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Abstract

The frameworks of game theory and mechanism design have exerted significant in-
fluence on formal models of multiagent systems by providing tools for designing and
analyzing systems in order to guarantee certain desirable outcomes. However, many
game theoretic models assume idealized rational decision makers interacting in pre-
scribed ways. In particular, the models often ignore the fact that in many multiagent
systems, the agents are not fully rational. Instead, they are computational agents
who have time and cost constraints that hinder them from both optimally determin-
ing their utilities from the game and determining which strategies are best to follow.
Because of this, the game theoretic equilibrium for rational agents does not generally
remain the same for agents with bounds on their computational capabilities. This
creates a potentially hazardous gap in game theory and automated negotiation since
computationally bounded agents are not motivated to behave in the desired way.

My thesis statement is that it is possible to bridge this gap. By incorporating
computational actions into the strategies of agents, I provide a theory of interaction for
self-interested computationally bounded agents. This allows one to formally study the
impact that bounded rationality has on agents’ strategic behavior. It also provides a
foundation for game-theory and mechanism design for computationally limited agents.

First, this thesis introduces a model of bounded rationality where agents must
compute in order to determine their preferences. The computing resources of the
agents are restricted so that the agents must carefully decide how to best use their
computation. I present a fully normative model of deliberation control, the perfor-
mance profile tree. Not only does this structure provide full normativity in theory, but
I also show that in real-world applications it improves deliberation control compared
to other methods.

This thesis proposes explicitly incorporating the deliberation actions of agents
into a game-theoretic framework. I introduce a new game-theoretic solution concept,
the deliberation equilibrium. This provides one with an approach for understanding
and analyzing the strategic use of computation. Using this approach I analyze dif-
ferent negotiation protocols for computationally limited agents. I study two different
bargaining settings where agents try to reach an agreement on whether to coordi-
nate their actions or act independently. I provide algorithms that agents can use to
determine their optimal strategies (including computing actions). I also study the
impact that computing limitations have on bidding agents in auctions, where agents
must compute or gather information in order to determine their valuations for the
items being auctioned. I show that commonly used auction mechanisms all suffer
from agents having incentive to strategically deliberate, that is use computing re-
sources in order to (partially) determine their competitors’ valuations. This means
that mechanisms which had dominant strategy equilibria for rational agents are no
longer strategy-proof for computationally limited agents.
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Finally, this thesis studies the problem of designing mechanisms specifically for
computationally-limited agents. My goal is to build mechanisms which have good de-
liberative properties as well as good economic properties. I propose a set of properties
that I believe that mechanisms should exhibit, but then show that it is impossible
to design interesting mechanisms which satisfy all the properties. While this result
is negative, in that it is an impossibility result, it does provide direction for future
research.
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Chapter 1

Introduction

We are currently witnessing the growth of a new paradigm of open computer systems,

as embodied by the Internet. The heterogeneous participants in these systems (which

we will call agents) have their own private information and goals which may not

coincide with the goals of the system designer, nor is it reasonable to assume that

a system designer is able to force the agents to behave in some socially optimal

way. In particular, these agents are often self-interested, and will act in their own

self-interest, irrespective of the desires of others. Interesting applications with these

properties include selfish routing scenarios [99], mobile ad-hoc networks [2, 33], as

well as innumerable ecommerce applications. These scenarios can all be modeled as

competitive multiagent systems.

The frameworks of game theory and mechanism design have exerted significant

influence on formal models of multiagent systems by providing tools for designing

and analyzing systems in order to guarantee certain desirable outcomes. However,

many game theoretic models assume idealized rational decision makers interacting in

prescribed ways. In particular, the models often ignore the fact that in many multia-

gent systems the agents are not fully rational. Instead they are computational agents

who have time and cost constraints that stop them from optimally determining their

utilities from the game and which strategies are best to follow. The game theoretic

equilibria which describe how rational agents should behave do not, generally, remain

the same for these (bounded-rational) agents. This creates a potentially hazardous

gap in game theory and automated negotiation since computationally bounded agents

are not motivated to behave in the desired way. The aim of this dissertation is to

bridge this gap.
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1.1 Thesis Statement

In this thesis we are trying to understand the impact that computational limitations

have on the interactions of agents in multiagent environments. In particular, we

are interested in the strategic behavior of computationally limited agents in different

market mechanisms, in order to understand how these agents differ from the clas-

sic, fully-rational, agents and whether it is desirable and possible to design market

mechanisms which take into account the limitations of the participating agents.

The thesis statement is:

By using a fully normative model of bounded rationality it is possible to

incorporate agents’ deliberation actions into game theoretic settings.

• This allows us to formally study the impact that limited deliberation

resources has on agents’ strategic behavior.

• This provides a foundation for game theory and mechanism design

for computationally limited agents.

1.2 Approach

This thesis has been heavily influenced by the ideas of Herbert Simon. As Simon

pointed out, real economical players have limited time and powers of deliberation.

He proposed the study of bounded rationality to investigate

“... the shape of a system in which effectiveness in computation is one of

the most important weapons of survival.” [113]

Additionally, in correspondence with Ariel Rubinstein, Simon said

“In my version of bounded rationality we look for answers to questions

like:... What are the economic consequences of participants using certain

procedures and not others? In what respects are current economic mod-

els deficient in the assumptions they make about reasoning procedures?”

(February 7, 1997) [101].
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Our approach develops and combines ideas from both a resource-bounded reason-

ing framework and a game theoretic framework. We model agents as being deliber-

ative, in that at the meta-level they have to carefully reason about their preferences

and goals. We assume that the resources used in this reasoning process are limited,

forcing the agents to carefully weigh their alternatives and make tradeoffs concerning

how they will deliberate.

We explicitly model the agents’ deliberation decisions in a game-theoretic frame-

work. This allows us to rigorously study how computational limitations affect the

strategic behavior of agents as they interact with others. In particular, it provides us

with a systematic way to compare computationally limited agents with fully rational

agents, as well as providing us with a foundation for designing negotiation protocols

explicitly for these agents.

1.2.1 Motivating Example

To make the presentation more concrete, we now discuss an example domain where

our methods are needed. We use this example throughout the thesis.

Consider a distributed vehicle routing problem with two geographically dispersed

dispatch centers that are self-interested companies (Figure 1.1) [106] [109]. Each

center is responsible for certain tasks (deliveries) and has a certain set of resources

(vehicles) to take care of them. So each agent—representing a dispatch center—has

its own vehicles and delivery tasks.

Each agent’s problem is to minimize transportation costs (driven mileage) while

still making all of its deliveries while honoring the following constraints:

• Each vehicle has to begin and end its tour at the depot of its center (but neither

the pickup nor the drop–off locations of the orders need to be at the depot).

• Each vehicle has a maximum load weight and maximum load volume constraint,

• Each vehicle has a maximum route length (prescribed by law).

• Each delivery has to be included in the route of some vehicle.

This problem is NP-complete.
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Figure 1.1: Small example problem instance of the distributed vehicle routing problem.

Assume that an additional task is to be allocated to a dispatch center via some

auction mechanism. Before agents’ can formulate and submit bids, they must first

know how much they value the new task. This requires determining the cost of incor-

porating the new task into the current delivery schedule which potentially requires

solving two NP-complete problems (one without the new task, and one with the new

task). The resources available to the agents to solve these problems may be limited.

For example, the agents may have deadlines by which they require a solution or com-

puting may be costly. Each agent must carefully consider the tradeoff they are willing

to make on solution quality given the restrictions on their computing resources, as

well as accounting for the fact that their computed solutions will also influence what

sort of bids they can submit to the auctioneer.

1.3 Contributions

The key contributions of this thesis are

A normative model of bounded rationality. We present a model for a computa-

tionally-limited agent, endowing it with a fully normative deliberation control

tool, the performance profile tree. This performance profile representation al-

lows an agent to condition its deliberation decisions on any and all information

deemed to be important. We show that this approach can be used in practice,
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leading to superior deliberation control decisions.

A formal game theoretic model for computationally limited agents. We

propose incorporating the deliberation actions of agents in a game theoretic

setting. We introduce the deliberation equilibrium solution concept and are

able to understand and analyze the strategic use of computation.

Analysis of different negotiation mechanisms. Using the deliberation equilib-

rium solution concept, we analyze different standard negotiation mechanisms in

order to understand the impact that computational limitations have on agents’

strategies in such settings.

Mechanism design principles for computationally limited agents. We

propose a set of desiderata for mechanisms designed for computationally limited

agents. In particular, we argue that mechanisms should have good economic

properties and good deliberative properties. We show that these desiderata are

orthogonal, and that tradeoffs in design must be tolerated.

1.4 Guide to the Thesis

At a high level this thesis can be divided into two sections. In the first section we

discuss bounded rationality and present our model of bounded rationality - in the form

of computationally limited agents. This work is pertinent to both single-agent settings

and multiagent settings. In the second section we move to multiagent settings. We

show how we are able to model computationally limited agents in a game theoretic

setting, and use this approach to study and design negotiation mechanisms.

Here we outline the chapters in the rest of thesis.

Section I: Computationally Limited Agents

Chapter 2 - Modeling Computationally Limited Agents. In this chap-

ter we present our model of a computationally limited agent. We describe

the role of computation, limitations on an agent’s computing resources,

and provide policies an agent can follow in order to effectively use its com-

puting resources in the best possible way. In particular, we introduce the

performance profile tree; a fully normative deliberation control method.
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Chapter 3 - Improving Deliberation Control: Experimental Results.

In this chapter we present a series of experimental results to show that the

performance profile tree, introduced in Chapter 2, is a feasible approach

for deliberation control for computationally limited agents, and that it

outperforms other commonly used deliberation control methods.

Section II: Negotiating and Computationally Limited Agents

Chapter 4 - Game Theory and Mechanism Design. In this chapter

we provide an overview of important game theory and mechanism design

concepts.

Chapter 5 - Game Theory for Computationally Limited Agents. In

this chapter we show how a model for a computationally limited agent

can be placed in a game theoretic setting. We define strategies so that

they include the deliberation actions of the agents as well as any other (i.e.

negotiation) actions. We introduce the deliberation equilibrium solution

concept and discuss new strategic behavior which arises with computation-

ally limited agents.

Chapter 6 - One-to-One Negotiation: Bargaining. In this chapter we

study bargaining protocols where two computationally limited agents must

try to reach agreement on whether to coordinate their actions to execute

a joint plan, or whether to act independently. We study the equilibria of

different scenarios, and present algorithms that agents can use to determine

their best strategies.

Chapter 7 - One-to-Many Negotiation: Auctions. In this chapter we

study common auction protocols in order to understand the the implica-

tions that computational limitations have on bidding agents. We show

that computationally-limited agents exhibit new forms of strategic behav-

ior, and that auction mechanisms, which in classical settings have desirable

game theoretic properties, lose these properties.

Chapter 8 - Mechanism Design for Computationally Limited Agents.

In this chapter we look at the problem of designing allocation mechanisms

for computationally limited agents in order to obtain desirable strategic

properties, as well as desirable deliberative properties. We propose a set

of reasonable desiderata which we believe that mechanisms should have,

but show that in many situations these requirements are too strong.
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Chapter 9 - The Social Cost of Selfish Computing. In this chapter

we investigate what happens at a system wide level when the participants

in a system are computationally limited. We introduce the miscomputing

ratio, a way of measuring the system-wide impact of selfish computing. We

show that by allowing agents to freely choose their computing strategies,

the social welfare can be adversely affected.

Chapter 10 - Related Work. In this chapter we discuss other work that has

been done in the intersection of artificial intelligence, theoretical computer

science, and economic theory, and comment on how it is similar and how

it differs from the work presented in this dissertation.

Chapter 11 - Conclusions. We conclude our work with a review of our con-

tributions along with a discussion of future work in the area of mechanisms

for computationally limited agents.

Much of the work in this thesis has appeared in the following papers:

• Kate Larson and Tuomas Sandholm, Bargaining with limited computation: De-

liberation equilibrium, Artificial Intelligence, 132(2): 183-217. A short early

version appeared in AAAI-2000 [59].

• Kate Larson and Tuomas Sandholm, Costly valuation computation in auctions,

In the proceedings of the Eighth Conference of Theoretical Aspects of Knowl-

edge and Rationality (TARK VIII), July 2001 [60].

• Kate Larson and Tuomas Sandholm, Bidders with hard valuation problems, In

the proceedings of the First International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2002), July 2002. (Poster paper) [62].

• Kate Larson and Tuomas Sandholm, An alternating offers bargaining model for

computationally limited agents, In the proceedings of the First International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS

2002), July 2002 [61].

• Kate Larson and Tuomas Sandholm, Miscomputing Ratio: The social cost of

selfish computing, In the proceedings of the Second International Joint Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS 2003), July

2003 [63].
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• Kate Larson and Tuomas Sandholm, Strategic deliberation and truthful revela-

tion: An impossibility result, In the proceedings of ACM Conference on Elec-

tronic Commerce (EC 04), May 2004 (short paper) [65].

• Kate Larson and Tuomas Sandholm, Using performance profile trees to improve

deliberation control, In the proceedings of the Nineteenth National Conference

on Artificial Intelligence (AAAI-2004), July 2004 [66].

• Kate Larson and Tuomas Sandholm, Experiments on deliberation equilibria in

auctions, In the proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2004), July 2004 [64].
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Chapter 2

Modeling Computationally-Limited

Agents

“Life is not long, and too much of it must not pass in idle deliberation

how it shall be spent.”

Samuel Johnson

In many AI applications, bounded rationality is simply a feature that has to

be dealt with. The realities of limited computational resources and time pressures

caused by real-time environments mean that agents are not always able to optimally

determine their best decisions and actions. The field of artificial intelligence has long

searched for useful techniques for coping with this problem. Herbert Simon advocated

that agents should forgo perfect rationality in favor of limited, economical reasoning.

His thesis was that “the global optimization problem is to find the least-cost, or best-

return decision, net of computational costs” [113]. In our work we follow the Simon

thesis. We assume that agents are deliberative in that they determine how to best

use their computational resources by “careful consideration with a view to decision”

(Oxford English Dictionary).

In this chapter we present a model for computationally limited, deliberative agents,

and show how these agents can effectively use their limited resources. The rest of this

chapter is organized as follows. We first provide an overview of the AI literature

which study the idea of agent rationality and address the problem of how agents

should behave when they are bounded-rational. We then present our model of a
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computationally limited agent. We describe the role that computing plays in settings

where agents are not endowed with full information about all possible states of the

world (Section 2.2). We then describe the properties which define a computationally

limited agent and explain the set of tools available to the agent so that it can effectively

use its resources (Section 2.3). We finally introduce the performance profile tree, a

fully normative deliberation control method (Section 2.4).

2.1 AI and Bounded Rationality

As a field, AI has long studied the problem of what does it mean to be rational. The

earliest models of rationality in artificial intelligence had a logical definition [72, 81].

In this “logicist” approach to rationality it was assumed that an agent could be

completely defined in terms of its beliefs and goals, and that an agent was rational

if it satisfied one of its goals entailed by its beliefs. In particular, the emphasis

of the research was on normative reasoning, while ignoring the possible complexity

of implementing such an approach. In particular, McCarthy believed that it was

important to first focus on “logical adequacy” before “heuristic adequacy” [103], and

the goal of the agent was to reason using a consistent set of axioms, and generate

provably correct plans

The decision sciences have heavily influenced models of rationality in artificial

intelligence. Economic rationality provides formal tools for understanding reasoning,

and gives a rigorous framework for analyzing utility and choice, in that it is possi-

ble to define an agent as being rational if it chooses the action with the maximum

expected utility. A possible weakness of this approach is that it focuses entirely on

what action was taken, and ignores the process of how an action was chosen. Good

was the first to discuss the idea of explicitly integrating the cost of inference into the

classical framework of rationality [38]. He distinguished between two types of ratio-

nality: Type I and Type II. His Type I rationality refers to the classical axiomatic

approach to decision theory. It ignores any costs associated with the inference pro-

cess. However, Type II rationality takes into the account the costs of reasoning. An

agent is considered to be Type I rational if, in the end, the results satisfy the agent’s

preferences, while an agent is Type II rational if it maximizes its expected utility,

taking into account the cost of deliberation. Herbert Simon was also very interested

in the effects that deliberation costs had on rationality. He differentiated between
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substantive and procedural rationality. He defined substantive rationality to be the

situation where the agent does the right thing, according to the agent’s preferences.

