arm of the sum with a T64.

The previous definition tells us what the kind of encodings of proper MIL types looks like.
Arbitrary MIL kinds are translated into LIL kinds simply by replacing all occurrences of T32 with
Tmil, and leaving the rest of the structure intact.

|T32|
def= Tmil

|κ1→ κ2|
def= |κ1| → |κ2|

|κ1 × κ2|
def= |κ1| × |κ2|

Following the methodology described in chapter 4, the first important object level type function
we must define to assist with the encoding is an interpretation function which captures the meaning
of the encoding in terms of the underlying types. This is done by defining an interpretation function
interp of kind Tmil→ T32.

interp :Tmil→ T32
def= λ(α:Tmil).

caseα
Record l⇒ ×(l)
|BFloat⇒ Boxed(Float)
|Other t⇒ t
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For clarity, I use an ML style pattern matching notation based on the informal datatype definition
given above. It should be completely clear how to translate this to formal syntax simply by replacing
uses of Record l, for example, with inj1 l.

Notice that this function is an object level function as opposed to a meta-level translation.
This is necessary, since type abstraction means that the interpretation cannot always be statically
computed.

5.2.2 The constructor translation

The actual constructor translation |c| translates MIL constructors of kind κ to LIL constructors
of kind |κ|. This means that constructors of kind T32 will be mapped to LIL constructors of kind
Tmil. For clarity in the translation, I begin by defining some LIL functions that serve to construct
static encodings of types. These serve as “constructors” for the ML style notation suggested by
the datatype given above.

Record :T32list→ Tmil
def= λ(α:T32list). inj

Tmil
1 α

BFloat :Tmil
def= injTmil

2 (inj1 ∗)
Other :T32→ Tmil

def= λ(α:T32). inj
Tmil
2 (inj2 α)

Note that for syntactic clarity I frequently leave off the kind decoration on sum injections where it
is obvious from context. Frequently, throughout this dissertation I will use boldface for names of
defined forms such as these to distinguish them from primitive syntax.

The actual static encoding translation proceeds for the most part compositionally over the struc-
ture of constructors. Constructors of higher kind are translated directly by recursively translating
their sub-components. All other constructors are encoded into the Tmil kind.

It is convenient to define object level functions for use in the translation and elsewhere that
correspond exactly to the type analyzing primitives from the MIL: Arrayc and Varargc1→c2

. This
should again be familiar from the methodology developed in chapter 4.

Because of the special treatment of arrays of boxed floating point numbers, the Array type
needs to analyze the type of values the array contains. This is implemented by translating the
Array type into a sum switch on the type. If the type being encoded turns out at run time to be a
boxed floating point number, then the case statement will return the 64 bit array type: otherwise,
it returns the 32 bit version. Note that in the record case, it must explicitly reconstruct the record
using the constituent field types.

Array :Tmil→ T32
def= λ(α:Tmil).caseα

Record β ⇒ Array32(×(β))
|BFloat ⇒ Array64(Float)
|Other t⇒ Array32t

Vararg types similarly become dispatches over the argument types to select the appropriate
function type: either a flattened function type for small records; otherwise a standard record.
Throughout this translation, we assume that only records with fewer than 3 fields get flattened into
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|α| def= α

|λ(α:κ).c| def= λ(α:|κ|).|c|
|c1c2|

def= |c1||c2|
|π1 c| def= π1 |c|
|π2 c| def= π2 |c|
|〈c1, c2〉| def= 〈|c1|, |c2|〉
|Int| def= Other(Int)

| Sumi(ci, . . . , cn)| def=
Other(

∨
[Tag(0), . . . , Tag(i− 1),×[Tag(i), interp |ci|], . . . ,×[Tag(n), interp |cn|]])

| Sumj
i (ci, . . . , cn)| def= Other(Tag(j)) j < i

| Sumj
i (ci, . . . , cj , . . . , cn)| def= Other(×[Tag(j), interp |cj |]) i ≤ j ≤ n

|Exn| def= Other(∃(α::T32).(α× (Dyntagα)))

| Dyntagc |
def= Other(Dyntag(interp |c|))

|Farray| def= Other(Array64Float)

|Boxf| def= BFloat

|Unit| def= Record[]

|c1| def= Record[interp |c|]
|c1 × c2|

def= Record[interp |c1|, interp |c2|]
|c1 × . . .× cn|

def= Record([interp |c1|, . . . , interp |cn|])
|(c1, . . . , cn)→ c| def= Other((interp |c1|, . . . , interp |cn|)→ interp |c|)
|Arrayc|

def= Other(Array(|c|))
|Varargc1→c2

| def= Other(Vararg(|c1|)(interp |c2|))
|µ(α, β).(c1, c2)|

def=
〈Other(Rec[1 + 1](f)(inj1 ∗)),Other(Rec[1 + 1](f)(inj2 ∗)〉

wheref = λ(ρ:1 + 1→ T32).λ(ω.1 + 1).
caseω

inj1 ⇒ interp(|c1|[Other(ρ(inj1 ∗))/α,Other(ρ(inj2 ∗))/β])
| inj2 ⇒ interp(|c2|[Other(ρ(inj1 ∗))/α,Other(ρ(inj2 ∗))/β])

Figure 5.1: The constructor translation (static encoding)
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registers, but in general the number of fields is a machine dependent parameter of the translation.

Vararg :Tmil→ T32→ T32
def= λ(α:Tmil).λ(β:T32).caseα

Record l⇒
(case l

[]⇒ ()→ β
|[t]⇒ (t)→ β
|[t1, t2]⇒ (t1, t2)→ β
| ⇒ (×(l))→ β)

|BFloat ⇒ (Boxed Float)→ β)
|Other t⇒ (t)→ β

Note that the Vararg function as defined above is asymmetric in its two arguments: it expects
the static encoding of the argument type, but for the return type expects the type itself. This
reflects the fact that the result depends only on the argument type and not the result type. An
alternative (and equally valid) definition for the Vararg primitive can be given that expects static
encodings for both arguments (since after all, the argument passed to the Vararg function will
almost always be the interpretation of a static encoding).

Vararg :Tmil→ Tmil→ T32
def= λ(α:Tmil).λ(β:Tmil).caseα

Record l⇒
(case l

[]⇒ ()→ interp(β)
|[t]⇒ (t)→ interp(β)
|[t1, t2]⇒ (t1, t2)→ interp(β)
| ⇒ (×(l))→ interp(β))

|BFloat ⇒ (Boxed Float)→ interp(β))
|Other t⇒ (t)→ interp(β))

From a semantic standpoint, the two definitions are equivalent. In practice however, using the
previous definition is likely to provide noticeable performance benefits in type-checking since it
provides a definition site for the interpretation of the result type. In the absence of this, a graph
reduction implementation is required to avoid repeated reductions. While this is certainly possible
(and may be desired in any case), careful design of the defined forms used in the translation can
yield substantial performance benefits for very small cost in effort. While I will for the most part
defer discussion of implementation issues until part 2 of this thesis, it is nonetheless worth pointing
out briefly here that a careful theoretical design can greatly impact the ease and efficiency of the
implementation.

Using these definitions, the constructor translation itself (figure 5.1) is almost completely
straightforward. For the most part, the translation proceeds compositionally over the construc-
tors in the obvious manner, applying the static encoding constructors at the leaves of the syntax
tree. The case for sum types is more interesting, since it makes the representation of sums as tagged
unions explicit. Note also that the known sum type from the MIL disappears. Known sums are
no longer necessary because the tagging has been made explicit, and hence the de-structuring of
sum values can be done via record selection, instead of via the proj primitive.

The most syntactically complex rule of the translation defines the compulation of MIL style
recursive types into LIL style parametric recursive types. The essential idea behind this translation
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is to replace uses of multiple mutually recursive types with the fix point of a single parameterized
constructor. The first parameter of the constructor (as usual) is the recursive variable. The
second parameter serves as a selector parameter which indicates which field of the original mutually
recursive type is desired. The translation therefore proceeds by translating the bodies of the
recursive types, replacing uses of the multiple mutually recursive variables with partial applications
of the new recursive variable to appropriate sum injections indicating the selection of the appropriate
arm. The body of the function of which a fixpoint is to be taken uses its parameter to select the
appropriate arm of the recursive type to return. The final tuple of constructors is created by
instantiating the fixpoint once for each of the different arms of the original constructor.

5.2.3 Translation of typing contexts

The kind translation extends in a natural way to define a translation on MIL constructor level
typing contexts.

| • | def= •
|∆, α:κ| def= |∆|, α:|κ|

5.2.4 Proofs of soundness for the constructor and kind translation

Lemma 4 (Well-formedness of Tmil)
For all well formed ∆ such that the bound variables Tmil are not in ∆,

∆ ` Tmil ok

Proof: By construction. Note that for any given ∆, the definitions may be alpha-varied such
that the variable condition is satisfied.

Lemma 5 (Soundness of kind translation (1))
• ` |κ| ok

Proof: By induction over the structure of κ, and lemma 4.

Corollary 1
If ` ∆ ok then ∆ ` |κ| ok.

Proof: By lemma 5 and weakening.

Lemma 6
If α /∈ ∆′ then α /∈ |∆|.

Proof: Note that ∆ and |∆| have the same domain by construction.

Lemma 7 (Soundness of the context translation)
If ` ∆ ok then ` |∆| ok.

Proof: By induction over the structure of ∆.
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1. If ∆ = • then |∆| = • and ` • ok

2. If ∆ = ∆′, α:κ then:

By assumption:
` ∆′ ok, α /∈ ∆′, and ` κ ok

By induction:
` |∆′| ok

By corollary 1:
|∆′| ` |κ| ok

By lemma 6:
α /∈ |∆′|

By construction:
` |∆′|, α:|κ| ok

By definition:
` |∆| ok

The previous result is used to prove a slightly stronger result about the soundness of the kind
translation.

Theorem 1 (Soundness of kind translation (2))
If ` ∆ ok then |∆| ` |κ| ok.

Proof: By lemma 7, ` |∆| ok, so by corollary 1, |∆| ` |κ| ok.

To assist in the proof of soundness of the constructor translation, I formalize the typing prop-
erties of the definitions in the following lemma:

Lemma 8 (Well-formedness of definitions)
For all well formed ∆ such that the bound variables of the respective defined forms are not in ∆,

∆ ` interp : Tmil→ T32

∆ ` Other : T32→ Tmil

∆ ` BFloat : Tmil

∆ ` Record : T32list→ Tmil

∆ ` Array : Tmil→ T32

∆ ` Vararg : Tmil→ T32→ T32

Proof: By construction. Note that for any given ∆, the definitions may be alpha-varied such
that the variable condition is satisfied.

Using this lemma, the soundness of the constructor translation follows straightforwardly.

Theorem 2 (Soundness of the constructor translation)
If ∆ ` c :κ then |∆| ` |c| : |κ|.

Proof: By induction on the structure of typing derivations.

38



1. Suppose ∆, α:κ ` α :κ. Then by induction ` |∆, α:κ| ok. By definition |∆, α:κ| = |∆|, α:κ,
and |α| = α, and so by construction |∆, α:κ| ` α :κ.

2. Suppose ∆ ` λ(α::κ1).c :κ1→ κ2. By theorem 1, ∆ ` |κ1| ok, and by induction, |∆, α:κ1| `
|c| : |κ2|. But |∆, α:κ1| = |∆|, α:|κ1|, and by lemma 6, α /∈ |∆|. So by construction, |∆| `
|λ(α::κ1).c| : |κ1→ κ2|.

3. Suppose ∆ ` c1c2 :κ2. By induction, |∆| ` |c1| : |κ1→ κ2| and |∆| ` |c2| : |κ1|. Therefore by
construction |∆| ` |c1c2| : |κ2|.

4. Suppose ∆ ` π1 c :κ1. By induction, |∆| ` |c| : |κ1×κ2|. So by construction, |∆| ` |π1 c| : |κ1|.

5. Suppose ∆ ` π2 c :κ2. By a similar argument to the previous case, |∆| ` |π2 c| : |κ2|.

6. Suppose ∆ ` 〈c1, c2〉 :κ1 × κ2. By induction, |∆| ` |c1| : |κ1| and |∆| ` |c2| : |κ2|. So by
construction, |∆| ` |〈c1, c2〉| : |κ1 × κ2|

7. Suppose ∆ ` Int : T32. Note that |T32| = Tmil, so it suffices to show that |∆| ` |Int| : Tmil.
By lemma 8, |∆| ` Other : T32 → Tmil, and by the Int axiom, |∆| ` Int : T32. So by the
application rule, |∆| ` Other(Int) : Tmil.

8. The other primitive type constructors follow similarly as with Int.

9. Suppose ∆ ` µ(α, β).(c1, c2) : T32 × T32. It suffices to show that

|∆| ` 〈Other(rec1+1〈f, inj1 ∗〉),Other(rec1+1〈f, inj2 ∗〉)〉 : Tmil × Tmil

wheref = λ(ρ:1 + 1→ T32).λ(ω.1 + 1).
caseω

inj1 ⇒ interp(|c1|[Other(ρ(inj1 ∗))/α,Other(ρ(inj2 ∗))/β])
| inj2 ⇒ interp(|c2|[Other(ρ(inj1 ∗))/α,Other(ρ(inj2 ∗))/β])

But note that it suffices to show that |∆| ` f : (1+1→T32)→ (1+1)→T32, since the desired
derivation can then be produced by applying the rec rule to show the well-formedness of the
new recursive types; the application rule and lemma 8 to show the well-formedness of the
applications of Other, and the pairing rule to show the well-formedness of the pair.

By induction, |∆, α:T32, β:T32| ` |c1| : Tmil and by weakening, the freshness assumption, and
the definition of the context translation |∆|, α:Tmil, β:Tmil, ρ:(1 + 1→ T32) ` |c1| : Tmil. By
the substitution lemma for the LIL (lemma 1):

|∆|, ρ:(1 + 1→ T32) ` |c1|[Other(ρ(inj1 ∗))/α,Other(ρ(inj2 ∗))/β] : Tmil

By the application typing rule therefore:

|∆|, ρ:(1 + 1→ T32) ` interp(|c1|[Other(ρ(inj1 ∗))/α,Other(ρ(inj2 ∗))/β]) : T32

A similar argument holds for c2. Therefore, by applying the typing rule for case and for
repeated lambda abstraction (again using freshness and weakening for ω), we construct a
well-formedness derivation for f .
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5.2.5 Additional properties of the constructor translation

Commutation with substitution

It is an additional property of the constructor translation that it commutes with substitution:
i.e. that it is compositional. This property is necessary for the proofs of a number of subsequent
theorems, and so I give a proof of it here.

Lemma 9 (The constructor translation commutes with substitution)
|c|[|c′|/α] = |c[c′/α]|.

Proof: By induction on c.

1. If c is a constant, then α /∈ fvc, fv |c|, so |c|[|c′|/α] = |c| = |c[c′/α]|.

2. If c is a variable α′:

(a) If α 6= α′ then as in the previous case.

(b) If α = α′ then |α|[|c′|/α] = α[|c′|/α] = |c′| = |α[c′/α]|.

3. If c = λ(β:κ).c2, then by definition

|λ(β:κ).c2|[c′/α] = (λ(β:|κ|).|c2|)[c′/α] = λ(β:|κ|).(|c2|[c′/α])

By induction and the definition of substitution:

λ(β:|κ|).(|c2|[c′/α]) = λ(β:|κ|).(|c2[c′/α]|) = |λ(β:κ).(c2[c′/α])|

Note, we rely on alpha-variance to ensure non-capture.

4. If c = c1c2, πic, 〈c1, c2〉, the proof proceeds similarly.

The SE translation respects equivalence

Another important property of the SE translation is that equivalent MIL constructors translate
to equivalent LIL constructors. In addition to being important for subsequent proofs, this lemma
is an important “sanity-check” on the translation.

Lemma 10 (The constructor translation respects equivalence)
If ∆ ` c1 ≡ c2 :κ, then |∆| ` |c1| ≡ |c2| : |κ|.

Proof: (By induction on equivalence derivations) All of the structural and type constructor equiv-
alence rules are unchanged from the MIL to the LIL, and the proof follows straightforwardly
by induction. I give the reflexivity rule, the pair rule and the beta rule as examples. All of the
primitive types follow directly by reflexivity or by the structural application rule.

1. Suppose ∆ ` c ≡ c :κ by reflexivity.

By assumption:
∆ ` c :κ
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By theorem 2:
|∆| ` |c| : |κ|

By reflexivity:
|∆| ` |c| ≡ |c| : |κ|

2. Suppose ∆ ` (λ(α:κ1).c1)(c2) ≡ c1[c2/α] : κ2.

By assumption:
` κ1 ok
∆, α:κ1 ` c1 :κ2

∆ ` c2 :κ1

By theorems 1, and 2:
|∆| ` |κ1| ok
|∆, α:κ1| ` |c1| : |κ2|
|∆| ` |c2| : |κ1|

By the λ beta rule and the definition of the translations:
|∆| ` |(λ(α:κ1).c1)(c2)| ≡ |c1|[|c2|/α] : |κ2|

Finally, by lemma 9:
|∆| ` |(λ(α:κ1).c1)(c2)| ≡ |c1[c2/α]| : |κ2|

5.3 Dynamic encoding of constructors

The two translations given above, |κ| and |c|, define the kind of the static encoding of a constructor
and the encoding itself, respectively. The second element of the mapping from MIL to LIL is giving
dynamic encodings for constructors in order to permit the move from a type-passing interpretation
to a type erasure interpretation.

A constructor’s dynamic encoding is a LIL term which also encodes the same information about
the original MIL constructor, but at the term level instead of at the constructor level. Dynamic
encodings are used to implement type dispatch at runtime. This section defines the dynamic
encoding translation.

5.3.1 Dynamic encoding types

The dynamic encoding translation of a constructor c is notated as �c�. (The notation is intended
to be suggestive of the fact that the translation moves “down” a level, from constructors to terms.)
The type of the dynamic encoding of a constructor is driven by its kind: constructors of pair
kind get represented by terms of pair type, etc. However, the type of the dynamic encoding of
a constructor also depends on its static encoding: this is what captures the connection between
static and dynamic encodings. For a MIL kind κ classifying a constructor c, I notate the dynamic
encoding type for the constructor as �c:κ�.

�c:T32�
def= R(|c|)

�c:κ1→ κ2�
def= ∀[α:|κ1|](�α:κ1�)→ �cα:κ2�

�c:κ1 × κ2�
def= �π1 c:κ1� × �π2 c:κ2�
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The DET translation is defined in terms of a type level function R of type Tmil→ T32. This
function is defined shortly, but for the sake of understanding the translation it is easier to view this
abstractly as the type of representations of constructors of kind T32.

For constructors of pair kind, the DET is straightforward: a pair type with fields constructed
by projecting out the two halves of the pair and applying the DET translation to each of them at
the sub-component kind.

Constructor functions are slightly more interesting. The essential idea is that constructor func-
tions (functions from types to types) will become term functions (functions from terms to terms).
Accordingly, the DET of a constructor of arrow kind is a term level function type. However, note
that this requires us to construct the DET of the argument type and the result type of the function,
which in turn requires us to have the static encoding of the argument to the type function (which
of course is not yet available). The solution to this dilemma is to observe that the DE function
in question must be polymorphic over all possible static encodings: the DET of the argument and
result can then be given in terms of the eventual encoded type passed to the function. This point
is essential to the methodological goal of maintaining the connection between static encodings and
dynamic encodings.

So far, I have avoided discussing the particulars of the actual encodings of types (that is, of
constructors of kind T32). Here what is required is something of the nature of the representation
types of λr [CWM98]: the type of representation of a specific type. Unlike in λr, these types are
not primitive here. Instead, they are programmed directly in the LIL in the following fashion.

R : Tmil→ T32
def= λ(α:Tmil).

caseα
(Record β ⇒

(caseβ ([] ⇒ Unit | ⇒ Void)
+ caseβ ([ ],⇒ Unit | ⇒ Void)
+ caseβ ([ , ] ⇒ Unit | ⇒ Void)
+ caseβ ( ⇒ Unit | ⇒ Void)
| ⇒ Void)

+ caseα (BFloat ⇒ Unit | ⇒ Void)
+ caseα (Other ⇒ Unit | ⇒ Void)

This definition is somewhat subtle. At the top level, the representations of types are always
sums, indicating whether the type being represented is a record, boxed float, or an undistinguished
type. The value carried in each branch of the sum serves as a witness to the identity of the original
type. So for example in the boxed float case the carried value will have type caseα (BFloat ⇒
Unit | ⇒ Void). Since the Void type is uninhabited, having a value of this type means that α
can only be the static representation of Boxed(Float). This information can be reflected back into
the type system via the special vcase construct, whereby code can use this witness to refine α.

5.3.2 Notational issues

Unfortunately, the named-form syntactic restrictions imposed on LIL terms add a level of inessential
complexity to the dynamic encoding translations. Constructors in the MIL are not in named-form:
in fact, in the absence of singleton kinds or some other definitional mechanism there is in general no
equivalent named-form for an arbitrary constructor. This means that translating MIL constructors
into LIL terms requires the dynamic encoding essential to the translation to occur simultaneously
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Pairs of expressions 〈e1, e2〉
〈sv1, sv2〉

def= letx = 〈sv1, sv2〉 inx

〈sv1, letx = i in e2〉
def= letx = i in 〈sv1, e2〉 (x /∈ fv(sv1))

〈letx = i in e1, e2〉
def= letx = i in 〈e1, e2〉 (x /∈ fv(e2))

Projection from expressions selecti e

selecti sv def= letx = selecti sv inx

selecti(letx = i in e) def= letx = i in (selecti e)

Sum injection of expressions injc
i e

injc
i sv def= let y = 〈tagi, sv〉 in letx = injc

i y inx

injc
i (letx = i in e) def= letx = i in (injc

i e)

Application of expressions e1[c]e2

sv1[c]sv2
def= letx = sv1[c]sv2 inx

sv1[c](letx = i in e2)
def= letx = i in (sv1[c]e2) (x /∈ fv(sv1))

(letx = i in e1)[c]e2
def= letx = i in (e1[c]e2) (x /∈ fv(e2))

Figure 5.2: Derived non-named-form expressions

Ψ;∆; Γ ` e1 : τ1 exp
Ψ;∆; Γ ` e2 : τ2 exp

Ψ;∆; Γ ` 〈e1, e2〉 : τ1 × τ2 dexp

Ψ;∆; Γ ` e : τ0 × τ1 exp (i ∈ 0, 1)

Ψ;∆; Γ ` selecti e : τi dexp

∆ ` c ≡ +[τ1, . . . ,×[Tag(i), τi], . . . , τn] : T32

Ψ;∆; Γ ` e : τi exp (i ∈ 1 . . . n)

Ψ;∆; Γ ` injc
i e : c dexp

∆ ` c :κ
Ψ;∆; Γ ` e1 :∀(α:κ).τ1→ τ2 exp

Ψ;∆; Γ ` e2 : τ1[c/α] exp

Ψ;∆; Γ ` e1[c]e2 : τ2[c/α] dexp

Figure 5.3: Typing rules for derived (non-named-form) expressions
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�α�
def= xα

�λ(α:κ).c� def= λ[α:|κ|](xα: �α:κ�). �c�

�c1c2�
def= �c1� [|c2|](�c2�)

�πi c�
def= selecti �c�

�〈c1, c2〉� def= 〈�c1�, �c2�〉
�Unit�

def= injR(|Unit|)
1 (inj1〈〉)

�×[c]� def= injR(|×[c]|)
1 (inj2(inj1〈〉))

�c1 × c2�
def= injR(|c1×c2|)

1 (inj2(inj2(inj1〈〉)))
�×[c1, c2, . . . , cn]� def= injR(|×[c1,c2,...,cn]|)

1 (inj2(inj2(inj2〈〉))
�Boxf�

def= injR(|Boxf|)
2 〈〉

�c as µ(α, β).(c1, c2)�
def= 〈injR(|π1 c|)

3 〈〉, injR(|π2 c|)
3 〈〉〉

�c otherwise� def= injR(|c|)
3 〈〉

Figure 5.4: The dynamic encoding translation

with a mostly un-interesting “lifting” process which pulls bindings out of expressions and returns
them to named form.

In order to isolate the core issues of the translation from these syntactic issues, it is useful to
define derived syntactic forms (figure 5.2) that allow the translation to make use of apparently
arbitrary expressions without concerning itself with named form. Derived typing rules (figure 5.3)
for the extended syntax with an accompanying proof of soundness (section 5.3.5) permit the free
use of the extended syntax in the translation.

Only a small number of derived expression forms are needed for the purposes of the dynamic
encoding translation: additional definitions are possible. All variables are assumed to be fresh in
the translation: this guarantees that variables will not conflict as bindings are “lifted”. This could
also be dealt with by explicitly alpha-varying terms as necessary.

5.3.3 Dynamic encodings

The term-level encoding translation of constructors is given in figure 5.4 and is for the most part
fairly intuitive. Note that the translation takes advantage of the defined forms from section 5.3.2
for presentational clarity: without this, it is necessary for the translation to handle explicitly the
lifting of bindings. In point of fact, this sort of issue arises in many parts of the implementation of
the translation from MIL to LIL and is handled using a monadic structure similar to the defined
syntax used here.

For the purposes of the translation I assume an unspecified anti-symmetric injection from type
variables into a set of term variables disjoint from those produced elsewhere in the translation. I
refer to the term variables produced by this injection informally as being “indexed” by the type
variable. Note that the translation does not rely on the ability to recover the original type variable
from the indexed term variable.

Type functions become term functions which take both the static and dynamic representations
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of the argument and return the dynamic representation of the result. Applications are modified in
the corresponding fashion. Type level pairs and projections map to term level pairs and projections.
For constructors of kind T32, it is necessary to construct the type representations by injecting the
appropriate witnesses into the sum type described above.

5.3.4 Dynamic encoding of type contexts

Since the DE translation is defined on open terms, the question naturally arises of what the
appropriate notion of typing context for dynamic encodings should be. Just as the DE translation
maps constructors to types, the corresponding context translation maps constructor contexts to
term contexts using the DET translation defined above. Again, I use the down arrow syntax (�·�)
to suggest the movement “down” a level in the syntactic hierarchy.

�•� def= •
�∆, α:κ�

def= �∆�, xα: �α:κ�

Note that the types produced by the DET translation will contain references to the type variables
from the original context: that is, the context produced by the translation will have free type
variables. These variables are described by the context produced by the static encoding of the
original context: that is, |∆| `�∆� ok.

5.3.5 Proofs for the dynamic encoding translations

Proof of soundness of the DET translation

I begin by showing the well-formedness of the definition of representation types.

Lemma 11 (Well-formedness of R)
For all well formed ∆ such that the bound variables R are not in ∆, ∆ ` R : Tmil→ T32.

Proof: By construction. Note that for any given ∆, the definition may be alpha-varied such that
the variable condition is satisfied.

Using this and the soundness theorems for the SE and SEK translations, I show the soundness
of the DET translation.

Lemma 12 (Soundness of the dynamic encoding type translation)
If ∆ ` c :κ then |∆| `�c:κ� : T32.

Proof: By induction on kinds κ.

1. Suppose κ = T32. Then by definition, �c:κ�= R(|c|). By theorem 2, |∆| ` |c| : Tmil, and so by
lemma 11 and the application typing rule, |∆| ` R(|c|) : T32.

2. Suppose κ = κ1 → κ2. Then by definition, �c:κ�= ∀[α:|κ1|](�α:κ1�)→ �cα:κ2�. It suffices
to show that this is well-formed via the formation rule for universals. By theorem 1, |∆| `
|κ1| ok. By the variable rule, ∆, α:κ1 ` α :κ1, and so by induction, |∆, α:κ1| `�α:κ1� : T32.
Again using the variable rule along with the assumption, we obtain that ∆, α:κ1 ` cα :κ2 by
the application rule, and so by induction, |∆, α:κ1| `�cα:κ2� : T32.
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We therefore may invoke the formation rule for universals to produce a derivation of the
desired result.

3. Suppose κ = κ1→κ2. Then by definition, �c:κ�=�π1 c:κ1� × �π2 c:κ2�. It suffices to show that
this is well-formed via the formation rule for pair types by showing that the two component
types are well-formed. This follows immediately by induction.

As with the SE translation, the fact that the DET translation commutes with substitution is
useful for subsequent proofs.

Lemma 13 (The DET translation commutes with substitution)
�c:κ� [|c′|/α] =�c[c′/α]:κ�.

Proof: By induction on kinds κ.

1. If κ = T32, then �c:κ� = R(|c|). Since R is closed, R(|c|)[|c′|/α] = R(|c|[|c′|/α]). By lemma 9,
|c|[|c′|/α] = |c[c′/α]|. Finally, by definition, R(|c[c′/α]|) =�c[c′/α]:T32�.

2. If κ = κ1→ κ2 then by definition

�c:κ1→ κ2� [|c′|/α] def= (∀[β:|κ1|](�β:κ1�)→ (�cβ:κ2�))[|c′|/α]
def= ∀[β:|κ1|](�β:κ1�)→ (�cβ:κ2� [|c′|/α])

Note that α 6= β by the assumption of freshness in the translation, and hence

�β:κ1� [|c′|/α] =�β:κ1�

By induction, �cβ:κ2� [|c′|/α] =�(c[c′/α])β:κ2�, again using the fact that α 6= β. Finally, we
observe that

∀[β:|κ1|](�β:κ1�)→ (�(c[c′/α])β:κ2�) =�c[c′/α]:κ1→ κ2�

3. If κ = κ1 × κ2 then by definition,

�c:κ1 × κ2� [|c′|/α] def= (�π1c:κ1� × �π2c:κ2�)[|c′|/α]
def= (�π1c:κ1� [|c′|/α])× (�π2c:κ2� [|c′|/α])

By induction, (�πic:κi� [|c′|/α]) =�πic[c′/α]:κi�, so

(�π1c:κ1� [|c′|/α])× (�π2c:κ2� [|c′|/α]) def= �π1c[c′/α]:κ1� × �π2c[c′/α]:κ2�
def= �c[c′/α]:κ1 × κ2�
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Proof of soundness of the DE typing context translation

Lemma 14
If α /∈ ∆ then xα /∈�∆�.

Proof: By assumption, the injection from type variables to term variables is anti-symmetric with
respect to variable equality. Therefore, by anti-symmetry, if β 6= α then xβ 6= xα. Since the set of
variables in the domain of ∆ does not contain α, the image of the set of under the injection does
not contain xα.

Lemma 15 (Soundness of the context translation)
If ` ∆ ok then |∆| `�∆� ok.

Proof: By induction over the structure of ∆.

1. If ∆ = • then �∆�= • and • ` • ok

2. If ∆ = ∆′, α:κ then by assumption, ` ∆′ ok, α /∈ ∆′, and ` κ ok. By the variable rule,
∆′, α:κ ` α :κ, and so by lemma 12, |∆|, α:|κ| `�α:κ� : T32. By induction, |∆′| `�∆′� ok,
and by weakening and lemma 6 |∆′|, α:|κ| `�∆′� ok.

Finally by the formation rule for contexts |∆′|, α:|κ| `�∆′�, xα: �α:κ� ok. Note that the side
condition follows from lemma 14.

Proof of soundness of the DE translation
Lemma 16 (Inversion of derived expression derivations)
For any derivation D of Ψ;∆; Γ ` e : τ dexp the last rule of D is uniquely determined by e.

Proof: By inspection. Note that for any choice of e, exactly one rule applies.
Since the DE translation relies on the extended syntax defined in section 5.3.2, is is first neces-

sary to show that well-typedness as a derived form corresponds with well-typedness of expressions.

Lemma 17 (Derived expression rules)
If Ψ;∆; Γ ` e : τ dexp then Ψ;∆; Γ ` e : τ exp.

Proof: By induction on the definition of the derived forms. The proof is straightforward: I give
here one example case in detail.

1. Ψ;∆; Γ ` 〈e1, e2〉 : τ1 × τ2 dexp By inversion (lemma 16, Ψ;∆; Γ ` e1 : τ1 exp and Ψ;∆; Γ `
e2 : τ2 exp. There are three possible cases in the definition of the derived form.

(a) e1 = sv1, e2 = sv2. Then 〈sv1, sv2〉
def= letx = 〈sv1, sv2〉 inx, which is well-formed by

construction using the assumptions and the freshness of x.

(b) e1 = sv1, e2 = letx = i in e′2. Then 〈sv1, e2〉
def= letx = i in 〈sv1, e

′
2〉. By inverting

the second assumption (3), Ψ;∆; Γ ` i : τx opr32 and Ψ; ∆; Γ, x:τx ` e′2 : τ2 exp. By
weakening the first assumption (lemma 2), Ψ;∆; Γ, x:τx ` sv1 : τ1 exp. By the derived
typing rule for pairs Ψ; ∆; Γ, x:τx ` 〈sv1, e

′
2〉 : τ1 × τ2 dexp, and hence by induction

Ψ;∆; Γ, x:τx ` 〈sv1, e
′
2〉 : τ1 × τ2 exp. Finally, by construction using the operation rule,

Ψ;∆; Γ ` letx = i in 〈sv1, e
′
2〉 : τ1 × τ2 exp.
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(c) e1 = letx = i in e′1, e2 = sv2. This case proceeds exactly as the previous case.

2. The other cases proceed similarly.

Finally, I show the soundness of the dynamic encoding translation, using the soundness theorems
for the SEK, SE, and DET translations, along with the commutativity lemma for the DET
translation and the soundness lemmas for contexts.

Theorem 3 (Soundness of the dynamic encoding translation)
If ∆ ` c :κ and ` Ψ ok then Ψ; |∆|; �∆�`�c� : �c:κ� exp.

Proof: By induction on derivations of ∆ ` c :κ.

1. ∆[α:κ] ` α :κ.

By assumption:
` ∆[α:κ] ok
` Ψ ok

By lemmas 7 and 15:
` |∆[α:κ]| ok
|∆[α:κ]| `�∆[α:κ]� ok

By definition:

�α�
def= xα

�∆[α:κ]�def= �∆� [xα: �α:κ�]

Hence by the variable rule:
Ψ; |∆[α:κ]|; �∆� [xα: �α:κ�] ` xα : �α:κ� exp

2. ∆ ` λ(α:κ1).c :κ1→ κ2.

By assumption:
` κ1 ok, α /∈ fv(∆)
∆, α:κ1 ` c :κ2

By theorem 1 and lemma 12:
|∆, α:κ1| ` |κ| ok
|∆, α:κ1| `�α:κ1� : T32

By induction:
Ψ; |∆, α:κ1|; �∆, α:κ�`�c� : �c:κ2� exp

So by the function introduction rule:
Ψ; |∆|; �∆�`�λα:κ1.c� : �λα:κ1.c:κ1→ κ2� exp

3. ∆ ` c1c2 :κ2.

By assumption:
∆ ` c1 :κ1→ κ2

∆ ` c2 :κ1
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By induction:
Ψ; |∆|; �∆�`�c1� : �c1:κ1→ κ2� exp
Ψ; |∆|; �∆�`�c2� : �c2:κ1� exp

By theorem 2:
|∆| ` |c2| : |κ1|

Note that �c1:κ1→ κ2�
def= ∀[α:|κ1|](�α:κ1�)→ �c1α:κ2�.

By lemma 13:
�α:κ1� [|c2|/α] =�c2:κ1�
�c1α:κ2� [|c2|/α] =�c1c2:κ2�

(Note α /∈ fv(c1) by freshness).

Therefore, by the derived rule for application of expressions:
Ψ; |∆|; �∆�` c1c2 : �c1c2:κ2� dexp

Finally, observe that by lemma 17:
Ψ; |∆|; �∆�` c1c2 : �c1c2:κ2� exp

4. ∆ ` π1c :κ1.
By assumption:

∆ ` c :κ1 × κ2

By induction
Ψ; |∆|; �∆�`�c� : �c:κ1 × κ2� exp

By definition:
�c:κ1 × κ2�=�π1c:κ1� × �π2c:κ2�

By the typing rule for the selecti e derived form:
Ψ; |∆|; �∆�` select1 �c� : �π1c:κ1� dexp

By lemma 17:
Ψ; |∆|; �∆�` select1 �c� : �π1c:κ1� exp

5. ∆ ` π2c :κ2. The proof proceeds as in the previous case.

6. ∆ ` 〈c1, c2〉 :κ1 × κ2

By assumption:
∆ ` c1 :κ1

∆ ` c2 :κ2

By induction
Ψ; |∆|; �∆�`�c1� : �c1:κ1� exp
Ψ; |∆|; �∆�`�c2� : �c2:κ2� exp

By the derived pair introduction rule:
Ψ; |∆|; �∆�` 〈�c1�, �c2�〉 : �c1:κ1� × �c2:κ2� dexp

By theorem 17:
Ψ; |∆|; �∆�` 〈�c1�, �c2�〉 : �c1:κ1� × �c2:κ2� exp

By the definitions of the translations and the beta rule for pairs:
Ψ; |∆|; �∆�`�〈c1, c2〉� : �〈c1, c2〉:κ1 × κ2� exp
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7. The rest of the cases follow directly by construction, with appeals to previous lemmas where
necessary.

5.4 Type translations

5.4.1 Proper MIL types

The DE and SE translations complete the apparatus needed to translate proper MIL constructors.
Constructors of kind T32 map to constructors of kind Tmil, which permits analysis of the form of the
original constructor. However, since proper types are not analyzable in the MIL (only constructors
of kind T32 can be analyzed) the translation of proper MIL types does not map into the Tmil kind,
but instead goes directly to kind T32.

|∀[α1:κ1, . . . , αn:κn](τ1, . . . , τm)(k)→ τ | def=
∀[α1:|κ1|, . . . , αn:|κn|]

(�α1:κ1�, . . . �αn:κn�, |τ1|, . . . , |τm|)(Float0, . . . , Floatk−1)→ |τ |
|T (c)| def= interp |c|
|τ1 × . . .× τn|

def= ×[|τ1|, . . . , |τn|]

The most interesting piece of this translation is the treatment of polymorphic functions. Additional
arguments corresponding to the dynamic representations of the type arguments are added to the
parameter list of the function. Other types are translated compositionally. Notice though that the
translation of a constructor used as a type is the interpretation of the translation of the constructor.
This reflects the fact that proper MIL types are not available for analysis - they simply serve as
classifiers.

5.4.2 The term typing context translation

The type and kind translations can be used to give a definition of the translation of a MIL typing
context in the obvious manner.

| • | def= •
|Γ, x:τ | def= |Γ|, x:|τ |
|Γ, x64|

def= |Γ|, x64:Float

5.4.3 Proofs of soundness for the proper type translations

Theorem 4 (Soundness of the type translation)
If ∆ ` τ ok then |∆| ` |τ | : T32

Proof: By induction on τ . We proceed by cases:

• ∆ ` T (c) ok

By assumption:
∆ ` c : T32
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By theorem 2:
|∆| ` |c| : |T32|

Note that |T32| = Tmil

By lemma 8:
|∆| ` interp : Tmil→ T32

By the application rule:
|∆| ` interp(|c|) : T32

• ∆ ` τ1 × . . .× τn ok

By assumption:
∆ ` τ1 ok . . .∆ ` τn ok

By induction:
|∆| ` |τ1| : T32 . . . |∆| ` |τn| : T32

By construction:
|∆| ` ×[|τ1|, . . . , |τn|] okT32

• ∆ ` ∀[α1:κ1, . . . , αn:κn](τ1, . . . , τm)(k)→ τ ok

By assumption:
∆ ` κi ok i ∈ 1 . . . n
∆[α1:κ1, . . . , αn:κn] ` τi ok i ∈ 1 . . .m
∆[α1:κ1, . . . , αn:κn] ` τ ok

By theorem 1 and lemma 12:
|∆| ` κi ok i ∈ 1 . . . n
|∆[α1:κ1, . . . , αn:κn]| `�αi:κi� : T32 i ∈ 1 . . . n

By induction:
|∆[α1:κ1, . . . , αn:κn]| ` |τi| : T32 i ∈ 1 . . .m
|∆[α1:κ1, . . . , αn:κn]| ` |τ | : T32

By the function type introduction rule:

|∆| `
{
∀[α1:|κ1|, . . . , αn:|κn|]

(�α1:κ1�, . . . , �αn:κn�, |τ1|, . . . , |τm|)(Float1 . . . Floatk)→ |τ |

}
: T32

Lemma 18
1. If x /∈ Γ then x /∈ |Γ|.

2. If x64 /∈ Γ then x64 /∈ |Γ|.

Proof: Note that Γ and |Γ| have the same domain by construction.

Lemma 19 (Term context translation)
If ∆ ` Γ ok then |∆| ` |Γ| ok.
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Proof: By induction on derivations, using the domain lemma (lemma 18), the soundness lemma
for the constructor translation (lemma 7) and the soundness theorem for the type translation
(theorem 4).

Corollary 2
If ∆ ` Γ ok then |∆| `�∆�, |Γ| ok.

Proof: By induction on Γ, using lemmas 18, 19 and 15. Note that we assume that indexed
variables xα are drawn from a “fresh” set, and hence there is no interference between the domains
of �∆� and |Γ|.

5.4.4 The type translation respects equivalence

Lemma 20 (The type translation respects equivalence)
If ∆ ` τ1 ≡ τ2 : T32, then |∆| ` |τ1| ≡ |τ2| : T32.

Proof: By induction on equivalence derivations, appealing to lemma 10 and the structural equiv-
alence rule for application in the base case (T (c)).

5.5 The term translation

The translation from MIL terms to LIL terms is not much more complicated than the constructor
translation, but is syntactically somewhat more cumbersome. In order to ensure that the ap-
propriate type information is available for constructing LIL terms, it is convenient to phrase the
translations on terms as typed translations of the form ∆;Γ ` e : τ ; e′ indicating that in the
typing context ∆; Γ, a MIL term e of type τ translates to a LIL term e′.

5.5.1 Definitions for the term translation

In order to more concisely state the translation itself, I first define a number of LIL functions
implementing type analysis primitives. In a practical implementation, it may be desirable to inline
some or all of these functions: for the most part however this is purely a policy decision trading off
code size against function calls. Note though that in general it is not always possible to eliminate
the lambda abstraction since the type analysis mechanism requires that certain types be a variable.
In the case that the type to be analyzed is an application of a variable, the lambda abstraction
cannot be eliminated.

The first defined form is the optimized array constructor, essentially as described in the example
from chapter 4. I again use ML style pattern matching at the term level for clarity of presentation.
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Note that the definitions are closed and hence can be written directly as code.

array def=
code[α:Tmil](λ(rα:R(α), i:Int, v: interp(α))():Array(α).
case rα

Recordx⇒ vcaseα (Record ⇒ arrayinterp(α)(i, v) | ⇒ deadx)
| BFloatx⇒ vcaseα (BFloat ⇒ arrayFloat(i, unbox v)) | ⇒ deadx)
| Otherx⇒ vcaseα (Other ⇒ arrayinterp(α)(i, v)) | ⇒ deadx)

Here the DE argument, rα is the dynamic encoding of the constructor represented by α. As can
be seen from the definition of R, the type of rα is therefore a term-level sum describing the top
level structure of the encoded type. The appropriate branch is thereby chosen via an ordinary case
statement and evaluated. The vcase serves to refine the type argument to reflect the identity of
the type back into the type system.

In addition to the array creation function, I define specialized update and subscript functions
for the optimized arrays.

upd def=
code[α:Tmil](rα:R(α), a:Array(α), i:Int, v: interp(α))():Unit.
case rα

Recordx⇒ vcaseα (Record ⇒ updinterp(α)(a, i, v) | ⇒ deadx)
| BFloatx⇒ vcaseα (BFloat ⇒ updFloat(a, i, unbox v)) | ⇒ deadx)
| Otherx⇒ vcaseα (Other ⇒ updinterp(α)(a, i, v)) | ⇒ deadx)

sub def=
code[α:Tmil](rα:R(α), a:Array(α), i:Int)(): interp(α).
case rα

Recordx⇒ vcaseα (Record ⇒ subinterp(α)(a, i) | ⇒ deadx)
| BFloatx⇒ vcaseα (BFloat ⇒ box(subFloat(a, i)) | ⇒ deadx)
| Otherx⇒ vcaseα (Other ⇒ subinterp(α)(a, i)) | ⇒ deadx)

Notice that all of the array primitives, in the case that the array is a flattened float array, will
perform boxing or unboxing. If the type is statically known, both the branching and the boxing
can be optimized away, but in general they cannot be avoided. This makes it very important to
recognize statically reducible uses of type dispatch.

The vararg and onearg primitives from the MIL correspond in a similar way to the defined
vararg and onearg functions in the LIL. Notice that as with the Vararg type function, I choose
to make vararg polymorphic over the encoding of the argument type, but the interpretation of the
encoded return type (that is, the return type itself).
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vararg def=
code[α:Tmil, ρ:T32](rα:R(α), f :(interp(α)→ ρ))():Vararg(α)(ρ).
case rα(

Record y ⇒ vcaseα (
Recordα′ ⇒ case y
| inj0 x⇒ vcaseα′

([]⇒ λ().(f〈〉)
| ⇒ deadx)

| inj1 x⇒ vcaseα′

([β]⇒ λ(y:β).(f〈y〉)
| ⇒ deadx)

| inj2 x⇒ vcaseα′

([β1, β2]⇒ λ(y1:β1, y2:β2).(f〈y1, y2〉)
| ⇒ deadx)

| inj3 ⇒ f
| ⇒ dead y)

| ⇒ f)

The implementations of vararg and onearg are more complicated than those of the array primi-
tives. In addition to dispatching on the top level form of the type of the argument, they must also
distinguish between record types with different numbers of fields. In the case that the argument
type is a record type, both vararg and onearg must consider the number of fields of the record to
determine whether or not to emit a wrapper function, and what the argument types should be. For
vararg, this wrapper function packages its arguments into a record and passes it on to the original
function. The onearg construct simply reverses this.

onearg def=
code[α:Tmil, ρ:T32]λ(rα:R(α), f :Vararg(α)(ρ))():(interp(α)→ ρ).
case rα(

Record y ⇒ vcaseα (
Recordα′ ⇒ case y
| inj0 x⇒ vcaseα′

([]⇒ λ(y:unit).(f())
| ⇒ deadx)

| inj1 x⇒ vcaseα′

([β]⇒ λ(〈y〉:× [β]).(f(y))
| ⇒ deadx)

| inj2 x⇒ vcaseα′

([β1, β2]⇒ λ(〈y1, y2〉:× [β1, β2]).(f(y1, y2))
| ⇒ deadx)

| inj3 ⇒ f
| ⇒ dead y)
| ⇒ f)

I assign a LIL heap label to each of the named definitions: for example, vararg is the label given
to the vararg definition.
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5.5.2 The term level translation

The complete MIL to LIL term translation is given in section 5.6, but a selection of example rules
from the translation are discussed below to illustrate the important points of the translation.

Small values

The small value translation judgement is of the form ∆; Γ ` sv : τ ; sv ′, and is for the most part
uncomplicated.

Injections into non-value carrying arms of sum types are translated into uses of union types,
as described previously. Note that injections into value-carrying arms are not values in the MIL
since they require allocation. Their translation is therefore described in the operation translation.

∆; Γ ` inj tagj
Sumi(~c)

: Sumj
i (~c) ; inj union| Sumi(~c)| tagj

Float values

The float value translation judgement is of the form ∆;Γ ` fv : Float ; fv ′. Float values in the
MIL and the LIL correspond exactly: hence the translation leaves the terms unchanged.

64 bit operations

The 64 bit operation translation judgement is of the form ∆ ` i : Float ; i ′, and is also relatively
uncomplicated. For example, the floating point subscript operation changes in only minor syntactic
ways.

∆; Γ ` sv1 : Farray ; sv ′1 ∆; Γ ` sv2 : Int ; sv ′2

∆; Γ ` fsub(sv1, sv2) : Float ; subFloat(sv ′1, sv
′
2)

32 bit operations

The 32 bit operation translation judgement is of the form ∆;Γ ` i : τ ; i ′. Much of the interesting
work of the translation takes place in the operations.

Although the most significant part of the MIL to LIL translation is the representation of type
analysis within the term language, the definitions given in section 5.5.1 isolate all of the uses of
type analysis. Consequently, the translation of type analyzing primitives such as vararg is very
straightforward: they simply become calls to the code definitions via the appropriate heap labels.

∆; Γ ` sv : c1→ c2 ; sv ′

∆; Γ ` varargc1→c2
sv : Varargc1→c2

; call vararg[|c1|, interp |c2|](�c1�, sv ′)

Notice that as previously discussed, I pass the interpretation of the encoded return type to the
vararg code, instead of the encoded type itself. The dynamic encoding of the argument type is
passed as an additional argument to the function to allow the dispatch on types to take place.
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Sum types become union types, with the tagging of records made explicit.

∆; Γ ` sv : cj ; sv ′

∆; Γ ` injj
Sumi(~c)

sv : Sumj
i (~c) ; inj union| Sumi(~c)|〈tagj , sv

′〉

As discussed in the constructor translation, the known sum type from the MIL disappears in
the LIL. Uses of the projection from this type become second projections out of a tag-value pair.

∆; Γ ` sv : Sumj
i (~c) ; sv ′

∆; Γ ` projj
Sumi(~c)

sv : cj ; select2 sv ′

In the LIL the exception type is no longer primitive, instead being replaced by uses of existen-
tials and pairs.

∆; Γ ` sv1 : Dyntagc ; sv ′1 ∆; Γ ` sv2 : c ; sv ′2

∆; Γ ` inj dync(sv1, sv2) : Exn ;

pack〈sv ′1, sv ′2〉 as ∃α:T32.(Dyntag(α)× α) hiding |c|

Since the exception type is closed, I will frequently refer to it via the following definition for brevity:

Dyn def= ∃α:T32.(Dyntag(α)× α)

One of the most illustrative rules is the rule for the translation of applications, since it makes
clear the “plumbing” work necessary to make type analysis explicit.

∆; Γ ` sv :∀[α1::κ1, . . . , αn::κn](τ1, . . . , τm)(k)→ τ ; sv ′

∆; Γ ` sv i : τi[c1/α1, . . . , cn/αn] ; sv ′i ∆; Γ ` fv i : Float ; fv ′i

∆; Γ ` sv [c1, . . . , cn](sv1, . . . , svm)(fv1, . . . , fvk) : τ [c1/α1, . . . , cn/αn] ;

sv ′[|c1|, . . . , |cn|](�c1�, . . . , �cn�, sv ′1, . . . , sv
′
m)(fv ′1, . . . , fv

′
k)

Notice that each type argument is passed to the function once as a type argument in its static
encoding, and once as a term argument in its dynamic encoding. The rest of the arguments
are translated using the small value and float value translations and are passed as usual. The
application translation will of course be paralleled exactly by the translation of functions in the
expression translation below.

The term translation judgements

The term level translation judgement is of the form ∆;Γ ` e : τ ; e′. For the most part, the
expression translation simply appeals to the various other judgements. The only interesting case is
that of polymorphic functions.

