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Abstract 
 
Recently, we have begun investigating a new robot soccer domain built around the concept of 
human-robot teams in a ‘peer’ setting. One of the key challenges for addressing effective human-
robot interaction is to robustly identify and track people and robot teammates without requiring 
undue prior knowledge of their appearance. For cost and complexity reasons, our robots are 
equipped with monocular color cameras. Thus, we seek an algorithm to enable reliable 
acquisition and tracking of people and robots from a robot armed with a monocular color camera. 
We have developed a novel algorithm for acquiring and tracking a single human subject from a 
dynamically balancing platform, a Segway RMP robot, using a monocular color camera. Our 
technique uses a combination of known vision and tracking techniques including region growing, 
motion detection, and mean-shift color-template tracking. In this paper, we describe our 
approach, and analyze its performance and limitations, for both acquiring and tracking a single 
human target in an indoor environment. Our experiments demonstrate that acquisition and 
tracking are feasible with a monocular camera even for a dynamically balancing platform. 
Moreover, our results show that with current processor technology real-time tracking and robot 
response are achievable. 
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1 INTRODUCTION 
Recently, we have begun developing a new domain, called Segway Soccer, for studying 

human-robot interaction within the confines of an adversarial task [8]. This domain is in many 
ways an extension of existing RoboCup domains [7] to incorporate human-robot teams in a ‘peer’ 
partnership. For such human-robot interaction to be realizable in its full scale, each robot will need 
the ability to reliably identify and track its human and robot counterparts, preferably without 
requiring in-depth prior knowledge of their appearance.  

There have been a number of investigations into the problem of tracking people using static 
cameras, in both indoor and outdoor environments (e.g. [1]). Within the robotics community, there 
has been a similar interest in tracking people from robot platforms using either laser range finders 
or combinations of range finders with and vision sensors [6]. To our knowledge, there is as yet no 
work that focuses on using color-based monocular vision as the only sensing modality. Monocular 
color cameras are appealing due to their low cost and complexity, wide availability and ever 
improving performance driven by the consumer market. These issues are important when building 
teams of robots, as reducing cost and complexity is of paramount importance. Therefore, we seek a 
technique that enables reliable acquisition and tracking of human subjects by a robot using an 
affordable monocular color camera without undue prior knowledge of their appearance.  

We believe that when using a novel combination of standard vision techniques found in both 
surveillance and robotics literature, this task is achievable. In this paper, we describe our efforts to 
develop such an approach using the unique, dynamically balancing Segway RMP platform (see 
Fig. 1.) and analyze the performance of our resulting implementation on the Segway RMP 
platform. 

 
Figure 1.  The Segway RMP robot with its primary means of perception, a monocular color camera on a custom pan-tilt unit. 

The paper is structured as follows. In the next section, we describe the focus problem of this 
paper: tracking human subjects from the Segway RMP platform using a monocular color camera. 
In section 3, we describe our approach to the problem and the techniques we have developed. In 
section 4 we present experimental results detailing the performance of our approach. In section 5, 
we describe the relevant related work in the literature leading to our conclusions in section 6. 