Procedural rationality, on the other hand, is similar to Good’s Type II notion of ra-

tionality, in that a behavior is considered to be procedurally rational when it is the

outcome of some strategy of reasoning.

Russell and his coauthors outlined four candidates for the formal definition of

intelligence [102, 103, 105]:

1. Perfect rationality: the classic notion of rationality in economics, where an agent

acts in such a way as to maximize its utility.

2. Calculative rationality: the notion of rationality where it is possible to achieve

perfect rationality if the decision process is perfect and has infinite resources.

3. Meta-level rationality: the notion of rationality where the system optimizes over

the meta-level decision making process. This is also Type II rationality.

4. Bounded optimality: the notion of rationality where an agent behaves as well

as possible given its computational resources [47].

It has been argued that the goal of artificial intelligence is to design agents which

are bounded optimal. However, we (as well as other researchers) believe that by fo-

cusing on meta-level rationality it is possible to design intelligent agents. Meta-level

rationality has been well studied by artificial intelligence researchers, and consider-

able work has focused on developing normative models that prescribe how a bounded-

rational agent should behave (see, for example [36, 46, 102]) as well as applying these

approaches in different applications (see, for example [39, 44]). This is a highly non-

trivial undertaking, encompassing numerous fundamental and technical difficulties.

As a result, most of those methods resort to simplifying assumptions such as myopic

deliberation control [6, 104, 105], conditioning the deliberation control on hand-picked

features [104, 105], or resorting to asymptotic notions of bounded optimality [103].

Our work, as presented in the rest of this chapter, is also focused on techniques

for achieving meta-level rationality. In particular, we assume that the agents have

computational limitations which the meta-level accounts for when determining what

the best action to take is. However, our work differs from previous research in this

area, as we require a fully normative deliberation control procedure. This desire for

full normativity arises since we wish to include meta-level rationality into multiagent
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systems, where the meta-level actions of one agent can influence the choice of actions

of other agents.

2.2 The Role of Computation

In this section we describe the role that computation plays in settings where agents

are not endowed with full information about all possible states of the world. In

particular, we are interested in settings where agents must actively go out and gather

information or solve nontrivial problems in order to decide how to best act.

We assume that an agent has some set of resources, T , that it can use to solve

various problems. By allocating these resources on different problems an agent is

returned information that it can use. We will assume that agents are using their

computational resources to get solutions to various problems. Consider the following

example. Assume that an agent is responsible for finding a route for a delivery truck,

given a set of deliveries. While the agent can easily come up with a feasible delivery

route (for example, by just making the deliveries in any random order), by allocating

additional computing time to the problem, the agent may be able to come up with a

shorter route. That is, by computing the agent changes its knowledge about the best

route available.

We use a feature tuple to denote the information that the agent has about a

problem after devoting t steps of computation to it.

Definition 1 (Feature Tuple). The feature tuple for an agent i after allocating t

computing steps on problem j is

f ji (t) = (sol(t), inst) ∈ S × I

where S is the set of features which describe the problem solutions, and I is the set of

features which describe the different problem instances with which the agent may be

working with. We denote the set of all possible feature tuples for problem j after agent

i has allocated t computing steps on it by F j
i (t). This set may contain more than a

single feature tuple due to different problem instances as well as nondeterminism in

the algorithms.

The feature tuple differentiates between features of the solution and features of the

problem instance. To illustrate the difference, consider again, a traveling salesman
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Figure 2.1: An example traveling-salesman problem, with current route A-G-D-E-

B-C-F-A. A solution feature is the length of the route. A problem instance feature

is the location of the cities.

problem (Figure 2.1). The set of solution features for a traveling-salesman problem

contains such information as the length of the computed tour and the order in which

the cities are visited. The set of problem instance features contains such information

as the location of each city, and any constraints on the order in which they must be

visited.

Given a feature tuple, an agent is able to extract information to determine the

quality of having a solution with that feature vector.

Definition 2 (Quality Function). A quality function, qji for agent i and problem

j is a mapping from the space of feature tuples F j
i (t) to the real numbers. That is

qji : F ji (t) 7→ R ∀t.

We will often refer to the quality of the solution as the value of the solution and

will sometime use the notation vji (f(t)). Additionally, we will often use the notation

qji (t) when it is clear from the context which feature tuple is meant.

In our model an agent uses its resources to change (its knowledge about) solution

quality. We differentiate between an agent refining its information about the solution

solution and improving the quality of its solution.

In the refining model an agent’s computing does not change the solution. Instead,

it is assumed that the problem or instance has some real ŝ which is initially unknown

to the agent. As the agent devotes resources to the problem, its knowledge about the

solution changes, while the real solution ŝ remains unchanged.
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Definition 3 (Refining). Let Fj be the set of all possible feature tuples for problem

j. Let Prj be the probability distribution over Fj. Assume that

• problem j has some true, fixed, unchangeable solution ŝj,

• agent i initially knows probability distribution Prj,

• as agent i allocates t resources to problem j it collects information info(t), where

info(t− 1) ⊆ info(t), and

• let Pr
info(t)
j denote the probability distribution over Fj defined such that

Pr
info(t)
j (ŝj = sj) = Pr

info(t−1)
j (ŝj = sj|info(t))

for sj ∈ Fj, where Pr
info(0)
j = Prj.

Computing refines for agent i if there exists some t such that

1. info(t− 1) ⊂ info(t), and

2. Pr
info(t−1)
j 6= Pr

info(t)
j .

We draw the readers attention to the fact that it is possible that an agent may

gather information in a time step which does not change its knowledge about the true

solution of the problem. For refining to occur, we merely insist that at some time step

an agent collects information which causes it to update its probability distribution

over Fj.
Refining a solution is a general process so we provide an example in order to make

it more concrete. Assume that an agent is only interested in learning how much it

must pay in order to get a certain quality of service. Assume that the agent knows

that the true price, p̂, is an integer drawn uniformly from the interval [p1, p2]. That is,

the probability that price of the service is p is 1
p2−p1+1

. By allocating resources to the

problem, the agent may be able to change the bounds on the interval. For example,

it may collect information indicating that the real price actually lies in the interval

[p1, p
′
2] where p′2 ≤ p2. The agent would then update its probability distribution so

that it is consistent with the new information, thus deducing that the probability

that the real price is p is 1
p′2−p1+1

if p ∈ [p1, p
′
2] and 0 otherwise. It should be noted

that the agent did not change the price of the service by computing.

In the improving model, the agent actively changes the solution quality by allo-

cating resources to the problem. In particular, the solution quality improves.
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Definition 4 (Improving). Computing improves the solution quality for agent i on

problem j, if after computing for t time steps the solution vector was f ji (t) and for

any ∆t > 0,

qji (f
j
i (t+ ∆t)) ≥ qji (f

j
i (t)).

When there are no restrictions on computing resources, an agent will always wish

to allocate more resources to a problem since the solution quality is guaranteed to

improve.

To summarize, there is a subtle difference between computing to improve solution

quality and computing to refine a solution. If computing is used to improve solution

quality then the solution actually changes. If computing is used to refine the solution,

then the actual solution does not change, instead the agent’s knowledge about the

solution changes.

2.2.1 Examples

In this section we present two examples where an agent uses computing resources in

order to change the quality of its solution. The first example involves a scenario where

computing improves solution quality, while the second example illustrates refining of

solution quality.

Consider the network problem in Figure 2.2. The goal of the agent in charge of

the network is to find a route from the source to the destination such that the latency

is minimized. An agent can start with some initial path, and then search to find

paths with lower latency. As the agent computes (searches) on the problem, it has

the potential of finding better routes, thus improving the solution.

In some applications agents can gather or refine information. Consider an agent

who is responsible for organizing a holiday for a user. Initially, the agent has an esti-

mate as to what airfare, food and lodging will cost. As the agent gathers information

it improves its estimate as to what the total cost may be, as well as what days of

the week the trip can be taken. The information refining done by the agent does

not change the actual lowest cost of the airfare and hotel. However, the information

gathering actions do change the information the agent has available to it about the

cost of the trip.
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Figure 2.2: An agent is responsible for routing packets from a source to a destination.

Its goal is to minimize latency.

2.3 Computationally Limited Agents

In the previous section (Section 2.2) we described the roles that computation can play

in different agent settings. In this section, we define what we mean by a computa-

tionally limited agent, and describe the tools that agents can use to effectively use

their computational resources.

A computationally limited agent i is defined by

〈Ti, costi(),Ai,PP i〉

where

• Ti denotes the agent’s computing resources,

• costi() is a cost function which represents the agent’s computational limitations,

• Ai is the set of algorithms used by the agent, and

• PP i is the set of performance profiles, that is, tools used by the agent in order

to make effective decisions on how to use its computing resources.
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Figure 2.3: A computationally limited agent.

Figure 2.3 illustrates a computationally limited agent. In the rest of this section we

describe each aspect of a computationally limited agent.

2.3.1 Computing Resources and Cost Functions

We represent the computing resources of an agent i by Ti. As mentioned in Section 2.2,

an agent uses these resources to change its knowledge about the solution quality of

different problems. This may involve physically changing the solution of a specific

problem (improving solution quality) or it may involve learning more about some

solution without changing it (refining solution quality).

If the agent had unlimited computing resources then it would be able to fully

discover the optimal solution to any problem. However, this is rarely the case. Lim-

itations on the resources restrict the choices available to agents, who must carefully

decide how to best use the resources available to them.

We assume that it is possible to allocate computing resources across m different

problems, and let ti = (t1, . . . , tm) ∈ Tmi denote the situation where the agent has

allocated tj computing steps to problem j, for 1 ≤ j ≤ m. To model restrictions on

an agent’s computing power, we use cost functions.

Definition 5 (Costly Computing). An agent i has costly computing if there ex-

ists a cost function, costi, such that

costi : Tmi 7→ R+ ∪ {0}.
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A fully rational agent, one who in theory has no computational restrictions, has

a cost function of the form cost(t) = 0 ∀t. In general we place no restrictions on

the cost functions of an agent. However, there is one class of functions which are of

particular interest. These limited computing functions allow an agent to compute for

free up to a certain limit, after which all computing must stop.

Definition 6 (Limited Computing). An agent i has limited computing if it has

a cost function costi, and a limit D such that for all (t1, . . . , tm) ∈ Tmi

costi((t1, . . . , tm)) =

{
0 if

∑m
j=0 tj ≤ D

∞ otherwise

Situations where agents have hard deadlines naturally fit into the limited comput-

ing model. The more general costly computing model can naturally cover situations

where there is some cost associated with each step of computing. For example, an

agent may have to pay for CPU cycles, and can incur a fixed cost, K, for each cycle

used. The cost function for such a scenario would be

costi((t1, . . . , tm)) = K
m∑

j=1

tj.

As a side note, when there is only one problem upon which an agent can compute,

we abuse notation and use cost(t) to denote the situation where an agent has allocated

t resources on the one problem.

2.3.2 Anytime Algorithms

We assume that agents have algorithms which allow them to make an explicit tradeoff

between the agents’ computing resources and the quality of the solution returned by

the algorithm. In particular, we assume that the agents’ algorithms are anytime.

There are two defining properties of an anytime algorithm:

1. An anytime algorithm can be stopped at any point and will return a solution,

and

2. The more computing resources allocated to an anytime algorithm, the better

the returned solution quality.
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While anytime algorithms naturally capture the improving model of computation,

they also model the refining scenario in that they can be viewed as returning infor-

mation to the agent at any point in time.

All anytime algorithms fall into one of two categories; interruptible algorithms or

contract algorithms.

Definition 7 (Interruptible Algorithm). [124] Let A be an anytime algorithm

and let qA(t) be the quality of the solution returned by the algorithm at time t. Algo-

rithm A is an interruptible algorithm if for each problem instance, for all time t, t′,

if t′ ≥ t then

qA(t′) ≥ qA(t).

Clearly, interruptible algorithms have the anytime property since by definition

they can be stopped at any time step and will return a usable solution, and the qual-

ity of the solution improves if additional time is allocated. What makes interruptible

algorithms particularly desirable is that the running time need not be specified in

advance and can still return valid solutions when interrupted unexpectedly. Exam-

ples of interruptible algorithms include most iterative refinement algorithms such as

simulated annealing and heuristic repair [75].

Contract algorithms also have the anytime property but do not have the same

flexibility of interruptible algorithms.

Definition 8 (Contract algorithm). [124] Let A be an anytime algorithm and let

qA(t) be the quality of the solution returned by the algorithm at time t. Algorithm A
is a contract algorithm if

1. For any time t, t′, t′ ≥ t and t, t′ were announced prior to running algorithm A,

qA(t′) ≥ qA(t)

and,

2. For any time t∗ 6= t, t′, if algorithm A is stopped at time t∗ there is no guarantee

as to the quality of qA(t∗).

While contract algorithms have the anytime property, the time allocation must be

done before the algorithm begins. Given a time allocation t, the algorithm will return
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the best solution possible. However, if the algorithm is stopped before t then there

is no guarantee that even a usable solution will be returned. Tree search algorithms

can often be modeled as contract algorithms. For example, RTA* uses a predeter-

mined search horizon that is determined from a given time allocation [54]. While the

algorithm will return a result for any time allocation, if it is interrupted early then it

is not guaranteed to have found a solution. Trivially, interruptible algorithms can be

converted into contract algorithms. It is also possible to convert a contract algorithm

into an interruptible algorithm [124].

2.3.3 Performance Profile Based Deliberation Control

We assume that agents are deliberative with respect to how they use their computing

resources in order to get different solutions. The goal of an agent is to choose how

to allocate its computing resources so as to maximize its utility. We define utility of

agent i after allocating t resources to algorithm A to be

U(qA(t), t) = qA(t)− cost(t)

where qA is the solution quality returned by algorithm A after t resources have been

allocated, and cost(t) is the associated cost. In particular, an agent wants to choose

the allocation t∗ such that

t∗ = arg max
t

[qA(t)− cost(t)].

This problem is illustrated in Figure 2.4. While solution quality increases, at some

point the cost associated with improving the solution quality becomes too high com-

pared to the possible gain in solution quality, so that further computation has little

value. The optimal computing allocation depends on several factors: the quality of

the solution, the prospect of further improvement in solution quality, the current

state of the environment, and the cost of computing. While anytime algorithms are

models that allow for the trading off of computational resources for solution quality,

they do not provide a complete solution for an agent. Instead, anytime algorithms

are paired with a meta-level control procedure which helps in determining how long

to run an algorithm, and when to stop and act with the solution obtained. There are

two components to the meta-level control procedure:

1. The performance profile which describes how computation changes the solution

quality, and
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Figure 2.4: A typical view of anytime algorithms [32, 43, 45, 104].

2. The deliberation control policy which determines how to use the information

from the performance profile to make decisions about how to allocate computing

resources.

In the rest of this thesis we will use the term performance profile to refer to both

the descriptive and prescriptive parts of the meta-level control procedure. While the

performance profiles for some algorithms can be determined by analysis of the algo-

rithm itself (for example, Newton’s method where the error in the result is bounded

by the number of iterations can be considered to be a performance profile as it pro-

vides information about the solution for allocations of computing resources), for most

algorithms structural analysis is too difficult, if not impossible, for practical purposes.

Instead, performance profiles are generally created by collecting statistics from pre-

vious runs of the algorithm on different problem instances or simulations.

