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Abstract

In this paper we consider the problem of privately computing the intersection of sets (set-
intersection), as well as several variations on this problem: cardinality set-intersection,
threshold set-intersection, and over-threshold set-intersection. Cardinality set-intersection
is the problem of determining the size of the intersection set, without revealing the actual
threshold set. In threshold set-intersection, only the elements which appear at least a
threshold number t times in the players’ private inputs are revealed. Over-threshold set-
intersection is a variation on threshold set-intersection in which not only the threshold set
is revealed, but also the number of times each element in the threshold set appeared in the
private inputs.
We propose protocols that are more efficient than those previously known for set-intersection
in the malicious case, as well as new protocols for problems which had no previous solution
that did not utilize general secure circuit computation:

• Set-intersection protocols for the case of: n = 2 malicious parties that do not utilize
the cut-and-choose technique; n ≥ 3 malicious parties, for which there was no previous
efficient solution; and multisets, in which elements may appear more than once.
• Cardinality set-intersection protocols secure against n ≥ 2 malicious parties and n ≥ 3

honest-but-curious parties, for which there were no previous efficient solutions
• Threshold set-intersection protocols for n ≥ 2 honest-but-curious parties, for which

there was no previous efficient solution
• Over-threshold set-intersection protocols for the case of n ≥ 2 honest-but-curious

parties and the case of n ≥ 2 malicious parties, for which there was no previous
efficient solution
• Fair protocols for all problems (when fairness in decryption is enforced)
• Protocols which are secure against even n− 1 dishonest colluding parties





1 Introduction

In this paper we consider problems related to privately computing the intersection of sets:
set-intersection, cardinality set-intersection, threshold set-intersection, and over-threshold
set-intersection. Let each party hold a private input set. The set-intersection is the inter-
section of the private sets. Cardinality set-intersection is the problem of determining the
size of the intersection set, without revealing the actual set. In threshold set-intersection,
only the elements which appear at least a threshold number t times in the players’ private
inputs are revealed. A variation of threshold set-intersection is threshold contribution, in
which each player learns the elements in the threshold set that also appear in their pri-
vate inputs; these are the elements of the threshold set to which they have contributed.
Over-threshold set-intersection is another variation on threshold set-intersection in which
not only the threshold set is revealed, but also the number of times each element in the
threshold set appeared in the private inputs.

These problems have many applications in structured sharing of personal or private
information, such as medical databases, online dating profiles, and distributed network
monitoring. We give several specific examples:

Before choosing a movie to attend, a group of people must determine which movies
everyone would like to see. By using a private set-intersection protocol, someone who likes
unusual movies can avoid embarrassment while still expressing their preference for that
movie; if everyone does like it, they can attend.

Hackers may attack many organizations, causing damage to the networks of each; like-
wise, bulk email troubles many people. These organizations may determine which hackers
or spammers have been damaging a large number of them by utilizing the threshold set-
intersection protocol. This information may be used to guard against them, or to determine
which are worth pursuing by law-enforcement or network authorities, without revealing sen-
sitive, unrelated information about network traffic.

Pharmacies can use a variation on the threshold set-intersection protocol to catch people
who are breaking the law and endangering their health by filling the same prescription at
multiple pharmacies. The threshold contribution variant of threshold set-intersection lets
only those pharmacies who filled a prescription for a cheating patient learn their identity,
protecting the privacy of both honest and dishonest patients.

Airline security checks in the U.S. require that no passengers appear on a ‘no-fly’ list held
by the government. By privately determining the set-intersection between the passenger list
and the list of possible terrorists, airlines may protect innocent passengers’ privacy, while
preventing people on the list from boarding. A similar situation exists when police wish
to check that the passengers of a car do not have outstanding warrants for their arrest. If
there is no such warrant, their names are not revealed to the computer maintaining the
warrant list.

Results of a survey to determine popular musical artists can be distorted by people’s
desire to avoid embarrassment, as they might not include the names of artists who they do
not believe to be sufficiently ‘cool’. Allowing people to profess an interest in a musical artist
privately might well increase the honesty of participants. The over-threshold set-intersection
protocol will reveal the popular artists, and how popular they are.

Governmental agencies have many regulatory barriers to protect privacy of citizens.
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However, they often need statistics to ensure the efficiency of services. For example, US
agencies might wish to learn how many people are receiving both welfare assistance and
medicare assistance who are also seriously ill, as these people will very likely be unable to
work regularly for a long period in the future. To determine this statistic without invading
privacy, agencies and hospitals can perform the cardinality set-intersection protocol.

Our Contributions Freedman, Nissim, and Pinkas proposed protocols that improved
substantially on the best known solution for the private matching problem [12]. Private
matching is simply unfair set-intersection. We propose protocols that are more efficient in
the malicious case for set-intersection, as well as new protocols for problems which had no
previous solution that did not utilize general multi-party computation:

• Set-intersection protocols for the case of: n = 2 malicious parties that do not utilize
the cut-and-choose technique; n ≥ 3 malicious parties, for which there was no previous
efficient solution; and using multisets, in which elements may appear more than once.
• Cardinality set-intersection protocols secure against n ≥ 2 malicious parties and n ≥ 3

honest-but-curious parties, for which there were no previous efficient solutions
• Threshold set-intersection protocols for n ≥ 2 honest-but-curious parties, for which

there was no previous efficient solution
• Over-threshold set-intersection protocols for the case of n ≥ 2 honest-but-curious

parties and the case of n ≥ 2 malicious parties, for which there was no previous
efficient solution
• Fair protocols for all problems (when fairness in decryption is enforced)
• Protocols which are secure against even n− 1 dishonest colluding parties

These results are summarized in Table 1 for both the malicious case and the honest-
but-curious (HBC) case. The communication complexity of protocols is shown in terms
of ciphertexts. The size of these ciphertexts is max

{
κ, O

(
lg |P |+ lg

(
1
ε

))}
, where P is

the set of possible private input set elements, and κ represents the minimum size of the
ciphertext domain used in the protocols, which is dependent on the security parameter for
the cryptosystem.1

In the protocols secure against malicious parties presented in this paper, the overhead
in communication complexity is a result of the size of the zero-knowledge proofs employed.
These larger proofs, however, are generally built out of simple, efficient proofs, such as a
proof of equality of discrete logarithms [4].

We offer security proofs for our protocols for both the honest-but-curious case (indistin-
guishability proofs) and the malicous case (simulation proofs). These proofs of the correct-
ness and security of our protocols and the proofs are given in Appendix C and E.

Organization We discuss the definitions of the problems addressed in this paper, as well
as adversary models in Section 2. In section 3, we introduce the mathematical and cryp-
tographic tools used in our protocols, including an additively homomorphic cryptosystem,
operations on encrypted polynomials, and polynomial factoring. Section 4 gives intuition

1If the technique of simulated computation over a field is employed, the ciphertexts will be larger, but
this is not necessary. For details, see section 3.2.2.
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Problem Setting Complexity of Complexity of
our solution previous solution

Set-Intersection 2-party HBC O(k) O(k) [12]
2-party malicious O(k2) cut-and-choose [12]
n ≥ 3 party HBC O(cnk) O(n2k) [12]
n ≥ 3 party malicious O(n2k2) none

Cardinality Set-Intersection 2-party HBC O(k) O(k) [12]
n ≥ 3 party HBC O(n2k) none
n ≥ 3 party malicious O(n2k3) none

Over-Threshold n ≥ 2 party HBC O(n3k) none
Set-Intersection

n ≥ 2 party malicious O(n4k3) none
Threshold Set-Intersection n ≥ 2 party HBC O(n3k) none
(Threshold contribution or
Semi-Perfect Variant)

Table 1: Communication complexity comparison for our protocols and previous solutions.

for our protocols, including the representation of sets by polynomials and operations on
these polynomials. We propose protocols for the honest-but-curious case in section 5, and
protocols for the malicious case in section 6. (Proofs of security are given in the appendices.)
Related work is discussed in section 7, and we conclude in section 8.

2 Problems and Models

In this section we define the problems for which we propose protocols, and discuss the
adversary models under which we secure these protocols.

2.1 Problem Defintions

Assume we have n parties; each has a private input set Si (1 ≤ i ≤ n) of size k. By engaging
in the protocols for the problems defined below, every player learns the specified answer set.

Set-Intersection All players learn the intersection of all private input sets Si; that is,
each player learns S1 ∩ S2 ∩ · · · ∩ Sn. This problem may be considered in two settings: Si

is either a set or a multiset (where elements may be included more than once). If Si is
a simple set, then set-intersection will return a simple set. If Si is a multiset, then if an
element a appears at least b times in each player’s private input, then all players learn that
a appears at least b times in each private input.

Cardinality Set-Intersection All players learn the size of the intersection set of all
private input sets Si; that is, each player learns |S1 ∩ S2 ∩ · · · ∩ Sn|. We require that each
Si be a simple set.
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Threshold Set-Intersection All players learn which elements appear in the combined
private input of the players at least a threshold number t times. For example, assume that
a appears in the combined private input of the players 15 times. If t = 10, then all players
learn a. However, if t = 16, then no player learns a. An element may appear in a player’s
private input more than once.

We offer protocols for several variants on threshold set-intersection: threshold contri-
bution, perfect, and semi-perfect. Threshold contribution allows any threshold t ≥ 1, and
each player learns only those elements which appear both in his private input and the
threshold set. Perfect threshold set-intersection allows any threshold t ≥ 1, and conforms
exactly to the definition of threshold set-intersection. The semi-perfect variant requires for
security that t ≥ 2, and that the cheating coalition does not include any single element
more than t− 1 times in their private inputs. Note that the information illicitly gained by
the coalition when they include more than t − 1 copies of an element a is restricted to a
possibility of learning that there exists some other player whose private input contains a.
We do not consider the difference in security between the semi-perfect and perfect variants
to be significant.

Over-Threshold Set-Intersection All players learn which elements appear in the com-
bined private input of the players at least a threshold number t times, and the number of
times these elements appeared in the players’ private inputs. For example, assume that a
appears in the combined private input of the players 15 times. If t = 10, then all players
learn a has appeared 15 times. However, if t = 16, then no player learns a or the number of
times it has appeared. As in threshold set-intersection, an element may appear in a player’s
private input more than once.

2.2 Adversary Models

In this paper, we present protocols for the aforementioned problems in two standard ad-
versary models. We give only an intuitive notion of each. These notions are formalized
in [15].

Honest-But-Curious An honest-but-curious player is assumed to follow the protocol
exactly. Security in this model is straightforward: no player or coalition of players (who
cheat by sharing their private information) gains information which is not inherent in the
output of the calculated function. Formally, consider an ideal scenario in which a trusted
third party receives the input of each party, calculates the function output, and broadcasts
it to each player. We require that when the parties perform the protocol, no party learns
information it does not learn in the ideal case. Thus no player or cheating coalition can
distinguish between possible sets of valid private input sets held by non-cheating players.
A set of private input sets is valid if its produces the same answer set as the private inputs
held by the players. For example, if the element a does not appear in the intersection set
of A and B’s private inputs, then if a does not appear in A’s private input, she cannot
determine whether a appears in B’s private input.
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Malicious A malicious player (or coalition of such players) will misbehave in any way
within their power to extract extra information in the course of the protocol. We cannot,
however, prevent malicious players from choosing their ‘private input’ arbitrarily or refusing
to participate in the protocol at any point. The standard definition of security in this
case does not require enforcement against these actions [15]. Instead, the definition of
security compares the ideal model (where the trusted third party computes the function,
but malicious parties may submit any value as their ‘private input’) with performing the
protocol in the real scenario. If the protocol is secure, we can construct a simulation that
translates any strategy of the coalition of malicious players in the real model into the ideal
model such that the coalition gains computationally indistinguishable information in the
two scenarios.