2 PROBLEM DESCRIPTION 
In this paper we focus on the problem of enabling a robot, in this case a Segway RMP platform, 

to detect a person and then track the person as he or she moves about the environment. Once able 
to track a person, a number of human-robot interaction tasks become feasible. For a general 
example, given the Segway’s payload capability following the person while carrying a load 
becomes feasible. Another example would be to train the robot by following a person performing 
the desired actions and subsequently imitating them (e.g. [10]). 
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The Segway RMP is a commercially available robot platform1 based on the Segway HT 
mobility platform, a two-wheeled self-balancing scooter. It comes equipped with micro-controllers 
and rate gyros that enable it to self-balance. In our prior work, we have equipped the Segway robot 
with two mid-end laptops and single monocular camera mounted on a custom pan-tilt unit at 
approximately 1.4m from the ground [11]. All processing must take place on-board the robot. One 
laptop is dedicated to motion control and forms the interface to the Segway RMP base. The second 
laptop is dedicated to vision, behaviors, logging, and navigation. For the purposes of this 
discussion, the vision laptop is an Intel Pentium III operating at 1.7GHz. In order to get reasonable 
responsiveness from the robot to dynamic changes in the environment, the robot control loop must 
operate as fast as possible and with minimum latency. As there are unavoidable delays induced by 
the image capture process, it becomes imperative that image processing and the resulting behavior 
generation operate within the cycle of a single frame capture. Thus, all image processing 
algorithms must be very efficient. Finally, the self-balancing nature of the robot induces small 
perturbations in the pitch angle of a few degrees, which results in significant apparent up-and-
down motion in the imaging plane dependent upon the pan-tilt angles of the camera. The camera is 
a low-cost web-camera, in particular the Logitech Pro 4000, providing images via USB at 30Hz 
with 320x240 pixels in a YUV 4:2:0 planar format.  

 
Figure 2.  An example camera view from the Segway RMP. 

We wish to limit the required prior knowledge of the appearance of the human subject and 
knowledge of the lighting conditions in order to improve the general applicability of our algorithm. 
Additionally, we wish for the system to be completely autonomous in order to achieve running on 
multiple robots without requiring a large human-operator team. We now describe our developed 
technique to address this problem. 

3 SELECTED APPROACH 
Within the vision and robotics literature, there are a number of techniques that are applicable to 

this problem. One approach is to rely on face detection to be able to identify where a human 
subject is, and to then track that face over time. Such an approach has found use in platforms such 
as the Sony Qrio and AIBO for ‘face-to-face’ human-robot interaction, but is of limited use for 
tasks such as following a human subject where their face may not always be visible. Given the 
generality of our task, such a technique is not useful here. 

In contrast, there have been a number of tracking techniques developed within the vision 
surveillance community. Most notably, techniques based on the mean-shift algorithm (e.g. [2]) 
have proven successful at tracking through lighting and scale changes in real-world scenes. 
Moreover, for a small number of tracked objects it is both robust and efficient. 

In vision surveillance, the mean-shift algorithm is often used for tracking colored patches over 
time. Thus, it is only useful for tracking a target once identified. That is, a challenge is how to first 
acquire the target to be tracked. For a robot performing autonomous tracking, there is the 
additional problem of behavior. How should the robot move in order to acquire a subject and once 

                                                           
1 http://www.segway.com/rmp 
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acquired, how should it follow the subject? Finally, how should it switch between these different 
modes of operation? To maintain the robust overall performance, we address this problem by using 
a state machine approach to divide between the two distinct modes of operation, namely 
acquisition and tracking. Such an approach builds on our prior work using the Skills, Tactics, Plays 
(STP) architecture to control a single robot using behaviors constructed in a finite state machine 
arrangement with transitions controlled by internal state or perception of the world [9]. Fig. 3 
shows the state machine we developed which begins in the acquisition behavior and executes until 
a suitable object to track is found. This Acquisition State itself consists of both Motion Detection 
and Potential Buildup. Once a suitable object is found, the robot tracks it until it is lost. Thereafter 
it returns again to the acquisition behavior until another target is acquired.  

 
 

Figure 3.  Person Tracking Behavior Finite State Machine. 

We now describe the operation of the acquisition and tracking in greater detail. 

 
Figure 4.  Process of Motion Detection 
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Figure 5.  Process of Potential Build Up 

If there is no applicable motion detected in the frame, the acquisition potential decays 
exponentially. When this potential increases and exceeds a certain threshold value, the system 
acquires the target and transitions into the tracking state where tracking commences using the 
mean-shift algorithm [1]. The acquisition potential exists to address the very real concern that the 
robot, when in an acquisition state, encounters a person who randomly walks in front of it and 
erroneously targets that person to track. As such, the acquisition potential ensures (with adjustment 
of the threshold potential) that only a person who desires to be tracked is targeted. 

3.1 Target Acquisition 

We will now proceed to outline the various operations that target acquisition consists of. 