There are different ways of representing performance profiles. At a high level,

performance profiles can be classified as either static or dynamic. Static performance

profiles only allow the agent to make computing decisions before running the anytime

algorithm. Dynamic performance profiles allow the agent to make online decisions,

using information from the progress of the algorithm. In the rest of this section we

describe commonly used static and dynamic performance profiles. In the next sec-

23



optimum

solution quality

computing resources

optimum

solution quality

computing resources

Figure 2.5: Performance profiles. The performance profile on the left is an idealized

performance profile. The performance profile on the right illustrates a more realistic

performance profile for an anytime algorithm.

tion we introduce the performance profile tree, a fully normative deliberation control

procedure.

Static Performance Profiles

At a high level, a static performance profile of an algorithm A is simply a function

which maps computing resources to solution quality:

PPA : T 7→ Q

where Q is the space of solution quality.

In an ideal world, the performance profile of an anytime algorithm can be repre-

sented as a single curve, showing the solution quality as a function of allocated com-

puting resources (Figure 2.5 left). However, in reality, there is often variance in each

run of the algorithm, caused by differences in different inputs as well as randomization

in the algorithm itself (Figure 2.5 right). Instead of using the idealized performance

profile, an expected performance profile is often used. Statistics are collected from

previous runs of the algorithm on different input. This produces a probability distri-

bution over solution quality for each allocation of computing resources, which allows

the agent to determine the expected solution quality for every allocation t.

Definition 9 (Expected performance profile). [124] An expected performance

profile, EA, for algorithm A is a function from computing to the expected quality of
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solution. That is

EA : T 7→ Q

where

EA(t) =
∑

q(t)

q(t)PrA,t(q(t))

where q(t) is solution quality at t and PrA,t(q) is the probability that algorithm A
produces solution quality q after t computing steps.

Although it is sometimes possible to represent a performance profile by a param-

eterized function [12, 48], performance profiles are commonly represented as tables of

discrete values, where computing resources are discretized into a finite number of time

steps, t0, . . . , tn where t0 is the start time of the algorithm and tn is the maximum

running time of the algorithm. Solution quality is also discretized into a finite number

of levels q0, . . . , qm, where q0 is the lowest quality level and qm is the highest quality

level. Figure 2.6 is an example of such a table. Each table entry (qi, tj) contains

the probability of getting solution quality qi given that tj computing resources was

allocated to the algorithm. These probabilities are derived from statistics collected

from earlier runs of the algorithm on different problem instances.

An agent uses a static performance profile to determine how to best allocate

its computing resources. In particular, the agent wishes to solve the optimization

problem

max
t

[qA(t)− cost(t)].

Since the agent must work in expectation, it solves

max
t

[
∑

q(t)

q(t)PrA,t(q(t))− cost(t)].

This decision is made before the algorithm is started, as static performance profiles

do not have enough flexibility to allow for online deliberation control decisions. They

are ideally suited for contract algorithms.

Dynamic Performance Profiles

While static performance profiles help agents decide how to allocate their comput-

ing resources before starting an anytime algorithm, better stopping policies may be

25



0.3 0.010.050.01

0.98 0.5 0.2

0.2

0.2

0.1 0.25

0.1

0.4

0.2 0.09

0.4

0.3

0.2 0.5

0.2

0.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.3

0.1

0.1

computing resources

0.01

t0 t1 t2 t3 t4 t5

q0

solution quality

q1

q2

q3

q4

q5

q7

q6

Figure 2.6: An example performance profile. The table lists discrete probability

distributions over solution quality levels, for each discrete time step. An agent uses

the table to compute the expected solution quality for each time allocation.

achievable by using information about the current run of the algorithm on the current

problem instance. This leads to the introduction of dynamic performance profiles.

Definition 10 (Dynamic performance profile). Let Q(t) be the set of all quali-

ties possible at time t, i.e.Q(t) = {q(t)}. A dynamic performance profile of anytime

algorithm A is

PPA : Q(t)× {∆t} 7→ {Pr(q(t+ ∆t)|q(t),∆t) : q(t+ ∆t) ∈ Q(t+ ∆t)}

where Pr(q(t + ∆t)|q(t),∆t) is the probability of having solution quality q(t + ∆t)

after allocating t+∆t computing resources, given that at resource usage t the solution

quality was q(t).

That is, given a current solution quality at t and some predefined amount of

computing resources ∆t, a dynamic performance profile produces a probability dis-

tribution over solution quality at t + ∆t. The power of the dynamic performance

profile is that it allows an agent to base its deliberation decision on current informa-

tion about the algorithm’s performance. As the agent monitors the progress of the

algorithm, it can use this information to make better informed decisions. Figure 2.7

represents a dynamic performance profile. The table on the left shows the agents

probability distributions over solution quality at different time steps. As always, this

probability distribution is based on historic data from previous runs of the algorithm.

26



0.30.01

0.98

0.01

0.5 0.2

0.2

0.2

0.1

0.5

0.2

0.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.3

0.1

0.1

0.05

0.1 0.2

0.30.25

0.4 0.4

0.2 0.09

0.01

computing time

q4

solution quality

t2t0 t1 t3 t4 t5

q0

q1

q2

q3

q5

q6

q7

0.30.01

0.98

0.01

0.5 0.2

0.2

0.2

0.1

0.5

0.2

0.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.3

0.1

0.1

0.0

q4

t2t0 t1 t3 t4 t5

q0

q1

q2

q3

q5

q6

q7

computing time

0.54

0.33

0.13

0.0

0.0 0.0

0.45

0.33

0.22

solution quality

Figure 2.7: A dynamic, table-based performance profile. By monitoring the solution

quality of the algorithm as it executes can improve the deliberation control policy of

an agent.

Assume that at time t2 the anytime algorithm that the agent was using had solution

quality q4, as indicated by the circled entry in the table. Since the agent is using

an anytime algorithm, it knows that if more time is allocated to the algorithm, the

solution quality will not decrease. Therefore, as shown in the table to the right in

Figure 2.7, the agent can update (using Bayes Rule) the probability distributions over

solution quality at future time steps given that it has solution quality q4 at time t2,

and then make a new deliberation decision about whether to allocate more computing

resources or to stop and act with the solution quality at hand. There are a collection

of techniques which agents use to develop deliberation policies coupled with dynamic

performance profiles. These range from a simple myopic approach where, after up-

dating the probability distributions over future solution quality given current solution

quality, an agent makes a decision based on one-step of lookahead, to more complex

techniques involving dynamic programming [43]. To illustrate how these performance

profiles work, we describe dynamic programming deliberation control [43]. The goal

is to determine a deliberation policy π(qi(tk), tk) which specifies what deliberation

action an agent should take for every resource usage tk and solution quality qi(tk)).

The deliberation actions available to the agent are {stop, continue for one step}. We

denote a deliberation action by d ∈ {stop, continue for one step}. A deliberation

policy is found by optimizing the following value function

V (qi(t), t) = max
d

{
qi(t)− cost(t) if d = stop∑

j Pr(qj(t+ ∆t)|qi(t),∆t)V (qj(t+ ∆t), t+ ∆t) if d = continue
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Figure 2.8: A table-based dynamic performance profile. While it is possible to con-

dition deliberation decisions on solution quality, information about the path is lost.

For example, to reach the shaded square, an algorithm could have followed path A or

path B. If it followed path B then it appears more likely that the solution quality would

continue to improve at a faster rate than it path A had been followed. This is not

captured in the table-based representation.

to determine the policy

π(qi(t), t) = arg max
d

{
qi(t)− cost(t) if d = stop∑

j Pr(qj(t+ ∆t)|qi(t),∆t)V (qj(t+ ∆t), t+ ∆t) if d = continue

This dynamic programming approach, coupled with appropriately discretized table-

based performance profiles, leads to optimal deliberation policies, assuming that the

solution quality completely satisfies the Markov property (Theorem 2 in [43]). In par-

ticular, as long as the probability distribution of future quality depends only on the

current “state” of the anytime algorithm then it is optimal, where in the table-based

performance profile, the “state” of the anytime algorithm is assumed to be current

solution quality. However, there are circumstances when this assumption does not

hold due to limitations with the table-based representation. For example, the table-

based representation can not capture information such as the path of the algorithm

(Figure 2.8), and thus this information can not be used by the agent when creating

its deliberation control policies.

28



A

0

B

C

4

P (C|B) E

4

H 5

D

2

P (D|B)

F

6

P (F |D)

I 10P (I|F )

J 7

GP (G|D)

K 15

L 20

Figure 2.9: An agent’s performance profile tree. The numbers represent the solution

quality associated with each node. The edges from any node has a weight equal to

the probability of reaching the child, given that the parent was reached. Each edge

corresponds to the act of taking one computing step. For example, it take 3 computing

steps to reach node F from node A.

2.4 Performance Profile Trees

While the performance profile deliberation control methods described in this chapter

so far have been to shown to work well in practice, none of them are fully normative.

Instead, they rely on simplifying assumptions such as assuming that an algorithm’s

performance can be deterministically predicted, or assuming that the path of the algo-

rithm does not depend on the run of the instance so far. This lack of full normativity

arises due to the performance profile representations. In this section, we propose

using a tree structure which allows an agent to condition its deliberation decisions

on all information available (such as solution quality, problem instances, path of the

algorithm). We call this performance profile a performance profile tree (Figure 2.9)

We start by describing a performance profile tree created using only solution

quality information. In following sections we expand the definition of the performance

profile tree to include conditioning on additional information stored in feature vectors,

as well as describing how performance profile trees can handle uncertainty arising from

different sources.
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Each node in the tree (solution node) stores solution quality obtained for a certain

time allocation. We use the notation V (n) to denote the value or solution quality of

node n. Each edge in the tree has a weight. The weight of edge e connecting nodes

n and n′ is the probability of getting the solution quality stored in node n′ after one

more computing step, given that the current solution quality is stored in node n.

That is, the weight of edge e, is defined to be weight(e) = P (n′|n). Each edge in the

tree represents the act of taking one computing step. This is useful in determining

how much computational effort is required to obtain a certain solution quality. For

example, to obtain solution quality stored at node n, an agent must compute for

the number of steps equal to the number of edges in the path to reach node n. We

denote this by time(n). It should be noted that the information stored at node n

can occur multiple times in the tree. However, each occurrence is represented by a

different node, which represents a unique path. Because of this, an agent may be able

to expend different amounts of computational effort to get the same solution quality.

The tree is constructed by collecting statistical data from previous runs of the

algorithm on different problem instances. The more finely solution quality and time

are discretized, the more accurate deliberation control is possible. However, with

more refined discretization, the number of possible runs increases (it is O(mD) where

m is the number of levels of solution quality and D is depth of the tree), so more

runs need to be seen to populate the space. A tighter bound can be obtained once

the observation is made that the values of the solutions are always increasing and

can be represented as step functions. The bound is O(Nd) where N is the number of

leaves in the tree and d is the average depth [6].1 Furthermore, the space should be

populated densely to get good probability estimates on the edges of the performance

profile trees. Each run is represented as a path in the tree. As a run proceeds along

a path in the tree, the frequency of each edge of that path is incremented, and the

frequencies at the nodes on the path are normalized to obtain probabilities. If the

run leads to a value for which there is no node in the tree, the node is generated and

an edge is inserted from the previous node to it.

One advantage of the performance profile tree is that it automatically supports

conditioning deliberation decisions on the path of the algorithm. Each node in tree

corresponds to a unique path that the algorithm may have followed. The performance

1The number N can be quite large, however, it is always bounded by the number of instances

used to populate the performance profile tree since each algorithm run can insert at most one path

into the tree.
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profile tree that applies given a path of computing is the subtree rooted at the current

node n. This subtree is denoted by Ti(n). If an agent is at a node n with quality q(n),

then when estimating how much additional deliberation would increase the valuation,

the agent need only consider paths that emanate from node n. The probability,

P (n′|n), of reaching a particular future node n′ in Ti(n) is simply the product of the

probabilities on the path from n to n′. The expected solution after allocating t more

time steps to the problem, if the current node is n, is

∑
P (n′|n) · q(n′)

where the sum is over the set {n′|n′ is a node in Ti(n) which is reachable in t time

steps}.
Using a performance profile tree, an agent can determine an online deliberation

policy which specifies whether an agent should take an additional computing step,

given the current solution quality. We denote the deliberation action of agent as

d ∈ {stop, continue for one step}. The deliberation policy for an agent using a

performance profile tree is constructed by optimizing the following rule:

V (n, t) = max
d

{
q(n)− cost(t) if d =stop∑

n′ P (n′|n)V (n′, t+ 1) if d =continue

where n′ ∈ {nodes in T (n) reachable in 1 computing step}, to determine the deliber-

ation policy

π(n, t) = arg max
d

{
q(n)− cost(t) if d =stop∑

n′ P (n′|n)V (n′, t+ 1) if d =continue

This policy is computed offline, but produces a policy that is used online. The

agent monitors the solution quality as it deliberates, and then uses the deliberation

policy to determine what action should be taken in the next step.

2.4.1 Conditioning Deliberation on Additional Features

The performance profile tree additionally allows an agent to condition its deliberation

decisions on any and all features of the solution and problem that the agent deems to

be important. In particular, the nodes in the tree can store the quality of the solution

along with the feature tuple which describes the solution and problem instance in
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Figure 2.10: Two example performance profile trees for a scheduling application. The

performance profile tree on the left was created using only data on the length of the

schedule (the optimization problem is to find the shortest schedule, thus lower numbers

signal better solution quality). The performance profile tree on the right was created

using solution quality data along with information on the slackness in the schedule.

This can lead to larger performance profile trees. For example, if the agent initially

has a solution associated with node A, then in one computing step an agent may

obtain a schedule of length 2. However, there are two solutions of length 2 which have

different slackness in them. Thus, they are represented by two distinct nodes in the

tree (C and D).

more detail. For example, in a scheduling domain both the length of the current

schedule (quality) and the slackness in the schedule can serve as indicators as to

whether further computing on the problem will lead to improvements. These two

sources of information can both be stored in a node. Each node n with quality

V (n) and slackness sl(n) uniquely defines a path the algorithm followed on a problem

instance. The agent can use this information in formulating its deliberation policies

as it need only consider the subtree rooted at the current node, n, when estimating

how further computing will change the solution quality and slackness.

While including both solution quality and feature tuples in the solution nodes

of the performance profile trees provides an agent with more information that it

can use when making deliberation decisions, it does come at a cost to the size of the

performance profile trees. Including additional information only increases the number

of nodes in the tree as illustrated in Figure 2.10.
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2.4.2 Modeling Sources of Uncertainty
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Figure 2.11: An augmented performance profile. This performance profile captures

the situation where there is uncertainty in which problem instance is being computed

on (random node A), in which algorithm is being used (random nodes B and C), and

when algorithm 1 is used, whether the random number drawn is 1 or 0 (random nodes

D and M). To reach node F the agent must compute 1 time step, while to reach node

L the agent must compute for 2 time steps.

The performance profile tree discussed so far in this dissertation is ideally suited

for single-agent settings. It captures uncertainty that an agent running a single algo-
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rithm on a single problem might encounter, such as randomness in both the algorithm

run and the problem instance, and allows the agent to make optimal deliberation de-

cisions using this information. However, in multiagent settings, as will be introduced

in Chapter 5, agents may need explicit models of where uncertainty arises in the

problems that other agents are computing on, since the deliberation decisions of one

agent can determine the best deliberation decisions of another agent. A problem that

an agent can face is that it might not know how the uncertainty in the computing

problem of a competitor agent resolved. Instead, if uncertainty is explicitly captured

in the performance profile, the agent can emulate possible runs of a competitor’s al-

gorithm, and thus make better deliberation control decisions. While we delay the

description of the details of how an agent might use performance profile information

of another agent until Chapter 5, we now describe how uncertainty information can

be explicitly modeled in the performance profile tree.

