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Abstract

The problem of space-time cluster detection arises in a variety of applications, including disease
surveillance and brain imaging. In this work, we briefly review the state of the art in space-time
cluster detection, focusing on space-time scan statistics, and we derive a number of new statistics.
First, we distinguish between tests for clusters with higher disease rates inside the cluster than
outside (as in the traditional spatial scan statistics framework) and tests for clusters with higher
counts than expected (as is appropriate when inferring the expected counts in a region from the
time series of past counts). Second, we distinguish between tests for “persistent” clusters (where
the disease rate remains constant throughout the duration of a cluster) and tests for “emerging”
clusters (where the disease rate increases monotonically through the duration of a cluster). These
new statistics for spatio-temporal cluster detection will serve as the basis for our future work in
detection of emerging space-time clusters.
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1 Introduction
The problem of detecting space-time clusters arises in a variety of applications, including disease
surveillance and brain imaging. In general, spatio-temporal methods can be divided into three
classes: spatial modeling techniques such as “disease mapping,” where observed values are spa-
tially smoothed to infer the distribution of values in space-time (e.g. Clayton and Kaldor, 1987;
Besag et al., 1991); tests for a general tendency of the data to cluster (e.g. Knox, 1964; Mantel,
1967); and tests which attempt to infer the location of clusters (e.g. Kulldorff et al., 1998; Kull-
dorff, 2001; Kulldorff et al., 2004). We focus on the latter class of methods, since these are the only
methods which allow us to both answer whether any significant clusters exist, and if so, identify
these clusters.

Let us assume that we have a set of data collected at a set of discrete time steps k = 1 . . .kbase,
and at a set of discrete spatial locations si. For each si at each time step k, we are given a count
ck

i and (optionally) a baseline bk
i . For example, in epidemiology, the counts may be the number

of disease cases in a given spatial region over a given time interval, or some related observable
quantity such as the number of Emergency Department visits or OTC drug sales. The baselines
may be given (based on results from a control group, or an at-risk population derived from census
data), or may be inferred based on the time series of counts. In all cases, we assume that counts
ck

i are generated by some distribution with mean proportional to bk
i qk

i , where qk
i is the rate (or

expected ratio of count to baseline). Our goal, then, is to find whether there is any region (set of
locations si) and time interval (k = kmin . . .kmax) for which the rates are significantly higher than
expected; in epidemiology, this may correspond to a disease outbreak. Within this very general
framework, there are a number of questions we can ask:

1. Which spatial regions to search over? We typically search over the set of all regions of some
given shape and variable size. For simplicity, we assume here that the spatial locations si
are aggregated to a d-dimensional grid, and search over the set of all d-dimensional hyper-
rectangular regions on the grid.

2. Which temporal intervals to search over? For prospective analysis, we search only over in-
tervals ending at the present time, while for retrospective analysis we search over all intervals
including those ending before the present time.

3. What distributions are assumed? For simplicity, we assume that ck
i are generated indepen-

dently from Poisson distributions with mean qk
i bk

i . We could also take other factors such
as extra-Poisson variation (overdispersion) and spatial correlation into account; we do this
somewhat in the CATS and RATS methods discussed below, since these perform aggregation
of counts at the level of grid cells and regions respectively. In the BATS method discussed
below, which considers a separate time series for each building, we do not account for corre-
lation. We can also use Normal distributions instead of Poisson to model distributions with
dispersion different from the mean and spatially varying.

4. Do we want to infer baselines from the time series of previous counts, or are the baselines
given? For the time being, we assume that baselines are given; we discuss methods of
inferring baselines from previous counts in Section 3.
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In any case, the value of the space-time statistic Dmax is taken to be the maximum over all
spatial regions S ⊆ G of D(S), where D(S) is the maximum Dkmax

kmin
(S) for all temporal intervals

k = kmin . . .kmax. For retrospective analysis, we have 1 ≤ kmin ≤ kmax ≤ kbase; for prospective
analysis, we have 1≤ kmin ≤ kmax = kbase.

Now, in order to decide which statistic Dkmax
kmin

(S) to use, we must first decide what sort of regions
we are looking for. In particular:

1. Do we want to detect regions such that the rates ck
i /bk

i are significantly higher than some
prior expectation q0, or such that they are significantly higher inside the region than outside?
We call the former “globally sensitive” tests, since they are sensitive to global increases in
rate. For the latter, we must decide whether to adjust for the overall global rate (“globally
adaptive” tests) or to adjust separately for each day’s rate (“daily adaptive” tests).

2. Do we expect the rate to be constant over the time duration of a cluster, or do we expect
the rate to be increasing over the time duration of a cluster? In the first case, we have a
test for persistent clusters, while in the second case, we have a test for emerging clusters.
We can also make several other assumptions, such as a rate increasing according to some
parametrized distribution (ex. linear increase, exponential increase).

Based on our answers to these two questions, we may define a number of different statistics, as
defined in Section 2.

2 Space-time statistics
We first consider the case of a simple prospective space-time scan statistic, where we want to
detect only if there are any space-time clusters on the present day k = kbase. In this case, we have
the same statistics whether we assume that the cluster is persistent, emerging, etc.; the only relevant
question is whether our test is globally sensitive, globally adaptive, or daily adaptive. After that,
we present the more general space-time scan statistics for persistent clusters, emerging clusters,
and parametrized clusters in turn.