3.1.1 Image Subtraction with Offset Filter 

The acquisition phase begins with image subtraction where motion in the image is detected by 
comparing each pixel from the current frame with the preceding frame. The difference in the color 
space values of the pixel from the two frames is calculated, and if this difference is greater than 
some threshold value, the pixel is marked as having moved [12]. One aspect to note about this 
procedure is that when running image subtraction on the Segway RMP as it is balancing, many 
undesired pixels are marked as the rocking motion caused by balancing leads to unwanted vertical 
motion of pixels. This is overcome by applying an offset filter which is combined with image 
subtraction as in Table I , to ensure that any motion that is detected cannot be purely vertical in 
nature, but must horizontal as well.  
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TABLE I.  IMPLEMENTATION OF IMAGE SUBTRACTION AND OFFSET FILTER 

Improvement in results when applying this offset filter can be seen in Fig. 7 & 8. 

3.1.2  Morphological Filtering and Region Growing 

Once pixels of interest have been marked in the target acquisition phase through the manner 
above, there still tends to be a high proportion of noise. This is overcome by running a variant of 
morphological filtering as given in Table II, which acts to remove marked pixels which themselves 
are not surrounded by a threshold number of other marked pixels. This is due to the fact that the 
triggering motion2, marks pixels in patches leaving single stray pixels to indicate noise.  

TABLE II.  IMPLEMENTATION OF MORPHOLOGICAL FILTERING 

Results of morphological filtering can be seen in Fig. 8, and after this stage, remaining marked 
pixels are likely to be those that indicate boundaries of motion. Region growing is then carried out 
which involves examining both vertical and horizontal lines in the image, and if two marked pixels 
in an examined line are separated by less than some given threshold distance, pixels in between the 
marked pixels are marked as well as given in Table III.  

                                                           
2 In our case the triggering motion is of the person to be tracked rocking his body slowly from side to side to maximize horizontal 
motion 

Image_Subtraction(){ 
// pix

t
(x,y) : pixel at position x,y on image frame at time t 

// moved : array to indicate pixel motion 
for x,y ∈ image 
  if pix

t
(x,y)== pix

t-1
(x,y) || pix

t
(x,y)== pix

t-1
(x,y-1) || pix

t
(x,y)== pix

t-1
(x,y+1) 

   moved[pix
t
(x,y)] = false 

  else 
   moved[pix

t
(x,y)] = true 

endif 
endfor 

} 

Morphological_Filtering(){ 
// pix

t
(x,y) : pixel at position x,y on image frame at time t 

// moved : array to indicate pixel motion 
 
for x,y where moved[pix

t
(x,y)] == true 

for x’ where |x’-x| < 3 
for y’ where |y’-y| < 3 
if moved[pix

t
(x’,y’)] != true 

nonmarked++ 
endif 

endfor 
endfor 
 
if nonmarked > threshold 
moved[pix

t
(x,y)] = false 

endif 
endfor 

} 
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TABLE III.  IMPLEMENTATION OF REGION GROWING 

This has the effect of indicating entire pixel regions that are believed to be moving and results 
of this procedure can be seen in Fig 9.  

3.1.3 Edge Detection 

At this stage, edge detection is carried out by applying Sobel Edge Detection [3] to the original 
raw image, producing outlines of the various regions in the image. This procedure involves first 
computing the 3 by 3 convolution kernels as shown in Fig. 6. 

 -1 0 +1  +1 +2 +1  

 -2 0 +2  0 0 0  

 -1 0 +1  -1 -2 -1  

Figure 6.  Sobel Convolution Masks Gx (left) and Gy (right) 

The approximate gradient magnitude for each pixel is then computed as given in (2). 

 yGxGG +=                               (2) 

Pixels are then marked if their gradient magnitude is found to be above some threshold value as 
in Table IV. 