3 Preliminaries

In this section, we introduce the mathematical and cryptographic tools that we use to
construct our protocols.

3.1 Additively Homomorphic Cryptosystem

In this paper we utilize a semantically-secure [16], additively homomorphic public-key cryp-
tosystem. Let Epk(·) denote the encryption function with public key pk. The cryptosystem
supports the following two operations, which can be performed without knowledge of the
private key: (1) Given the encryptions of a and b, Epk(a) and Epk(b), we can efficiently
compute the encryption of a + b, denoted Epk(a + b) := Epk(a) +h Epk(b); (2) Given a
constant c and the encryption of a, Epk(a), we can efficiently compute the encryption of ca,
denoted Epk(c · a) := c ×h Epk(a). When such operations are performed, we require that
the resulting ciphertexts be re-randomized for security. In re-randomization one transforms
a ciphertext into a different ciphertext encrypting the same plaintext, in such a way that is
it difficult to determine that it is a transformation of the original ciphertext.

We also require that the homomorphic public-key cryptosystem support secure (n, n)-
threshold decryption, i.e., the corresponding private key is shared by a group of n players,
and the decryption is performed by all players acting together, but cannot be performed by
fewer than n players. In our protocols for the malicious case, we require that the decryp-
tion protocol be secure against malicious players; typically, this is done by requiring each
player to prove in zero-knowledge that he has followed the threshold decryption protocol
correctly [14].

In the protocols we give for the malicious case, we also require that the homomor-
phic cryptosystem allow efficient zero-knowledge proofs of plaintext knowledge and zero-
knowledge proofs for the correctness of certain operations, as detailed in Section 6.1.

Note that Paillier’s cryptosystem [27] satisfies each of the aforementioned requirements:
it is additively homomorphic, supports ciphertexts re-randomization and threshold decryp-
tion (secure in the malicious case) [10, 11], allows efficient zero-knowledge proofs required
in Section 6.1 (standard constructions from [6, 4], and proof of plaintext knowledge [7]).

In the rest of this paper, we simply use Epk(·) to denote the encryption function of the
homomorphic cryptosystem which satisfies all the aforementioned properties.
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3.2 Polynomials Over Rings

Let R denote the plaintext domain of the homomorphic public key cryptosystem (in Paillier’s
cryptosystem, R is ZN ). We define the polynomial ring R[x] as the polynomials with
coefficients from R. Let f be a polynomial in R[x] such that f(x) =

∑deg(f)
i=0 f [i]xi, where

f [i] denotes the coefficient of xi. We define the formal derivative of f as
∑deg(f)−1

i=0 (i +
1)f [i + 1]xi, and the dth formal derivative f (d) as the result of taking the formal derivative
sequentially d times. We also define the encryption of polynomial f as the ordered list
of the encryptions of its coefficients Epk(f [0]), . . . , Epk(f [deg(f)]) under the homomorphic
cryptosystem.

3.2.1 Algorithms for Operations on Encrypted Polynomials

Let f , g, and h be polynomials in R[x] such that f(x) =
∑deg(f)

i=0 f [i]xi, g(x) =
∑deg(g)

i=0 g [i]xi,
and h(x) =

∑deg(h)
i=0 h [i]xi. Let a and b be elements in R. Using the homomorphic proper-

ties of the homomorphic cryptosystem, we can efficiently perform the following operations
on encrypted polynomials without knowledge of the private key:

• Evaluation of an encrypted polynomial at an unencrypted point: given the encryption
of polynomial f , we can efficiently compute the encryption of b := f(y), by calculating
Epk(b) := (y0 ×h Epk(f [0])) +h (y1 ×h Epk(f [1])) +h . . . +h (ydeg(f) ×h Epk(f [deg(f)])).
• Sum of encrypted polynomials: given the encryption of polynomial f and g, we

can efficiently compute the encryption of the polynomial h := f + g, by calculat-
ing Epk(h [i]) := Epk(f [i]) +h Epk(g [i]) (0 ≤ i ≤ max{deg(f),deg(g)})

• Product of an unencrypted polynomial and an encrypted polynomial: given a polyno-
mial g and the encryption of polynomial f , we can efficiently compute the encryption
of polynomial h := f ∗ g, (also denoted g ∗h Epk(f)) by calculating the encryption of
each coefficient
Epk(h [i]) := (g [0] ×h Epk(f [i])) +h (g [1] ×h Epk(f [i− 1])) +h . . . +h (g [i] ×h Epk(f [0]))
(0 ≤ i ≤ deg(f) + deg(g)).
• Derivative of an encrypted polynomial: given the encryption of polynomial f , we

can efficiently compute the encryption of polynomial h := d
dxf , by calculating the

encryption of each coefficient Epk(h [i]) := (i+1) ×h Epk(f [i + 1]) (0 ≤ h ≤ deg(f)−
1).

Ciphertexts created through these operations should be re-randomized, for security, as
specified in the cryptosystem definition.

3.2.2 Polynomial Factoring

Some protocols in this paper can yield better efficiency if efficient polynomial factoring is
possible without knowledge of the private key. If R is a field of known order, then we
can achieve efficient polynomial factoring [29]. If R is a ring with s subfields of known
order, then we can achieve efficient polynomial factoring through polynomial factoring in
the subfields. However, in this case, we may obtain a larger number of roots than the degree
of the polynomial (in particular, there can be ks roots for a polynomial of degree k), which
will make polynomial factoring more computationally expensive.
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However, we are not aware of an additively homomorphic cryptosystem whose domain
is a field of publicly-known order of sufficient size. Note that we cannot simply use a single
sub-field of the plaintext ring in the otherwise acceptable Paillier cryptosystem; doing so
requires revealing that subfield, and thus the factorization of N from which the scheme’s
security is drawn. The Naccache-Stern cryptosystem [24] gives a ring with subfields of
publicly-known orders, but cannot include a large subfield, making factoring inefficient.

Thus in this paper, when appropriate, we give protocols for both the cases where we as-
sume efficient polynomial factoring is possible and where we do not use polynomial factoring.
For protocols where we assume efficient polynomial factoring is possible, we currently use a
technique called simulated calculations over a field. Instead of drawing coefficients directly
from a field Zp, we may instead choose the homomorphic cryptosystem to have a suffi-
ciently large plaintext domain (for example, Zm) so as to perform all calculations without
ever “wrapping around” (being taken modulo m). Threshold decryption can be performed
so as to only reveal the plaintext modulo p [20]. However, this is generally quite ineffi-
cient. For example, for the over-threshold set-intersection protocol (assuming polynomial
factoring) described in this paper, the cryptosystem must have a domain that is of size ap-
proximately n lg

(
|P |
ε

)
+ kn2, where P is the valid input set, n the number of players, k the

size of each player’s private input, and ε the negligible probability that a random element
will represent a member of P . The protocols that require polynomial factoring, however,
may have certain advantages over the alternate protocols, such as removing the need for
mix-nets and reducing the number of rounds in the protocol. Also, when new homomorphic
cryptosystems are developed that enable efficient polynomial factoring without the private
key, they can be directly plugged into our protocols to achieve better efficiency.

3.3 Other Tools

Key-Private Cryptosystem. Given a ciphertext, any player who does not hold the
private key cannot distinguish which key was used to create the ciphertext [2].

Equivocal Commitment. A standard commitment scheme allows parties to give a “sealed
envelope” that can be later opened to reveal exactly one value. We use an equivocal
commitment scheme in our protocols, where the simulator can open the ‘envelope’ to an
arbitrary value without being detected by the adversary [19, 22].

Mix-Net and Shuffling Protocol. Either a standard mix-net [5, 17, 8, 13, 26] or the
muti-party shuffling computation given in this paper (Figs. 11) can be used to distribute
data to all players without revealing the origin.

Hash Function. In this paper, let h(·) denote a hash function from {0, 1}∗ to {0, 1}` (` =
lg

(
1
ε

)
, where ε is a probability parameter chosen to be negligable). This hash function maps

to each output bitstring with uniform and certain ω-wise independent probability (where ω
is polynomial in nk). This can be approximated by a cryptographic hash function [23].

3.4 Notation

Our Notation
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• P – the set of elements which can be members of a private input set
• k – size of each private input set
• n – number of players participating in a protocol
• t – threshold number, an element must appear t times in the private input sets to be

included in the threshold set
• Epk(·) – encryption under the additively homomorphic, public key cryptosystem to

which all players share a secret key
• Epk(a) +h Epk(b) – combination of two ciphertexts (under the homomorphic cryp-

tosystem) to produce a re-randomized ciphertext which is the encryption of a + b
• a ×h Epk(b) – combination of an integer and a ciphertext (under the homomorphic

cryptosystem) to produce a re-randomized ciphertext which is the encryption of ab
• h(·) – hash function

Mathematical Notation

• Ra[x] – the set of all polynomials of degree between 0 and a with coefficients from R
• [c] for an integer c denotes the set {1, . . . , c}
• a := b denotes that the variable a is given the value b
• a || b denotes a concatenated with b
• a← S denotes that element a is sampled uniformly from set S
• deg(p) is degree of polynomial p
• p(d) is the dth formal derivative of p
• gcd(p, q) is the greatest common divisor of p, q
• Sj is the jth element of the set S under some arbitrary ordering
• Dom(q) denotes the domain of function q

4 Overview and Mathematical Intuition

In this section, we give the overview and the mathematical intuition of our protocols.

4.1 Polynomial Representation of Sets

In our problem setting, there are n players, each with a private input set Si, where |Si| = k,
1 ≤ i ≤ n. The jth element of set i is denoted (Si)j . We denote the domain of the elements
in these sets as P , ∀i∈[n] Si ⊆ P .

Let R denote the plaintext domain of the homomorphic cryptosystem we use in our
protocols. R, however, must be larger than P , so that a random element drawn from
the plaintext domain has only negligible probability of representing an element of P . For
example, we could require that only elements of the form b = a || h(a) could represent
an element in P . If |h(·)| = lg

(
1
ε

)
, then there is only ε probability that a random element

from the plaintext domain is in P .
We represent a set of elements as a polynomial in R[x] where the elements of the set are

the roots of the polynomial. For example, given a set of k elements Si = {(Si)j}1≤j≤k, we
construct its polynomial representation as fi(x) =

∏
1≤j≤k(x− (Si)j).
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4.2 Mathematical Intuition

By representing sets of elements as polynomials, we can use mathematical properties of
polynomials to help compute the different variations of the set-intersection and threshold
set-intersection problems:

Intersection using polynomial addition. When two polynomials f and g are added,
the shared roots of f and g will be preserved: (f(a) = 0) ∧ (g(a) = 0) → (f + g)(a) = 0.
This approximately represents an intersection operator.

Union using polynomial multiplication. Multiplying two such polynomials approxi-
mately represents a union operator that preserves duplicates: (f(a) = 0) ∧ (g(b) = 0) →
((f ∗ g)(a) = 0)∧ ((f ∗ g)(b) = 0), and, as f(a) = 0⇔ (x−a) | f , (f(a) = 0)∧ (g(a) = 0)→
(x− a)2 | (f ∗ g).

Removing duplicate elements using polynomial derivative. To reduce the number
of duplicate elements represented in a polynomial p by d, one may take the dth derivative of
the polynomial p, denoted as p(d), as formalized by this theorem: (proof given in Section A)

Theorem 1. Let p =
∏nk

i=1(x− ai) where ∀i∈[nk] ai ∈ R for a ring R, t ≥ 1.