We can explicitly capture uncertainty in our deliberation control framework by

using an augmented performance profile tree. An example of an augmented perfor-

mance profile tree is presented in Figure 2.11. An augmented performance profile

tree is simply a performance profile tree together with random nodes which represent

the occurrence of randomness which make it impossible for an agent to predict which

particular path its computation will follow, even if the problem instance is known

completely. We use random nodes to explicitly model uncertainty for multiagent

settings in the following situations:

1. when randomized algorithms are used,

2. when there there is uncertainty as to which algorithm is being used, and

3. when there is uncertainty about the actual problem instance being computed

on.

Random nodes are inserted into the performance profile whenever there is only

probabilistic information about some event which is unrelated to the actual problem

instance, and which are outside of the agent’s control. The edges emanating from

a random node each represent the occurrence of a specific event, and are labeled

with the probability that the event occurred. The weight of each edge is zero since

we assume that the randomization or lack of knowledge does not correspond to a

computing or deliberating action taken by the agent.
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If a randomized algorithm is being used, then there is uncertainty as to what

the path of the algorithm on any given problem instance will be, since it is not

known in advance what random numbers will be provided by the random number

generator. Random nodes can be used whenever randomization occurs, and the edges

emanating from a random node each correspond with a particular occurrence of a

random number. Each edge is labeled with the probability that its corresponding

number was generated by the random number generator. An agent is unable to

predict in advance which number will be drawn, but it can emulate the occurrence

of different draws in order to help in deciding whether to continue deliberating on

a problem or not. That is, whenever it encounters a random node in the tree when

it is determining its deliberation policy, the agent can actively choose a “random”

number and thus learn what sort of solution quality it could obtain if the random

number chosen occurred in practice. By doing so, the agent can determine optimal

deliberation control policies for each possible random number. As mentioned earlier,

this can be a useful strategic tool when there are multiple strategic agents. We refer

the reader to Chapter 5 for a detailed description.

Random nodes are also used whenever an agent needs to collect information about

the computing results of another agent, but is unsure which algorithm is being used,

or which problem instance is being computed on. Each edge emanating from a random

node corresponds to a specific algorithm (or problem instance) and are labeled with

the probability that the algorithm (problem instance) is the one of interest. An agent

can use this representation exactly as in the random number setting, by first assuming

a particular algorithm or problem instance and determining the deliberation policy

for that instance, and then afterwords, combining all deliberation policies into a larger

one, conditional on whether the uncertainty is eventually resolved.

2.4.3 Stochastic and Deterministic Performance Profile Trees

Performance profiles trees can have different structures, depending on the data used

to generate them. At times the structure of the tree can be used in order to simplify

the agents’ deliberation control problems. We make a distinction between stochastic

performance profiles and deterministic performance profiles. Stochastic performance

profiles are trees where there is at least one node with a branching factor greater than

one. This means that before an agent does any computing there is some uncertainty

as to the path of the algorithm. This can make determining the optimal deliberation
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Figure 2.12: A deterministic performance profile tree.

control policy difficult as the uncertainty must be taken into account. Stochastic per-

formance profiles can occur both when an agent is computing to improve its solution

quality or refine its solution quality due to either randomization in the algorithm it-

self, lack of knowledge about some aspect of the problem instance, etc. Performance

profile trees in Figures 2.9, 2.10 and 2.11 are all stochastic.

Deterministic performance profile trees are branches (Figure 2.12). Each node has

at most one child and there is no uncertainty as to what results computing will bring.

This makes determining the optimal time allocation for a problem trivial as an agent

need only solve the optimization problem

arg max
t

[V (n(t))− cost(t)]

where n(t) is the (unique) node reachable by computing for t time steps. If agents

compute to refine its solution then an agent with a deterministic performance profile

has no incentive to compute at all on the problem as there is no uncertainty to resolve.

However, if an agent computes to improve solution quality, then it still has incentive

to compute if its performance profile is deterministic since computing changes the

solution. Thus, even though an agent with a deterministic performance profile may

know with certainty that in t time steps it will have a solution with quality V (n(t)),

unless the agent actively computes it will not obtain this solution. For example, in a

traveling-salesman domain, there is a difference between knowing that it is possible

to find a route of length k, and actually knowing the route.

2.4.4 Full Normativity of the Performance Profile Tree

The performance profile tree is a fully normative deliberation control method. It can,

in theory, capture all possible features that an agent may use to make deliberation

control decisions. For example, the feature tuple stored in each solution node contains

information about the problem instance and solution features which the agent can

monitor and base deliberation decisions. Path information is maintained automati-

cally due to the tree structure, and thus can also be used by agents when creating
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deliberation policies. Finally, the performance profile tree is also flexible enough to

capture sources of uncertainty arising from randomization in the algorithms, as well

as uncertainty from other sources.

In many single-agent applications, the full normativity of the performance profile

might not be required, as reasonable performance might be achievable even when

simplifying assumptions are made. However, in multiagent systems, any deviation

from full normativity has the potential to be catastrophic. In self-interested multi-

agent systems, the system designer attempts to create incentives so that the agents

will behave in a socially beneficial way. If the models of the agents are not fully

normative, then the designer may not be able to predict all the factors which agents

base their actions on, and may fail to provide the correct incentives for the agents to

act as desired. Even if the deviation of the agent is slight, since the actions taken

by one agent can influence the action choice of other agents in the system, the final

outcome may be arbitrarily far from expected.

2.5 Summary

In this chapter we introduced a model of bounded rationality in the form of computa-

tionally limited agents. We assume that agents must actively expend computational

resources in order to determine their knowledge and preferences in the world. How-

ever, the agents have limitations on their computational resources which restricts

their abilities to optimally compute or gather all the information that they might

need. Instead, agents are deliberative in that they carefully decide how to best use

their computing resources in the best possible way. To help in this decision process,

agents use anytime algorithms coupled with performance profiles – statistical models

that show how solution quality changes with the allocation of computing resources.

We described different types of performance profiles, and explained how they are used

to create deliberation control policies. In particular, we introduced the performance

profile tree - a fully normative deliberation control method.
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Chapter 3

Improving Deliberation Control:

Experimental Results

In the previous chapter we introduced our model of a computationally limited agent

and described the set of deliberation tools the agents could use in order to effectively

use their computing resources. In particular, we introduced the performance profile

tree, a fully normative deliberation control method for making stopping decisions for

anytime algorithms.

While the full normativity of the performance profile tree is of theoretic interest,

it has been unclear as to whether it is of practical use. In particular, it has been

unclear as to whether this more sophisticated deliberation control approach created

substantially better deliberation policies compared to other, simpler, commonly used

approaches.

In this chapter we experimentally study the use of performance profile trees to

determine their practicality and usefulness for helping a single agent decide when to

stop its anytime optimization algorithm. On data generated from black-box anytime

problem solvers, we illustrate that it is feasible to use performance profile trees in

hard real-world problems. We also show that this leads to more accurate deliberation

control decisions than the use of performance profile representations presented in

prior literature. Furthermore, we illustrate that the performance profile tree can

easily handle conditioning its deliberation policies on (the path of) other solution

features, in addition to solution quality.

The rest of the chapter is organized as follows. We first review the performance
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profile methods used in the experiments. We then provide a description of the setup

of the experiments. We describe the problem domains which we use and explain how

the performance profiles are created. This is followed by a presentation and discussion

of the results obtained from the experiments.

3.1 Decision-theoretic Deliberation Control

We begin by providing a quick overview of the deliberation control methods tested

in this chapter. We refer the reader to Chapter 2 for a more detailed description of

computationally limited agents and performance profile deliberation control.

We assume that agents have anytime algorithms and time-dependent utility func-

tions. That is, the utility of an agent depends on both the solution quality obtained,

and the amount of time spent getting it,

U(q(t), t) = q(t)− cost(t)

where q(t) is the utility to the agent of getting a solution with quality q(t) and cost(t)

is the cost incurred of computing for t time steps.

Anytime algorithms are paired with a meta-level deliberation controller that de-

termines how long to run the anytime algorithm, that is, when to stop computing and

act with the solution obtained. The deliberation controller’s stopping policy is based

on a performance profile: statistical information about the anytime algorithm’s per-

formance on prior problem instances. This helps the deliberation controller project

how much (and how quickly) the solution quality would improve if further compu-

tation were allowed. Performance profiles are usually generated by prior runs of the

anytime algorithm on different problem instances.

One of the performance profiles we study is what we call the performance profile

curve (PPCurve) [12, 48]. Figure 3.1(a) is an example of a PPCurve. It is created by

averaging, at each predefined time point, the solution quality obtained on prior runs

(on different problem instances). The PPCurve is a static performance profile in that

the amount of time allocated to the algorithm is determined before any computation

takes place. Given the curve, along with a cost function, cost(t) the deliberation

policy of the agent is to allocate time t∗ to the algorithm, where

t∗ = arg max
t

[q(t)− cost(t)] .
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Figure 3.1: Three performance profile representations: a) performance profile curve

(PPCurve), b) performance profile table (PPTable), and c) a performance profile tree

(PPTree).

The second performance profile deliberation control procedure we study is the

performance profile table (PPTable) (Figure 3.1(b)). A performance profile table is a

table of discrete values which specify a discrete probability distribution over solution

quality for each (predefined) time step. This is coupled with dynamic programming

to produce (online) deliberation control policies. This is described in detail in the

previous chapter.

The performance profile tree, (PPTree), is a way to capture all information avail-

able for making stopping decisions [59]. In a PPTree, the nodes represent solutions

at given time points, while each edge carries the probability that the child node is

reached given that the parent was reached. Figure 3.1(c) exemplifies one such tree.

A PPTree can support conditioning on any and all features that are deemed to be of

importance for making stopping decisions since the nodes can hold information about

solution quality and any other solution feature that may be important. A key feature

of the PPTree is that it automatically supports conditioning on the path so far, which

we believe is an important predictor of solution quality improvement.

3.2 Experimental Setup

The goal of the experimental work presented in this chapter was to determine;

1. Whether the performance profile tree based deliberation control method is fea-

sible in practice, and
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2. Whether in practice such sophisticated deliberation control is better than ear-

lier decision-theoretic deliberation control methods that relied on simpler per-

formance profile representations.

In the first set of experiments, we demonstrate both the feasibility and improved

decision-making of the PPTree. In these experiments we use solution quality as the

only feature stored in a tree node In the second set of experiments, we show that it

is feasible to use additional problem features to make deliberation decisions.

Our deliberation control method is domain independent and domain problem

solver independent—yielding a clean separation between the domain problem solver

(a black box) and the deliberation controller. This separation allows one to de-

velop deliberation control methodology that can be leveraged across applications. To

demonstrate this we conduct experiments in two different application domains using

software which was developed independently from the deliberation controllers.

3.2.1 Example Domain Problem Solving Environments

We conducted our experiments in two different domain environments – vehicle routing

and single-machine manufacturing scheduling.

Vehicle Routing

In the real-world vehicle routing problem (VRP) in question, a dispatch center is

responsible for a certain set of tasks (deliveries) and has a certain set of resources

(trucks) to take care of them [106, 109]. Each truck has a depot, and each delivery

has a pickup location and a drop-off location. The dispatch center’s problem is to

minimize transportation cost (driven distance) while still making all of its deliveries

and honoring the following constraints:

• each vehicle has to begin and end its tour at its depot,

• each vehicle has a maximum load weight and maximum load volume constraint,

and

• each delivery has to be included in the route of some vehicle.
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To generate data for our experiments, an iterative improvement algorithm was

used for solving the VRP. The center initially assigned deliveries to trucks in round-

robin order. The algorithm then iteratively improved the solution by selecting a

delivery at random, removing it from the solution, and then reinserting it into the

least expensive place in the solution (potentially to a different truck, and with pickup

potentially added into a different leg of the truck’s route than the drop-off) without

violating any of the constraints. Each addition-removal is considered one iteration.

We let the algorithm run until there was no improvement in the solution for some

predefined number, k, of steps. Figure 3.2 shows the results of several runs of this

iterative improvement algorithm on different instances used in the experiments, with

k = 250. The algorithm clearly displays diminishing returns to scale, as is expected

from anytime algorithms.

A problem instance was defined to be a set of deliveries. The problem instances

were generated using real-world data collected from a dispatch center that was re-

sponsible for 15 trucks and 300 deliveries. We generated training and testing sets

by randomly dividing the deliveries into a set of 210 training deliveries and 90 test-

ing deliveries. To generate a training (testing) instance, we randomly selected (with

replacement) 60 deliveries from the training (testing) set.

Manufacturing Scheduling

The second domain is a single-machine manufacturing scheduling problem with sequence-

dependent setup times on the machines, where the agent’s objective is to minimize

weighted tardiness

∑

j∈J
wjTj =

∑

j∈J
wj max(fj − dj, 0),

where Tj is the tardiness of job j, and wj, fj, dj are the weight, finish time, and

due-date of job j.

In our experiments, we used a state-of-the-art scheduler developed by others as

the domain problem solver [19]. It is an iterative improvement algorithm that uses

a scheduling algorithm called Heuristic Biased Stochastic Sampling [16]. We treated

the domain problem solver as a black box without any modifications.

The problem instances were generated according to a standard benchmark [68].

The due-date tightness factor was set to 0.3 and the due-date range factor was set to
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Figure 3.2: Runs of the iterative improvement algorithm for the vehicle routing prob-

lem on different problem instances. The x-axis if the number of iterations of the

algorithm and the y-axis is the total distance traveled by all trucks.

0.25. The setup time severity was set to 0.25. Each instance consisted of 100 jobs to

be scheduled. We generated the training instances and test instances using different

random number seeds.

3.2.2 Constructing Performance Profiles

Performance profiles encapsulate statistical information about how the domain prob-

lem solver has performed on past problem instances. To build performance profiles,

we generated

• 1000 instances for the vehicle routing domain. We ran the algorithm on each

instance until there was no improvement in solution quality for 250 iterations.

• 10000 instances for the scheduling domain. We ran the algorithm until there

was no improvement in solution quality for 400 iterations.
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From this data, we generated the performance profiles using each of the three

representations: PPCurve, PPTable, and PPTree. Like PPTable-based deliberation

control, PPTree requires discretization of computation time and of solution quality

(otherwise no two runs would generally populate the same part of the table/tree,

in which case no useful statistical inferences could be drawn). The PPCurve does

not require any discretization on solution quality, so we gave it the advantage of no

discretization.

Computation time was discretized the same way for each of the three performance

profile representations. We did this the obvious way in that one iteration of each

algorithm (routing and scheduling) was equal to one computation step. For the

solution quality we experimented with different discretizations. We present results

where the scheduling data was discretized into buckets of width 100, and the vehicle

routing data was discretized into buckets of width 50000. For the vehicle routing

domain there turned out to be 1943 time steps, and 551 buckets of solution quality.

For the scheduling domain there turned out to be 465 time steps, and 750 buckets of

solution quality. The results obtained from these discretizations were representative

of the results obtained across all the tested discretizations.

At first glance it may seem that this implies performance profile trees of size

5511943 for the trucking domain and 750465 for the scheduling domain. However, most

of the paths of the tree were not populated by any run (because there are “only” 1000

(or 10000) runs, one per instance). We generated the tree dynamically in memory,

such that only the populated parts were stored. This way, we could be assured that

the number of edges in the tree for trucking was at most 1943 × #instances (because

each instance can generate at most one new edge for each compute step). Similarly,

for scheduling it was 465 × #instances.

In practice, the trees were easy to generate, but they are too large to display.

Therefore, in Figure 3.3 we present a subtree of a performance profile tree generated

from the same 10000 scheduling instances, but with a much coarser discretization:

buckets of width 5000 on solution quality.