2.1 1-day clusters
2.1.1 Globally sensitive

In this case, we compare the null hypothesis H0: the rate equals q0 over all locations and times, to
the alternative hypothesis H1(S): the rate is higher than q0 at the present time k in region S, and
equals q0 over all other locations and times. The likelihood ratio is:

D(S) =
maxqin≥q0 ∏si∈S Pr(ck

i ∼ Po(bk
i qin))

∏si∈S Pr(ck
i ∼ Po(bk

i q0))

=
maxqin≥q0 ∏si∈S e−bk

i qinqin
ck

i

∏si∈S e−bk
i q0q0

ck
i
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=
maxqin≥q0 e−Binqinqin

Cin

e−Binq0q0Cin

where “in” are sums over region S at time k. This quantity is maximized at qin = Cin
Bin

, assuming this
quantity is greater than q0; otherwise we have D(S) = 1. In the former case, we have:

D(S) =
e−Cin

(
Cin
Bin

)Cin

e−Binq0q0Cin
=

(
Cin

q0Bin

)Cin

eq0Bin−Cin

Note that prior days are not accounted for, except possibly in computing the baselines; this statistic
is exactly identical to the globally sensitive, purely spatial scan statistic.

To compute the p-value, we compare Dmax of the original grid to Dmax of a large number of
replica grids, where a replica grid has all counts ck

i generated from Po(q0bk
i ). Note that prior days

need not be regenerated, since these do not impact the score.

2.1.2 Globally adaptive

In this case, we compare the null hypothesis H0: the rate equals qall over all locations and times,
to the alternative hypothesis H1(S): the rate equals qin at the present time k in region S, and equals
qout over all other locations and times, qin > qout . The likelihood ratio is:

D(S) =
maxqin≥qout ∏sk

i∈S×k Pr(ck
i ∼ Po(bk

i qin))∏sk
i∈G×(1...kbase)−S×k Pr(ck

i ∼ Po(bk
i qout))

maxqall ∏sk
i∈G×(1...kbase) Pr(ck

i ∼ Po(bk
i qall))

=
maxqin≥qout ∏sk

i∈S×k e−bk
i qinqin

ck
i ∏sk

i∈G×(1...kbase)−S×k e−bk
i qout qout

ck
i

maxqall ∏sk
i∈G×(1...kbase) e−bk

i qall qall
ck

i

=
maxqin≥qout e−Binqinqin

Cine−Boutqout qout
Cout

maxqall e−Ballqall qall
Call

where “in” are sums over region S at time k, “all” are sums over all space and time, and “out” are
sums over all space and time except S×k. This quantity is maximized at qin = Cin

Bin
, qout = Cout

Bout
, and

qall = Call
Ball

, assuming Cin
Bin
> Cout

Bout
; otherwise we have D(S) = 1. In the former case, we have:

D(S) =
e−Cin

(
Cin
Bin

)Cin
e−Cout

(
Cout
Bout

)Cout

e−Call

(
Call
Ball

)Call
=

(
Cin
Bin

)Cin
(

Cout
Bout

)Cout

(
Call
Ball

)Call

Note that, even though this is identical in appearance to the globally adaptive, purely spatial scan
statistic, it is different since the “out” and “all” are defined including counts/baselines from all
previous days in addition to the counts/baselines outside the region on the current day.

To compute the p-value, we compare Dmax of the original grid to Dmax of a large number of
replica grids, where a replica grid has all counts ck

i generated from Po(qallbk
i ). Again, prior days

need not be regenerated, though regenerating them may impact the score. We can also generate
replicas by permuting the counts in space-time.
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2.1.3 Daily adaptive

In this case, we compare the null hypothesis H0: for each day k, the rate equals qall,k for all
locations, to the alternative hypothesis H1(S): for the present day k, the rate equals qin inside the
region and qout outside, qin > qout , and for all other days k the rate equals qall,k for all locations.
The likelihood ratio is:

D(S) =
maxqin≥qout ∏sk

i∈S×k Pr(ck
i ∼ Po(bk

i qin))∏sk
i∈(G−S)×k Pr(ck

i ∼ Po(bk
i qout))

maxqall ∏sk
i∈G×k Pr(ck

i ∼ Po(bk
i qall))

=
maxqin≥qout ∏sk

i∈S×k e−bk
i qinqin

ck
i ∏sk

i∈(G−S)×k e−bk
i qout qout

ck
i

maxqall ∏sk
i∈G×k e−bk

i qall qall
ck

i

=
maxqin≥qout e−Binqinqin

Cine−Boutqout qout
Cout

maxqall e−Ballqall qall
Call

where “in” are sums over region S at time k, “all” are sums over all space at time k, and “out” are
sums over G− S at time k. This quantity is maximized at qin = Cin

Bin
, qout = Cout

Bout
, and qall = Call

Ball
,

assuming Cin
Bin
> Cout

Bout
; otherwise we have D(S) = 1. In the former case, we have:

D(S) =
e−Cin

(
Cin
Bin

)Cin
e−Cout

(
Cout
Bout

)Cout

e−Call

(
Call
Ball

)Call
=

(
Cin
Bin

)Cin
(

Cout
Bout

)Cout

(
Call
Ball

)Call

In this case, the “out” and “all” are defined only using counts/baselines from the present day, so
this is identical to the globally adaptive, purely spatial scan statistic.

To compute the p-value, we compare Dmax of the original grid to Dmax of a large number of
replica grids, where a replica grid has all counts ck

i generated from Po(qall,kbk
i ). Again, prior days’

counts need not be regenerated, since regenerating them will not impact the score. We can also
generate replicas by permuting the current day’s counts in space.

2.2 Persistent clusters
The tests for persistent clusters assume that the rate of a cluster remains constant over time; as a
result, the derivations are almost identical to the 1-day cluster tests, with sums taken over the entire
duration of a cluster rather than only a single day.