∆; Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr, ~α::κ, ~x:τ , ~xf ] ` ef : τr ; e′f
∆; Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr] ` e : τ ; e′

∆; Γ ` letτ recτr f [ ~α::κ]( ~x:τ)( ~xf ).ef in e :∀[ ~α::κ](~τ)(|xf |)→ τ ;

let|τ | rec|τr| f [
−−−→
α::|κ|](−−−−−−→xα: �α::κ�,−→x:τ)(−−−−−−→xf :Float).e′f in e′
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As expected from the application case, each type argument is both lifted to the static encoding
kind and used to construct a dynamic encoding type for a new term level argument serving as its
dynamic encoding.

Programs

The final LIL program is produced from a closed MIL expression by wrapping the result of the
expression translation with a heap binding the defined forms used in the translation.

di
def= •,

sub :∀[α:Tmil] Code[R(α),Array(α), Int][](interp(α)) 7→ sub,
upd :∀[α:Tmil] Code[R(α),Array(α), Int, interp(α)][](unit) 7→ upd,
array :∀[α:Tmil] Code[R(α), Int, interp(α)][](Array(α)) 7→ array,
vararg :∀[α:Tmil, ρ:T32] Code[R(α), (interp(α)→ ρ)][](Vararg(α)(ρ)) 7→ vararg,
onearg :∀[α:Tmil, ρ:T32] Code[R(α),Vararg(α)(ρ)][](interp(α)→ ρ) 7→ onearg

•; • ` e : τ ; e′

` e : τ ; letrec di in e′ prog

5.5.3 Proof that the term level translation preserves typing

Small Values

Theorem 5 (Small value translation)
If ∆; Γ ` sv : τ , ` Ψ ok and ∆; Γ ` sv : τ ; sv ′ then Ψ; |∆|; �∆�, |Γ| ` sv ′ : |τ |

Proof: By induction on terms.

1. If sv = x then
By assumption:

∆:Γ, x:τ ` x : τ
` Ψ ok

By inverting the assumption:
∆ ` Γ, x:τ ok

By lemma 19:
|∆| `�∆�, |Γ, x:τ | ok

By the variable rule and the definition of |Γ|:
Ψ; |∆|; �∆�, |Γ|, x:|τ | ` x : |τ |

2. If sv = i then
By assumption:

∆:Γ ` i : Int
` Ψ ok

By inverting the assumption:
∆ ` Γ ok
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By lemma 19:
|∆| `�∆�, |Γ| ok

By the int rule:
Ψ; |∆|; �∆�, |Γ| ` i : Int

3. If sv = unrollc sv then

By assumption:
∆; Γ ` sv : πi µ(α, β)(c1, c2)
∆ ` c ≡ πi µ(α, β)(c1, c2) : T32

∆ ` sv : πi µ(α, β)(c1, c2) ; sv ′

By induction:
Ψ; |∆|; �∆�, |Γ| ` sv ′ : |πi µ(α, β)(c1, c2)|

By lemma 10:
|∆| ` |c| ≡ |πi µ(α, β)(c1, c2)| : Tmil

By definition:
|πi µ(α, β)(c1, c2)| = Rec[1 + 1](f)(inji ∗)
wheref = λ(ρ:1 + 1→ T32).λ(ω.1 + 1).
caseω

inj1 ⇒ interp(|c1|[Other(ρ(inj1 ∗))/α,Other(ρ(inj2 ∗))/β])
| inj2 ⇒ interp(|c2|[Other(ρ(inj1 ∗))/α,Other(ρ(inj2 ∗))/β])

Therefore, by the unroll rule:
Ψ; |∆|; �∆�, |Γ| ` unroll|c| sv ′ : f(Rec[1 + 1](f))(inji ∗)

It suffices to show that:
f(Rec[1 + 1](f))(inji ∗) = interp(|ci[π1 µ(α, β)(c1, c2)/α, π2 µ(α, β)(c1, c2)/β]|)

By lemma 9:
|ci[π1 µ(α, β)(c1, c2)/α, π2 µ(α, β)(c1, c2)/β]| =
|ci|[|π1 µ(α, β)(c1, c2)|/α, |π2 µ(α, β)(c1, c2)|/β]

By definition:
|π1 µ(α, β)(c1, c2)| = Other(Rec[1 + 1](f)(inj1 ∗))
|π2 µ(α, β)(c1, c2)| = Other(Rec[1 + 1](f)(inj2 ∗))

So it suffices to show that:
f(Rec[1 + 1](f))(inji ∗) =

interp(|ci|[Other(Rec[1 + 1](f)(inj1 ∗))/α,Other(Rec[1 + 1](f)(inj2 ∗))/β])

By definition of f :
f(Rec[1 + 1](f))(inji ∗) =
case (inji ∗)

inj1 ⇒
interp(|c1|[Other(Rec[1 + 1](f)(inj1 ∗))/α,Other(Rec[1 + 1](f)(inj2 ∗))/β])

| inj2 ⇒
interp(|c2|[Other(Rec[1 + 1](f)(inj1 ∗))/α,Other(Rec[1 + 1](f)(inj2 ∗))/β])
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If i = 1, then by the beta rule:
f(Rec[1 + 1](f))(inj1 ∗) =

interp(|c1|[Other(Rec[1 + 1](f)(inj1 ∗))/α,Other(Rec[1 + 1](f)(inj2 ∗))/β])

If i = 2, then by the beta rule:
f(Rec[1 + 1](f))(inj2 ∗) =

interp(|c2|[Other(Rec[1 + 1](f)(inj1 ∗))/α,Other(Rec[1 + 1](f)(inj2 ∗))/β])

4. The roll case follows similarly.

5. If sv = inj tagj
Sumi(~c)

then:

By inversion of the first assumption:
∆ ` Γ ok

By lemma 19:
|∆| `�∆�, |Γ| ok

Therefore by the tag rule:
Ψ; |∆|; �∆�, |Γ| ` tagj : Tag(j)

Note that
| Sumi(ci, . . . , cn)| =∨

[Tag(0), . . . , Tag(i− 1), . . . ,×[Tag(i), interp |ci|], . . . ,×[Tag(n), interp |cn|]]
So by the union formation rule :

Ψ; |∆|; �∆�, |Γ| ` inj union| Sumi(~c)| tagj : | Sumi(~c)|

Float values
Theorem 6 (Float value translation)
If ∆; Γ ` fv : Float, ` Ψ ok and ∆; Γ ` fv : Float ; fv ′ then |∆|; �∆�, |Γ| ` fv ′ : Float

Proof:

1. If fv = xf then

By assumption:
∆:Γ, xf ` x : Float
` Ψ ok

By inverting the assumption:
∆ ` Γ, xf ok

By lemma 19:
|∆| `�∆�, |Γ, xf | ok

By the variable rule and the definition of |Γ|:
Ψ; |∆|; �∆�, |Γ|, xf ` xf : Float

2. fv = r.
By assumption:

∆:Γ ` r : Float
` Ψ ok
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By inverting the assumption:
∆ ` Γ ok

By lemma 19:
|∆| `�∆�, |Γ| ok

By the float rule:
Ψ; |∆|; �∆�, |Γ| ` r : Float

64 bit operations

Theorem 7 (Float operation translation)
If ∆; Γ ` i : Float, ` Ψ ok, and ∆; Γ ` i : Float ; i ′ then |∆|; �∆�, |Γ| ` i ′ : Float opr64

Proof:

1. If i = fv then:
By inversion of assumptions:

∆; Γ ` fv : Float
∆; Γ ` fv : Float ; fv ′

By theorem 6:
Ψ; |∆|; �∆�, |Γ| ` fv ′ : Float

By the float value inclusion rule:
Ψ; |∆|; �∆�, |Γ| ` fv ′ : Float opr64

2. If i = unboxf sv then:
By inversion of assumptions:

∆; Γ ` sv : Boxf
∆; Γ ` sv : Boxf ; sv ′

By theorem 5:
Ψ; |∆|; �∆�, |Γ| ` sv ′ : Boxed Float

By the unbox rule:
Ψ; |∆|; �∆�, |Γ| ` unbox sv ′ : Float opr64

3. If i = fsub(sv1, sv2) then:

By inversion of assumptions:
∆; Γ ` sv1 : Farray
∆; Γ ` sv2 : Int
∆; Γ ` sv1 : Farray ; sv ′1
∆; Γ ` sv2 : Int ; sv ′2

By theorem 5:
Ψ; |∆|; �∆�, |Γ| ` sv ′1 : Array64Float
Ψ; |∆|; �∆�, |Γ| ` sv ′2 : Int

Hence by the 64 bit subscript rule :
Ψ; |∆|; �∆�, |Γ| ` subFloat(sv ′1, sv ′2) : Float opr64
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Operations and expressions

I begin with a lemma to capture the appropriate typing conditions for the definitions used by the
translation of the type analyzing primitives.

Lemma 21 (Definitions)
1. If ` Ψ ok then

Ψ ` sub :∀[α:Tmil] Code[R(α),Array(α), Int][](interp(α)) hval

2. If ` Ψ ok then

Ψ ` upd :∀[α:Tmil] Code[R(α),Array(α), Int, interp(α)][](unit) hval

3. If ` Ψ ok then

Ψ ` array :∀[α:Tmil] Code[R(α), Int, interp(α)][](Array(α)) hval

4. If ` Ψ ok then

Ψ ` vararg :∀[α:Tmil, β:T32] Code[R(α), interp(α)→ β)][](Vararg(α)(β)) hval

5. If ` Ψ ok then

Ψ ` onearg :∀[α:Tmil, β:T32] Code[R(α),Vararg(α)(β)][](interp(α)→ β) hval

Proof: By construction.

I define a heap context Ψi that gives types for the above definitions as follows:

Ψi
def= •,

sub :∀[α:Tmil] Code[R(α),Array(α), Int][](interp(α)),
upd :∀[α:Tmil] Code[R(α),Array(α), Int, interp(α)][](unit),
array :∀[α:Tmil] Code[R(α), Int, interp(α)][](Array(α)),
vararg :∀[α:Tmil, ρ:T32] Code[R(α), (interp(α)→ ρ)][](Vararg(α)(ρ)),
onearg :∀[α:Tmil, ρ:T32] Code[R(α),Vararg(α)(ρ)][](interp(α)→ ρ)

Lemma 22 (Initial context)
` Ψi ok

Proof: By construction.

Operations and expressions are mutually recursive: hence their soundness theorems are stated
most naturally together. Since the translation of operations generates calls to the code functions
implementing type analysis, the soundness theorem for the translation is defined relative to the
initial context defined above.

Theorem 8 (Operation and expression translation)
1. If ∆; Γ ` i : τ and ∆; Γ ` i : τ ; i ′ then Ψi; |∆|; �∆�, |Γ| ` i ′ : |τ | opr32
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2. If ∆; Γ ` e : τ and ∆; Γ ` e : τ ; e′ then Ψi; |∆|; �∆�, |Γ| ` e′ : |τ | exp

Proof:
The proof proceeds by simultaneous induction on operations and expressions. We begin with

the operations.

1. If i = sv then:
By inversion of assumptions:

∆; Γ ` sv : τ
∆; Γ ` sv : τ ; sv ′

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : |τ |

By the small value expression inclusion rule:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : |τ | opr32

2. If i = varargc1→c2
sv

By inversion of assumptions:
∆ ` c1 : T32

∆ ` c2 : T32

∆; Γ ` sv : c1→ c2

∆; Γ ` sv : c1→ c2 ; sv ′

By theorem 2:
|∆| ` |c1| : Tmil

|∆| ` |c2| : Tmil

By lemma 8:
|∆| ` interp |c2| : T32

By theorem 3 and weakening:
Ψi; |∆|; �∆�, |Γ| `�c1� : R(c1) (Note �c1:T32�= R(c1)).

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : |c1→ c2|

By the initial context lemma (22):
Ψi; |∆|; �∆�, |Γ| ` onearg :∀[α:Tmil, ρ:T32] Code[R(α), interp(α)→ β][](Vararg(α)(ρ))

By the code call rule:
Ψi; |∆|; �∆�, |Γ| ` call vararg[|c1|, interp |c2|](�c1�, sv ′) : Vararg(|c1|)(interp |c2|) opr32

3. If i = oneargc1→c2
sv

By inversion of assumptions:
∆ ` c1 : T32

∆ ` c2 : T32

∆; Γ ` sv : Varargc1→c2
∆; Γ ` sv : Varargc1→c2

; sv ′

By theorem 2:
|∆| ` |c1| : Tmil

|∆| ` |c2| : Tmil
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By lemma 8:
|∆| ` interp |c2| : T32

By theorem 3 and weakening:
Ψi; |∆|; �∆�, |Γ| `�c1� : R(|c1|) (Note �c1:T32�= R(|c1|)).

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : Vararg(|c1|)(interp |c2|)
(Note |Varargc1→c2

| = Vararg(|c1|)(interp |c2|))

By the initial context lemma (22):
Ψi; |∆|; �∆�, |Γ| ` vararg :∀[α:Tmil, ρ:T32] Code[R(α),Vararg(α)(ρ)][](interp(α)→ β)

By the code call rule:
Ψi; |∆|; �∆�, |Γ| ` call onearg[|c1|, interp |c2|](�c1�, sv ′) : interp |c1| → interp |c2| opr32

4. If i = boxf fv then

By inversion of assumptions:
∆; Γ ` fv : Float
∆; Γ ` fv : Float ; fv ′

By theorem 6:
Ψi; |∆|; �∆�, |Γ| ` fv ′ : Float

By the box rule:
Ψi; |∆|; �∆�, |Γ| ` box fv ′ : Boxed Float

5. If i = projj
Sumi(~c)

sv then

By inversion of assumptions:
∆ ` Sumj

i (~c) : T32

∆; Γ ` sv : Sumj
i (ci, . . . , cj , . . . , cn)

∆; Γ ` sv : Sumj
i (ci, . . . , cj , . . . , cn) ; sv ′

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : | Sumj

i (ci, . . . , cj , . . . , cn)|

By definition:
| Sumj

i (c1, . . . , cj , . . . , cn)| = ×[Tag(j), interp |cj |]

Hence by the selection rule:
Ψi; |∆|; �∆�, |Γ| ` select2 sv ′ : interp |cj |
(Note the implicit type inclusion, hence interp |cj | = |T (cj)|)

6. If i = injj
Sumi(ci,...,cj ,...,cn) sv then

By inverting the assumptions:
∆ ` Sumi(ci, . . . , cj , . . . , cn) : T32

∆; Γ ` sv : cj

∆; Γ ` sv : cj ; sv ′

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : |cj |
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By the pair and tag rules:
Ψi; |∆|; �∆�, |Γ| ` 〈tagj , sv

′〉 : × [Tag(j), |cj |]
By definition:
| Sumi(ci, . . . , cn)| =

∨
[Tag(0), . . . , Tag(i− 1), . . . ,×[Tag(i), |ci|], . . . ,×[Tag(n), |cn|]]

By the union injection rule:
Ψi; |∆|; �∆�, |Γ| ` inj union| Sumi(~c)|〈tagj , sv

′〉 : | Sumi(~c)|

7. If i = 〈sv ′1, . . . , sv ′n〉 then:

By inverting assumptions:
∆; Γ ` sv i : τi i ∈ 1 . . . n
∆; Γ ` sv i : τi ; sv ′i i ∈ 1 . . . n

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′i : |τi| i ∈ 1 . . . n

By the tuple rule:
Ψi; |∆|; �∆�, |Γ| ` 〈sv ′1, . . . , sv ′n〉 : × [|τ1|, . . . , |τn|]

8. If i = selecti sv then:
By inverting assumptions:

∆; Γ ` sv : τ1 × . . .× τn

∆; Γ ` sv : τ1 × . . .× τn ; sv ′

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : |τ1 × . . .× τn|

By the select rule:
Ψi; |∆|; �∆�, |Γ| ` selecti sv ′ : |τi|

9. If i = caseτ (sv) (x1.e1, . . . , xn.en) then:

By inverting assumptions:
∆ ` τ : T32

∆; Γ ` sv : Sumi(~c)
∆; Γ[xj : Sumj

i (~c)] ` ej : τ
∆; Γ ` sv : Sumi(~c) ; sv ′

∆; Γ[xj : Sumj
i (~c)] ` ej : τ ; e′j

By theorem 4:
|∆| ` |τ | : T32

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : | Sumi(~c)|

By induction:
Ψi; |∆|; �∆�, |Γ[xj : Sum

j
i (~c)]| ` e′j : |τ | exp

Note that:
|Γ[xj : Sum

j
i (~c)]| = |Γ|[xj :| Sumj

i (~c)|]
| Sumi(ci, . . . , cn)| =

∨
[Tag(0), . . . , Tag(i− 1), . . . ,×[Tag(i), |ci|], . . . ,×[Tag(n), |cn|]]

| Sumj
i (c1, . . . , cn)| = Tag(j) j < i

| Sumj
i (c1, . . . , cn)| = ×[Tag(j), cj ] i ≤ j ≤ n
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Hence by the case introduction rule:
Ψi; |∆|; �∆�, |Γ| ` case|τ |(sv ′) (x1.e

′
1, . . . , xn.e′n) : |τ | exp

10. If i = handleτ (e1, x.e2) then:

By inverting assumptions:
∆ ` τ : T32

∆; Γ ` e1 : τ
∆; Γ[x : Exn] ` e2 : τ
∆; Γ ` e1 : τ ; e′1
∆; Γ[x : Exn] ` e2 : τ ; e′2

By theorem 4:
|∆| ` |τ | : T32

By induction:
Ψi; |∆|; �∆�, |Γ| ` e′1 : |τ | exp
Ψi; |∆|; �∆�, |Γ[x:Exn]| ` e′2 : |τ | exp

By definition:
|Γ[x:Exn]| = |Γ|[x: Dyn]

So by the handle rule :
Ψi; |∆|; �∆�, |Γ| ` handle|τ |(e′1, x.e′2) : |τ | opr32

11. If i = sv [c1, . . . , cn](sv1, . . . , svm)(fv1, . . . , fvk) then:

By inverting assumptions:
∆; Γ ` sv :∀[α1::κ1, . . . , αn::κn](τ1, . . . , τm)(k)→ τ
∆; Γ ` sv i : τi[c1/α1, . . . , cn/αn]
∆; Γ ` fv i : Float
∆; Γ ` sv :∀[α1::κ1, . . . , αn::κn](τ1, . . . , τm)(k)→ τ ; sv ′

∆; Γ ` sv i : τi[c1/α1, . . . , cn/αn] ; sv ′i
∆; Γ ` fv i : Float ; fv ′i

By theorems 5 and 6:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : |∀[α1::κ1, . . . , αn::κn](τ1, . . . , τm)(k)→ τ |
Ψi; |∆|; �∆�, |Γ| ` sv ′i : |τi[c1/α1, . . . , cn/αn]|
Ψi; |∆|; �∆�, |Γ| ` fv ′i : Float

By definition:
|∀[α::κ1, . . . , α::κn](τ1, . . . , τm)(k)→ τ | =
∀[α1::|κ1|, . . . , αn::|κn|](�α1:κ1�, . . . , �αn:κn�, |τ1|, . . . , |τm|)(Float0 . . . Floatk)→ |τ |

By theorem 2:
|∆| ` |ci| : |κ| i ∈ 1 . . . n

Therefore by the type instantiation rule :
Ψi; |∆|; �∆�, |Γ| ` sv ′[|c1|, . . . , |cn|] :

((�α1:κ1�, . . . , �αn:κn�, |τ1|, . . . , |τm|)(Float0 . . . Floatk)→ |τ |)[|c1|/α1, . . . , |cn|/αn]
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To apply the function application rule, is suffices to show that:
Ψi; |∆|; �∆�, |Γ| `�ci� : �αi:κi� [|c1|/α1, . . . , |cn|/αn] i ∈ 1 . . . n
and
Ψi; |∆|; �∆�, |Γ| ` sv ′i : |τi|[|c1|/α1, . . . , |cn|/αn] i ∈ 1 . . .m

By theorem 3:
Ψi; |∆|; �∆�, |Γ| `�ci� : �ci:κi� i ∈ 1 . . . n

By lemma 13:
�αi:κi� [|c1|/α1, . . . , |cn|/αn] =�αi[c1/α1, . . . , cn/αn]:κi�=�ci:κi�

We know from above that:
Ψi; |∆|; �∆�, |Γ| ` sv ′i : |τi[c1/α1, . . . , cn/αn]| i ∈ 1 . . .m

But by lemma 9:
|τi|[|c1|/α1, . . . , |cn|/αn] = |τi[c1/α1, . . . , cn/αn]|

Therefore, by the application rule :
Ψi; |∆|; �∆�, |Γ| ` sv ′[|c1|, . . . , |cn|](�c1�, . . . , �cn�, sv ′1, . . . , sv

′
m)(fv ′1, . . . , fv

′
k) :

|τ |[|c1|/α1, . . . , |cn|/αn]

Finally, note that by lemma 9:
|τ |[|c1|/α1, . . . , |cn|/αn] = |τ [c1/α1, . . . , cn/αn]|

12. If i = raiseτ sv then:

By inverting assumptions:
∆ ` τ : T32

∆; Γ ` sv : Exn
∆; Γ ` sv : Exn ; sv ′

By theorem 4:
|∆| ` |τ | : T32

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : |Exn|

Hence by the raise introduction rule:
Ψi; |∆|; �∆�, |Γ| ` raise|τ | sv ′ : |τ |

13. If i = mkexntagc then:

By inverting assumptions:
∆ ` c : T32

∆ ` Γ ok

By theorem 4:
|∆| ` |c| : T32

Hence by the dyntag intro rule:
Ψi; |∆|; �∆�, |Γ| ` dyntag|c| : Dyntag(|c|)

14. If i = exncaseτ (sv) (sv1 ⇒ x1.e1, ⇒ e2) then:
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By inverting assumptions:
∆; Γ ` sv : Exn
∆ ` τ : T32

∆; Γ ` sv1 : Dyntagc1
∆; Γ[x1:c1] ` e1 : τ
∆; Γ ` e2 : τ
∆; Γ ` sv : Exn ; sv ′

∆; Γ ` sv1 : Dyntagc1
; sv ′1

∆; Γ[x1:c1] ` e1 : τ ; e′1
∆; Γ ` e2 : τ ; e′2

By theorem 4:
|∆| ` |τ | : T32

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : |Exn|
Ψi; |∆|; �∆�, |Γ| ` sv ′1 : | Dyntagc1

|

By induction:
Ψi; |∆|; �∆�, |Γ[x1:c1]| ` e′1 : |τ | exp
Ψi; |∆|; �∆�, |Γ| ` e′2 : |τ | exp

Hence by the dyncase introduction rule:
Ψi; |∆|; �∆�, |Γ| ` dyncaseτ (sv) (sv ′1 ⇒ x1.e

′
1, ⇒ e′2) : |τ | opr32

15. If i = subc(sv1, sv2) then:

By inverting assumptions:
∆ ` c : T32

∆; Γ ` sv1 : Arrayc

∆; Γ ` sv2 : Int
∆; Γ ` sv1 : Arrayc ; sv ′1
∆; Γ ` sv2 : Int ; sv ′2

By theorem 4:
|∆| ` |c| : T32

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′1 : |Arrayc|
Ψi; |∆|; �∆�, |Γ| ` sv ′2 : |Int|

By theorem 3:
Ψi; |∆|; �∆�, |Γ| `�c� : R(|c|)

By lemma 22:
Ψi; |∆|; �∆�, |Γ| ` sub :∀[α:Tmil] Code[R(α),Array(α), Int)][](interp(α))

Hence by the code call rule :
Ψi; |∆|; �∆�, |Γ| ` call sub[|c|](�c�, sv ′1, sv ′2) : interp |c| opr32

16. If i = updc(sv1, sv2, sv3) then:

67



By inverting assumptions:
∆ ` c : T32

∆; Γ ` sv1 : Arrayc

∆; Γ ` sv2 : Int
∆; Γ ` sv3 : c
∆; Γ ` sv1 : Arrayc ; sv ′1
∆; Γ ` sv2 : Int ; sv ′2
∆; Γ ` sv3 : c ; sv ′3

By theorem 4:
|∆| ` |c| : T32

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′1 : |Arrayc|
Ψi; |∆|; �∆�, |Γ| ` sv ′2 : |Int|
Ψi; |∆|; �∆�, |Γ| ` sv ′3 : |c|

By theorem 3:
Ψi; |∆|; �∆�, |Γ| `�c� : R(|c|) exp

By lemma 22:
Ψi; |∆|; �∆�, |Γ| ` upd :∀[α:Tmil] Code[R(α),Array(α), Int, interp(α)][](unit)

Hence by the code call rule :
|∆|; �∆�, |Γ| ` call upd[|c|](�c�, sv ′1, sv ′2, sv ′3) : Unit opr32

17. If i = arrayc(sv1, sv2) then:

By inverting assumptions:
∆ ` c : T32

∆; Γ ` sv1 : Int
∆; Γ ` sv2 : c
∆; Γ ` sv1 : Int ; sv ′2
∆; Γ ` sv2 : c ; sv ′2

By theorem 4:
|∆| ` |c| : T32

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′1 : |Int|
Ψi; |∆|; �∆�, |Γ| ` sv ′2 : |c|

By theorem 3:
Ψi; |∆|; �∆�, |Γ| `�c� : R(|c|)

By lemma 22:
Ψi; |∆|; �∆�, |Γ| ` array :∀[α:Tmil] Code[R(α), Int, interp(α)][](Array(α))

Hence by the code call rule :
Ψi; |∆|; �∆�, |Γ| ` call array[|c|](�c�, sv ′1, sv ′2) : Array(interp |c|) opr32

18. If i = fupd(sv1, sv2, fv) then:
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By inverting assumptions:
∆; Γ ` sv1 : Farray
∆; Γ ` sv2 : Int
∆; Γ ` fv :
∆; Γ ` sv1 : Farray ; sv ′1
∆; Γ ` sv2 : Int ; sv ′2
∆; Γ ` fv : Float ; fv ′

By theorems 5 and 6:
Ψi; |∆|; �∆�, |Γ| ` sv ′1 : |Farray|
Ψi; |∆|; �∆�, |Γ| ` sv ′2 : Int
Ψi; |∆|; �∆�, |Γ| ` fv ′ : Float

By the 64 bit array update rule:
Ψi; |∆|; �∆�, |Γ| ` updFloat(sv ′1, sv ′2, fv ′) : Unit opr32

19. If i = array(sv , fv) then:

By inverting assumptions:
∆; Γ ` sv : Int
∆; Γ ` fv :
∆; Γ ` sv : Int ; sv ′

∆; Γ ` fv : Float ; fv ′

By theorems 5 and 6:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : Int
Ψi; |∆|; �∆�, |Γ| ` fv ′ : Float

By the 64 bit array creation rule:
|∆|; �∆�, |Γ| ` updFloat(sv ′, fv ′) : Farray(Float) opr32

For expressions

1. If e = sv then:
By inversion of assumptions:

∆; Γ ` sv : τ
∆; Γ ` sv : τ ; sv ′

By theorem 5:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : |τ |

By the small value expression inclusion rule:
Ψi; |∆|; �∆�, |Γ| ` sv ′ : |τ | exp

2. If e = letτ x = i in e then:

By inversion of assumptions:
∆; Γ ` i : τi

∆; Γ, x:τi ` e : τ
∆; Γ ` i : τi ; i ′

∆; Γ, x:τi ` e : τ ; e′
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By induction:
Ψi; |∆|; �∆�, |Γ| ` i ′ : |τi| opr32

Ψi; |∆|; �∆�, |Γ|, x:|τi| ` e′ : |τ | exp (Note that |Γ, x:τi| = |Γ|, x:|τi|)

By the operation rule:
Ψi; |∆|; �∆�, |Γ| ` let|τ | x = i ′ in e′ : |τ | exp

3. If e = letτ xf = i in e then:

By inversion of assumptions:
∆; Γ ` i : Float
∆; Γ, xf ` e : τ
∆; Γ ` i : Float ; i ′

∆; Γ, xf ` e : τ ; e′

By induction and theorem 7:
Ψi; |∆|; �∆�, |Γ| ` i ′ : Float opr64

Ψi; |∆|; �∆�, |Γ|, xf :Float ` e′ : |τ | exp (Note that |Γ, xf | = |Γ|, xf :Float)

By the 64 bit operation rule:
Ψi; |∆|; �∆�, |Γ| ` let|τ | xf = i ′ in e′ : |τ | exp

4. if e = letτ recτr f [ ~α::κ]( ~x:τ)( ~xf ).ef in e then:

By inversion of assumptions:
∆, ~α::κ; Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr, ~x:τ , ~xf ] ` ef : τr

∆; Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr] ` e : τ
∆, ~α::κ; Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr, ~x:τ , ~xf ] ` ef : τr ; e′f
∆; Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr] ` e : τ ; e′

By induction:
Ψi; |∆, ~α::κ|; �∆, ~α::κ�, |Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr, ~x:τ , ~xf ]| ` e′f : |τr| exp
Ψi; |∆|; �∆�, |Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr]| ` e′ : |τ | exp

By definition:
�∆, ~α::κ�=�∆�, ~xα: �α:κ�

And
By definition:
|Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr, ~x:τ , ~xf ]| =
|Γ|[f : |∀[ ~α::κ](~τ)(|xf |)→ τr|, ~x:|τ |, ~xf :Float] =
|Γ|[f : ∀[ ~α::|κ|]( ~�α:κ�, ~|τ |)( ~Float)→ |τr|, ~x:|τ |,−−−−−−→xf :Float]

Hence by the rec rule:
Ψi; |∆|; �∆�, |Γ| `
let|τ | rec|τr| f [

−−−→
α::|κ|](−−−−−−→xα: �α::κ�,−→x:τ)(−−−−−−→xf :Float).e′f in e′ : |τ |

Programs

The correctness of the program translation follows almost immediately.
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Theorem 9 (Programs)
If •; • ` e : and ` e : τ ; let di in e′ prog then • ` let di in e : |τ |.

Proof: (By construction)
By lemma 21 and the heap well-formedness rule:

Ψi ` di ok
By theorem 8

Ψi; •; • ` e′ : |τ | exp
So by the program well-formedness rule
• ` let di in e : |τ |

5.6 The complete term level translation

Small Values ∆; Γ ` sv : τ ; sv ′

∆; Γ[x:τ ] ` x : τ ; x

∆; Γ ` i : Int ; i

∆ ` c ≡ πi µ(α, β)(c1, c2) : T32

∆ ` sv : πi µ(α, β)(c1, c2) ; sv ′

∆; Γ ` unrollc sv : ci[π1 µ(α, β)(c1, c2)/α, π2 µ(α, β)(c1, c2)/β] ;

unrollinterp |c| sv ′

∆ ` c ≡ πi µ(α, β)(c1, c2) : T32

∆; Γ ` sv : ci[π1 µ(α, β)(c1, c2)/α, π2 µ(α, β)(c1, c2)/β] ; sv ′

∆; Γ ` rollc sv : πi µ(α, β)(c1, c2) ;

roll|c| sv ′

∆; Γ ` inj tagj
Sumi(~c)

: Sumj
i (~c) ; inj union| Sumi(~c)| tagj

Float values ∆ ` fv : Float ; fv ′

∆; Γ ` r : Float ; r

∆; Γ[xf ] ` xf : Float ; xf
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64 bit operations ∆ ` i : Float ; i ′

∆; Γ ` fv : Float ; fv ′

∆; Γ ` fv : Float ; fv ′

∆; Γ ` sv : Boxf ; sv ′

∆; Γ ` unboxf sv : Float ; unbox sv ′

∆; Γ ` sv1 : Farray ; sv ′1 ∆; Γ ` sv2 : Int ; sv ′2

∆; Γ ` fsub(sv1, sv2) : Float ; subFloat(sv ′1, sv
′
2)

Operations ∆; Γ ` i : τ ; i ′

∆; Γ ` sv : τ ; sv ′

∆; Γ ` sv : τ ; sv ′

∆; Γ ` sv : c1→ c2 ; sv ′

∆; Γ ` varargc1→c2
sv : Varargc1→c2

; call vararg[|c1|, interp |c2|](�c1�, sv ′)

∆; Γ ` sv : Varargc1→c2
; sv ′

∆; Γ ` oneargc1→c2
sv : c1→ c2 ; call onearg[|c1|, interp |c2|](�c1�, sv ′)

∆; Γ ` fv : Float ; fv ′

∆; Γ ` boxf fv : Boxf ; box fv ′

∆; Γ ` sv : Sumj
i (~c) ; sv ′

∆; Γ ` projj
Sumi(~c)

sv : cj ; select2 sv ′

∆; Γ ` sv : cj ; sv ′

∆; Γ ` injj
Sumi(~c)

sv : Sumj
i (~c) ; inj union| Sumi(~c)|〈tagj , sv

′〉
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∆; Γ ` sv i : τi ; sv ′i

∆; Γ ` 〈sv1, . . . , svn〉 : τ1 × . . .× τn ; 〈sv ′1, . . . , sv ′n〉

∆; Γ ` sv : τ1 × . . .× τn ; sv ′

∆; Γ ` selecti sv : τi ; selecti sv ′

∆; Γ ` sv : Sumi(~c) ; sv ′ ∆; Γ[xj : Sumj
i (~c)] ` ej : τ ; e′j

∆; Γ ` caseτ (sv) (x1.e1, . . . , xn.en) : τ ; case|τ |(sv ′) (x1.e
′
1, . . . , xn.e′n)

∆; Γ ` e1 : τ ; e′1 ∆; Γ[x : Exn] ` e2 : τ ; e′2

∆; Γ ` handleτ (e1, x.e2) : τ ; handle|τ |(e′1, x.e′2)

∆; Γ ` sv :∀[α1::κ1, . . . , αn::κn](τ1, . . . , τm)(k)→ τ ; sv ′

∆; Γ ` sv i : τi[c1/α1, . . . , cn/αn] ; sv ′i ∆; Γ ` fv i : Float ; fv ′i

∆; Γ ` sv [c1, . . . , cn](sv1, . . . , svm)(fv1, . . . , fvk) : τ [c1/α1, . . . , cn/αn] ;

sv ′[|c1|, . . . , |cn|](�c1�, . . . , �cn�, sv ′1, . . . , sv
′
m)(fv ′1, . . . , fv

′
k)

∆; Γ ` sv : Exn ; sv ′

∆; Γ ` raiseτ sv : τ ; raise|τ | sv ′

∆; Γ ` sv1 : Dyntagc ; sv ′1 ∆; Γ ` sv2 : c ; sv ′2

∆; Γ ` inj dync(sv1, sv2) : Exn ;

pack〈sv ′1, sv ′2〉 as ∃α:T32.(Dyntag(α)× α) hiding |c|

∆; Γ ` mkexntagc : Dyntagc ; dyntag|c|

∆; Γ ` sv1 : Dyntagc1
; sv ′1

∆; Γ[x1:c1] ` e1 : τ ; e′1 ∆; Γ ` e2 : τ ; e′2

∆; Γ ` exncaseτ (sv) (sv1 ⇒ x1.e1, ⇒ e2) : τ ; dyncaseτ (sv) (sv ′1 ⇒ x1.e
′
1, ⇒ e′2)

∆; Γ ` sv1 : Arrayc ; sv ′1 ∆; Γ ` sv2 : Int ; sv ′2

∆; Γ ` subc(sv1, sv2) : c ; call sub[|c|](�c�, sv ′1, sv ′2)

73



∆; Γ ` sv1 : Arrayc ; sv ′1 ∆; Γ ` sv2 : Int ; sv ′2
∆; Γ ` sv3 : c ; sv ′3

∆; Γ ` updc(sv1, sv2, sv3) : Unit ; call upd[|c|](�c�, sv ′1, sv ′2, sv ′3)

∆; Γ ` sv1 : Farray ; sv ′1 ∆; Γ ` sv2 : Int ; sv ′2
∆; Γ ` fv : Float ; fv ′

∆; Γ ` fupd(sv1, sv2, fv) : Unit ; updFloat(sv
′
1, sv

′
2, fv

′)

∆; Γ ` sv1 : Int ; sv ′1 ∆; Γ ` sv2 : c ; sv ′2

∆; Γ ` arrayc(sv1, sv2) : Arrayc ; call array[|c|](�c�, sv ′1, sv ′2)

∆; Γ ` sv : Int ; sv ′ ∆; Γ ` fv : Float ; fv ′

∆; Γ ` farray(sv , fv) : Farray ; arrayFloat(sv
′, fv ′)

Expressions ∆; Γ ` e : τ ; e′

∆; Γ ` sv : τ ; sv ′

∆; Γ ` sv : τ ; sv ′

∆; Γ ` i : τ ′ ; i ′ ∆; Γ[x : τ ′] ` e : τ ; e′

∆; Γ ` letτ x = i in e : τ ; let|τ | x = i ′ in e′

∆; Γ ` i : Float ; i ′ ∆; Γ[xf ] ` e : τ ; e′

∆; Γ ` letτ xf = i in e : τ ; let|τ | xf = i ′ in e′

∆; Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr, ~α::κ, ~x:τ , ~xf ] ` ef : τr ; e′f
∆; Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr] ` e : τ ; e′

∆; Γ ` letτ recτr f [ ~α::κ]( ~x:τ)( ~xf ).ef in e : τ ;

let|τ | rec|τr| f [
−−−→
α::|κ|](−−−−−−→xα: �α::κ�,−→x:τ)(−−−−−−→xf :Float).e′f in e′
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Chapter 6

Closure converted LIL

6.1 Introduction

Closure conversion is a common strategy for implementing languages with higher order functions.
The essential idea is to replace terms that evaluate via substitution of values for free variables with
terms that can be evaluated by referring to an environment providing definitions for free variables.
Since the latter evaluation model matches more closely that of actual machines, closure conversion
is probably the most standard technique used for compiling higher-order functions.

In the LIL, closure conversion is the process by which function definitions are replaced with
existentially abstracted pairs of environments and code pointers; and by which function applica-
tions are replaced with projections and code calls. Since the LIL is a typed language, the closure
conversion translation must maintain well-typedness of terms. This means, among other things,
that in addition to turning free term variables into additional function arguments, the closure con-
version translation must also turn free constructor variables into additional function constructor
arguments. However, since the LIL language admits a type erasure interpretation, the type envi-
ronments do not need to be represented at runtime, which simplifies the problem of typed closure
conversion.

The fact that LIL types can be erased at runtime means that in the underlying assembly
language semantics, polymorphic instantiation can be a value, whereas in the MIL a polymorphic
instantiation corresponds to passing actual runtime data and hence can not be thought of as a value
in the sense of requiring no computation (as opposed to being valuable in the sense of being freely
duplicable). This fact is important since it allows closure conversion to instantiate polymorphic
functions directly when closures are built, which simplifies the theoretical framework for typed
closure conversion.

There is extensive literature on typed closure conversion [CWM98, MWCG97, MMH96, MH98],
and the LIL closure conversion algorithm adds nothing essential to this previous work. In this
chapter I will briefly describe the important translation steps and prove a soundness theorem
without going into any great detail.

6.2 The closure conversion translation

There are a number of different strategies possible for implementing closure conversion for recursive
functions. Morrisett and Harper [MH98] give a fairly comprehensive overview of the different
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approaches, and in section 9.3 I discuss some of the trade-offs between the different approaches.
The translation as described here uses the “recursive code” translation, which implements closures
via simple existentials and pairs, but requires a primitive notion of self-calling code. Fortuitously
(by design), the LIL language supports all of these notions.

In the next sections, I give a high-level overview of each part of the translation, and list a few
key translation rules. In general, the closure conversion translation rewrites terms by first rewriting
their sub-terms, and then reconstructing the term intact. Only in the specific cases of functions,
function types, and function applications is a change made to the immediate structure of a term
or type.

6.2.1 Constructors

Closure conversion does not change kinds in any way, so the first translation I discuss is the
translation of constructors. I notate the translation of a LIL constructor c under closure-conversion
as |c|. Almost every case of the constructor translation is uninteresting except for the case for a
polymorphic function type.

|∀[α1:κ1, . . . , αn:κn].→ (c1)(c2)(c3)|
def=

∃[αe:T32].× [∀[α1:κ1, . . . , αn:κn]. Code(αe :: |c1|)(|c2|)(|c3|), αe]

This case is actually quite illuminating since it clearly demonstrates the closure conversion process,
and is therefore worth exploring more closely.

Recall the type of the arrow constructor in the LIL: →:T32list→T64list→T32→T32. The
types c1, c2, and c3 are therefore the the 32 bit argument type list, the 64 bit argument type list,
and the return type, respectively. The translation of the arrow type simply translates these types
compositionally, and then adds an additional type to the head of the 32 bit argument type list.
This type, αe, is the type of the environment containing the free variables of the function that are
to be passed to it as an additional argument. I use the informal :: notation to mean addition to
the head of a list.

The type ∀[α1:κ1, . . . , αn:κn] Code(αe :: |c1|)(|c2|)(|c3|) therefore describes a polymorphic code
function which in addition to the 32 bit arguments described by |c1|, expects a first argument
described by αe. Referring to this type as τc, the type ×[τc, αe] classifies a function of this type
paired with an actual environment of the same type: αe.

What then is αe? The important point of the closure conversion translation in a typed setting
is that the types of the free variables of a function are not apparent from its type. The environment
type is abstract outside of the local scope where the function is defined. All that need be apparent
from the type is that the type of the environment expected by the function and the type of the
environment provided in the closure coincide.

In order to capture this abstraction, the standard technique is to use existential quantification.
This then is the last part of the translation process. The final type is produced by existentially
quantifying over the environment type, αe.

6.2.2 Typing contexts

The translation on typing contexts Ψ and Γ is defined in the obvious way by mapping the type
translation across the ranges of the contexts.
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6.2.3 Terms

Term translations
Small values Ψ;∆; Γ ` sv : τ ; sv ′ |Ψ|;∆; |Γ| ` sv ′ : |τ |
Float values Ψ;∆; Γ ` fv : Float ; fv ′ |Ψ|;∆; |Γ| ` fv ′ : Float
Operations Ψ;∆; Γ ` opr : τ ; opr ′ |Ψ|;∆; |Γ| ` opr ′ : |τ | opr32

64 bit Operations Ψ;∆; Γ ` fopr : Float ; fopr ′ |Ψ|;∆; |Γ| ` fopr ′ : Float opr64

Expression Ψ;∆; Γ ` e : τ ; d in e′ |Ψ|,Ψ(d); •; • ` d ok
|Ψ|,Ψ(d);∆; |Γ| ` e′ : |τ | exp

Programs Ψ ` p : τ ; p′ Ψ ` p′ : |τ |
The high-level shape of the term level translation should be apparent from the discussion of

the type translation. The essential task of the translation is to replace functions with existentially
quantified code/environment pairs, and to replace function calls with closure-projections and code
calls.

The term level translation is a typed translation, since the types of free variables is needed to
construct the appropriate environment types. Additionally, it is very important in the LIL that the
substitutions associated with type refinement operations be carried out as part of the translation,
since these change the set of free type variables of expressions (as well as affecting equalities between
them).

The general form of the closure conversion translation therefore exactly parallels the typing rules
for the LIL. In addition to checking the type of terms however, the closure conversion relation also
“produces” a new closure converted term. Moreover, in the case of the expression translation, a
new set of heap values is also produced containing the new code replacing the functions from the
original term.

The interesting cases from the translation arise from application and function abstraction. In
order to simplify the syntactic structure of the translation, it is convenient to catch applications
in the expression translation rather than in the more obvious operation translation. Consequently,
the operation translation has no case for application.

Function application

Ψ;∆; Γ ` g :∀[α1::κ1, . . . , αn::κn](τ1, . . . , τm)(φ1, . . . , φn)→ τ ; sv ′

Ψ;∆; Γ ` sv i : τi[c1/α1, . . . , cn/αn] ; sv ′i Ψ;∆; Γ ` fv i :φi[c1/α1, . . . , cn/αn] ; fv ′i
Ψ;∆; Γ, x : τ [c1/α1, . . . , cn/αn] ` e : τ ′ ; d in e′

Ψ;∆; Γ ` letx = g[c1, . . . , cn](sv1, . . . , svm)(fv1, . . . , fvk) in e : τ ′ ;

d in
let[αe, xc] = unpack sv ′ in
let f = select1 xc in
letxe = select2 xc in
letx = call f [|c1|, . . . , |cn|](xe, sv ′1, . . . , sv

′
m)(fv ′1, . . . , fv

′
k) in e′

Since function definitions are replaced with closure definitions by the translation, the variable g
will be bound to a closure after the translation. The new term replacing the application first unpacks
the closure to get at the underlying code/environment pair, and then selects out the components.
The code pointer thus extracted is then passed the environment as an argument along with all of
the original arguments.
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Function abstraction

The translation of function definitions is by far the most complicated part of closure conversion.
The complete translation rule is given in figure 6.1. Conceptually, it can be separated into two
steps: producing code to construct the environment and the closure, and wrapping the function
body in code to extract the components of the environment.

Creating the closure

The environment must contain all of the free variables of the function: that is, all of the free
variables of the function body except the function arguments and the function itself. Since the
LIL as defined lacks heterogeneous tuples, the 64 bit free variables must be boxed before they can
be placed in the environment. Consequently, the closure creation code begins by boxing up all of
the free 64 bit variables, then creates a record consisting of all the 32 bit variables followed by the
boxed 64 bit variables. This record is the function’s environment.

In addition to closing up the function over the free term variables via the environment, it is also
necessary to abstract away all of the free type variables. These are “packaged” up into the closure
by immediately instantiating the label for the new code function with the free type variables from
the original function. Since the type parameters do not actually exist at runtime, there is no need
to store them separately in the closure via a kind existential.

To create the final closure value, this partially instantiated label is written into a two field
record with the environment which is then packed into the existential type, hiding the type of the
environment. The original function name is bound to the resulting package.

Restoring free variables from the environment

The code from the previous section, executed at the site of the original function definition, serves
to create the closure which is then passed around in place of the function. A second code sequence
must also be added as a prelude to the function body to restore the free variables of the function
from the environment. This code can be seen in the fcode definition from the function translation
rule.

The initial segment of the un-packaging code simply projects out the 32 bit variables from the
environment. The second segment projects out and un-boxes the boxed 64 bit variables from the
environment. The final segment creates a closure to bind the function name to for internal uses.
This consists of allocating a tuple to hold the code pointer and the environment, and packing it
into the existential. The necessity of recreating the closure tuple inside of recursive functions is the
principal disadvantage of the “recursive-code” approach to closure conversion. Note though that
this is only necessary for escaping occurrences of the recursion variable: non-escaping occurrences
can be replaced by uses of the code pointer and the original environment. This will be discussed
in more detail in section 9.3.

6.2.4 Heap Values and Programs

Code functions are already closed, and hence are not directly closure-converted. However, in the
LIL as defined, they may contain normal functions as sub-terms. Therefore, the bodies of code
functions are translated just as any other expression.
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∆ ` κi ok (i ∈ 1 . . . k)
∆, α1:κ1, . . . , αk:κk ` τi : T32 (i ∈ 1 . . .m)
∆, α1:κ1, . . . , αk:κk ` φi : T64 (i ∈ 1 . . . n)

∆, α1:κ1, . . . , αk:κk ` τ : T32

∆ ` τr ≡ ∀[α1:κ1, . . . , αk:κk](τ1, . . . , τm)(φ1, . . . , φn)→ τ : T32

Ψ;∆, α1:κ1, . . . , αk:κk; Γ, f :τ, x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn ` ef : τ ; d in e′f
Ψ;∆; Γ[f : τr] ` e : τ ; d′ in e′

fv32(ef ) \ {x1, . . . , xm, f} = {y1, . . . , yq} fv64(ef ) \ {z1, . . . , zn} = {r1, . . . , rp}
fv t(ef ) \ {α1, . . . , αk} = {β1, . . . , βn}

τe
def= ×[|Γ(y1)|, . . . , |Γ(yq)|, Boxed |Γ(r1)|, . . . , Boxed |Γ(rp)|]
fcode def= code[β1:∆(β1), . . . , βl:∆(βl), α1:κ1, . . . , αk:κk]

(xe:τe, x1:|τ1|, . . . , xm:|τm|)
(z1:|φ1|, . . . , zn:|φn|).
let y1 = select1 xe in
· · ·
let yq = selectq xe in
let b1 = selectq+1 xe in
let r1 = unbox b1 in
· · ·
let bp = selectq+p+1 xe in
let rp = unbox bp in
let fc = 〈fcode[β1, . . . , βl], xe〉 in
let f = pack fc as |τ | hiding τe in
e′f

Ψ;∆; Γ ` letτ recτr f [ ~α::κ]( ~x:τ)( ~xf ).ef in e :∀[ ~α::κ](~τ)(|xf |)→ τ ;

d, fcode:|τr| 7→ fcode, d′

let b1 = box r1 in
· · ·
let bp = box rp in
letxe = 〈y1, . . . , yq, b1, . . . , bp〉 in
let fc = 〈fcode[β1, . . . , βl], xe〉 in
let f = pack fc as |τ | hiding τe in
e′

Figure 6.1: Closure converting recursive function definitions
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Ψ;α1:κ1, . . . , αk:κk;x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn ` e : τ ; d in e′

Ψ ` code[α1:κ1, . . . , αk:κk](x1:τ1, . . . , xm:τm)(z1:φ1, . . . , zn:φn).e :
∀[α1:κ1, . . . , αk:κk] Code(τ1, . . . , τm)(φ1, . . . , φn)(τ) ;

d in code|τ |[α1:κ1, . . . , αk:κk](x1:|τ1|, . . . , xm:|τm|)(z1:|φ1|, . . . , zn:|φn|).e′

Heaps are translated by translating the individual heap values, lifting out any new heap values
to the top level.

Ψ ` ε ; ε in ε

Ψ[`:τ ] ` hval : τ ; d` in hval ′ Ψ[`:τ ] ` d ; dh in d′

Ψ[`:τ ] ` d, `:τ 7→ hval ; d`, dh in d′, `:|τ | 7→ hval ′

The translation on programs rewrites the heap and the expression body to form a new program.

Ψ,Ψ(d) ` d ; dh in d′

Ψ,Ψ(d); •; • ` e : τ ; de in e′

Ψ ` letrec d in e : τ ; letrec d′, dh, de in e′

6.3 Soundness of closure conversion

The proof of type preservation for the closure conversion translation is fairly straightforward, as only
a few sub-terms are actually changed. In general, most of the cases follow directly by induction,
reconstructing the original term or derivation from the inductively re-written sub-terms or sub-
derivations. Only in the few cases where the immediate term is re-written does the proof involve
anything more substantial.

6.3.1 Constructors

As with the MIL to LIL translation, I begin by proving the soundness of the constructor transla-
tion, and then proceed with auxiliary lemmas showing that the constructor translation commutes
with substitution, and respects equivalence. The latter two lemmas are useful for the term level
proofs.