1. If (x− a)t | p, then (x− a) | p(t−1).
2. If (x− a) | p and (x− a)t 6 | p, then (x− a) 6 | p(t−1).

Masking non-common factors of polynomials. To hide factors which are not shared
between two polynomials f and g, we select two random polynomials r and s in R[x] with
sufficiently high degree, and calculate f ∗ r + g ∗ s. The resulting polynomial completely
hides all information except for those factors shared between f and g, as formalized by this
theorem: (proof given in Section A)

Theorem 2. Let f, g be polynomials in R[x] where R is a ring, deg(f) = deg(g) = α,
and gcd(f, g) = 1. Let r =

∑β
i=0 r [i]xi and s =

∑β
i=0 s [i]xi, where ∀0≤i≤β r [i] ← R,

∀0≤i≤β s [i]← R (independently) and β ≥ α.
Let u = f ∗ r + g ∗ s =

∑α+β
i=0 u [i]xi. Then ∀0≤i≤α+β u [i] are distributed uniformly and

independently over R.

4.3 Overview of Protocols

In all of our protocols, there are n players, and each player has an input set of k elements
Si = {(Si)j}1≤j≤k. We call the polynomial representation of each player’s input set Si its
input polynomial, fi(x) =

∏
1≤j≤k(x − (Si)j). We give a brief overview of our protocols

below.
In the set-intersection protocol (Fig. 1), the players wish to add all their input polyno-

mials fi =
∏k

j=1(x − (Si)j) (1 ≤ i ≤ n) to obtain a polynomial that preserves the roots
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representing elements that appear in each private input set Si, to obtain a polynomial rep-
resenting the intersection set. By multiplying the random polynomials ri+j,j by the polyno-

mials fi before adding the products fi ∗ ri+j,j together to obtain p =
∑n

i=1 fi

(∑c
j=0 ri+j,j

)
,

they also hide all information about the input sets except for the intersection set.
The cardinality set-intersection protocol (Fig. 7) calculates p in the same way as the set-

intersection protocol, but instead of decrypting the polynomial, all players evaluate each
element in their input sets, to determine the number of roots of the polynomial.

In the over-threshold set-intersection protocol with polynomial factoring (Fig. 2), the
players multiply their input polynomials fi =

∏k
j=1(x− (Si)j) to obtain p =

∏n
i=1 fi, which

represents a union of all private input elements, with duplicates preserved. Taking the
derivative of a polynomial reduces the number of duplicates of each repeated root by one,
so p(t−1) only retains representations of those input elements which appeared at least t
times in p. By multiplying the random polynomials ri and si by p(t−1) ∗ F (where F is a
padding polynomial) and p to obtain p(t−1) ∗ F ∗ (

∑n
i=1 ri) + p (

∑n
i=1 si), all information

about the input sets except for those polynomial factors that appear in both p(t−1) ∗F and
p are hidden. The polynomial factors that so appear represent the threshold set, and how
many times each element in the threshold set is repeated.

The over-threshold protocol without polynomial factoring (Fig. 3) and threshold set-
intersection protocols (Figs. 4, 5, 6) calculate a polynomial representing the threshold set
in the same way as the over-threshold protocol with polynomial factoring, but instead of
decrypting the polynomial, all players evaluate the elements in their input sets, to determine
which are roots of the polynomial.

5 Protocols for the Honest-But-Curious Case

We present, in this section, protocols for the problems of: set-intersection, over-threshold
set-intersection, threshold set-intersection, and cardinality set-intersection. Each of these
protocols is secure against any dishonest coalition of fewer than n honest-but-curious players,
where there are n total players. A security analysis is given in section 5.6.

5.1 Set-intersection

The first protocol we present is for the set-intersection problem, given in Fig. 1. In step 1,
each player i (1 ≤ i ≤ n) first calculates his input polynomial fi and sends the encryption
of its polynomial fi to c other players (where c is the maximum dishonest coalition size),
making c + 1 players in all who have this encrypted polynomial. Each of these players i + j
(0 ≤ j ≤ c) chooses a random polynomial ri+j,i, and computes the encryption of fi ∗ ri+j,j .
Note that, as no coalition of players can be of size c + 1, not all of the random polynomials
multiplied by any polynomial fi can be known to the dishonest coalition. Thus, the effective
random polynomial that is obtained by adding these polynomials (

∑c
j=0 ri+j,j) is uniformly

distributed and unknown to all players. Each player i (1 ≤ i ≤ n) adds their polynomials
fi−j ∗ ri,i−j (0 ≤ j ≤ c) to produce φi, and these polynomials are then added in steps 2-3

to produce p =
∑n

i=1 φi =
∑n

i=1 fi ∗
(∑c

j=0 ri+j,j

)
.

If a is a root of some polynomial fi, it is also a root of fi ∗ r for a random polynomial

10



Protocol: Set-Intersection-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key to a homomorpic cryptosystem (Sec. 3.2.2).

1. Each player i = 1, . . . , n

(a) calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
(b) sends the encryption of the polynomial fi to players i + 1, . . . , i + c
(c) chooses c + 1 polynomials ri,0, . . . , ri,c ← Rk[x]
(d) calculates the encryption of the polynomial φi = fi−c∗ri,i−c+· · ·+fi−1∗ri,i−1+

fi ∗ ri,0, utilizing the algorithms given in Sec. 3.2.1.

2. Player 1 sends the encryption of the polynomial λ1 = φ1, to player 2
3. Each player i = 2, . . . , n in turn

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 + φi by utilizing the

algorithms given in Sec. 3.2.1.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∑n

i=1 fi ∗(∑c
j=0 ri+j,j

)
to all other players.

5. All players perform a group decryption to obtain the polynomial p.
6. Each player i = 1, . . . , n may determine which of his items j are in the intersection of

all private inputs as follows: if p((Si)j) = 0, then it is in the intersection; otherwise
it is not.

Figure 1: Set-intersection protocol for the honest-but-curious case.

r, and thus all members of the private input sets are preserved as roots when the random
polynomials are multiplied in. If a is a root of the polynomials f and g, then it is also
a root of the polynomial f + g. Thus, when all the polynomials fi ∗

(∑c
j=0 ri+j,j

)
are

added together, if an element was in every private input set, its representation will be a
root of the final polynomial. If it was not, the use of the random polynomials ensures
that it is both hidden and does not appear as a root with overwhelming probability (see
Theorem 2). The players jointly decrypt this result polynomial and each player tests to see
if the representation of each member of their private input set is a root of the polynomial.
Thus every player learns the set-intersection of all players’ private inputs.

Note that the protocol is identical when the private input sets Si are either sets or
multisets (as described in Section 2.1).

5.2 Over-Threshold Set-Intersection (With Polynomial Factoring)

A protocol for the over-threshold set-intersection is given in Fig. 2. To recover the answer
set, the players must be able to factor polynomials (see Sec. 3.2.2). In this protocol the
players calculate the product of the polynomials fi created from their private inputs, cre-
ating a polynomial p =

∏n
i=1 fi. Duplicate elements in players’ input sets are represented

by repeated factors; if a appears b times in the private inputs, then (x − a)b | p. Players

11



Protocol: OverThreshold-Factor-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk is
the corresponding public key for a homomorphic cryptosystem (Sec. 3.2.2). The threshold
number of repetitions at which an element appears in the output is t. F is a fixed polynomial
of degree t− 1 which has no roots representing elements of P .

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 3.2.1.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∏n

i=1 fi to players
2, . . . , c + 1

5. Each player i = 1, . . . , c + 1

(a) calculate the encryption of the t−1th derivative of p, denoted p(t−1), by repeating
the algorithm given in Sec. 3.2.1.

(b) choose random polynomials ri, si ← Rnk[x]
(c) calculate the encryption of the polynomial p ∗ ri + F ∗ p(t−1) ∗ si and send it to

all other players

6. All players perform a group decryption to obtain the polynomial Φ = F ∗ p(t−1) ∗(∑c+1
i=1 ri

)
+ p ∗

(∑c+1
i=1 si

)
.

7. Each player factors Φ. Each factor of the form x− a, where a represents an element
of P , indicates that a is in the set intersection. If the factor x− a appears b times, a
appeared t + b− 1 times in the players’ private inputs.

Figure 2: Over-threshold set-intersection protocol for the honest-but-curious case (with
polynomial factoring)

1, . . . , c+1 then calculate the t− 1th derivative of that polynomial, reducing the number of
repetitions of each linear factor in p by t− 1 (see Theorem 1). Each player i (1 ≤ i ≤ c+1)
chooses random polynomials ri and si, and calculates p ∗ ri + F ∗ p(t−1) ∗ si, where F is a
polynomial used to pad p(t−1) to the same degree as p. All players then add these polyno-
mials to obtain Φ = p∗

(∑c+1
i=1 ri

)
+F ∗p(t−1) ∗

(∑c+1
i=1 si

)
. Each linear factor (x−a) which

appears v ≥ t times in p appears v − t + 1 in p(t−1), and for each element appearing in the
threshold set which appeared v ≥ t times in the private inputs, (x− a)v−t+1 | Φ. When Φ
is factored, these linear factors can be recovered, so that every player learns the solution
to the over-threshold problem. The random polynomials

∑c+1
i=1 ri and

∑c+1
i=1 si ensure all

information except for the answer set is hidden.
To see that, with overwhelming probability, no extra linear factors representing private

set elements are included in Φ, we may note that unless a factor appears in both p and
p(t−1), with overwhelming probability it will not appear in Φ (see Theorem 2). F is chosen
so as to exclude possible factors of p, and the only factors that appear in both p and p(t−1)
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are those that represent the threshold set, with v − t + 1 repetitions in p(t−1) if there were
v ≥ t repetitions in p (see Theorem 1).

This protocol requires polynomial factoring, but has two advantages over the version
which does not: it does not need mix-nets and utilizes fewer rounds.

5.3 Over-Threshold Set-Intersection (Without Polynomial Factoring)

Another protocol for the over-threshold set-intersection problem is presented in Fig. 3.
This protocol does not require polynomial factoring. In this protocol, each player creates
an input polynomial fi with roots representing the elements of their private input. The
players then calculate the encrypted polynomial Φ = p ∗

(∑c+1
i=1 ri

)
+F ∗ p(t−1) ∗

(∑c+1
i=1 si

)
where p =

∏n
i=1 fi and ri and si are chosen randomly. As described in Section 5.2, the

roots of this polynomial are either: (1) exactly those represent elements in the threshold
set, or (2) are random, and thus with overwhelming probability are irrelevent, as they do
not represent elements from the valid set P .

Each player then computes the encrypted evaluation of Φ at the points that represent
their private input. With overwhelming probability, each such encrypted evaluation is an
encryption of 0 if that element is in the intersection set, and non-zero otherwise. The
encrypted element (Vi)j calculated from this encrypted evaluation is thus either: (1) an
encryption of the private input element (Si)j (if (Si)j is in the intersection set) or (2) an
encryption of a random element (otherwise). (This technique is related to the conditional
disclosures of [1].) These ciphertexts are shuffled and then decrypted, revealing each ele-
ment a that appears in the intersection set, with as many repetitions c ≥ t as appeared
in the initial private inputs. The other decrypted elements are random, and thus with
overwhelming probability do not represent members of the valid set P . This both hides
unpopular elements from the players’ private inputs and ensures that incorrect elements are
not inserted into the answer set.

5.4 Threshold Set-Intersection

The protocols for the threshold set-intersection problem, given in Figs. 4, 5, and 6, are
identical to the protocol for over-threshold set-intersection given in Fig. 3 from step 1-5.
We explain the differences between the protocols for each variant: threshold contribution,
semi-perfect, and perfect. Each player constructs encryptions of the elements Φ((Si)j) from
his private input set in step 6, and continues as described below.