3.2.3 Cost Functions

In all the experiments we used cost functions of the form C · t where C was an

exogenously given cost of one step of computing and t was the number of time steps
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Figure 3.3: Subtree of a performance profile tree generated from instances from

the scheduling domain. In each node there are three entries. The first entry is the

(discretized) solution quality. The second entry is the probability of reaching the node,

given that its parent was reached. The final entry represents the stopping policy. An

entry labeled “continue” means that the agent should compute another step, while an

entry labeled “stop” means that the agent should stop all computation and act with

the solution at hand.

computed. We studied the behavior of deliberation control methods under a wide

range of values of C. For the vehicle routing domain we used C ∈ {0, 10, 100,

500, 1000, 5000, 10000, 25000, 35000, 50000, 100000, 1000000} In the scheduling

domain we used C ∈ {0, 1, 10, 50, 100, 500, 1000, 5000, 10000, 100000}. These value

choices span the interesting range: at the bottom end, no controller ever stops the

deliberation, and at the top end, each controller stops it immediately.

3.3 Comparison of Performance Profiles

In the first set of experiments we tested the feasibility of PPTree-based deliberation

control and compared its decision-making effectiveness against other performance-

profile representations (PPCurve and PPTable).

To evaluate the performance, we generated N = 500 new test instances of the

trucking problem and N = 5000 new test instances from the scheduling domain.

Each of the three performance profile representations was evaluated on the same test

set.
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For each test instance we determined the optimal stopping point, topt
i , given that

the entire path of the run was known in hindsight. (This stopping point is optimistic

in the sense that it does not use discretization of solution quality. Furthermore, real

deliberation controllers do not have hindsight at their disposal.) This allowed us to

determine the optimal value that the agent could have possibly gotten on instance i

in hindsight:

Uopt(i) = qi(t
opt
i ) + C · topt

i

where qi(t) is the solution quality after computing for t time steps, and C is the

exogenously given cost of one step of computing. In both application domain, lower

solution quality is better. Therefore, we add the cost function, instead of subtracting

it in the utility equation.

We evaluated the three performance profile representations P ∈ {PPTree, PPT-

able, PPCurve} separately on the test instances, recording for each instance the

stopping point tPi that deliberation controller, P , imposed and the resulting value.

That is, we stored

UP(i) = qi(t
P
i ) + C · tPi .

We determined how far from optimal the resulting value was as a ratio

RP
i =

Uopt(i)

UP(i)
.

Then,

RP =
1

N

N∑

i

RP
i

gave an overall measure of performance (the closer R is to 1.0, the better). Figures 3.4

and 3.5 display the results.

When computation was free or exorbitantly expensive compared to the gains avail-

able from computing, then all the deliberation control methods performed (almost)

optimally. With free computing, the deliberation control problem is trivial: it is sim-

ply best to compute forever. Similarly, when computation is extremely expensive, it

is best to not compute at all. For the midrange costs (i.e., the interesting range), the

deliberation controllers performed quite differently from each other. The PPTree out-

performed both the PPCurve and the PPTable. In the vehicle routing experiments,
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Figure 3.4: Performance of the different performance profiles in the vehicle routing

domain. Values closer to 1.0 (optimal) are better. PPTree outperforms both PPCurve

and PPTable.

the PPTree was, at worst, 93.0% of optimal (when C = 35000) and often performed

better (Figure 3.4). In the scheduling experiments, the PPTree was always within

99.0% of optimal (Figure 3.5).

In the scheduling domain, the PPCurve performed reasonably well with RP rang-

ing from 0.95 to 1.00. In the vehicle routing domain, its performance was not as good,

with RP ranging from 0.68 to 1.00. A possible explanation for the difference is that in

scheduling there was less variance (in the stopping time) among instances. Therefore,

in the scheduling domain the optimal stopping point for the average algorithm run

was a better estimate for any given run, compared to the routing domain.

The PPTable had the widest variability in behavior. For both low and high costs

it performed well in both application domains. However, for midrange costs it per-

formed poorly, as low as 0.07 in scheduling and 0.13 in vehicle routing. In particular,

the PPTable appeared to be overly optimistic when determining a deliberation con-

trol policy, as it often allowed too much computing. It was not able to differentiate
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Figure 3.5: Performance of the different performance profiles in the scheduling

domain. Values closer to 1.0 are better. PPTree out performs both PPTable and

PPCurve.

between algorithm runs which had flattened out and ones in which additional improve-

ment in solution quality was possible. While the dynamic programming approach used

in the PPTable produces an optimal policy if solution quality improvement satisfies

the Markov property, it appears to not be robust when this property does not hold.

While the PPTree performs better than PPCurve and PPTable with respect to

absolute difference in performance, it is also important to determine whether there is

statistical significance to the results. Using a Fisher sign test, since we were interested

only in whether one performance profile made better deliberation control decisions

and not in the magnitude of the difference in resulting solution quality, we compared

the PPTree against both the PPCurve and the PPTable [121]. Table 3.1 reports

the results of the test for the VRP. Table 3.2 reports the results of the test for the

scheduling domain.

We found in both the trucking and scheduling domains that the dominance of

the PPTree was truly significant, resulting in p−values less than 10−13 for all costs
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Cost n+ n− p-value

0 0 0 –

10 500 0 6.11e-151

100 500 0 6.11e-151

500 500 0 6.11e-151

1000 500 0 6.11e-151

5000 500 0 6.11e-151

10000 500 0 6.11e-151

25000 500 0 6.11e-151

35000 493 7 9.21e-136

50000 466 34 4.12e-98

100000 493 7 9.21e-136

1000000 0 0 –

Cost n+ n− p-value

0 0 0 –

10 332 168 1.9e-13

100 432 68 8.34e-66

500 423 77 7.07e-59

1000 466 34 4.12e-98

5000 500 0 6.11e-151

10000 499 1 3.06-e148

25000 498 2 7.65e-146

35000 498 2 7.65e-146

50000 498 2 7.65e-146

100000 497 3 1.27e-143

1000000 0 0 –

Table 3.1: Sign test results comparing PPTree against PPCurve (left) and PPTree

against PPTable (right) in the vehicle routing domain. The first column in each table

lists the cost constant C. The second column reports the number of test instances

where RPPTree > RPPCurve (left table) or RPPTree > RPPCurve (right table). The third

column in each table reports the number of instances where RPPTree < RPPCurve (left

table) or RPPTree < RPPCurve (right table). The final column in each table reports the

computed p−value.

where there was any difference in the performance between the performance profiles.

When costs were very low (C = 0) or very high (C = 106 in the trucking domain and

C = 105 in the scheduling domain), all performance profiles performed optimally, and

thus, identically.

We also experimented using different solution quality and time step discretizations.

The general patterns seen in Figures 3.4 and 3.5 were again observed. Furthermore,

we ran experiments where smaller training sets (of as low as 50 instances) were used.

While the performance of all of the deliberation controllers was adversely affected,

the relative ranking of their performance did not change.

In summary, this first set of experiments showed that PPTree-based deliberation

control is feasible in practice and outperforms the earlier performance profile repre-

sentations. It also showed that the method is close to optimal even when solution
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Cost n+ n− p-value

0 0 0 –

1 500 0 6.11e-151

10 495 0 1.96e-149

50 495 5 1.58e-139

100 499 1 3.06e-148

500 477 23 1.77e-111

1000 460 40 1.5e-91

5000 458 42 1.85e-89

10000 0 0 –

100000 0 0 –

Cost n+ n− p-value

0 0 0 –

1 497 3 1.27e-143

10 499 0 1.22e-150

50 499 0 1.22e-150

100 499 0 1.22e-150

500 499 1 3.06e-148

1000 490 0 6.26e-148

5000 355 0 2.73e-107

10000 177 1 9.34e-52

100000 0 0 –

Table 3.2: Sign test results comparing PPTree against PPCurve (left) and PPTree

against PPTable (right) in the scheduling domain. The first column in each table lists

the cost constant C. The second column reports the number of test instances where

RPPTree > RPPCurve (left table) or RPPTree > RPPCurve (right table). The third column

in each table reports the number of instances where RPPTree < RPPCurve (left table) or

RPPTree < RPPCurve (right table). The final column in each table reports the computed

p−value.

quality and computation time are discretized and conditioning is done only on the

path of the solution quality (instead of additional/all possible predictive features).

3.4 Conditioning on Additional Solution Features

Using the PPTree as our performance profile representation, we experimented using

additional solution features to help in making deliberation control decisions. In the

vehicle routing domain, in addition to solution quality (total distance driven) we also

allowed conditioning on the following features:

1. variance across trucks in the number of tasks,

2. variance across trucks in the truck’s average weight to max-weight ratio, and

3. variance across trucks in the truck’s average volume to max-volume ratio.
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Figure 3.6: Performance of the PPTree when deliberation-control decisions are con-

ditioned on both solution quality and an additional solution feature (variance across

trucks in number of tasks, variance across trucks of the average volume to max-volume

ratio, and variance across trucks in the average weight to max-weight ratio.

The results are reported in Figure 3.6. Using the additional solution features did

lead to slight improvement in the quality of stopping decisions (a 3.0% absolute

improvement for C = 25000; less improvement for other values of C). Similarly, in

experiments conducted in the scheduling domain where slackness in the schedule was

used as an additional feature, there was only slight improvement in the deliberation

control results.

While the gains from using additional problem instance features in our experi-

ments seem small, it must be recalled that the accuracy from conditioning on only

solution quality was close to optimal already. For example when C = 25000 the over-

all performance improved from 94.0% to 97.0% of optimal. Using a Fisher sign test

to analyze the significance of improvement in solution quality when using additional

features, we found that for all features there was little significant improvement. Ta-

ble 3.3 contains the results of the sign test on the stopping decisions made by the
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PPTree+Weight compared to the PPTree using no additional problem features. We

hypothesize that a ceiling effect is in action. In summary, the second set of experi-

ments demonstrated that performance profile trees can support conditioning on (the

path of) multiple solution features in practice.

Cost n+ n− p-value

10 272 212 0.00726

100 269 218 0.0234

500 268 220 0.0333

1000 249 239 0.684

5000 245 243 0.964

10000 230 257 0.239

25000 245 242 0.928

35000 246 242 0.892

50000 240 244 0.992

100000 163 70 10−9

Table 3.3: Sign test results comparing PPTree+Weight against PPTree (left) in the

vehicle routing domain. The first column in each table lists the cost constant C. The

second column reports the number of test instances where RPPTree+Weight > RPPTree.

The third column in each table reports the number of instances where RPPTree+Weight <

RPPTree . The final column in each table reports the computed p−value.

3.5 Discussion

The results of our experiments illustrate that the performance profile tree is a powerful

deliberation control tool. In this section we analyze some of the results in more detail

and discuss how and whether the results of these experiments can be generalized.

While we expected the PPTree to outperform both the PPCurve and the PPTable

in the experiments, we were surprised that the PPTable performed so poorly compared

with the other two approaches. We hypothesize that there were two contributing

factors to its poor performance; ignoring path information and overfitting the data.
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Importance of Path Information

We believe that a major advantage of the PPTree is that it captures algorithm path

information in a natural way, and uses this information when computing deliberation

control policies. We observed that the PPTable tended to allocate too much time to

runs, instead of stopping early and saving the computing cost, leading us to believe

that it was not able to differentiate between runs where the path was promising

with respect to further improvement, and runs where it was unlikely that further

improvement in solution quality would take place. We use a small example to illustrate

the problem we believe the PPTable encountered.

Assume that three algorithm runs are used to build the performance profile, where

the runs are

1. q(0) = 0, q(1) = 4, q(2) = 8

2. q(0) = 0, q(1) = 4, q(2) = 7

3. q(0) = 0, q(1) = 2, q(2) = 2.

The performance profile tree generated from this data is presented in Figure 3.7. The

0

42
3

8
1
2

71
2

2
1
3 2

1

Figure 3.7: A small performance profile tree.

performance profile table generated from this data is presented in Figure 3.8.

Assuming that an agent has a cost function, cost(t) = t, the deliberation policy

generated by the performance profile tree would specify that if, after one step of com-

putation the solution quality is 2, the agent should stop computing on the problem.

However, the deliberation policy generated by the performance profile table is differ-

ent. If, after one step of computation, the solution quality is 2, the table is unable to

deduce that additional computation will not improve the solution quality. Instead,
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8.0 0 0 1
3

7.0 0 0 1
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6.0 0 0 0

5.0 0 0 0

4.0 0 2
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1.0 0 0 0

0.0 1 0 0
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4.0 0 0

3.0 0 0

2.0 1 1
3

8.0 0 1
2

7.0 0 1
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5.0 0 0

4.0 1 0

Figure 3.8: The table on the left is the performance profile of the agent before it does

any computing on the problem. The table in the center is the updated performance

profile if the agent has computed for one step and has a solution quality of 2, and the

table on the right is the performance profile of the agent after it has computed for one

step and has obtained utility 4.

due to its representation, it believes that in one more step of computation, solution

quality 4, 7 and 8 are all equally likely, and thus, produces a deliberation control

policy which states that the agent should continue computing on the problem. We

hypothesize that the PPTable encountered similar situations in the experiments we

conducted.

In our experiments the PPCurve performed quite well on average, even though it

used no information on the current run of the algorithm. In particular, the PPCurve

used no path information, which leads us to believe that while path information is

clearly useful in deliberation control, it does not provide the entire answer as to why

the PPTable performed so poorly. As to the strong behavior of the PPCurve, it

appears as though the training and testing data used in the experiments was reason-

able uniform so that calculating the best stopping point on average was an effective

deliberation control policy.

Overfitting

Overfitting is a concern in performance profile based deliberation control as it may

result in poorly performing deliberation control policies. In particular, overfitting

occurs when an algorithm adapts so well to a training set that randomizations in the
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training set are included in the model as being meaningful, when in reality they are

not. This can cause an algorithm to not perform as well on a test set. Often the

problem of overfitting is caused by having too many parameters in the model. Ideally

we want the performance profile to determine the underlying algorithm behavior,

rather than the random errors and noise present in data. If there are too many

parameters, the excess degrees of freedom allow the estimator to fit the random

components of the training data as well, even though these are not representative of

other data and fitting them makes the predictions worse. While there are ways of

avoiding overfitting, a rule of thumb is that the more parameters there are in a model,

the more training data is needed in order to avoid overfitting.

In theory, the performance profile tree has many more parameters than both the

performance profile curve and the table-based approach, and thus, at first glance,

would appear to be more likely suffer from the problem of overfitting. The perfor-

mance profile curve (PPCurve) is a T parameter model, where T is the maximum

number of time steps. For each time step, the only parameter of interest is the so-

lution quality at that time step. The number of parameters in the PPTable is, in

general, Q(T −1) where Q is the number of buckets solution quality has been divided

into and T is the maximum number of time steps captured in the table structure.1

This is because for any run of an algorithm, there are Q(T −1) possible entries (qi, tj)

in which the algorithm could have passed through. In the PPTree the number of

parameters is even larger as each leaf in the tree represents a path and thus a param-

eter. A naive estimate of the number of parameters is QT where Q is the number of

buckets of solution quality and T is the number of time steps. In reality, the number

of parameters in the PPTree model is slightly smaller. Experimentally, the PPTree

is coupled with anytime algorithms which improve solution quality over time. There-

fore, if solution quality is discretized into Q bins, then a node with solution quality

in bin q has at most Q− q children. Given any number of time steps, T , it is possible

to count the number of leaves, N(T ), in the tree. If T = 1 then

N(Q, T ) = Q

and for T > 1

N(Q, T ) =

Q∑

i1

i1∑

i2

. . .

iT−2∑

iT−1

iT−1.

1Recall that the PPTable and PPTree require that both solution quality and time are discretized,

while the PPCurve does not require that solution quality is discretized.
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While this formula is bounded above by QT , for many values of Q and T the actual

number of leaves can be computed quickly, and is less than QT . For example, if T = 7

then the number of leaves for any value of Q is

N(Q, 7) =
(Q+ 1)7

5040
+

(Q+ 1)6

360
+

(Q+ 1)5

72
+

(Q+ 1)4

36
+

7(Q+ 1)3

720

−11(Q+ 1)2

360
− Q

42
− 1

42
.