Theorem 10 (Soundness of the constructor translation)
If ∆ ` c :κ then ∆ ` |c| :κ.

Proof: By induction on the structure of types. For all types and constructors except the type of
polymorphic functions, the translation leaves the structure of the type the same, and so the proof
follows straightforwardly by induction, producing the new derivation from the inductively obtained
sub-derivations using the same rule as in the original derivation. The only interesting rule is the
rule for the type of polymorphic functions.
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Suppose the type being translated is of the form ∀[α1:κ1, . . . , αn:κn].→ (c1)(c2)(c3).
By inversion of the assumed derivation:

∆ ` κi ok i ∈ 1 . . . n
∆, α1:κ1, . . . , αn:κn ` c1 : T32list
∆, α1:κ1, . . . , αn:κn ` c2 : T32list
∆, α1:κ1, . . . , αn:κn ` c3 : T32

By induction:
∆, α1:κ1, . . . , αn:κn ` |c1| : T32list
∆, α1:κ1, . . . , αn:κn ` |c2| : T32list
∆, α1:κ1, . . . , αn:κn ` |c3| : T32

By weakening:
∆, α1:κ1, . . . , αn:κn, αe:T32 ` |c1| : T32list
∆, α1:κ1, . . . , αn:κn, αe:T32 ` |c2| : T32list
∆, α1:κ1, . . . , αn:κn, αe:T32 ` |c3| : T32

(Note that αe can always be chosen appropriately)
By construction (cons):

∆, α1:κ1, . . . , αn:κn, αe:T32 ` (αe :: |c1|) : T32list

By construction (application and universal introduction):
∆, αe:T32 ` ∀[α1:κ1, . . . , αn:κn]. Code(αe :: |c1|)(|c2|)(|c3|) : T32list

By construction (pairing and existential introduction):
∆ ` ∃[αe:T32].× [∀[α1:κ1, . . . , αn:κn]. Code(αe :: |c1|)(|c2|)(|c3|), αe] : T32

Lemma 23 (The type translation commutes with substitution)
|c[c′/α]| = |c|[|c′|/α]

Proof: By induction on c.

1. If c is a constant, then α /∈ fvc, fv |c|, so |c|[|c′|/α] = |c| = |c[c′/α]|.

2. If c is a variable α′:

(a) If α 6= α′ then as in the previous case.
(b) If α = α′ then |α|[|c′|/α] = α[|c′|/α] = |c′| = |α[c′/α]|.

3. If c = λ(β:κ).c2, then by definition

|λ(β:κ).c2|[|c′|/α] = (λ(β:|κ|).|c2|)[|c′|/α] = λ(β:|κ|).(|c2|[|c′|/α])

By induction and the definition of substitution:

λ(β:|κ|).(|c2|[|c′|/α]) = λ(β:|κ|).(|c2[c′/α]|) = |λ(β:κ).(c2[c′/α])|

Note, I rely on alpha-variance to ensure non-capture.

4. If c = ∀[α1:κ1, . . . , αn:κn]. → (c1)(c2)(c3) then by the definition of the translation and of
substitution

|∀[α1:κ1, . . . , αn:κn].→ (c1)(c2)(c3)|[|c′|/α]
def= (∃[αe:T32].× [∀[α1:κ1, . . . , αn:κn]. Code(αe :: |c1|)(|c2|)(|c3|), αe])[|c′|/α]
def= ∃[αe:T32].× [∀[α1:κ1, . . . , αn:κn]. Code(αe :: |c1|[|c′|/α])(|c2|[|c′|/α])(|c3|[|c′|/α]), αe]
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Note that I rely on alpha-variance to avoid capture.

Finally, by induction, and by the definition of substitution:

∃[αe:T32].× [∀[α1:κ1, . . . , αn:κn]. Code(αe :: |c1|[|c′|/α])(|c2|[|c′|/α])(|c3|[|c′|/α]), αe]
def= ∃[αe:T32].× [∀[α1:κ1, . . . , αn:κn]. Code(αe :: |c1[c′/α]|)(|c2[c′/α]|)(|c3[c′/α]|), αe]
def= |∀[α1:κ1, . . . , αn:κn].→ (c1)(c2)(c3)[c′/α]|

5. If c = c1c2, πic, 〈c1, c2〉, the proof proceeds similarly.

Lemma 24 (The type translation respects equivalence)
If ∆ ` c1 ≡ c2 :κ then ∆ ` |c1| ≡ |c2| :κ.

Proof: (By induction on equivalence derivations) By induction on equivalence derivations. The
proof is straightforward with almost all cases identical to the proof of lemma 10 from chapter 5. The
only cases where the derivation changes is in the case that the last rule used is the structural rule
for constructor application c1 c2. Inductively, equivalence derivations exist for the sub-terms. If the
applications match the form of a polymorphic function (that is, ∀[κ1](. . . (∀[κn](→(cx)(cz)(cr))))),
then the application, reflexivity, pair, and existential equivalence rules must be applied to construct
the equivalence derivation for the translation. If the applications do not match such a form, then
the application rule suffices. All of the primitive types follow directly by reflexivity or by the
structural application rule. I give some example cases here.

1. Suppose ∆ ` c ≡ c :κ by reflexivity.

By assumption:
∆ ` c :κ

By theorem 10:
∆ ` |c| :κ

By reflexivity:
∆ ` |c| ≡ |c| :κ

2. Suppose ∆ ` (λ(α:κ1).c1)(c2) ≡ c1[c2/α] : κ2.

By assumption:
∆ ` κ1 ok
∆, α:κ1 ` c1 :κ2

∆ ` c2 :κ1

By assumption, and by theorem 2:
∆ ` κ1 ok
∆, α:κ1 ` |c1| :κ2

∆ ` |c2| :κ1

By the λ beta rule and the definition of the translations:
∆ ` |(λ(α:κ1).c1)(c2)| ≡ |c1|[|c2|/α] : κ2

Finally, by lemma 9:
∆ ` |(λ(α:κ1).c1)(c2)| ≡ |c1[c2/α]| :κ2
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3. Suppose ∆ ` ∀[α1:κ1, . . . , αn:κn].→ (c1)(c2)(c3) ≡ ∀[α1:κ1, . . . , αn:κn].→ (c′1)(c
′
2)(c

′
3) : T32.

By induction and weakening
∆, αe:T32, α1:κ1 . . . αn:κn ` c1 ≡ c′1 : T32list
∆, αe:T32, α1:κ1 . . . αn:κn ` c2 ≡ c′2 : T32list
∆, αe:T32, α1:κ1 . . . αn:κn ` c3 ≡ c′3 : T32

By reflexivity
∆, αe:T32, α1:κ1 . . . αn:κn ` αe ≡ αe : T32

By the pair and existential rules
∆ ` ∃[αe:T32].× [∀[α1:κ1, . . . , αn:κn]. Code(αe :: |c1|)(|c2|)(|c3|), αe]
≡ ∃[αe:T32].× [∀[α1:κ1, . . . , αn:κn]. Code(αe :: |c′1|)(|c′2|)(|c′3|), αe] : T32

6.3.2 Typing contexts

Theorem 11 (Soundness of the context translations)
1. If ∆ ` Γ ok then ∆ ` |Γ| ok.

2. If ` Ψ ok then ` |Ψ| ok.

Proof: By induction on typing contexts. The proof proceeds by cases on contexts.

1. Suppose ∆ ` Γ ok.

• If Γ = •, then its translation is empty, and hence is trivially well-formed.

• If Γ = Γ′, x:τ , then by induction, ∆ ` |Γ′| ok. By theorem 10, ∆ ` |τ | ok, and since
the domain is unchanged by the translation, x /∈ Γ′. Therefore, by construction ∆ `
|Γ′, x:|τ || ok.

2. The proof for heap contexts Ψ proceeds identically.

6.3.3 Terms

For terms, I begin by stating the soundness theorem for values and 64 bit operations. For these
syntactic classes, the statement of the theorem is straightforward.

Theorem 12 (Values and 64 bit operations)
1. If Ψ;∆; Γ ` sv : τ and Ψ;∆; Γ ` sv : τ ; sv ′ then |Ψ|;∆; |Γ| ` sv ′ : |τ |.

2. If Ψ;∆; Γ ` fv : Float and Ψ;∆; Γ ` fv : Float ; fv ′ then |Ψ|;∆; |Γ| ` fv ′ : Float.

3. If Ψ;∆; Γ ` fopr : Float opr64 and Ψ;∆; Γ ` fopr : Float ; fopr ′ then

|Ψ|;∆; |Γ| ` fopr ′ : Float opr64
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Proof (Sketch): By induction on terms. The closure conversion translation for each of these
syntactic classes leaves the top level structure of the term intact, reconstructing it from the induc-
tively re-written sub-terms. Therefore, the proof constructs a new derivation in each case by using
the same inference rule from the original derivation on the inductively re-written sub-terms. Kinds
are unchanged by the translation, and for constructors I appeal to theorem 10.

The theorem for 32 bit operations and expressions is more complicated, since the expression
translation potentially yields new heap bindings (code functions) to be lifted out. The soundness
theorem for expressions states that both the bindings and the new expression are well-formed in the
heap context obtained by extending the translation of the original heap context with the bindings
for the additional heap values produced by the translation.

Theorem 13 (32 bit operations and expressions)
1. If

Ψ;∆; Γ ` opr : τ opr32 and Ψ;∆; Γ ` opr : τ ; opr ′

then
|Ψ|;∆; |Γ| ` opr ′ : |τ | opr32

2. If
Ψ;∆; Γ ` e : τ exp and Ψ;∆; Γ ` e : τ ; d in e′

then
|Ψ|,Ψ(d) ` d ok and |Ψ|,Ψ(d);∆; |Γ| ` in e′ : |τ | exp

Proof: By induction on terms.

1. The proof for operations proceeds exactly as in the previous theorem, appealing to the induc-
tion hypothesis to obtain well-typedness derivations for sub-terms, and constructing a new
derivation with the same rule as in the original derivation. Note that the case for applications
is trivially true, since the operation translation is not defined on applications.

2. The proof for expressions also proceeds similarly, except in the cases binding applications and
functions where the translation does incremental work.

Suppose letx = g[c1, . . . , cn](sv1, . . . , svm)(fv1, . . . , fvk) in e

By assumption:
Ψ;∆; Γ ` sv :∀[α1::κ1, . . . , αn::κn](τ1, . . . , τm)(φ1, . . . , φk)→ τ
∆ ` ci :κi i ∈ 1 . . . n
Ψ;∆; Γ ` sv i : τi[c1/α1, . . . , cn/αn] i ∈ 1 . . .m
Ψ;∆; Γ ` fv i :φi[c1/α1, . . . , cn/αn] i ∈ 1 . . . k
Ψ;∆; Γ, x:τ [c1/α1, . . . , cn/αn] ` e : τ ′ exp
Ψ;∆; Γ ` g :∀[α1::κ1, . . . , αn::κn](τ1, . . . , τm)(k)→ τ ; sv ′

Ψ;∆; Γ ` sv i : τi[c1/α1, . . . , cn/αn] ; sv ′i
Ψ;∆; Γ ` fv i :φi[c1/α1, . . . , cn/αn] ; fv ′i
Ψ;∆; Γ, x : τ [c1/α1, . . . , cn/αn] ` e : τ ′ ; d in e′
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It suffices to show that:
|Ψ|,Ψ(d);∆; |Γ| ` let[αe, xc] = unpack sv ′ in

let f = select1 xc in
letxe = select2 xc in
letx = call f [|c1|, . . . , |cn|](xe, sv ′1, . . . , sv

′
m)(fv ′1, . . . , fv

′
k)

in e′

: |τ ′| exp

Let
τc = ×[∀[α1:κ1, . . . , αn:κn]. Code(αe, |τ1|, . . . , |τm|)(|φ1|, . . . , |φk|)(|τ |), αe]

and
τf = ∀[α1:κ1, . . . , αn:κn]. Code(αe, |τ1|, . . . , |τm|)(|φ1|, . . . , |φk|)(|τ |)

.

So by the expression typing rules, it suffices to show:
|Ψ|,Ψ(d);∆, αe:T32; |Γ| ` sv ′ :∃[αe:T32].τc

|Ψ|,Ψ(d);∆, αe:T32; |Γ|, xc:τc ` select1 xc : τf opr32

|Ψ|,Ψ(d);∆, αe:T32; |Γ|, xc:τc ` select2 xc :αe opr32

|Ψ|,Ψ(d);∆, αe:T32; |Γ|, xc:τc, f :τf , xe:αe ` call f [ ~|ci|](xe, ~sv ′j)(
~fv ′l) : |τ |[−−−−→|ci|/αi] opr32

i ∈ 1 . . . n, j ∈ 1 . . .m, l ∈ 1 . . . k
|Ψ|,Ψ(d);∆, αe:T32; |Γ|, xc:τc, f :τf , xe:αe, x:|τ |[|c1|/α1, . . . , |cn|/αn] ` e′ : |τ ′| exp

By theorem 12:
|Ψ|,Ψ(d);∆; |Γ| ` sv : |∀[α1::κ1, . . . , αn::κn](τ1, . . . , τm)(φ1, . . . , φk)→ τ |

And by definition:

|∀[α1:κ1, . . . , αn:κn].(τ1, . . . , τm)(φ1, . . . , φk)→ τ | def=
∃[αe:T32].× [∀[α1:κ1, . . . , αn:κn]. Code(αe, |τ1|, . . . , |τm|)(|φ1|, . . . , |φk|)(|τ |), αe]

So by the unpack rule:
|Ψ|,Ψ(d);∆, αe:T32; |Γ| ` sv ′ :∃[αe:T32].τc For some τc

By the variable rule:
|Ψ|,Ψ(d);∆, αe:T32; |Γ|, xc:τc ` xc : × [τf , αe]

So by the select rule:
|Ψ|,Ψ(d);∆, αe:T32; |Γ|, xc:τc ` select1 xc : τf opr32

|Ψ|,Ψ(d);∆, αe:T32; |Γ|, xc:τc ` select2 xc :αe opr32

By the variable rule:
|Ψ|,Ψ(d);∆, αe:T32; |Γ|, xc:τc, f :τf , xe:αe ` f : τf

By theorems 10 and 12:
∆ ` |ci| :κi i ∈ 1 . . . n
|Ψ|,Ψ(d);∆; |Γ| ` sv ′i : |τi[c1/α1, . . . , cn/αn]| i ∈ 1 . . .m
|Ψ|,Ψ(d);∆; |Γ| ` fv ′i : |φi[c1/α1, . . . , cn/αn|] i ∈ 1 . . . k

By the commutation lemma (lemma 23):
|Ψ|,Ψ(d);∆; |Γ| ` sv ′i : |τi|[|c1|/α1, . . . , |cn|/αn] i ∈ 1 . . .m
|Ψ|,Ψ(d);∆; |Γ| ` fv ′i : |φi|[|c1|/α1, . . . , |cn|/αn] i ∈ 1 . . . k
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Therefore by the call rule :
|Ψ|,Ψ(d);∆, αe:T32; |Γ|, xc:τc, f :τf , xe:αe ` call f [ ~|ci|](xe, ~sv ′j)(

~fv ′l) : |τ |[−−−−→|ci|/αi] opr32

i ∈ 1 . . . n, j ∈ 1 . . .m, l ∈ 1 . . . k

Finally, by induction:
|Ψ|,Ψ(d);∆, αe:T32; |Γ|, xc:τc, f :τf , xe:αe, x:|τ |[|c1|/α1, . . . , |cn|/αn] ` e′ : |τ ′| exp

3. The case for function abstraction proceeds in a similar fashion, building up well-typedness
derivations for the fcode definitions and for the closure creation code.

An additional lemma relating translations of heap contexts to translations of heaps is needed
for subsequent theorems.

Lemma 25 (Ψ(d))
If Ψ ` d ; dh in d′ then |Ψ(d)| = Ψ(d′).

Proof: By induction on d.

1. If d = ε then d′ = ε and |Ψ(d)| = ε = Ψ(d′).

2. If d = dr, `:τ 7→ hval then:

By assumption:
Ψ[`:τ ] ` hval : τ ; d` in hval ′

Ψ[`:τ ] ` dr ; dh in d′r
Ψ[`:τ ] ` d, `:τ 7→ hval ; d`, dh in d′r, `:|τ | 7→ hval ′

By definition:
|Ψ(d)|

= |Ψ(dr, `:τ 7→ hval)|
= |Ψ(dr), `:τ |
= |Ψ(dr)|, `:|τ |

By induction:
|Ψ(dr)| = Ψ(d′r)
so
|Ψ(dr)|, `:|τ |

= Ψ(d′r), `:|τ |
= Ψ(d′r, `:|τ | 7→ hval ′)

As with expressions, translating heap values may yield additional heap bindings. The soundness
theorem for the heap value translation states that the both the new heap value and the new bindings
are well-formed in the translation of the original context extended with bindings for the new heap
entries.

Lemma 26 (Soundness of the heap value translation)
If

Ψ ` hval : τ hval and Ψ ` hval : τ ; d in hval ′

then
|Ψ|,Ψ(d) ` d ok and |Ψ|,Ψ(d) ` hval ′ : |τ | hval
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Proof: By construction.
By assumption:

Ψ ` codeτ [α1:κ1, . . . , αk:κk](x1:τ1, . . . , xm:τm)(z1:φ1, . . . , zn:φn).e :
∀[α1:κ1, . . . , αk:κk] Code(τ1, . . . , τm)(φ1, . . . , φn)(τ) hval

and
Ψ ` codeτ [α1:κ1, . . . , αk:κk](x1:τ1, . . . , xm:τm)(z1:φ1, . . . , zn:φn).e :

∀[α1:κ1, . . . , αk:κk] Code(τ1, . . . , τm)(φ1, . . . , φn)(τ) ;

d in code|τ |[α1:κ1, . . . , αk:κk](x1:|τ1|, . . . , xm:|τm|)(z1:|φ1|, . . . , zn:|φn|).e′

By inversion:
• ` κi ok (i ∈ 1 . . . k)
α1:κ1, . . . , αk:κk ` τi : T32 (i ∈ 1 . . .m)
α1:κ1, . . . , αk:κk ` φi : T64 (i ∈ 1 . . . n)
α1:κ1, . . . , αk:κk ` τ : T32

Ψ;α1:κ1, . . . , αk:κk;x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn ` e : τ exp
Ψ;α1:κ1, . . . , αk:κk;x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn ` e : τ ; d in e′

By theorem 10:
α1:κ1, . . . , αk:κk ` |τi| : T32 (i ∈ 1 . . .m)
α1:κ1, . . . , αk:κk ` |φi| : T64 (i ∈ 1 . . . n)
α1:κ1, . . . , αk:κk ` |τ | : T32

By theorem 13:
|Ψ|,Ψ(d) ` d ok and
|Ψ|,Ψ(d);α1:κ1, . . . , αk:κk;x1:|τ1|, . . . , xm:|τm|, z1:|φ1|, . . . , zn:|φn| ` e′ : |τ | exp

Note that:
|∀[α1:κ1, . . . , αk:κk] Code(τ1, . . . , τm)(φ1, . . . , φn)(τ)|
= ∀[α1:κ1, . . . , αk:κk] Code(|τ1|, . . . , |τm|)(|φ1|, . . . , |φn|)(|τ |)

So by the heap value rule :
|Ψ|,Ψ(d) ` code|τ |[α1:κ1, . . . , αk:κk](x1:|τ1|, . . . , xm:|τm|)(z1:|φ1|, . . . , zn:|φn|).e′ :

|∀[α1:κ1, . . . , αk:κk] Code(τ1, . . . , τm)(φ1, . . . , φn)(τ)| hval

Lemma 27 (Soundness of the heap translation)
If Ψ ` d ok and Ψ ` d ; dh in d′ then |Ψ|,Ψ(dh) ` dh, d′ ok.

Proof: By induction on d. We proceed by cases on d.

1. ε

By assumption:
` Ψ ok

By theorem 11:
` |Ψ| ok

By the empty heap rule:
|Ψ| ` ε ok
(Note that Ψ(ε) = •)

2. d, `:τ 7→ hval
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By assumption:
Ψ[`:τ ] ` d, `:τ 7→ hval ok
Ψ[`:τ ] ` d, `:τ 7→ hval ; d`, dh in d′, `:|τ | 7→ hval ′

By inverting assumptions:
Ψ[`:τ ] ` hval : τ hval
Ψ[`:τ ] ` hval : τ ; d` in hval ′

Ψ[`:τ ] ` d ok
Ψ[`:τ ] ` d ; dh in d′

By induction:
|Ψ[`:τ ]|,Ψ(dh) ` dh, d′ ok

By lemma 26:
|Ψ[`:τ ]|,Ψ(d`) ` d` okand
|Ψ[`:τ ]|,Ψ(d`) ` hval ′ : |τ | hval

By lemma weakening:
|Ψ[`:τ ]|,Ψ(dh),Ψ(d`) ` dh, d′ ok
|Ψ[`:τ ]|,Ψ(dh),Ψ(d`) ` d` ok

By definition:
|Ψ[`:τ ]|,Ψ(dh),Ψ(d`) ` dh, d′, d` ok
and|Ψ[`:τ ]| = |Ψ|[`:|τ |]

So by the non-empty heap rule:
|Ψ[`:τ ]|,Ψ(d`, dh) ` d`, dh, d′, `:|τ | 7→ hval ′ ok

Theorem 14 (Programs)
If Ψ ` p : τ and Ψ ` p : τ ; p′ then |Ψ| ` p′ : |τ |

Proof:
By definition, p is of the form letrec d in e.
By assumption:

Ψ,Ψ(d) ` d ok
Ψ,Ψ(d) ` d ; dh in d′

Ψ,Ψ(d); •; • ` e : τ exp
Ψ,Ψ(d); •; • ` e : τ ; de in e′

By lemma 25:
|Ψ(d)| = Ψ(d′)

So by definition:
|Ψ,Ψ(d)|

= |Ψ|, |Ψ(d)|
= |Ψ|,Ψ(d′)

By lemma 27:
|Ψ,Ψ(d)|,Ψ(dh) ` dh, d′ ok

And by lemma 13:
|Ψ,Ψ(d)|,Ψ(de); •; • ` e′ : |τ | exp

88



So by the above argument:
|Ψ|,Ψ(d′),Ψ(dh) ` dh, d′ ok
and|Ψ|,Ψ(d′),Ψ(de); •; • ` e′ : |τ | exp

By weakening:
|Ψ|,Ψ(d′),Ψ(dh),Ψ(de) ` dh, d′ ok
and|Ψ|,Ψ(d′),Ψ(dh),Ψ(de); •; • ` e′ : |τ | exp

So by the program rule :
|Ψ| ` letrec d′, dh, de in e′ : |τ |
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Chapter 7

TILTAL

Closure converted LIL code is sufficiently low-level that it is practical to translate it directly into a
typed assembly language. In this chapter I present such a language, and define a simple translation
from LIL into it. I call this assembly language TILT Typed Assembly Language (TILTAL), in
reference to the original typed assembly language (TAL) [MWCG98]. The overall structure of
TILTAL is very similar to the stack version of TAL [MCGW02].

The presentation of the TILTAL target language is intended to suggest how the ideas used
to implement type analysis in the LIL translate down to the assembly code level. The actual
implementation targets the TALx86 infrastructure [MCG+99] which is significantly different in
many ways. I will discuss the TALx86 type system in more detail in the implementation chapters.

7.1 TILTAL overview

I begin by introducing the TILTAL language in general terms and describing the typing judgements
which define its static semantics. The syntax for the language is described in figure 7.1. The kind
and type levels are almost entirely the same as that of the LIL and are mostly elided. Constructs
for describing the type of stacks and a kind ST classifying them are added. Code function types are
eliminated and replaced with a code type which describes the stack and register format expected
by a code segment. “Nonsense” types ns32 and ns64 are introduced to describe uninitialized stacks
slots, with corresponding constants ns32 and ns64.

A table describing the typing judgements for TILTAL is given in figure 7.2. The complete list of
inference rules for these judgements can be found in appendix C. Most TILTAL terms are judged
well-typed with respect to a heap context Ψ which binds labels at closed types; a constructor/kind
context ∆ which binds kind variables and binds constructor variables at kinds; and a register file
type Γ which describes the state of the abstract machine by mapping register names to types.

In the the next several sections, I will introduce the important syntactic classes in TILTAL
and briefly describe their use. For the most part, readers familiar with the existing literature on
typed assembly language will find nothing substantially different.

7.1.1 Stacks

The treatment of stacks and stack types in TILTAL is much the same as in previous work [MCGW02].
I give a brief introduction to the syntax and the concepts here.
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k ::= . . . | ST

c, τ, φ, σ ::= . . . delete →
| ε | τ1 .32 c | φ1 .64 c | σ1 ◦ σ2 | sptrσ
| ns64 | ns32 | Γ→ 0

Γ ::= {r1:τ1, r2:τ2, re:τe, rt:τt, f1:φ1, f2:φ2, sp : σ}
r ::= r1 | r2 | re | rt

f ::= f1 | f2
q ::= rollc | unrollc | inj union(i,c) | forgetunion

| pack[τ ]c | inj dynτ

s ::= ε | w .32 s | l .64 s
l ::= r | ns64

w ::= ` | i | ns32 | tagi | w[~c] | sptr i | q w
fv ::= l | f | sp(i)
sv ::= r | sp(i) | w | sv [~c] | q sv
i ::= mov r, sv | loadr r, r(i) | store r(i), sv

| malloc r[τ1, . . . , τn]〈sv1, . . . , svn〉 | mallocτ r(sv1, sv2)
| mallocφ r, fv | mallocφ r(sv , fv)
| call sv | brtagi r, sv | brtgdi r, sv
| brdyn r, sv1, sv2 | dyntagc r
| swrite sp(i), sv | sallocn | sfreen
| mov r, sp | mov sp, sv
| unpack[α, r], sv
| subτ r, sv1, sv2 | updτ sv1, sv2, sv3

| fmov f , fv | floadr f , r | fstore r, fv
| fswrite sp(i), fv
| subφ f , sv1, sv2 | updφ sv1, sv2, fv

ti ::= vcase[α1. dead sv , α2] c
| vcase[α1, α2. dead sv ] c
| refine[〈β, γ〉] c | refine[foldβ] c

I ::= ret | jmp sv | haltτ | i ; I | ti ; I
hval ::= 〈~w〉 | [~w] | [~l] | l | dtag

| code[α1::κ1, . . . , αn::κn].Γ.I
H ::= {`1:τ1 7→ hval1, . . . , `n:τn 7→ hvaln}
R ::= {r1 7→ w1, r2 7→ w2, re 7→ we, rt 7→ wt,

f1 7→ l1, f2 7→ l2:sp 7→ s}
P ::= (H,R, I)

Ψ ::= • | Ψ, `:τ
∆ ::= • | ∆, j | ∆, α:κ
Γ ::= {r1:τ1, r2:τ2, re:τe, rt:τt, f1:φ1, f2:φ2, sp : σ}

Figure 7.1: TILTAL syntax
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TILTAL typing judgements
Kinds ∆ ` κ ok
Constructors ∆ ` c :κ
Equivalence ∆ ` c ≡ c′ :κ
Coercions ∆ ` q : τ ⇒ τ ′

Stacks Ψ;∆ ` s :σ
64-bit values Ψ;∆ ` l :φ
32-bit values Ψ;∆ ` w : τ
64-bit operands Ψ;∆; Γ ` fv :φ
32-bit operands Ψ;∆; Γ ` sv : τ
Instructions Ψ;∆; Γ ` i⇒ Γ′

Instruction Sequences Ψ;∆; Γ ` I : τ
Heap values Ψ∆; Γ ` hval : τ hval
Heaps ` H : Ψ
Well-formed Register File Ψ ` R : Γ
Well-formed Program ` (H,R, I) ok

Figure 7.2: Judgements defining well-typedness of TILTAL programs

Stack types and values in TILTAL are used to represent the actual control stack of a program.
Stack slots store return addresses of functions, as well as variables which cannot be spilled into
registers. At the value level a stack is either empty (ε), or a value pushed onto a stack (w .32 s or
l .64 s). Stacks in TILTAL are permitted to contain either 32 or 64-bit values. Pointers into the
stack are permitted in a limited fashion. The meta-variable s is used to stand for stack values, and
the meta-variable σ is used for the type of stacks.

Stack types are built up from empty stacks using stack addition and composition. The type
ε describes an empty stack, the type τ .32 σ describes a stack described by σ with a 32 bit value
described by τ pushed on top, and similarly for φ.64 σ when φ describes a 64 bit value. In this way,
stack types closely parallel the structure of actual stacks. In addition to these constructs, stacks
types may also be constructed by concatenating two stack types. Such a compound stack, written
σ1 ◦ σ2, is equivalent to the stack obtained by prepending all of σ1 to σ2. Finally, the type sptr(σ)
describes a pointer to a stack described by σ. This facility is used to compile exception handlers,
which must maintain pointers into the stack.

For syntactic convenience, I define several operations on stack types for use in the static seman-
tics. I define stack type lookup operations σ[i]32 and σ[i]64 which find the appropriately size type
in the stack σ located i words from the top of the stack.

Definition 1 (Stack type 32 bit subscript)

(τ .32 σ)[0]32
def= τ

(τ .32 σ)[n + 1]32
def= σ[n]32

(φ .64 σ)[n + 2]32
def= σ[n]32
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Definition 2 (Stack type 64 bit subscript)

(φ .64 σ)[0]64
def= φ

(τ .32 σ)[n + 1]64
def= σ[n]64

(φ .64 σ)[n + 2]64
def= σ[n]64

In a similar manner, I define stack type updates (σ)[i]32 ← τ and (σ)[i]64 ← φ which replace
the type at word offset i in σ with τ or φ respectively.

Definition 3 (Stack type 32 bit update)

(τ .32 σ)[0]32 ← τ ′
def= τ ′ .32 σ

(φ .64 σ)[0]32 ← τ ′
def= τ ′ .32 ns32 .32 σ

(φ .64 σ)[1]32 ← τ ′
def= ns32 .32 τ ′ .32 σ

(τ .32 σ)[n + 1]32 ← τ ′
def= (σ)[n]32 ← τ ′

(φ .64 σ)[n + 2]32 ← τ ′
def= (σ)[n]32 ← τ ′

Definition 4 (Stack type 64 bit update)

(τ1 .32 τ2 .32 σ)[0]64 ← φ′
def= φ′ .64 σ

(τ1 .32 φ .64 σ)[0]64 ← φ′
def= φ′ .64 ns32 .32 σ

(φ .64 σ)[0]64 ← φ′
def= φ′ .64 σ

(φ .64 σ)[1]64 ← φ′
def= ns32 .32 (ns32 .32 σ)[0]64 ← φ′

(τ .32 σ)[n + 1]64 ← φ′
def= (σ)[n]64 ← φ′

(φ .64 σ)[n + 2]64 ← φ′
def= (σ)[n]64 ← φ′

Finally, I define a size operation on stack types in the obvious manner.

Definition 5 (Stack type size)

|ε| def= 0

|τ .32 σ| def= 1 + |σ|
|φ .64 σ| def= 2 + |σ|

7.1.2 Values

Small values in TILTAL are syntactically divided into 32 and 64-bit sizes, written with the meta-
variables w and l respectively. The types of 32-bit values have kind T32 and are written using the
meta-variable τ , whereas the types of 64-bit values have kind T64 and are written with the meta-
variable φ. The two forms of 64-bit values are IEEE floating point numbers or nonsense. 32-bit
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values include integers, sum tags, pointers into the stack, nonsense values, and labels. Coercions
applied to values (q w) change the type of the value but have no runtime effect. Labels serve as
pointers to values allocated on the heap. As with the version of the LIL extended with allocation
primitives, a heap type Ψ maps labels to the types of the values to which they point.

7.1.3 Operands: Registers and stack slots

Instruction operands are similarly divided into 32 and 64-bit versions. In addition to simple values
as described above, operands can be registers or stack slots.

There are three sorts of registers in TILTAL: 32-bit registers, 64-bit registers, and the stack
register. By convention, I reserve one of the 32-bit registers for the exception record (as described
in section 8.1.2). Registers are used to hold the operands and intermediate values, and to pass
arguments to functions. The registers given in the version of TILTAL described here are not
specialized to the x86 platform, which has a very idiosyncratic register architecture.

The stack register is used to maintain the control stack. Reading and writing stack slots is done
using offsets from the front of the stack given in 32 bit strides. Allocation of and de-allocation
of stack space is handled by special instructions. Newly allocated stack space contains nonsense
values which can subsequently be overwritten. Stack slots are used for the same purposes as the 32
and 64-bit registers, as well as for holding return addresses. The call instruction pushes a return
address onto the stack, which can subsequently be used by the ret instruction.

7.1.4 Instructions and instruction sequences

The instruction set described here is very small and focuses mainly on the instructions that are
interesting from a typing standpoint. Instructions are provided for moving values between the heap,
the stack, and the register file as well as allocating and deallocating space on the stack and the
heap. Primitive array instructions are provided to handle bounds checking internally. Instructions
such as the array operations and the memory allocation operation are intended to be implemented
as assembler macros, since they are not directly provided by the machine.

The typing rules for instructions are somewhat different from the usual sorts of typing rules in
that instead of ascribing a type to an instruction, they describe the effect that the instruction has
on the type of the state. The judgement Ψ; ∆; Γ ` i ⇒ Γ′ indicates that the instruction i, when
executed in a state described by a register file type Γ, will result in a state described by Γ′. Note
that instructions do not change the type of values in the heap, nor the set of free types.

In addition to standard instructions, there are several type instructions which have no runtime
effect. The vcase instructions correspond to the vcase constructs of the LIL, and the refine
instructions correspond to the path refinement constructs. These instructions can be eliminated
when types are removed. Note that I syntactically segregate the type instructions from the ordinary
instructions, and give typing rules for them only as elements of code sequences. This simplifies
things greatly, since typing the refinement instructions individually would presumably require the
instruction typing judgement to return a substitution with all of the related complications.

Instruction sequences are a sequence of instructions and type instructions, terminated by either
ret, jmp sv , or haltτ . The return instruction expects the return address to be the top-most element
of the stack, and pops it off before returning.
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7.1.5 Heap values, heaps, and register files

Values that are not guaranteed to fit in 32 or 64-bit slots are always allocated on the heap. Aggregate
heap values include tuples of 32-bit values, arrays of 32 or 64-bit values. Individual 64-bit values
are also permitted to be allocated on the heap to allow them to be “boxed” and used in contexts
expecting 32-bit values. The dtag value serves as a place-holder for exception tags, where the label
serves as the unique identifier of the tag. Finally, code blocks are also allocated in the heap.

Heaps are mappings from labels to heap values. Values in the heap may contain references to
other values in the heap, but must be closed with respect to types.

Register files are mappings from register names to values of the appropriate size and type for
the given register. For example, register files map 32 bit register names to 32 bit word values.
Register files are classified by register file types Γ.

7.1.6 Programs

A TILTAL program is a triple consisting of a heap H, a register file R, and an instruction
sequence I. Execution of TILTAL program is defined by transitions between TILTAL programs.
The complete dynamic semantics for TILTAL is given in appendix C.

7.1.7 Typing contexts

The form of heap contexts Ψ and constructor contexts ∆ are essentially unchanged from the LIL.
As before, heap contexts give types to labels, and constructor contexts bind kind variables, and
bind constructor variables at their kinds.

The term level context from the LIL is replaced by a register file type which describes the type
of the registers and stack of the TILTAL abstract machine. The type of the register file (and
consequently the stack as well) is given by a register file type Γ which maps each register to the
type of its contents. In addition to being used as part of the static semantics, register file types
are included into the type level to describe the pre-conditions of code segments. The type Γ→ 0
describes a code segment which expects a register file described by Γ.

I use the notation Γ(r) to indicate the type assigned by Γ to a register r, and similarly for
float registers f and the stack register sp. I use the notation Γ{r:τ} to indicate the register file
type obtained by replacing the type of r in Γ with τ , and analogously for float registers and stack
registers.

7.2 TILTAL derived forms

7.2.1 Partial instruction sequences

In order to allow TILTAL expressions to be built up somewhat compositionally during the trans-
lation of LIL code, I define a derived notion of partial instruction sequences.

Definition 6 (Partial instruction sequence)
A partial instruction sequence S is a series of ordinary (non-refining) instructions not terminated
by a jump, return or halt. That is,

S ::= ε | i;S
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I define a judgement defining well-typedness as a partial instruction sequence: Ψ; ∆; Γ ` S ⇒ Γ′

with inference rules as follows:

Ψ;∆; Γ ` ε⇒ Γ

Ψ;∆; Γ ` i⇒ Γ′ Ψ;∆; Γ′ ` S ⇒ Γ′′

Ψ;∆; Γ ` i;S ⇒ Γ′′

Definition 7 (Partial instruction sequence composition)
A partial instruction sequence S can be composed with a second partial instruction sequence S′ to
form a new instruction sequence S;S′ as follows:

ε;S′ def= S′

(i;S);S′ def= i; (S;S′)

The result of composing well-formed partial instruction sequences is well-formed.

Lemma 28 (Soundness of partial instruction sequence composition)
If Ψ;∆; Γ ` S ⇒ Γ′ and Ψ;∆; Γ′ ` S′ ⇒ Γ′ then Ψ;∆; Γ ` S;S′ ⇒ Γ′

Proof: By induction on S.

Definition 8 (Partial instruction sequence completion)
A partial instruction sequence S can be completed with an instruction sequence I to form a new
instruction sequence S; I as follows:

ε; I def= I

(i;S); I def= i; (S; I)

The result of completing a well-formed partial instruction sequence with a well-formed instruc-
tion sequence is itself well-formed: in this sense, partial instruction sequence completion is sound.

Lemma 29 (Soundness of partial instruction sequence completion)
If Ψ;∆; Γ ` S ⇒ Γ′ and Ψ;∆; Γ′ ` I ok then Ψ;∆; Γ ` S; I ok

Proof: By induction on S.

7.2.2 Heap fragments

For convenience in the LIL to TILTAL translation, I also define a notion of partial, or open heaps,
called heap fragments. Heap fragments are simply incomplete heaps, with their own derived typing
judgement. Translations of LIL terms generally produce heap fragments in addition to TILTAL
terms, reflecting the fact that the translation may place items in the static data segment.

Definition 9 (Heap fragment)
A heap fragment F is a syntactic heap, which may have open labels.
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I define a judgement defining well-typedness as a heap fragment of the form Ψ ` F : Ψ′.

` Ψ,Ψ′ ok Ψ,Ψ′ ` hval i : Ψ′(`i) hval

Ψ ` {`1:τ1 7→ hval1, . . . , `n:τn 7→ hvaln} : Ψ′

Two heap fragments F1 and F2 can be combined to form a new heap fragment F1;F2.

Definition 10 (Heap fragment combination)

{`1:τ1 7→ hval1, . . . , `n:τn 7→ hvaln}; {`n+1:τn+1 7→ hvaln+1, . . . , `m:τm 7→ hvalm}
def= {`1:τ1 7→ hval1, . . . , `n:τn 7→ hvaln, `n+1:τn+1 7→ hvaln+1, . . . , `m:τm 7→ hvalm}

The result of combining two well-formed heap fragments with disjoint labels is a well-formed
heap-fragment.

Lemma 30 (Soundness of heap fragment combination)
If Ψ ` F1 : Ψ1 and Ψ ` F2 : Ψ2 and the domains of F1 and F@ are disjoint, then Ψ ` F1;F2 : Ψ1,Ψ2

Proof: By induction on F1.

A heap fragment F can be added to a heap H to produce a new heap F + H.

Definition 11 (Heap fragment incorporation)

{`1:τ1 7→ hval1, . . . , `n:τn 7→ hvaln}+ {`n+1:τn+1 7→ hvaln+1, . . . , `m:τm 7→ hvalm}
def= {`1:τ1 7→ hval1, . . . , `n:τn 7→ hvaln, `n+1:τn+1 7→ hvaln+1, . . . , `m:τm 7→ hvalm}

The result of incorporating a well-formed heap fragment with a well-formed heap with disjoint
labels is well-formed.

Lemma 31 (Soundness of heap fragment incorporation)
If ` H : Ψ and Ψ ` F : Ψ′ and the domains of H and F are disjoint, then ` H + F : Ψ,Ψ′

Proof: By induction on F .
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Chapter 8

The LIL to TILTAL translation

The final stage of compilation translates LIL programs to TILTAL code. This process makes the
control structure of the program explicit via call, return, and jump instructions, and replaces vari-
ables with stack slots and registers. Since TILT uses a stack to allocate activation records, it is also
necessary to account for this in the translation. Stacks have been dealt with before in the context of
typed assembly language, and the language design approach taken in TILTAL is not substantially
different in nature from the that previously mapped out by Morrisett, et al. [MWCG98, MCGW02]
(though the translation methodology is quite different). The actual code generation is not unusual
except in that it preserves type information.

This chapter gives a detailed presentation of the translation of LIL programs into TILTAL
programs, and proves the soundness of this translation with respect to an abstract model of register
allocation.

8.1 The constructor level

The type translation from LIL to TILTAL is relatively simple compared to the translation from
the MIL. For the most part, the TILTAL type system is an extension of the LIL system. A few
notable changes at the type level are discussed in more detail below.

8.1.1 Kinds

Every LIL kind is a TILTAL kind, and since no change is made in the constructor translation
that changes kinds, the translation on kinds is the identity. In general, I treat every LIL kind as
its own translation.

8.1.2 The constructor translation

The complete constructor translation is given in figure 8.1. Note that the → type constructor has
no translation, since the translation is only defined on closure-converted programs. This could be
made explicit by giving a syntactic variant of the LIL for closure converted programs and defining
the closure conversion translation from chapter 6 as a translation between programs in the original
LIL and programs in the new syntactic variant. However, it is much simpler to consider each
variant as a refinement of a broader syntactic class. In general, throughout the translation I will
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|α| def= α

|λ(α:κ).c| def= λ(α:κ).|c|
|c1c2|

def= |c1||c2|
|π1 c| def= π1 |c|
|π2 c| def= π2 |c|
| injk

i c| def= injk
i |c|

| case(c, [α1.c1, . . . , αn.cn])| def= case(|c|, [α1.|c1|, . . . , αn.|cn|])
|〈c1, c2〉| def= 〈|c1|, |c2|〉
| foldµj.k c| def= foldµj.k |c|
| pr(j, α:κ, ρ:(j→ κ′), ι: in c)| def= pr(j, α:κ, ρ:(j→ κ′), ι: in |c|)
|Float| def= Float

|Int| def= Int

| Boxed | def= Boxed

|Void| def= Void

| × | def= ×
|→ | def= UNDEFINED

| Code | def=
λ(α32:T32list, α64:T64list, αr:T32).∀[ρ1:ST, ρ2:ST ].
{r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(ρ2), rt:ns32,
sp: cont(|α32 @32 α64 @64 ε|)(ρ1)(ρ2)(αr) .32 (α32 @32 (α64 @64 ρ1 ◦ ρ2))}→ 0

|c[κ]| def= |c|[κ]

|Λj.c| def= Λj.|c|
|∃| def= ∃
|∀| def= ∀
| Rec | def= Rec

|
∨
| def=

∨
|Array32|

def= Array32

|Array64|
def= Array64

| Dyntag | def= Dyntag

| Dyn | def= Dyn

| Tag | def= Tag

Figure 8.1: The constructor translation
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assume that the LIL programs under consideration are of the closure-converted variant and will
not remark upon this further.

The only interesting work of the constructor translation is to translate the type of code functions
into code sequence types of the form Γ→ 0. This can be thought of as replacing all uses of the
Code constant by a closed defined form of the same kind. This is especially convenient, since
the soundness of the translation follows almost directly after showing the well-formedness of this
definition, since any well-formedness derivation of a LIL constructor can be turned into a well-
formedness derivation of its translation by replacing all uses of the Code axiom with uses of the
appropriately weakened well-formedness derivation for the definition.

The translation of the Code type

In order to give the appropriate definition for the Code type, it is first necessary to discuss the calling
conventions used by the translation, since these must be encoded in the types of code sequences.
For simplicity in this translation, I use a so-called “caller pops” calling convention in which a
called function is expected to return the stack with the space allocated for its in-arguments intact.
This convention is not especially convenient for doing tail-call elimination: consequently the actual
implementation uses a “callee-pops” calling convention in which a called function is expected to
de-allocate the space allocated for its in-arguments before returning. The formal translation uses
the caller-pops convention for simplicity.

The treatment of exception handlers in the translation is slightly different from that used
by Morrisett et al. [MCGW02] in which two registers are dedicated to the exception handling
mechanism. To correspond more closely with the current TILT implementation, I reserve a single
register to hold the current exception frame. Exception frames contain the address of the current
handler, and a pointer to the handler’s stack. Old exception frames are stored on the top of the
handler stack.

Definition 12 (Exnptr and Exnhndler)

Exnhndler def= λ(ρ:ST ).
∀[].{r1: Dyn, r2:ns32, rt:ns32, re:ns32, sp:ρ, f1:ns64, f2:ns64}→ 0

Exnptr def= λ(ρ:ST ).× [Exnhndler(ρ), ρ]

The type of the exception handler itself is parameterized by the type of the handler stack. Notice
that the handler expects an exception packet in r1.

Code function types in TILTAL must also encode the type of a function’s continuation in the
form of a return address type. I define a type cont :ST → ST → T32 which describes the machine
state expected by the calling code upon return. Continuation types are parameterized over the
number of words of in-argument space on the stack, the return type, the remainder of the stack
above the next exception handler, and the remainder of the stack below the next handler. The
return value is passed in rt by convention. The return continuation cannot assume anything about
the argument slots, which must be coerced to a nonsense value before returning.
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Definition 13 (cont)

cont def= λ(αi:nat, ρ1:ST, ρ2:ST, αret:T32).
{r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(ρ2), rt:αret,
sp:ns32

αi ◦ ρ1 ◦ ρ2}→ 0

The translation of the Code type using these auxiliary definitions is given in definition 14 below.
Code function types take three arguments corresponding to a list of 32 bit arguments, a list of 64
bit arguments, and a return type. In addition the new code sequence is polymorphic over two stack
variables: ρ1 and ρ2. In the translation of a function type, the second stack variable, ρ2, classifies
the stack tail expected by the current exception handler, while the first stack variable, ρ2, classifies
the stack between the arguments and the last handler. Functions expect all of their arguments on
the stack, and the exception frame in register re. The top most item on the stack upon entry to
the function is the address of the code to which the function should return (that is, the function’s
continuation). Function return values are returned in register rt.

Definition 14

| Code | def= λ(α32:T32list, α64:T64list, αr:T32).∀[ρ1:ST, ρ2:ST ].
{r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(ρ2), rt:ns32,
sp: cont(|α32 @32 α64 @64 ε|)(ρ1)(ρ2)(αr) .32 (α32 @32 (α64 @64 ρ1 ◦ ρ2))}→ 0

The construction of the stack type in definition 14 uses defined operators @32 and @64 which
prepend lists of 32 bit and 64 bit types (respectively) to stack types. It is straightforward to define
these as object level recursors within the type system.

Definition 15 (c @32 σ)
c @32 σ = f(c)σ where

f :T32list→ ST → ST
def= λ(α:T32list).λ(ρ:ST ). pr(j, α:1 + T32 × j, ρ:(j→ ST ), in

case (α)
inj1 ?⇒ σ
inj2 β ⇒ ns32 .32 (ρβ))

Definition 16 (c @64 σ)
c @64 σ = f(c)σ where

f :T64list→ ST → ST
def= λ(α:T64list).λ(ρ:ST ). pr(j, α:1 + T32 × j, ρ:(j→ ST ), in

case (α)
inj1 ?⇒ σ
inj2 β ⇒ ns32 .64 (ρβ))

The definition also refers to the length function for stacks | · |:ST → nat. It is straightforward
to define this using primitive recursion in the same fashion as the iterated stack type and the list
append functions.
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8.1.3 Soundness of the type translation

Lemma 32 (Well-formedness of the Code definition)
If ` ∆ ok then ∆ ` Code : T32list→ T64list→ T32→ T32.

Proof: By construction, ` Code : T32list→ T64list→ T32→ T32. The result then follows by
repeated weakening.

Theorem 15 (Soundness of the constructor translation)
For a LIL constructor c, if ∆ ` c :κ then ∆ ` |c| :κ.

Proof: By construction. Every derivation D of ∆ ` c :κ can be turned into a derivation of
∆ ` |c| :κ by replacing every use of the Code axiom with a derivation for Code obtained via lemma
32.

Theorem 16 (The translation respects substitution)
|c|[|c′|/α] = |c[c′/α]|

Proof: The code definition (Code) and the Code primitive are both closed, so

| Code |[|c′|/α] = Code[|c′|/α] = Code = | Code | = | Code[c′/α]|

All other constructors remain unchanged by the translation, so the proof follows trivially.

Theorem 17 (The translation respects equivalence)
If ∆ ` c ≡ c′ :κ then ∆ ` |c| ≡ |c′| :κ

Proof: By construction. Every derivation of ∆ ` c ≡ c′ :κ can be turned into a derivation of
∆ ` |c| ≡ |c′| :κ by replacing every use of the reflexivity axiom on Code with a use of the reflexivity
axiom on Code.

8.2 The term level: preliminaries

Most of the work of the translation from LIL to TILTAL takes place at the level of terms. The
next few sections will introduce some of the key concepts used in the translation.

8.2.1 Register and stack slot allocation

One of the key issues in translating from a variable binding/substitution based language to a register
transfer style language is how to efficiently manage a fixed set of registers. This is the problem
of register allocation. For the purposes of the formal translation, I choose to leave the specifics
of register and stack slot allocation abstract. The problem of register allocation has been studied
extensively, and this dissertation does not add anything substantially new to the discussion. In
practice, standard techniques can be applied to determine a suitable mapping and the translation
uses this information abstractly. This has the advantage of essentially making the translation
parametric over the choice of allocation methods. Nonetheless, I wish to be able to show that the
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translation as I define it is sound. Consequently, I will place certain typing requirements on the
allocation method.

The term level translation is defined with respect to a notion of an abstract allocator, which I
generally write as A. An allocator is an object that is responsible for mapping program variables
(both 32 and 64 bit) to registers and stack slots of the appropriate size. In order to avoid relying
on any particular register allocation technology, I generally remain agnostic as to the internal data
structures of the allocator, defining only a set of operations which any allocator must support.

Definition 17
An allocator is an object A with the following associated operations:

• For every 32 bit variable x, A(x) = r or A(x) = sp(i).

• For every 64 bit variable xf , A(xf ) = f or A(xf ) = sp(i).

• frmsz(A) is a natural number.

• For every LIL typing context Γ and stack type σ, |Γ|σA = ΓA for some register file type ΓA.