TABLE IV.  IMPLEMENTATION OF EDGE DETECTION 

Region_Growing(){ 
// pix

t
(x,y) : pixel at position x,y on image frame at time t 

// moved : array to indicate pixel motion 
 
for 1 < x < image_width 
if moved[pix

t
(x,y_1)] == true && moved[pix

t
(x,y_2)] == true && (y_2 - y_1) < threshold 

for y_1 < y_between < y_2 
moved[pix

t
(x,y_between)] = true 

endfor 
endif 

endfor 
 
for 1 < y < image_height 
if moved[pix

t
(x_1,y)] == true && moved[pix

t
(x_2,y)] == true && (x_2 - x_1) < threshold 

for x_1 < x_between < x_2 
moved[pix

t
(x_between,y)] = true 

endfor 
endif 

endfor 
 

} 

Edge_Detection(){ 
// pix

t
(x,y) : pixel at position x,y on image frame at time t 

// grad(x,y) : gradient magnitude of pixel at position x,y on image frame at time t 
// outline : array to indicate if pixel is an outline 
 
for x,y ∈ image 
  if |grad

t
(x,y)| > threshold 

   outline[pix
t
(x,y)] = true 

endif 
endfor 

} 
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3.1.4 Flood Filling 

The center of each region that was generated in the region growing stage is then marked as a 
seed point, and these seed pixels are used to carry out flood filling with the edges generated by 
Sobel edge detection used as boundaries. For each seed point, flood filling is carried out by first 
trying to fill a box centered at the point, with sides of an upper bound length. If this box stays 
within the region and does not hit any detected edge, then flood filling is applied recursively to the 
points surrounding the seed point. If the filled box does hit an edge, then boxes of decreasing 
length sides are used up to a lower threshold. 

TABLE V.  IMPLEMENTATION OF FLOOD FILLING 

This procedure for each seed point, as given in Table V, serves to intersect information 
concerning broad regions which are thought to be moving, with information obtained from 
discerning complete edges of regions in the image, to produce whole regions which are moving in 
the image frame as can be seen in Fig 9. 

3.1.5 Bounding Box Filtering 

Once moving whole regions in the image have been obtained, a bounding box is determined 
which includes all generated regions. It is then checked if this box satisfies certain criteria to aid in 
determining if the motion detected is legitimate. First, the number of marked pixels in the box is 
checked and if they exceed some threshold value (in the case that flood filling has escaped a 
boundary of the object being tracked), the motion is disregarded.  The ratio of the sides of the 
bounding box is then noted and if this ratio does not fall within certain limits we can also ignore 
the motion as we know that we will be tracking people who will have specific shape signatures. 
Lastly the bounding boxes in this frame and the last are compared and if the distance between their 
centers is greater than a given threshold, the motion is considered illegitimate as we are likely to be 
seeing some other object in this frame. 

3.1.6 Histogram Vector Dot Product Filtering 

At this point, we are fairly sure that the object we have detected is the desired one and we go on 
to generate an appearance model histogram model of the marked pixels in this frame. To produce 
this histogram,  an array index value for each marked pixel in the bounding box is generated using 
its color value at reduced resolution by taking the highest n, p and q bits of the pixel’s Y, U and V 
color values respectively and concatenating them, to produce an index of n+p+q bits. A frequency 
count of these values is then stored as an appearance model histogram as can be seen in Table VI. 

Flood_Fill(int x, int y, int n){ 
// pix

t
(x,y) : pixel at position x,y on image frame at time t 

// outline : array to indicate if pixel is an outline 
// moved : array to indicate pixel motion 
// box

n
(x,y) : box of length n centered at x,y 

 
if n < threshold 
return 

 
for x,y ∈ set of seed points 
if outline[box

n
(x,y)] == false 

moved[box
n
(x,y)] == true 

Flood_Fill(x + n, y, n) 
Flood_Fill(x - n, y, n) 
Flood_Fill(x, y + n, n) 
Flood_Fill(x, y - n, n) 

else 
Flood_Fill(x, y, n-1) 

endif 
endfor 

} 
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TABLE VI.  GENERATION OF APPEARANCE MODEL HISTOGRAM 

Once this appearance model histogram has been created, the dot product between the histogram 
produced from the current frame, and the base histogram produced from the frames up to this point 
(the generation of which we will see in the next section), is calculated. If the dot product between 
the two histograms is small (indicating dissimilarity), this would mean that although the moving 
object being observed resembles the desired target object (in terms of shape and size), the color 
profile of the object in this frame does not correspond with the object tracked in previous frames 
and so is discarded. This might be cause by lighting aberrations in the current frame or the fact that 
we have mistaken another similar object for our target. 