As mentioned in an earlier paragraph, one way to avoid overfitting is to ensure

that enough sample data has been used in building the performance profile. Since the

PPTree has more parameters than the PPTable and PPCurve, in theory, more data is

required to make it robust against overfitting. However, as users of the PPTree there

is another trick which can be used in order to reduce concerns with overfitting. By

appropriately discretizing solution quality it may be possible to reduce the amount

of noise in the data, while also reducing the number of parameters in the tree. This

is discussed in the next subsection.

If overfitting played the only role in the results of our experiments, then we would

have expected the deliberation-control decisions of the PPCurve to be better than the

PPTable and the PPTree. Instead, this was not the case as the PPTree outperformed

the two other approaches. While we do not have a definitive explanation for the be-

havior of the different deliberation control procedures, we believe that their behavior

was influenced by a variety of factors. First, we believe that path information was

key in the performance of the PPTree (as previously discussed), but that overfitting

also played an important secondary role, leading to the strong behavior of the robust

PPCurve.

Discretization of Solution Quality

In all the experiments described in this chapter, a uniform, coarse discretization of

solution quality was used. This was done in order to make computing the delibera-

tion control policies of the agents faster as well as allowing us to populate the tree

adequately with the data available. We conducted a small set of experiments where

we varied the discretization of the solution quality (both refining and coarsening it

for interesting cost functions), but observed no qualitative difference in performance.

We believe that an interesting research direction would be to study the importance

of discretization with respect to the quality of deliberation control policies. There are
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several complementary directions in which this work could lead. First, there is an

interesting tradeoff between coarseness of discretization, amount of data needed in

order for the performance profile trees to be useful in predicting algorithm behavior,

and the ability to quickly compute deliberation control policies. For example, coarse

discretizations lead to smaller trees which mean that computing deliberation policies

is not difficult. However, with too coarse a discretization, the predictive power of

the performance profile may be lost. On the other hand, a fine discretization would

result in larger trees, leading to potential overfitting problems, as well as causing the

overhead of computing the deliberation control policies to increase. Additionally, the

amount of data required to adequately populate a finely discretized tree could poten-

tially be enormous, reducing the usefulness of such an approach. A second direction

concerning discretization of solution quality would be to move away from using a

uniform discretization, and instead vary the discretization based on the number of

computing steps taken. For example, it may be useful to initially start with a coarse

discretization in order to roughly categorize the algorithm runs into high and low

solution quality runs, and then, only after computing for several steps, refine the

discretization in order to better reflect the data. Learning techniques may be useful

in determining optimal discretization levels.

Reliance on Algorithms

A possible question of the results reported in this chapter concerns whether behavior of

the performance profiles studied on this chapter rely heavily on the actual algorithms

used. Since we conducted the experiments using data and algorithms from two distinct

domains we are confident that our findings will generalize to a wide range of settings,

however it would be interesting to study what happens when a different style of

algorithm, other than iterative improvement algorithms, are used. Theoretically, the

PPTree is a generalization of both the PPTable and PPCurve. Thus, we believe that

at worst the behavior of the PPTree should reduce to one of the two other performance

profile representations, and whenever additional information (such as path) is useful,

the PPTree can take advantage of it.
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Multiple Features

In some of our experiments we used multiple features when determining the delibera-

tion control policies. However we observed no significant improvement in the quality

of deliberation control decisions made. We believe that we hit a “ceiling effect” in

that path of solution quality was the major determining indicator of improvement. It

is likely that in other domains conditioning on additional problem features will prove

to be a useful tool. We believe that an interesting research direction could be to learn

which features are useful in different domains, and thus tailor the performance profile

trees to the domains in order to get the maximum performance possible.

3.6 Summary

We proposed performance profile tree based stopping control of anytime optimization

algorithms as a theoretical basis for fully normative deliberation control. In this

chapter, we compared different performance profile representations in practice, and

showed that the performance profile tree is not only feasible to construct and use, but

also leads to better deliberation control decisions than prior methods. We conducted

experiments were deliberation control decisions were conditioned on (the path of)

multiple solution features (not just solution quality), again demonstrating feasibility

of that idea.
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Chapter 4

Game Theory and Mechanism

Design

In the first section of this dissertation we presented our model of a computationally

limited agent and described a normative model of deliberation control. In the rest

of this dissertation we assume that we are in a setting where there are multiple

computationally limited agents interacting. Using the tools provided to us by game

theory and mechanism design, we study the impact that computational limitations

has on the strategic behavior of agents in different settings. In this chapter we review

the game theory and mechanism design concepts needed for the rest of this thesis.

Game theory is a branch of mathematics which studies the interactions of agents

(sometimes referred to as players). Game theory has been successfully applied in

such diverse subjects such as economics, to evolutionary biology [114]. Mechanism

design is a sub-field of game theory and microeconomics which studies the problem of

implementing good system-wide solutions to problems when the outcome depends on

the actions of self-interested agents. Mechanism design has been successfully used in

many important applications such as electronic market design and resource allocation

problems.

In this chapter, we provide an overview of key game theoretic concepts, as well as

mechanism design principles used in the rest of this dissertation. This chapter is not

meant to be a complete overview of game theory and mechanism design. For a more

general introduction to game theory, Osborne and Rubinstein provide a good refer-

ence [86]. For an overview of mechanism design, we suggest Mas-Colell et al [71]. Var-
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ian describe the role of mechanism design in systems with computational agents [117],

while Papadimitriou discusses the use of game theory in interesting Internet applica-

tions [87].

4.1 Game Theory

A central feature of many multiagent interaction settings is strategic interdependence.

The utility of each agent depends not only on its own actions, but also on the actions

takes by other agents in the system. In particular, the actions that are best for an

agent to take may depend on actions other agents have already taken, or on actions

that the agent believes others have taken, or even actions the agent believes the others

will take at some future point in time. The mathematical tool used to study these

situations of strategic interaction is game theory.

4.1.1 Basic Definitions

A game consists of a set of agents, N , (|N | = n), a set of actions, Ai, for each agent

i ∈ N , and a set of outcomes, O. The key concept in game theory is a strategy.

Definition 11 (Strategy). A strategy for agent i, denoted by si, is a contingency

plan that specifies the action an agent should take at every point in the game when it

has to take an action.

Strategies can be either pure or mixed. Pure strategies are deterministic plans.

A mixed strategy, written s̃ i ∈ ∆(Si) is a probability distribution over the set of all

pure strategies for agent i, Si.

A strategy profile, s = (s1, . . . , sn), is a vector specifying one strategy for each

agent in the game. As is standard, we use the notation s = (si, s−i) to denote the

strategy profile where the strategy of agent i is si and s−i = (s1, . . . , si−1, si+1, . . . , sn).

The strategy profile, s, determines how the game is played and thus which outcome,

o(s) ∈ O, occurs. Each agent i tries to play a strategy such that its preferred outcome

occurs. We assume that agents’ preferences are expressed in terms of utility functions.

Definition 12 (Utility Function). The utility function of agent i, ui(·), is a map-

ping from outcomes to the real numbers;

ui : O 7→ R.
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Player 2
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Figure 4.1: A normal form game. The two agents can either play strategy A or

strategy B. The payoffs for each strategy profile are listed in the table. For example,

the upper left hand corner entry corresponds to both players choosing strategy A. In

this case, the utility of Player 1 is 1 and the utility Player 2 is 2.

An agent i prefers outcome o1 to outcome o2 if ui(o1) > ui(o2). As is commonly

done, when it is clear from the context, we will use the notation ui(si, s−i) to denote

ui(o(si, s−i)).

The basic model of rationality in game theory is expected utility maximizers. An

agent will select a strategy that maximizes its expected utility, given its preferences

over outcomes, its beliefs about the strategies other agents are playing, and the struc-

ture of the game.

Games can be either static or dynamic. A static game is one in which all players

select a strategy simultaneously, without knowledge of the strategies chosen by the

other agents. Static games are often represented by the normal form, a table which

specifies the payoffs to the agents if they play different combinations of strategies

(Figure 4.1).

Dynamic games, where the game progresses over a series of steps or stages, are

usually represented in extensive form. The extensive form captures who moves when,

what actions each agent can take, what information agents have when they move,

what the outcome is as a function of the actions taken by the agents, and what the

payoffs are for each possible outcome.

An extensive game contains the following information.

• A set of agents, N ,

• The order of the moves (histories)

• The agents’ utilities,
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Figure 4.2: An extensive form game with two players.

• The actions available to each agent when it is its turn to move,

• The information each agent has available to it when it moves (information sets)

Extensive form games are usually represented by tree structures. They consist of

a finite number of nodes and provide a complete description of all actions previously

taken. Nodes which do not have children are called terminal nodes and are assigned

agents’ utilities. Nodes where an agent must select an action are called decision

nodes. Each decision node is associated with a player, and the edges emanating from

the node correspond to the actions that the agent is allowed to take at that point in

the game. The nodes in the tree are partitioned into information sets, and any two

nodes in the same information set must have the same choice of actions. If two nodes

are in the same information set, then the agent can not fully distinguish between

them. Instead, the agent has a probability distribution over the nodes, specifying the

agent’s belief that it is at a specific node. Figure 4.2 is an example of an extensive

form game. In this game there are two players, agent 1 and agent 2. Agent 1 moves

first, and chooses either action L or action R. Agent 2 observes this move. If agent

1 chose R then the game ends, and the payment to agent 1 is 2 and the payment to

agent 2 is 1. If agent 1 chose L then agent 2 is allowed to move. It can choose to take

either action A or action B. However, agent 1 does not observe which action agent 2

selects. When it is its turn to move again, agent 1 can not distinguish between the

two nodes in its information set. All it knows is that it can either take move l or
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move r.

4.1.2 Solution Concepts

A key goal of game theory is to find the stable points in the space of strategy profiles.

These stable points are the equilibria of the game. The most well known equilibrium

concept is the Nash equilibria [80]. A Nash equilibrium is a strategy profile in which

each agent is playing its optimal strategy, given the strategies the other agents are

playing.

Definition 13 (Nash Equilibrium). A strategy profile s∗ = (s∗1, . . . , s
∗
n) is a Nash

equilibrium if no agent has incentive to deviate from its strategy, given that the other

agents do not deviate. Formally,

∀i ui(s∗i , s∗−i) ≥ ui(s
′
i, s
∗
−i), ∀s′i.

The definition above is technically for settings where the agents are playing pure

strategies. The Nash equilibrium solution concept easily extends to mixed strategies.

If agents are playing mixed strategies then the expected utility must be at least as

large as that obtainable by any other strategy. A seminal result in game theory is

that every finite game has at least one Nash equilibrium [80].

While the Nash equilibrium is one of the fundamental concepts in game theory, it

does have several weaknesses. First, there may be multiple Nash equilibria in a game,

and so agents may be uncertain as to which equilibrium to play. Second, the Nash

equilibrium solution concept assumes that agents have perfect information about all

agents in the game, that this is common knowledge, and that all agents are playing

the same Nash equilibrium. In many settings these assumptions are too strong –

limiting the practicality of this solution concept.

A stronger solution concept is the dominant strategy equilibrium. A strategy is

dominant if it is an agent’s best strategy against any strategies that the other agents

may use.

Definition 14 (Dominant Strategy). The strategy of agent i, s∗i , is dominant if

ui(s
∗
i , s−i) ≥ ui(s

′
i, s−i) ∀s−i, ∀s′i 6= s∗i .

A dominant strategy equilibrium is an equilibrium in which every agent has a

dominant strategy. The dominant strategy equilibrium is a robust solution concept
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since it makes no assumptions about the information that agents have available to

them, nor does it assume that all agents know that the others will play rationally.

However, many games do not have dominant strategy equilibria.

As mentioned earlier, the Nash equilibrium solution concept assumes that agents

are fully informed about all aspects of the game, including the utility each agent

receives from different outcomes. In many situations this is too strong an assumption.

Instead, agents may only have beliefs about the preferences of other agents. This

uncertainty can be captured in a Bayesian game. A Bayesian game can be modeled by

assuming that each agent’s preferences are determined by the realization of a random

variable. In particular, it is assumed that some non-strategic player, called Nature,

makes the first move in the game and chooses realizations of the random variable that

determine each agent’s preference type, θi ∈ Θi, where Θi is the set of all possible

preference types for agent i. Each agent i observes θi, which determines its utility

function ui((si, s−i), θi), but does not observe θj for any j 6= i. The joint probability

distribution of the θi’s is given by p(θ1, . . . , θn). This is common knowledge.

A pure strategy in a Bayesian game, si(·), specifies the agent’s strategy choice for

each realization of θi. The utility of agent i given strategy profile (si(·), s−i(·)) is

ui(si, s−i) =
∑

θi

∑

θ−i

p(θi, θ−i)ui(si(θi), s−i(θ−i)))

where pi(θi, θ−i) is the common prior over types.

The Bayes-Nash equilibrium is defined for Bayesian games.

Definition 15 (Bayes-Nash Equilibrium). A strategy profile, s∗ is a Bayes-Nash

equilibrium if

ui((s
∗
i , s
∗
−i)) ≥ ui(s

′
i, s
∗
−i)) ∀θi, ∀s′i.

The solution concepts introduced so far – Nash, dominant strategy, and Bayes-

Nash – apply in both static and dynamic games. There are several solution concepts

specifically associated with extensive form games, including subgame perfect Nash

equilibria, and sequential equilibria. The solution concept which we use in this dis-

sertation is the perfect Bayesian equilibria (PBE). A key component in a PBE is the

system of beliefs.

Definition 16 (System of beliefs). A system of beliefs, µ, in extensive form game

Γ is a specification of a probability µ(x) ∈ [0, 1] for each decision node x in Γ such
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that

∑

x∈I
µ(x) = 1

for all information sets I.

A system of beliefs specifies the relative likelihood that a specific node in an

information set has been reached.

Another key concept required for a PBE is a sequentially rational strategy profile.

Definition 17 (Sequentially rational). A strategy profile s = (s1, . . . , sn) in ex-

tensive form game Γ is sequentially rational for information set I given system of

beliefs µ if

E[ui|I, µ, si, s−i] ≥ E[ui|I, µ, s′i, s−i] ∀s′i 6= si

where E[ui|I, µ, si, s−i] is the expected utility of agent i who’s turn it is to move, given

that it has beliefs µ. A strategy profile is sequentially rational if this holds for all

information sets.

We are now able to define a perfect Bayesian equilibrium.

Definition 18. A strategy profile and system of beliefs, (s, µ) is a (weak) perfect

Bayesian equilibrium in extensive form game Γ if the following holds:

1. The strategy profile, s, is sequentially rational given belief system µ.

2. The system of beliefs, µ, is derived from strategy profile s through Bayes rule

when possible. That is, for any information set I such that the probability of

reaching I is positive under strategy profile s, it must be

µ(x) =
Pr(x|s)
Pr(I|s) for all x ∈ I.

4.2 Mechanism Design

In this section we present an overview of pertinent mechanism design concepts. For

a broader overview we recommend Mas-Colell et al [71] and Myerson [78].
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We assume that there is a set of agents, N , |N | = n. Each agent, i, has a type,

θi ∈ Θi, which represents the private information of the agent that is relevant to

the agent’s decision making. In particular, an agent’s type determines its preferences

over different outcomes. We use the notation ui(o, θi) to denote the utility of agent

i with type θi for outcome o ∈ O (O is the space of possible outcomes). The goal

of mechanism design is to implement some system-wide solution. This is defined in

terms of a social choice function.

Definition 19 (Social Choice Function). A social choice function is a function

f : Θ1× . . .×Θn 7→ O, that, for each possible profile of agents’ types, θ = (θ1, . . . , θn),

it assigns an outcome f(θ) ∈ O.

The mechanism design problem is to implement a set of “rules” so that the solution

to the social choice function is implemented despite agents’ acting in their own self-

interest.

Definition 20 (Mechanism). A mechanism M = (S1, . . . , Sn, g(·)) defines the set

of strategies Si available to each agent and an outcome rule g : S1 × . . . × Sn :7→ O,

such that g(s) is the outcome implemented by the mechanism for strategy profile s =

(s1, . . . , sn).