The most basic such operation is to give a location for a variable. For a 32 bit variable x, I
write the location associated with x by an allocator A as A(x). Where appropriate, I sometimes
write A[x→ r] when A(x) = r or A[x→ sp(i)] when A(x) = sp(i). Similarly, for a 64 bit variable
x64, I write the location associated with x64 by the allocator A as A(x64). Where appropriate, I
sometimes write A[x64→ f ] when A(x64) = f or A[x64→sp(i)] when A(x64) = sp(i). It is perfectly
reasonable (and likely) that an allocator will map multiple variables to the same registers and stack
slots 1

An allocator defines and manages the stack frame for a function. Consequently, I require that
an allocator answer queries about the size (in 32 bit words) of the current frame: written frmsz(A).

An allocator is responsible for managing the stack and register resources used to implement a
LIL program in the TILTAL abstract machine. At various points in the program, it is necessary
to write out the type of the abstract machine. Consequently, the second operation required of an
allocator is to be able to generate a register file type from a given typing context Γ. Note though
that an allocator is only responsible for managing the current frame and the registers - it should
be parametric with respect to the rest of the stack. With this in mind, I define the translation of
a LIL typing context Γ under an allocator A with respect to a stack tail σ to be the register file
|Γ|σA.

This completely defines an allocator: an object A which assigns locations to variables, has a
defined frame size, and maps every context/stack type pair to a register file type. However, not
every allocator is sufficient for the purposes of the translation, since there are many incoherent
allocators which satisfy this definition. In order to state the soundness of the LIL to TILTAL
translation, I define the notion of a good allocator that satisfies certain conditions.

Definition 18 (Good allocator for a context)
Let ΓA be |Γ|σA, where Γ is a context and σ is a stack type, and let rt, ft, and re be designated
machine registers. Then I say that an allocator A is a good allocator for Γ if:

1While for semantic correctness it is to be hoped that this will only occur for variables whose live ranges do not
overlap, this is not required by the translation so long as the typing requirements discussed below are fulfilled.
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1. For all x, A(x) 6= re and A(x) 6= rt and for all x64, A(x) 6= ft.

2. ΓA(sp) = σf ◦ σ and frmsz(A) = |σf |.

3. | • |σA = {r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:ns32, rt:ns32, sp:ns32
n ◦ σ} where n = frmsz(A).

4. If Γ = Γ1, x:τ,Γ2 then:

(a) A is a good allocator for Γ1,Γ2.

(b) If A(x) = r then |Γ|σA = |Γ1,Γ2|σA{r:|τ |}
(c) If A(x) = sp(i) then |Γ|σA = |Γ1,Γ2|σA{sp:(σ′)[i]32 ← |τ |} where |Γ1,Γ2|σA(sp) = σ′.

5. If Γ = Γ1, x64:φ,Γ2 then:

(a) A is a good allocator for Γ1,Γ2.

(b) If A(x64) = f , |Γ|σA = |Γ1,Γ2|σA{f :|φ|}
(c) If A(x) = sp(i) then |Γ|σA = |Γ1,Γ2|σA{sp:(σ′)[i]64 ← |φ|} where |Γ1,Γ2|σA(sp) = σ′.

The first three requirements ensure that the allocator doesn’t interfere with registers and stack
slots outside of its control, and that all unused registers and stack slots are given the nonsense type
by the translation.

The special registers rt, ft re are not available for general allocation. The first two are reserved
for temporary computation and returned values, and the last for exception frames.

The second requirement of a good allocator is that the stack type in the machine state returned
from the translation of a context must be an extension of the stack provided, and that the size of
the extension must match the result of the frmsz() query.

The third requirement of a good allocator is that it not impose extraneous requirements on the
state: that is, that the translation of an empty typing context is empty.

The important requirement to be a good allocator is that the locations returned from variable
location queries must be coherent with the machine state obtained by translating a context con-
taining the query variables. This constraint is expressed in the last two good allocator constraints.

There are two properties of interest that follow from these constraints. The first can be sum-
marized informally as follows: if Γ(x) = τ then |Γ|σA(A(x)) = |τ |: that is, if the allocator assigns a
variable from a typing context to a location, then the type assigned to that location in the trans-
lation of the context must be the translation of the variable type. More precisely, if ΓA = |Γ|σA
then:

1. If for every x such that Γ = Γ1, x:τ,Γ2:

(a) If A(x) = r, then ΓA(r) = |τ |.
(b) If A(x) = sp(i) and ΓA(sp) = σ′ then σ′[i]32 = |τ |.

2. If for every x such that Γ = Γ1, x64:φ,Γ2:

(a) If A(x64) = f , then ΓA(f) = |φ|.
(b) If A(x64) = sp(i) and ΓA(sp) = σ′ then σ′[i]64 = |φ|.
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The second property that follows from the definition is that the extension of a typing context
by a single variable translates to the same machine state as the translation of the original context
with the type of the location for the new variable updated with the appropriate type. Informally,
|Γ, x:τ |σA = |Γ|σA{A(x):|τ |}. More precisely:

1. If Γ = Γ′, x:τ then:

(a) If A(x) = r then |Γ|σA = |Γ′|σA{r:|τ |}
(b) If A(x) = sp(i) then |Γ|σA = |Γ′|σA{sp:(σ′)[i]32 ← |τ |} where |Γ′|σA(sp) = σ′.

2. If Γ = Γ′, x64 then:

(a) If A(x64) = f , |Γ|σA = |Γ′|σA{f :|φ|}
(b) If A(x) = sp(i) then |Γ|σA = |Γ′|σA{sp:(σ′)[i]64 ← |φ|} where |Γ′|σA(sp) = σ′.

A third (indirect) consequence of the good allocator definition is that the translation of contexts
commutes with substitution.

Lemma 33 (Context translation substitution)
If A is a good allocator for Γ then

|Γ|σA[|c|/α] = |Γ[c/α]|σ[|c|/α]
A

Proof: (By induction on Γ).

1. If Γ = • then

|Γ|σA[|c|/α] =
{r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:ns32, rt:ns32, sp:ns32

n ◦ σ}[|c|/α] =
{r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:ns32, rt:ns32, sp:ns32

n ◦ σ[|c|/α]} =
|Γ[c/α]|σ[|c|/α]

A

2. If Γ = Γ′, x:τ then by the good allocator assumption (using informal notation)

|Γ|σA[|c|/α] = (by definition)
(|Γ′|σA{A(x):|τ |})[|c|/α] = (by the good allocator assumption)
(|Γ′|σA[|c|/α]){A(x):|τ |[|c|/α]} = (by definition)
(|Γ′|σA[|c|/α]){A(x):|τ [c/α]|} = (by lemma 16)
|Γ′[c/α]|σ[|c|/α]

A {A(x):|τ [c/α]|} = (by induction)
|Γ[c/α]|σ[|c|/α]

A

Being a good allocator is a very weak requirement on allocators. In particular, it does not
guarantee that the choice of locations is semantically well-behaved. For example, the allocator which
assigns every variable of a given type to the same location (regardless of liveness) is a perfectly good
allocator by this definition: the fact that such an allocator is a poor choice practically is irrelevant
from a type-soundness standpoint.

The notion of a good allocator for a context Γ extends naturally to a notion of a good allocator
for an expression.
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Definition 19 (Good allocator for an expression)
If D is a derivation of Ψ;∆; Γ;A ` e : τ then I say that an allocator A is a good allocator for e if for
all sub-derivations of D of the form Ψ;∆′; Γ′ ` e′ : τ ′ (for some ∆′,Γ′, e′, τ ′), A is a good allocator
for Γ′.

Note that this implies that a good allocator for e is a good allocator for all sub-expressions of e.
Also note that this implies that A is a good allocator for Γ.

Since expressions also occur as sub-derivations of operations (in case expressions and handlers)
it is necessary to define an analogous property for operations.

Definition 20 (Good allocator for an operation)
If D is a derivation of Ψ;∆; Γ;A ` opr : τ opr32 then I say that an allocator A is a good allocator
for opr if for all sub-derivations of D of the form Ψ;∆′; Γ′ ` e′ : τ ′ (for some ∆′,Γ′, e′, τ ′), A is a
good allocator for Γ′.

Note that this implies that a good allocator for an expression e is a good allocator for all the
operations in e, and that a good allocator for an operation opr is a good allocator for all expressions
in opr .

8.2.2 Derived instructions

It is convenient in the course of the translation to make use of some derived instructions not
provided in the core instruction set but which can be defined as sequence of core instructions. In
a complete implementation these instructions might be added as primitive.

The first defined instructions coerce registers and stack slots to the nonsense type.

Definition 21 (Junk instructions)

junk r
def= mov r,ns32

fjunk f
def= fmov f,ns64

sjunk sp(i) def= swrite sp(i),ns32

fsjunk sp(i) def= fswrite sp(i),ns64

For brevity, a single instruction is defined to coerce all registers to the nonsense type.

Definition 22 (Register coercion)

junkregs def= junk r1;
junk r2;
junk f1;
junk f2;
ε

Lemma 34 (Derived instructions)
For well-formed contexts Ψ, ∆, and Γ, where Γ(sp) = σ

• Ψ;∆; Γ ` junk r⇒ Γ{r:ns32}
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• Ψ;∆; Γ ` fjunk f ⇒ Γ{f :ns64}

• Ψ;∆; Γ ` sjunk sp(i)⇒ Γ{sp:(σ)[i]32 ← ns32}

• Ψ;∆; Γ ` fsjunk sp(i)⇒ Γ{sp:(σ)[i]64 ← ns64}

• Ψ;∆; Γ ` junkregs r⇒ Γ{r1:ns32}{r2:ns32}{f1:ns64}{f2:ns64}

Proof: By construction.

Finally, I give an inductive definition of an instruction to coerce a range of stack slots to the
nonsense type.

Definition 23 (Stack range coercion)

junkstack n . . . n
def= sjunk sp(n);

ε

junkstack n . . .m (n < m) def= sjunk sp(m);
junkstack n . . . (m− 1)

Lemma 35 (Stack range coercion)
For natural numbers n and m where n < m and for well-formed contexts Ψ, ∆, and Γ, where
Γ(sp) = σ:

Ψ;∆; Γ ` junkstack n . . .m⇒ Γ{sp:σ′}

where σ′ = (((σ)[n]32 ← ns32) . . .)[m]32 ← ns32

Proof: By induction on m. If n = m, then the derived instruction sequence is sjunk sp(m):ε, and
the result follows directly by lemma 34. If n < m, then by induction, we get an instruction sequence
which junks sp(n), . . . , sp(m − 1). After appending on the additional sjunk sp(m) instruction,
the result again follows by lemma 34.

In addition to these composite instructions, I also define a more general form of the move
instruction which targets either registers or stack slots.

Definition 24 (Arbitrary mov and fmov)

srmov r, sv def= mov r, sv

srmov sp(i), sv def= swrite sp(i), sv

srfmov f , fv def= mov f , fv

srfmov sp(i), fv def= fswrite sp(i), fv

Lemma 36 (Arbitrary mov)
For a location dest32 , and for an operand sv such that Ψ;∆; Γ ` sv : τ

• If dest32 = r then Ψ;∆; Γ ` srmov r, sv ⇒ Γ{r:τ}

• If dest32 = sp(i) and Γ(sp) = σ then Ψ;∆; Γ ` srmov sp(i), sv ⇒ Γ{sp:(σ)[i]32 ← τ}
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Proof: By construction.

Lemma 37 (Arbitrary fmov)
For a location dest32 , and for an operand fv such that Ψ;∆; Γ ` fv :φ

• If dest32 = f then Ψ;∆; Γ ` fsrmov f , fv ⇒ Γ{f :φ}

• If dest32 = sp(i) and Γ(sp) = σ then Ψ;∆; Γ ` fsrmov sp(i), fv ⇒ Γ{sp:(σ)[i]64 ← φ}

Proof: By construction.

To simplify the translation (as well as eliminate un-necessary moves), I define register to register
mov instructions which coerce the source register to ns32 after the move whenever the registers are
not aliases.

Definition 25 (Move and junk)

movj r, r def= ε

movj r, r′ (r 6= r′) def= mov r, r′;
junk r′

fmovj f , f def= ε

fmovj f , f ′ (f 6= f ′) def= fmov f , f ′;
fjunk f ′

Lemma 38 (32 bit move and junk)
For registers r and r′ Ψ;∆; Γ `movj r, r′ ⇒ Γ{r′:ns32}{r:Γ(r′)}

Proof: By construction.
If the registers are aliases, then the instruction sequence is empty, and

Γ{r′:ns32}{r:Γ(r′)} = Γ{r:ns32}{r:Γ(r)} = Γ

If the registers are different, then mov and junk instructions are emitted, which update the
register file type accordingly.

Lemma 39 (64 bit move and junk)
For registers f and f ′ Ψ;∆; Γ ` fmovj f , f ′ ⇒ Γ{r′:ns64}{f :Γ(f ′)}

Proof: By construction. If the registers are aliases, then the instruction sequence is empty,
and Γ = Γ{f ′:ns64}{f :Γ(f ′)}. If the registers are different, then fmov and fjunk instructions are
emitted, which update the register file type accordingly.

For exception handlers, I define a code sequence for copying a stack segment. I begin by defining
a code sequence stackcopy (σ1, σ2) which copies the portion of the stack described by σ2 intro
pre-allocated space below the already copied σ1. Note that stackcopy (σ1, σ2) is only defined
when σ1 and σ2 have well-defined sizes: that is, when they are composed solely of pushes and of
compositions of stacks with well-defined sizes.
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stackcopy (σ, ε) def= ε

stackcopy (σ1, τ .32 σ2)
def= swrite sp(|σ1|), sp(|σ1 ◦ τ .32 σ2|+ |σ1|);

stackcopy (σ1 ◦ (τ .32 ε), σ2)

stackcopy (σ1, φ .64 σ2)
def= fswrite sp(|σ1|), sp(|σ1 ◦ φ .64 σ2|+ |σ1|);

stackcopy (σ1 ◦ (φ .64 ε), σ2)

Lemma 40 (stackcopy)
For well-formed stack types σ1, σ2 and σ such that |σ1| and |σ2| are well-defined:

Ψ;∆; Γ{sp:(σ1 ◦ ns32
|σ2|) ◦ (σ1 ◦ σ2) ◦ σ} ` stackcopy(σ1, σ2)⇒ Γ{sp:(σ1 ◦ σ2) ◦ (σ1 ◦ σ2) ◦ σ}

Proof: By induction on σ2.

• If σ2 is empty, then |σ2| = 0, so

(σ1 ◦ ns32
|σ2|) ◦ (σ1 ◦ σ2) ◦ σ = σ1 ◦ σ1 ◦ σ

• If σ2 = τ .32 σ′2 then:

Let σ′1 = σ1 ◦ (τ .32 ε)

By induction:
Ψ;∆; Γ{sp:(σ′1 ◦ ns32

|σ′
2|) ◦ (σ′1 ◦ σ′2) ◦ σ} ` stackcopy(σ′1, σ

′
2)⇒

Γ{sp:(σ′1 ◦ σ′2) ◦ (σ′1 ◦ σ′2) ◦ σ}
Note that σ′1 ◦ σ′2 = σ1 ◦ (τ .32 ε) ◦ σ′2 = σ1 ◦ τ .32 σ′2 = σ1 ◦ σ2

So by the partial sequence instruction rule, it suffices to show that:
Ψ;∆; Γ{sp:(σ1 ◦ ns32

|σ2|) ◦ (σ1 ◦ σ2) ◦ σ} ` swrite sp(|σ1|), sp(|σ1 ◦ τ .32 σ′2|+ |σ1|)⇒
Γ{sp:(σ1 ◦ (τ .32 ε) ◦ ns32

|σ′
2|) ◦ (σ1 ◦ σ2) ◦ σ}

But note that |σ1 ◦ ns32
|σ2| ◦ σ1| = |σ1 ◦ τ .32 σ′2|+ |σ1|, and hence

((σ1 ◦ ns32
|σ2|) ◦ (σ1 ◦ σ2) ◦ σ)[|σ1 ◦ τ .32 σ′2|+ |σ1|]32 = σ2[0]32 = τ

And since ns32
|σ2| = ns32

1+|σ′
2| = ns32 .32 ns32

|σ′
2|

(((σ1 ◦ ns32
|σ2|) ◦ (σ1 ◦ σ2) ◦ σ))[|σ1|]32 ← τ = (σ1 ◦ (τ .32 ε) ◦ ns32

|σ′
2|) ◦ (σ1 ◦ σ2) ◦ σ

Which is what we wanted.

• If σ2 = φ .64 σ′2 then the result follows by a similar argument.

The stackcopy definition is used to define a stack duplication code sequence copyframe σ
which emits code to duplicate σ on the top of the stack.

copyframe σ
def= salloc |σ|;

stackcopy (ε, σ)
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64-bit values Ψ;∆; Γ;A, σ1, σ2 `64 fv :φ ; fv ′

32-bit values Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′

64 bit operations Ψ;∆; Γ;A, σ1, σ2 ` dest64 ← fopr :φ ; S

32 bit operations Ψ;∆; Γ;A, σ1, σ2 ` dest32 ← opr : τ ; S

Expressions Ψ;∆; Γ;A, σ1, σ2 `C e : τ ; I;F
Heap values Ψ `h hval : τ ; I;F
Heaps Ψ ` d ; H

Programs ` p : τ ; P

Figure 8.2: LIL to TILTAL translation judgements

Lemma 41 (copyframe)
For well-formed stack types σ and σ′, such that |σ| is well-defined:

Ψ;∆; Γ{sp:σ ◦ σ′} ` copyframeσ ⇒ Γ{sp:σ ◦ σ ◦ σ′}

Proof: By construction.
By the salloc rule, it suffices to show that

Ψ;∆; Γ{sp:ns32
|σ| ◦ σ ◦ σ′} ` stackcopy(ε, σ)⇒ Γ{sp:σ ◦ σ ◦ σ′}

Which follows immediately by lemma 40.

8.3 The term translation

The judgement forms used for the translation of LIL programs to TILTAL programs are listed in
figure 8.3. In addition to the usual LIL typing contexts, all of the expression level judgements are
defined with respect to an allocator A and two stack types σ1 and σ2. The allocator provides the
locations of variables in registers and frame slots, and the two stack types keep track of the layout
of the rest of the stack below the current frame: σ1 describes the stack above the current handler
and σ2 describes the stack below it.

Within the bodies of functions, these stack types will generally refer to two additional free
variables representing the two stack segments expected by the function (the segment above the
enclosing handler, and the segment below it). By convention, I name these variable ρ1 and ρ2, and
the stack types are expected to be well-formed in a context including these variables in addition
to free type variables from the original program. So for example, an invariant of the most of the
translation judgements is that |∆|, ρ1:ST, ρ2:ST ` σ1 :ST , and similarly for σ2, where ∆ is the
current constructor context. For brevity, I will generally abbreviate this idiom as follows:

Definition 26

∆ρ1,ρ2
def= |∆|, ρ1:ST, ρ2:ST

The next several sections will give detailed overviews of the individual translation judgements
and discuss some of the more interesting translation rules, as well as stating and proving the relevant
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soundness properties. The complete definition of the translation can be found at the end of the
chapter.

8.3.1 Values

LIL 32 bit and 64 bit values translate into TILTAL 32 bit and 64 bit operands, respectively. The
32 bit value translation judgement Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′ indicates that in heap context
Ψ, constructor context ∆, term context Γ, allocator A, and stack segments σ1 and σ2; a LIL small
value sv of type τ translates to a TILTAL operand sv ′. The 64 bit has an analogous interpretation.

32 bit values

For closed values, the translation does little. For example, the translation of an integer value:

Ψ;∆; Γ;A, σ1, σ2 `32 i : Int ; i

Similarly, for coerced values such as values injected into union types, the translation simply induc-
tively translates the coerced value to an operand, and then applies the translated coercion.

The rules for translating variables are more interesting however, since they use the allocator to
choose locations for the variable.

Ψ;∆; Γ[x:τ ];A[x→ r], σ1, σ2 `32 x : τ ; r

Ψ;∆; Γ[x:τ ];A[x→ sp(i)], σ2, σ2 `32 x : τ ; sp(i)

The translation of 32 bit LIL values to TILTAL operands is sound in the sense that given a
well-behaved allocator (as defined in definition 18), a well-typed LIL value translates to a TILTAL
operand that is well-typed in the translation of the term context under the allocator. More precisely:

Theorem 18 (Soundness of the small value translation)
If Ψ;∆; Γ ` sv : τ

and A is a good allocator for Γ
and ∆ρ1,ρ2 ` σ1 :ST
and ∆ρ1,ρ2 ` σ2 :ST
and Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′

then
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sv ′ : |τ |

Proof: (theorem 18) By induction on sv . The proof proceeds by cases.

1. Suppose Ψ;∆; Γ[x:τ ] ` x : τ and Ψ; ∆; Γ[x:τ ];A[x→ r], σ1, σ2 `32 x : τ ; r.

To show:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` r : |τ |

By assumption:
Γ = Γ1, x:τ,Γ2

A(x) = r

112



So by the good allocator assumption:
|Γ|σ1◦σ2

A (A(x)) = |τ |

So by the register rule:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` r : |τ |

2. Suppose Ψ;∆; Γ[x:τ ] ` x : τ and Ψ; ∆; Γ[x:τ ];A[x→ sp(i)], σ2, σ2 `32 x : τ ; sp(i).

To show:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sp(i) : |τ |

By assumption:
Γ = Γ1, x:τ,Γ2

A(x) = sp(i)

So by the good allocator assumption:
|Γ|σ1◦σ2

A (sp) = σ
σ[i]32 = |τ |

So by the stack slot rule:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sp(i) : |τ |

3. Suppose Ψ[`:τ ];∆; Γ;A, σ1, σ2 `32 ` : τ ; `.

To show:
|Ψ[`:τ ]|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` ` : |τ |
By definition, |Ψ[`:τ ]| = |Ψ|, `:|τ | so the result follows directly by the label rule.

4. Suppose Ψ;∆; Γ;A, σ1, σ2 `32 i : Int ; i.

To show:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` i : Int

This follows directly by the integer rule.

5. Suppose Ψ;∆; Γ;A, σ1, σ2 `32 inj unionc sv : c ; inj union(i,|c|) sv ′.

To show:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` inj union(i,|c|) sv ′ : |c|

By inversion:
∆ ` c ≡

∨
[. . . , ci, . . .] : T32

Ψ;∆; Γ;A, σ1, σ2 `32 sv : ci ; sv ′

Ψ;∆; Γ ` sv : ci

By induction:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sv ′ : |ci|

By theorem 17 and weakening:
∆ρ1,ρ1 ` |c| ≡ |

∨
[. . . , ci, . . .]| : T32

By construction (injunion):
∆ρ1,ρ2 ` inj union(i,|c|) : |ci| ⇒ |c|

By construction (coercion app):
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` inj union(i,|c|) sv ′ : |c|
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6. Suppose Ψ;∆; Γ;A, σ1, σ2 `32 rollτ sv : τ ; roll|τ | sv ′.

To show:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` roll|τ | sv ′ : |τ |
By inversion:

∆ ` τ ≡ Rec[κ](c)(cp) : T32

Ψ;∆; Γ;A, σ1, σ2 `32 sv : c(Rec[κ]c)cp ; sv ′

Ψ;∆; Γ ` sv : c(Rec[κ]c)cp

By induction:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sv ′ : |c(Rec[κ]c)cp|
By theorem 17 and weakening:

∆ρ1,ρ1 ` |τ | ≡ | Rec[κ](c)(cp)| : T32

Note that | Rec[κ](c)(cp)| = Rec[κ](|c|)(|cp|) and |c(Rec[κ]c)cp| = (|c|(Rec[κ]|c|)|cp|).
By construction (roll):

∆ρ1,ρ2 ` roll|τ | : (|c|(Rec[κ]|c|)|cp|)⇒ |τ |
By construction (coercion app):
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` roll|τ | sv ′ : |τ |

7. Suppose Ψ;∆; Γ;A, σ1, σ2 `32 unrollτ sv : c(Rec[κ]c)cp ; unroll|τ | sv ′.

To show:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` unroll|τ | sv ′ : |c(Rec[κ]c)cp|
By inversion:

∆ ` τ ≡ Rec[κ](c)(cp) : T32

Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′

Ψ;∆; Γ ` sv : τ

By induction:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sv ′ : |τ |
By theorem 17 and weakening:

∆ρ1,ρ1 ` |τ | ≡ | Rec[κ](c)(cp)| : T32

Note that | Rec[κ](c)(cp)| = Rec[κ](|c|)(|cp|) and |c(Rec[κ]c)cp| = (|c|(Rec[κ]|c|)|cp|).
By construction (unroll):

∆ρ1,ρ2 ` unroll|τ | : |τ | ⇒ (|c|(Rec[κ]|c|)|cp|)
By construction (coercion app):
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` unroll|τ | sv ′ : |c(Rec[κ]c)cp|

8. Suppose Ψ;∆; Γ;A, σ1, σ2 `32 pack sv as τ hiding c : τ ;

(pack[|τ |]|c|)sv ′

To show:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` (pack[|τ |]|c|)sv ′ : |τ |
By inversion:

∆ ` τ ≡ ∃[κ](c′) : T32

Ψ;∆; Γ;A, σ1, σ2 `32 sv : c′c ; sv ′

Ψ;∆; Γ ` sv : c′c
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By induction:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sv ′ : |c′c|

By theorem 17 and weakening:
∆ρ1,ρ1 ` |τ | ≡ |∃[κ](c′)| : T32

Note that |∃[κ]c′| = ∃[κ]|c′| and |c c′| = |c| |c′|.

By construction (pack):
∆ρ1,ρ2 ` pack[|τ |]|c| : |c′||c| ⇒ |τ |

By construction (coercion app):
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` pack[|τ |]|c|sv ′ : |τ |

9. Suppose Ψ;∆; Γ;A, σ1, σ2 `32 sv [c] : c′c ; sv ′[|c|]

To show:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sv [c] : |c′c|

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv : c′c ; sv ′

Ψ;∆; Γ ` sv :∀[κ](c′)
∆ ` c :κ

By induction:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sv ′ : |∀[κ](c′)|

By theorem15 and weakening:
∆ρ1,ρ2 ` |c| :κ

Note that |∀[κ]c′| = ∀[κ]|c′| and |c c′| = |c| |c′|.

By construction (forall instantiation):
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sv ′[|c|] : |c′c|

64 bit values

The translation rules for 64 bit values is exactly analogous to that of 32 bit values. For variables:

Ψ;∆; Γ[xf :φ];A[xf → f ], σ1, σ2 `64 xf :φ ; f

Ψ;∆; Γ[xf :φ];A[xf → sp(i)], σ2, σ2 `32 xf :φ ; sp(i)

And for constants:

Ψ;∆; Γ;A, σ2, σ2 `32 r : Float ; r

The soundness theorem is stated and proved in much the same fashion as for 32 bit values
except that no induction is required.
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Theorem 19 (Soundness of the 64 bit value translation)
If Ψ;∆; Γ ` fv :φ

and A is a good allocator for Γ
and ∆ρ1,ρ2 ` σ1 :ST
and ∆ρ1,ρ2 ` σ2 :ST
and Ψ;∆; Γ;A, σ1, σ2 `32 fv :φ ; fv ′

then
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` fv ′ : |φ|

Proof: By construction. The proof proceeds by cases on the last rule of the translation derivation.

1. Suppose Ψ;∆; Γ[xf :φ];A[xf → f ], σ1, σ2 `64 xf :φ ; f

To show:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` f : |φ|

By assumption:
Γ = Γ1, xf :φ,Γ2

A(xf ) = f

So by the good allocator assumption:
|Γ|σ1◦σ2

A (A(xf )) = |φ|

So by the float register rule:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` f : |φ|

2. Suppose Ψ;∆; Γ[xf :φ];A[xf → sp(i)], σ2, σ2 `32 xf :φ ; sp(i).

To show:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sp(i) : |φ|

By assumption:
Γ = Γ1, x:τ,Γ2

A(x) = sp(i)

So by the good allocator assumption:
|Γ|σ1◦σ2

A (sp) = σ
σ[i]64 = |φ|

So by the stack slot rule:
|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` sp(i) : |φ|

3. Suppose Ψ;∆; Γ;A, σ2, σ2 `32 r : Float ; r.

To show:
|Ψ[`:τ ]|;∆ρ1,ρ2 ; |Γ|σ1◦σ2

A ` r : Float

This follows immediately by construction.
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8.3.2 Operations

The translation judgement for LIL operations takes the form Ψ; ∆; Γ;A, σ1, σ2 ` dest32 ← opr : τ ;

S. Whereas the value translation relates LIL values and TILTAL operands, the operation trans-
lation relates a LIL operation opr to both a TILTAL location dest32 and a partial instruction
sequence S (as defined in section 7.2.1). The idea behind this relation is that given the machine
state assumptions encoded in the allocator (A), the partial instruction sequence S implements the
operation opr , leaving the result in the destination dest32 .

Structuring the translation in this manner is intended to improve the quality of the generated
code by (among other things) eliminating un-necessary mov instructions. The TILT certifying
implementation discussed in subsequent chapters uses this idea in a very similar form to that given
here in the formal translation. A closely related approach to code generation is also taken by
Dybvig et al. in their paper “Destination-Driven Code Generation” [DHB90].

Not all LIL operations are given translations by the operation translation. It simplifies the
structure of the translation noticeably to translate only certain instructions (raise, handle, and the
various case operations) as part of an expression. Consequently, these operations are treated as
part of the expression translation.

In general, slightly different code must be produced when the destination is a stack slot versus
a register. In order to keep the translation simple, I handle all stack slot destinations with a single
rule.

Ψ;∆; Γ;A, σ1, σ2 ` rt ← opr : τ ; S

Ψ;∆; Γ;A, σ1, σ2 ` sp(i)← opr : τ ; S;
swrite sp(i), rt;
junk rt

This rule simply translates the operation using the temporary register as the destination, then
writes the value of the temporary register to the appropriate stack slot and clears the temporary
register. In some cases, better code could be produced by adding additional rules for specific
operation/destination pairs in which the intermediate usage of the temporary register could be
eliminated.

For the inclusion of small values into the operation level, the translation produces an operand
from the small value and moves it into the destination register.

Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′

Ψ;∆; Γ;A, σ1, σ2 ` r← sv : τ ; mov r, sv ′

Note that in many cases, a good allocator will have assigned r as the location for sv (for example,
when sv is a variable which is not live after the operation). In such cases, un-necessary move
instructions will be generated. As above, additional translation rules can be added to produce
better code for such cases.

A more interesting rule to consider is the translation rule for the call operation, which invokes
a code function on a list of 64 and 32 bit arguments. Code calls are implemented by writing the
code arguments onto the stack and then calling the translated code sequence. Upon return, it is
necessary to move the result from the temporary register rt to the destination register (since the
calling convention specifies that function results are returned in rt). Note the use of the movj
pseudo-instruction to ensure correctness in the case that the destination register is rt.
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|Γ|εA = {r1:ns32, r2:ns32, re:ns32, rt:ns32, f1:ns64, f2:ns64, sp : σf}
∆ρ1,ρ2 ` σf ≡ ns32 .32 · · · .32 ns32︸ ︷︷ ︸

m

.32 ns64 .64 · · ·ns64︸ ︷︷ ︸
k

.64σ
′ :ST

Ψ;∆; Γ;A, σ1, σ2 `32 sv : Code(τ0, . . . , τm−1)(φ0, . . . , φk−1)→ τ ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `32 sv i : τi ; sv ′i i ∈ 0 . . .m− 1
Ψ;∆; Γ;A, σ1, σ2 `32 fv i :φi ; fv ′i i ∈ 0 . . . k − 1

Ψ;∆; Γ;A, σ1, σ2 ` r← call sv(sv0, . . . , svm−1)(fv0, . . . , fvk−1) : τ ;

fswrite sp(m + 2 ∗ (k − 1)), fv ′k−1
...
fswrite sp(m), fv ′0
swrite sp(m− 1), sv ′m−1
...
swrite sp(0), sv ′0
junkregs
call sv ′[σ′ ◦ σ1, σ2]
movj r, rt

This rule illustrates several important ideas used in the translation. Firstly, note that the
translation requires that the translation of the typing context under the allocator be a register file
in which all of the registers contain only junk. This reflects the fact that all registers in this calling
convention are caller-save, and hence may be overwritten during the function call. A translation
using a callee-save convention could allow some or all of the registers to be occupied. The implicit
effect of this rule is to force any valid translation to spill registers using the spill rule before applying
a call rule (or to never map registers at all). This demonstrates a key advantage of defining the
translation parametrically with respect to allocation: there is a clean separation of concerns between
the expectations of the translator and the mechanism by which the register allocator satisfies those
expectations.

Secondly, note that the translation expects the allocator to include space for the out-arguments
in the frame. This is not required by the allocator methodology, but is convenient for the purposes
of avoiding a frame pointer, as well as permitting the allocator to potentially re-use temporary
slots as out-arguments. The translation expresses this requirement on the allocator by premising
the translation of a call operation on the availability of sufficient unused slots on the top of the
frame:

∆ρ1,ρ2 ` σf ≡ ns32 .32 · · · .32 ns32.32︸ ︷︷ ︸
m

ns64 .64 · · ·ns64.64︸ ︷︷ ︸
k

σ′ :ST

A translation only exists if the allocator provides sufficient space in the frame.
This rule also illustrates the use of the derived movj partial instruction sequence from section

7.2.1. The technique used to handle stack slot destinations above implies that the translation must
be prepared for the destination register to be an alias for the temporary register. This is handled
here by the movj instruction, which performs a move on its argument registers and junks the
source register only if the registers are different. Consequently, if r = rt, then the result is left in
rt: and if r 6= rt, the result is moved to r and the rt register is junked.
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The rest of the operation translation rules proceed in a similar fashion. The complete translation
rules can be found in section 8.4 below.

8.3.3 Soundness of the operation translations

The soundness theorem for the operation translation states that for a well-typed operation and a
good allocator; whenever the operation is related to a destination and a partial code sequence by
the translation, the partial code sequence is well-formed and leaves its result in the destination.
Note that the translation assumes that the re register which is left unmapped by the allocator will
contain an exception frame.

Theorem 20 (Soundness of the operation translation.)
If Ψ;∆; Γ;A ` opr : τ opr32 andA is a good allocator for Γ and ∆ρ1,ρ2 ` σ1 :ST and ∆ρ1,ρ2 ` σ2 :ST
then:

1. If Ψ;∆; Γ;A, σ1, σ2 ` r← opr : τ ; S
then

|Ψ|;∆ρ1,ρ2 ; ΓA ` S ⇒ ΓA{r:|τ |}
where |Γ|σ1◦σ2

A {re:Exnptr(σ1)} = ΓA

2. If Ψ;∆; Γ;A, σ1, σ2 ` sp(i)← opr : τ ; S
then

|Ψ|;∆ρ1,ρ2 ; ΓA ` S ⇒ ΓA{sp:σ′}
where |Γ|σ1◦σ2

A {re:Exnptr(σ1)} = ΓA and ΓA(sp) = σ and (σ)[i]32 ← |τ | = σ′.

Proof: By induction on derivations. The proof proceeds by cases on the last rule used. Note
that only one rule applies when the destination is a stack slot, and that when the destination is
a register, at most one rule applies for each instruction form. Also note that the good allocator
assumption guarantees that |Γ|σ1◦σ2

A (rt) = ns32, and hence for cases that modify rt, the output
typing condition requires that rt be coerced to ns32.

Throughout the proof, I use ΓA to refer to |Γ|σ1◦σ2
A {re:Exnptr(σ1)}

1. Suppose Ψ;∆; Γ;A, σ1σ2 ` sp(i) ← opr : τ ; S. The stack slot rule is the only rule that
applies, so

By inversion:
Ψ;∆; Γ;A, σ1, σ2 ` rt ← opr : τ ; S

Let σ = ΓA(sp).

By induction:
|Ψ|;∆ρ1,ρ2 ; ΓA ` S ⇒ ΓA{rt:|τ |}

By the stack write rule and lemma 34:
|Ψ|;∆ρ1,ρ2 ; ΓA{rt:|τ |} ` swrite sp(i), rt;

junk rt

⇒ ΓA{sp:(σ)[i]32 ← |τ |}{rt:ns32}

So by lemma 28 (composition):
|Ψ|;∆ρ1,ρ2 ; ΓA ` S;

swrite sp(i), rt;
junk rt

⇒ ΓA{sp:(σ)[i]32 ← |τ |}{rt:ns32}
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2. Suppose opr = sv .

By assumption:
Ψ;∆; Γ;A ` sv : τ opr32

∆,Γ,A ` r← sv : τ ; mov r, sv ′

By inversion:
Ψ;∆; Γ;A ` sv : τ
∆,Γ,A `32 sv : τ ; sv ′

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov r, sv ′ ⇒ ΓA{r:|τ |}

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : |τ |

By the mov typing rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov r, sv ′ ⇒ ΓA{r:|τ |}

3. Suppose opr = select sv

By assumption:
Ψ;∆; Γ;A ` select sv : τi opr32

∆,Γ,A ` r← select sv : τi ; mov r, sv ′

loadr r, r(i)

By inversion:
Ψ;∆; Γ ` sv : × (τ0, . . . , τi, . . . , τn)
∆,Γ,A `32 sv : × (τ0, . . . , τi, . . . , τn) ; sv ′

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov r, sv ′

loadr r, r(i)
⇒ ΓA{r:|τi|}

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : | × (τ0, . . . , τi, . . . , τn)|

By definition:
| × (τ0, . . . , τi, . . . , τn)| = ×(|τ0|, . . . , |τi|, . . . , |τn|)

By the mov and load typing rules:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov r, sv ′

loadr r, r(i)
⇒ ΓA{r:|τ |}

4. Suppose opr = dyntagc.

By the new tag instruction rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` dyntag|c| r⇒ ΓA{r:| Dyntag(c)|}

5. Suppose opr = box fv .

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `64 fv : Float ; fv ′

Ψ;∆; Γ ` fv :φ
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To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` malloc|φ| r, fv ′ ⇒ ΓA{r:| Boxed(φ)|}

By assumption A is a good allocator for Γ, so

By theorem 19:
|Ψ|;∆ρ1,ρ2 ; ΓA ` fv ′ : |φ|

By the mallocφ rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` malloc|φ| r, fv ′ ⇒ ΓA{r: Boxed(|φ|)}

(Note, | Boxed(φ)| = Boxed(|φ|))

6. Suppose opr = 〈sv1, . . . , svn〉.
By inversion:

Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : τi ; sv ′i
Ψ;∆; Γ ` sv i : τi

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` malloc r, [|τ1|, . . . , |τn|]〈sv ′1, . . . , sv ′n〉 ⇒ ΓA{r:|τ×|}
where τ× = ×[τ1, . . . , τn]

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv i : |τi|

So the result follows directly by the malloc rule.

7. Suppose opr = call sv(sv0, . . . , svm−1)(fv0, . . . , fvk−1).

By inversion:
|Γ|εA(sp) = {r1:ns32, r2:ns32, re:ns32, rt:ns32, f1:ns64, f2:ns64, sp : σf}
∆ρ1,ρ2 ` σf ≡ ns32 .32 · · · .32 ns32︸ ︷︷ ︸

m

.32 ns64 .64 · · ·ns64︸ ︷︷ ︸
k

.64σ
′ :ST

Ψ;∆; Γ;A, σ1, σ2 `32 sv : Code(τ0, . . . , τm−1)(φ0, . . . , φk−1)→ τ ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `32 sv i : τi ; sv ′i i ∈ 0 . . .m− 1
Ψ;∆; Γ;A, σ1, σ2 `32 fv i :φi ; fv ′i i ∈ 0 . . . k − 1
Ψ;∆; Γ ` sv : Code[τ0, . . . , τn][φ0, . . . , φk](τ)
Ψ;∆; Γ ` sv i : τi

Ψ;∆; Γ ` fv i :φi

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` fswrite sp(m + 2 ∗ (k − 1)), fv ′k−1

...
fswrite sp(m), fv ′0
swrite sp(m− 1), sv ′m−1
...
swrite sp(0), sv ′0
call sv ′[σ′ ◦ σ1, σ2]
movj r, rt

⇒ ΓA{r:|τ |}

The proof proceeds by stepping through the emitted instructions and applying the appropriate
typing rules. For brevity, I will simply describe the register file type after each instruction
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rather than restating the entire typing judgement. I also leave the inner inductions on m and
k informal.
By theorems 19 and 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` fv ′i : |φi|
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′i : |τi|

By the good allocator assumption, ΓA(sp) = σf ◦ σ1 ◦ σ2.

By assumption:
∆ρ1,ρ2 ` σf ≡ ns32 .32 · · · .32 ns32︸ ︷︷ ︸

m

.32 ns64 .64 · · ·ns64︸ ︷︷ ︸
k

.64σ
′ :ST where σf = |Γ|εA(sp)

Therefore, by the swrite and fswrite rules, it suffices to show that the remainder of the
instruction sequence after the stack writes is well-typed assuming that the register file has
the type:

ΓA{sp:σc} where σc = τ0 .32 · · · .32 τm−1 .32 φ0 .64 · · ·φk−1 .64 σ′ ◦ σ1 ◦ σ2

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv : | Code(τ0, . . . , τm−1)(φ0, . . . , φk−1)→ τ |

And by definition 14:
| Code(τ0, . . . , τm−1)(φ0, . . . , φk−1)→ τ | =
∀[ρ1:ST, ρ2:ST ].
{r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(ρ2), rt:ns32,
sp: cont(|σ32 ◦ σ64|)(ρ1)(ρ2)(|τ |) .32 (σ32 ◦ (σ64 ◦ ρ1 ◦ ρ2))}→ 0

where σ32 = τ0 .32 · · · .32 τm−1 .32 ε
and σ64 = φ0 .64 · · ·φk−1 .64 ε

So by the instantiation rule, sv [σ′ ◦ σ1, σ2] has type:
Γc→ 0 where
Γc = {r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(σ2), rt:ns32,

sp: cont(|σ32 ◦ σ64|)(σ′ ◦ σ1)(σ2)(|τ |) .32 (σ32 ◦ (σ64 ◦ σ′ ◦ σ1 ◦ σ2))}

Let τret = cont(|σ32 ◦ σ64|)(σ′ ◦ σ1)(σ2)(|τ |)

Note that Γc = ΓA{sp:τret .32 σc} and so the call rule applies. Therefore, it suffices to show
that the remainder of the code sequence is well-typed under Γret, where τret = Γret→ 0.

By lemma 38, the register file after applying the last move and junk instruction is

Γret{rt:ns32}{r:|τ |}

But notice that by definition of cont (definition 13):
Γret = {r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(σ2), rt:|τ |,

sp:ns32
m+2∗k ◦ σ′ ◦ σ1 ◦ σ2}

So Γret = ΓA{rt:|τ |}.

Finally, recall that by the good allocator assumption:
ΓA{rt:ns32} = ΓA
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Hence:
Γret{rt:ns32}{r:|τ |}

= ΓA{rt:|τ |}{rt:ns32}{r:|τ |}
= ΓA{rt:ns32}{r:|τ |}
= ΓA{r:|τ |}

8. Suppose opr = arrayτ (sv1, sv2)

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Int ; sv ′1
Ψ;∆; Γ;A, σ1, σ2 `32 sv2 : τ ; sv ′2
Ψ;∆; Γ ` sv1 : Int
Ψ;∆; Γ ` sv2 : τ

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` malloc|τ | r, sv ′1, sv ′2 ⇒ ΓA{r:|Array32(τ)|}

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′1 : |Int|
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′2 : |τ |

so by the malloc rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` malloc|τ | r, sv ′1, sv ′2 ⇒ ΓA{r:Array32(|τ |)}

9. Suppose opr = farrayτ (sv , fv)

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv : Int ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `64 fv :φ ; fv ′

Ψ;∆; Γ ` sv : Int
Ψ;∆; Γ ` fv :φ

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` fmalloc|φ| r, sv ′, fv ′ ⇒ ΓA{r:|Array64(τ)|}

By theorems 18 and 19:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : |Int|
|Ψ|;∆ρ1,ρ2 ; ΓA ` fv ′ : |τ |

so by the fmalloc rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` fmalloc|φ| r, sv ′, fv ′ ⇒ ΓA{r:|Array64(τ)|}

10. Suppose opr = subτ (sv1, sv2).

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Array32(τ) ; sv ′1
Ψ;∆; Γ;A, σ1, σ2 `32 sv2 : Int ; sv ′2
Ψ;∆; Γ ` sv1 : Array32(τ)
Ψ;∆; Γ ` sv2 : Int

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sub|τ | r, sv ′1, sv ′2 ⇒ ΓA{r:|τ |}
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By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′1 : |Array32(τ)|
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′2 : Int

so by the sub rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sub|τ | r, sv ′1, sv ′2 ⇒ ΓA{r:|τ |}

11. Suppose opr = updτ (sv1, sv2, sv3).

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Array32(τ) ; sv ′1
Ψ;∆; Γ;A, σ1, σ2 `32 sv2 : Int ; sv ′2
Ψ;∆; Γ;A, σ1, σ2 `32 sv3 : τ ; sv ′3
Ψ;∆; Γ ` sv1 : Array32(τ)
Ψ;∆; Γ ` sv2 : Int
Ψ;∆; Γ ` sv3 : τ

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` upd sv ′1, sv

′
2, sv

′
3

malloc r, []〈〉
⇒ ΓA{r:Unit}

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′1 : |Array32(τ)|
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′2 : Int
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′3 : |τ |

So by the upd rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` upd sv ′1, sv

′
2, sv

′
3

⇒ ΓA

And by the malloc rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` malloc r, []〈〉 ⇒ ΓA{r:Unit}

12. Suppose opr = fupdφ(sv1, sv2, fv).

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Array32(τ) ; sv ′1
Ψ;∆; Γ;A, σ1, σ2 `32 sv2 : Int ; sv ′2
Ψ;∆; Γ;A, σ1, σ2 `64 fv :φ ; fv ′

Ψ;∆; Γ ` sv1 : Array32(τ)
Ψ;∆; Γ ` sv2 : Int
Ψ;∆; Γ ` fv :φ

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` fupd sv ′1, sv

′
2, fv

′

malloc r, []〈〉
⇒ ΓA{r:Unit}

By theorems 18 and 19:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′1 : |Array32(τ)|
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′2 : Int
|Ψ|;∆ρ1,ρ2 ; ΓA ` fv ′ : |φ|
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So by the fupd rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` fupd sv ′1, sv

′
2, fv

′

⇒ ΓA

And by the malloc rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` malloc r, []〈〉 ⇒ ΓA{r:Unit}

A useful corollary states that state of the machine after executing the translation of an operation
is the same as the machine state given by translating the extended context.

Corollary 3 (Operation context extension.)
If Ψ;∆; Γ;A ` opr : τ opr32

and A is a good allocator for Γ and for Γ, x:τ
and ∆ρ1,ρ2 ` σ1 :ST
and ∆ρ1,ρ2 ` σ2 :ST
and Ψ;∆; Γ;A, σ1, σ2 ` A(x)← opr : τ ; S

then
|Ψ|;∆ρ1,ρ2 ; ΓA ` S ⇒ ΓB

where ΓA = |Γ|σ1◦σ2
A {re:Exnptr(σ1)} and ΓB = |Γ, x:τ |σ1◦σ2

A {re:Exnptr(σ1)}

Proof: The proof follows trivially by applying theorem 20 and observing that the good allocator
assumption implies that the resulting context is equal to the translation of the extended context.

The proof of soundness for the 64 bit operation translation follows exactly the same form as
that of the 32 bit operation translation.

Theorem 21 (Soundness of the 64 bit operation translation.)
If Ψ;∆; Γ;A ` fopr :φ opr64 and A is a good allocator for Γ and ∆ρ1,ρ2 ` σ1 :ST and ∆ρ1,ρ2 `
σ2 :ST then:

1. If Ψ;∆; Γ;A, σ1, σ2 ` f ← fopr :φ ; S
then

|Ψ|;∆ρ1,ρ2 ; ΓA ` S ⇒ ΓA{f :|φ|}

where |Γ|σ1◦σ2
A {re:Exnptr(σ1)} = ΓA

2. If Ψ;∆; Γ;A, σ1, σ2 ` sp(i)← fopr :φ ; S
then

|Ψ|;∆ρ1,ρ2 ; ΓA ` S ⇒ ΓA{sp:σ′}

where |Γ|σ1◦σ2
A {re:Exnptr(σ1)} = ΓA and ΓA(sp) = σ and (σ)[i]64 ← |φ| = σ′.

Proof: By induction on derivations. The proof proceeds by cases on the last rule used. Note
that only one rule applies when the destination is a stack slot, and that when the destination is
a register, at most one rule applies for each instruction form. Also note that the good allocator
assumption guarantees that |Γ|σ1◦σ2

A (ft) = ns32, and hence for cases that modify ft, the output
typing condition requires that ft be coerced to ns64.

Throughout the proof, I use ΓA to refer to |Γ|σ1◦σ2
A {re:Exnptr(σ1)}
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1. Suppose Ψ;∆; Γ;A, σ1σ2 ` sp(i) ← fopr :φ ; S. The stack slot rule is the only rule that
applies, so

By inversion:
Ψ;∆; Γ;A, σ1, σ2 ` ft ← fopr :φ ; S

Let σ = ΓA(sp).

By induction:
|Ψ|;∆ρ1,ρ2 ; ΓA ` S ⇒ ΓA{ft:|φ|}

By the stack write rule and lemma 34:
|Ψ|;∆ρ1,ρ2 ; ΓA{ft:|φ|} ` fswrite sp(i), ft;

junk ft
⇒ ΓA{sp:(σ)[i]64 ← |φ|}{ft:ns64}

So by lemma 28 (composition):
|Ψ|;∆ρ1,ρ2 ; ΓA{ft:|φ|} ` S;

fswrite sp(i), ft;
junk ft

⇒ ΓA{sp:(σ)[i]64 ← |φ|}{ft:ns64}

2. Suppose fopr = fv .

By assumption:
Ψ;∆; Γ;A ` fv :φ opr64

Ψ;∆; Γ;A, σ1, σ2 ` f ← fv : τ ; fmov f , fv ′

By inversion:
Ψ;∆; Γ;A ` fv :φ
Ψ;∆,Γ,A `64 fv :φ ; fv ′

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` fmov f , fv ′ ⇒ ΓA{f :|φ|}

By theorem 19:
|Ψ|;∆ρ1,ρ2 ; ΓA ` fv ′ : |φ|

By the fmov typing rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` fmov f , sv ′ ⇒ ΓA{f :|φ|}

3. Suppose fopr = fsubφ(sv1, sv2).

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Array64(φ) ; sv ′1
Ψ;∆; Γ;A, σ1, σ2 `32 sv2 : Int ; sv ′2
Ψ;∆; Γ ` sv1 : Array64(φ)
Ψ;∆; Γ ` sv2 : Int

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sub|φ| f , sv ′1, sv ′2 ⇒ ΓA{f :|φ|}

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′1 : |Array64(φ)|
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′2 : Int

so by the fsub rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sub|φ| f , sv ′1, sv ′2 ⇒ ΓA{f :|φ|}
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4. Suppose fopr = unbox sv

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv : Boxed(φ) ; sv ′

Ψ;∆; Γ ` sv : Boxedφ

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` floadr f , sv ′ ⇒ ΓA{f :|φ|}

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : | Boxed(φ)|

so by the floadr rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` floadr f , sv ′ ⇒ ΓA{f :|φ|}

As before, a useful corollary states that state of the machine after executing the translation of
a 64 bit operation is the same as the machine state given by translating the extended context.