2.2.1 Globally sensitive

In this case, we compare the null hypothesis H0: the rate equals q0 over all locations and times, to
the alternative hypothesis H1(S): the rate is qin > q0 at times kmin . . .kmax in region S, and equals
q0 over all other locations and times. The likelihood ratio is:

Dkmax
kmin

(S) =
maxqin≥q0 ∏sk

i∈S×(kmin...kmax) Pr(ck
i ∼ Po(bk

i qin))

∏sk
i∈S×(kmin...kmax) Pr(ck

i ∼ Po(bk
i q0))

4



=
maxqin≥q0 ∏sk

i∈S×(kmin...kmax) e−bk
i qinqin

ck
i

∏sk
i∈S×(kmin...kmax) e−bk

i q0q0
ck

i

=
maxqin≥q0 e−Binqinqin

Cin

e−Binq0q0Cin

where “in” are sums over region S at times kmin . . .kmax. This quantity is maximized at qin = Cin
Bin

,

assuming this quantity is greater than q0; otherwise we have Dkmax
kmin

(S) = 1. In the former case, we
have:

Dkmax
kmin

(S) =
e−Cin

(
Cin
Bin

)Cin

e−Binq0q0Cin
=

(
Cin

q0Bin

)Cin

eq0Bin−Cin

To compute the p-value, we compare Dmax of the original grid to Dmax of a large number of
replica grids, where a replica grid has all counts ck

i generated from Po(q0bk
i ).

2.2.2 Globally adaptive

In this case, we compare the null hypothesis H0: the rate equals qall over all locations and times,
to the alternative hypothesis H1(S): the rate equals qin at the times kmin . . .kmax in region S, and
equals qout over all other locations and times, qin > qout . The likelihood ratio is:

Dkmax
kmin

(S) =
maxqin≥qout ∏sk

i∈S×(kmin...kmax) Pr(ck
i ∼ Po(bk

i qin))∏sk
i∈out Pr(ck

i ∼ Po(bk
i qout))

maxqall ∏sk
i∈G×(1...kbase) Pr(ck

i ∼ Po(bk
i qall))

=
maxqin≥qout ∏sk

i∈S×(kmin...kmax) e−bk
i qinqin

ck
i ∏sk

i∈out e−bk
i qout qout

ck
i

maxqall ∏sk
i∈G×(1...kbase) e−bk

i qall qall
ck

i

=
maxqin≥qout e−Binqinqin

Cine−Boutqout qout
Cout

maxqall e−Ballqall qall
Call

where “in” are sums over region S at times kmin . . .kmax, “all” are sums over all space and time, and
“out” are sums over all space and time except S× (kmin . . .kmax). This quantity is maximized at
qin = Cin

Bin
, qout = Cout

Bout
, and qall = Call

Ball
, assuming Cin

Bin
> Cout

Bout
; otherwise we have Dkmax

kmin
(S) = 1. In the

former case, we have:

Dkmax
kmin

(S) =
e−Cin

(
Cin
Bin

)Cin
e−Cout

(
Cout
Bout

)Cout

e−Call

(
Call
Ball

)Call
=

(
Cin
Bin

)Cin
(

Cout
Bout

)Cout

(
Call
Ball

)Call

To compute the p-value, we compare Dmax of the original grid to Dmax of a large number of
replica grids, where a replica grid has all counts ck

i generated from Po(qallbk
i ). We can also generate

replicas by permuting the counts in space-time.
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2.2.3 Daily adaptive

In this case, we compare the null hypothesis H0: for each day k, the rate equals qall,k for all
locations, to the alternative hypothesis H1(S): for days kmin . . .kmax, the rate equals qin,k inside the
region and qout,k outside, qin,k/qout,k = θ≥ 1, and for all other days k, the rate equals qall,k for all
locations. The likelihood ratio is:

Dkmax
kmin

(S) =
maxθ≥1 ∏kmax

k=kmin
maxqout,k ∏sk

i∈S×k Pr(ck
i ∼ Po(bk

i θqout,k))∏sk
i∈(G−S)×k Pr(ck

i ∼ Po(bk
i qout,k))

∏kmax
k=kmin

maxqall,k ∏sk
i∈G×k Pr(ck

i ∼ Po(bk
i qall,k))

=
maxθ≥1 ∏kmax

k=kmin
maxqout,k ∏sk

i∈S×k e−bk
i θqout,k

(
θqout,k

)ck
i ∏sk

i∈(G−S)×k e−bk
i qout,kqout,k

ck
i

∏kmax
k=kmin

maxqall,k ∏sk
i∈G×k e−bk

i qall,kqall,k
ck

i

=
maxθ≥1 ∏kmax

k=kmin
maxqout,k e−Bin,kθqout,k

(
θqout,k

)Cin,ke−Bout,kqout,kqout,k
Cout,k

∏kmax
k=kmin

maxqall,k e−Ball,kqall,kqall,k
Call,k

where “in,k” are sums over region S at time k, “all,k” are sums over all space at time k, and
“out,k” are sums over G−S at time k. The numerator and denominator are maximized at qout,k =

Call,k
θBin,k+Bout,k

and qall,k =
Call,k
Ball,k

respectively, giving us:

Dkmax
kmin

(S) =
maxθ≥1 ∏kmax

k=kmin
e−Call,kθCin,k

(
Call,k

θBin,k+Bout,k

)Call,k

∏kmax
k=kmin

e−Call,k

(
Call,k
Ball,k

)Call,k

= max
θ≥1

kmax

∏
k=kmin

θCin,k

(
Ball,k

θBin,k + Bout,k

)Call,k

Maximizing with respect to θ requires finding the root of a polynomial of degree kmax− kmin + 1;
approximate (gradient) methods may also be used.

To compute the p-value, we compare Dmax of the original grid to Dmax of a large number of
replica grids, where a replica grid has all counts ck

i generated from Po(qall,kbk
i ). We can also

generate replicas by permuting each day’s counts in space.