Threshold Contribution Threshold Set-Intersection This protocol is given in Fig. 5.
The players cooperatively decrypt the encrypted elements Φ((Si)j) ∗ (

∑n
`=1 b`,i,j). This

decryption must take place in such a way that only player i learns the element Φ((Si)j) ∗
(
∑n

`=1 b`,i,j). Typically, parties produce decryption shares and reconstruct the element from
them; player i simply retains his decryption share, so that only he learns the decryption.
Thus each player learns which of his elements appear in the threshold set, since if (Si)j

appears in the threshold set, Φ((Si)j)∗ (
∑n

`=1 b`,i,j) = 0. No player learns more information
because if an element (Si)j is not in the threshold set, Φ((Si)j) ∗ (

∑n
`=1 b`,i,j) is uniformly

distributed.
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Protocol: OverThreshold-NoFactor-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key to a homomorpic cryptosystem (Sec. 3.2.2). The threshold
number of repetitions at which an element appears in the output is t ≥ 2. F is a fixed
polynomial of degree t− 1 which has no roots representing elements of P .

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 3.2.1.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∏n

i=1 fi to players
2, . . . , c + 1

5. Each player i = 1, . . . , c + 1

(a) calculate the encryption of the t−1th derivative of p, denoted p(t−1), by repeating
the algorithm given in Sec. 3.2.1.

(b) choose random polynomials ri, si ← Rnk[x]
(c) calculate the encryption of the polynomial p ∗ ri + F ∗ p(t−1) ∗ si and send it to

all other players

6. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial Φ = p ∗
(∑c+1

i=1 ri

)
+ F ∗ p(t−1) ∗(∑c+1

i=1 si

)
at each input (Si)j , obtaining encrypted elements Epk(cij), (where

cij = Φ((Si)j)) using the algorithm given in Sec. 3.2.1.
(b) for each j = 1, . . . , k chooses a random number rij ← Dom(Epk) and calculates

an encrypted element (Vi)j = (rij ×h Epk(cij)) +h Epk((Si)j)

7. All players perform shuffling on their private input sets Vi either through use of a
mix-net or by using the shuffling protocol given in Fig. 11, obtaining a joint set V .

8. All players

(a) decrypt each element of the shuffled set V
(b) for each element, if the element a represents an element of the valid set P , then

a is in the threshold set. If a appears b times, then a appeared b times in the
players’ private inputs.

Figure 3: Over-threshold set-intersection protocol for the honest-but-curious case (Does not
require polynomial factoring.)

Semi-Perfect Threshold Set-Intersection This protocol is given in Fig. 4. The en-
crypted element (Ui)j calculated from the encrypted evaluation of Φ((Si)j) is either: (1)
an encryption of the private input element (Si)j (if (Si)j is in the intersection set) or (2)
an encryption of a random element (otherwise). However, the player also constructs a cor-
responding encrypted tag for each (Ui)j , Tij . We require that the cryptosystem used to
construct these tags be key-private, so that the origin of ciphertext pairs T,U cannot be
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Protocol: Threshold-SemiPerfect-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key to a homomorpic cryptosystem (Sec. 3.2.2). Each player has
their own secret key to a key-private cryptosystem, where encryption and decryption are
denoted (Enci, Deci). The threshold number of repetitions at which an element appears in
the output is t ≥ 2. F is a fixed polynomial of degree t− 1 which has no roots representing
elements of P .

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 3.2.1.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∏n

i=1 fi to players
2, . . . , c + 1

5. Each player i = 1, . . . , c + 1

(a) calculate the encryption of the t−1th derivative of p, denoted p(t−1), by repeating
the algorithm given in Sec. 3.2.1.

(b) choose random polynomials ri, si ← Rnk[x]
(c) calculate the encryption of the polynomial p ∗ ri + F ∗ p(t−1) ∗ si and send it to

all other players

6. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial Φ = p ∗
(∑c+1

i=1 ri

)
+ F ∗ p(t−1) ∗(∑c+1

i=1 si

)
at each input (Si)j , obtaining encrypted elements Epk(cij) where

cij = Φ((Si)j), using the algorithm given in Sec. 3.2.1.
(b) for each j = 1, . . . , k calculates an encrypted tag Tij = Enci(h((Si)j) || (Si)j)
(c) for each j = 1, . . . , k chooses a random number rij ← Dom(Epk) and calculates

an encrypted element Uij = (rij ×h Epk(cij)) +h Epk((Si)j)
(d) constructs the set Vi = {(Tij || Uij) | 1 ≤ j ≤ k}

7. All players perform shuffling on their private input sets Vi either through use of a
mix-net or by using the protocol given in Fig. 11.

8. For each shuffled element T || U in sorted order, each player i = 1, . . . , n

(a) if Di(T ) = h(a) || a for some a

i. if a has previously been revealed to be in the threshold set, then calculate
an incorrect decryption share of U , and send it to all other players

(b) else calculate a decryption share of U , and send it to all other players
(c) reconstruct the decryption of U . If the element a represents an element of P ,

then a is in the threshold set

Figure 4: Threshold set-intersection protocol for the honest-but-curious case (semi-perfect
variant). (Does not require polynomial factoring.)
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Protocol: Threshold-Contribution-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key to a homomorpic cryptosystem (Sec. 3.2.2). Each player has
their own key to a key-private cryptosystem, where encryption and decryption are denoted
(Enci, Deci). The threshold number of repetitions at which an element appears in the
output is t ≥ 2. F is a fixed polynomial of degree t − 1 which has no roots representing
elements of P .

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 3.2.1.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∏n

i=1 fi to players
2, . . . , c + 1

5. Each player i = 1, . . . , c + 1

(a) calculate the encryption of the t−1th derivative of p, denoted p(t−1), by repeating
the algorithm given in Sec. 3.2.1.

(b) choose random polynomials ri, si ← Rnk[x]
(c) calculate the encryption of the polynomial p ∗ ri + F ∗ p(t−1) ∗ si and send it to

all other players

6. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial Φ = p ∗
(∑c+1

i=1 ri

)
+ F ∗ p(t−1) ∗(∑c+1

i=1 si

)
at each input (Si)j , obtaining encrypted elements Epk(cij) where

cij = Φ((Si)j), using the algorithm given in Sec. 3.2.1.
(b) sends the ciphertexts cij (1 ≤ j ≤ k) to all other players
(c) chooses a random element bi,j,` (1 ≤ j ≤ n, 1 ≤ ` ≤ k)
(d) for each ciphertext cj`, calculate bi,j,` ×h cj` (1 ≤ j ≤ n, 1 ≤ ` ≤ k)

7. The players i (1 ≤ i ≤ n) calculate Ujm = (
∑n

`=1 b`,j,m) ×h cjm (1 ≤ j ≤ n,
1 ≤ m ≤ k)

8. All players decrypt the ciphertexts Uij , so that only player i learns the decryption a.
If a = 0, then (Si)j is in the threshold set.

Figure 5: Threshold set-intersection protocol for the honest-but-curious case (threshold
contribution variant). (Does not require polynomial factoring.)

ascertained by the key used to construct the tags.
The players then correctly obtain a decryption of each element in the threshold set exactly

once. Any other time a ciphertext U for an element in the threshold set is decrypted, a
player sabotages it. In group decryption schemes, players generally produce shares of the
decrypted element; if one player sends a uniformly generated share instead of a valid one, the
decrypted element is uniform. If the decrypted element is uniform, it conveys no information
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to the players. To ensure an encryption of an element in the threshold set is not decrypted
once the element is known to be in the threshold set, a player sabotages the decryption
under the following conditions: (1) he can decrypt the tag to h(a) || a for some a and (2)
a has already been determined to be a member of the threshold set. All other ciphertexts
should be correctly decrypted; either they are encryptions of elements in the threshold set
which have not yet been decrypted, or they are encryptions of random elements.

Note that the protocol is the only protocol proposed in this paper with a non-constant
number of rounds. Because of the need to sabotage decryptions based on the results of past
decryptions, there are O(nk) rounds in this protocol.

Perfect Threshold Set-Intersection This protocol is given in Fig. 6. Each player
constructs the encrypted elements (Ui)j from the encrypted evaluation of Φ((Si)j) as written
in step 6 of Figure 4. The players then use a mix-net to shuffle them. If an element appears
in the threshold set, then at least one encryption of it appears in the shuffled ciphertexts.
The players ensure in step 8 that all duplicates (ciphertexts of the same element) except the
first have a random element added to them. This disguises the number of players who have
each element of the threshold set in their private input. Let the shuffled ciphertexts U have
an arbitrary ordering U ′

1, . . . , U
′
nk. IsEq(C,C ′) = 1 if the ciphertexts C encode the same

plaintext, and 0 otherwise. (This calculation can be achieved with the techniques in [20].)
The players i ∈ [n] then choose random elements qi,j ← R (1 ≤ j ≤ nk) and decrypt the

ciphertexts Wj = U ′
j +h Epk

(
(
∑n

i=1 qj) (IsEq(U ′
j , U

′
j−1) + · · ·+ IsEq(U ′

j , U
′
1))

)
. Thus, if U ′

j

is a duplicate (encryption of an element which also appeared early in the ordering), it has
a uniformly distributed element added to it, and conveys no information. Each element of
the threshold set is decrypted exactly once, and all players thus learn the threshold set.

5.5 Cardinality Set-Intersection

The cardinality set-intersection protocol, given in Fig. 7, is essentially a combination of
the set-intersection protocol in Fig. 1 and the over-threshold protocol in Fig. 3. Jointly,
the players calculate the polynomial p whose roots represent the set-intersection of the
private inputs, as described in Section 5.1. Instead of decrypting the polynomial, like in
the set-intersection protocol, the players evaluate the elements of their private input sets
in this encrypted polynomial, like in the over-threshold protocol described in Section 5.3.
After shuffling these encrypted results, the players decrypt them. If an element a is in
the intersection set then both p(a) = 0 and n players have this element in their private
input. If an element a′ is not in the intersection set, then with overwhelming probability,
p(a′) 6= 0. Thus for each element in the intersection set there will be n elements which
decrypt to 0, and elements in the intersection set will decrypt to uniformly distributed,
non-zero elements. The number of elements in the intersection set can thus be determined
by dividing the total number of 0 elements by the number of players, n.

5.6 Security and Correctness

A protocol is correct if each player learns the appropriate answer set at its termination.
This is proved for our set-intersection, over-threshold set-intersection (with and without
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Protocol: Threshold-Perfect-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key to a homomorpic cryptosystem (Sec. 3.2.2). Each player has
their own key to a key-private cryptosystem, where encryption and decryption are denoted
(Enci, Deci). The threshold number of repetitions at which an element appears in the
output is t ≥ 2. F is a fixed polynomial of degree t − 1 which has no roots representing
elements of P . IsEq(C,C ′) = 1 if the ciphertexts C,C ′ encode the same plaintext, and 0
otherwise.

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 3.2.1.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∏n

i=1 fi to players
2, . . . , c + 1

5. Each player i = 1, . . . , c + 1

(a) calculate the encryption of the t−1th derivative of p, denoted p(t−1), by repeating
the algorithm given in Sec. 3.2.1.

(b) choose random polynomials ri, si ← Rnk[x]
(c) calculate the encryption of the polynomial p ∗ ri + F ∗ p(t−1) ∗ si and send it to

all other players

6. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial Φ = p ∗
(∑c+1

i=1 ri

)
+ F ∗ p(t−1) ∗(∑c+1

i=1 si

)
at each input (Si)j , obtaining encrypted elements Epk(cij) where

cij = Φ((Si)j), using the algorithm given in Sec. 3.2.1, and sends them to all
players

(b) for each i′ = 1, . . . , n, j = 1, . . . , k chooses a random number ri′j ← Dom(Epk)
and calculates an encrypted element Uij = (ri′j ×h Epk(ci′j)), and sends it to
player i′

(c) calculates the elements for j = 1, . . . , k
Uij = (r1j ×h Epk(c1j)) +h . . . +h (rnj ×h Epk(cnj)) +h Epk((Si)j)

(d) constructs the set Vi = {Uij | 1 ≤ j ≤ k}
7. All players perform shuffling on their private input sets Vi either through use of a

mix-net or by using the protocol given in Fig. 11.
8. For each shuffled ciphertext U ′

j with arbitrary ordering index j ∈ [nk], the players
i = 1, . . . , n

(a) each player i chooses a random number qi,j ← R
(b) calculate Wj = U ′

j +h Epk

(
(
∑n

i=1 qi,j) (IsEq(U ′
j , U

′
j−1) + · · ·+ IsEq(U ′

j , U
′
1))

)
9. All players decrypt the ciphertexts Wj . For each decrypted Wj , player i obtains an

element a. If a represents an element of P , then a is in the threshold set.