Corollary 4 (Operation context extension.)
If Ψ;∆; Γ;A ` fopr :φ opr32

and A is a good allocator for Γ and for Γ, xf :τ
and ∆ρ1,ρ2 ` σ1 :ST
and ∆ρ1,ρ2 ` σ2 :ST
and Ψ;∆; Γ;A, σ1, σ2 ` A(xf )← fopr :φ ; S

then
|Ψ|;∆ρ1,ρ2 ; ΓA ` S ⇒ ΓB

where ΓA = |Γ|σ1◦σ2
A {re:Exnptr(σ1)} and ΓB = |Γ, xf :φ|σ1◦σ2

A {re:Exnptr(σ1)}

Proof: The proof follows trivially by applying theorem 21 and observing that the good allocator
assumption implies that the resulting context is equal to the translation of the extended context.

8.3.4 Expressions

The general expression translation judgement takes the form Ψ;∆; Γ;A, σ1, σ2 `C e : τ ; I;F . LIL
expressions translate to TILTAL instruction sequences I, terminated either by a return, a jump,
or a halt, depending on the context of occurrence of the expression. In addition, the translation
of nested sub-expressions may produce a heap fragment F containing additional code blocks which
must be allocated in the heap at the top level. All new labels generated by the translation are
assumed to be fresh.

Occurrence parameters

As usual, the translation relies on an allocator and two stack types describing the stack layout below
the current stack frame. Additionally, the translation is parameterized by a context of occurrence
C indicating the context in which the translated term occurs. For the purposes of this translation,
contexts range over return contexts, jump contexts, and halt contexts.

C:: = ret | jmp sv | halt
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Return contexts indicate that the expression is a function body and should exit using the function
return convention. Jump contexts indicate the expression occurs as a sub-block of a larger expres-
sion, and should exit by placing the return value in rt and jumping to the provided address. Halt
contexts indicate that the expression occurs as a program body and should exit by terminating the
program.

Additional contexts are possible: for example the implementation uses a special context to
efficiently translate boolean expressions whose only use is to decide branches. The implementation
also uses this mechanism to implement proper tail-recursion: function calls occurring at the end of
expressions translated in the return context are tail calls. The formal translation does not address
this optimization since it adds nothing interesting to the development. As with the use of the
destination parameter in the operation translation, this idea is closely related to the techniques
used by Dybvig, et al [DHB90].

Most of the translation inference rules are parametric with respect to the context of occurrence.
The exceptions are the rules for the small value base case of expressions, where the the appropriate
terminator for the instruction sequence is chosen.

Return values

For return contexts, the translation inference rule requires that the top element of the stack (below
the frame) be an appropriate continuation type2. The code sequence emitted moves the return
value to rt, de-allocates the stack frame, coerces the registers and in-arguments to nonsense, and
returns.

∆ρ1,ρ2 ` σ1 ≡ (cont(m)(σ′1)(σ2)(|τr|)) .32 σ′1 :ST
Ψ;∆; Γ;A, σ1, σ2 `32 sv : τr ; sv ′ frmsz(A) = n

Ψ;∆; Γ;A, σ1, σ2 `ret sv : τr ; mov rt, sv ′;
sfree n;
junkregs;
junkstack 1 . . .m;
ret;

For expressions translated in a jump context, the context of occurrence carries with it the
destination of the jump. The translation rule makes no explicit assumptions about the state of
the stack, but insists that the type of the destination be appropriate for a jump. The translated
code moves the result value to the temporary register and jumps to the destination. Note that the
destination is assumed to have been previously instantiated with all of the necessary type variables:
it is not sound to simply instantiate it with the current typing context ∆, since ∆ may contain
more type variables than the destination is expecting.

|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2
A ` sv l : Γ{rt:|τ |} → 0

Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `jmp sv l
sv : τ ; mov rt, sv ′;

jmp sv l;

2It is an invariant of the translation as stated that this should always be true. Note that the soundness of the
translation does not rely on this invariant, since the existence of a translation derivation is predicated on it being
satisfied. However, a proof of completeness of the term translation would require that this assumption be shown
valid.
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Finally, expressions translated in a halt context move the result value to the temporary register,
de-allocate the stack frame, and halt the program. Note that the translation insists that the stack
segments below the current frame be empty.

Ψ;∆; Γ;A, ε, ε `32 sv : τr ; sv ′ frmsz(A) = n

Ψ;∆; Γ;A, ε, ε `halt sv : τr ; mov rt, sv ′;
sfree n;
haltτr ;

Spilling

For the most part, all of the exception rules are syntax directed. However, I include one non-syntax
directed rule in the translation to give the allocator more flexibility in its choices of locations. The
non-deterministic spill rule allows a shift to a new good allocator so long as a code sequence can
be found that re-arranges the frame appropriately.

Ψ;∆; Γ;A′, σ1, σ2 `C e : τ ; I
|Ψ|;∆ρ1,ρ1 ; |Γ|σ1◦σ2

A ` S ⇒ |Γ|σ1◦σ2
A′

where A′ is a good allocator for e

Ψ;∆; Γ;A, σ1, σ2 `C e : τ ; S; I

This rule is intended to capture the fact that a register allocator may wish to insert code into the
instruction stream at various points (such as spill and restore code). Since various instructions (such
as function calls) insist that the register file be empty, this rule gives the allocator an opportunity
to obey this constraint without forcing all variables live across the call to be permanently stack
resident.

Operations

The translation of ordinary LIL operation binding demonstrates the interaction between the allo-
cator and the destination based translation used for operations.

Ψ;∆; Γ;A, σ1, σ2 ` A(x)← opr : τi ; S
Ψ;∆; Γ, x:τi;A, σ1, σ2 `C e : τ ; I

Ψ;∆; Γ;A, σ1, σ2 `C letτ x = opr in e : τ ; S;
I

The operation opr is translated with respect to the destination chosen by the allocator for x to
produce a partial instruction sequence S that implements the operation and leaves the result in
the chosen destination. The rest of the expression is translated to produce an instruction sequence
I, to which S is prepended. Uses of x within e will be translated via the allocator to references to
the chosen location for x.

Operations translated as part of the expression translation

Some operations are not given direct translations as part of the operation translation, but are
instead translated directly by the expression translation. This is done to keep the operation trans-
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Ψ;∆; Γ;A, σ1, σ2 `32 sv : Dyn ; sv ′ Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Dyntag(τ1) ; sv ′

Ψ;∆; Γ, x1:× [Dyntag(τ1), τ1];A, σ1, σ2 `jmp `end[(Π1∆),σ1,σ2] e1 : τx ; I1

Ψ;∆; Γ;A, σ1, σ2 `jmp `end[(Π1∆),σ1,σ2] e2 : τx ; I2

Ψ;∆; Γ, x:τ ;A, σ1, σ2 `C e : τ ; I
|Γ|σ1◦σ2

A = ΓA

Ψ;∆; Γ;A, σ1, σ2 `C letx = dyncase(sv)(sv1 ⇒ x1.e1, ⇒ e2) in e : τ ;

mov rt, sv ′

brdyn rt, sv ′1, `1[(Π1∆), σ1, σ2]
junk rt

I2

`1:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:× [Dyntag(|τ1|), |τ1|]]
srmovA(x1), rt

junk rt

I1

`end:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τx|]
srmov A(x), rt

junk rt

I

Figure 8.3: Exception case translation in TILTAL.

lation simpler, usually because the operations generate additional heap allocated code blocks. Sum
and exception case analysis and handlers all fall into this category.

The translation of exception case analysis (figure 8.3) produces two new code blocks and a code
sequence. The code sequence compares the tag of an exception in register rt to a known tag, and if
equal branches to the first additional code block: `1. This code block moves the refined exception
into the destination assigned to x1 by the allocator, and then executes the translation of the body
of the case statement e1. Notice though that the context parameter for the expression translation
is changed to indicate the block should exit by jumping to the merge point `end. Since code blocks
must be closed, all of the free type variables must be threaded through the blocks: hence the
instantiation of the destination label `end[(Π1∆), σ1, σ2]. (I use the notation Π1∆ to indicate the
constructor variables bound in the domain of ∆.)

In the case that the branch is not taken, the other branch of the case is executed. Note that
it too is translated in a context with the merge point as its jump destination. The remainder of
the expression, e, is translated in the original context of occurrence, and then is emitted with the
merge point label `end, with the free type variables suitably abstracted. Note that by convention
the continuation expects its argument in rt.

The translation of sum cases follows essentially the same form, but with substantially more
cases. The principle additional complication is that numerous branches must be generated to
distinguish between the various tags and tagged record within the union type. No effort is made in
the formal translation to emit these in an especially efficient fashion (for example by using general
comparisons and intermediate branches instead of simple equality tests).

Exception handling is handled in a relatively inefficient manner for simplicity in the translation
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(see figure 8.4). The translation insists that the allocator spill all registers to the stack at every
handler site, and then pushes the old exception handler frame onto the stack and copies the entire
frame over it. The handled expression is translated with a jump continuation that forwards control
to a postlude which cleans up the stack and restores the old handler before jumping to the merge
point. The handler code itself does a similar cleanup before executing the handler code, which is
translated with the final merge point as its continuation.

Raising exceptions is also dealt with at the expression level, not because it requires additional
code blocks to be emitted, but rather because exception raising code ends with an unconditional
jump and hence does not fit into the syntactic category of partial instruction sequences. To raise
an exception, the exception packet must be placed in r1, the handler stack must be restored from
the exception frame before jumping to the handler, also obtained from the frame.

Ψ;∆; Γ;A, σ1, σ2 `32 sv : Dyn ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `C letx = raiseτ sv in e : τ ; mov r1, sv
loadr rt, re(1)
mov sp, rt

loadr rt, re(0)
jmp rt

Type operations

The remainder of the expression translation inference rules deal with the type instructions, such as
unpacking existentials and refining types using the LX based primitives. Since these constructs are
essentially the same in LIL and TILTAL, the translation does little interesting work. For example,
the refinement operation for pairs simply translates the rest of the expression and prepends a pair
refinement instruction.

∆ ` c ≡ α :κ1 × κ2

Ψ;∆, β:κ1, γ:κ2;
Γ[〈β, γ〉/α];
A, σ1[〈β, γ〉/α], σ2[〈β, γ〉/α]

 `C[〈β,γ〉/α] e[〈β, γ〉/α] : τ [〈β, γ〉/α] ; I

Ψ;∆, α:κ1 × κ2; Γ;A, σ1, σ2 `C let〈β, γ〉 = c in e : τ ; refine〈β, γ〉 = |c|;
I

The rest of the type instruction rules are similarly un-interesting and are not described here
further. A complete listing of all of the expression translation is given in section 8.4.

8.3.5 Soundness of the expression translation

The soundness theorem for the expression translation says that if a well-formed LIL expression
translates to an instruction sequence and a heap fragment, then both the instruction sequence and
the heap fragment are well-formed. Note that the heap context Ψ is extended with the additional
bindings introduced by the new heap when typechecking the instruction sequence. As before,
I assume that the allocator is a good allocator for the expression, and that the stack segment
parameters are well-formed.
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Ψ;∆; Γ;A, ε, σ3 `jmp `post[(Π1∆),ε,σh] e1 : τx ; I1;F1

Ψ;∆; Γ, x2: Dyn;A, σ1, σ2 `jmp `end[(Π1∆),σf◦σ1,σ2] e2 : τx ; I2;F2

Ψ;∆; Γ, x:τx;A, σ1, σ2 `C e : τ ; I;F
ΓA = {r1:ns32, r2:ns32, rt:ns32, re:Exnptr(σ2), sp:σf ◦ σ1 ◦ σ2, f1:ns64, f2:ns64}

where ΓA = |Γ|σ1◦σ2
A {re:Exnptr(σ2)

and ΓB = |Γ|σ3
A {re:Exnptr(σ3)

and σf = |Γ|εA(sp)
and σ3 = Exnptr(σ2) .32 σf ◦ σ1 ◦ σ2

and σh = σf ◦ σ3

Ψ;∆; Γ;A, σ1, σ2 `C letx = handleτx(e1, x2.e2) in e : τ ;

push re

stackcopy (Exnptr(σ2)) .32 σf

sfree 1
malloc re[Exnhndler(σh), σh]〈`handle[Π1∆, ρ1, ρ2], sp〉
I1

`handle:∀[∆, ρ1, ρ2].{r1: Dyn, r2:ns32, rt:ns32, re:ns32, sp:σh, f1:ns64, f2:ns64}
srmov A(x2), r1

sfree(frmsz(A))
pop re

junk r1

I2

`post:∀[|∆|, ρ1:ST, ρ2:ST ].ΓB[rt:|τx|]
sfree(frmsz(A))
pop re

jmp `end[Π1∆, σ1, σ2]
`end:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τx|]

srmov A(x), rt

junk rt

I;
F ;
F1;
F2

Figure 8.4: Exception handler implementation in TILTAL.
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Theorem 22 (Soundness of the expression translation.)
If A is a good allocator for e

and Ψ;∆; Γ ` e : τ exp
and ∆ρ1,ρ2 ` σ1 :ST
and ∆ρ1,ρ2 ` σ2 :ST
and Ψ;∆; Γ;A, σ1, σ2 `C e : τ ; I;F

then
|Ψ| ` F : ΨF

and |Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` I ok
where ΓA = |Γ|σ1◦σ2

A {re:Exnptr(σ2)}

Proof: By induction on derivations. The proof proceeds by cases on the last rule of the translation
derivation. I generally identify the rule under consideration by listing the conclusion of the rule,
except where ambiguous.

Throughout the proof, let ΓA = |Γ|σ1◦σ2
A {re:Exnptr(σ2)}.

1. Suppose Ψ;∆; Γ;A, σ1, σ2 `ret sv : τr ; mov rt, sv ′;
sfree n;
junkregs;
junkstack 1 . . .m;
ret

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov rt, sv ′;

sfree n;
junkregs;
junkstack 1 . . .m;
ret

ok

By assumption:
Ψ;∆; Γ;A ` sv : τr

Ψ;∆; Γ;A, σ1, σ2 `32 sv : τr ; sv ′

∆ρ1,ρ2 ` σ1 ≡ (cont(m)(σ′1)(σ2)(|τr|)) .32 τ1 .32 . . . .32 τm .32 σ′1 :ST

So by theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : |τr|

By the mov typing rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov rt, sv ′ ⇒ ΓA{rt:|τr|}

By the good allocator assumption, ΓA(sp) = σf ◦ (σ1 ◦ σ2) and frmsz(()A) = |σf |
So by the sfree typing rule:
|Ψ|;∆ρ1,ρ2 ; ΓA{rt:|τr|} ` sfree n⇒ ΓA{rt:|τr|}{sp:(σ1 ◦ σ2)}

By lemma 34:
|Ψ|;∆ρ1,ρ2 ; ΓA{rt:|τr|}{sp:(σ1 ◦ σ2)} ` junkregs⇒

ΓA{rt:|τr|}{sp:(σ1 ◦ σ2)}{r1:ns32}{r2:ns32}{f1:ns64}{f2:ns64}
Let Γ′A = ΓA{rt:|τr|}{sp:(σ1 ◦ σ2)}{r1:ns32}{r2:ns32}{f1:ns64}{f2:ns64}
By assumption:

∆ρ1,ρ2 ` σ1 ≡ (cont(m)(σ′1)(σ2)(|τr|)) .32 τ1 .32 . . . .32 τm .32 σ′1 :ST
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So by lemma 35:
|Ψ|;∆ρ1,ρ2 ; Γ′A ` junkstack 1 . . .m⇒

Γ′A{sp:(ns32
m) ◦ σ′1 ◦ σ2)}

And by definition:
cont(m)(σ′1)(σ2)(|τr|) = Γret→ 0

where
Γret = {r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(σ2), rt:|τr|, sp:ns32

m ◦ σ′1 ◦ σ2}

So by the return rule, it suffices to show that :
Γr{sp:ns32

m ◦ σ′1 ◦ σ2} = Γret

By the good allocator assumption:
Γr(re) = ΓA(re) = Exnptr(σ2)

So by definition:
Γr = {r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(σ2), rt:|τr|, sp:ns32

m ◦ σ′1 ◦ σ2} = Γret

2. Suppose Ψ;∆; Γ;A, σ1, σ2 `jmp sv l
sv : τ ; mov rt, sv ′

jmp sv l

To show:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov rt, sv ′

jmp sv l

ok

By assumption:
Ψ;∆; Γ;A ` sv : τ
Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′

|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2
A ` sv l : Γ{rt:|τ |} → 0

So by theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : |τ |

By the mov typing rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov rt, sv ′ ⇒ ΓA{rt:|τr|}

And by the jmp typing rule:
|Ψ|;∆ρ1,ρ2 ; ΓA{rt:|τr|} ` jmp sv ′l ok

3. Suppose Ψ;∆; Γ;A, ε, ε `halt sv : τr ; mov rt, sv ′

sfree n
haltτr

By inversion:
Ψ;∆; Γ;A, ε, ε `32 sv : τr ; sv ′

frmsz(A) = n
Ψ;∆; Γ;A ` sv : τr

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : |τr|

So by the mov typing rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov rt, sv ′ ⇒ ΓA{rt:|τr|}
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By the good allocator assumption:
ΓA(sp) = |Γ|ε◦εA = σf ◦ ε
where |σf | = frmsz(()A) = n

So by the sfree typing rule:
|Ψ|;∆ρ1,ρ2 ; ΓA{rt:|τr| ` sfree n⇒ ΓA{rt:|τr|}{sp:ε}

And by the halt typing rule:
|Ψ|;∆ρ1,ρ2 ; ΓA{rt:|τr|}{sp:ε} ` halt|τr| ok

4. Suppose Ψ;∆; Γ;A, σ1, σ2 `C letτ x = opr in e : τ ; (S; I);F .

By inversion:
Ψ;∆; Γ;A, σ1, σ2 ` A(x)← opr : τi ; S
Ψ;∆; Γ, x:τi;A, σ1, σ2 `C e : τ ; IΨ;∆; Γ ` opr : τi opr32

Ψ;∆; Γ, x:τi ` e : τ exp

And by the good allocator assumption, A is a good allocator for Γ.

So by corollary 3
|Ψ|;∆ρ1,ρ2 ; ΓA ` S ⇒ ΓB

Where ΓB = |Γ, x:τi|σ1◦σ2
A {re:Exnptr(σ1)}

By the definition of a good allocator for an expression, A is a good allocator for the sub-
expression e, so:

By induction:
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓB ` I ok

And by lemma 29 (partial instruction sequence completion) and heap context weakening:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` (S; I) ok

5. Suppose Ψ;∆; Γ;A, σ1, σ2 `C letτ xf = fopr in e : τ ; (S; I);F .

By inversion:
Ψ;∆; Γ;A, σ1, σ2 ` A(xf )← fopr :φ ; S
Ψ;∆; Γ, xf :φ;A, σ1, σ2 `C e : τ ; IΨ;∆; Γ ` fopr :φ opr32

Ψ;∆; Γ, xf :τ ` e : τ exp

And by the good allocator assumption, A is a good allocator for Γ.

So by corollary 4
|Ψ|;∆ρ1,ρ2 ; ΓA ` S ⇒ ΓB

Where ΓB = |Γ, xf :φ|σ1◦σ2

A {re:Exnptr(σ1)}
By the definition of a good allocator for an expression, A is a good allocator for the sub-
expression e, so:

By induction:
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓB ` I ok

And by lemma 29 (partial instruction sequence completion) and heap context weakening:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` (S; I) ok
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6. Suppose Ψ;∆; Γ;A `C let[α, x] = unpack sv in e : τ ; unpack [α, rt]sv ′;
srmov A(x), rt;
junk rt;
I;
F

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv :∃[κ][c] ; sv ′

∆, α:κ; Γ, x:(cα);A, σ1, σ2 `C e : τ ; I;F
Ψ;∆; Γ ` sv :∃[κ](c)
Ψ;∆, α:κ; Γ, x:(cα) ` e : τ ′ exp α /∈ fv(τ ′)

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : |∃[κ](c)|

Since |∃[κ](c)| = ∃[κ](|c|), by the unpack rule it suffices to show:
|Ψ|;∆, α:κρ1,ρ2 ; ΓA{rt:c α} ` srmov A(x), rt;

junk rt;
I

ok

By lemma 36, the machine state after the srmov instruction is (informally written):
ΓA{rt:|c α|}{A(x):|c α|}

And by lemma 34, the machine state after the junk instruction is (also informally written):
ΓA{rt:|c α|}{A(x):|c α|}{rt:ns32} = ΓA{A(x):|c α|}
(since ΓA(rt) = ns32).

But by the good allocator assumption:
ΓA{A(x):|c α|} = ΓB

where ΓB = |Γ, x:c α|σ1◦σ2
A {re:Exnptr(σ1)}

Finally, by induction and heap context weakening:
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆, α:κρ1,ρ2 ; ΓB ` I ok

7. Suppose Ψ;∆; Γ;A, σ1, σ2 `C let〈β, γ〉 = c in e : τ ; I;F and ∆ ` c ≡ 〈c1, c2〉 :κ1 × κ2.

By inversion:
Ψ;∆, ; Γ;A, σ1, σ2 `C e[c1, c2/β, γ] : τ ; I;F
Ψ;∆; Γ ` e[c1, c2/β, γ] : τ exp

By induction:
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` I ok

8. Suppose

Ψ;∆, α:κ1 × κ2; Γ;A, σ1, σ2 `C let〈β, γ〉 = c in e : τ ; refine〈β, γ〉 = |c|;
I;
F

and ∆, α:κ1 × κ2 ` c ≡ α :κ1 × κ2.
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By inversion:
Ψ;∆, β:κ1, γ:κ2;
Γ[〈β, γ〉/α];
A, σ1[〈β, γ〉/α], σ2[〈β, γ〉/α]

 `C[〈β,γ〉/α] e[〈β, γ〉/α] : τ [〈β, γ〉/α] ; I;F

Ψ;∆, β:κ1, γ:κ2,∆′; Γ[〈β, γ〉/α] ` e[〈β, γ〉/α] : τ [〈β, γ〉/α] exp

By assumption:
∆, α:κ1 × κρ1,ρ2

2 ` σ1 :ST
∆, α:κ1 × κρ1,ρ2

2 ` σ2 :ST

So by substitution :
∆, β:κ1, γ:κρ1,ρ2

2 ` σ1[|〈β, γ〉|/α] : ST
∆, β:κ1, γ:κρ1,ρ2

2 ` σ2[|〈β, γ〉|/α] : ST

So by induction :
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆, β:κ1, γ:κρ1,ρ2
2 ; ΓS ` I ok

where ΓS = |Γ[〈β, γ〉/α]|(σ1◦σ2)[|〈β,γ〉|/α]
A

By lemma 33:
ΓS = |Γ|σ1◦σ2

A [|〈β, γ〉|/α] = ΓA[|〈β, γ〉|/α]

So by the pair refinement rule:
|Ψ|,ΨF ;∆, α:κ1 × κρ1,ρ2

2 ; ΓA ` refine〈β, γ〉 = |c|;
I

ok

9. Suppose Ψ;∆; Γ;A, σ1, σ2 `C let foldβ = c in e : τ ; I;F and ∆ ` c ≡ foldµj.κ c′ :µj.κ.

By inversion:
∆; Γ;A, σ1, σ1 `C e[c′/β] : τ ; I;F
Ψ;∆; Γ ` e[c′/β] : τ exp

By induction:
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` I ok

10. Suppose

Ψ;∆, α:µj.κ, ∆′; Γ;A, σ1, σ2 `C let foldβ = c in e : τ ; refine[foldβ]c;
I;
F

and ∆, α:µj.κ,∆′ ` c ≡ α :µj.κ.

By inversion:
Ψ;∆, β:κ[µj.κ/j],∆′;
Γ[foldµj.κ β/α];
A,
σ1[foldµj.κ β/α],
σ1[foldµj.κ β/α]

 `C[foldµj.κ β/α] e[foldµj.κ β/α] : τ [foldµj.κ β/α] ; I;F

Ψ;∆, β:κ[µj.κ/j],∆′; Γ[foldµj.κ β/α] ` e[foldµj.κ β/α] : τ [foldµj.κ β/α] exp
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By assumption:
∆, α:µj.κ,∆′ρ1,ρ2 ` σ1 :ST
∆, α:µj.κ,∆′ρ1,ρ2 ` σ2 :ST

So by substitution :
∆, β:κ[µj.κ/j],∆′ρ1,ρ2 ` σ1[| foldµj.κ β|/α] : ST
∆, β:κ[µj.κ/j],∆′ρ1,ρ2 ` σ2[| foldµj.κ β|/α] : ST

So by induction :
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆, β:κ[µj.κ/j],∆′ρ1,ρ2 ; ΓS ` I ok
where ΓS = |Γ[foldµj.κ β/α]|(σ1◦σ2)[| foldµj.κ β|/α]

A

By lemma 33:
ΓS = |Γ|σ1◦σ2

A [| foldµj.κ β|/α] = ΓA[| foldµj.κ β|/α]

So by the fold refinement rule:
|Ψ|,ΨF ;∆, α:µj.κ,∆′ρ1,ρ2 ; ΓA ` refine[foldβ]c;

I
ok

11. Suppose Ψ;∆; Γ `C letτ inji β = (c, sv) in e : τ ; I;F and ∆ ` c ≡ inj
+[κ1,...,κi,...,κn]
i c′ : +

[κ1, . . . , κi, . . . , κn].

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `C e[c′/β] : τ ; I;F
Ψ;∆; Γ ` e[c′/β] : τ exp

By induction:
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` I ok

12. Suppose

Ψ;∆, α: + [κ1, . . . , κn],∆′ `C letτinjiβ = (c, sv) in e : τ ; refine[inji β]|c|, sv ′;
I;
F

and ∆, α:κ1 + κ2,∆′ ` c ≡ α :κ1 + κ2.

By inversion:
Ψ;∆, β:κi,∆′;
Γ[inji β/α];

A, σ1[inji β/α], σ2[inji β/α]

 `C[inji β/α] e[inji β/α] : τ [inji β/α] ; I;F

Ψ;∆, β:κj ,∆′; Γ[injj β/α];A, σ1[injj β/α], σ2[injj β/α] `32 sv [injj β/α] : Void ; sv ′

j ∈ 1 . . . i− 1, i + 1 . . . n
Ψ;∆, β:κi,∆′; Γ[inji β/α] ` e[inji β/α] : τ [inji β/α] exp
Ψ;∆, β:κj ,∆′; Γ[injj β/α] ` sv [injj β/α] : Void

j ∈ 1 . . . i− 1, i + 1 . . . n

By assumption:
∆, α: + [κ1, . . . , κn],∆′ρ1,ρ2 ` σ1 :ST
∆, α: + [κ1, . . . , κn],∆′ρ1,ρ2 ` σ2 :ST
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So by substitution :
∆, β:κi,∆′ρ1,ρ2 ` σ1[| inji β|/α] : ST
∆, β:κi,∆′ρ1,ρ2 ` σ2[| inji β|/α] : ST

j ∈ 1 . . . n

So by induction :
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆, β:κi,∆′ρ1,ρ2 ; ΓS ` I ok
where ΓS = |Γ[inji β/α]|(σ1◦σ2)[| inji β|/α]

A

By lemma 33:
ΓS = |Γ|σ1◦σ2

A [| inji β|/α] = ΓA[| inji β|/α]

By theorem 18 (small value translation):
|Ψ|;∆β:κi,∆′ρ1,ρ2 ; ΓV ` sv ′ : Void

j ∈ 1 . . . i− 1, i + 1 . . . n

where ΓS = |Γ[inji β/α]|(σ1◦σ2)[| inji β|/α]
A

So by the sum refinement rule:
|Ψ|,ΨF ;∆, α: + [κ1, . . . , κn],∆′ρ1,ρ2 ; ΓA ` refine[inji β]|c|, sv ′;

I
ok

13. Suppose the last rule used was the case translation rule. The translation of a case statement
produces a number of new blocks and an instruction sequence. By lemma 30 it suffices to
show that each of these is well-formed when the heap-context is extended with the types of
the new blocks. Note that I assume all labels are fresh. I leave informal the inner induction
on the number of branches n.

Let
ΨF = Ψ(F ;F1; . . . ;Fn),

`0:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τ0|],
`1:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τ1|],
...
`n:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τn|],
`end:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τ |]

(a) Heap fragments.
To show:
|Ψ| ` F ;

F1;
...
Fn

: Ψ(F ;F1; . . . ;Fn)

By inversion:
Ψ;∆; Γ, xi:τi;A, σ1, σ2 `jmp `end[(Π1∆),σ1,σ2] ei : τ ; Ii;Fi i ∈ 1 . . . n

Ψ;∆; Γ, xi:τi ` ei : τ exp
Ψ;∆; Γ, x:τ ;A, σ1, σ2 `C e : τe ; I;F
Ψ;∆; Γ, x:τ ` e : τe exp
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By induction:
|Ψ| ` Fi : Ψi

|Ψ| ` F : Ψ′

So by lemma 30:
|Ψ| ` F ;F1; . . . ;Fn : Ψ′,Ψ1, . . . ,Ψn

(b) The prelude code:
To show:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` mov rt, sv ′

brtag0 rt, `0[(Π1∆), σ1, σ2]
...
brtagk−1 rt, `k−1[(Π1∆), σ1, σ2]
brtgdk rt, `k[(Π1∆), σ1, σ2]
...
brtagn−1 rt, `n−1[(Π1∆), σ1, σ2]
mov rt, forgetunion rt

jmp `n[(Π1∆), σ1, σ2]

ok

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv :

∨
[τ1, . . . , τn] ; sv ′

∆ ` τi ≡ Tag(i) : T32 i ∈ 1 . . . (j − 1)
∆ ` τi ≡ ×[Tag(i), τ ′i ] : T32 i ∈ j . . . n
Ψ;∆; Γ ` sv :

∨
[τ0, . . . , τk]

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : |

∨
[τ0, . . . , τk]|

So by the mov rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov rt, sv ′ ⇒ ΓA{rt:|

∨
[τ0, . . . , τk]|}

By theorem 17 and weakening:
∆ρ1,ρ2 ` |τi| ≡ Tag(i) : T32 i ∈ 1 . . . (j − 1)
∆ρ1,ρ2 ` |τi| ≡ ×[Tag(i), τ ′i ] : T32 i ∈ j . . . n

By assumption, `i:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τi|],
So the brtag and brtgd instructions are well-formed and have well-formed targets.
After n− 1 tag comparisons, rt:

∨
[|τn|]. (There is an inner induction here about which

I am being informal).
Therefore, by the forgetunion and the mov rules:
|Ψ|;∆ρ1,ρ2 ; ΓA{rt:

∨
[|τn|]} ` mov rt, forgetunion rt ⇒ ΓA{rt:||τn||}

So the final jump is well-formed as well.

(c) `i, for i ∈ 0 . . . n.
To show:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA[rt:|τi|] ` srmovA(xi), rt

junk rt

Ii

ok

By inversion:
Ψ;∆; Γ, xi:τi;A, σ1, σ2 `jmp `end[(Π1∆),σ1,σ2] ei : τ ; Ii;Fi i ∈ 1 . . . n

Ψ;∆; Γ, xi:τi ` ei : τ exp
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By induction:
|Ψ|,ΨF ;∆ρ1,ρ2 ; Γi ` Ii ok i ∈ 1 . . . n
where Γi = |Γ, xi:τi|σ1◦σ2

A

By the good allocator assumption:
Γi(rt) = ns32 and
Γi = |Γ|σ1◦σ2

A {A(xi):|τi|} = ΓA{A(xi):|τi|}
So by lemmas 36 and 34:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{rt:|τi|} ` srmovA(xi), rt

junk rt

Ii

ok i ∈ 1 . . . n

(d) `end

To show:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA[rt:|τ |] ` srmov A(x), rt

junk rt

I

ok

By inversion:
Ψ;∆; Γ, x:τ ;A, σ1, σ2 `C e : τe ; I;F
Ψ;∆; Γ, x:τ ` e : τe exp

By induction:
|Ψ|,ΨF ;∆ρ1,ρ2 ; Γx `
okwhere Γx = |Γ, x:τ |σ1◦σ2

A

By the good allocator assumption:
Γx(rt) = ns32 and
Γx = |Γ|σ1◦σ2

A {A(x):|τ |} = ΓA{A(x):|τ |}
So by lemmas 36 and 34:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{rt:|τ |} ` srmovA(x), rt

junk rt

I

ok

14. Suppose the last rule used was the dyncase translation rule. The translation of an exception
case statement produces a number of new blocks and an instruction sequence. By lemma 30
it suffices to show that each of these is well-formed when the heap-context is extended with
the types of the new blocks. Note that I assume all labels are fresh.

Let
ΨF = Ψ(F ;F1;Fn),

`1:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:× [Dyntag(|τ1|), |τ1|]]
`end:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τx|]

(a) Heap fragments.
To show:
|Ψ| ` F ;

F1;
F2

: Ψ(F ;F1;F2)
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By inversion:
Ψ;∆; Γ, x1:× [Dyntag(τ1), τ1];A, σ1, σ2 `jmp `end[(Π1∆),σ1,σ2] e1 : τx ; I1;F1

Ψ;∆; Γ;A, σ1, σ2 `jmp `end[(Π1∆),σ1,σ2] e2 : τx ; I2;F2

Ψ;∆; Γ, x:τx;A, σ1, σ2 `C e : τ ; I;F
Ψ;∆; Γ, x1:× [Dyntag(τ1), τ1] ` e1 : τx exp
Ψ;∆; Γ ` e2 : τx exp
Ψ;∆; Γ, x:τx ` e : τ exp

By induction:
|Ψ| ` F1 : Ψ1

|Ψ| ` F2 : Ψ2

|Ψ| ` F : Ψ′

So by lemma 30:
|Ψ| ` F ;F1;F2 : Ψ′,Ψ1,Ψ2

(b) The “otherwise” case:
To show:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` mov rt, sv ′

brdyn rt, sv ′1, `1[(Π1∆), σ1, σ2]
junk rt

I2

ok

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv : Dyn ; sv ′

Ψ;∆; Γ ` sv : Dyn
By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : | Dyn |

So by the mov rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov rt, sv ′ ⇒ ΓA{rt:| Dyn |}

By assumption:
`1:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA{rt:× [Dyntag(|τ1|), |τ1|]}

So by the brdyn rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` brdyn rt, sv ′1, `1[(Π1∆), σ1, σ2]⇒ ΓA{rt:|| Dyn ||}

And by lemma 34:
|Ψ|;∆ρ1,ρ2 ; ΓA ` junk rt ⇒ ΓA{rt:|| Dyn ||}{rt:ns32}

Note that ΓA{rt:|| Dyn ||}{rt:ns32} = ΓA.
By induction:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` I2 ok

So the result follows directly by the instruction sequencing rules.
(c) The “equal” case – `1:

To show:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{rt:× [Dyntag(|τ1|), |τ1|]} ` srmovA(x1), rt

junk rt

I1

ok

By inversion:
Ψ;∆; Γ, x1:× [Dyntag(τ1), τ1];A, σ1, σ2 `jmp `end[(Π1∆),σ1,σ2] e1 : τx ; I1;F1

Ψ;∆; Γ, x1:× [Dyntag(τ1), τ1] ` e1 : τx exp
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By induction:
|Ψ|,ΨF ;∆ρ1,ρ2 ; Γ1 ` I1 okwhere Γ1 = |Γ, x1:τ1|σ1◦σ2

A
By the good allocator assumption:

Γ1(rt) = ns32 and
Γ1 = |Γ|σ1◦σ2

A {A(x1):| × [Dyntag(τ1), τ1]|} = ΓA{A(x1):× [Dyntag(|τ1|), |τ1|]}
So it suffices to show that:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{rt:× [Dyntag(|τ1|), |τ1|]} ` srmovA(xi), rt

junk rt

⇒ ΓB

where ΓB = ΓA{A(x1):× [Dyntag(|τ1|), |τ1|]}
Which follows by lemmas 36 and 34.

(d) The continuation – `end:
To show:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA[rt:|τx|] ` srmov A(x), rt

junk rt

I

ok

By inversion:
Ψ;∆; Γ, x:τx;A, σ1, σ2 `C e : τ ; I;F
Ψ;∆; Γ, x:τx ` e : τ exp

By induction:
|Ψ|,ΨF ;∆ρ1,ρ2 ; Γx `
okwhere Γx = |Γ, x:τx|σ1◦σ2

A
By the good allocator assumption:

Γx(rt) = ns32 and
Γx = |Γ|σ1◦σ2

A {A(x):|τx|} = ΓA{A(x):|τx|}
So by lemmas 36 and 34:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{rt:|τx|} ` srmovA(x), rt

junk rt

I

ok

15. Suppose
Ψ;∆; Γ;A, σ1, σ2 `C letx = raise

τ
sv in e : τ ; mov r1, sv

loadr rt, re(1)
mov sp, rt

loadr rt, re(0)
jmp rt

By inversion:
Ψ;∆; Γ;A, σ1, σ2 `32 sv : Dyn ; sv ′

Ψ;∆; Γ ` sv : Dyn

By theorem 18:
|Ψ|;∆ρ1,ρ2 ; ΓA ` sv ′ : | Dyn |

By assumption:
ΓA(sp) = σf ◦ σ1 ◦ σ2

ΓA(re) = Exnptr(σ2)
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By definition:
Exnptr(σ2) = ×[Exnhndler(σ2), σ2]
Exnhndler(σ2) = ∀[].{r1: Dyn, sp:σ2}→ 0

By the mov rule:
|Ψ|;∆ρ1,ρ2 ; ΓA ` mov r1, sv ′ ⇒ ΓA{r1:| Dyn |}

By the load rule:
|Ψ|;∆ρ1,ρ2 ; ΓA{r1:| Dyn | ` loadr rt, re(1)⇒ ΓA{r1:| Dyn |}{rt:σ2}

By the stack load rule:
|Ψ|;∆ρ1,ρ2 ; ΓA{r1:| Dyn |}{rt:σ2} ` mov sp, rt ⇒ ΓA{r1:| Dyn |}{rt:σ2}{sp:σ2}

By the load rule:
|Ψ|;∆ρ1,ρ2 ; ΓA{r1:| Dyn |}{rt:σ2}{sp:σ2} ` loadr rt, re(0)⇒

ΓA{r1:| Dyn |}{sp:σ2}{rt:Exnhndlr(σ2)}
By the jump rule:
|Ψ|;∆ρ1,ρ2 ; ΓA{r1:| Dyn |}{sp:σ2}{rt:Exnhndlr(σ2)} ` jmp rt ok

16. Suppose the last rule used was the handle translation rule. The translation of an exception
handler produces a number of new blocks and an instruction sequence. By lemma 30 it suffices
to show that each of these is well-formed when the heap-context is extended with the types
of the new blocks. Note that I assume all labels are fresh.
Let

ΓB = |Γ|σ3
A {re:Exnptr(σ3)

σf = |Γ|εA(sp)
σ3 = Exnptr(σ2) .32 σf ◦ σ1 ◦ σ2

σh = σf ◦ σ3

ΨF = Ψ(F ;F1;Fn),
`handle:∀[∆, ρ1, ρ2].{r1: Dyn, sp:σh, . . .}
`post:∀[|∆|, ρ1:ST, ρ2:ST ].ΓB[rt:|τx|]
`end:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τx|]

(a) Heap fragments.
To show:
|Ψ| ` F ;

F1;
F2

: Ψ(F ;F1;F2)

By inversion:
Ψ;∆; Γ;A, ε, σ3 `jmp `post[(Π1∆),ε,σh] e1 : τx ; I1;F1

Ψ;∆; Γ, x2: Dyn;A, σ1, σ2 `jmp `end[(Π1∆),σf◦σ1,σ2] e2 : τx ; I2;F2

Ψ;∆; Γ, x:τx;A, σ1, σ2 `C e : τ ; I;F
Ψ;∆; Γ ` e1 : τx exp
Ψ;∆; Γ, x2: Dyn ` e2 : τx exp
Ψ;∆; Γ, x:τx ` e : τ exp

By induction:
|Ψ| ` F1 : Ψ1

|Ψ| ` F2 : Ψ2

|Ψ| ` F : Ψ′
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So by lemma 30:
|Ψ| ` F ;F1;F2 : Ψ′,Ψ1,Ψ2

(b) The handled code block:
To show:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` push re

stackcopy (Exnptr(σ2)) .32 σf

sfree 1
malloc re[Exnhndler(σh), σh]〈`handle[Π1∆, ρ1, ρ2], sp〉
I1

ok

By assumption:
ΓA(sp) = σf ◦ σ1 ◦ σ2

ΓA(re) = Exnptr(σ2)
The introductory sequence of instructions only modifies the stack and the exception
register, so for brevity I leave the rest of the typing context implicit and only describe
the types of the stack register and the exception register after the instructions.

Instruction sp type re type Comment
push σ3 = (Exnptr(σ2)) .32 σf ◦ σ1 ◦ σ2 Exnptr(σ2) By the push rule
stackcopy (Exnptr(σ2)) .32 σf ◦ σ3 Exnptr(σ2) By lemma 41
sfree σh = σf ◦ σ3 Exnptr(σ2) By the sfree rule
malloc σh Exnptr(σh) By the malloc rule

So it suffices to show that:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{sp:σh}{re:Exnptr(σ3)} ` I1 ok

But note that :
|Γ|σh

A = |Γ|σ1◦σ2
A {sp:σg} = ΓA{sp:σg}

So the desired result follows by induction.
(c) The handler block:

Let ΓH = {r1: Dyn, r2:ns32, rt:ns32, re:ns32, sp:σh, f1:ns64, f2:ns64}
To show:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓH ` srmov A(x2), r1

sfree(frmsz(A))
pop re

junk r1

I2

ok

Instr machine state Comment
srmov ΓH{A(x2): Dyn} By lemma 36
sfree ΓH{A(x2): Dyn}{sp:σ3} By the sfree rule
pop ΓH{A(x2): Dyn}{sp:σf ◦ σ1 ◦ σ2}{re:Exnptr(σ2)} By the pop rule
junk . . . {r1:ns32} By lemma 34

But note that by assumption:
ΓA

= |Γ|σ1◦σ2
A {re:Exnptr(σ2)}

= {r1:ns32, r2:ns32, rt:ns32, re:Exnptr(σ2), sp:σf ◦ σ1 ◦ σ2, f1:ns64, f2:ns64}
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And by definition:
ΓH{sp:σf ◦ σ1 ◦ σ2}{re:Exnptr(σ2)}{r1:ns32}

= {r1:ns32, r2:ns32, rt:ns32, re:Exnptr(σ2), sp:σf ◦ σ1 ◦ σ2, f1:ns64, f2:ns64}
= ΓA

So by the good allocator assumption:
ΓH{A(x2): Dyn}{sp:σf ◦ σ1 ◦ σ2}{re:Exnptr(σ2)}

= ΓA{A(x2): Dyn}
= |Γ, x2: Dyn |σ1◦σ2

A {re:Exnptr(σ2)}
Finally, by induction:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{A(x2): Dyn} ` I2 ok

(d) The postlude block:
To show:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓB[rt:|τ |] ` sfree(frmsz(A))

pop re

jmp `end[Π1∆, σ1, σ2]

ok

Note that ΓB(sp) = σh = σf ◦ σ3.
So by the sfree rule:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓB{rt:|τ |} ` sfree(frmsz(A))⇒ ΓB{rt:|τ |}{sp:σ3}

By the pop rule:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓB{rt:|τ |}{sp:σ3} ` pop re ⇒

ΓB{rt:|τ |}{sp:σf ◦ σ1 ◦ σ2}{re:Exnptr(σ2)}
Note that:

ΓB{rt:|τ |}{sp:σf ◦ σ1 ◦ σ2}{re:Exnptr(σ2)}
= |Γ|σ1◦σ2

A {rt:|τ |}{re:Exnptr(σ2)}
= ΓA{rt:|τ |}

And by assumption:
`end:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τx|]

So by the jmp rule:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{rt:|τ |} ` jmp `end[Π1∆, σ1, σ2] ok

(e) The continuation block:
To show:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{rt:|τx|} ` srmov A(x), rt

junk rt

I

ok

By lemma 36:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{rt:|τx|} ` srmov A(x), rt ⇒ ΓA{rt:|τx|}{A(x):|τx|}

By lemma 34:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{rt:|τx|}{A(x):|τx|} ` junk rt ⇒ ΓA{A(x):|τx|}

By the good allocator assumption:
ΓA{A(x):|τx|} = |Γ, xτx|σ1◦σ2

A {re:Exnptr(σ2)}
By inversion:

Ψ;∆; Γ, x:τx;A, σ1, σ2 `C e : τ ; I;F
Ψ;∆; Γ, x:τx ` e : τ exp
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So by induction:
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA{A(x):|τx|} ` I ok

17. Suppose Ψ;∆; Γ;A, σ1, σ2 `C e : τ ; (S:I);F via the spill rule.

By inversion:
Ψ;∆; Γ;A′, σ1, σ2 `C e : τ ; I;F
where A’ is a good allocator for e
Ψ;∆; Γ ` e : τ exp

By induction:
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓB ` I okwhere ΓB = |Γ|σ1◦σ2
A′

By inversion:
|Ψ|;∆ρ1,ρ1 ; |Γ|σ1◦σ2

A ` S ⇒ |Γ|σ1◦σ2
A′

So by lemma 29 (partial instruction sequence completion):
|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` S:I ok

8.3.6 Heap values, heaps, and programs

Heap values

Ψ;α1:κ1, . . . , αk:κk;x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn;A, σ1, σ2 `ret e : τ ; I;F
Where A is a good allocator for e

and σ1 = (cont(m + 2 ∗ n)(ρ1)(ρ2)(|τ |)) .32 σ32 ◦ σ64 ◦ ρ1

and σ32 = |τ1| .32 · · · .32 |τm| .32 ε
and σ64 = |φ1| .64 · · · .64 |φn| .64 ε

and σ2 = ρ2

and l = frmsz(A)
and hval = code[α1:κ1, . . . , αk:κk, ρ1:ST, ρ2:ST ]| Code(τ1, . . . , τm)(φ1, . . . , φn)(τ)|

salloc l;
srmov A(x1), sp(l + 0);
...
srmov A(xm), sp(l + m− 1);
srfmov A(z1), sp(l + m + 2 ∗ 0);
...
srfmov A(zn), sp(l + m + 2 ∗ (n− 1));
I

Ψ `h codeτ [α1:κ1, . . . , αk:κk](x1:τ1, . . . , xm:τm)(z1:φ1, . . . , zn:φn).e :
∀[α1:κ1, . . . , αk:κk] Code(τ1, . . . , τm)(φ1, . . . , φn)(τ) ; hval ;F

Since the only heap values in the LIL are code blocks, the heap value translation has only one
inference rule, for translating code functions. Code functions are translated by translating their
bodies with a good allocator, and with appropriate stack segment parameters. Recall that the stack
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segment parameters describe the stack below the current frame (which is managed by the allocator).
Consequently, the stack segments in the code function translation reflect the calling convention on
entry to the function: the top stack segment consists of an appropriate return continuation and the
32 and 64 bit arguments pushed onto the first stack segment type variable (ρ1). The second stack
segment, describing the section below the current handler, is simply the second stack type variable
(ρ2). Notice that the parameter of occurrence on the expression translation derivation indicates
that the expression occurs in a return context and hence should return its value by popping the
frame and calling the return continuation from the stack.

The result of translating the body is an instruction sequence I and a heap fragment F containing
additional code blocks to be allocated at the top level. In order to complete the translation, it
is necessary to wrap the instruction sequence I with additional code to allocate the frame and
to initialize the locations assigned to the argument variables from the locations assigned to the
in-arguments by the calling convention. In principle the allocator may sometimes render this
initialization code unnecessary by using variables directly from their in-argument slots, but for
simplicity I do not attempt to perform this optimization here. The wrapped code sequence is then
abstracted with respect to the free type variables (including the stack segment parameters) to turn
it into a closed heap value.

Theorem 23 (Soundness of the heap value translation)
If Ψ ` hval : τ hval

and Ψ `h hval : τ ; hval :F
then

|Ψ| ` F : ΨF

and |Ψ| ` hval : |τ | hval

Proof: By construction.