2.3 Emerging clusters
While the tests for persistent clusters assume that the rate of a cluster remains constant over time,
this is typically not true in domains such as epidemiology: when a disease outbreak occurs, disease
rate will typically rise continually over the duration of the outbreak until the outbreak reaches its
peak, at which point it will level off or decrease. Our main goal in the epidemiological domain
is to detect emerging outbreaks (i.e. those that have not yet reached their peak), so we focus on
finding clusters where the disease rate is monotonically increasing (i.e. non-decreasing) over the
duration of the cluster.
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2.3.1 Globally sensitive

In this case, we compare the null hypothesis H0: the rate equals q0 over all locations and times, to
the alternative hypothesis H1(S): the rate is qk at times k = kmin . . .kmax in region S (where the qk
are non-decreasing and at least q0), and equals q0 over all other locations and times. The likelihood
ratio is:

Dkmax
kmin

(S) =
maxq0≤qkmin≤...≤qkmax ∏kmax

k=kmin
∏sk

i∈S×k Pr(ck
i ∼ Po(qkbk

i ))

∏kmax
k=kmin

∏sk
i∈S×k Pr(ck

i ∼ Po(q0bk
i ))

=
maxq0≤qkmin≤...≤qkmax ∏kmax

k=kmin
∏sk

i∈S×k e−qkbk
i (qk)

ck
i

∏kmax
k=kmin

∏sk
i∈S×k e−q0bk

i (q0)ck
i

=
maxq0≤qkmin≤...≤qkmax ∏kmax

k=kmin
e−qkBin,k (qk)

Cin,k

∏kmax
k=kmin

e−q0Bin,k (q0)Cin,k

=
maxq0≤qkmin≤...≤qkmax ∏kmax

k=kmin
e−qkBin,k (qk)

Cin,k

e−q0Bin (q0)Cin

Now, we must maximize the numerator subject to the constraints on the qk. To do so, let E =
E1 . . .Ep be a partitioning of kmin . . .kmax into sets of consecutive integers, such that 1) for all
k1,k2 ∈ Ei, qk1 = qk2 = Qi, and 2) for all Ei1 ,Ei2 , where i1 < i2, Qi1 < Qi2 . In other words, the Ei
define a partitioning of kmin . . .kmax into time periods where the disease rate is constant. Note that
qmin . . .qmax are uniquely defined by the partitions E = {Ei} and the rates Q = {Qi}. A pair (E,Q)

is optimal when the resulting qk maximize Dkmax
kmin

(S). We can then write:

Dkmax
kmin

(S) =
maxE1...Ep maxQ1...Qp ∏Ei e−QiBin,i (Qi)

Cin,i

e−q0Bin (q0)Cin

where the in, i are the sums of the in,k for all k ∈ Ei.

Lemma 2.1 A necessary condition for (E,Q) to be optimal is that for all i, Qi =
Cin,i
Bin,i

.

Proof Let us assume a fixed partitioning E = {Ei}, with strictly increasing Qi, and ask whether the
Qi are optimal for those Ei. We note that, in the absence of constraints on the Qi, each expression
e−QiBin,i (Qi)

Cin,i is maximized at Qi =
Cin,i
Bin,i

. Moreover, the score is convex with respect to Qi. Thus,

if some Qi <
Cin,i
Bin,i

, we can increase the score by raising that Qi slightly (without changing the

ordering of Qi), so the given Qi are not optimal. Similarly, if some Qi >
Cin,i
Bin,i

, we can increase the
score by lowering that Qi slightly (without changing the ordering of Qi), so the given Qi are not
optimal. Thus for the Qi to be optimal, we must have Qi =

Cin,i
Bin,i

for all i.

Lemma 2.2 A necessary condition for (E,Q) to be optimal is that for all i1 < i2,
Cin,i1
Bin,i1

<
Cin,i2
Bin,i2

.
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Proof Otherwise either Qi1 6=
Cin,i1
Bin,i1

, or Qi2 6=
Cin,i2
Bin,i2

, or Qi1 ≥Qi2 . In the first two cases, the condition
of Lemma 2.1 is violated, so the Qi are not optimal. In the third case, the restriction that the Qi are
strictly increasing is violated, so the Qi are not legal.

Thus we can write:

Dkmax
kmin

(S) =
maxE1...Ep ∏Ei e−Cin,i

(
Cin,i
Bin,i

)Cin,i

e−q0Bin (q0)Cin

= eq0Bin−Cin (q0)−Cin max
E1...Ep

∏
Ei

(
Cin,i

Bin,i

)Cin,i

where the partitioning E = {Ei} must satisfy the condition of Lemma 2.2, i.e. the ratios Cin,i
Bin,i

are
strictly increasing with i.

Lemma 2.3 A necessary condition for the partitioning E to be optimal is that for each Ei =

k1 . . .k2, for all k such that k1 ≤ k < k2, we have
∑k

j=k1
c j

∑k
j=k1

b j
≥ ∑

k2
j=k+1 c j

∑
k2
j=k+1 b j

.

Proof Otherwise there exists some Ei = k1 . . .k2, and some k such that k1≤ k< k2, where
∑k

j=k1
c j

∑k
j=k1

b j
<

Qi <
∑

k2
j=k+1 c j

∑
k2
j=k+1 b j

(note Qi is a weighted average of the two ratios). We can now increase the score by

separating Ei into two partitions Ei1 = k1 . . .k and Ei2 = k + 1 . . .k2, where Qi1 is slightly less than
Qi, and Qi2 is slightly more than Qi (without otherwise changing the order of Qi). Thus E is not
optimal.