3.1.7 Generate New Base Histogram 

If the dot product between the histogram produced from the current frame and the base 
histogram produced from previous frames is higher than a threshold value (indicating similarity), 
then the object observed to be moving in this frame is considered to be the same one tracked in 
previous frames and it is used to update the base histogram characteristics. This is done by 
weighting the histogram by taking the pixel counts of the current frame into account as can be seen 
in Table VII. 

TABLE VII.  GENERATING NEW BASE HISTOGRAM 

When generating the new base histogram, the value of α is obtained by multiplying the dot 
product of the two histograms (obtained in Histogram Vector Dot Product Filtering) with the 
current acquisition potential. This ensures that in the process of adapting the base histogram to 
generate a final histogram model, frames with marked pixels which are similar to the existing base 
histogram influence it more heavily and thus downplays the effect of accidental motion (as we 
presume that the desired tracking object is predominantly moving in the scene). This process of 
base histogram generation also makes certain that we value frames at the beginning of the 
acquisition phase (when the acquisition potential is low and we are unsure of what we are tracking) 
to a lesser degree than frames towards the end of the acquisition phase (when acquisition potential 
is high and the base histogram model is somewhat accurate to our desired target). 

3.1.8 Change in Acquisition Potential 

Appearance_Histogram_Generation(){ 
// pix

t
(x,y) : pixel at position x,y on image frame at time t 

// moved : array to indicate pixel motion 
// histogram : array to act as frequency count of pixel types based on color 
 
for x,y where moved[pix

t
(x,y)] == true 

index = concatenate(highest bits of color values of pix
t
(x,y)) 

histogram[index]++ 
endfor 

} 

Base_Histogram_Generation(){ 
// pix

t
(x,y) : pixel at position x,y on image frame at time t 

// moved : array to indicate pixel motion 
// base_histogram : cumulative histogram produced from previous frames 
// current_histogram : histogram produced from current frame 
 
for n ∈ base_histogram length 
base_histogram[n] = (α*current_histogram[n]) + ((1-α)*base_histogram[n]) 

endfor 
} 
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Once the base histogram has been adapted to include the new frame, the acquisition potential 
changes similarly and increases by a factor proportional to the dot product of the two histograms 
(obtained in Histogram Vector Dot Product Filtering). 

3.2 Target Tracking 

Once the detected motion has increased the acquisition potential to the extent that it crosses 
some given threshold, the system transitions to the tracking phase with the evolved base histogram 
at that point being taken to be the final appearance model histogram, m, to be used in tracking. The 
bounding box enclosing all marked pixels in the last frame of the acquisition phase is also 
generated and the center of this box, c, indicates the position of the acquired target. In the next 
frame, a new histogram, d, is generated from all the pixels from the new frame which appear in the 
bounding box and the sample weight, w, of each pixel in this bounding box is calculated as given 
in (3). 

                  
i

i
i d

mw =             pixelsi ∈  (3) 

A mean-shift vector is then generated as given in (4) and is used to translate the bounding box 
from the previous frame.  

                  
∑

∑ −
=∆

i

i
v w

ciw
            pixelsi ∈  (4) 

The target is tracked throughout the frames until calculated sample weights increase past a 
certain threshold, at which point the target is considered to have been lost and the system reverts to 
the target acquisition stage. 

4 TESTS AND RESULTS 
The robustness and accuracy of the implemented person tracking system was evaluated by 

doing a visual inspection of how pixels were being marked, determining the sensitivity of the 
acquisition state via a confusion matrix, gauging the effectiveness of the acquisition potential, and 
identifying situations in which tracking was lost. 