Figure 6: Threshold set-intersection protocol for the honest-but-curious case (perfect vari-
ant). (Does not require polynomial factoring.)
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Protocol: Cardinality-HBC
There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with a private
input set Si, such that |Si| = k. The players share the secret key sk, to which pk is the
corresponding public key to a homomorpic cryptosystem(Sec. 3.2.2).

1. Each player i = 1, . . . , n

(a) calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
(b) sends the encryption of the polynomial fi to players i + 1, . . . , i + c
(c) chooses c + 1 random polynomials ri,0, . . . , ri,c ← Rk[x]
(d) calculates the encryption of the polynomial φi = fi−c∗ri,i−c+· · ·+fi−1∗ri,i−1+

fi ∗ ri,0, utilizing the algorithms given in Sec. 3.2.1.

2. Player 1 sends the encrypted polynomial λ1 = φ1, to player 2
3. Each player i = 2, . . . , n in turn

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 + φi by utilizing the

algorithms given in Sec. 3.2.1.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∑n

i=1 fi ∗(∑c
j=0 ri+j,j

)
to all other players.

5. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial p at each input (Si)j , obtaining
encrypted elements Epk(cij) where cij = p((Si)j), using the algorithm given in
Sec. 3.2.1.

(b) for each j = 1, . . . , k chooses a random number rij ← Dom(Epk) and calculates
an encrypted element (Vi)j = rij ×h Epk(cij)

6. All players perform shuffling on their private input sets Vi by using mix-net, obtaining
a joint set V , in which all ciphertexts have been re-randomized.

7. All players

(a) decrypt each element of the shuffled set V
(b) if na of the decrypted elements are 0, then the size of the set intersection is a

Figure 7: Cardinality set-intersection protocol for the honest-but-curious case. (Does not
require polynomial factoring.)

polynomial factoring), and threshold set-intersection in Theorems 4, 9, 11, and 7, which
are given in the appendix. Proof for cardinality set-intersection follows from the proofs for
set-intersection and over-threshold set-intersection (without polynomial factoring).

Each of these protocols is secure in the honest-but-curious model; no player gains infor-
mation that it would not gain when using its input in the ideal model. A formal statement
of our security property is as follows:

In the protocol, any honest-but-curious player learns no more information than would be
gained by using the same private input in an ideal setting.

Application and proof of this theorem to the set-intersection, over-threshold set-intersection
(with and without polynomial factoring), and threshold set-intersection protocols is given in
Theorems 5, 10, 12, and 8. Proof for cardinality set-intersection follows from the proofs for

19



set-intersection and over-threshold set-intersection (without polynomial factoring). Proofs
are given in the appendix.

6 The Malicious Case

Protocols secure against malicious players largely follow those secure against honest-but-
curious players, given in Section 5. We have added zero-knowledge proofs, verified by all
players, to ensure the correctness of all computation. In this section, we first introduce
notations for the zero-knowledge proofs we use to ensure security of our protocols for the
malicious case, then give the protocols secure against malicious parties. An analysis of
security is given in section 6.5.

6.1 Zero-Knowledge Proofs

We utilize several zero-knowledge proofs in our protocols for the malicious case. We in-
troduce the notation for these zero-knowledge proofs below; for additively homomorphic
cryptosystems such as Paillier, we can efficiently construct these zero-knowledge proof pro-
tocols using standard proof constructions [6, 4].

• POPK{Epk(x)} is a zero-knowledge proof that given ciphertext Epk(x), the player
knows the corresponding plaintext x [7].

• ZKPK{f | p′ = f ∗h Epk (p)} is shorthand notation for a zero-knowledge proof of
knowledge that the prover knows a polynomial f such that encrypted polynomial
p′ = f ∗h Epk(p), given the encrypted polynomials p′ and Epk(p).

• ZKPK{f | (p′ = f ∗h Epk(p)) ∧ (y = Epk (f))} is the proof ZKPK{f | p′ = f ∗h Epk (p)}
with the additional constraint that y = Epk(f) (y is the encryption of f), given the
encrypted polynomial p′, y, and Epk(p).

6.2 Set-Intersection

Our protocol for malicious parties performing set-intersection, given in Fig. 8, proceeds
largely as the protocol secure against honest-but-curious parties, which was given in Fig. 1.
The commitments to the data items Λ(ci,j) are purely for the purposes of a simulation proof.
We add zero-knowledge proofs to prevent three forms of misbehavior: choosing ciphertexts
for the encrypted coefficients of fi without knowledge of their plaintext, not performing the
polynomial multiplication of fj ∗ri,j correctly, and not performing decryption correctly. We
also constrain the leading coefficient of fi to be 1 for all players, to prevent any player from
setting their polynomial to 0; if fi = 0, every element is a root, and thus it can represent an
unlimited number of elements. We can thus detect or prevent misbehavior from malicious
players, forcing this protocol to operate like the honest-but-curious protocol in Fig. 1. The
protocol can gain efficiency by taking advantage of the maximum coalition size c.
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Protocol: Intersection-Mal
Input: There are n ≥ 2 players, each with a private input set Si, such that |Si| = k.
The players share the secret key sk, to which pk is the corresponding public key to a
homomorpic cryptosystem(Sec. 3.2.2). The commitment scheme used in this protocol is a
equivocal commitment scheme.

All players verify the correctness of all proofs sent to them, and stop participating in the
protocol if any are not correct.

Each player i = 1, . . . , n:

1. (a) calculates the polynomial fi such that the k roots of the polynomial are the
elements of Si, as fi = (x− (Si)1) . . . (x− (Si)k)

(b) sends δi, the encryption of the polynomial fi to all other players along with
proofs of plaintext knowledge for all coefficients except the leading coefficient
(POPK{(δi)j}, 0 ≤ j < k).

(c) for 1 ≤ j ≤ n

i. chooses a random polynomial ri,j ← Rk[x]
ii. sends a commitment to Λ(ri,j) to all players, where Λ(ri,j) = Epk(ri,j)

2. for 1 ≤ j ≤ n

(a) opens the commitment to Λ(ri,j)
(b) verifies proofs of plaintext knowledge for the encrypted coefficients of fj

(c) sets the leading encrypted coefficient (for xk) to a known encryption of 1
(d) calculates µ, the encryption of the polynomial pi,j = fj ∗ ri,j with proofs of

correct multiplication ZKPK{ri,j | (µ = ri,j ∗h δj) ∧ (Λ(ri,j) = Epk (ri,j))} and
sends it to all other players

3. All players

(a) calculate the encryption of the polynomial p =
∑n

i=1

∑n
j=1 pi,j =

∑n
i=1 fi ∗(rj,i)

as in Sec. 3.2.1, and verifies all attached proofs
(b) perform a group decryption to obtain the polynomial p, and distribute proofs

of correct decryption

4. For each element a ∈ Si, if p(a) = 0, then a is in the intersection set; otherwise, it is
not.

Figure 8: Set-intersection protocol for the malicious case.

6.3 Cardinality Set-Intersection

We give a protocol, secure against malicious parties, to perform cardinality set-intersection
in Fig. 9. It proceeds largely as the protocol secure against honest-but-curious parties, which
was given in Fig. 7. The commitments to the data items Λ(ri,j) are purely for the purposes
of a simulation proof. We add zero-knowledge proofs of knowledge to prevent five forms of
misbehavior: choosing fi without knowledge of its roots, choosing fi such that it is not the
product of linear factors, not performing the polynomial multiplication of fj ∗ ri,j correctly,
not calculating encrypted elements (Vi)j correctly (either not from the data items (Si)j

or not evaluating the encrypted polynomial p), and not performing decryption correctly.
We can thus detect or prevent misbehavior from malicious players, forcing this protocol to
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Protocol: Cardinality-Mal
Input: There are n ≥ 2 players, each with a private input set Si, such that |Si| = k. The players
share the secret key sk, to which pk is the corresponding public key to a homomorpic cryptosystem
(Sec. 3.2.2). The commitment scheme used in this protocol is a equivocal commitment scheme.

All players verify the correctness of all proofs sent to them, and stop participating in the protocol
if any are not correct.

Each player i = 1, . . . , n:

1. (a) calculates the polynomial fi such that the k roots of the polynomial are the elements of
Si, as fi = (x− (Si)1) . . . (x− (Si)k)

(b) sends:
i. encrypted elements yi,1 = Epk((Si)1), . . . , yi,k = Epk((Si)k) to all other players,

along with proofs of plaintext knowledge (POPK{Epk(yi,j)}, 1 ≤ j < k)
ii. sends δi, the encryption of the polynomial fi to all

other players, along with a proof of correct construction

ZKPK

(Si)1, . . . , (Si)k

∣∣∣∣∣∣
τi = ((x− (Si)1) ∗h . . . ∗h (x− (Si)k−1) ∗h α)

∧ yi,1 = Epk((Si)1) ∧ · · · ∧ yi,k = Epk((Si)k)
∧ α = Epk(x− (Si)k)


(c) for 1 ≤ j ≤ n

i. chooses a random polynomial ri,j ← Rk[x]
ii. sends a commitment to Λ(ri,j) to all players, where Λ(ri,j) = Epk(ri,j)

2. for 1 ≤ j ≤ n

(a) opens the commitment to Λ(ri,j)
(b) verifies proofs of plaintext knowledge for the encrypted coefficients of fj

(c) sets the leading encrypted coefficient (for xk) to a known encryption of 1
(d) calculates τi,j , the encryption of the polynomial pi,j = fj ∗ ri,j , with proofs of correct

multiplication ZKPK{ri,j | (τi,j = ri,j ∗h δj) ∧ (Λ(ri,j) = Epk (ri,j))} and sends it to all
other players

3. Each player i = 1, . . . , n:

(a) calculates µ, the encryption of the polynomial p =
∑n

i=1

∑n
j=1 pi,j , as in Sec. 3.2.1, and

verifies all attached proofs
(b) evaluates the encryption of the polynomial p at each input (Si)j , obtaining encrypted

elements Epk(cij) where cij = p((Si)j), using the algorithm given in Sec. 3.2.1.
(c) for each j ∈ [k] chooses a random element rij , calculates an encrypted el-

ement (Vi)j = rij ×h Epk(cij), with attached proof of correct construction
ZKPK{(rij , z) | ((Vi)j = rij ×h µ(z)) ∧ (yi,j = Epk(z))}, and sends the encrypted el-
ement (Vi)j and the proof of correct construction to all players

4. All players perform shuffling on the sets Vi through use of a mix-net, obtaining a joint set V ,
in which all ciphertexts have been re-randomized.

5. All players

(a) decrypt each element of the shuffled set V (and send proofs of correct decryption to all
other players)

(b) if na of the decrypted elements are 0, then the size of the set intersection is a

Figure 9: Cardinality set-intersection protocol for the malicious case.
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Protocol: OverThreshold-Factor-Mal
Input: There are n ≥ 2 players, c < n malicious and dishonestly colluding, each with a
private input set Si, such that |Si| = k. The players share the secret key sk, to which pk is
the corresponding public key to a homomorpic cryptosystem (Sec. 3.2.2). The commitment
scheme used in this protocol is a equivocal commitment scheme. The threshold number
of repetitions at which an element appears in the output is t. F is a fixed polynomial of
degree t− 1 which has no roots representing elements of P .

All players verify the correctness of all proofs sent to them, and refuse to participate in the
protocol if any are not correct.