Lemma 2.4 A partitioning E satisfying the conditions of Lemmas 2.2 and 2.3 is unique, and thus
that partitioning is optimal.

Proof Assume two partitionings E1 and E2 satisfying the conditions of Lemmas 2.2 and 2.3.
Consider the first i such that E1

i 6= E2
i . Let E1

i = k0 . . .k1 and E2
i = k0 . . .k2, assuming without

loss of generality that k1 > k2. Now consider the first j > i such that E2
j = k3 . . .k4 and k4 ≥ k1.

Thus we have k0 ≤ k2 < k3 ≤ k1 ≤ k4. Let us write µ(k0 . . .k2) =
∑

k2
j=k0

c j

∑
k2
j=k0

b j
and define the other µ(·)

similarly. Applying the condition of Lemma 2.2 to E2, we know µ(k0 . . .k2) < µ(k3 . . .k4). Also,
if k2 + 1 < k3, we know µ(k0 . . .k2)< µ(k2 + 1 . . .k3−1)< µ(k3 . . .k4). Applying the condition of
Lemma 2.3 to E2, we know that if k1 < k4, we have µ(k3 . . .k1) ≥ µ(k3 . . .k4) ≥ µ(k1 + 1 . . .k4).
From these inequalities, we know µ(k3 . . .k1) > µ(k0 . . .k3− 1). But applying the condition of
Lemma 2.3 to E1, we know µ(k0 . . .k3 − 1) ≥ µ(k3 . . .k1), which is a contradiction. Thus the
partitioning satisfying the conditions of Lemmas 2.2 and 2.3 is unique. Since these are necessary
conditions for optimality, and a unique partitioning satisfies these conditions, we know that the
partitioning is optimal.
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Finally, we give an algorithm which produces the optimal partitioning E. This “step method”
uses a stack data structure, where each element of the stack represents a partition Ei by a 5-tuple
(start, end, C, B, Q). The algorithm starts by pushing (kmax, kmax, Ckmax , Bkmax , max(q0,

Ckmax
Bkmax

)) onto
the stack. Then for each k, from kmax−1 down to kmin, we do the following:

temp = (k, k, C_k, B_k, max(q_0, C_k / B_k))
while (temp.Q >= stack.top.Q)

temp2 = stack.pop
temp = (temp.start, temp2.end, temp.C+temp2.C, temp.B+temp2.B,

max(q_0, (temp.C+temp2.C)/(temp.B+temp2.B)))
stack.push(temp)

Theorem 2.5 The step method produces the optimal partitioning E.

Proof We first note that the method satisfies the conditions of Lemma 2.1 (since Qi = Ci
Bi

for each
partition Ei), and Lemma 2.2 (since the while loop ensures the ordering of Qi). To show that
the method satisfies the condition of Lemma 2.3, we show that each new partition created by the
“merge step” temp = (temp.start, temp2.end, . . .) maintains this condition as an invariant. Let
Etemp = k0 . . .k1, and Etemp2 = k1 + 1 . . .k2. We know that Etemp and Etemp2 satisfy the condition
of Lemma 2.3, and we must show that the merged partition Enew also satisfies this condition. In
other words, we are given µ(k0 . . . i) ≥ µ(i + 1 . . .k1) for all i (k0 ≤ i < k1), and µ(k1 + 1 . . . i) ≥
µ(i + 1 . . .k2) for all i (k1 + 1 ≤ i < k2). We also know that temp.Q is at least temp2.Q, since the
merge step only takes place if this condition holds, so µ(k0 . . .k1)≥ µ(k1 +1 . . .k2). To show that the
merged partition satisfies the condition of Lemma 2.3, we must show that µ(k0 . . . i)≥ µ(i+1 . . .k2)
for all i (k0 ≤ i < k2). We know this is true for i = k1, but must also prove it for i < k1 and i > k1.
For i< k1, we have µ(k0 . . . i)≥ µ(k0 . . .k1)≥ µ(i+1 . . .k1) and µ(k0 . . .k1)≥ µ(k1 +1 . . .k2). Thus
µ(k0 . . . i)≥ µ(i + 1 . . .k1) and µ(k0 . . . i)≥ µ(k1 + 1 . . .k2), so µ(k0 . . . i)≥ µ(i + 1 . . .k2) as desired.
For i> k1, we have µ(k1 +1 . . . i)≥ µ(k1 +1 . . .k2)≥ µ(i+1 . . .k2) and µ(k0 . . .k1)≥ µ(k1 +1 . . .k2).
Thus µ(k0 . . .k1)≥ µ(i+1 . . .k2) and µ(k1 +1 . . . i)≥ µ(i+1 . . .k2), so µ(k0 . . . i)≥ µ(i+1 . . .k2) as
desired.

2.3.2 Globally adaptive

In this case, we compare the null hypothesis H0: the rate equals qall over all locations and times,
to the alternative hypothesis H1(S): the rate is qk at times kmin . . .kmax in region S (where the qk are
non-decreasing and at least qout), and equals qout over all other locations and times. The likelihood
ratio is:

Dkmax
kmin

(S) =
maxqout≤qkmin≤...≤qkmax ∏sk

i∈S×(kmin...kmax) Pr(ck
i ∼ Po(qkbk

i ))∏sk
i∈out Pr(ck

i ∼ Po(qoutbk
i ))

maxqall ∏sk
i∈G×(1...kbase) Pr(ck

i ∼ Po(qallbk
i ))

=
maxqout≤qkmin≤...≤qkmax ∏sk

i∈S×(kmin...kmax) e−qkbk
i (qk)

ck
i ∏sk

i∈out e−qoutbk
i (qout)

ck
i

maxqall ∏sk
i∈G×(1...kbase) e−qallbk

i (qall)
ck

i
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=
maxqout≤qkmin≤...≤qkmax ∏kmax

k=kin
e−qkBin,k (qk)