By inversion:
A is a good allocator for e
Ψ;α1:κ1, . . . , αk:κk;x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn ` e : τ exp
Ψ;α1:κ1, . . . , αk:κk;x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn;A, σ1, σ2 `ret e : τ ; I;F

And by theorem 15 and construction:
∆ρ1,ρ2 ` σ1 :ST
∆ρ1,ρ2 ` σ2 :ST

So by theorem 22:
|Ψ| ` F : ΨF

|Ψ|,ΨF ;∆ρ1,ρ2 ; ΓA ` I ok
where ΓA = |x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn|σ1◦σ2

A {re:Exnptr(σ2)}

It remains to be shown that:
|Ψ| ` hval : |∀[α1:κ1, . . . , αk:κk] Code(τ1, . . . , τm)(φ1, . . . , φn)(τ)| hval
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By lemma 29, it suffices to show that:
|Ψ|;∆ρ1,ρ2 ; Γ0 ` salloc l;

srmov A(x1), sp(l + 0);
...
srmov A(xm), sp(l + m− 1);
srfmov A(z1), sp(l + m + 2 ∗ 0);
...
srfmov A(zn), sp(l + m + 2 ∗ (n− 1));

⇒ ΓA

where Γ0 = {r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(σ2), rt:ns32, sp:σ1}
and ΓA = |x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn|σ1◦σ2

A {re:Exnptr(σ2)}
By the salloc rule, it suffices to show that :
|Ψ|;∆ρ1,ρ2 ; Γ1 ` srmov A(x1), sp(l + 0);

...
srmov A(xm), sp(l + m− 1);
srfmov A(z1), sp(l + m + 2 ∗ 0);
...
srfmov A(zn), sp(l + m + 2 ∗ (n− 1));

⇒ ΓA

where Γ1 = {r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(σ2), rt:ns32, sp:ns32
l .32 σ1}

Which follows by induction on n + m

• Suppose n + m = 0

Then by assumption:
ΓA = | • |σ1◦σ2

A {re:Exnptr(σ2)}

And by the good allocator assumption:
| • |σ1◦σ2

A {re:Exnptr(σ2)}
= {r1:ns32, r2:ns32, f1:ns64, f2:ns64, re:Exnptr(σ2), rt:ns32, sp:ns32

l .32 σ1}

• Suppose m > 0. Then

By induction:
|Ψ|;∆ρ1,ρ2 ; Γ1 ` srmov A(x1), sp(l + 0);

...
srmov A(xm), sp(l + m− 1);
srfmov A(z1), sp(l + m + 2 ∗ 0);
...
srfmov A(zn−1), sp(l + m + 2 ∗ (n− 2));

⇒ Γ′A

where Γ′A = |x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn−1:φn−1|σ1◦σ2
A {re:Exnptr(σ2)}

So by the definition of partial instruction sequences, it suffices to show that:
|Ψ|;∆ρ1,ρ2 ; Γ′A ` srfmov A(zn), sp(l + m + 2 ∗ (n− 1))⇒ ΓA

But note that by lemma 37:
|Ψ|;∆ρ1,ρ2 ; Γ′A ` srfmov A(zn), sp(l + m + 2 ∗ (n− 1))⇒ Γ′A{A(zn):|φn|
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And by the good allocator assumption:
ΓA = |x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn−1:φn−1, zn:φn|σ1◦σ2

A {re:Exnptr(σ2)}
= |x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn−1:φn−1|σ1◦σ2

A {re:Exnptr(σ2)}{A(zn):|φn|}
= Γ′A{A(zn):|φn|}

• Suppose m = 0 and n > 0. Then

By induction:
|Ψ|;∆ρ1,ρ2 ; Γ1 ` srmov A(x1), sp(l + 0);

...
srmov A(xm−1), sp(l + m− 2);

⇒ Γ′A

where Γ′A = |x1:τ1, . . . , xm−1:τm−1, xm:τm|σ1◦σ2
A {re:Exnptr(σ2)}

So by the definition of partial instruction sequences, it suffices to show that:
|Ψ|;∆ρ1,ρ2 ; Γ′A ` srmov A(xm), sp(l + m)⇒ ΓA

But note that by lemma 36:
|Ψ|;∆ρ1,ρ2 ; Γ′A ` srmov A(xm), sp(l + m)⇒ Γ′A{A(xm):|τm|

And by the good allocator assumption:
ΓA = |x1:τ1, . . . , xm−1:τm−1, xm:τm|σ1◦σ2

A {re:Exnptr(σ2)}
= |x1:τ1, . . . , xm−1:τm−1|σ1◦σ2

A {re:Exnptr(σ2)}{A(xm):|τm|}
= Γ′A{A(xm):|τm|}

Heaps

Ψ ` ε ; ε

Ψ[`:τ ] `h hval : τ ; hval ′;F Ψ[`:τ ] ` d ; F ′

Ψ[`:τ ] ` d, `:τ 7→ hval ; `:|τ |.hval ′, F ;F ′

The translation of heaps simply translates the individual heap bindings to produce a heap
value and a new heap fragment. The heap value can then be bound to the assigned label, and
incorporated with the new heap fragment into the rest of the re-written heap.

The heap soundness theorem is stated in two parts. Since the translation returns a heap
fragment for each heap value, I first show that the result of the translation is well-formed as a heap
fragment. The well-formedness of the translation of a closed well-formed heap then follows almost
immediately.

Theorem 24 (Soundness of the heap translation)
If Ψ ` d ok

and Ψ ` d ; F
then

|Ψ| ` F okΨF

Proof: (By induction on heaps)

• Suppose d = ε.
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By definition:
Ψ ` ε ; ε

And by the heap fragment typing rule:
|Ψ| ` ε : ε

• Suppose d = d′, `:τ 7→ hval

By inversion:
Ψ[`:τ ] ` d′ ok
Ψ[`:τ ] ` hval : τ hval
Ψ[`:τ ] ` d ; F ′

Ψ[`:τ ] `h hval : τ ; hval ′;F

By induction:
|Ψ[`:τ ]| ` F ′ okΨ′

F

By theorem 23:
|Ψ[`:τ ]| ` hval ′ : |τ |
|Ψ[`:τ ]| ` F okΨF

By lemma 30:
|Ψ[`:τ ]| ` F ;F ′ okΨF ,Ψ′

F

By the heap fragment formation rule:
|Ψ[`:τ ]| ` `:|τ |.hval ′, F ;F ′ okΨF ,Ψ′

F

Programs

Ψ(d) ` d ; H ′ Ψ(d); •; •;A, ε, ε `halt e : τ ; I ′;F
Where A is a good allocator for e
and H = F ;H ′,

`ihandle:Exnhandler(ε)
mov rt, r1;
haltDyn

and R = {r1 7→ ns32, r2 7→ ns, re 7→ ns32, rt 7→ ns, f1 7→ ns64, f2 7→ ns64, ft 7→ ns64, sp 7→ ε}
and I = malloc re[Exnhndler(ε), ε]〈`ihandle, sp〉; I ′

• ` letrec d in e : τ ; H,R, I

The translation of a LIL program is obtained by translating heap to obtain a TILTAL heap
(H ′), and translating the body of the program to obtain an instruction sequence (I ′) and some
additional heap blocks to be incorporated into the heap F ). Note that the body of the program
is translated with a halt occurrence parameter, indicating that the instruction sequence should be
terminated with a halt instruction. In order to satisfy the calling conventions, it is necessary to
add a final exception handler block to the heap (`ihandle) and allocate an appropriate exception
frame containing it in re. The initial register file contains nonsense in all of the general purpose
registers, and an empty stack in the stack register.
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Theorem 25 (Soundness of the program translation)
If • ` letrec d in e : τ

and • ` letrec d in e : τ ; (H,R, I)
then

• ` (H,R, I) ok

Proof:
By inversion:

Ψ(d) ` d ok
Ψ(d) ` d ; H ′

So by theorem 24:
|Ψ(d)| ` H ′ okΨ′

H

By inversion:
Ψ(d); •; •;A, ε, ε `halt e : τ ; I ′;F
Ψ(d); •; • ` e : τ exp

And by the empty stack rule:
∆ρ1,ρ2 ` ε :ST

So by theorem 22:
|Ψ(d)| ` F : ΨF

|Ψ(d)|,ΨF ;∆ρ1,ρ2 ; Γ0{re:Exnptr(ε)} ` I ′ ok
where Γ0 = | • |εA

By construction:
`ihandle:Exnhandler(ε) ` `ihandle:Exnhandler(ε)

mov rt, r1;
haltDyn

ok

And hence:
`ihandle:Exnhandler(ε),Ψ′

H ,ΨF ` F ;H ′,
`ihandle:Exnhandler(ε)
mov rt, r1;
haltDyn

ok

By the good allocator assumption:
| • |εA{re:Exnptr(ε)}

= {r1:ns32, r2:ns, re:Exnptr(ε), rt:ns, f1:ns64, f2:ns64, ft:ns64, sp:ε}

By the malloc rule:
`ihandle:Exnhndler;∆; Γ0 ` malloc re[Exnhndler(ε), ε]〈`ihandle, sp〉 ⇒ Γ0{re:Exnptr(ε)}

So by the instruction rule:
|Ψ(d)|,Ψ(F ), `ihandle:Exnhndler;∆; Γ0 ` I ok

So by the program rule :
` (H,R, I) ok
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8.4 The complete translation rules

Small values Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′

Ψ;∆; Γ[x:τ ];A[x→ r], σ1, σ2 `32 x : τ ; r

Ψ;∆; Γ[x:τ ];A[x→ sp(i)], σ2, σ2 `32 x : τ ; sp(i)

Ψ[`:τ ];∆; Γ;A, σ1, σ2 `32 ` : τ ; `

Ψ;∆; Γ;A, σ1, σ2 `32 i : Int ; i

∆ ` c ≡
∨

[. . . , ci, . . .] : T32

Ψ;∆; Γ;A, σ1, σ2 `32 sv : ci ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `32 inj unionc sv : c ; inj union|c| sv
′

∆ ` τ ≡ Rec[κ](c)(cp) : T32

Ψ;∆; Γ;A, σ1, σ2 `32 sv : c(Rec[κ]c)cp ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `32 rollτ sv : τ ; roll|τ | sv ′

∆ ` τ ≡ Rec[κ](c)(cp) : T32

Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `32 unrollτ sv : c(Rec[κ]c)cp ; unroll|τ | sv ′

∆ ` τ ≡ ∃[κ](c′) : T32

Ψ;∆; Γ;A, σ1, σ2 `32 sv : c′c ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `32 pack sv as τ hiding c : τ ;

(pack[|τ |]|c|)sv ′

Ψ;∆; Γ;A, σ1, σ2 `32 sv :∀[κ](c′) ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `32 sv [c] : c′c ; sv ′[|c|]

153



Float values Ψ;∆; Γ;A, σ1, σ2 `64 fv :φ ; fv ′

Ψ;∆; Γ[xf :φ];A[xf → f ], σ1, σ2 `64 xf :φ ; f

Ψ;∆; Γ[xf :φ];A[xf → sp(i)], σ2, σ2 `32 xf :φ ; sp(i)

Ψ;∆; Γ;A, σ2, σ2 `32 r : Float ; r

64 bit Instructions Ψ;∆; Γ;A, σ1, σ2 ` dest32 ← fopr :φ ; S

Ψ;∆; Γ;A, σ1, σ2 ` ft ← fopr :φ ; S

Ψ;∆; Γ;A, σ1, σ2 ` sp(i)← fopr :φ ; S;
fswrite sp(i), ft;
fjunk ft

Ψ;∆; Γ;A, σ1, σ2 `32 fv :φ ; fv ′

Ψ;∆; Γ;A, σ1, σ2 ` f ← fv :φ ; fmov ft, fv ′

Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Array64(φ) ; sv ′1 Ψ;∆; Γ;A, σ1, σ2 `32 sv2 : Int ; sv ′2

Ψ;∆; Γ;A, σ1, σ2 ` f ← subφ(sv1, sv2) :φ ; sub|φ| f , sv ′1, sv
′
2

Ψ;∆; Γ;A, σ1, σ2 `32 sv : Boxed(φ) ; sv ′

Ψ;∆; Γ;A, σ1, σ2 ` f ← unbox sv :φ ; floadr f , sv ′

Instructions Ψ;∆; Γ;A, σ1, σ2 ` dest32 ← opr : τ ; S

Ψ;∆; Γ;A, σ1, σ2 ` rt ← opr : τ ; S

Ψ;∆; Γ;A, σ1, σ2 ` sp(i)← opr : τ ; S;
swrite sp(i), rt;
junk rt

Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′

Ψ;∆; Γ;A, σ1, σ2 ` r← sv : τ ; mov r, sv ′
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Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ1 × . . . τn ; sv ′

Ψ;∆; Γ;A, σ1, σ2 ` r← selecti sv : τi ; mov r, sv ′

loadr r, r(i)

Ψ;∆; Γ;A, σ1, σ2 ` r← dyntagc : Dyntag(c) ; dyntag|c| r

Ψ;∆; Γ;A, σ1, σ2 `64 fv : Float ; fv ′

Ψ;∆; Γ;A, σ1, σ2 ` r← box fv : Boxed(φ) ; malloc|φ| r, fv ′

Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : τi ; sv ′i

Ψ;∆; Γ;A, σ1, σ2 ` r← 〈sv1, . . . , svn〉 : τ1 × . . .× τn ; malloc r, [|τ1|, . . . , |τn|]〈sv ′1, . . . , sv ′n〉

|Γ|εA(sp) = {r1:ns32, r2:ns32, re:ns32, rt:ns32, f1:ns64, f2:ns64, sp : σf}
∆ρ1,ρ2 ` σf ≡ ns32 .32 · · · .32 ns32︸ ︷︷ ︸

m

.32 ns64 .64 · · ·ns64︸ ︷︷ ︸
k

.64σ
′ :ST

Ψ;∆; Γ;A, σ1, σ2 `32 sv : Code(τ0, . . . , τm−1)(φ0, . . . , φk−1)→ τ ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `32 sv i : τi ; sv ′i i ∈ 0 . . .m− 1
Ψ;∆; Γ;A, σ1, σ2 `32 fv i :φi ; fv ′i i ∈ 0 . . . k − 1

Ψ;∆; Γ;A, σ1, σ2 ` r← call sv(sv0, . . . , svm−1)(fv0, . . . , fvk−1) : τ ;

fswrite sp(m + 2 ∗ (k − 1)), fv ′k−1
...
fswrite sp(m), fv ′0
swrite sp(m− 1), sv ′m−1
...
swrite sp(0), sv ′0
junkregs
call sv ′[σ′ ◦ σ1, σ2]
movj r, rt

Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Int ; sv ′1 Ψ;∆; Γ;A, σ1, σ2 `32 sv2 : τ ; sv ′2

Ψ;∆; Γ;A, σ1, σ2 ` r← arrayτ (sv1, sv2) : Array32(τ) ; malloc|τ | r, sv ′1, sv
′
2

Ψ;∆; Γ;A, σ1, σ2 `32 sv : Int ; sv ′ Ψ;∆; Γ;A, σ1, σ2 `64 fv :φ ; fv ′

Ψ;∆; Γ;A, σ1, σ2 ` r← farray(sv , fv) : Farray(φ) ; fmalloc|φ| r, sv ′, fv ′
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Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Array32(τ) ; sv ′1 Ψ;∆; Γ;A, σ1, σ2 `32 sv2 : Int ; sv ′2

Ψ;∆; Γ;A, σ1, σ2 ` r← subτ (sv1, sv2) : τ ; sub|τ | r, sv ′1, sv
′
2

Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Array32(τ) ; sv ′1
Ψ;∆; Γ;A, σ1, σ2 `32 sv2 : Int ; sv ′2 Ψ;∆; Γ;A, σ1, σ2 `32 sv3 : τ ; sv ′3

Ψ;∆; Γ;A, σ1, σ2 ` r← updτ (sv1, sv2, sv3) : Unit ; upd sv ′1, sv
′
2, sv

′
3

malloc r, []〈〉

Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Array64(φ) ; sv ′1
Ψ;∆; Γ;A, σ1, σ2 `32 sv2 : Int ; sv ′2 Ψ;∆; Γ;A, σ1, σ2 `64 fv :φ ; fv ′

Ψ;∆; Γ;A, σ1, σ2 ` r← updφ(sv1, sv2, fv) : Unit ; upd sv ′1, sv
′
2, fv

′

malloc r, []〈〉

Expressions Ψ;∆; Γ;A, σ1, σ2 `C e : τ ; I;H

Ψ;∆; Γ;A′, σ1, σ2 `C e : τ ; I;F
|Ψ|;∆ρ1,ρ1 ; |Γ|σ1◦σ2

A ` S ⇒ |Γ|σ1◦σ2
A′

where A’ is a good allocator for e

Ψ;∆; Γ;A, σ1, σ2 `C e : τ ; (S:I);F

∆ρ1,ρ2 ` σ1 ≡ (cont(m)(σ′1)(σ2)(|τr|)) .32 σ′1 :ST
Ψ;∆; Γ;A, σ1, σ2 `32 sv : τr ; sv ′ frmsz(A) = n

Ψ;∆; Γ;A, σ1, σ2 `ret sv : τr ; mov rt, sv ′;
sfree n;
junkregs;
junkstack 1 . . .m;
ret

|Ψ|;∆ρ1,ρ2 ; |Γ|σ1◦σ2
A ` sv l : Γ{rt:|τ |} → 0

Ψ;∆; Γ;A, σ1, σ2 `32 sv : τ ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `jmp sv l
sv : τ ; mov rt, sv ′

jmp sv l

Ψ;∆; Γ;A, ε, ε `32 sv : τr ; sv ′ frmsz(A) = n

Ψ;∆; Γ;A, ε, ε `halt sv : τr ; mov rt, sv ′

sfree n
haltτr
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Ψ;∆; Γ;A, σ1, σ2 ` A(x)← opr : τi ; S
Ψ;∆; Γ, x:τi;A, σ1, σ2 `C e : τ ; I;F

Ψ;∆; Γ;A, σ1, σ2 `C letτ x = opr in e : τ ; (S; I);F

Ψ;∆; Γ;A, σ1, σ2 ` A(xf )← i :φi ; S
Ψ;∆; Γ, xf :φi;A, σ1, σ2 `C e : τ ; I;F

Ψ;∆; Γ;A, σ1, σ2 `C letτ xf = fopr in e : τ ; (S; I);F

Ψ;∆; Γ;A, σ1, σ2 `32 sv :∃[κ][c] ; sv ′

∆, α:κ; Γ, x:(cα);A, σ1, σ2 `C e : τ ; I;F

Ψ;∆; Γ;A `C let[α, x] = unpack sv in e : τ ; unpack [α, rt]sv ′;
srmov A(x), rt;
junk rt;
I;
F

∆ ` c ≡ 〈c1, c2〉 :κ1 × κ2

Ψ;∆, ; Γ;A, σ1, σ2 `C e[c1, c2/β, γ] : τ [c1, c2/β, γ] ; I;F

Ψ;∆; Γ;A, σ1, σ2 `C let〈β, γ〉 = c in e : τ ; I;F

∆ ` c ≡ α :κ1 × κ2

Ψ;∆, β:κ1, γ:κ2;
Γ[〈β, γ〉/α];
A, σ1[〈β, γ〉/α], σ2[〈β, γ〉/α]

 `C[〈β,γ〉/α] e[〈β, γ〉/α] : τ [〈β, γ〉/α] ; I;F

Ψ;∆, α:κ1 × κ2; Γ;A, σ1, σ2 `C let〈β, γ〉 = c in e : τ ; refine〈β, γ〉 = |c|;
I;
F

∆ ` c ≡ foldµj.κ c′ :µj.κ
∆; Γ;A, σ1, σ1 `C e[c′/β] : τ ; I;F

Ψ;∆; Γ;A, σ1, σ2 `C let foldβ = c in e : τ ; I;F

∆, α:µj.κ,∆′ ` c ≡ α :µj.κ
Ψ;∆, β:κ[µj.κ/j],∆′;
Γ[foldµj.κ β/α];
A,
σ1[foldµj.κ β/α],
σ1[foldµj.κ β/α]

 `C[foldµj.κ β/α] e[foldµj.κ β/α] : τ [foldµj.κ β/α] ; I;F

Ψ;∆, α:µj.κ, ∆′; Γ;A, σ1, σ2 `C let foldβ = c in e : τ ; refine[foldβ]c;
I;
F
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∆ ` c ≡ inj
+[κ1,...,κi,...,κn]
i c′ : + [κ1, . . . , κi, . . . , κn]

Ψ;∆; Γ;A, σ1, σ2 `C e[c′/β] : τ ; I;F

Ψ;∆; Γ `C letτ inji β = (c, sv) in e : τ ; I;F

∆, α: + [κ1 . . . , κn],∆′ ` c ≡ α : + [κ1 . . . κn] β /∈ ∆,∆′

Ψ;∆, β:κi,∆′;
Γ[inji β/α];

A, σ1[inji β/α], σ2[inji β/α]

 `C[inji β/α] e[inji β/α] : τ [inji β/α] ; I;F

Ψ;∆, β:κj ,∆′; Γ[injj β/α];A, σ1[injj β/α], σ2[injj β/α] `32 sv [injj β/α] : Void ; sv ′

j ∈ 1 . . . i− 1, i + 1 . . . n

Ψ;∆, α: + [κ1, . . . , κn],∆′ `C letτ inji β = (c, sv) in e : τ ; refine[inji β]|c|, sv ′;
I;
F

Ψ;∆; Γ;A, σ1, σ2 `32 sv : Dyn ; sv ′

Ψ;∆; Γ;A, σ1, σ2 `C letx = raiseτ sv in e : τ ; mov r1, sv
loadr rt, re(1)
mov sp, rt

loadr rt, re(0)
jmp rt

158



Ψ;∆; Γ;A, σ1, σ2 `32 sv : Dyn ; sv ′ Ψ;∆; Γ;A, σ1, σ2 `32 sv1 : Dyntag(τ1) ; sv ′

Ψ;∆; Γ, x1:× [Dyntag(τ1), τ1];A, σ1, σ2 `jmp `end[(Π1∆),σ1,σ2] e1 : τx ; I1;F1

Ψ;∆; Γ;A, σ1, σ2 `jmp `end[(Π1∆),σ1,σ2] e2 : τx ; I2;F2

Ψ;∆; Γ, x:τx;A, σ1, σ2 `C e : τ ; I;F
|Γ|σ1◦σ2

A = ΓA

Ψ;∆; Γ;A, σ1, σ2 `C letx = dyncase(sv)(sv1 ⇒ x1.e1, ⇒ e2) in e : τ ;

mov rt, sv ′

brdyn rt, sv ′1, `1[(Π1∆), σ1, σ2]
junk rt

I2

`1:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:× [Dyntag(|τ1|), |τ1|]]
srmovA(x1), rt

junk rt

I1

`end:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τx|]
srmov A(x), rt

junk rt

I;
F ;
F1;
F2
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Ψ;∆; Γ;A, ε, σ3 `jmp `post[(Π1∆),ε,σh] e1 : τx ; I1;F1

Ψ;∆; Γ, x2: Dyn;A, σ1, σ2 `jmp `end[(Π1∆),σf◦σ1,σ2] e2 : τx ; I2;F2

Ψ;∆; Γ, x:τx;A, σ1, σ2 `C e : τ ; I;F
ΓA = {r1:ns32, r2:ns32, rt:ns32, re:Exnptr(σ2), sp:σf ◦ σ1 ◦ σ2, f1:ns64, f2:ns64}

where ΓA = |Γ|σ1◦σ2
A {re:Exnptr(σ2)

and ΓB = |Γ|σ3
A {re:Exnptr(σ3)

and σf = |Γ|εA(sp)
and σ3 = Exnptr(σ2) .32 σf ◦ σ1 ◦ σ2

and σh = σf ◦ σ3

Ψ;∆; Γ;A, σ1, σ2 `C letx = handleτx(e1, x2.e2) in e : τ ;

push re

stackcopy (Exnptr(σ2)) .32 σf

sfree 1
malloc re[Exnhndler(σh), σh]〈`handle[Π1∆, ρ1, ρ2], sp〉
I1

`handle:∀[∆, ρ1, ρ2].{r1: Dyn, r2:ns32, rt:ns32, re:ns32, sp:σh, f1:ns64, f2:ns64}
srmov A(x2), r1

sfree(frmsz(A))
pop re

junk r1

I2

`post:∀[|∆|, ρ1:ST, ρ2:ST ].ΓB[rt:|τx|]
sfree(frmsz(A))
pop re

jmp `end[Π1∆, σ1, σ2]
`end:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τx|]

srmov A(x), rt

junk rt

I;
F ;
F1;
F2
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Ψ;∆; Γ;A, σ1, σ2 `32 sv :
∨

[τ1, . . . , τn] ; sv ′

∆ ` τi ≡ Tag(i) : T32 i ∈ 1 . . . (j − 1) ∆ ` τi ≡ ×[Tag(i), τ ′i ] : T32 i ∈ j . . . n
Ψ;∆; Γ, xi:τi;A, σ1, σ2 `jmp `end[(Π1∆),σ1,σ2] ei : τ ; Ii;Fi i ∈ 1 . . . n

Ψ;∆; Γ, x:τ ;A, σ1, σ2 `C e : τe ; I;F
|Γ|σ1◦σ2

A = ΓA

Ψ;∆; Γ;A, σ1, σ2 `C letx = caseτ (sv)(x0.e0, . . . , xn.en) in e : τe ;

mov rt, sv ′

brtag0 rt, `0[(Π1∆), σ1, σ2]
...
brtagk−1 rt, `k−1[(Π1∆), σ1, σ2]
brtgdk rt, `k[(Π1∆), σ1, σ2]
...
brtagn−1 rt, `n−1[(Π1∆), σ1, σ2]
mov rt, forgetunion rt

jmp `n[(Π1∆), σ1, σ2]
`0:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τ0|]

srmovA(x0), rt

junk rt

I0

`1:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τ1|]
...
`n:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τn|]

srmovA(xn), rt

junk rt

In

`end:∀[|∆|, ρ1:ST, ρ2:ST ].ΓA[rt:|τ |]
srmov A(x), rt

junk rt

I;
F ;
F1;
...
Fn
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Heap values Ψ `h hval : τ ; hval ;H

Ψ;α1:κ1, . . . , αk:κk;x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn;A, σ1, σ2 `ret e : τ ; I;F
Where A is a good allocator for e

and σ1 = (cont(m + 2 ∗ n)(ρ1)(ρ2)(|τ |)) .32 σ32 ◦ σ64 ◦ ρ1

and σ32 = |τ1| .32 · · · .32 |τm| .32 ε
and σ64 = |φ1| .64 · · · .64 |φn| .64 ε

and σ2 = ρ2

and l = frmsz(A)
and hval = code[α1:κ1, . . . , αk:κk, ρ1:ST, ρ2:ST ]| Code(τ1, . . . , τm)(φ1, . . . , φn)(τ)|

salloc l;
srmov A(x1), sp(l + 0);
...
srmov A(xm), sp(l + m− 1);
srfmov A(z1), sp(l + m + 2 ∗ 0);
...
srfmov A(zn), sp(l + m + 2 ∗ (n− 1));
I

Ψ `h codeτ [α1:κ1, . . . , αk:κk](x1:τ1, . . . , xm:τm)(z1:φ1, . . . , zn:φn).e :
∀[α1:κ1, . . . , αk:κk] Code(τ1, . . . , τm)(φ1, . . . , φn)(τ) ; hval ;F

Heaps Ψ ` d ; H

Ψ ` ε ; ε

Ψ[`:τ ] `h hval : τ ; hval ′;F Ψ[`:τ ] ` d ; F ′

Ψ[`:τ ] ` d, `:τ 7→ hval ; `:|τ |.hval ′, F ;F ′

Programs ` p : τ ; P

Ψ(d) ` d ; H ′ Ψ(d); •; •;A, ε, ε `halt e : τ ; I ′;F
Where A is a good allocator for e
and H = F ;H ′,

`ihandle:Exnhandler(ε)
mov rt, r1;
haltDyn

and R = {r1 7→ ns32, r2 7→ ns, re 7→ ns32, rt 7→ ns, f1 7→ ns64, f2 7→ ns64, ft 7→ ns64, sp 7→ ε}
and I = malloc re[Exnhndler(ε), ε]〈`ihandle, sp〉; I ′

• ` letrec d in e : τ ; H,R, I
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Chapter 9

Implementation

In the previous chapters I developed a series of translations mapping programs in an idealized
version of the original TILT internal language (the MIL) down to an idealized typed assembly
language (TILTAL) and proved the soundness of these translations. In this chapter I describe a
new backend that I have implemented in the TILT compiler implementing a concrete version of
these translations.

The overall structure of the new backend can be seen in figure 9.1. The implementations of
the translations generally follow quite closely on the formal description, and the LIL language as
implemented is almost exactly the same as the formal version. The implementation differs most
significantly from the formal presentation in that its final target is the TALx86 language [MCG+99,
GM00]. Unlike the RISC-like TILTAL language presented in chapter 7, TALx86 is specialized
to the x86 architecture. Moreover, TALx86 uses numerous additional technologies (such as alias
types [WM01]) that I do not attempt to account for in my formal presentation. The TALx86
language was chosen as the target because of its the numerous tools already existing for it (such as
an assembler, typechecker, and linker) which I was able to use with minimal modification.

In this chapter, I describe the individual passes added to the compiler as part of my imple-
mentation work and discuss briefly the important differences between the implementation and the
theoretical presentation. In order to demonstrate the practicality of my approach, I present some
measurements to quantify the size of the typed binaries and their runtime performance as compared
to other compilers.

9.1 Singleton Elimination

A key issue in typed compilation is controlling the size of the intermediate forms of programs. Type
annotations on internal representation terms quickly come to dominate the overall representation
size to the point that representing and traversing the type information becomes by far the dominant
performance issue. However, there is in general a great deal of redundancy in this type information
which can be exploited to eliminate or reduce this problem.

A number of mechanisms have been suggested [Sha97, PCHS00, GM00] to attempt to deal with
this problem. In the TILT compiler, the MIL as implemented controls type sizes by using singleton
kinds to provide a form of type definition [PCHS00, SH99] intrinsic to the language. Types are
bound to variables using a derived let form so that the type can be referred to subsequently via
its name. Compiler passes such as common sub-expression elimination find redundant uses of types
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Figure 9.1: Structure of the certifying TILT backend
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and reduce them to a single binding.
The type theory of singleton kinds has been greatly simplified by recent work. However, rather

than attempt to reconcile this type theory with the LX type theory used for type-analysis, I chose
for the purposes of the formal translation to use a singleton-free form of the MIL, and consequently
to rely in the implementation of the new backend on other technologies to control the size of type
information. Since the TILT compiler produces internal representations using singletons, the first
additional pass to be added to the compiler was a singleton elimination pass.

Crary [Cra00] showed that the eliminability of singleton kinds follows from the completeness of
the equivalence algorithm given by Stone and Harper [SH99] and gave an algorithm for computing
the singleton free version of a term. The implementation of singleton elimination in the compiler
follows Crary’s algorithm almost exactly with one minor changes in order to avoid problems with
type sizes, as explained below.

9.1.1 Preserving sharing of types

It would in theory have been possible to have implemented singleton elimination concurrently with
the translation from the MIL to the LIL language. Since the LIL language has its own mechanisms
for preserving sharing (discussed below in section 9.6), the result would have been a translation
which neither traversed types repeatedly, nor generated internal forms with excess redundant type
information. However, doing these two translations simultaneous seemed likely to be difficult and
error-prone. Moreover, the singleton elimination phase introduces a large amount of additional
constructor data that benefits from being exposed to the MIL optimization passes. Eliminating
singletons concurrently with the translation to LIL would have prevented this.

For these reasons, singleton elimination was implemented in TILT in two phases. The early
phase eliminates all singletons except uses which occur via the derived let form (an immediate
application of a type lambda to a type in the underlying calculus). Since the derived elimination
rule for the let construct is simple substitution, it is trivial to postpone the elimination of the
derived let type construct until the translation to LIL, providing the MIL optimizer with an
opportunity to improve the types emitted by the elimination phase1. This two phase approach
allows singleton elimination to be done early in the compilation process while still preserving a
compact representation using the let definitional mechanism until translation to LIL.

9.1.2 Optimizations for singleton elimination

Eta reduction

The singleton elimination pass introduces many new types that turn out to be eta-expansions of
variables. It is straightforward to instrument the singleton elimination pass to catch many of these
eta-expansions in order to perform the eta-reduction in place. However, even with this improvement
on the original algorithm, singleton elimination still produces a fair number of eta-redices. Conse-
quently, performing eta-reduction after singleton elimination is an important optimization to avoid
redundant representation of types, as well as to reduce the size of the intermediate representation.

1An alternative way of viewing this implementation choice is as mapping into a calculus which can be given two
different (but presumably equivalent) theories: one which provides a let form derived via singleton kinds, and one
which provides a primitive let form with a substitution semantics. The equivalence of the two theories would have
to be shown, however.
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Figure 9.2: Benchmark timings with singleton elimination (normalized to timings without singleton elimi-
nation).

Beta reduction

In addition to eta-redices, singleton elimination produces numerous beta-redices in the forms of
projections from known records or applications of known functions. Eliminating the former is always
a desired optimization for code in named-form since it can only reduce code size and eliminates an
address calculation and a memory fetch. Eliminating the latter is a speculative optimization since
the function may be called more than once. Consequently, even if it were practical to do these
optimizations concurrently with singleton elimination, it is almost certainly preferable to leave this
up to the general optimization and inlining code which must deal with these issues in any case.

Common sub-expression elimination

Finally, singleton elimination may produce several copies of equivalent types. It is therefore valuable
to do common sub-expression elimination (CSE) on the resulting code. It is particularly important
after singleton elimination that CSE unify alpha-equivalent type functions, since it is not uncommon
for many of the generated types to be simple alpha-variants.

9.1.3 Runtime behavior

Since types must be represented as data in the TILT compiler, it is important to consider the
effect of singleton elimination on the runtime behavior of programs. While this information is
not easily available for the certifying backend since it relies intrinsically on singleton elimination,
code can be generated for the untyped Sparc backend using either normal or singleton-free internal
representations. Once singletons are eliminated from the internal representations of the program,
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the remaining MIL optimization passes can be run as usual, since they introduce no uses of singleton
kinds except in the form of the derived let. For the most part these passes behave identically when
targeting both the untyped and the typed backends, up until the point where the translation to
the next intermediate language takes place.

Figure 9.2 shows that across a wide range of benchmarks, the singleton-free code generally
performs similarly to the non-singleton eliminated code. There was almost no difference in object
code size between the two generated executables.

I speculate that the occasional improvement in the runtime behavior can be attributed to the
singleton-elimination phase acting as a rudimentary form of cross-module inlining, by extracting
all possible definitional information about abstract types from their kinds, and exposing that in-
formation to the optimizer. In principle, an optimization pass could be implemented to perform a
similar function without actually doing singleton elimination.

9.2 MIL to LIL

The implemented translation of MIL code into LIL code follows the formal translation from chapter
5 almost exactly in structure. The only theoretically significant change is that in addition to the
vararg and array optimizations presented in chapter 5, the implemented version performs a related
representation optimization for sums. This optimization adds no significant complication to the
translation, merely requiring that the encodings of types distinguish between those types which are
inhabited by heap pointers and those which are inhabited by other values. This distinction is used
to take advantage of the fact that pointers are never small integers. Sums with exactly one value
carrying arm can be represented specially when the carried value is a pointer: there is no need to
box and tag the pointer since it can always be distinguished from small integer tags.

The MIL intermediate representation which is passed to the translator is singleton-free, except
with respect to let-bound definitions as discussed above. Some care is required in the implementa-
tion to avoid expanding out type definitions indiscriminately, and also to avoid unnecessary work.
For example, consider a MIL term of the form let a = c in e The bound variable a may
potentially occur many times in the body of e. Moreover, it is not syntactically apparent whether
a is used as data (and hence requires static encoding and dynamic encoding) or as a classifier (and
hence requires static encoding and interpretation), or as both, or neither. The definition of singleton
elimination tells us that the correct translation of this term will be equivalent to the translation of
e[c/a] (since this is the intended meaning of the residual let binding). However, simply expanding
out the definition via substitution and translating the resulting terms is unacceptably inefficient,
both in terms of the size of the resulting intermediate representation and in terms of the cost of
repeated translation of the type. The earlier compiler passes will have ensured that any such defi-
nition remaining is used at least once: often it will be the case that the binding is used many times
(since similar bindings are unified via common-sub-expression elimination).

The implementation avoids the cost of re-traversing these bindings by maintaining a mapping
from MIL type variables to memoized thunks that when forced, compute the static or dynamic
encodings of variables as needed. In this way, no type binding is ever translated more than once as
a type and once as a constructor. Moreover, the memoization ensures that all of the occurrences
of the variable will be replaced by the same physically shared translation, preventing an explosion
in the representation size.
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9.3 Closure Conversion

Functions in the LIL intermediate forms produced by the translation from MIL code are still
lexically nested and may refer to variables bound in enclosing scopes. In order to provide an efficient
compiled implementation, a commonly used strategy is to replace uses of functions (evaluated via
substitution) with uses of closed code and environments. Environments preserve the values of free
variables, and are passed as additional arguments to code at runtime. Functions in the high level
language become pairs of code pointers and environments in the underlying machine.

9.3.1 Closure conversion strategies

Numerous strategies have been proposed for handling closure conversion in a typed setting [CWM98,
MWCG97, MMH96, MH98]. I briefly summarize the two main axes of variation from an imple-
mentation standpoint, and refer the reader to Morrisett and Harper [MH98] for a detailed analysis
of the different approaches and their typing properties.

The first source of variation has to do with whether recursion is implemented via a primitive
notion of recursive code, or via the introduction of recursive closures. In the recursive code ap-
proach, code functions are permitted to recursively refer to themselves and other code functions in
the same nest within their own scope. In the recursive closure approach, all code is non-recursive.
Closures however, may refer to back to themselves.

Many recursive closure implementations are based upon the idea of backpatching, in which the
environment record is initialized to contain a pointer to the closure into which it will eventually be
written. While simple and expedient to implement, this approach requires either a fairly powerful
type system to type the resulting code, or else the use of ad-hoc “dummy closures” to stand in
for the recursive reference in the initially allocated environment. In the interest of avoiding adding
extra complexity to the problem, I chose to avoid this approach.

Another approach to implementing recursion is to parameterize code functions over their entire
closure, instead of just the environment portion. Since the closure contains the code pointer to
which it is being passed, this approach is sometimes referred to as the self-application approach.

Self-application is a fairly elegant approach to solving the problem of closure converting recursive
code. However, it would require a fair bit of re-tooling in the existing TILT compiler in order to
implement. In particular, the MIL type system does not support recursive types at higher kinds,
which would seem to be necessary to efficiently support the self application semantics.

For the sake of simplicity in the implementation of closure conversion then, I chose to implement
the relatively straightforward recursive code approach to closure conversion. Under this approach,
mutually recursive functions nests become mutually recursive code nests, parameterized over a
common environment. Functions become existentially packed tuples containing the code pointer
and the environment of the function. At call sites, the code pointer and environment are projected
out of the tuple, and the former is applied to the latter, along with the original arguments of the
function.

9.3.2 Recursive code closure conversion

There are two well-known disadvantages to the recursive code approach to closure conversion.
The first is that since each function must be able to create the environment of each of its

callees, the environment of each function in the nest must contain the transitive closure of all of
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the free variables of all of the functions in the nest (assuming that nests have been reduced to
strongly connected components). In practice, this means that all of the functions in the nest share
one environment, which is consequently larger than the individual environments might be. This is
somewhat offset by the fact that only one environment per nest need be allocated.

The second, and potentially more serious drawback of the recursive code approach is that an
escaping occurrence of a function within its own body requires the closure to be reconstructed
on each invocation. For functions implementing loops, this can obviously be problematic. It is
important to note however that it is not necessary to re-allocate the environment on each invocation:
only the two element closure. Moreover, this particular idiom is relatively rare: most recursive
functions do not escape within their body. Nonetheless, this remains a serious disadvantage of this
approach.

The advantage of this approach is that it simple to implement, and moreover is relatively
simple to implement efficiently. Most applications of local functions (including all recursive calls)
can be implemented as calls directly to code, without reference to closures. Consequently, for most
non-escaping functions closures need never be allocated.

More specifically, as implemented in the LIL backend, every recursive call (including all calls
to other functions in the same nest) is implemented as a direct code call. In addition, every call
to a function defined in the same lexical scope as the call is implemented as a direct code call.
It is straightforward to extend this to functions defined in any enclosing scope: however this may
increase closure sizes and hence is not done in the LIL backend.

In addition to calling code functions directly, some additional optimizations are performed on
the calling sequences of non-escaping functions (that is, functions which are only called directly
as code). For such functions, the environment record is never actually constructed. Instead, the
components of the environment are passed as additional arguments to the function (just as with the
varargs optimization for ordinary records). Floating point (64 bit) elements of the environment are
further optimized by passing them unboxed on the stack. For all functions, environments with only
a single element are “unwrapped”: that is, the underlying singleton element is passed unboxed,
instead of boxed in an environment. Finally, all closed closures are statically allocated as data
(a closure may be closed because its environment is empty, or because all of its constituents are
statically allocated data).

One of the advantages of using a type erasable language is that the treatment of types in closure
conversion is much simpler than in the type passing case. Since types are used at compile time
only, type environments can be passed immediately via application, instead of being packed into
an existential. Implementing closure conversion for types was straightforward.

9.4 General Optimization

The process of encoding types as term data and making typecase explicit exposes new structure to
the compiler which is available for optimization. Moreover, it greatly complicates other phases of
the backend to be overly concerned with generating no dead, redundant, or otherwise sub-optimal
code. Consequently, it seemed most expedient to port the MIL one pass optimizer to the LIL so
that basic optimizations could be performed on LIL programs. The LIL optimizer performs CSE,
dead code elimination, eta reductions for records and functions, projection from known records,
reduction of known switches, folding of boxes and unboxes, constant folding, and reduction of
coercions. Additionally, it makes some effort to recognize boolean terms which are used only as

169



arguments to switches, and hence which can be compiled to produce jumps to branch targets
directly from comparisons, instead of evaluating the term to produce a boolean value, and then
re-branching on this result.

The general optimizer is most useful to help clean up after the closure converter, since closure
conversion involves a fairly substantial rewriting of programs. Many box/unbox reductions become
available after closure conversion, since floating point terms are currently boxed in environments.
Numerous record projections and record formations can be eliminated as well in cases where only
some or none of the environment is used in a given context. Multiple calls to the same function in
the same scope can be optimized so that only one projection of the code pointer and the environment
need be done.

All these optimizations (and more) are performed on the closure converted code. In general
however, a great deal more could be done to optimize after closure conversion. In particular, I
believe that the output of the closure converter could benefit greatly from some form of partial-
redundancy elimination which could move code evaluated on only some paths down into the arms
of switches. The closure converter introduces numerous projections from a function environment in
the function header, some of which are only used conditionally in the function. It may also be forced
to re-allocate closures for recursive escaping occurrences which are again only used conditionally in
the function. Such optimization is beyond the scope of this thesis.

9.5 Lil To Tal

The implemented translation from LIL to TALx86 is conceptually quite similar to the formal
description given in chapter 8, despite the fact that the TALx86 language is substantially different
from the idealized TILTAL language. While details of the implementation of particular constructs
are specialized to the TALx86 type system, the overall code generation approach if very similar.

Code generation and register allocation are done simultaneously in (notionally) a single pass.
In fact, for simplicity the code generator is run twice on each function: once using a virtual frame
pointer and once using stack pointer based frames. The output of the first run is ignored: it is
done only to determine the frame size so that offsets from the stack pointer can be computed
directly. This was done for the sake of simplicity in the coding only: it would be straightforward
to implement a second pass to eliminate uses of the frame pointer.

9.5.1 Code generation

As with the formal description, code generation is done by translating terms with a pre-assigned
destination in a similar fashion to that described by Dybvig et al. [DHB90]. This is particularly
convenient given the register allocation strategy chosen, in which let-bound variables generally
have already been assigned a location when their bindings are translated. Consequently, operations
which are bound to variables can often be translated in such as way as to compute their values
directly into the appropriate location.

As in the formal development form chapter 8, terms are also translated with a context of
occurrence which indicates the use to which the result of a computation is to be put. For example,
terms which are translated in a “return” context are expected to de-allocate the frame and return
directly, instead of returning a value. Consequently, general tail-call elimination falls out very
naturally: function bodies that end in function calls (even when guarded by a conditional or a
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switch) simply de-allocate the frame and jump to the new callee. (Some additional adjustment of
the stack is necessary when the callee has a different number of arguments than the caller).

Additional contexts of occurrence are used to generate efficient code for conditional branches,
and for terms evaluated only for side-effects. A term whose value is used only to decide a branch is
evaluated in a context of occurrence which provides appropriate continuations which can be called
directly. A term whose value is unused is evaluated in a context of occurrence which indicates that
no return value need be provided.

9.5.2 Register allocation

The assignment of variables and temporaries to registers and stack slots is performed simultaneously
with code generation. Code generation is performed in a bottom up fashion, so that the live range
of variables is apparent from the binding structure of a program: a variable becomes live when
it is first encountered in the bottom-up pass, and becomes dead when its binding site is reached.
Registers and stack slots are assigned to variables greedily, as needed by the generated code. When
a variable use is encountered by the code generator, the register allocator is queried to provide the
machine location in which the variable resides. The code generator dictates whether or not this
location is permitted to be a stack slot, or must be a register.

Register assignment and spilling

The register allocator maintains state describing the assignment of variables to registers and stack
slots and vice versa. This state encodes the assumptions which the previously emitted code makes
about the state of the machine upon entry. When the register allocator is queried about a variable
to which it has already assigned a machine location it returns the previously assigned location if it is
appropriate. However, if the variable was previously assigned to a stack slot and the code generator
requires that the use under consideration be assigned a register, the register allocator chooses a free
register and changes the state to map the variable to this new location. Since previously emitted
code assumes a different location for the variable, the register allocator is responsible for emitting
code to initialize the previously assigned stack slot from the newly assigned register.

If a variable is required to be in a register and all registers are already assigned to variables,
a variable must be chosen to spill to the stack. Since previously emitted code assumes that the
variable was in a register, the allocator must emit code to load the register from the newly assigned
stack slot. As a simple spill heuristic, the variable whose next use is farthest into the future (that
is, whose next use is farthest forward in the instruction stream) is spilled. This is intended to
attempt to provide more intervening instructions to hide the latency of the memory access, as well
as to attempt to keep locally active variables in registers. No effort was put into attempting to
validate this choice of heuristic as extensive tuning of the code generator is beyond the scope of
this thesis. However, from informal inspection of the generated code, the allocator seems to usually
make reasonable choices, though there are also cases where it could be improved.

If a location is requested for a previously unseen variable, it is assigned a register if possible,
and otherwise a stack slot if permitted by the code generator. If neither of these cases apply, a
variable must be spilled as described above to free up a register for the new variable.

At a variable binding site, the register allocator provides the code generator with the loca-
tion into which the variable initialization code should write its value. Variables which have not
been assigned a location when their binding site is encountered are unused, and the result of the
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initialization code may be safely discarded.
Unlike many register allocation schemes in which variables are assigned a single location with

spill code emitted to load them into temporary registers when necessary, this register allocation
approach allows variable/location assignments to be changed dynamically. Variables may be moved
between stack slots and registers multiple times over the course of a function. In this sense this
approach is similar to the “second chance binpacking” allocation strategy described by Traub, et
al. [THS98].

Machine state types

An important side benefit of the register allocation data structures is that they provide, at any given
point during code generation, a snapshot of the machine state. The register allocator maintains a
mapping from variables to registers and frame locations. Consequently, it is straightforward in this
framework to define the translation of a LIL context Γ as described in chapter 8. The operation
|Γ|σA mapping a stack tail σ and a LIL context Γ to a machine type ΓA is trivial to implement
given the data structures already used by the register allocator. The intention is that the register
allocator as implemented should constitute a “good allocator” as described in chapter 8.

9.5.3 Additional TILT constructs

There are many more language constructs in the actual LIL language as implemented than in the
formal LIL description. For the most part however, these are simply additional primitive operations
on basic types, and are not especially interesting. However, two such constructs warrant additional
comment.

Coercions

Vanderwaart et al. [VDP+03] describe a coercion calculus used in the TILT compiler to faithfully
implement Standard ML datatypes in an efficient manner. Applications of coercions into and out
of datatypes in this system incur zero runtime overhead. This system is quite simple, requiring
only one new type constructor and three new term level constructs. However, it was not supported
by the existing TALx86 type system, and I preferred to modify this system as little as possible.

A simple technique for eliminating these coercions is to replace them with function calls. This
approach has the benefit of placing no additional burden on the code generator and requiring no
changes to the TALx86 type system, but suffers from a substantial performance penalty [VDP+03].
As a compromise, I chose to implement coercions as functions with a highly specialized calling
convention. In particular, they are implemented as functions whose argument and result are both
in the same register, and for which all other registers are callee-save. Since the actual bodies
of the functions do no runtime work, this means that the runtime cost of applying a coercion is
reduced to two instructions: a call and an immediate return. There may be some additional cost
since variables may need to be spilled or re-shuffled in order to place the argument value in the
appropriate register before calling the coercion. However, in general the overhead is quite low.

External functions

In general, most programs need at some point to call external functions. At the very least, any
interesting program must at some point make a system call to do input and output. These external
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functions are probably not in general provably safe, and are in any case not available in a verifiable
form. Consequently, these external operations are generally considered part of the trusted comput-
ing base: that is, the safety of the checked code is certified relative to the correctness and safety
of the external code. However, it is important that there be some mechanism for controlling which
external code the certified program has access to, both so that the certification system cannot
be trivially subverted, and so that the ability of mobile code to access system resources can be
controlled by the host.

One approach to this is to explicitly incorporate the external functionality needed by programs
into the runtime layer upon which the program runs. Essentially, the source and target language
are extended with a statically known set of additional primitives. This has the benefit of making it
easy to control the set of resources available to programs, and of routing access to these resources
through a central authority (leaving open the possibility of doing additional sandbox style dynamic
checks). A disadvantage of this approach is that it is generally difficult to extend the set of external
functions available, since the runtime itself must be modified.

The approach taken in this thesis is to push the issue of access to external resources out to the
linking phases. The TILT compiler extends the Standard ML language with a primitive function
type classifying functions obeying the C calling convention, and a primitive application form for
applying such functions. Any compilation unit may declare a set of external functions against
which it is compiled. The generated TALx86 modules list these functions as typed imports. The
code in the compiled module is certified to be safe under the assumption that the imported labels
are safe at their declared types.

The question of how these import assumptions are discharged then becomes a policy decision
on the part of the host at link time. The TALx86 linker provides three different modes by which
import assumptions can be discharged.

The first is that a typed binary may be provided to satisfy the import assumptions. In this
case, these assumptions will be explicitly checked by the linker, and so long as the TALx86 type
system is correct, the linked result is guaranteed to be safe.

The second mode is that an untyped binary can be provided, along with an export interface
providing types for the exported labels. In this case, the TALx86 linker can check that the import
assumptions of the client module match the exported interface of the untyped binary, but cannot
check that the untyped binary actually provides the given interface. Consequently, the safety of
the linked program is contingent on the untyped binary actually matching its exported interface.

The third linking option is to simply link an untyped binary against the typed client code, with
no interface checking whatsoever. In this case the safety of the linked program is contingent on the
untyped binary matching the declared import assumption of the typed binary.

The difference between the second and the third case is important, but subtle. The key element
is that in the third case, there are no restrictions on what functions the typed binary can call,
and what types it assigns to them. Consequently, it is trivial to subvert the type system simply
by providing a typed binary which imports functions at incorrect types. In the second case, this
is not possible, since the host provides an explicit interface against which the typed client is to
be linked. So long as the host provides the correct types for the exported functions (and so long
as those functions are implemented correctly and safely), the client is unable to subvert the type
system since it is constrained to respect the exported interface.

In the TILT typed backend, a combination of the first two approaches is used to implement the
runtime layer upon which programs run. Some parts of the runtime functionality are implemented in
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TALx86 and hence can be checked directly. Other parts are implemented in C, with an explicitly
provided interface. The runtime layer as currently implemented is very minimal and does not
provide any support for system calls or any useful library functions. A version of the Standard ML
Basis Library was modified slightly to provide this sort of operating system functionality. Currently,
all of this code is linked using the third approach. This is satisfactory for using the compiler as
a general x86 backend, but for use as part of a certifying compilation infrastructure it would be
necessary to define a more limited interface to host resources, and to define explicit export interfaces
against which client code could be checked.

9.6 Engineering

While extensive engineering of the TILT certifying backend is beyond the scope of this thesis, a
certain amount of engineering work was required simply to demonstrate the feasibility of certified
compilation in this setting. This section describes some of the techniques used.

9.6.1 Type representation

Unlike the MIL, the LIL lacks an internal definition mechanism for types. In the absence of any
sharing mechanism whatsoever, types are observed to grow infeasibly large. The solution to this
problem used in the LIL is to enable sharing via hash-consing.