4.1 Progression of Pixel Marking During Acquisition Phase 

A sequence of the marked pixels is given below to show the state of marked pixels as various 
stages of the target acquisition phase are applied to the image. 

  
Figure 7.  Original Frame (left) & Image Subtraction (right) 
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Figure 8.  Application of Offset Filter (left) & Application of Morphological  Filter (right) 

  
Figure 9.  Application of Region Growing (left) & Intersection of Edge Detection and Flood Filling (right) 

Visual inspection of the progression reveals that each step is effective in its role and the final 
result consists of marked pixels which are indeed indicative of the person being tracked. 

4.2 Accuracy of Motion Detection During Target Acquisition Phase 

Motion Detection accuracy was measured in two situations, namely with the robot balancing 
with no target to be tracked and in a normal tracking situation. The test was done by constructing a 
confusion matrix displaying the correctness of the motion detection algorithm in both situations. 

For ground truth, a human operator recorded the presence or absence of motion that was meant 
to be detected for each frame of the sequence. Thus, the confusing matrix represents the detection 
results of the algorithm when compared to this hand labeled sequence. The following table shows 
the resulting confusion matrix in the two situations. 
 
 

% Frames in which 
Motion is Detected 

% Frames in which 
Motion is Undetected 

 
 

A B A B 
Motion 
Present 

in Image 

0.0 21.9 0.0 52.1 

Motion 
Absent 

in Image 

0.5 7.4 99.5 18.6 

TABLE VIII.  CONFUSION MATRIX WITH NO TARGET (A), NORMAL TRACKING WITH SINGLE HUMAN TARGET (B)  

From the low proportion of false positives, we can see that the person tracking algorithm can be 
adjusted to a level of sensitivity such that any vertical motion observed due to the rocking motion 
of the robot as it attempts to balance can be negated and only desired motion is considered. 

4.3 Effectiveness of  Acquisition Potential During Target Acquisition Phase 

Utility of implementing the acquisition potential was tested by gauging the progression of the 
potential in three situations, namely with the  robot balancing with no target to be tracked, when a 
person walks across the field of view of the robot without desiring to be tracked, and in a normal 
tracking situation. 
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Figure 10.  Change in Acquisition Potential 

From the results in Fig. 10, we can see that implementation of the threshold potential does 
allow for the distinction between situations in which tracking is desired and those in which it is 
not. This distinction is crucial when trying to prevent potentially hazardous situations in which 
accidental target acquisition by the robot occurs.  

4.4 Situations in which Tracking is Lost 

Once the target has been acquired, the system will continue to track the target until sample 
weights when doing mean-shift calculations exceed a given threshold symbolizing that the target 
has changed. The situations in which this happens can be enumerated as follows. 

 Target Shrinks in Robot’s Vision 

This occurs when the acquired target walks away from the robot fast enough that the robot cannot 
match the target’s speed causing a considerable decrease in the number of pixels that the robot sees 
of the target. This leads to the robot no longer recognizing the target and reverting back to the 
target acquisition state. 

 Target Leaves Robot’s Field of View 

This situation occurs when the target leaves the field of view of the robot due to instances such as 
when the robot is not able to turn at the sufficient speed to maintain sight of the target.  

 Change in the Color Characteristics of the Target 

This occurs when there is a fundamental change in the color values of the pixels which are in 
region thought to contain the target from the previous frame. This occurs when the target changes 
the color of the appearance he presents to the robot such as when he takes off his jacket to reveal a 
differently colored shirt, or when turning around while wearing a shirt whose front and back are of 
different colors. 

A 

B 

C 

F 

E 

D 
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5 RELATED WORK 
Temporal differencing (image subtraction) was used in [5], which involved calculating pixel-

wise differences in intensity for 2 adjacent frames in the image sequence. Motion imaging was 
then generated using thresholding followed by clustering moving sections into motion regions and 
this method was implemented real time on a video stream obtained from a static video mount. For 
a balancing robot, where the camera is perturbed by small deviations as the robot balances, such 
temporal differencing would therefore generate false positives when determining motion in the 
sequence due to the rocking motion of the robot. An additional offset filter (mentioned in the 
Section 3) is applied to correct for this problem. 