A mechanism implements a social choice function f(·) if there is an equilibrium

of the game induced by the mechanism which results in the same outcomes as f(·)
for every profile of types, θ.

Definition 21 (Implementation). A mechanism M = (S1, . . . , SI , g(·)) implements

social choice function f(·) if there is an equilibrium strategy profile s∗ = (s∗1, . . . , s
∗
n)

such that g(s∗(θ)) = f(θ) for all θ.

The equilibrium concept is left undefined at the moment. It can be Nash, Bayesian-

Nash, dominant or some other equilibrium concept. Ideally, one wishes to implement

a social choice function using as strong a solution concept as possible. In particular,

dominant strategy implementation is preferred as it makes less assumptions about

the participating agents.

The question as to what social choice functions are implementable seems to be

overwhelming. However, due to a key result, the Revelation Principle, we need only

restrict ourselves to a very small class of mechanisms, called direct mechanisms.
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Definition 22 (Direct mechanism). A direct mechanism is a mechanism in which

Si = θi and g(θ) = f(θ) for all θ.

In other words, direct mechanisms are mechanisms where agents are asked to

reveal their type, and given an announcement (θ̂1, . . . , θ̂n), f((θ̂1, . . . , θ̂n)) is chosen.

An example of a direct mechanism is a first-price sealed bid auction. In the

auction the agents are asked to submit bids to the auctioneer. These bids represent

the type of the agent. The mechanism then determines an allocation based on the

announcements received, where the highest bidder is allocated the item, and pays the

amount that it announced.

An important class of direct mechanisms are ones where truth telling is an optimal

strategy for each agent. The social choice functions implemented by such mechanisms

are said to be incentive compatible.

Definition 23 (Incentive compatible). A social choice function is incentive com-

patible if the direct revelation mechanism M = (Θ1, . . . ,Θn, f(·)) has an equilibrium

(s∗1(·), . . . , s∗n(·)) where s∗i (θi) = θi for all θi ∈ Θi and for all i.

In other words, a social choice function is incentive compatible if truth telling

by each agent constitutes an equilibrium. If the equilibrium concept is dominant-

strategy, then the mechanism is said to be strategy-proof.

Another important mechanism property is individual rationality. Agents usually

have the freedom to choose whether they wish to participate in the mechanism. If

the utility that they can achieve by not participating is greater than what they can

obtain through the mechanism, then the mechanism is not individually rational.

Definition 24 (Individual rationality). A mechanism is individual-rational if for

all types θi, it implements a social choice function f(θ) such that

ui(f(θi, θ−i)) ≥ ui(θi)

where ui(θi) is the utility the agent could get with non-participation.

4.2.1 The Revelation Principle

The revelation principle is one of the fundamental results in mechanism design. It

states that under very weak conditions, mechanism designers need to only focus on
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incentive-compatible direct mechanisms in order to determine which social choice

functions are possible to implement, and which are not possible. The revelation prin-

ciple was first proposed by Gibbard [37], and was extended by Green and Laffont [40]

and Myerson [77].

The revelation principle for dominant strategies states that any social choice

function which is implementable in dominant strategies, is also implementable in

a strategy-proof mechanism. That is, a designer need only consider social choice

functions which can be implemented in truth-telling direct mechanisms.

Theorem 1 (Revelation principle). Suppose that there exists a mechanism M =

(S1, . . . , Sn, g(·)) that implements a social choice function f(·) in dominant strategies.

Then f(·) is truthfully implementable in dominant strategies.

A similar revelation principle holds for situations where a social choice function is

implementable in Bayesian-Nash equilibrium.

Theorem 2 (Bayes-Nash revelation principle). Suppose that there exists a mech-

anism M = (S1, . . . , Sn, g(·)) that implements a social choice function f(·) in Bayesian-

Nash equilibrium. Then f(·) is truthfully implementable in Bayesian-Nash equilib-

rium.

The intuition behind the proofs of both revelation principles is similar. Assume

that it is possible to build a simulator which will execute an agent’s optimal strategy

in the original mechanism, given its type. Then, in theory, it is possible to create a

new mechanism which incorporates this simulator into the design, and so that agent

need only reveal its type in order for the optimal strategy to be executed. Figure 4.3

illustrates this.

4.2.2 Quasi-Linear Preferences

While mechanisms can be implemented across a wide spectrum of environments, in

this dissertation we restrict ourselves to settings where agents are risk neutral and

have quasi-linear preferences.

Definition 25 (Quasi-linear Preferences). A quasi-linear utility function for agent

i with type θi is of the form:

ui(o, θi) = vi(x, θi) + ti
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New (direct revelation) Mechanism

Original Mechanism

Figure 4.3: The Revelation Principle states that any social choice function which

is implementable in dominant strategies can be implemented by a truth-telling direct

mechanism. In particular, it is possible to build a simulator which simulates the

optimal strategy an agent would play, if given the agent’s type.

where outcome o defines a choice x ∈ K from a discrete choice set K and a transfer ti

by the agent. The notation vi(x, θi) represents the valuation function of agent i, that

is, the value the agent places on x ∈ K.

An advantage of quasi-linear preferences is that it allows for the transfer utility

across agents by using side payments. Many real-world settings are ones where the

participants have quasi-linear preferences. For example, in a single item auction,

the outcome of the auction is an allocation of the item to an agent along with the

payments that the agents have to make. If an agent i has value vi for the item, then

its utility, if it is allocated the item, is ui = vi − p where p is the price it must pay

for the item.

With quasi-linear preferences, it is possible to separate the outcome of a social

choice function, into a choice, x(θ), which effects the values of the agents, and the

transfers ti. This allows one to define a general mechanism for quasi-linear preferences.
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Definition 26 (Mechanisms for quasi-linear environments). A mechanism for

quasi-linear environments is a mechanism M = (S1, . . . , Sn, (k(·), t1(·), . . . , tn(·)))
such that the outcome function g(·) = (k(·), t1(·), . . . , tn(·)) where k : S1× . . .×Sn :7→
K is a choice rule which selects some choice from choice set K, and transfer rules

ti : S1× . . .×Sn :7→ R. one for each agent, compute the payment ti(s) made by agent

i.

An important property of a social choice function is whether it is efficient.

Definition 27 (Efficient). A social choice function f(x(θ), t(θ)) is efficient if for

all types θ = (θ1, . . . , θn)

n∑

i=1

vi(x(θ), θi) ≥
n∑

i=1

vi(x
′(θ), θi) ∀x′(θ) ∈ K.

We will often use the phrase social welfare maximizing in place of efficient since

in the quasi-linear environment, an efficient allocation maximizes social welfare.

Another property of interest is whether the social choice function is budget bal-

anced.

Definition 28 (Budget balanced). A social choice function f(θ) = (x(θ), t(θ)) is

budget-balanced if for all preferences θ = (θ1, . . . , θn)

n∑

i=0

ti(θ) = 0.

If a social choice function is budget-balanced then there is no net payments being

made into the system or being taken out of the system. In many situations budget-

balance is too strong a condition. Therefore, often one resorts to a notion of weak

budget-balance.

Definition 29 (Weak budget balance). A social choice function f(θ) = (x(θ), t(θ))

is weakly budget-balanced if for all preferences θ = (θ1, . . . , θn)

n∑

i=0

ti(θ) ≥ 0.

In a weak budget-balance setting, there may be a net payment being made by

the agents to the mechanism center, but the center is not required to subsidize the

agents.

74



4.2.3 Vickrey-Clarke-Groves Mechanisms

An important, and widely studied, family of mechanisms are the Vickrey-Clarke-

Groves mechanisms (VCG) [20, 42, 118]. These quasi-linear mechanisms are efficient

and strategy-proof direct mechanisms. In fact, it has been shown that the family of

VCG mechanisms are the only quasi-linear mechanisms that are both efficient and

strategy-proof among all direct mechanisms [40].

In a VCG mechanism each agent reports a type θ̂i to the mechanism. This type is

not required to be its true type. Given the reported types, the mechanism produces

an allocation k∗(θ̂) which is efficient. That is

k∗(θ̂) = arg max
x∈K

∑

i

vi(x, θ̂i).

The payment rules of the VCG mechanism are defined as

ti(θ̂) = hi(θ̂−i)−
∑

j 6=i
vj(k

∗, θ̂j)

where hi : Θ−i 7→ R is an arbitrary function which does not depend on the declared

type of agent i.

Clearly, a VCG mechanism is allocatively-efficient since the choice rule, k, is de-

fined to be the one which produces the efficient outcome. A VCG mechanism is

incentive-compatible since the announcements of the agents only influence the allo-

cation, and not the their own transfers.

The Vickrey Auction

A special case of a VCG mechanism is the Vickrey auction. The Vickrey auction,

also known as a second-price sealed-bid auction, allocates a single item to one agent

out of a set [118]. Each agent i submits a bid bi to the mechanism. The mechanism

allocates the item to the agent with the highest bid. If an agent is not allocated the

item then it pays nothing. If the agent is the winner, then it pays an amount equal

to the second highest bid.

The Vickrey auction is incentive-compatible. An agent has no incentive to submit

a bid (bi) higher than its true value (vi) for the item. If agent i had not been allocated

the item when it announced vi then there must have been another agent j with bid
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bj such that bj > vi. If agent i submits a bid bi > bj then, even though it is allocated

the item, it must pay bj. Its utility would be vi − bj < 0. On the other hand, agent

i has no incentive to submit a bid bi < vi. Lowering the bid below its true value

only reduces the chances that agent i will be allocated the item. It does not change

the price it would have to pay if it did win the auction. The Vickrey auction is also

efficient, since it allocates the item to the agent who values it the most.

Pivotal Mechanism

Another important VCG mechanism is the Pivotal, or Clarke, mechanism [20]. The

allocation function in the Clarke mechanism, as in all VCG mechanisms, is chosen so

as to maximize the sum of the agents valuations, given their declared types. What

defines the Clarke mechanism is the additional transfer term hi(·) defined as

hi(θ̂−i) =
∑

j 6=i
vj(k

∗
−i(θ̂−i), θ̂j)

where k∗−i(θ̂−i) is defined to be the optimal allocation when agent i does not partici-

pate. That is

k∗−i(θ̂−i) = arg max
x∈K

∑

j 6=i
vj(x, θ̂j).

This is a valid transfer function since it is independent of the declaration of agent i.

This means that this mechanism is a member of the family of VCG mechanisms.

An interesting application of the Pivotal mechanism is in combinatorial auctions.

In a combinatorial auction, bidders may submit bids on combinations of items which

allows the bidders to express complementarities between items. Based on the bids

on the combinations of items, or bundles, the goods are allocated to the agents.

Let X = {x1, . . . , xm} be a set of items. A bundle is a subset of the items, for

example, {x1} or {x1, xm}. An allocation of items among a set of agent n agents is

k = (k1, . . . , kn) where ki ⊆ X, ∪ni=1ki ⊆ X and ki∩kj = ∅ for i 6= j. The generalized

Vickrey auction (GVA) is an application of the Pivotal mechanism and works in the

following way.

1. Each agent declares a valuation function. So vi(yi) is agent i’s valuation for

allocation k where it is given yi.
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2. The GVA chooses an optimal allocation k∗ = (k∗1, . . . , k
∗
n) that maximizes the

sum of all the agents’ declared valuations.

3. The GVA announces the winners and their payment pi:

pi =
∑

j 6=i
vj(k

′
j)−

∑

j 6=i
vj(k

∗
j )

where k′ = (k′1, . . . , k
′
i−1, k

′
i+1, . . . , k

′
n) is the allocation that maximizes the sum

of all agents’ valuations assuming that agent i did not participate.

Under the usual assumption that each agent has quasilinear preferences ui(ki) =

vi(ki)− pi, the utility of bidder i in the GVA is

ui(k
∗
i , pi) = vi(k

∗
i )− pi = vi(k

∗
i ) +

∑

j 6=i
vj(k

∗
j )−

∑

j 6=i
vj(k

′
j).

GVA Example: We now provide an example to illustrate how the GVA works. Let

there be two agents, agent α and agent β, and let there be two items, g1 and g2.

Agents can bid on either item or on the bundle {g1, g2}. An agent’s bid is represented

by a tuple: (a bid for {g1}, a bid for {g2}, a bid for {g1, g2} where the bids are XOR’ed

together). Suppose the agents bid as follows

• Agent α’s bid: (20, 5, 25)

• Agent β’s bid: (10, 15, 30)

The GVA allocates g1 to agent α and g2 to agent β since this allocation maximizes

the sum of the agents’ valuations. The amount that each agent pays is computed

as follows. If agent α did not bid, then {g1, g2} would have been allocated to agent

β whose valuation for this bundle is 30. When g1 is allocated to agent α, agent β’s

valuation is only 15 since it receives g2. Therefore, agent α’s payment is calculated

as 30− 15 = 15 and its utility is 20− 15 = 5. Agent β’s payment is 25− 20 = 5 and

its utility is 15− 5 = 10.
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Chapter 5

Game Theory for Computationally

Limited Agents

In the Chapters 2 and 3 we have presented a model for computationally limited agents

and showed how effective deliberation tools for agents can be used for determining

how to best allocate their limited computing resources. In the rest of this thesis we

study self-interested computationally limited agents in different multiagent settings.

In multiagent settings the impact of limited computing resources can be large. In

multiagent systems there has been a move from having a central designer who controls

the behavior of all system components to having a system designer who can control

only the mechanism (rules of the system), while allowing each agent to choose their

own actions. The actions that the agents choose determine the outcome. To guarantee

desirable outcomes, the system designer has to engineer the game so as to make

sure that each agent is motivated to behave in a desired way. This can be done

by using the Nash equilibrium solution concept from game theory (or one of its

refinements) [71, 80]. The problem is that the equilibrium for rational agents does

not generally remain an equilibrium for computationally limited agents. This leaves

a potentially hazardous gap, since naively applied game-theoretic solutions may not

provide appropriate incentives to agents, leading to outcomes which may be arbitrarily

far from expected.

In this chapter we propose a game theoretic formulation for settings where there

are interacting computationally limited agents. We introduce a state of deliberation

and provide a formal definition of a deliberation strategy and a deliberation equi-

librium. Finally, we coin the term strategic deliberation to refer to a new strategic
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behavior where computationally limited agents invest their own resources towards

other agents’ valuation problems.

5.1 Computationally Limited Agents

In Chapter 2 we formally defined a computationally limited agent. We summarize

the definition in this section. A computationally limited agent, i, is defined by

〈Ti, costi(·),Ai,PP i〉

where

• Ti is the set of computing resources owned be agent i,

• costi(·) is the cost function of agent i which limits the computing capabilities

of the agent,

• Ai is the set of anytime algorithms that the agent can use, and

• PP i is the set of performance profiles (performance profile trees).

The set of anytime algorithms, Ai, contains any algorithms that the agent has. In

particular, the agent may have access to, and use, algorithms for its own problems, as

well as algorithms used to solve the problems faced by other agents. Each algorithm

has its own performance profile. We use the notation Aj
i ∈ Ai to denote the anytime

algorithm of agent i for problem j. We use the notation PP j
i ∈ PP i to denote the

associated performance profile tree. In particular, we place no restrictions on what

problems an agent can compute on.

5.2 The State of Deliberation

As agents allocate computing resources to different problems, their knowledge about

the solution quality that is achievable for these problems changes. In order to make

good decisions about how to allocate additional computing resources as well as deter-

mine which other actions should be taken, an agent must know its current computing

results. We store this information in a state of deliberation.
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Figure 5.1: Two performance profile trees.

Definition 30 (State of deliberation). Assume that an agent i, defined by 〈Ti,
costi(·), Ai, PP i〉, has m problems on which it can compute. Assume that agent i has

allocated t = (t1, . . . , tm) computing resources (where tj is the amount of computing

time the agent has spent on problem j). Let nj(tj) be the node in performance profile

tree PP j
i that the agent has reached. The state of deliberation for agent i at t is

φi(t) = 〈n1(t1), . . . , nm(tm)〉.