Cin,k × e−qoutBout (qout)
Cout

maxqall e−qallBall (qall)
Call

=
maxqout≤qkmin≤...≤qkmax ∏kmax

k=kin
e−qkBin,k (qk)

Cin,k × e−qoutBout (qout)
Cout

e−Call

(
Call
Ball

)Call

Now, we must again maximize the numerator subject to the constraints on the qk. We can use
almost the same step method as before, except that we do not need to enforce the constraint qk≥ q0,
but we do need to set qout such that qout ≤ qkmin . Thus we let E = E1 . . .Ep be a partitioning of
out∪ (kmin . . .kmax) into sets of consecutive integers, such that 1) for all k1,k2 ∈ Ei, qk1 = qk2 = Qi,
and 2) for all Ei1 ,Ei2 , where i1 < i2, Qi1 < Qi2 . We can then write:

Dkmax
kmin

(S) =
maxE1...Ep maxQ1...Qp ∏Ei e−QiBi (Qi)

Ci

e−Call

(
Call
Ball

)Call

=
maxE1...Ep ∏Ei e−Ci

(
Ci
Bi

)Ci

e−Call

(
Call
Ball

)Call

=
maxE1...Ep ∏Ei

(
Ci
Bi

)Ci

(
Call
Ball

)Call

where the Ci are the sums of the Cin,k for all k ∈ Ei, plus Cout if out ∈ Ei, and similarly for the Bi.
To find the optimal partitioning E of out ∪ (kmin . . .kmax), we use the following step method.

First, we push (kmax, kmax, Ckmax , Bkmax ,
Ckmax
Bkmax

) onto the stack. Then for each k, from kmax−1 down
to kmin, we do the following:

temp = (k, k, C_k, B_k, C_k / B_k)
while (temp.Q >= stack.top.Q)

temp2 = stack.pop
temp = (temp.start, temp2.end, temp.C+temp2.C, temp.B+temp2.B,

(temp.C+temp2.C)/(temp.B+temp2.B))
stack.push(temp)

Finally, we do the same for the “out” partition, treating “out” as an arbitrary integer less than kmin:

temp = (out, out, C_out, B_out, C_out / B_out)
while (temp.Q >= stack.top.Q)

temp2 = stack.pop
temp = (temp.start, temp2.end, temp.C+temp2.C, temp.B+temp2.B,

(temp.C+temp2.C)/(temp.B+temp2.B))
stack.push(temp)

Correctness of the step method follows from the same argument as above.
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2.3.3 Daily adaptive

In this case, we compare the null hypothesis H0: for each day k, the rate equals qall,k for all
locations, to the alternative hypothesis H1(S): for days kmin . . .kmax, the rate equals qin,k inside the
region and qout,k outside, qin,k/qout,k = θk (θk non-decreasing and at least 1) and for all other days
k, the rate equals qall,k for all locations. The likelihood ratio is:

Dkmax
kmin

(S) =
max1≤θkmin≤...≤θkmax ∏kmax

k=kmin
maxqout,k ∏sk

i∈S Pr(ck
i ∼ Po(θkqout,kbk

i ))∏sk
i∈G−S Pr(ck

i ∼ Po(qout,kbk
i ))

∏kmax
k=kmin

maxqall,k ∏sk
i∈G Pr(ck

i ∼ Po(qall,kbk
i ))

=
max1≤θkmin≤...≤θkmax ∏kmax

k=kmin
maxqout,k ∏sk

i∈S e−θkqout,kbk
i
(
θkqout,k

)ck
i ∏sk

i∈G−S e−qout,kbk
i
(
qout,k

)ck
i

∏kmax
k=kmin

maxqall,k ∏sk
i∈G e−qall,kbk

i
(
qall,k

)ck
i

=
max1≤θkmin≤...≤θkmax ∏kmax

k=kmin
maxqout,k e−θkqout,kBin,k

(
θkqout,k

)Cin,ke−qout,kBout,k
(
qout,k

)Cout,k

∏kmax
k=kmin

maxqall,k e−qall,kBall,k
(
qall,k

)Call,k

=
max1≤θkmin≤...≤θkmax ∏kmax

k=kmin
maxqout,k e−qout,k(θkBin,k+Bout,k)(θk)

Cin,k
(
qout,k

)Call,k

∏kmax
k=kmin

maxqall,k e−qall,kBall,k
(
qall,k

)Call,k

=
max1≤θkmin≤...≤θkmax ∏kmax

k=kmin
e−Call,k(θk)

Cin,k
(

Call,k
θkBin,k+Bout,k

)Call,k

∏kmax
k=kmin

e−Call,k

(
Call,k
Ball,k

)Call,k

= max
1≤θkmin≤...≤θkmax

kmax

∏
k=kmin

(θk)
Cin,k

(
Ball,k

θkBin,k + Bout,k

)Call,k

Now, we must maximize this expression subject to the constraints on the θk, but it is not immedi-
ately clear how to accomplish this. One possibility would be to use a step method on the θ values(

Cin,kBout,k
Cout,kBin,k

)
, but we have not yet been able to prove the optimality of this method.

2.4 Parametrized clusters
Here we assume that the rate increases over the duration of the cluster according to some known,
parametrized distribution. We focus here on the case where the rate is exponentially increasing
(multiplied by φ on every time step). Similar expressions may be derived for the case of a linear
increase in rate (i.e. rate is increased by ∆ on every time step).