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Players 1, . . . , c + 1

(a) choose random polynomials ri, si ← Rk[x]
(b) send a commitment to Λ(ri) and Λ(si) to all players where Λ(ri) = Epk(ri) and

Λ(si) = Epk(si)

3. Player 1 sends the encryption of λ1 = f1 to all players, along with proofs of plaintext
knowledge for all coefficients (POPK{Epk((f1)j)}, 0 ≤ j ≤ k).

4. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 3.2.1.
(c) sends the encryption τi of the polynomial λi to all players, along with a proof

of correct polynomial multiplication ZKPK{fi | τi = fi ∗h Epk (λi−1)}
5. Each player i = 1, . . . , c + 1

(a) open the commitment to Λ(ri) and Λ(si)
(b) calculate α the encryption of the t − 1th derivative of p = λn, denoted p(t−1),

by repeating the algorithm given in Sec. 3.2.1.
(c) calculate αi, the encryptions of the polynomial p∗ri, and βi, the encryption of the

polynomial p(t−1)∗si and send it to all other players, along with proofs of correct
polynomial multiplication, ZKPK{ri | (αi = ri ∗h τn) ∧ (Λ(ri) = Epk (ri))},
ZKPK{si | (βi = si ∗h α) ∧ (Λ(si) = Epk (si))}

6. All players perform a group decryption to obtain the polynomial Φ = F ∗ p(t−1) ∗(∑c+1
i=1 ri

)
+ p ∗

(∑c+1
i=1 si

)
, and distribute proofs of correct decryption

7. Each player factors Φ. Each factor of the form x− a, where a represents an element
of P , indicates that a is in the set intersection. If the factor x− a appears b times, a
appeared t + b− 1 times in the players’ private inputs.

Figure 10: Over-threshold set-intersection protocol for the malicious case (with polynomial
factoring).

operate like the honest-but-curious protocol in Fig. 7.
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6.4 Over-Threshold Set-Intersection (With Polynomial Factoring)

The over-threshold set-intersection protocol for malicious parties uses polynomial factoring,
and is given in Fig. 10. It is substantially similar to the protocol secure against honest-but-
curious parties given in Fig. 2. We have added zero-knowledge proofs to prevent misbehavior
in choosing the coefficients of polynomials fi, polynomial multiplication, or computing the
polynomial’s derivitive, and the computations performed by the parties are broadcast, so
the correctness of these proofs may be checked by all parties. Note that we do not prevent
players from setting their polynomials to 0, like in the set-intersection protocol (Fig. 8); if a
player sets fi = 0, then p = 0, and no information is revealed by the protocol. We can thus
detect and avert misbehavior by malicious players, enforcing that this protocol operates like
the protocol secure against honest-but-curious parties.

6.5 Security Analysis

Each of these protocols is secure in the simulation model; an intermediary G translates
between the real wold with malicious, colluding players Γ and the ideal world, where a
trusted third party computes the answer set. This proof shows that no information other
than that in the answer set can be gained by malicious players. A formal statement of our
security property is as follows:

In the protocol, for any coalition Γ of colluding players (at most n − 1 such colluding
parties), there is a player (or group of players) G operating in the ideal model, such that the
views of the players in the ideal model is computationally indistinguishable from the views
of the honest players and Γ in the real model.

Application and proof of this theorem for set-intersection, cardinality set-intersection,
and over-threshold set-intersection are given in Theorems 6, 14, and 13. These proofs are
given in the appendix.

7 Related Work

Freedman, Nissim, and Pinkas proposed protocols for the problems of set-intersection and
cardinality set-intersection (for n = 2 players) [12]. They do not, however, address certain
problems, such as set-intersection using multisets, n ≥ 3 player set-intersection in the
malicious case, n ≥ 3 player cardinality set-intersection, threshold set-intersection, and
over-threshold set-intersection, which are addressed in our paper. In addition to addressing
and introducing many new problems, our complexity results are comparable or more efficient
than those for the protocols proposed in their paper; a summary comparison of the results
of our paper to theirs is given in Table 1.

Private equality testing is the problem of set-intersection for the limited case k = 1. Gen-
eralized circuit evaluation gives a protocol for privately computing equality with O(lg |P |)
overhead, where P is the domain from which elements are chosen. Protocols for this problem
are proposed in [9, 25, 21], and are approximately as expensive. Fairness is added in [3].

Determining whether input sets (subsets of [|P |]) are disjoint (without privacy) has
communication overhead of Θ(|P |) [18, 28]. This implies that determining the cardinality of
the set-intersection requires at least Θ(|P |) communication as well, and the communication
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complexity of cardinality set-intersection is proportional to the size of the input set k.

8 Conclusions

We present in this paper protocols for four problems and several variations on these prob-
lems: set-intersection, cardinality set-intersection, over-threshold set-intersection, and thresh-
old set-intersection. These protocols are secure against honest-but-curious parties. We also
include protocols for set-intersection, cardinality set-intersection, and over-threshold set-
intersection (with polynomial factoring) secure against malicious players.

Comparison of communication complexity of our solutions with previous results is given
in Table 1. We reiterate advantages of our solutions: they are fair (when fairness in de-
cryption is enforced), efficient, include solutions secure against malicious parties, include
solutions to problems for which the best previous solutions utilize general multi-party com-
putation, and are secure against any dishonest coalition that does not include all players.
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A Proofs of Polynomial Theorems

Theorem 1: Let p =
∏nk

i=1(x− ai) where ∀i∈[nk] ai ∈ R for a ring R (or field F ), t ≥ 1.

1. If (x− a)t | p, then (x− a) | p(t−1).
2. If (x− a) | p and (x− a)t 6 | p, then (x− a) 6 | p(t−1).

Proof. This theorem follows from 9.16 in Shoup’s Computational Introduction to Number
Theory and Algebra. [29].

Theorem 2: Let f, g be polynomials in R[x] where R is a ring, deg(f) = deg(g) = α,
and gcd(f, g) = 1. Let r =

∑β
i=0 r [i]xi and s =

∑β
i=0 s [i]xi, where ∀0≤i≤β r [i] ← R,

∀0≤i≤β s [i]← R (independently) and β ≥ α.
Let u = f ∗ r + g ∗ s =

∑α+β
i=0 u [i]xi. Then ∀0≤i≤α+β u [i] are distributed uniformly and

independently over R.

Proof. Firstly note that the number of possible r, s pairs is |R|2β+2, and thus there are that
many potentially unique mappings from f , g to u. However, deg(u) = α + β, and so there
are only |F |α+β+1 result polynomials. We thus must show that the same number of r, s
pairs map to each result polynomial, and each result polynomial can be mapped to by at
least one choice of r, s. This implies that f ∗ r + g ∗ s is distributed uniformly over all
polynomials of deg(f ∗ r + g ∗ s).

Note that if two pairs of polynomials r, s, r′, s′ (r 6= r′, s 6= s′) that map f , g to the
same output polynomial u:

f ∗ r + g ∗ s = f ∗ r′ + g ∗ s′

f ∗ (r − r′) = g(s′ − s)
r − r′

g
=

s′ − s

f

Because gcd(f, g) = 1, g | (r − r′) and f | (s′ − s), this transformation is valid. Thus
r − r′ = g ∗ p and s′ − s = f ∗ p for some polynomial p such that deg(p) = β − α.

We wish to show that the number of pairs of such polynomials that map to the given
result polynomial t is equal. Pick any pair of polynomials r, s such that f ∗ r + g ∗ s = t.
Choose p such that deg(p) = β − α. This fixes r−r′

g and s′−s
f . As we have already chosen

r and s, this fixes r′ and s′. We may then simply count how many polynomials p exist, as
each choice counts exactly one pair r′, s′ such that f ∗ r′ + g ∗ s′ = u, and this counts every
such pair, as shown above (our original pair r, s is counted with the polynomial p = 0).
There are |R|β−α+1 such polynomials p, and thus an equal number of pairs of polynomials
that map to any given output pair for which there exists at least one mapping.

We now show that every result polynomial must have these same number of polynomial
pairs r, s that map to it. There are exactly |R|β−α+1 mappings to any polynomial that
has at least one mapping. There are exactly |R|β+α+1 possible result polynomials t, as
deg(u) = β + α. The mappings to each result polynomial multiplied by the number of
result polynomials must exactly equal the total number of mappings |R|2β+2.

|R|β−α+1 ∗ |R|β+α+1 = |R|2β+2
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Protocol: Shuffle-Factor
Input: There are n ≥ 2 players, each with a private input set Vi, such that |Vi| = k.
The players share the secret key SK, to which PK is the corresponding public key to a
homomorphic cryptosystem (Sec. 3.2.2).
Additional zero-knowledge proofs necessary to make the protocol secure against malicious
adversaries are specified in parentheses.

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Vi)1) . . . (x− (Vi)k))
2. Player 1 sends the encrypted polynomial λ1 = f1 to player 2 (with proofs of plaintext

knowledge of the encrypted coefficients POPK{Epk((fi)j)}, 0 ≤ j ≤ k)
3. Each player i = 2, . . . , n

(a) receives τi−1, the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 3.2.1
(c) sends τi, the encrypted coefficients of the polynomial λi to player

i + 1 mod n (with proofs of correct polynomial multiplication
ZKPK{fi | τi = fi ∗h Epk (λi−1)}, to all players)

4. All players perform decryption to obtain p = λn =
∏n

i=1 fi, and factor p into a linear
factors of the form (x − a). For each such factor, a is a member of the answer set.
(Each player proves the correctness of their decryption.)

Figure 11: Shuffling protocol for n ≥ 2 parties. (Requires polynomial factoring.)

Thus every possible result polynomial must have |R|β−α+1 mappings to it, and the mappings
are thus distributed uniformly over the entire space of polynomials of deg(f ∗ r + g ∗ s).

Corollary 3. This result holds for n ≥ 2 fixed polynomials fi of degree α, with corresponding
randomly distributed polynomials ri of uniform degree at least β ≥ α for all i:

∑n
i=1 fi ∗ ri

is uniformly distributed over the polynomials of degree α + β.

B Shuffling Protocols

Either this protocol or a standard mix-net may be used where tuple shuffling is required by
the protocols presented in this paper. The shuffle protocol with polynomial factoring, given
in Fig. 11, allows the players to learn all elements in the inputs of all players (and how many
times those elements appear) without any dishonest players being able to discern the origin
of any element that did not originate in their input. Each player creates a polynomial with
roots representing their private input elements. The players then calculate the encrypted
product of these polynomials. Note that if an element appears as a root of one player’s
polynomial, it appears as a root of the product polynomial; it also appears as many times
as a root in the product polynomial as it appeared in the players’ polynomials. Thus, when
the polynomial is decrypted, each player can factor it and obtain all linear factors, and thus
the private inputs. As polynomial multiplication is a commutative operation, no dishonest
players can distinguish the origin of any elements other than their own.
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C Proofs of Correctness and Security for Set-Intersection
Protocols

In this section, we give proofs of security and correctness for our protocols for set-intersection
in the honest-but-curious and malicious cases. For simplicity, we give proof sketches for these
theorems.

C.1 Honest-But-Curious Case

Theorem 4. In the set-intersection protocols of Fig. 1 and 8, every player learns the inter-
section of all players’ private inputs, I = S1 ∩ S2 ∩ · · · ∩ Sn, with overwhelming probability.

Proof. Each player learns the decrypted polynomial p =
∑n

i=1 fi∗
(∑c

j=0 ri+j,j

)
. If ∀i∈[n] fi(a) =

0, then p(a) = 0. As no elements that are not in every players’ private input can be in the
set-intersection of all private inputs, all elements in the set-intersection can be recovered
by each player. Each element in his private input that a root of p is a member of the
intersection set.