Hash-consing is a popular technique for controlling representation size which works by looking
up each newly allocated type into a table containing all previously allocated types. Whenever a
previously allocated version is found in the table, the two copies may be be represented as pointers
to the same data-structure. Hashing is used to make this reasonably efficient: each node in the
parse tree of a type contains the hash value of the type, which can then be used to produce hash
values for parent nodes. The table of allocated nodes can then be implemented as a hash table
with reasonably fast lookup times.

Hash-consing ensures that all syntactically equal types can be shared. However, types which
are alpha-variants of each other will not be shared in this scheme (except accidentally) since the
hash codes of different variables will usually be different. This problem can be completely avoided
by switching to a representation in which variables are represented via deBruijin indices, wherein
a variable use is implemented as a count of the number of binding sites between the variable use
and the variable binding site. When variables are implemented in this fashion, all types which are
alpha-equal will also be syntactically equal, and hence can be shared via hash-consing.

However, deBruijin indices are notoriously difficult to work with, and give no guarantee of im-
proved sharing. Moreover, all of the existing TILT infrastructure was built around using variables.
Consequently, I chose to use a standard representation of variables. In practice, this seems to work
well so long as care is taken to avoid introducing un-necessary alpha-variants.

In addition to sharing syntactically equal types in memory, it turns out to be very important
to share kinds as well. In almost all programs, the number of syntactically distinct kind nodes is
smaller than one-hundred. In the absence of hash-consing for kinds however, the number of actual
kind-nodes in memory is commonly three or four orders of magnitude larger than this. In general
throughout this section, all of the techniques discussed in the context of sharing types should be
considered to apply to kind information as well.
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9.6.2 Traversing programs

Sharing types and kinds in memory is crucial in order to reduce internal representations of programs
to a manageable size: that is, to reduce the space usage of the compiler. However, it is almost
equally important to ensure that in addition to avoiding redundant representation of types, the
compiler also avoid redundant computation on types. Hash-consing permits type parse-trees to be
represented more compactly as directed acyclic graphs (DAGs). Compiler passes that rewrite types
represented in this form must also be careful to traverse these programs as DAGS.

Traversing programs in DAG form is implemented by providing an abstract lookup table in
which hash-consed type nodes can be inserted. Node lookup tables are used in compiler passes to
keep sets of nodes already traversed: or more generally, to keep mappings from previously traversed
nodes to the traversal result (or other useful information). Before attempting to rewrite a node, the
compiler pass checks the table for previously computed result. If no such result is found, the result
is computed and entered into the table for future use. This allows passes to avoid re-traversing
types unnecessarily without impacting the structure of algorithms in any significant way.

Compiler passes that produce different results based on contextual information are slightly more
complicated to implement in this way, since it is no longer necessarily the case that syntactically
equal types rewrite to the same results. This situation only really arose in the LIL typechecker
which is discussed extensively below.

9.6.3 Fast substitution

A very common operation in the compiler is the substitution of types for free type variables in
other types (as well as kinds for kind variables). In practice, substitution often proves to be an
efficiency bottleneck in the TILT compiler. In order to make substitution faster, the LIL backend
maintains sets containing free type and kind variables at each type and kind node. This allows
substitutions for variables to only traverse those nodes which actually contain free occurrences of
the substituted variables.

Another important benefit of maintaining sets of free variables is that it allows the substitution
code to avoid introducing unnecessary alpha-variants of types. Capture avoiding substitution must
in general alpha-vary when crossing a type variable binding, since the bound variable may occur
free in the type being substituted. This alpha-variation may cause an entirely new copy of the type
to be created, even if the substitution only affects small sub-trees of the type. This can be avoided
in the case where the bound variable does not occur free in the type being substituted. Maintaining
sets of free variables makes this check efficient.

9.6.4 Fast alpha-equivalence

The hash-consed implementation allows for a fast syntactic equality check, since any two syntacti-
cally equal types will be represented by the same type node and hence can be checked for equality
in constant time. In cases where the equality check fails, a normal equivalence check must be
performed, since alpha-variants of the same type will not in general be represented by the same
node.
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9.6.5 Weak Head-Normalization

Weak head-normalization is a common operation on types, since it is the first step in checking type
equality. In addition to representing types as a directed acyclic graph, it is important to normalize
them as graphs as well to avoid repeated reductions of the same terms. This is implemented in the
LIL back end by associating with every hash-consed type node an optional weak head-normal form.
The reduction algorithm then checks for a previously computed normal form before reducing the
term and avoids re-computing it if present. If the normal form is not present it must be computed:
but the new normal form can be stored with the node for use by subsequent reductions of the
same shared node. This technique (among others) has been previously described and empirically
characterized by Shao et al [SLM98].

9.6.6 Engineering the LIL type checker

A valuable benefit of using a typed internal language in a compiler is that it allows the output
of each compiler phase to be checked to ensure that nothing untoward has happened. Many, if
not most compiler bugs will cause a compiler to generate type incorrect code at some point. An
internal type checker therefore provides the valuable service of catching and pinpointing compiler
bugs before runtime, when they are likely to be much harder to track down.

In order to reap these benefits however, the compiler’s internal type checker must be efficient
enough to quickly check anything the compiler produces. However, the simple technique described
in the previous section for traversing types as directed acyclic graphs cannot be applied naively to a
type checker. The reason is that type checking is a context sensitive operation: syntactically equal
types may be well-formed in one typing context and not in another (for example because of the
presence of free variables referring to different binding sites). In the TILT compiler, maintaining
the simplicity of the typechecker implementation was an important goal since the correctness of
the typechecker is both important and hard to test (at least in terms of soundness). However,
the straightforward approach of completely ignoring sharing of types and kinds proved completely
impractical. Typechecking small programs easily exhausted the resources of a Pentium 4 machine
with one gigabyte of RAM. As a first step, it was necessary to find a way to avoid redundant type
checking.

Exploiting physical sharing in the type checker

While the nature of typechecking is context sensitive, it is by far the most common case that
checking syntactically equal terms will produce the same result (that is, that the terms will be
well-typed at the same kind). Moreover, it is most frequently the case that two syntactically equal
terms are judged to be well-typed for the same reasons: that is that the contexts in which they are
checked are (essentially) equal. A first cut at improving the performance of the typechecker then is
to keep a table mapping types to contexts in which they have already been judged equivalent (as
well as the kind classifying them). Before checking a type, the compiler first checks a lookup table
to see if the type under consideration has been checked before in an equivalent context (and with
an equivalent kind).

Strict pointwise equality on typing contexts could in principle be somewhat expensive to com-
pute, and moreover is vastly more restrictive than is necessary. It is frequently the case that two
syntactically equal terms will be checked in two contexts which differ, but only in irrelevant ways
(for example, one context may be a well-formed extension of the other). An improvement on the
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simple technique described in the previous paragraph is to observe that so long as the two context
are both well-formed and are pointwise equal on the free variables of the type under consideration,
it is unnecessary to re-check the term in the new context.

These techniques suffice to permit traversal of types as DAGs in the LIL typechecker with a
fairly small overhead.

Context substitutions

The technique described in the previous section avoids most redundant checking of types, but is not
sufficient in and of itself to make checking large programs practical in TILT. The LIL presents an
unusual engineering challenge because of the nature of its type analysis mechanism. Several of the
LIL type checking rules induce substitutions into typing contexts as part of the type refinement
mechanism. For example, in one of the rules for type checking type pair refinements, an explicit
type pair is substituted for a variable in the typing context.

Ψ;∆, β:κ1, γ:κ2,∆′; Γ[〈β, γ〉/α] ` e[〈β, γ〉/α] : τ [〈β, γ〉/α] exp
∆, α:κ1 × κ2,∆′ ` c ≡ α :κ1 × κ2

Ψ;∆, α:κ1 × κ2,∆′; Γ ` let〈β, γ〉 = c in e : τ exp

This context substitution operation (Γ[〈β, γ〉/α]) turns out to be quite expensive, since implemented
naively it involves duplicating the entire typing context after every type refinement. The fast
substitution cut off afforded by the free variable sets on type nodes means that types in the context
are not traversed unnecessarily, but in the absence of a very specialized data structure, the container
implementing the context must be copied in entirety. Since type refinement operations are quite
frequent in many programs, this rapidly becomes unmanageable.

There are numerous approaches that one could take to making this more efficient. The approach
taken in the LIL backend is based primarily on two observations. Firstly, many elements of a typing
context will not be affected by the context substitutions at all. Of those that are, many of them will
not actually be referenced in any given term: it is often the case that the body of a type refinement
construct will have at most two or three free variables. Any effort spent traversing unreferenced
context elements is wasted.

Secondly, it is common to encounter several type refinement operations consecutively. Imple-
mented naively, this means that multiple passes over the typing context may be made with no
intervening variable lookups.

The LIL implementation of context substitution therefore attempts to do two things. In order
to take advantage of the second property, substitutions are aggregated and carried out lazily.
Substituting into a context simply records the substitution without carrying it out. Multiple
substitutions can consequently be aggregated together. In order to take advantage of the first
property, these aggregated substitutions are then only carried out on the result of a variable lookup.
Full context substitutions are never performed.

There are a number of subtle points involved in this optimization. It is clearly not valid to
simply maintain a substitution mapping variables to types and apply it to every type that is looked
up in the context, since different substitutions will have been in place at different binding sites.
In the next section, I give an informal presentation of an extension to the static semantics of
the LIL that captures this optimization, and then briefly discuss the differences with the actual
implementation.
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Fast context substitution

As a first cut, I extend the notion of a typing context Γ with substitution nodes. For brevity, I
elide 64 bit context entries - their addition is trivial.

Γ ::= • | Γ, x:τ | α→ c

In order to ensure that substitutions are carried out correctly, I replace the implicit use of context
re-ordering in the LIL static semantics with explicit re-ordering rules that carry out substitution
nodes as needed.

Ψ;∆; Γ, y:τy, x:τx,Γ′ ` sv : τ

Ψ;∆; Γ, x:τx, y:τy,Γ′ ` sv : τ

Ψ;∆; Γ, α→ c, x:τx[c/α],Γ′ ` sv : τ

Ψ;∆; Γ, x:τx, α→ c,Γ′ ` sv : τ

The variable lookup rule is then restricted in the usual way, requiring that variables be re-ordered
to the end of the context for lookup.

∆ ` Γ, x:τ ok ` Ψ ok

Ψ;∆; Γ, x:τ ` x : τ

Context substitutions can then be implemented in terms of these substitution nodes.

Ψ;∆, β:κ1, γ:κ2,∆′; Γ, α→ 〈β, γ〉 ` e[〈β, γ〉/α] : τ [〈β, γ〉/α] exp
∆, α:κ1 × κ2,∆′ ` c ≡ α :κ1 × κ2

Ψ;∆, α:κ1 × κ2,∆′; Γ ` let〈β, γ〉 = c in e : τ exp

This version of the variable pair refinement rule simply adds a substitution node (Γ, α → 〈β, γ〉)
instead of explicitly substituting for α as in the original version (Γ[〈β, γ〉/α]).

This extension to typing contexts captures the notion that variable substitution need only be
performed on referenced variables, and can be deferred until the point of reference. This easily
extends to capture the idea of aggregating substitutions by replacing the single substitutions in
the context with simultaneous substitutions for multiple variables. A simultaneous substitution Θ
maps variables to types.

Θ ::= • | α→ c,Θ

The operation of a substitution Θ on a type c is defined by a function c[Θ] mapping types to types.

c[•] def= c

α[α→ c,Θ] def= c

α′[α→ c,Θ] def= α′[Θ] (α 6= α′)

. . .
def= . . .

The remaining cases proceed compositionally over the structure of types exactly as with a normal
substitution (taking care to avoid capture when crossing binding sites). Composition of simultane-
ous substitutions Θ ◦Θ′ is defined explicitly as an operation on substitutions obeying the equation
c[Θ ◦Θ′] = (c[Θ])[Θ′].

• ◦Θ def= Θ

(α→ c,Θ) ◦Θ′ def= α→ (c[Θ′]), (Θ ◦Θ′)
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Aggregation of substitutions in typing contexts is implemented by replacing single substitution
nodes with simultaneous substitution nodes.

Γ ::= • | Γ, x:τ | Γ,Θ

The re-ordering rule for substitution nodes is modified appropriately.

Ψ;∆; Γ,Θ, x:(τx[Θ]),Γ′ ` sv : τ

Ψ;∆; Γ, x:τx,Θ,Γ′ ` sv : τ

A new structural rule is introduced permitting adjacent substitutions to be aggregated using sub-
stitution composition.

Ψ;∆; Γ,Θ1 ◦Θ2,Γ′ ` sv : τ

Ψ;∆; Γ,Θ1,Θ2,Γ′ ` sv : τ

Fast context substitution in practice

The actual implementation used in the LIL backend differs from this presentation slightly. While
the formal system implements typing contexts as lists, the implementation uses a splay tree im-
plementation for efficient variable lookup. In order to avoid the need to design and implement
a custom balanced tree implementation supporting explicit substitution nodes, I chose instead to
maintain the substitution nodes in an auxiliary data-structure, allowing the core splay tree data
structure to remain unchanged.

Notionally, the implemented version can be derived from the system described above in the
following manner. Number the substitution nodes in a typing context, starting from the “leftmost”
substitution node. With every variable/type pair in the context, associate the number of the first
substitution to its right (that is, the first substitution that applies to it). Finally, remove the
substitution nodes into a separate data structure associating each substitution with its index.

Upon looking up a variable, apply the composition of all substitutions with indices greater than
or equal to that associated with the variable (that is, all substitutions that were to the right of
the variable in the original context). This corresponds to the sequence of substitution that would
have been performed by the sequence of structural re-ordering steps required to move the variable
to the end of the context. As an optimization, this composition of substitutions may be computed
eagerly.

Upon inserting a variable into the context, associate with it the first index larger than the
largest currently used index.

Upon substituting into the context, associate the new substitution with the first index larger
than the largest currently used index. The composition of this substitution with previous substitu-
tions may be eagerly computed if it is more efficient to do so. If no variables have been inserted into
the context since the last context substitution was performed, it is also possible to simply replace
the substitution associated with the largest index with the composition of the old substitution and
the new substitution, avoiding the addition of a new substitution node. Intuitively, this corresponds
to eagerly applying the context composition structural rule.
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This algorithm provides a straightforward implementation of explicit substitution nodes in a
typing context without requiring any modification to the underlying data structure. There are ad-
ditional improvements possible to the algorithm. For example, in the static semantics as presented
above, it is possible to (non-deterministically) choose to apply the context re-ordering rules for
a variable at the first point in a derivation past which more than one immediate sub-derivation
contains a lookup of that variable. In this way, the application of any given substitution to the
type associated with a variable can be guaranteed to be performed at most once. The algorithm
as implemented does not implement this: the substitution is re-applied to the original type upon
every variable look up. In practice this does not seem to be a problem. However, if after further
engineering this became a bottleneck, it would be straightforward to memoize the application of
substitutions to ensure that no unnecessary traversals of types is done.

9.7 Compilation units

The definition of Standard ML [MTHM97] does not define a notion of separate compilation. In
order to remedy this, the TILT compiler defines a notion of interface that generalizes Standard
ML signatures, and uses these interfaces to mediate between separately compiled source units. Any
unit of source code may be compiled in complete isolation from any other unit upon which it relies,
so long as suitable interfaces are provided.

The certifying backend described in this dissertation implements the full TILT separate compi-
lation system. This is done by viewing each compilation unit as a functor which maps its imported
units to its exports. In this way, the linking process is modeled as function application, avoiding
the need for a complicated type theory to track the initialization of globally visible locations.

More concretely, a LIL compilation unit may be thought of as a pair consisting of a type
component and a term component. The type component is a type function mapping imported
types to exported types. Similarly, the term component is a function mapping imported terms
to exported terms. In actuality, the type portion is implemented not as a function, but instead
by using the TALx86 linker directly: each unit lists imported types with their kinds as explicit
imports instead of parameterizing the components over them.

A LIL interface classifying such a compilation unit is a translucent sum: the first component
of which is a kind classifying the type element of the compilation unit, and the second component
of which is a type classifying the term element of the compilation unit. The pair is dependent in
the usual manner: the term classifier portion may refer to the label of the type classifier portion.

The TALx86 linker as defined and implemented by Glew et al. [GM99] does not in fact sup-
port translucent sums, and so it was necessary to extend the TALx86 implementation with an
alternative (and simpler) notion of typed linking which implements the standard translucent sum
matching rules. This was the only significant change needed in the TALx86 infrastructure.

9.7.1 Compiler generated files

The LIL backend emits four files for every compilation unit. The first is a typed assembly file
named asm.tal containing the decorated assembly code for the unit: this corresponds to a LIL
compilation unit as described above. The interface of a compilation unit (whether explicit or
derived) is compiled to a term export file named asm e.tali classifying the exported term portion
of the unit, and a type export file named tali classifying the exported type portion. Finally, an
additional file is emitted containing the signatures of any external C functions used by the unit.
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The TALx86 assembler type checks and assembles the typed assembly file (asm.tal) to produce
two object files: a standard object file (obj.o) and a type object file (obj.to) containing the type
annotations necessary for typechecking the object file. In the process, it verifies that the provided
code matches the interfaces specified in the asm e.tali and tali files.

After compiling each individual unit in a program, TILT must also produce an additional unit
to serve as the “link” unit for the entire program: that is, a unit which applies each compilation
unit function to its imports to produce its exported result. This exported result is then passed on to
subsequent units which import it. This “link” unit implements the ML level linking. The TALx86
linker is used to typecheck and construct the final executable program, linking together the “link”
unit with each of the compilation units providing the individual unit initialization functions.

9.8 Measurements

The goal of this dissertation is to demonstrate the feasibility of certifying compilation in a type
analysis framework. The bulk of the dissertation is concerned with simply developing and describing
the framework necessary for this process. This provides the first argument for feasibility: that it
is possible at all. This section is intended to provide some evidence that not only is it possible,
but in fact that it is practical. In the following sections, I present some empirical measurements of
the performance of certifying TILT. In particular, I present measurements quantifying the size of
the generated type annotations on the emitted code, and measurements of the run time of various
benchmark programs with comparisons to other compilers.

It is important to re-iterate here that engineering the compiler to improve its behavior along
either of these axes is beyond the scope of this thesis. In both cases, the engineering goal was
simply to develop a working system, and to measure the result. No significant effort was spent on
improving the system based on these measurements, and inspection of the emitted code suggests
that substantial improvements along both of these axes could be implemented without running into
any fundamental limitations of the framework.

9.8.1 Benchmarks

The benchmark programs measured in the following sections were selected to be representative of
a number of different sorts of programs, ranging in size from 24 to more than 2000 lines of code.
Each benchmark was compiled separately to an object file, and then subsequently linked into a
testing harness from which it was run. The benchmarks were also linked against the full Standard
ML Basis Library which provides many of the basic data types for Standard ML, along with access
to system I/O facilities. Several of the benchmarks use additional data structure implementations
from the SML/NJ library. Figure 9.3 lists the benchmark programs used in this section, along with
their sizes (in lines of code). Note that the size given is for each single benchmark file only: code
from other compilation units (such as libraries and the test harness) are not included in this count.

9.8.2 Type size

As discussed in chapter 1.4, one of the most commonly cited applications for certifying compilation
is as a security mechanism for mobile code. Certified code that is downloaded to be run from
potentially un-trusted sources (or over un-trusted communication channels) can be checked for any
violations of the safety properties implied by the type system. An important property of a such
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Benchmark name Description Lines
Taku uncurried function calls 24
Takc curried function calls 25
Fib fib, fact with default Int 38
Fib32 fib, fact with 32 bit ints 39
PI approximation of pi (fp) 28
Msort Merge sort (lists) 48
ISort Insertion sort (lists) 50
Quick Quicksort (version 1) 130
Quick2 Quicksort (version 2) 152
Life Game of life (lists) 205
FFT Fast fourier transform 271
PQueens P queens problem (arrays) 292
Frank Small theorem prover 473
Leroy Knuth bendix completion (exceptions) 537
BarnesHut N-body simulation 684
Simple Spherical fluid dynamics 860
Tyan Grobner basis calculation 896
Boyer Theorem proving 959
Lexgen Lexical-analyzer generator 1178
Pia Perspective inversion algorithm 2074

Figure 9.3: Benchmarks
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Figure 9.4: Size breakdown of individual benchmark units, in kilobytes.

a certification system is that the certificate size should not be unduly large so that the additional
security provided does not come at a prohibitive cost in terms of bandwidth needed. In this section,
I provide measurements quantifying the size overhead of the certificates generated by TILT.

In section 9.7.1 I described the files generated by the TILT compiler and the TALx86 assem-
bler. At the assembly code level, there are notionally two elements of a TILT compiled binary: a
typed assembly file containing the actual assembly code annotated with type information (asm.tal),
and some additional files describing the type of the exported interface provided by the binary (the
asm e.tali, asm i.tali, and tali files). The typed assembly file refers to the exported interface files
of any units which it uses, and any units which use it will in turn refer to its exported interface files.
Interface files mediate between compilation units, while the type annotations within an assembly
file allow individual units to be checked.

The typed assembly file is further split by the assembler into a standard untyped object file
(obj.o) and a type annotation file (obj.to) that contains sufficient information to reconstruct the
annotations on the untyped object file.

A reasonable measurement of the certificate size for a compilation unit after assembly then is
the sum of the sizes of its export interface files (the asm e.tali , asm i.tali, and tali files) and
the type annotation file generated by the assembler (obj.to), since these represent the incremental
contribution of each compilation unit to the overall certificate size of the entire compilation sys-
tem. Note that all of the interface information is present only to support separate compilation.
Once linked together, almost all of the interface information can be discarded: in this sense this
measurement is an upper bound.
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Figure 9.5: Size breakdown of individual benchmark units, relative.

9.8.3 Benchmark unit sizes

In this section, I give some size measurements for the TILT benchmark suite. Each of the units
under consideration is a single compilation unit compiled from a single source file to a single object
file. These object files are linked together with libraries, a test harness and the link unit to produce
the final executable. Note that only the benchmark units themselves are included in this section.
Measurements of the libraries and the link unit are discussed in the next section.

Figure 9.4 gives the absolute size in kilobytes of each benchmark. The columns are sorted by
increasing size of the generated (untyped) object file. The segments of each column indicate the
contribution of each of the different files making up the compilation unit. The size overhead of the
safety certificate is everything other than the object file itself (the bottom segment). Note that in
all cases, the contribution of the asm i.tali file (containing the types of imported C functions) is
too small to be visible.

Figure 9.5 provides a different view of this same data: in this figure each segment of each column
indicates a percentage of the total size of the unit contributed by a particular source. For very small
programs, the amount of type information dominates the object code size. For larger programs,
the percentage of the total space usage devoted to the certificate decreases. This reflects a certain
amount of fixed overhead required for each program: basic types such as exception handlers, types
for printing routines, etc. As programs get larger, the cost of this fixed overhead goes down. For the
largest of the benchmarks, the certificate occupies roughly sixty percent of the total size. Summed
over all of the benchmarks, the certificate information occupies roughly eighty percent of the total
space, indicating roughly a factor of five space penalty for certification.
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Export interfaces

The topmost visible segment in both graphs represents the contribution to the total size of the
exported interface of each of the object files. Generally speaking, this component is of comparable
size to the type information in the object file itself. As would be expected, for bigger programs the
percentage overhead of the exported interface decreases somewhat, since the overhead is amortized
over a larger amount of actual object code. In fact, this overhead is probably almost entirely
eliminable, for three reasons.

First, by the nature of the compilation approach taken in the LIL backend, each of these export
interfaces describes a single function mapping each of the object files logical imports to its logical
exports. Consequently, the size of this file increases significantly with the number of imported units.
In addition, this implies that almost all of the type decorations in an export interface file are already
present in the export interface files of its ancestors. It is very likely that this redundant information
could be eliminated entirely by exporting a single canonical abbreviation for the exported type of
each unit along with its exported type component.

Second, because TILT implements separate compilation, the interface file and the actual imple-
mentation files may be produced and used independently. As a consequence, each contains its own
copy of the type of the main exported initialization function (in fact, the entire export interface file
consists solely of this). It is clear that in the common case where both files are produced as part of
the same compilation, this redundancy could be factored out into a common definition site. This
is almost certainly expressible in the TALx86 linking system without modification.

Finally, note that these export interfaces exist solely to mediate between compilation units.
Linked as a whole program, all of this interface disappears. Moreover, in many cases (such as in
the benchmark suite), almost none of the entry points described by these interfaces are exported
from the local group of compilation units. Even in the Standard ML Basis Library, there are many
compilation units whose logical scope is entirely local to the library. A partial linking strategy
wherein groups of compilation units are closed up into a single file presenting a single export
interface would almost certainly eliminate a great deal of this overhead in most cases, even when
whole program linking is not possible.

9.8.4 Libraries and linking

The measurements presented in figures 9.4 and 9.5 cover only the benchmark programs and the
testing harness. These files must be linked against additional libraries before running: the Standard
ML Basis Library, the SML/NJ Library, and a small command line argument parsing library. It is
likely that in a certified compilation system, a subset of these libraries would be provided by the
client, rather than as part of the certified binary. This is particularly true for the Standard ML
Basis Library, which encapsulates the operating system functionality. Nonetheless, it is useful to
measure the behavior of the compiler on these libraries as well as part of the overall system.

In addition to the libraries, there is one additional compilation unit that makes up part of the
final executable program. As discussed previously, the compilation strategy employed in TILT
maps each compilation unit to a single entry point implementing a function which takes as argu-
ments the logical imports of the unit, and computes the logical exports as a result. The final step
in compilation then is to create a unit which stitches together the whole program at runtime by
applying each of these functions in turn. I refer to this unit as the link unit, since it implements
the logical linking of the program. Note that this is distinct from the TALx86 notion of linking,
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Figure 9.6: Total sizes of compilation groups (kilobytes).

which is used to resolve the free references within the link unit back to the exported entry points
of each compilation unit.

Figure 9.6 compares the absolute sizes in kilobytes of each of the major compilation groups of
the benchmark suite: the three libraries (the Basis, the SML/NJ Library, and the command line
argument library), the link unit, and the benchmarks themselves (including the testing harness).
As before, each column is broken into segments showing the contribution to the total of each of the
constituent files. Also as before, figure 9.7 presents the same data as a percentage of the total for
each group.

The Basis Library

There are several interesting points to note here. Firstly, it is clear that the Basis library (and to a
lesser extent the SML/NJ library) have more certificate overhead than the benchmark suite. (This
is also true of the argument library, but this is most likely because of its very small size.) While
the Basis and the benchmarks viewed as a whole have similar amounts of actual object data, the
certificate size for the Basis is larger by roughly a factor of four. While I have not investigated this
phenomenon in detail, I conjecture that it is likely that this is partially a result of the particular
architecture of the Basis library. Within the Basis, there are numerous units which consist solely
of a few (or even one) functor applications, or which contain structures which aggregate numerous
other structures together as sub-structures. Such units produce almost no object code, but have
quite large types.

Further evidence for this can be seen in figure 9.8, which presents the contributions of each of
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the constituent elements for each compilation unit in the Basis library. For clarity given the large
number of files, the graph is presented as a continuous area chart. As with the previous graphs,
the units are sorted by object file size. For the most part, the certificate size (the sum of the top
components) increases fairly smoothly with object file size. However, there are a number of very
substantial spikes at points in the graph where very small files generate certificates comparable to
those of the largest files in the library. All of these spikes that I have examined in detail correspond
to the sort of aggregating files discussed above. Since for such files, much of the type information
will have already been written out in the export files of the logically imported compilation units,
it is likely that much of this overhead could be eliminated, even in a separate compilation setting
(since the type decorations needed to describe the logical imports must be present in the interface
file, which is in turn needed for separate compilation). However, in the current framework these
small units with large types increase the aggregate certificate overhead substantially.

The link unit

A second interesting observation about figures 9.6 and 9.7 is that the size of the link unit is entirely
dominated by the certificate size. The actual object code for the link unit makes up less than one
percent of the total size, and the total size itself is substantial in absolute terms (significantly larger
than all of the benchmarks put together). In principle this is actually somewhat understandable.
The link unit refers to every compilation unit in the entire program, including all of the libraries.
It therefore must be able to refer to the type of the exported entry point (and its result) for each
compilation unit. In some sense then, it is not surprising that the size of the certificate for the link
unit should be comparable to the sum of the sizes of the export interfaces for all of the units in the
program.

However, all of the type information needed to describe the entry points of the compilation
units must be present in the export interfaces of the compilation units themselves. And since these
export interfaces are needed by the link unit, there is no reason that the link unit needs to contain
its own copy of these types. In fact, the typed assembly code produced by the LIL backend takes
advantage of this property by using the abbreviation mechanism provided by the TALx86 system.
The link unit code generated by the LIL backend simply refers to the type of a compilation unit by
using a canonical abbreviation name that is given a definition by the export interface of the unit.
The assembly code produced by the LIL backend for the link unit is consequently quite compact.
Surprisingly, the TALx86 assembler seems unable to preserve this compact representation.

Figure 9.9 compares the aggregate sizes of the compilation groups before and after assembly. For
each compilation group, the first column represents the total size of the assembly (asm.tal) files for
the unit, and the second column represents the sum of the object and typed object files (obj.o and
obj.to). Note that the files from these two columns represent the same information. The object
and type object files (obj.o and obj.to) are produced by assembly the assembly file (asm.tal),
and can be subsequently dis-assembled to re-produce the original assembly representation.

In general, the TALx86 assembler does a very good job of managing certificate sizes. In all cases
except the link unit, the assembled version is noticeably smaller than the original assembly files.
This is universally true for individual files within the compilation groups, as well as in aggregate.
The only exception to this is the link unit: in this case the assembled version is almost forty times
the size of the original assembly file (even though notionally they represent the same information).

While I have not investigated this in detail, I believe that this is almost certainly because
of a failure of the TALx86 assembler to preserve the sharing from the original assembly file. I

188



0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00
kb

asm.tal 13740.51 12948.89 155.55 188.54 6963.54

obj.o+obj.to 10136.38 6663.61 128.90 7310.36 3776.37

Basis Lib Arg Link Bench

Figure 9.9: Assembly file size vs assembled output size (kilobytes)

conjecture that the references to abbreviated types from imported units in the original assembly
file are being expanded out in the type object file. I do not believe that there is anything inherent
to the structure of the link unit that prevents this sharing from being maintained: it should be
possible to engineer an assembler to preserve this information.

Scalability

The data in figure 9.5 suggest strongly that the certificate overhead scales well as the size of
compilation units increase. For larger units, the overall percentage overhead is substantially smaller
than the overhead for smaller units. In order to demonstrate the scalability of the system further,
I took additional measurements on two very large programs.

The first of these large programs consisted of a subset of the benchmarks along with all of
the library code upon which they rely, concatenated into a single file. In addition to the SML/NJ
libraries, this included a large portion of the Standard Basis Library as well. Unfortunately, because
of a limitation with the TILT foreign function interface, it was not possible to concatenate the
entire Standard Basis Library into a single valid Standard ML unit. Therefore, certain of the
benchmarks (such as those performing file i/o) could not be included. The resulting file consisted
of 8332 lines of code.

The second of these large programs consisted of approximately half of the TILT compiler (by
lines of code) concatenated into a single file and compiled as a whole program. Note that in this
case, all library code (including the Standard Basis Library) was compiled separately. The resulting
source file consisted of 32555 lines of code!

The absolute size (in kilobytes) of the generated type and object files is given in figure 9.10.
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The same data is plotted in figure 9.11 as a percentage of the total, with comparisons to the totals
for the separately compiled libraries and benchmarks as shown in figure 9.7. For both of these
large programs, the certificate overhead is substantially smaller than the aggregate totals for the
other compilation groups, representing approximately 60% of the total size. This is comparable
to the overhead for the largest of the benchmark units described in figure 9.5. These two data
points combined with figure 9.5 strongly suggest that while there is a noticeable initial overhead
for certification, the certificate size remains a relatively constant fraction of the overall size for a
large range of program sizes. That is to say, empirically speaking the certificate size seems to grow
linearly with the program size.

9.8.5 Run time

The LIL backend is not designed to be an optimizing backend. Code generation and register
allocation are both done in a single linear pass, and no optimizations are done after code generation.
Nonetheless, it is useful to measure the runtime performance of the compiled code. It is important
that certification not overly restrict the compilation process in such a way as to make efficient code
generation impossible. In this section, I argue that even a non-optimizing certifying backend can
produce reasonably efficient code.

In order to make this argument, I present comparisons with two other compilers: the Standard
ML of New Jersey compiler and the MLton compiler. These comparisons are designed to give some
indication of the relative performance of the certifying TILT backend with respect to the state of
the art in Standard ML compilers. It is important to note however that each of these compilers is
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fundamentally addressing a very different compilation problem from each of the others. For this
reason, this comparison is only really meaningful at the most general high level.

The MLton compiler is designed to produce very efficient code. In order to do this, it compiles
only complete programs. The Standard ML of NJ compiler is designed to be used as an interactive
system. As such, it supports incremental (but not separate) compilation. It performs significant
optimization as well, but is limited somewhat by the needs of incremental compilation and an
interactive frontend. Both of these compilers implement precise garbage collection.

The TILT compiler on the other hand implements true separate compilation. This greatly
limits its ability to optimize code that crosses compilation units. The TALx86 backend also uses
a conservative garbage collector, with a malloc based allocator.

0

2

4

6

8

10

12

14

16

Lif
e

Le
roy

Sim
ple Ty

an
Mso

rt Pia

Le
xg

en
Ta

ku
Ta

kc

PQue
en

s Fib
Fib

32 PI

TILT TILT (Whole) NJ110.42 MLTON

Figure 9.12: Normalized runtime (MLton = 1)

Figure 9.12 shows the relative performance of the compiled versions of the TILT benchmarks as
compiled by each of these three compilers. The results are normalized to the results for the MLton
compiler, which is generally the fastest. In order to get some sense of the overhead of seperate
compilation, some of the benchmarks were compiled by TILT as whole programs as well (e.g. with
all of the library code and the Standard Basis Library included into one file). This data is presented
in the second column labelled TILT(Whole). Because of limitations in the TILT foreign function
interface however, none of the benchmarks requiring i/o could be compiled as whole programs and
so certain of the data points are missing.

Overall, the certifying backend ranges from slightly faster than MLton to almost sixteen times
slower, and from approximately twice as fast as SML/NJ to seven times slower. For very small
benchmarks, such as the arithmetic benchmarks and the takc/taku benchmarks, TILT does quite
well. For small benchmarks such as these, there is no penalty for the inability to optimize across
compilation units, and the relatively simple register allocation in TILT is sufficient. The one
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exception to this is the pi benchmark, on which TILT does quite poorly. This is almost certainly
because of the lack of floating point register allocation in TILT, since this benchmark is dominated
by floating point operations.

The performance of the larger benchmarks is much more varied. In some cases (tyan, lexgen,
pqueens) TILT is within a factor of two of one or both of the other compilers. In the worst case
(leroy) TILT is almost sixteen times slower than MLton, and five times slower than SML/NJ. I
conjecture that part of this is likely due to separate compilation: all of the larger benchmarks cross
compilation unit boundaries a fair bit, via library calls. In addition, several of the benchmarks
involve floating point computation, and several of them are fairly allocation intensive. In both of
these areas, TILT is likely to suffer: from the lack of floating point register allocation in the first
case, and from a more expensive memory allocation strategy in the second case.

The whole program version of each TILT compiled benchmark is noticeably faster than the
separately compiled version: in one particular case (PQueens), faster by a factor of approximately
six. This is despite the fact that all of the TILT optimizations assume a separate compilation
setting even when given whole programs.
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Chapter 10

Conclusions and future work

10.1 Summary

In this dissertation I have shown that certified compilation is possible for full Standard ML, even
in the presence of type analysis based optimizations.

10.1.1 Theory

To provide a theoretical foundation for this, I defined a series of translations mapping a polymorphi-
cally typed lambda calculus extended with type analysis primitives to a typed assembly language.
These translations serve to make type analysis explicit in the intermediate representation; to trans-
late uses of functions to uses of closures; and to make control flow and machine state explicit in an
abstract assembly language.

I proved each of these translations sound in the sense that each translation maps well-typed
terms to well-typed terms. In order to avoid overly constraining the implementation, I also in-
troduced a novel approach for dealing with register allocation, allowing the typing assumptions
required for the proof of soundness to be separated from the semantic behavior of the register allo-
cator. In this way, the translation to assembly code remains parametric over the choice of register
allocation algorithm, so long as the algorithm chosen satisfies certain minimal typing restrictions.

10.1.2 Practice

In order to validate the practicality of my approach, I implemented a certifying backend for the
TILT compiler using the formal translation as a guide.

The TILT middle internal language corresponds closely to the polymorphically typed lambda
calculus used as a starting point for the formal compilation process described in this dissertation.
For each of the compiled passes described formally in this dissertation, I implemented a corre-
sponding compiler pass in the TILT compiler. In addition, I implemented a one pass optimizer
to perform simple optimizations to take advantage of the additional program structure exposed by
the new translations. The final target of this backend is a slightly modified version of the TALx86
framework. The final translation to the TALx86 language follows closely the format of the formal
translation in this dissertation, despite the significant syntactic differences between the idealized
typed assembly language used in the formal presentation and the TALx86 language.
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Separate compilation of full Standard ML is supported by this new backend, and a large number
of programs have been successfully compiled including the entire Standard ML Basis Library and
the Standard ML of New Jersey library. In addition I compiled the TILT benchmark suite using this
typed backend, and measured the results of compilation both in terms of performance as compared
to other Standard ML compilers, and in terms of certificate size overhead in the compiled binaries.

10.1.3 Conclusions

Certified compilation is possible even for languages as rich as Standard ML, even in the presence
of complex type based optimizations. Proving the soundness of typed compiler translations in this
setting is feasible. However, there is a trade off between the closeness of the formal model to the
implementation and the complexity of the proof process. In this dissertation I attempted to keep
a very close correspondence between the formal model and the implementation.

In order to make this more feasible I introduced new techniques for factoring out some inessential
choices of the implementation, such as the particular choice of mappings of variables to registers
and the method by which this mapping is arrived at. While this particular technique should scale
to more complex optimizing code generation, it is likely that maintaining the close correspondence
between the formal model and the implementation would become more difficult if more complex
code generation and optimization techniques were performed.

The problem of managing certificate size is shown here to be manageable. With no major
engineering or tuning of the new TILT back end, certificate size overhead was shown to be in
general quite reasonable. While the overhead for supporting separate compilation makes up almost
half of the aggregate certificate size for the measured programs, simple analysis of the structure of
compilation units shows that much of this overhead could be eliminated with a more sophisticated
mechanism for sharing type abbreviations across interfaces. Numerous other opportunities exist
for eliminating redundant type information, both between units and within units.

In the one case where the certificate overhead was observed to be drastically larger than expected
(the link unit discussed in the previous section), this was shown to be due to a failure of the TALx86
assembler (which otherwise performed admirably) rather than a structural failure of the compiler.

10.1.4 Compiler engineering

Maintaining type information on the compiler intermediate forms imposes an additional burden
on a compiler writer, just as programming in a typed language imposes an additional burden on
a programmer. As is the case with type safe programming languages however, it is becoming
increasingly clear that the engineering benefits of typed compilation substantially out-weigh the
costs. A type preserving compiler provides a form of automatic self-checking that is extremely
valuable to the implementer of the compiler.

Compiler bugs are notoriously difficult to track down and fix, since they often exhibit themselves
only as second-order effects. That is, the compiler itself appears to run correctly: it is only in
the running of the generated code that incorrect behavior appears. To make matters worse, the
problem in the generated code may very well manifest itself not at the incorrect program point, but
at some arbitrary later point in the program’s run (e.g. because of memory or stack corruption).
Matching an incorrect behavior of a generated program to the bug in the compiler that caused it
often requires an extensive process of analysis and deduction. By and large, the state of the art in
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untyped compiler debugging generally relies on carefully stepping through optimized (and hence
often obfuscated) code in a debugger.

The great benefit of a type-preserving compiler is that it moves the point of discovery for
compiler bugs out of the generated code and into the compiler itself, for a large class of bugs. In
other words, many or even most compiler bugs are caught and flagged as soon as they are produced
in the compiler, rather than at some arbitrary point in a future run of the generated program.
Moreover, if a self-check is run between every compiler pass (at least while in development), the
point at which the error is flagged indicates not only the location of the error in the intermediate
code but also the particular pass of the compiler that is the most likely culprit (i.e. the pass
immediately preceeding the failed self-check).

Of course, type safety does not guarantee correctness. It is still possible for the compiler to
generate incorrect code that nonetheless happens to be well-typed. In practice however, this seems
to be relatively rare – most errors (and most of the most pernicious errors) tend to be caught. In
particular, note that the entire class of errors involving memory corruption are guaranteed to be
caught by the type checker! Over the course of developing the certifying backend for TILT, my
experience was that almost all compiler bugs were caught statically. For example, while developing
the register allocator (a notorious source of difficult bugs), all of the register allocation bugs that I
encountered were caught by the TALx86 typechecker.

Most of the bugs that were not caught by the typechecker arose from the more permissive nature
of the TALx86 type system as compared to the Standard ML type system. For example, TALx86
very reasonably defines 32 bit integer arithmetic to have silent overflow semantics: the compiler
is responsible for generating explicit overflow checks and raising exceptions as appropriate. If the
compiler fails to emit such as check, the code is still well-typed with respect to the TALx86 type
system: however, its behavior on overflow is incorrect with respect to the semantics of Standard
ML. An interesting area for future work in the area of typed assembly languages would be to provide
facilities for encoding such source language constraints into the type system (without specializing
the type system itself to a particular language).

10.2 Future work

This dissertation demonstrates the feasibility of performing certified compilation for Standard ML
in a type analysis framework. There remain several directions in which this work could be extended
in order to make this more useful and practical.

10.2.1 Optimization

The certifying backend implemented as part of this thesis is for the most part not an optimizing
one. While some simple optimizations are performed on the LIL intermediate code, inspection
of the output of the compiler suggests numerous ways in which the intermediate code could be
improved (particularly after closure conversion).

Some of these improvements are as simple as extending the LIL language with additional
constructs. A simple example of such an extension is that of heterogeneous tuples, which would
allow the closure converter to avoid boxing and un-boxing 64 bit floating point numbers. Others
are more complex: for example, implementing partial redundancy elimination to re-locate closure
environment operations used only conditionally.
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In addition to improvements in the optimization of the intermediate code, there is considerable
room for improvement of the code generator itself. The register allocation technique used is quite
simplistic: a more sophisticated algorithm based on graph coloring or graph fusion would produce
significantly better code. No floating point register allocation is currently done at all.

The code generator itself is quite limited. No attempt is made at scheduling instructions
intelligently, and the instruction selection is fairly ad-hoc. While it does a relatively good job
of taking advantage of the CISC nature of the x86 instruction set, a more uniform approach would
almost certainly improve the generated code.

The implementation of exceptions in the LIL backend is also quite inefficient, both in setting
new handlers and in executing handler bodies.

Finally, I believe there is a good deal of work left to be done in tuning and improving the
use of type analysis in the TILT compiler. No tuning has been done to adjust the parameters
to the type analysis optimizations, such as the maximum width record to flatten into registers.
Additionally, no work has been done to quantify the actual benefits of type analysis as currently
implemented. It would be valuable to measure the effect of these optimizations in isolation, and
to use this information to look for additional opportunities to take advantage of the type analysis
infrastructure already in place.

10.2.2 Garbage collection

The TALx86 infrastructure assumes the use of a conservative garbage collector. The untyped
TILT backend makes use of type information at runtime to do precise garbage collection. An
interesting topic of future research would be to replace or extend the TALx86 infrastructure in
such a way as to support precise garbage collection using the type information already kept at
runtime [VC03].

10.2.3 Infrastructure improvements

The TALx86 certification infrastructure proved impressively flexible in serving as a target for the
TILT compiler with a minimum of modification. However, the performance of the TALx86 type
checker could be improved upon substantially. Currently, assembling and typechecking large units
takes dramatically longer than the entire process of compilation within TILT (including numerous
internal type checks). While the type system is more detailed and low level at the TALx86 level,
many of the techniques discussed in chapter 9 used to improve the performance of the LIL type
checker are still applicable.

In addition, as discussed in section 9.8.4 there are a few important cases where the TALx86
assembler seems to fail to preserve the physical sharing present in the original typed assembly
source file which degrade its performance on certain units immensely.

10.2.4 Reducing the trusted computing base

Another concern with the TALx86 infrastructure is that there is no proof of type safety for the
language as implemented. This is of significant concern in an actual certifying compilation system,
since in the absence of such a proof, even the correctness of the TALx86 type checker does not
necessarily imply the safety of the programs it certifies. And of course, there is no guarantee that
the implemented type checker faithfully and soundly implements the static semantics of the type
system for the language.
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Attempts have recently been made to address both of these problems by providing certified
code infrastructures that both implement a language with a formal proof of type safety, and which
try to reduce the complexity of the checking problem as much as possible so as to minimize the
amount of trusted code in the certifier [Cra03, App01]. A valuable area of future research would
be to re-target the certifying TILT backend to such a system.

10.3 Conclusions

This dissertation has clearly shown that certifying compilation is feasible for a rich language like
Standard ML, even in the presence of type analysis and other other advanced optimizations. The
problem of controlling the intermediate size of programs and of controlling the certificate overhead
on the generated code is almost certainly tractable. Even in the system implemented in this thesis,
which made no effort to optimize for these properties beyond the minimum necessary to demonstrate
feasibility, the results were easily within reach of being sufficient for a practical and usable system.

The problem of connecting formal models of compiler translations to their actual implemen-
tations remains a difficult one. As the formal models scale up to more closely model the actual
languages and transformations implemented in the compiler, the syntactic overhead and complexity
of proofs about the model increases significantly to the point that confidence in the correctness of
the proofs must inevitably fall. New techniques for dealing with this complexity are needed, and
while this dissertation attempts to address this to a certain extent, in general it remains an open
problem. One promising approach to dealing with this lies in the use of logical frameworks to
mechanically check proofs, or even to assist in generating them.

Certifying compilation is the natural extension of typed compilation. In this role, a certifying
compiler greatly increases the ability of the compiler writer to write a correct compiler by extending
the benefits of type checking to a lower level. As with all disciplines, the discipline of having always
to consider the type correctness of compiler transformations is sometimes burdensome. I believe
that it is also a valuable one. It should always be clear to the compiler writer why a particular
transformation is safe. The type checker in a type preserving compiler enforces this discipline.
It is important that the flexibility of type systems for compiler internal languages continue to be
improved upon, so that the cases where the type checker must reject safe code due to its own
limitations can be made increasingly rare.

Most importantly, certifying compilation provides an important tool for coming to grips with
the increasing problem of providing security in a wide-open, networked universe. Delivering security
along with downloaded code is an essential part of providing value to the end user. This thesis
demonstrates that automatically generating such security in the form of certified code is well within
our grasp.
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Appendix A

MIL static semantics

Well-formed Kind ` κ ok

` T32 ok

` κ1 ok ` κ2 ok

` κ1→ κ2 ok

` κ1 ok ` κ2 ok

` κ1 × κ2 ok

Well-formed type context ` ∆ ok

` • ok

` ∆ ok ∆ ` κ ok
α /∈ ∆

` ∆, α:κ ok

Well-formed Constructor ∆ ` c :κ

` ∆, α:κ, ∆′ ok

∆, α:κ, ∆′ ` α :κ

` ∆ ok

∆ ` Int : T32

` ∆ ok

∆ ` Boxf : T32

` ∆ ok

∆ ` Farray : T32

` ∆ ok

∆ ` Exn : T32

∆ ` c : T32

∆ ` Arrayc : T32

∆ ` c : T32

∆ ` Dyntagc : T32

∆ ` c1 : T32 ∆ ` c2 : T32

∆ ` Varargc1→c2
: T32

∆, α:T32, β:T32 ` c1 : T32 ∆, α:T32, β:T32 ` c2 : T32
α, β /∈ ∆

∆ ` µ(α, β).(c1, c2) : T32 × T32

∆ ` ci : T32 i ∈ 0 . . . j
∆ ` c : T32

∆ ` (c0 . . . cj)→ c : T32

∆ ` ci : T32 i ∈ 0 . . . j

∆ ` c1 × . . .× cj : T32
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∆ ` ci : T32 i ∈ 0 . . . j
∆ ` c : T32

∆ ` Sumn(c0 . . . cj) : T32

∆ ` ci : T32 i ∈ 0 . . . j
∆ ` c : T32 m ≤ n + j

∆ ` Summ
n (c0 . . . cj) : T32

` κ1 ok ∆, α:κ1 ` c :κ2
α /∈ ∆

∆ ` λ(α :: κ).c :κ1→ κ2

∆ ` c1 :κ1→ κ2 ∆ ` c2 :κ1

∆ ` c1 c2 :κ2

∆ ` c1 :κ1 ∆ ` c2 :κ2

∆ ` 〈c1, c2〉 :κ1 × κ2

∆ ` c :κ1 × κ2
(i ∈ {1, 2})

∆ ` πi c :κi

Base constructors

The base constructors consist of Int, Boxf, arrows, records, projections from mu types, Vararg,
Sum, Array, Farray, Exn, and Dyntag. The non-record base constructors consist of any of the above
except record types.