2.4.1 Globally sensitive

In this case, we compare the null hypothesis H0: the rate equals q0 over all locations and times, to
the alternative hypothesis H1(S): the rate is φk−kmin+1q0 at times k = kmin . . .kmax in region S, and
equals q0 over all other locations and times. The likelihood ratio is:

Dkmax
kmin

(S) =
maxφ≥1 ∏sk

i∈S×(kmin...kmax) Pr(ck
i ∼ Po(bk

i φk−kmin+1q0))

∏sk
i∈S×(kmin...kmax) Pr(ck

i ∼ Po(bk
i q0))
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=
maxφ≥1 ∏sk

i∈S×(kmin...kmax) e−φk−kmin+1q0bk
i (φk−kmin+1q0)ck

i

∏sk
i∈S×(kmin...kmax) e−q0bk

i (q0)ck
i

=
maxφ≥1 ∏kmax

k=kmin
e−φk−kmin+1q0Bin,k(φk−kmin+1q0)Cin,k

∏kmax
k=kmin

e−q0Bin,k(q0)Cin,k

= max
φ≥1

kmax

∏
k=kmin

e(1−φk−kmin+1)q0Bin,kφ(k−kmin+1)Cin,k

Maximizing with respect to φ requires finding the root of a polynomial of degree kmax−kmin +1;
approximate (gradient) methods may also be used.

2.4.2 Globally adaptive

In this case, we compare the null hypothesis H0: the rate equals qall over all locations and times,
to the alternative hypothesis H1(S): the rate is φk−kmin+1qout at times kmin . . .kmax in region S, and
equals qout over all other locations and times. The likelihood ratio is:

Dkmax
kmin

(S) =
maxφ≥1,qout ∏sk

i∈S×(kmin...kmax) Pr(ck
i ∼ Po(bk

i φk−kmin+1qout))∏sk
i∈out Pr(ck

i ∼ Po(bk
i qout))

maxqall ∏sk
i∈G×(1...kbase) Pr(ck

i ∼ Po(bk
i qall))

=
maxφ≥1,qout ∏sk

i∈S×(kmin...kmax) e−bk
i φk−kmin+1qout (φk−kmin+1qout)

ck
i ∏sk

i∈out e−bk
i qout (qout)

ck
i

maxqall ∏sk
i∈G×(1...kbase) e−bk

i qall (qall)
ck

i

=
maxφ≥1,qout ∏kmax

k=kmin
e−Bin,kφk−kmin+1qout (φk−kmin+1qout)

Cin,k × e−Boutqout (qout)
Cout

maxqall e−Ballqall (qall)Call

=
maxφ≥1,qout (qout)

Call e−qout(Bout+∑Bin,kφk−kmin+1)φ∑(k−kmin+1)Cin,k

maxqall e−Ballqall (qall)Call

=
maxφ≥1 e−Call

(
Call

Bout+∑Bin,kφk−kmin+1

)Call
φ∑(k−kmin+1)Cin,k

e−Call

(
Call
Ball

)Call

= max
φ≥1

(
Ball

Bout + ∑Bin,kφk−kmin+1

)Call

φ∑(k−kmin+1)Cin,k

where the summations are taken from k = kmin . . .kmax, “all” are sums over all space and time, and
“out” are sums over all space and time except S× (kmin . . .kmax). Again, maximizing with respect
to φ requires finding the root of a polynomial of degree kmax− kmin + 1.
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2.4.3 Daily adaptive

In this case, we compare the null hypothesis H0: for each day k, the rate equals qall,k for all
locations, to the alternative hypothesis H1(S): for days kmin . . .kmax, the rate equals qin,k inside the
region and qout,k outside, qin,k/qout,k = φk−kmin+1, φ ≥ 1; and for all other days k, the rate equals
qall,k for all locations. The likelihood ratio is:

Dkmax
kmin

(S) =
maxφ≥1 ∏kmax

k=kmin
maxqout,k ∏sk

i∈S Pr(ck
i ∼ Po(bk

i φk−kmin+1qout,k))∏sk
i∈G−S Pr(ck

i ∼ Po(bk
i qout,k))

∏kmax
k=kmin

maxqall,k ∏sk
i∈G Pr(ck

i ∼ Po(bk
i qall,k))

=
maxφ≥1 ∏kmax

k=kmin
maxqout,k ∏sk

i∈S e−bk
i φk−kmin+1qout,k(φk−kmin+1qout,k)

ck
i ∏sk

i∈G−S e−bk
i qout,k(qout,k)

ck
i

∏kmax
k=kmin

maxqall,k ∏sk
i∈G e−bk

i qall,k(qall,k)
ck

i

=
maxφ≥1 ∏kmax

k=kmin
maxqout,k e−Bin,kφk−kmin+1qout,k(φk−kmin+1qout,k)

Cin,ke−Bout,kqout,k(qout,k)
Cout,k

∏kmax
k=kmin

maxqall,k e−Ball,kqall,k(qall,k)
Call,k

=
maxφ≥1 ∏kmax

k=kmin
maxqout,k e−qout,k(Bout,k+Bin,kφk−kmin+1)φ(k−kmin+1)Cin,k(qout,k)

Call,k

∏kmax
k=kmin

maxqall,k e−Ball,kqall,k(qall,k)
Call,k

=
maxφ≥1 ∏kmax

k=kmin
e−Call,k

(
Call,k

Bout,k+Bin,kφk−kmin+1

)Call,k
φ(k−kmin+1)Cin,k

∏kmax
k=kmin

e−Call,k

(
Call,k
Ball,k

)Call,k

= max
φ≥1

kmax

∏
k=kmin

(
Ball,k

Bout,k + Bin,kφk−kmin+1

)Call,k

φ(k−kmin+1)Cin,k

Again, maximizing with respect to φ requires finding the root of a polynomial of degree kmax−
kmin + 1.