We now show that, with high probability, erroneous elements are not inserted into the
answer set. By Theorem 2, the decrypted polynomial is of the form

(∏
a∈I(x− a)

)
∗s, where

s is uniformly distributed over R2k−|I|[x]. This random polynomial s is of polynomial size,
and thus has a polynomial number of roots. Each of these roots is a representation of an
element from P with only negligible probability. Thus, the probability that an erroneous
element is included in the answer set is also negligible, and all players learn exactly the
intersection set.

Theorem 5. In the set-intersection protocol of Fig. 1, any honest-but-curious player learns
no more information than would be gained by using the same private input in an ideal
setting.

Proof. We assume that the homomorphic cryptosystem (E,D) used in the protocol is in
fact secure as we required. Thus, as the inputs of the other players are all encrypted until
the decryption is performed, nothing can be learned by any player before that point. Each
player j then learns only the summed polynomial p =

∑n
i=1 fi ∗

(∑c
j=0 ri+j,j

)
.

Note that to every coalition of c players, for every i,
∑c

j=0 ri+j,j is completely random, as
at least one player in the c + 1 players who chose that random polynomial is not a member
of the coalition, and so

∑c
j=0 ri+j,j is uniformly distributed and unknown.

By Theorem 2, p =
∑n

i=1 fi ∗
(∑c

j=0 ri+j,j

)
=

(∏
a∈I(x− a)

)
∗ s, where I is the intersec-

tion set and s is uniformly distributed over the polynomials of appropriate degree. Thus no
information about the private inputs of the honest players can be recovered from p, other
than that given by revealing the intersection set.

C.2 Malicious Case

Theorem 6. In the set-intersection protocol for the malicious case in Fig. 8, for any coali-
tion Γ of colluding players (at most n−1 such colluding parties), there is a player (or group
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G communicates with the malicious parties Γ according to the protocol.
Using his special abilities as a simulator, he obtains their private input sets.
G then submits these sets to the trusted third party, and then communicates

the answer returned by the trusted third party to the malicious parties.

Malicious
party

Malicious
party

Malicious
party

Private input sets
of malicious parties Answer set

Answer set

Answer set

Figure 12: A simulation proof defines the behavior of the player G, who translates between
the malicious players Γ, who believe they are operating in the real model, and the ideal
model, in which the trusted third party computes the desired answer.

of players) G operating in the ideal model, such that the views of the players in the ideal
model is computationally indistinguishable from the views of the honest players and Γ in the
real model.

Proof. In this simulation proof, we give an algorithm for a player G in the ideal model.
This player communicates with the malicious players Γ, pretending to be one or more
honest players in such a fashion that Γ cannot distinguish that he is not in the real world.
We assume that all malicious players can collude. The trusted third party takes the input
from G and the honest parties, and gives both G and the honest parties the intersection
set. G then communicates with the malicious players Γ, so they also learn the intersection
set. A graphical representation of these players is given in Figure 12

We give a sketch of how the player G operates (note that G can prevaricate when opening
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commitments, as we use an equivocal commitment scheme, and can extract plaintext from
proofs of plaintext knowledge):

1. For each simulated honest player i, G:

(a) chooses a polynomial fi such that each such polynomial is relatively prime and
has leading coefficient 1 (for randomly generated polynomials with leading coef-
ficient 1, this is true with overwhelming probability)

(b) chooses arbitrary polynomials ri,1, . . . , ri,n and creates encryptions Λ(ri,j) from
them (in the case of Paillier, specially construct encryptions of those polynomials,
and proofs of knowledge of each coefficient, see Section 6.1)

2. Performs step 1 of the protocol:

(a) sends the encryption of fi to all malicious players Γ, along with proofs of plaintext
knowledge and commitments to Λ(ri,j) (1 ≤ j ≤ n)

(b) sends data items Λ(ri,j) (1 ≤ j ≤ n) to all malicious players Γ
(c) Receives from each malicious player α ∈ Γ:

i. encryption of a polynomial fα and proofs of plaintext knowledge for its
coefficients

ii. trapdoor commitments to data items Λ(rα,j) for each random polynomial
rα,j , 1 ≤ j ≤ n

3. The player G extracts from the proofs of plaintext knowledge and trapdoor commit-
ments to Λ(ri,j) (in the case of Paillier, the extraction is from the proof of knowledge
of the discrete logarithm), the polynomials fα, and the random polynomials rα,j the
malicious players Γ have chosen.

4. G obtains the roots of each polynomial fα (as these exactly determine, for the purposes
of the protocol, his set):

• If polynomial factoring is possible, G may factor fα. fα(a) = 0⇔ (x− a)|fα, so
all roots of fα may be determined by examining the linear factors.
• If we are working in the random oracle model, then, with overwhelming proba-

bility, to correctly represent any element of the valid set P , a player must consult
the random oracle. As there can be only a polynomial number of such queries,
for each query a, G may check if fα(a || h(a)) = 0.
• If neither of these routes are feasible, then a proof that fα was constructed by

multiplying k linear factors of the form x − a may be added to the protocol
instead of proofs of plaintext knowledge. This proof is of size O(k3), and is
constructed by using proofs of plaintext knowledge for some linear factors, and
layering proofs of correct multiplication to obtain the complete polynomial fα.
From this proof, each linear factor of fα can be obtained, and thus all roots of
fα.

5. G submits the sets represented by these roots to the trusted third party. The honest
player submit their private input sets to the trusted third party. The trusted third
party returns the intersection set I to G and the honest players.

6. G prepares to reveal the intersection set to the malicious players Γ:

(a) selects a target polynomial p =
(∏

a∈I(x− a)
)
∗ s, where s is chosen uniformly
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from those polynomials of degree 2k − |I|. (note that, by Theorem 2, this is
exactly the polynomial calculated by simply running the protocol)

(b) chooses a set of polynomials ri,j (where i is one of the simulated honest play-

ers) such that
∑n

i=1 fi

(∑n
j=1 ri,j

)
= p (from the proof of Theorem 2, we know

that such polynomials exist, and can be determined through simple polynomial
manipulation)

7. G follows the rest of the protocol with the malicious players Γ as written, except that
he opens the trapdoor commitment to reveal an appropriate Λ(ri,j) for the new chosen
ri,j . In this way, the players calculate an encryption of the polynomial p chosen by G,
and then decrypt it. The coalition players thus learn the intersection set.

Note that the dishonest players cannot distinguish that they are talking to G (who is
working in the ideal model) instead of other clients (in the real world), and the correct
answer is learned by all parties, in both the real and ideal models.

D Proofs of Correctness and Security for Threshold Set-
Intersection Protocols

In this section, we give proofs of security and correctness for our protocols for threshold
set-intersection in the honest-but-curious and malicious cases. For simplicity, we give proof
sketches for these theorems.

D.1 Honest-But-Curious Case

Theorem 7. In the threshold set-intersection protocol of Fig. 4 (semi-perfect variant), every
player learns each element a which appears at least t times in the n players’ private inputs.

Proof. As shown in Theorem 1, if an element a appears at least t times in the players’ private
inputs, it is a root of both the polynomial p(t−1), as (x− a)t | p, and p. If an element is a
root of p but does not appear at least t times, it is not a root of p(t−1). Thus, if an element
a is a root of both p and p(t−1), it is in the threshold intersection set. The polynomial
evaluated to create conditional disclosures is Φ = p ∗

(∑c+1
i=1 ri

)
+ F ∗ p(t−1)

(∑c+1
i=1 si

)
. As

not all players in [c+1] can be members of the dishonest coalition, the polynomials
∑c+1

i=1 ri

and
∑c+1

i=1 si are both uniformly distributed and unknown to any coalition of players. Thus,
by Theorem 2, Φ =

(∏
a∈I(x− a)

)
s, where I is the threshold intersection set and s is

a polynomial uniformly distributed over those of the appropriate size. As s has only a
polynomial number of uniformly distributed roots, and each root has negligible probability
of representing an element from the valid set P , with overwhelming probability, the only
roots representing elements of P are those in the threshold set. Thus, if the element (Si)j

appears at least t times in the private input sets of the players, the conditional disclosure
Uij = Epk((Si)j), and if it does not, Uij is the encryption of a uniformly distributed element
in R.
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At this point in the protocol, all players engage in shuffling of inputs. As explained in
Section 5.4, the players obtain a decryption of each element in the threshold set exactly
once. All players therefore learn the answer set.

Theorem 8. In the threshold set-intersection protocol of Fig. 4 (semi-perfect variant), any
honest-but-curious player learns no more information than would be gained by using the
same private input in an ideal setting, assuming that t ≥ 2 and that the cheating coalition
does not include any single element more than t−1 times in their private inputs, as per the
definition of security.

Proof. All polynomials representing private input are encrypted. We will assume that the
cryptosystem we use is semantically secure, so no information is revealed about the players’
private inputs when calculating Φ = p

(∑c+1
i=1 ri

)
+ F ∗ p(t−1)

(∑c+1
i=1 si

)
.

First we observe that, by Theorem 2, Φ = gcd
(
p, p(t−1)

)
∗ s where s is a random polyno-

mial. (Note that F is chosen to not share factors with p, and so is irrelevant to determining
factors shared between p and p(t−1).) By Theorem 1, the only factors shared between p and
p(t−1) are those in the threshold set.

Each player constructs tag/disclosure pairs T,U from all of his inputs. At this point in
the protocol, all players engage in shuffling of inputs (either through a separate protocol
or trusted third party). Thus all players receive all tag/disclosure pairs T,U , without any
indication as to the origin. As the cryptosystem used to encrypt the tags is key-private, no
player can gain information about which honest player created any tag. As the disclosures
are all encrypted under the same key, no information can be gleaned about their origin.

Let a = (Si)j for some i, j be the representation of the private input element used to
create the encrypted element U . If Φ(a) = 0, then, with overwhelming probability, a is a
representation of an element in the threshold intersection set. Then U is an encryption of a.
If a is not in the threshold intersection set, then, with overwhelming probability, Φ(a) 6= 0,
and U is thus an encryption of a uniformly distributed element, which does not reveal any
information.

When the players consider each T,U pair, they either correctly decrypt it, or they do not.
If they do not correctly decrypt it, the decryption shares do not reveal information about
the contents of the encryption U . If they do correctly decrypt it, the tag indicates that the
element a used to create the ciphertext U has not been determined to be in the threshold
intersection set. If the decryption of U is not a member of the valid set P , then the player
who created it learns that his input element is not in the intersection set; this is information
he can gain directly from the answer set. If the decryption of U is a representation of an
element a from P , then all players learn that a is in the answer set. Thus, no player learns
any information except the answer set.

Note that if Alice and Bob both have some element a in their private inputs, each may
learn that at least one other player holds the same element. However, as t ≥ 2, if they have
fewer than t copies of that element in their private input, they could determine that directly
from their private input and the answer set. If they have at least t copies of that element in
their private input, they may also learn that there exists some other player(s) holding that
element, which they cannot learn directly from their input and the answer set. We do not
consider this leak of information to be a problem in most circumstances, and the situation
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is precluded by the definition of security.

E Proofs of Correctness and Security for Over-Threshold
Set-Intersection Protocols

E.1 Honest-But-Curious Case (With Polynomial Factoring)

Theorem 9. In the over-threshold set-intersection protocol of Fig. 2 (with polynomial fac-
toring), every honest-but-curious player learns each element a which appears at least t times
in the n players’ private inputs, as well as the number of times it so appears.

Proof. All players calculate and decrypt Φ = F ∗ p(t−1) ∗
(∑c+1

i=1 ri

)
+ p ∗

(∑c+1
i=1 si

)
. As∑c+1

i=1 ri and
∑c+1

i=1 si are distributed uniformly over all polynomials of approximate size
nk, Theorem 2 tells us that Φ = gcd

(
p(t−1), p

)
∗ r, where r is a random polynomial of the

appropriate size. As r has only a polynomial number of roots, each of which has a negligable
probability of representing a member of the valid set P , when Φ is factored, gcd

(
p(t−1), p

)
can be recovered.