Constructor Equivalence ∆ ` c ≡ c′ :κ

∆ ` c :κ

∆ ` c ≡ c :κ

∆ ` c′ ≡ c :κ

∆ ` c ≡ c′ :κ

∆ ` c1 ≡ c2 :κ ∆ ` c2 ≡ c3 :κ

∆ ` c1 ≡ c3 :κ

∆ ` c :κ1→ κ2 α /∈ FV(c)

∆ ` λ(α:κ1).cα ≡ c :κ1→ κ2

∆ ` c :κ1 × κ2

∆ ` 〈π1 c, π2 c〉 ≡ c :κ1 × κ2

∆ ` c1 :κ1 ∆ ` c2 :κ2

∆ ` π1〈c1, c2〉 ≡ c1 :κ1

∆ ` c1 :κ1 ∆ ` c2 :κ2

∆ ` π2〈c1, c2〉 ≡ c2 :κ2

` κ1 ok
∆, α:κ1 ` c1 :κ2 ∆ ` c2 :κ1

∆ ` (λ(α:κ1).c1)c2 ≡ c1[c2/α] : κ2

` κ1 ok
∆, α:κ1 ` c1 ≡ c2 :κ2

∆ ` λ(α:κ1).c1 ≡ λ(α:κ1).c2 :κ1→ κ2

∆ ` c1 ≡ c′1 :κ1→ κ2

∆ ` c2 ≡ c′2 :κ1

∆ ` c1c2 ≡ c′1c
′
2 :κ2
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∆ ` c1 ok ∆ ` c2 ok ∆ ` c1 ≡ ×[c′1, . . . , c
′
n] : T32 n ≤ flattenlimit

∆ ` Varargc1→c2
≡ (c′1, . . . , c

′
n)→ c2 : T32

∆ ` c1 ok ∆ ` c2 ok ∆ ` c1 ≡ ×[c′1, . . . , c
′
n] : T32 n > flattenlimit

∆ ` Varargc1→c2
≡ c1→ c2 : T32

∆ ` c1 ok ∆ ` c2 ok ∆ ` c1 ≡ c′1 : T32

where c′1 is a non-record base constructor

∆ ` Varargc1→c2
≡ c1→ c2 : T32

∆ ` c ≡ c′ :κ1 × κ2

∆ ` π1 c ≡ π1 c′ :κ1

∆ ` c ≡ c′ :κ1 × κ2

∆ ` π2 c ≡ π2 c′ :κ2

Type equivalence ∆ ` τ ≡ τ ′ : T32

∆ ` c ≡ c′ : T32

∆ ` T (c) ≡ T (c′) : T32

∆ ` τi ≡ τ ′i : T32 i ∈ 1 . . . n

∆ ` τ1 × . . .× τn ≡ τ ′1 × . . .× τ ′n : T32

∆ ` τi ≡ τ ′i : T32 i ∈ 1 . . . n
∆ ` τ ≡ τ ′ : T32

∆ ` ∀[α::κ1, . . . , α::κn](τ1, . . . , τm)(k)→ τ ≡ ∀[α::κ1, . . . , α::κn](τ ′1, . . . , τ
′
m)(k)→ τ ′ : T32

Well-formed float value ∆; Γ ` fv : Float

` ∆ ok ∆ ` Γ ok
r

∆; Γ ` r : Float

` ∆ ok ∆ ` Γ[xf ] ok
fvar

∆; Γ[xf ] ` xf : Float
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Well-formed small value ∆; Γ ` sv : τ

∆ ` Γ[x:τ ] ok
var

∆; Γ[x:τ ] ` x : τ

∆ ` Γ ok
int

∆; Γ ` i : Int

∆; Γ ` sv : ci[π1 µ(α, β)(c1, c2)/α, π2 µ(α, β)(c1, c2)/β]
roll

∆; Γ ` rollπi µ(α,β)(c1,c2) sv : πi µ(α, β)(c1, c2)

∆ ` c ≡ πi µ(α, β)(c1, c2) : T32 ∆; Γ ` sv : πi µ(α, β)(c1, c2)
unroll

∆; Γ ` unrollc sv : ci[π1 µ(α, β)(c1, c2)/α, π2 µ(α, β)(c1, c2)/β]

∆ ` Sumj
i (~c) : T32

inj tag

∆; Γ ` inj tagj
Sumi(~c)

: Sumi(~c)

Well formed 32 bit instructions ∆; Γ ` opr : τ

∆; Γ ` sv : τ
sv

∆; Γ ` sv : τ

∆; Γ ` fv : Float
boxf

∆; Γ ` boxf fv : Boxf

∆; Γ ` sv i : τi
tuple

∆; Γ ` 〈sv1, . . . , svn〉 : τ1 × . . .× τn

∆; Γ ` sv : c1→ c2
vararg

∆; Γ ` varargc1→c2
sv : Varargc1→c2
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∆; Γ ` sv : Varargc1→c2
onearg

∆; Γ ` oneargc1→c2
sv : c1→ c2

∆; Γ ` sv :∀[α1::κ1, . . . , αn::κn](τ1, . . . , τm)(k)→ τ
∆; Γ ` sv i : τi[c1/α1, . . . , cn/αn]

∆; Γ ` fv i : Float app
∆; Γ ` sv [c1, . . . , cn](sv1, . . . , svm)(fv1, . . . , fvk) : τ [c1/α1, . . . , cn/αn]

∆ ` Sumj
i (~c) : T32

∆; Γ ` sv : Sumj
i (~c) proj

∆; Γ ` projj
Sumi(~c)

sv : cj

∆ ` Sumj
i (~c) : T32 ∆; Γ ` sv : cj

inj

∆; Γ ` injj
Sumi(~c)

sv : Sumi(~c)

∆; Γ ` sv : τ1 × . . .× τn
select

∆; Γ ` selecti sv : τi

∆ ` τ : T32

∆; Γ ` sv : Sumi(~c) ∆; Γ[xj : Sumj
i (~c)] ` ej : τ

case
∆; Γ ` caseτ (sv) (x1.e1, . . . , xn.en) : τ

∆; Γ ` sv : Exn∆ ` τ : T32

∆; Γ ` sv1 : Dyntagc1
∆; Γ[x1:c1] ` e1 : τ ∆; Γ ` e2 : τ

exncase
∆; Γ ` exncaseτ (sv) (sv1 ⇒ x1.e1, ⇒ e2) : τ

∆; Γ ` e1 : τ ∆; Γ[x : Exn] ` e2 : τ
handle

∆; Γ ` handleτ (e1, x.e2) : τ

∆; Γ ` sv1 : Dyntagc ∆; Γ ` sv2 : c
inj exn

∆; Γ ` inj dync(sv1, sv2) : Exn
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∆ ` c : T32

∆; Γ ` sv1 : Arrayc ∆; Γ ` sv2 : Int
sub

∆; Γ ` subc(sv1, sv2) : c

∆; Γ ` sv1 : Int ∆; Γ ` sv2 : c
array

∆; Γ ` arrayc(sv1, sv2) : Arrayc

∆; Γ ` sv : Int ∆ ` fv : Float
farray

∆; Γ ` farray(sv , fv) : Farray

∆ ` τ : T32 ∆; Γ ` sv : Exn
raise

∆; Γ ` raiseτ sv : τ

∆ ` c : T32 ∆ ` Γ ok
mkexntag

∆; Γ ` mkexntagc : Dyntagc

Well formed float instructions ∆; Γ ` opr : Float

∆; Γ ` sv : Boxf
unbox

∆; Γ ` unboxf sv : Float

∆; Γ ` sv1 : Farray ∆; Γ ` sv2 : Int
fsub

∆; Γ ` fsub(sv1, sv2) : Float

∆; Γ ` fv : Float
fv

∆; Γ ` fv : Float
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Well-formed Expression ∆; Γ ` e : τ

∆; Γ ` sv : τ
sv

∆; Γ ` sv : τ

∆; Γ ` i : τ ′ ∆; Γ[x : τ ′] ` e : τ
i

∆; Γ ` letτ x = i in e : τ

∆; Γ ` i : Float ∆; Γ[xf ] ` e : τ
i64

∆; Γ ` letτ xf = i in e : τ

∆; Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr, ~α::κ, ~x:τ , ~xf ] ` ef : τr

∆; Γ[f : ∀[ ~α::κ](~τ)(|xf |)→ τr] ` e : τ
rec

∆; Γ ` letτ recτr f [ ~α::κ]( ~x:τ)( ~xf ).ef in e :∀[ ~α::κ](~τ)(|xf |)→ τ

Well-formed Context ∆ ` Γ ok

` ∆ ok

∆ ` • ok

∆ ` Γ ok ∆ ` τ : T32
x /∈ Γ

∆ ` Γ, x:τ ok

∆ ` Γ ok
x64 /∈ Γ

∆ ` Γ, x64:φ ok
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Appendix B

LIL static semantics

Definitions

κ list
def= µj.1 + κ× j

nat
def= µj.1 + j

0 def= foldnat inj
1+nat
1 ∗

n + 1 def= foldnat inj
1+nat
2 (n)

Well-formed Kind ∆ ` κ ok

` ∆ ok

∆ ` T32 ok

` ∆ ok

∆ ` T64 ok

` ∆ ok

∆ ` 1 ok

` ∆, j,∆′ ok

∆, j,∆′ ` j ok

∆ ` κ1 ok ∆ ` κ2 ok

∆ ` κ1→ κ2 ok

∆ ` κ1 ok ∆ ` κ2 ok

∆ ` κ1 × κ2 ok

∆ ` κ1 ok ∆ ` κ2 ok

∆ ` κ1 + κ2 ok

∆, j ` κ ok
(j /∈ ∆, j only positive in κ)

∆ ` µj.κ ok

∆, j ` κ ok
(j /∈ ∆)

∆ ` ∀j.κ ok

Well-formed type and kind ontext ` ∆ ok

` • ok

` ∆ ok
j /∈ ∆

` ∆, j ok

` ∆ ok ∆ ` κ ok
α /∈ ∆

` ∆, α:κ ok
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Well-formed Constructor ∆ ` c :κ

Constants and their kinds
Float:T64 Int:T32 Void:T32

Array32:T32→ T32 Array64:T64→ T32 Boxed :T64→ T32

Tag :nat→ T32 Dyntag :T32→ T32 Dyn :T32

×:T32list→ T32 → :T32list→ T64list→ T32→ T32∨
:T32list→ T32 Code :T32list→ T64list→ T32→ T32

∀:∀j.(j→ T32)→ T32 ∃:∀j.(j→ T32)→ T32

Rec :∀j.((j→ T32)→ (j→ T32))→ j→ T32

` ∆ ok

∆ ` ∗ : 1

` ∆, α:κ, ∆′ ok

∆, α:κ, ∆′ ` α :κ

∆ ` κ1 ok ∆, α:κ1 ` c :κ2
α /∈ ∆

∆ ` λ(α :: κ).c :κ1→ κ2

∆ ` c1 :κ1→ κ2 ∆ ` c2 :κ1

∆ ` c1 c2 :κ2

∆ ` c1 :κ1 ∆ ` c2 :κ2

〈c1, c2〉 ` κ1 × κ2 :

∆ ` c :κ1 × κ2
(i ∈ {1, 2})

∆ ` πi c :κi

∆ ` c :κi (i ∈ {1 . . . n})

∆ ` inj+[κ1,...,κn]
i c : + [κ1, . . . , κn]

∆ ` c : + [κ1, . . . , κn]
∆, αi:κi ` ci :κ i ∈ 1 . . . n

αi /∈ ∆
∆ ` case c[(α1.c1, . . . , αn.cn)] : κ

∆ ` µj.κ ok ∆ ` c :κ[µj.κ/j]

∆ ` foldµj.κ c :µj.κ

∆ ` µj.κ ok ∆ ` κ′ ok j, α, ρ, /∈ ∆
∆, j, α:κ, ρ:(j→ κ′),` c :κ′

∆ ` pr(j, α:κ, ρ:(j→ κ′), in c) :µj.κ→ κ′

∆ ` c :∀j.κ′ ∆ ` κ ok

∆ ` c[κ] : κ′[κ/j]

∆, j ` c :κ
j /∈ ∆

∆ ` Λj.c :∀j.κ
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Constructor Equivalence ∆ ` c ≡ c′ :κ

∆ ` c :κ

∆ ` c ≡ c :κ

∆ ` c′ ≡ c :κ

∆ ` c ≡ c′ :κ

∆ ` c1 ≡ c2 :κ ∆ ` c2 ≡ c3 :κ

∆ ` c1 ≡ c3 :κ

∆ ` c :κ1→ κ2 α /∈ FV(c)

∆ ` λ(α:κ1).cα ≡ c :κ1→ κ2

∆ ` c :κ1 × κ2

∆ ` 〈π1 c, π2 c〉 ≡ c :κ1 × κ2

∆ ` c : + [κ1, . . . , κn]

∆ ` case(c, [α1. inj
+[κ1,...,κn]
1 α1, . . . , αn. inj

+[κ1,...,κn]
n αn]) ≡ c : + [κ1, . . . , κn]

∆ ` c1 :κ1 ∆ ` c2 :κ2

∆ ` π1〈c1, c2〉 ≡ c1 :κ1

∆ ` c1 :κ1 ∆ ` c2 :κ2

∆ ` π2〈c1, c2〉 ≡ c2 :κ2

∆ ` κ1 ok
∆, α:κ1 ` c1 :κ2 ∆ ` c2 :κ1

∆ ` (λ(α:κ1).c1)c2 ≡ c1[c2/α] : κ2

∆ ` κ ok ∆, j ` c :κ′

∆ ` (Λj.c)[κ] ≡ c[κ/j] : κ′[κ/j]

∆ ` c :κi ∆ ` κj ok j ∈ 1 . . . n
∆, αj :κj ` cj :κ j ∈ 1 . . . n

∆ ` case(inj+[κ1,...,κn]
i c, [. . . , αi.ci, . . .]) ≡ ci[c/αi] : κ

∆ ` c′ :κ[µj.κ/j] ∆ ` κ′ ok (j, α, ρ, /∈ ∆)
∆, j, α:κ, ρ:(j→ κ′),` c :κ′ ∆ ` µj.κ ok

∆ ` pr(j, α:κ, ρ:(j→ κ′), in c) foldµj.κ c′

≡ c[µj.κ, c′, pr(j, α:κ, ρ:(j→ κ′) in c), /j, α, ρ]
:µj.κ→ κ′

∆ ` κ1 ok
∆, α:κ1 ` c1 ≡ c2 :κ2

∆ ` λ(α:κ1).c1 ≡ λ(α:κ1).c2 :κ1→ κ2

∆ ` c1 ≡ c′1 :κ1→ κ2

∆ ` c2 ≡ c′2 :κ1

∆ ` c1c2 ≡ c′1c
′
2 :κ2

∆ ` c ≡ c′ :κ1 × κ2

∆ ` π1 c ≡ π1 c′ :κ1

∆ ` c ≡ c′ :κ1 × κ2

∆ ` π2 c ≡ π2 c′ :κ2
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∆ ` c ≡ c′ :κi ∆ ` κj ok j ∈ 1 . . . n

∆ ` inj+[κ1,...,κn]
i c ≡ inj

+[κ1,...,κn]
i c′ : + [κ1, . . . , κn]

∆ ` c ≡ c′ : + [κ1, . . . , κn]
∆, αi:κi ` ci ≡ c′i :κ i ∈ 1 . . . n

∆ ` case(c, [α1.c1, . . . , αn.cn]) ≡ case(c′, [α1.c
′
1, . . . , αn.c′n]) : κ

∆ ` c ≡ c′ :κ[µj.κ/j]

∆ ` foldµj.κ c ≡ foldµj.κ c′ :µj.κ

j, α, ρ, /∈ ∆
∆ ` µj.κ ok ∆ ` κ′ ok ∆, j, α:κ, ρ:(j→ κ′),` c ≡ c′ :κ′

∆ ` pr(j, α:κ, ρ:j→ κ′, in c)
≡ pr(j, α:κ, ρ:j→ κ′, in c′) :µj.κ→ κ′

∆, j ` c ≡ c′ :κ′
j /∈ ∆

∆ ` Λj.c ≡ Λj.c′ :∀j.κ′

∆ ` c ≡ c′ :∀j.κ′ ∆ ` κ ok

∆ ` c[κ] ≡ c′[κ] : κ′[κ/j]

Well-formed term context ∆ ` Γ ok

` ∆ ok

∆ ` • ok

∆ ` Γ ok ∆ ` τ : T32
x /∈ Γ

∆ ` Γ, x:τ ok

∆ ` Γ ok ∆ ` φ : T64
x64 /∈ Γ

∆ ` Γ, x64:φ ok

Well-formed heap context ` Ψ ok

` • ok

` Ψ ok • ` τ : T32
` /∈ Γ

` Ψ, `:τ ok

Well-formed 64 bit value ∆; Γ ` fv :φ

∆ ` Γ ok ` Ψ ok

Ψ;∆; Γ ` r : Float

∆ ` Γ, x64:φ,Γ′ ok ` Ψ ok

Ψ;∆; Γ, x64:φ,Γ′ ` x64 :φ
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Well-formed 32 bit Value Ψ;∆; Γ ` sv : τ

∆ ` Γ, x:τ,Γ′ ok ` Ψ ok

Ψ;∆; Γ, x:τ,Γ′ ` x : τ

∆ ` Γ ok ` Ψ ok

Ψ;∆; Γ ` i : Int

∆ ` Γ ok ` Ψ1, `:τ,Ψ2 ok

Ψ1, `:τ,Ψ2;∆; Γ ` ` : τ

∆ ` τ ≡ Rec[κ](c)(cp) : T32

Ψ;∆; Γ ` sv : c(Rec[κ]c)cp

Ψ;∆; Γ ` rollτ sv : τ

∆ ` τ ≡ Rec[κ](c)(cp) : T32

Ψ;∆; Γ ` sv : τ

Ψ;∆; Γ ` unrollτ sv : c(Rec[κ]c)cp

Ψ;∆; Γ ` sv1 : Dyntag τ Ψ;∆; Γ ` sv2 : τ

Ψ;∆; Γ ` inj dynτ (sv1, sv2) : Dyn

∆ ` c ≡
∨

[. . . , ci, . . .] : T32 Ψ;∆; Γ ` sv : ci

Ψ;∆; Γ ` inj unionc sv : c

∆ ` τ ≡ ∃[κ](c′) : T32 ∆ ` c :κ
Ψ;∆; Γ ` sv : c′c]

Ψ;∆; Γ ` pack sv as τ hiding c : τ

Ψ;∆; Γ ` sv :∀[κ](c′) ∆ ` c :κ

Ψ;∆; Γ ` sv [c] : c′c

∆ ` Γ ok ` Ψ ok

Ψ;∆; Γ ` tagi : Tag(i)

Well formed 64 bit operations Ψ;∆; Γ ` fopr :φ opr64

Ψ;∆; Γ ` fv :φ

Ψ;∆; Γ ` fv :φ opr64

Ψ;∆; Γ ` sv : Boxedφ

Ψ;∆; Γ ` unbox sv :φ opr64

Ψ;∆; Γ ` sv1 : Array64φ
Ψ;∆; Γ ` sv2 : Int

Ψ;∆; Γ ` subφ(sv1, sv2) :φ opr64

Well-formed 32 bit operation Ψ;∆; Γ ` opr : τ opr32

Ψ;∆; Γ ` sv : τ

Ψ;∆; Γ ` sv : τ opr32

Ψ;∆; Γ ` sv : × (τ0:: . . . ::τi::c′)

Ψ;∆; Γ ` selecti sv : τi opr32

Ψ;∆; Γ ` fv :φ

Ψ;∆; Γ ` box fv : Boxedφ

Ψ;∆; Γ ` sv i : τi i ∈ 0, . . . , n

Ψ;∆; Γ ` 〈sv0, . . . , svn〉 : × [τ0, . . . , τn]
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Ψ;∆; Γ ` sv :
∨

[τ0, . . . , τk] Ψ;∆; Γ, xi:τi ` ei : τ exp
∆ ` τi ≡ Tag(i) : T32 i ∈ 0 . . . (j − 1)
∆ ` τi ≡ ×[Tag(i), τ ′i ] : T32 i ∈ j . . . k

Ψ;∆; Γ ` case(sv)(x.e0, . . . , x.ek) : τ opr32

∆ ` τ : T32

Ψ;∆; Γ ` dyntagτ : Dyntag τ opr32

Ψ;∆; Γ ` sv : Dyn Ψ;∆; Γ ` sv1 : Dyntag τ1

Ψ;∆; Γ, x1:τ1 ` e1 : τ exp Ψ;∆; Γ ` e : τ exp

Ψ;∆; Γ ` dyncase(sv)(sv1 ⇒ x1.e1, ⇒ e) : τ opr32

Ψ;∆; Γ ` sv : Dyn ∆ ` τ : T32

Ψ;∆; Γ ` raiseτ sv : τ opr32

Ψ;∆; Γ ` e1 : τ exp
Ψ;∆; Γ, x: Dyn ` e2 : τ exp

x /∈ Γ
Ψ;∆; Γ ` handleτ (e1, x.e2) : τ opr32

Ψ;∆; Γ ` sv : → ([τ0, . . . , τn])([φ0, . . . , φk])(τ)
Ψ;∆; Γ ` sv i : τi Ψ;∆; Γ ` fv i :φi

Ψ;∆; Γ ` sv(sv0, . . . , svn)(fv0, . . . , fvk) : τ opr32

Ψ;∆; Γ ` sv : Code[τ0, . . . , τn][φ0, . . . , φk](τ)
Ψ;∆; Γ ` sv i : τi Ψ;∆; Γ ` fv i :φi

Ψ;∆; Γ ` call sv(sv0, . . . , svn)(fv0, . . . , fvk) : τ opr32

Ψ;∆; Γ ` sv1 : Int Ψ;∆; Γ ` sv2 : τ

Ψ;∆; Γ ` arrayτ (sv1, sv2) : Array32(τ) opr32

Ψ;∆; Γ ` sv1 : Array32(τ) Ψ;∆; Γ ` sv2 : Int

Ψ;∆; Γ ` subτ (sv1, sv2) : τ opr32

Ψ;∆; Γ ` sv1 : Array32(τ) Ψ;∆; Γ ` sv2 : Int Ψ;∆; Γ ` sv3 : τ

Ψ;∆; Γ ` updτ (sv1, sv2, sv3) : Unit opr32
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Ψ;∆; Γ ` sv : Int Ψ;∆; Γ ` fv :φ

Ψ;∆; Γ ` arrayφ(sv , fv) : Array64φ opr32

Ψ;∆; Γ ` sv1 : Array64φ Ψ;∆; Γ ` sv2 : Int Ψ;∆; Γ ` fv :φ

Ψ;∆; Γ ` updφ(sv1, sv2, fv) : Unit opr64

Well-formed Expression Ψ;∆; Γ ` e : τ exp

∆ ` κi ok ∆, ~α:~κ ` τi : T32 ∆, ~α:~κ ` φi : T64

Ψ;∆, ~α:~κ; Γ, f :∀[~α:~κ](~τ)(~φ)→ τ, ~x:~τ , ~x64:~φ ` e : τ exp
Ψ;∆; Γ, f :∀[~α:~κ](~τ)(~φ)→ τ ` e′ : τ ′ exp

~α, ~x, ~x64, f /∈ ∆,Γ
Ψ;∆; Γ ` let recτ f [~α:~κ](~x:~τ)( ~x64:~φ).e in e′ : τ ′ exp

Ψ;∆; Γ ` sv : τ

Ψ;∆; Γ ` sv : τ exp

Ψ;∆; Γ ` opr : τ opr32

Ψ;∆; Γ, x:τ ` e : τ ′ exp

Ψ;∆; Γ ` letx = opr in e : τ ′ exp

Ψ;∆; Γ ` opr :φ opr32

Ψ;∆; Γ, x64:φ ` e : τ ′ exp

Ψ;∆; Γ ` letx64 = fopr in e : τ ′ exp

Ψ;∆; Γ ` sv :∃[κ](c)
Ψ;∆, α:κ; Γ, x:(cα) ` e : τ ′ exp α /∈ fv(τ ′)

α, x /∈ ∆,Γ
Ψ;∆; Γ ` let[α, x] = unpack sv in e : τ ′ exp

Ψ;∆, β:κ1, γ:κ2,∆′; Γ[〈β, γ〉/α] ` e[〈β, γ〉/α] : τ [〈β, γ〉/α] exp
∆, α:κ1 × κ2,∆′ ` c ≡ α :κ1 × κ2

β, γ /∈ ∆
Ψ;∆, α:κ1 × κ2,∆′; Γ ` let〈β, γ〉 = c in e : τ exp

Ψ;∆; Γ ` e[c1, c2/β, γ] : τ exp
∆ ` c ≡ 〈c1, c2〉 :κ1 × κ2

β /∈ ∆
Ψ;∆;Γ ` let〈β, γ〉 = c in e : τ exp

Ψ;∆, β:κ[µj.κ/j],∆′; Γ[foldµj.κ β/α] ` e[foldµj.κ β/α] : τ [foldµj.κ β/α] exp
∆, α:µj.κ,∆′ ` c ≡ α :µj.κ

Ψ;∆, α:µj.κ,∆′; Γ ` let(foldβ) = c in e : τ exp
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Ψ;∆; Γ ` e[c′/β] : τ exp
∆ ` c ≡ foldµj.κ c′ :µj.κ

Ψ;∆; Γ ` let(foldβ) = c in e : τ exp

∆, α:κ1 + κ2,∆′ ` c ≡ α :κ1 + κ2 α1, α2 /∈ ∆,∆′

Ψ;∆, β:κi,∆′; Γ[inji β/α] ` e[inji β/α] : τ [inji β/α] exp
Ψ;∆, β:κj ,∆′; Γ[injj β/α] ` sv [injj β/α] : Void j ∈ 1 . . . i− 1, i + 1 . . . n

Ψ;∆, α: + [κ1, . . . , κn],∆′ ` letτ inji β = (c, sv) in e : τ exp

∆ ` c ≡ inj
+[κ1,...,κi,...,κn]
i c′ : + [κ1, . . . , κi, . . . , κn]
Ψ;∆; Γ ` e[c′/β] : τ exp

Ψ;∆; Γ ` letτ inji β = (c, sv) in e : τ exp

Well-formed hval Ψ ` hval : τ hval

• ` κi ok (i ∈ 1 . . . k)
α1:κ1, . . . , αk:κk ` τi : T32 (i ∈ 1 . . .m)
α1:κ1, . . . , αk:κk ` φi : T64 (i ∈ 1 . . . n)

α1:κ1, . . . , αk:κk ` τ : T32

Ψ;α1:κ1, . . . , αk:κk;x1:τ1, . . . , xm:τm, z1:φ1, . . . , zn:φn ` e : τ exp

Ψ ` codeτ [α1:κ1, . . . , αk:κk](x1:τ1, . . . , xm:τm)(z1:φ1, . . . , zn:φn).e :
∀[α1:κ1, . . . , αk:κk] Code(τ1, . . . , τm)(φ1, . . . , φn)(τ) hval

Well-formed heap Ψ ` d ok

` Ψ ok

Ψ ` ε ok

Ψ[`:τ ] ` hval : τ hval
Ψ[`:τ ] ` d ok

Ψ[`:τ ] ` d, `:τ 7→ hval ok

Well-formed program ` p : τ

Ψ(ε) def= •
Ψ(d, `:τ 7→ hval) def= Ψ(d), `:τ
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Ψ,Ψ(d) ` d ok Ψ,Ψ(d); •; • ` e : τ exp

Ψ ` letrec d in e : τ

217



218



Appendix C

TILTAL static and dynamic semantics

C.1 TILTAL Static semantics

Notation

(τ .32 σ)[0]32
def= τ

(τ .32 σ)[n + 1]32
def= σ[n]32

(φ .64 σ)[n + 2]32
def= σ[n]32

(φ .64 σ)[0]64
def= φ

(τ .32 σ)[n + 1]64
def= σ[n]64

(φ .64 σ)[n + 2]64
def= σ[n]64

(τ .32 σ)[0]32 ← τ ′
def= τ ′ .32 σ

(φ .64 σ)[0]32 ← τ ′
def= τ ′ .32 ns32 .32 σ

(φ .64 σ)[1]32 ← τ ′
def= ns32 .32 τ ′ .32 σ

(τ .32 σ)[n + 1]32 ← τ ′
def= (σ)[n]32 ← τ ′

(φ .64 σ)[n + 2]32 ← τ ′
def= (σ)[n]32 ← τ ′

(τ1 .32 τ2 .32 σ)[0]64 ← φ′
def= φ′ .64 σ

(τ1 .32 φ .64 σ)[0]64 ← φ′
def= φ′ .64 ns32 .32 σ

(φ .64 σ)[0]64 ← φ′
def= φ′ .64 σ

(φ .64 σ)[1]64 ← φ′
def= ns32 .32 (ns32 .32 σ)[0]64 ← φ′

(τ .32 σ)[n + 1]64 ← φ′
def= (σ)[n]64 ← φ′

(φ .64 σ)[n + 2]64 ← φ′
def= (σ)[n]64 ← φ′

|ε| def= 0

|τ .32 σ| def= 1 + |σ|
|φ .64 σ| def= 2 + |σ|
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New well-formed kind rules ∆ ` κ ok

∆ ` ST ok

Well-formed Constructor ∆ ` c :κ

Constants and their kinds
ε:ST .32 :T32→ ST → ST .64 :T64→ ST → ST

◦:ST → ST → ST sptr :ST → T32

ns64:T64 ns32:T32
∨

:T32list→ T32

∆ ` Γ ok

∆ ` Γ→ 0 :T32

Well-formed coercion ∆ ` q : τ ⇒ τ ′

∆ ` τ ≡ rec[κ](c)(cp) : T32

∆ ` rollτ : (c(Rec[κ]c)cp)⇒ τ

∆ ` τ ≡ rec[κ](c)(cp) : T32

∆ ` unrollτ w : (c(Rec[κ]c)cp)⇒ τ

∆ ` c ≡
∨

(τ0 :: · · · :: τi :: · · · :: nil) : T32 list

∆ ` inj union(i,c) : τi ⇒ c

∆ ` τ ≡ ∃[κ](c′) : T32 ∆ ` c :κ

∆ ` pack[τ ]c : (c′ c)⇒ τ

∆ ` τ : T32

∆ ` inj dynτ : (×[Dyntag(τ), τ ])⇒ Dyn

Well-formed stack Ψ;∆ ` s :σ

` ∆ ok

Ψ;∆ ` ε : ε

Ψ;∆ ` w : τ
Ψ;∆ ` s :σ

Ψ;∆ ` w .32 s : τ .32 σ

Ψ;∆ ` l :φ
Ψ;∆ ` s :σ

Ψ;∆ ` l .32 s :φ .64 σ
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Well-formed 64-bit value Ψ;∆ ` l :φ

` Ψ ok ` ∆ ok

Ψ;∆ ` ns64 :ns64

` Ψ ok ` ∆ ok

Ψ;∆ ` r : Float

` Ψ, `:φ,Ψ′ ok ` ∆ ok

Ψ, `:φ,Ψ′;∆ ` ` :φ

Well-formed 32-bit value Ψ;∆ ` w : τ

` Ψ, `:τ,Ψ′ ok ` ∆ ok

Ψ, `:τΨ′;∆ ` ` : τ

` Ψ ok ` ∆ ok

Ψ;∆ ` i : Int

` Ψ ok ` ∆ ok

Ψ;∆ ` ns32 :ns32

` Ψ ok ` ∆ ok

Ψ;∆ ` tagi : Tag(i)

Ψ;∆ ` w :∀[κ](c′) ∆ ` c :κ

Ψ;∆ ` w[c] : c′c

Ψ;∆ ` σ ≡ σ′ :ST (|σ′| = i)

Ψ;∆ ` sptr(i) : sptr(σ)

∆ ` q : τ1 ⇒ τ2 Ψ;∆ ` w : τ1

Ψ;∆ ` q w : τ2

Well-formed 64-bit operand Ψ;∆; Γ ` fv :φ

Γ(f) = φ

Ψ;∆; Γ ` f :φ

Ψ;∆ ` l :φ

Ψ;∆; Γ ` l :φ

Γ(sp) = σ σ[i]64 = φ

Ψ;∆; Γ ` sp(i) :φ

Well-formed 32-bit operand Ψ;∆; Γ ` sv : τ

Γ(r) = τ

Ψ;∆; Γ ` r : τ

Ψ;∆ ` w : τ

Ψ;∆; Γ ` w : τ

Γ(sp) = σ σ[i]32 = τ

Ψ;∆; Γ ` sp(i) : τ

Ψ;∆; Γ ` sv :∀[κ](c′) ∆ ` c :κ

Ψ;∆; Γ ` sv [c] : c′c

∆ ` q : τ1 ⇒ τ2 Ψ;∆; Γ ` sv : τ1

Ψ;∆; Γ ` q sv : τ2
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Well-formed instruction Ψ;∆; Γ ` i⇒ Γ

Ψ;∆; Γ ` sv : τ

Ψ;∆; Γ ` mov r, sv ⇒ Γ{r:τ}

Ψ;∆; Γ ` rs : × [τ0, . . . , τi, . . . , τn]

Ψ;∆; Γ ` loadr rd, rs(i)⇒ Γ{rd:τi}

Ψ;∆; Γ ` sv : τi

Ψ;∆; Γ ` rs : × [τ0, . . . , τi, . . . , τn]

Ψ;∆; Γ ` store rs(i), sv ⇒ Γ

Ψ;∆; Γ ` sv i : τi

Ψ;∆; Γ ` malloc r[τ1, . . . , τn]〈sv1, . . . , svn〉 ⇒ Γ{r:× [τ1, . . . , τn]}

Ψ;∆; Γ ` sv1 : Int Ψ;∆; Γ ` sv2 : τ

Ψ;∆; Γ ` mallocτ r(sv1, sv2)⇒ Γ{r:Array32(τ)}

Ψ;∆; Γ ` sv : Int Ψ;∆; Γ ` fv :φ

Ψ;∆; Γ ` mallocφ r(sv , fv)⇒ Γ{r:Array64(φ)}

Ψ;∆; Γ ` fv :φ

Ψ;∆; Γ ` mallocφ r, fv ⇒ Γ{r: Boxed(φ)}

Ψ;∆; Γ ` sv : Γ{sp:(Γret→ 0) .32 σ}→ 0 (Γ(sp) = σ)

Ψ;∆; Γ ` call sv ⇒ Γret

Ψ;∆; Γ ` sv : Γ{r: Tag(i)}→ 0
∆ ` Γ(r) ≡

∨
(τ0 :: · · · :: τk−1 :: Tag(i) :: c) : T32

Ψ;∆; Γ ` brtagi r, sv ⇒ Γ{r:
∨

(τ0 :: · · · :: τk−1 :: c)}

Ψ;∆; Γ ` sv : Γ{r:× [Tag(i), τ ]}→ 0
∆ ` Γ(r) ≡

∨
(τ0 :: · · · :: τk−1 :: τk :: · · · τn :: (×[Tag(i), τ ]) :: c) : T32

Ψ;∆; Γ ` brtgdi r, sv ⇒ Γ{r:
∨

(τ0 :: · · · :: τn :: c)}
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Γ(wreg) = Dyn
Ψ;∆; Γ ` sv1 : Dyntag(τ) Ψ;∆; Γ ` sv2 : Γ{r:× [Dyntag(τ), τ ]}→ 0

Ψ;∆; Γ ` brdyn r, sv1, sv2 ⇒ Γ

` Ψ ok ∆ ` τ : T32

Ψ;∆; Γ ` dyntagτ r⇒ Γ{r: Dyntag(τ)}

Ψ;∆; Γ ` sv : τ Γ(sp) = σ
∆ ` σ ≡ σ′ :ST (σ′)[i]32 ← τ = σ′′

Ψ;∆; Γ ` swrite sp(i), sv ⇒ Γ{sp:σ′′}

` Ψ ok ∆ ` Γ ok

Ψ;∆; Γ ` sallocn⇒ Γ{sp:ns32 .32 · · · .32 ns32︸ ︷︷ ︸
n

.32Γ(sp)}

Γ(sp) = σ ∆ ` σ ≡ σ1 ◦ σ2 :ST |σ1| = n

Ψ;∆; Γ ` sfreen⇒ Γ{sp:σ2}

Γ(sp) = σ ∆ ` σ ≡ σ1 ◦ (φ .64 σ2) :ST |σ1| = (n− 1)

Ψ;∆; Γ ` sfreen⇒ Γ{sp:ns32 .32 σ2}

Γ(sp) = σ

Ψ;∆; Γ ` mov r, sp⇒ Γ{r: sptr(σ)}

Ψ;∆; Γ ` sv : sptr(σ1)
∆ ` Γ(sp) ≡ σ2 ◦ σ2 :ST

Ψ;∆; Γ ` mov sp, sv ⇒ Γ{sp:σ2}

Ψ;∆; Γ ` sv1 : Array32(τ) Ψ;∆; Γ ` sv2 : Int

Ψ;∆; Γ ` subτ r, sv1, sv2 ⇒ Γ{r:τ}

Ψ;∆; Γ ` sv1 : Array32(τ) Ψ;∆; Γ ` sv2 : Int Ψ;∆; Γ ` sv3 : τ

Ψ;∆; Γ ` updτ sv1, sv2, sv3 ⇒ Γ
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Ψ;∆; Γ ` fv :φ

Ψ;∆; Γ ` fmov f , fv ⇒ Γ{f :φ}

Ψ;∆; Γ ` rs : Boxed(φ)

Ψ;∆; Γ ` floadr fd, rs ⇒ Γ{fd:φ}

Ψ;∆; Γ ` fv :φ
Ψ;∆; Γ ` r : Boxed(φ)

Ψ;∆; Γ ` store r, fv ⇒ Γ

Ψ;∆; Γ ` fv :φ Γ(sp) = σ
∆ ` σ ≡ σ′ :ST (σ′)[i]64 ← φ = σ′′

Ψ;∆; Γ ` fswrite sp(i), fv ⇒ Γ{sp:σ′′}

Ψ;∆; Γ ` sv1 : Array64(τ) Ψ;∆; Γ ` sv2 : Int

Ψ;∆; Γ ` subφ f , sv1, sv2 ⇒ Γ{f :φ}

Ψ;∆; Γ ` sv1 : Array64(τ) Ψ;∆; Γ ` sv2 : Int Ψ;∆; Γ ` fv :φ

Ψ;∆; Γ ` updφ sv1, sv2, fv ⇒ Γ

Well-formed Instruction Sequence Ψ;∆; Γ ` I : τ

Γ(sp) = (Γret→ 0) .32 σ
Γret = Γ{sp:σ}

Ψ;∆; Γ ` ret ok

Ψ;∆; Γ ` sv : Γ→ 0

Ψ;∆; Γ ` jmp sv ok

Ψ;∆; Γ ` rt : τ

Ψ;∆; Γ ` haltτ ok

Ψ;∆; Γ ` i⇒ Γ′ Ψ;∆; Γ′ ` I ok

Ψ;∆; Γ ` i; I ok

Ψ;∆; Γ ` sv :∃[κ](c) Ψ;∆, α:κ; Γ{r:(c α)} ` I ok
α /∈ ∆

Ψ;∆;Γ ` unpack[α, r], sv ; I ok

Ψ[injκ1+κ2
1 α1/α];∆, α1:κ1,∆′; Γ[injκ1+κ2

1 α1/α] ` sv [injκ1+κ2
1 α1/α] : Void

Ψ[injκ1+κ2
2 α2/α];∆, α2:κ2,∆′; Γ[injκ1+κ2

2 α2/α] ` I[injκ1+κ2
2 α2/α] ok

∆, α:κ1 + κ2,∆′; Γ ` c ≡ α :κ1 + κ2 α1, α2 /∈ ∆,∆′

Ψ;∆, α:κ1 + κ2,∆′; Γ ` vcase[α1. dead sv , α2]c; I ok
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Ψ[injκ1+κ2
1 α1/α];∆, α1:κ1,∆′; Γ[injκ1+κ2

1 α1/α] ` I[injκ1+κ2
1 α1/α] ok

Ψ[injκ1+κ2
1 α1/α];∆, α2:κ2,∆′; Γ[injκ1+κ2

2 α2/α] ` sv [injκ1+κ2
2 α2/α] : Void

∆, α:κ1 + κ2,∆′ ` c ≡ α :κ1 + κ2 α1, α2 /∈ ∆,∆′

Ψ;∆, α:κ1 + κ2,∆′ ` vcase[α1, α2. dead sv ]c; I ok

∆ ` c ≡ injκ1+κ2
2 c′ :κ1 + κ2 Ψ;∆; Γ ` I[c′/α2] ok

Ψ;∆; Γ ` vcase[α1. dead sv , α2]c; I) ok

∆ ` c ≡ injκ1+κ2
1 c′ :κ1 + κ2 Ψ;∆; Γ ` I[c′/α1] ok

Ψ;∆; Γ ` vcase[α1, α2.sv ]c; I ok

Ψ[〈β, γ〉/α];∆, β:κ1, γ:κ2,∆′; Γ[〈β, γ〉/α] ` I[〈β, γ〉/α] ok
∆, α:κ1 × κ2,∆′ ` c ≡ α :κ1 × κ2

Ψ;∆, α:κ1 × κ2,∆′; Γ ` refine[〈β, γ〉] c; I ok

Ψ;∆; Γ ` I[c1, c2/β, γ] ok
∆ ` c ≡ 〈c1, c2〉 :κ1 × κ2

Ψ;∆; Γ ` refine[〈β, γ〉] c; I ok

Ψ[foldµj.κ β/α];∆, β:κ[µj.κ/j],∆′; Γ[foldµj.κ β/α] ` I[foldµj.κ β/α] ok
∆, α:µj.κ,∆′ ` c ≡ α :µj.κ

Ψ;∆, α:µj.κ,∆′; Γ ` refine[foldβ] c; I ok

Ψ;∆; Γ ` I[c′/β] ok
∆ ` c ≡ foldµj.κ c′ :µj.κ

Ψ;∆; Γ ` refine[foldβ] c; I ok

Well-formed hval Ψ ` hval : τ hval

Ψ; • ` wi : τi i = 1 . . . n

Ψ ` 〈w1, . . . , wn〉 : × [τ1, . . . , τn] hval

Ψ; • ` wi : τ i = 1 . . . n

Ψ ` [w1, . . . , wn] : Array32τ hval
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Ψ; • ` l :φ

Ψ ` l : Boxedφ hval

Ψ; • ` li :φ i = 1 . . . n

Ψ ` [l1, . . . , ln] : Array64φ hval

• ` τ : T32

Ψ; • ` dtag : Dyntagτ hval

α0:κ0, . . . , αi−1:κi−1 ` κi ok ~α:~κ ` Γ ok
Ψ;−→α :~κ; Γ ` I ok

Ψ ` codeτ [−→α:κ]Γ.I :∀[~α:~κ]Γ→ 0 hval

Well-formed Heap ` H : Ψ

` Ψ ok Ψ ` hval i : Ψ(`i) hval
Ψ = {`1:τ1, . . . , `n:τn}

Ψ ` {`1:τ1 7→ hval1, . . . , `n:τn 7→ hvaln} ok

Well-formed Register File Ψ ` R : Γ

Ψ; • ` w1 : τ1 Ψ; • ` w2 : τ2 Ψ; • ` we : τe Ψ; • ` wt : τt

Ψ; • ` l1 :φ1 Ψ; • ` l2 :φ2 Ψ; • ` s :σ

Ψ ` {r1 7→ w1, r2 7→ w2, re 7→ we, rt 7→ wt, f1 7→ l1, f2 7→ l2:sp 7→ s}
: {r1:τ1, r2:τ2, re:τe, rt:τt, f1:φ1, f2:φ2, sp : σ}

Well-formed Program ` (H,R, I) ok

` H : Ψ Ψ ` R : Γ Ψ(H; •; Γ ` I ok

` (H,R, I) ok

C.2 TILTAL dynamic semantics

C.2.1 Definitions

(w .32 s)[0]32
def= w

(w .32 s)[n + 1]32
def= s[n]32

(l .64 s)[n + 2]32
def= s[n]32

(l .64 s)[0]64
def= l

(w .32 s)[n + 1]64
def= s[n]64

(l .64 s)[n + 2]64
def= s[n]64
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(w .32 s)[0]32 ← w′ def= w′ .32 s

(l .64 s)[0]32 ← w′ def= w′ .32 ns32 .32 s

(l .64 s)[1]32 ← w′ def= ns32 .32 w′ .32 s

(w .32 s)[n + 1]32 ← w′ def= (s)[n]32 ← w′

(l .64 s)[n + 2]32 ← w′ def= (s)[n]32 ← w′

(w1 .32 w2 .32 s)[0]64 ← l′
def= l′ .64 s

(w1 .32 l .64 s)[0]64 ← l′
def= l′ .64 ns32 .32 s

(l .64 s)[0]64 ← l′
def= l′ .64 s

(l .64 s)[1]64 ← l′
def= ns32 .32 (ns32 .32 s)[0]64 ← l′

(w .32 s)[n + 1]64 ← l′
def= (s)[n]64 ← l′

(l .64 s)[n + 2]64 ← l′
def= (s)[n]64 ← l′

R̂(sv) def=



R(r) when sv = r
R(sp)[i]32 when sv = sp(i)
w when sv = w
tagi when sv = tagi

R̂(sv ′)[~c] when sv = sv ′[~c]
q R̂(sv ′) when sv = q sv ′

pack R̂(sv ′) as τ hiding c when sv = pack sv ′ as τ hiding c

R̂(fv) def=
{

R(f) when fv = f
R(sp)[i]64 when fv = sp(i)

C.2.2 Transitions
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(H,R, I) 7−→ P where
if I = then P =
mov r, sv ; I ′ (H,R{r 7→ R̂(sv)}, I ′)
loadr rd, rs(i); I ′ (H,R{r 7→ wi}, I ′)

where R(rd) = ` and H(`) = 〈w0, . . . , wn−1〉
store rd(i), sv ; I ′ (H{` 7→ 〈w0, . . . , R̂(sv), . . . , wn−1〉}, R, I ′)

where R(rd) = ` and H(`) = 〈w0, . . . , wi, . . . , wn−1〉
malloc r[τ1, . . . , τn]〈sv0, . . . , svn−1〉; I ′ (H{` 7→ 〈R̂(sv0), . . . , R̂(svn−1)〉}, R{rd 7→ `}, I ′)

where ` /∈ H

mallocτ rd(sv1, sv2); I ′ (H{` 7→ [R̂(sv2), . . . , R̂(sv2)]︸ ︷︷ ︸
R̂(sv1)

}, R{rd 7→ `}, I ′)

where ` /∈ H

mallocφ r, fv ; I ′ (H{` 7→ R̂(fv)}, R{rd 7→ `}, I ′)
where ` /∈ H

mallocφ r(sv , fv); I ′ (H{` 7→ [R̂(fv), . . . , R̂(fv)]︸ ︷︷ ︸
R̂(sv)

}, R{rd 7→ `}, I ′)

where ` /∈ H

dyntagc r; I ′ (H{` 7→ exn tag}, R{r 7→ `}, I ′)
where ` /∈ H

swrite sp(i), sv ; I ′ (H,R{sp 7→ s′}, I ′)
where s′ = (R(sp))[i]32 ← R̂(sv)

sallocn; I ′ (H,R{sp 7→ ns32 .32 · · · .32 ns32︸ ︷︷ ︸
n

.32R(sp)}, I ′)

sfreen; I ′ (H,R{sp 7→ s′}, I ′)
where pop(R(sp), n) = s′

mov r, sp; I ′ (H,R{r 7→ sptr(|R(sp)|)}, I ′)
mov sp, sv ; I ′ (H,R{sp 7→ s′}, I ′)

where R(sp) = s and R̂(sv) = sptr(j) = |s′|
and s′ is a suffix of s

Figure C.1: TILTAL transitions (part I)
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(H,R, I) 7−→ P where
callΓ sv ; I ′ (H{` 7→ code[].Γ.I ′}, R{sp 7→ ` .32 R̂(sp)}, Id[~c/∆])

where R̂(sv) = `d[~c] and H(`d) = code[∆]Γ.Id

and ` /∈ H

brtagi r, sv ; I ′ (H,R{r 7→ inj unioni
([Tag(i)],nil)

tagi}, Id)

when R(r) = inj unioni
(c1,c2) tagi where R̂(sv) = ` and H(`) = code[]Γ.Id

brtagi r, sv ; I ′ (H,R{r 7→ inj unioni
(c′

1,c2) tagi}, I ′)
when R(r) 6= inj unioni

(c1,c2) tagi where c1 normalizes to τ0 :: · · · :: τk :: · · · τn

and τk = Tag(i)
and c′1 = τ0 :: · · · :: τk−1 :: τk+1 :: · · · τn

brtgdi r, sv ; I ′ (H,R{r 7→ inj unioni
(nil,[×[Tag(i),τw]])

`1}, Id)

when R(r) = inj unioni
(c1,c2) `1 where R̂(sv) = ` and H(`) = code[]Γ.Id

and H(`1) = 〈tagi, w〉
brtgdi r, sv ; I ′ (H,R{r 7→ inj unioni

(c1,c′
2) tagk}, Id)

when R(r) = inj unioni
(c1,c2) tagk where c2 normalizes to τ0 :: · · · :: τk :: · · · τn

and τk = ×[Tag(i), τw]
and c′2 = τ0 :: · · · :: τk−1 :: τk+1 :: · · · τn

brtgdi r, sv ; I ′ (H,R{r 7→ inj unioni
(c1,c′

2) `}, Id)
when R(r) = inj unioni

(c1,c2) ` where c2 normalizes to τ0 :: · · · :: τk :: · · · τn

and H(`1) = 〈tagk, w〉 (i 6= k) and τk = ×[Tag(i), τw]
and c′2 = τ0 :: · · · :: τk−1 :: τk+1 :: · · · τn

ret (H,R{sp 7→ s′}, I[~c/∆])
where R(sp) = `[~c] .32 s′ and H(`) = code[∆]Γ.I

jmp sv (H,R, I[~c/∆])
where R̂(sv) = `[~c] and H(`) = code[∆]Γ.I

Figure C.2: TILTAL transitions (part II)
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(H,R, I) 7−→ P where
unpack[α, r], sv ; I ′ (H,R{r 7→ w}, I ′[c/α])

where R̂(sv) = packw as τ hiding c

vcase(c, α1. dead sv , α2); I ′ (H,R, I ′[c′/α2])
where c normalizes to inj2 c′

vcase(c, α1, α2. dead sv); I ′ (H,R, I ′[c′/α1])
where c normalizes to inj1 c′

〈β, γ〉 = c; I ′ (H,R, I ′[c1, c2/β, γ])
where c normalizes to 〈c1, c2〉

(foldβ) = c; I ′ (H,R, I ′[c′/β])
where c normalizes to foldµj.κ c′

subτ r, sv1, sv2; I ′ (H,R{r 7→ wi}, I ′)
where R̂(sv1) = ` and R̂(sv2) = i
and H(`) = [w0, . . . , wn−1] and 0 ≤ i < n

updτ sv1, sv2, sv3; I ′ (H{` 7→ [w0, . . . , wi−1, R̂(sv3), wi+1, . . . , wn−1]}, R, I ′)
where R̂(sv1) = ` and R̂(sv2) = i
and H(`) = [w0, . . . , wn−1] and 0 ≤ i < n

fmov f , fv ; I ′ (H,R{f 7→ R̂(fv)})
floadr f , r; I ′ (H,R{f 7→ l}, I ′)

where R(r) = ` and H(`) = l

fstore r, fv ; I ′ (H{` 7→ l}, R{r 7→ `}, I ′)
where R̂(fv) = l and ` /∈ H

fswrite sp(i), fv ; I ′ (H,R{sp 7→ s′}, I ′)
where s′ = (R(sp))[i]64 ← R̂(fv)

subφ f , sv1, sv2; I ′ (H,R{f 7→ li}, I ′)
where R̂(sv1) = ` and R̂(sv2) = i
and H(`) = [l0, . . . , ln−1] and 0 ≤ i < n

updφ sv1, sv2, fv ; I ′

(H{` 7→ [l0, . . . , li−1, R̂(fv), li+1, . . . , ln−1]}, R, I ′)
where R̂(sv1) = ` and R̂(sv2) = i
and H(`) = [l0, . . . , ln−1] and 0 ≤ i < n

Figure C.3: TILTAL transitions (part III)
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