3 Inferring baselines from previous counts
We now consider various methods of inferring baselines from the time series of previous counts.
First, the building-aggregated time series (BATS) method considers the time series for each spatial
location separately, computing the baseline for that location from that time series. The resulting
counts and baselines are aggregated to a grid, and then one of the above scan statistics is used. For
replica grids, each location’s count is regenerated independently under the null hypothesis, and
these are aggregated to a grid as before. Second, the cell-aggregated time series (CATS) method
aggregates the time series for all locations in a grid cell into a single time series. Then the time
series for each grid cell is considered separately to generate each grid cell’s baseline, and then one
of the above scan statistics is used. For replica grids, each cell’s count is regenerated independently
under the null hypothesis. Third, the region-aggregated time series (RATS) method creates a single
time series for each region it searches (by aggregating the time series of the individual cells), com-
putes the baseline for the region from that time series, and applies one of the scan statistics above.
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The RATS method attempts to account for spatial correlations between cells, but the lack of a sep-
arate baseline per cell makes randomization difficult (since we would have to model correlations
between cells and generate counts from this correlated distribution). Instead, we are considering
various alternative methods of dealing with the multiple hypothesis testing problem, including use
of the False Discovery Rate (FDR) criterion.

For all of these methods, a variety of univariate time series methods may be used to infer the
baseline of a location, cell, or region from its time series of past counts. These include simple
mean, maximum, and moving average methods; we are also considering methods which allow us
to adjust for day of week effects, etc. Missing data is a serious problem for all of these methods. For
BATS, we may use time series approaches which adjust for the presence of missing data; for CATS
and RATS, we must infer these missing values before aggregating data at the cell or region level.
For the over-the-counter drug sales data, our current best approach is an exponentially weighted
moving average (EWMA) approach, applied to day-of-week-adjusted counts; the adjustment is
made by estimating the proportion of weekly counts falling on each day.

4 Related work
In the spatio-temporal cluster detection literature, three main approaches have been proposed by
Martin Kulldorff et al.: the retrospective space-time scan statistic (Kulldorff et al., 1998), the
prospective space-time scan statistic (Kulldorff, 2001), and the space-time permutation scan statis-
tic (Kulldorff et al., 2004). The first two of these approaches are very similar in that they use the
globally adaptive test for detecting persistent clusters (Section 2.2.2), assuming that baselines are
given based on census population estimates. The main difference is that the retrospective statistic
searches over all space-time intervals, while the prospective statistic searches over those intervals
ending at the present time, as described above. Kulldorff (2001) also gives a method of adjusting
the prospective statistic for repeated time-periodic tests, i.e. if we want a false probability of α
over an interval of longer than 1 day. This is straightforward, comparing Dmax of the original grid
to Dmax of replica grids, where clusters in the replica grid can end before the present day. The
globally adaptive statistic assumes that counts are proportional to population everywhere, with a
constant of proportionality that is fixed through space and time. This assumption is clearly false:
as a result, the statistics may pick up purely spatial clusters resulting from spatial variation in the
underlying rate (e.g. different parts of the country have different disease rates), or purely temporal
clusters based on temporal fluctuations in rate (e.g. seasonal affects or long-term trends). The
daily adaptive test could deal with temporal clusters, while spatial clusters are best dealt with by
inferring baselines from the time series of counts instead of using census populations.

Kulldorff et al. (2004) attempt to fix both problems by proposing the space-time permutation
scan statistic. This statistic again uses the globally adaptive test for detecting persistent clusters,
and does a prospective analysis. The main difference from the previous approaches is that baselines
are inferred from the time series of counts: the inference is done by assuming that cases are inde-

pendently distributed in space and time, and thus that bk
i = E[ck

i ] = (∑k ck
i )(∑i ck

i )
∑i ∑k ck

i
. Then the globally

adaptive likelihood is used as before; note that Ball is set equal to Call by construction, and thus the

denominator
(

Call
Ball

)Call
can be ignored. Randomization is done by permuting the dates and loca-
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tions of cases. In our view, this method has several disadvantages. First, by making the assumption
of independence of space and time, the statistics for the current period are affected by space-time
interaction occurring at any time in the past as well; we cannot adjust for known space-time trends
and ask whether the current period has higher counts than expected even taking these trends into
account. This is why we propose the spatial time series method: by separately examining the time
series of past counts at each spatial location (or aggregated set of spatial locations), we attempt to
predict the current count for that location or set of locations. The space-time permutation statistic
uses the counts of the current period to infer the baselines for the current period, thus losing power
(since baselines will be increased by increased counts, reducing the power to detect these increased
counts). Additionally, since the expected count at each location is known, a globally sensitive test
(with q0 = 1, since we expect count to equal baseline) should be used instead of a globally adaptive
test. Finally, the space-time permutation statistic assumes persistent clusters (i.e. constant disease
rate over the outbreak period) while real outbreaks typically exhibit a disease rate that increases
over the outbreak period; thus tests for emerging clusters should be able to detect an emerging
outbreak more quickly than the space-time permutation scan statistic.

Several other spatio-temporal cluster detection methods have also been proposed. Iyengar
(2004) searches over “truncated rectangular pyramid” shapes in space-time, thus allowing detec-
tion of clusters which move and grow/shrink linearly in space over time. The globally adaptive test
for persistent clusters is again used, as in Kulldorff’s statistics, and baselines are assumed to be
given. Assuncao et al. (2004) assume a spatio-temporal Poisson point process: the exact location
of each point in time and space is given, rather than aggregating points to discrete locations and
intervals. A test statistic similar to the space-time permutation scan statistic is derived, assuming a
Poisson intensity function that is separable in space and time.
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