By Theorem 1, gcd
(
p(t−1), p

)
has roots which are exactly the threshold set (see the

proof of Theorem 7). By applying Theorem 1 we may also observe that if (x− a)v | p, then
(x − a)(v−t+1) | p(t−1). Thus each linear factor repeated v ≥ t times in p (representing an
element repeated v times in the private inputs) is repeated v − t + 1 times in p(t−1), and
thus in gcd

(
p(t−1), p

)
. When the players factor Φ, they recover these linear factors and can

thus learn both the threshold intersection set, and how many times each element in the
threshold intersection set appeared in the original private inputs.

Theorem 10. In the over-threshold set-intersection protocol of Fig. 2 (with polynomial
factoring), any honest-but-curious player learns no more information than would be gained
by using the same private input in an ideal setting.

Proof. We assume that the cryptosystem employed is semantically secure, and so players
learn only the formula Φ = F ∗ p(t−1) ∗

(∑c+1
i=1 ri

)
+ p ∗

(∑c+1
i=1 si

)
. Note that both

∑c+1
i=1 ri

and
∑c+1

i=1 si are uniformly distributed and unknown to all players, as the maximum coalition
size is smaller than c+1. Thus, by Theorem 2, Φ = gcd

(
p, p(t−1) ∗ F

)
∗s, for some uniformly

distributed polynomial s. As s is uniformly distributed for any player inputs, no player or
coalition can learn more than gcd

(
p, p(t−1) ∗ F

)
. F is chosen such that gcd(p, F ) = 1, and

so gcd
(
p, p(t−1) ∗ F

)
= gcd

(
p, p(t−1)

)
. As was observed in Theorem 9, this information

exactly represents the threshold set, and can thus be derived from the answer that would
be returned by a trusted third party. Thus no player or coalition of at most c players can
learn more than in the ideal model.

E.2 Honest-But-Curious Case (Without Polynomial Factoring)

Theorem 11. In the over-threshold set-intersection protocol of Fig. 3 (without polynomial
factoring), every honest-but-curious player learns each element a which appears at least t
times in the n players’ private inputs, as well as the number of times it so appears.
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Proof. The proof of correctness of this protocol closely follows that of the threshold set-
intersection protocol given in Theorem 7. We simply observe that all the encrypted elements
U are decrypted. Each reveals an element of the private input, if that element is in the
threshold set, and nothing otherwise. Thus each element in the threshold intersection set
is revealed in the decryptions of the encrypted elements U as many times as it appeared in
the private inputs.

Theorem 12. In the over-threshold set-intersection protocol of Fig. 3 (without polynomial
factoring), any honest-but-curious player learns no more information than would be gained
by using the same private input in an ideal setting.

Proof. We will assume that the cryptosystem employed is semantically secure and shuffling
is secure, and no player gains information except for the shuffled decrypted elements (Vi)j ,
for unknown i and j. (If the element was constructed by a player, that player may recognize
it. This does not impact out proof of security, and so we do not consider it.) As observed
in Theorem 11, each such element (Vi)j is either a representation of an element from a
private input or a uniformly distributed element. The uniformly distributed elements do
not reveal information, and the information revealed by the private inputs revealed is that
they are part of the threshold set, and how many times they appeared in private inputs.
This is precisely the function output, and so no extra information is gained by any party
or coalition of dishonest parties.

E.3 Malicious Case (With Polynomial Factoring)

Theorem 13. In the over-threshold set-intersection protocol for the malicious case in
Fig. 10, for any coalition Γ of colluding players (at most n − 1 such colluding parties),
there is a player (or group of players) G operating in the ideal model, such that the views
of the players in the ideal model is computationally indistinguishable from the views of the
honest players and Γ in the real model.

Proof. In this simulation proof, we give an algorithm for a player G in the ideal model.
This player communicates with the malicious players Γ, pretending to be one or more
honest players in such a fashion that Γ cannot distinguish that he is not in the real world.
We assume that all malicious players can collude. The trusted third party takes the input
from G and the honest parties, and gives both G and the honest parties the intersection set.
G then communicates with the malicious players Γ, so they also learn the over-threshold
set. A graphical representation of these players is given in Figure 12

Note that by definition, |Γ| ≤ c, and so at least one player in the set [c + 1] is honest.
We give a sketch of how the player G operates (note that G can prevaricate when opening

commitments, as we use an equivocal commitment scheme, and extract plaintext from proofs
of plaintext knowledge):

1. For each simulated honest player i, G:

(a) chooses a polynomial fi such that each such polynomial is relatively prime and
uniformly chosen from all polynomials of degree k (for randomly generated poly-
nomials, this is true with overwhelming probability)
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(b) if i ∈ [c+1], G chooses arbitrary polynomials ri, si and creates ciphertexts Λ(ri)
and Λ(si) from them (see Section 6.1)

2. G performs steps 2, 3, 4 of the protocol with the dishonest players Γ

(a) Players i ∈ [c + 1] send commitments to Λ(ri) and Λ(si) to all other players
(b) Players calculate the encryption of the polynomial p =

∏n
i=1 fi (note that for all

i, a proof of knowledge of the polynomial fi is given)

3. The player G extracts from the proofs of plaintext knowledge and commitments Λ(ri)
and Λ(si) (in the case of Paillier, the extraction is from the proof of knowledge of the
discrete logarithm), the polynomials representing each player’s private input fα, and
the random polynomials ri, si the malicious players Γ have chosen.

4. G obtains the roots of each polynomial fα (as these exactly determine, for the purposes
of the protocol, the set of the coalition player α) by factoring fα. fα(a) = 0 ⇔
(x− a)|fα, so all roots of fα may be determined by examining the linear factors.

5. G submits the sets represented by these roots to the trusted third party. The honest
player submit their private input sets to the trusted third party. The trusted third
party returns the over-threshold multiset I to G and the honest players.

6. G prepares to reveal the over-threshold set to the coalition players Γ:

(a) selects a target polynomial q =
(∏

a∈I(x− a)
)
∗ s, where s is chosen uniformly

from those polynomials of degree 2k − |I|. (note that, by Theorem 2, this is
exactly the polynomial calculated by simply running the protocol)

(b) Note that gcd
(
p, p(t−1)

) ∣∣ ∏
a∈I(x− a) . As the polynomials fi chosen by G

for the simulated honest players are generated randomly, with overwhelming
probability they do not share any factors with those chosen by the coalition
players Γ or F . By Theorem 1, the only factors to ‘survive’ the derivatives appear
at least t times in p; as random polynomials of the simulated honest players do
not share factors with the coalition players (with overwhelming probability), they
must have been included at least t times by players in Γ. (If a factor does not
include a root, it will not add a member to the intersection set, but will appear
in the final polynomial. This is not a contradiction, as it does not include any
information about any player’s set, by definition.)

(c) chooses a set of polynomials ri, si (where i is one of the simulated honest players
in [c+1]) such that F ∗p(t−1) ∗

(∑c+1
i=1 ri

)
+p∗

(∑c+1
i=1 si

)
= q (from the proof of

Theorem 2, we know that such polynomials exist, and can be determined through
simple polynomial manipulation)

7. G follows the rest of the protocol with the coalition players Γ as written, except that
he opens the trapdoor commitment to reveal an appropriate Λ(ri) and Λ(si) for the
new chosen ri and si polynomials. In this way, the players calculate an encryption of
the polynomial q chosen by G, and then decrypt it. The coalition players thus learn
the over-threshold set.

Note that the dishonest players cannot distinguish that they are talking to G (who is
working in the ideal model) instead of other clients (in the real world), and the correct
answer is learned by all parties, in both the real and ideal models.
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F Proof of Security for Cardinality Set-Intersection

In this section, we give proofs of security for our protocol for cardinality set-intersection in
the malicious case. For simplicity, we give proof sketches for this theorem.

Theorem 14. In the cardinality set-intersection protocol for the malicious case in Fig. 9,
for any coalition Γ of colluding players (at most n − 1 such colluding parties), there is a
player (or group of players) G operating in the ideal model, such that the views of the players
in the ideal model is computationally indistinguishable from the views of the honest players
and Γ in the real model.

Proof. In this simulation proof, we give an algorithm for a player G in the ideal model.
This player communicates with the malicious players Γ, pretending to be one or more
honest players in such a fashion that Γ cannot distinguish that he is not in the real world.
We assume that all malicious players can collude. The trusted third party takes the input
from G and the honest parties, and gives both G and the honest parties the intersection
set. G then communicates with the malicious players Γ, so they also learn the size of the
intersection set. A graphical representation of these players is given in Figure 12

We give a sketch of how the player G operates (note that G can prevaricate when opening
commitments, as we use an equivocal commitment scheme):

1. G chooses a common “private input” set S to be used for each simulated honest player
(the k elements of this set can be chosen uniformly)

2. For each simulated honest player i, G chooses arbitrary polynomials ri,1, . . . , ri,n and
creates data items Λ(ri,j) from them (see Section 6.1)

3. Performs step 1 of the protocol:

(a) sends the encryptions of the elements of the “private input set” yi,j (1 ≤ j ≤ k)
to all malicious players Γ, along with proofs of plaintext knowledge

(b) sends the encryption δi of the polynomial fi constructed from the “private input
set”, along with a proof of correct construction

(c) sends commitments to data items Λ(ri,j) to all malicious players Γ
(d) Receives from each malicious player α ∈ Γ:

i. encryption of a polynomial fα and proofs of plaintext knowledge for its
coefficients

ii. trapdoor commitments to data items Λ(rα,j) for each random polynomial
rα,j , 1 ≤ j ≤ n

4. The player G (who knows the trapdoor commitment information) extracts from the
proofs of plaintext knowledge and trapdoor commitments to Λ(ri,j) (in the case of
Paillier, the extraction is from the proof of knowledge of the discrete logarithm), the
polynomials fα, and the random polynomials rα,j the malicious players Γ have chosen.

5. G obtains the roots of each polynomial fα (as these exactly determine, for the purposes
of the protocol, his set Sα), from the proof of correct construction of fα.

6. G submits the sets represented by these roots to the trusted third party. The honest
player submit their private input sets to the trusted third party. The trusted third
party returns the size of the intersection set |I| to G and the honest players.

7. G prepares to reveal the size of the intersection set to the malicious players Γ:
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(a) construct the set A from any |I| elements from the set
⋂

α∈Γ Sα and any |I|
elements from the common ‘private input set’ S of the n′ simulated honest players
(note that

∣∣⋂
α∈Γ Sα

∣∣ ≥ |I|, by the definition of set-intersection.)
(b) selects a target polynomial p =

(∏
a∈A(x− a)

)
∗ s, where s is chosen uniformly

from those polynomials of degree 2k − 2|I|. (note that, by Theorem 2, this is
exactly the polynomial calculated by simply running the protocol, and thus when
the players evaluate it at their inputs, exactly n|I| of the evaluations will be 0)

(c) chooses a set of polynomials ri,j (where i is one of the simulated honest play-

ers) such that
∑n

i=1 fi

(∑n
j=1 ri,j

)
= p (from the proof of Theorem 2, we know

that such polynomials exist, and can be determined through simple polynomial
manipulation).

8. G follows the rest of the protocol with the malicious players Γ as written, except that
he opens the trapdoor commitment to reveal an appropriate Λ(ri,j) for the new chosen
ri,j . In this way, the players calculate an encryption of the polynomial p chosen by G,
evaluate it at their inputs (which are proved to be the same as those used to construct
the polynomials fi), and decrypt indications as to whether each element appears in
the intersection set. The coalition players thus learn the size of the intersection set.

Note that the dishonest players cannot distinguish that they are talking to G (who is
working in the ideal model) instead of other clients (in the real world), and the correct
answer is learned by all parties, in both the real and ideal models.
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