Three-frame differencing [1], is an approach used in video surveillance to overcome false 
positives being generated in the "holes" that appear in regions that an object moves away from in 
the image sequence. The three-frame differencing algorithm marks pixels as moving only if pixel 
intensity has changed significantly between both the current frame and last frame, and the current 
frame and next-to-last frame. We have not used a three-frame differencing approach as the 
algorithm does not account for additional false positives generated by image sequences from a 
camera on a moving, in this case balancing, platform. Instead we address this issue through the 
intersection of connected components based on homogeneity and motion. 

6 CONCLUSION AND FUTURE WORK 
In this paper we have outlined some of the challenges involved when attempting to carry out 

person tracking on the Segway RMP platform. We have also presented a possible approach to 
implementing this task which involves a target acquisition phase consisting of various filters to 
obtain marked pixels indicating motion, and a target tracking phase in which the acquired target is 
tracked using the mean-shift algorithm. The accuracy and feasibility of the approach were also 
addressed with samples of the implemented solution given. 

One possible improvement for the system involves extending the mean-shift algorithm to 
implement target tracking with changes in scale as mentioned in [1]. This extension of the 
algorithm would allow for increased tracking accuracy even when the target walks away from the 
robot quickly enough to cause a considerable decrease in the number of pixels the robot sees of the 
target. 

6.1.1.1.1 ACKNOWLEDGMENTS 
This research was sponsored by the United States Army under Grant No. DABT63-99-1-0013. 

The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing official policies or endorsements, either expressed or 
implied, of DARPA, the US Army, or the US Government. 

6.1.1.1.2 REFERENCES 
 

[1] R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, and O. Hasegawa, "A System for 
Video Surveillance and Monitoring: VSAM Final Report," Technical report CMU-RI-TR-00-12, Robotics Institute, Carnegie 
Mellon University, May, 2000. 

[2] R. Collins. “Mean-shift Blob Tracking through Scale Space”, Computer Vision and Pattern Recognition (CVPR'03), IEEE, June, 
2003 

[3] R. Gonzalez and R. “Woods Digital Image Processing”, Addison Wesley, 1992, pp 414 - 428. 
[4] D. Vernon. “Machine Vision”, Prentice-Hall, 1991, Chap. 5. 
[5] A. Lipton, H. Fujiyoshi and R. Patil. "Moving Target Classification and Tracking from Real-time Video" IEEE Workshop on 

Applications of Computer Vision (WACV), Princeton NJ, October 1998, pp.8-14. 
[6] M. Montemerlo, W. Whittaker, and S. Thrun, S., “Conditional Particle Filters for Simultaneous Mobile Robot Localization and 

People-Tracking”, IEEE International Conference on Robotics and Automation (ICRA’02), Washington, DC, 2002. 
[7] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara. "RoboCup: A Challenge Problem for AI and 

Robotics", RoboCup-97: Robot Soccer World Cup I, Nagoya, L.N. on A.I.,Springer Verlag, 1998, 1-19. 
[8] B. Browning, P. Rybski, J. Searock, and M. Veloso. “Development of a soccer-playing dynamically balancing mobile 

robot”,IEEE International Conference on Robotics and Automation (ICRA’04), in press. 



 16

[9] J. Bruce, M. Bowling, B. Browning, and M. Veloso. “Multi-Robot Team Response to a Multi-Robot Opponent Team”. IEEE 
International Conference on Robotics and Automation, Taiwan, May 2003. 

[10] M. Nicolescu, M. J Mataric, "A hierarchical architecture for behavior-based robots", First International Joint Conference on 
Autonomous Agents and Multi-Agent Systems, Bologna, ITALY, July 15-19, 2002. 

[11] J. Searock, B. Browning, and M. Veloso. Turning Segways into Soccer Robots. In In Proceedings of IROS'04, September 2004. 
[12] I.Haritaoglu, D.Harwood, and L.Davis. A Real Time System for Detecting and Tracking People, In FGR98, 1998. 

 