Performance profile trees capture uncertainty that arises in the deliberation pro-

cess, and thus are not necessarily branches. Therefore, for any computing resource

allocation t = (t1, . . . , tm), there are multiple possible states of deliberation. We refer

to all states of deliberation at t =
∑m

k=1 tk as a deliberation set.

Definition 31 (Deliberation set). The deliberation set for agent i at t is

Φi(t) = {φi(t)| for t = (t1, . . . , tm), t =
m∑

k=1

tk}.

We provide an example to illustrate the two definitions. Assume that an agent

can compute on two problems and that the performance profiles associated with the

two problems are shown in Figure 5.1. Assume that the agent has allocated t = (1, 1)

resources. A possible state of deliberation is φ((1, 1)) = 〈B,F 〉. The deliberation set

is

Φ(2) = {〈B,E〉, 〈B,F 〉, 〈C,E〉, 〈C,F 〉}.

5.3 Deliberation Strategies and Equilibria

A strategy for an agent is a mapping from its history to an action, for all possible

stages in a game. We propose incorporating agents’ computing actions into this
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Figure 5.2: An auction with two computationally limited agents. In order to submit

a reasonable bid, each agent needs to first (approximately) compute its valuation for

the item that is up for auction.

strategic setting. That is, an agent’s strategy must specify which computing actions

it will take, as well as any noncomputing actions. These two aspects are interrelated.

For example, consider the auction portrayed in Figure 5.2. Before an agent can submit

a bid to the auctioneer, it must compute its value of being allocated the item(s) up for

auction. However, what problems it decides to compute on (and how much resources

it allocates to the problems) depends on how it is planning on bidding.

Let Ci be the set of computing actions that an agent can take at any time step.

That is,

Ci = {∅, c1, . . . , cm}

where cj is the act of computing one step on problem j, and ∅ is the action of not

computing. The choice of computing actions induces a state of deliberation. Let Bi

be the set of other non-computing actions. This set of actions is game-specific. For

example, in an auction setting Bi is the set of allowable bidding actions, while in a

bargaining setting Bi includes all allowable proposals and responses.

Games where the agents are computationally limited are dynamic in nature as

the computing actions of the agents take place over time. We use the notation stagek
to denote the k’th stage of the game. When it is clear from the context, we will

sometimes use the notation t to represent both staget and the number of computing

steps that the agents have taken. A history, Hi(stagek), for agent i at stagek is a

list of all actions (both computing and non-computing) that the agent has taken, its
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current state of deliberation, as well as all actions that the agent has observed others

taking.

Definition 32 (History). Let c(stagek) denote the computing action and b(stagek)

be the non-computing action taken at stage stagek. Let obs(stagek) be the set of

actions taken by other agents that agent i has observed by stagek. A history at stagek
is

Hi(stagek) = 〈(c(stagel), b(stagel))
k
l=0, (obs(stagel))

k
l=0, φi(t)〉

where t = (t1, . . . , tm) when tj is the number of times the agent has selected computing

action cj, and φi(t) is the state of deliberation induced by the sequence of computing

actions taken by agent i.

Just as there can be multiple states of deliberation, there can also be multiple

possible histories at a stage. We let Hi(t) = {Hi(t)}.
It is now possible to define a strategy for a computationally limited agent. We call

these strategies deliberation strategies since they incorporate the computing actions

of the agents.

Definition 33 (Deliberation strategy). A deliberation strategy for agent i, is

Si = (σi(stagek))
∞
k=0

where

σi(stagek) : Hi(stagek) 7→ Ci ×Bi.

That is, given the set of actions the agent has taken, its current results from

computing, and any information it has observed concerning the other agents in the

game, the strategy specifies what actions the agent should take in the next stage.

Using the deliberation strategy, it is possible to define a solution concept - the

deliberation equilibrium.

Definition 34 (Deliberation equilibrium). A (Nash, dominant strategy, perfect

Bayesian etc.) deliberation equilibrium for computationally limited agents is an equi-

librium where the agents’ deliberation strategies form a (Nash, dominant strategy,

perfect Bayesian etc.) equilibrium.
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Rational Agent Computationally Limited Agent

Valuation vi to be determined by computing using

〈Ti, costi(·),Ai,PP i〉
Strategy submit a bid bi Si = (σi(t))

D
t=0 where

σi(t) : Φi(t− 1) 7→ Ci if t < D

and σi(t) : Φi(t− 1) 7→ Ci × R if t = D

Utility if it wins the vi − p V (ni(ti))− p− cost(t)

auction and pays price p

Utility if it loses 0 −costi(t)

the auction

Table 5.1: The differences between a fully rational agent and a computationally limited

agent participating in the same auction.

For example, for an equilibrium to be a dominant strategy deliberation equilib-

rium, the strategy of each agent must be the best one for the agent, independent of

all other agents. This includes both the deliberation policy used by the agent as well

as any noncomputing actions.

We provide an example to illustrate how we incorporate the deliberation actions

of an agent into a strategic setting. Assume that a single item is to be allocated

via a sealed-bid auction, and assume that a fully rational agent has value vi for the

item. Assume that the value of this item to agent i, defined by 〈Ti, costi(),Ai,PP i〉,
is determined by running algorithm Ai

i, though agent i can also compute on other

problems using other algorithms in its set Ai. Finally, assume that the all bids

must be submitted by the close of the auction at time D. Table 5.1 compares and

contrasts the different aspects of the game for fully rational and computationally

limited agents. First, the fully rational agent knows its value for the item in the

auction, while the computationally limited agent does not know its value a priori,

but instead is defined by a set tools that it can use to compute its value. Second,

the strategy of a fully rational agent specifies what bid it should submit, while the

strategy of the computationally limited agent specifies which problems it will compute

on, depending on the results it has currently obtained, as well as how it will bid at the

time when the auction closes. The utility of a fully rational agent depends only on

whether it was allocated the item or not, and what price it was charged. The utility

of a computationally limited agent depends on the allocation, the price and the cost
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that it incurred while computing.

5.4 Strategic Behavior of Agents

We place no restrictions on what problems an agent is allowed to compute on. In

particular, agents are allowed to allocate computing resources in order to determine

solutions for their own problems, but are also free to use their limited computing

resources in order to evaluate the solution quality of other agents’ problems. An

agent may do this for many reasons. Agents may find that there are mutual benefits

by coordinating their actions, and to discover this they may need to understand each

others’ goals and problems. In other environments, agents may find themselves at a

competitive advantage if they have information about their competitors.

We call the behavior where an agent actively uses some of its computing resources

in order to intentionally determine the solution quality of another agent’s problem

strategic deliberation

Definition 35 (Strategic deliberation). If an agent i uses part of its computing

resources to compute on another agent’s problems, then agent i is performing strategic

deliberation. That is, a strategy Si involves strategic deliberation if for some time step

t, there exists history H ∈ Hi(t) such that

σi(t)(H) = (cj, b)

where b ∈ Bi is a non-computing action, and cj ∈ Ci \ {ck|k is a problem of agent i},
the set of computing actions where agent i computes on some problem that is not its

own.

Another strategic behavior which might arise among computationally limited

agents is something which we call weak strategic deliberation.

Definition 36 (Weak Strategic Deliberation). Assume there are two agents, i

and j. Assume that agent j has two possible performance profiles, PP1 and PP2. Let

SP1
i be the set of strategies for agent i if agent j’s performance profile is PP1 and let

SPP2
i be the set of strategies for agent i if agent j’s performance profile is PP2. Agent

i is performing weak strategic deliberation if it does not actually use its computing

resources to compute on another agent’s valuation problems, but does use information
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from the opponents performance profile to devise a strategy. That is, agent i is not

performing strong strategic deliberation and

SPP1
i 6= SPP2

i .

In weak strategic deliberation, an agent does not use its computing resources to

compute on a competitor’s problem. Instead it forms its strategies based on informa-

tion obtained by examining the competitors’ performance profiles. It is then able to

deduce information about the deliberation control policies of the competitor.

An alternative way of approaching strategic deliberation is as additional condi-

tioning. Agents are provided with tools (performance profiles) that allow them to

condition their computational decisions on the results they obtain from computing

on their own problems. Strategic deliberation allows them to further condition their

strategies based on results they think their competitors may have obtained. Ideally,

neither form of strategic deliberation is present. However, strategic deliberation is the

least desirable since agents not only counterspeculate on other agents’, but also use

their own limited resources in the process, leading to higher costs and less computing

time (and therefore, possibly worse solutions) on their own actual problems.

One potential problem with strategically deliberation is that the results obtained

by one agent may not be the same as the results obtained by another agent comput-

ing on the same problem. This may be due to the use of randomized algorithms, or

uncertainty as to what algorithm is used for the problem, or uncertainty as to what

problem instance is being worked on. Performance profile trees model such uncer-

tainty through random nodes, which allow an agent to emulate possible algorithms

and algorithms runs. Emulation is different from actually running an algorithm.

When an agent is running an algorithm, if a random node in the performance profile

is reached, the uncertainty is resolved in some way (for example, in a randomized

algorithm a random number generator would generate some number which would

specify the path the algorithm should take). In emulation, agents take an active role.

When a random node is reached, the agent chooses a “random” path (instead of,

for example, using a number generated by a random number generator). This allows

the agent doing the emulation to learn what solution would have been obtained if

the random numbers generated were the same as the ones chosen by the agent itself.

This means that the agent can emulate different random numbers that a competitor

may have used and thus get a better idea of what solutions their competitors may

have obtained (and thus also a better idea of how the opponent may have allocated
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its computation as a function of the results it has obtained).

5.5 Common Knowledge and Independence

Assumptions

There are two assumptions which we make in our game theoretic model for computa-

tionally-limited agents. First we assume that the performance profiles, algorithms and

cost functions are common knowledge, or at a minimum, are drawn from a distribution

which is common knowledge. Second, we assume that the algorithms and performance

profiles of the agents are independent, in that the results from running one algorithm

on one problem does not provide an agent with information about possible results

with respect to a different problem or algorithm. These two assumptions, while quite

strong, are used to make the analysis of different negotiation mechanisms feasible,

and we weaken these assumptions whenever possible. In the rest of this section, we

discuss the implications of these assumptions in more detail.

A piece of information is common knowledge if all players know it and all of the

players know that all other players know it, ad infinitum. Many solution concepts

in game theory rely on agents having common knowledge about their situation in the

game being played. An exception is the dominant strategy equilibrium solution con-

cept (Chapter 4), where each agent has an optimal strategy independent of what any

other agent does. Therefore, agents are not required to have any information about

the other agents in the game, eliminating the need for common knowledge. Since we

propose placing computationally limited agents into a game theoretic model, we also

require the common knowledge assumption for the deliberation equilibrium solution

concept. In general, we assume that each agent’s performance profiles are common

knowledge, and, additionally, that all agents in the game have access and can poten-

tially use the algorithms to determine valuations for different problems. Whenever

possible (i.e. when agents’ have dominant strategies) we relax this assumption. In

our results we clearly state when we are able to do the relaxation.

The second assumption we make is that the performance profiles are independent.

In particular, we assume that the results obtained by computing on one problem pro-

vide no information about possible obtainable results for a different problem. This

means that if an agent wishes to gather information on another agent, it must explic-
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itly study the performance profiles of the second agent, or actively compute on the

other agent’s problem. It is unable to deduce anything from the results obtained by

computing on its own problem(s). For some settings this assumption is very strong.

There are situations where agents are faced with similar problems, and so the results

of computing on one problem could potentially provide useful information about the

possible results obtainable in another problem. However, this assumption allows us to

analyze different negotiation mechanisms as it makes the analysis feasible by cleanly

defining the results of deliberating on a specific problem. When ever possible, we re-

lax this assumption, and clearly state which results are unaffected and do not depend

on the assumption.

5.6 Summary

In this chapter we described how agents’ computing actions can be placed into a

game theoretic setting. We defined strategies for a computationally limited agent

by incorporating the deliberation actions of the agents into the strategy itself. Using

this formalism we introduced the deliberation equilibrium which requires that both an

agent’s deliberation actions as well as other actions are optimal given what strategies

other agents are following. Finally, we discussed some new strategic behavior which

may arise among computationally limited agents. We introduced

• Strategic deliberation, where agents use some of their computing resources on

other agents’ problems,

• Weak strategic deliberation, where agents do not actively compute on each

others’ problems, but do make strategic decisions based on information obtained

from competitors’ performance profiles, and

• Emulation, where agents use their computing resources to learn about possible

outcomes when there is uncertainty as to the path of different algorithms, or

even what algorithms are being used by other agents.

We believe that by including the computing actions of agents into the formal

definition of a strategy, it is possible to

• understand the strategic impact limited computing resources have on the strate-

gies of agents, and
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• lead to the design of robust mechanisms which take into account the fact that

the participating agents may not be fully rational.
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Chapter 6

One-to-One Negotiation:

Bargaining

One of the goals of much work in multiagent systems has been the development of

protocols for automated negotiation between agents [56, 96]. In particular, it has been

proposed that computational agents would be better at finding and negotiating con-

tracts on behalf of real-world users, since this automation would save human negotia-

tion time, as well as allowing agents to possibly find beneficial deals in combinatorially

and strategically complex settings. Competitive bargaining between self-motivated,

rational and autonomous agents has been proposed as an appropriate negotiation

model as it captures many interesting applications including resource sharing and

task allocation [57], as well as many dynamic ecommerce applications.

Bargaining has been well studied by both economists [85] and AI researchers [56,

96]. The term bargaining refers to situations where groups of agents commit them-

selves voluntarily to a course of action which is beneficial to them all. Negotiation

comes into play when there is disagreement as to which course of action is the best.

In the economics literature there have been two general approaches to the problem

of bargaining. One form, the axiomatic form, proposes a set of desirable proper-

ties for a bargaining outcome, and then finds solutions which satisfy as many of the

properties as possible [79, 97]. Another approach has been to model bargaining as

a dynamic game and then to determine the equilibria of the game (see, for exam-

ple, [9, 18, 85, 100]) In artificial intelligence, bargaining has been proposed in such

diverse settings as a solution for coordinating robots and software agents in time-

critical domains [57], to focusing attention on important attributes when there are
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multiple issues in ecommerce paradigms on which agreement must be reached [34]

In this chapter we focus attention on a setting where there is the possibility of

a mutually beneficial agreement where two agents coordinate their actions in order

to accomplish some task. However, in order to accomplish the task the agents must

compute solutions. The agents also have the possibility of acting independently, and

so are faced with the decision of how to negotiate as well as which problems they

should compute on. We start this chapter with a motivating example problem where

our methods may be needed, and then describe more general settings. In Section 6.3

we present the model of the agents as well as a high level description of the role of

bargaining. In Section 6.4 and 6.5 we describe and analyze a single-shot bargaining

protocol, while in Section 6.6 we describe and analyze an alternating offers bargaining

protocol.

6.1 Example

To make the presentation more concrete, we now discuss an example domain where

our methods are needed. Consider a building scenario where two different contractors

are each building a different house. In particular, each needs a number of pipes of

different, specific lengths for their house. Pipes are sold at some fixed length (for

example 2 meters). This scenario is presented in Figure 6.1.

Each agent’s individual problem is to buy enough large pipes so that it can cut

them into the required pieces, while wasting as little as possible. This is a bin-packing

problem and is NP-hard.

It is also possible for the two agents to pool their resources and buy enough pipe

to cover both of their needs at the same time. By coordinating the cutting of the

pipe, the agents may be able to realize savings over acting independently, since it is

possible that there will be less wasted pipe due to a better packing. To determine

whether and what the savings would be, the agents need to solve another bin-packing

problem. This problem is again NP-hard.

Whether the agents actually decide to coordinate their buying is determined by the

costs associated with the different solutions. The agents must negotiate, or bargain,

about whether to independently buy their own materials, or whether to coordinate

in order to reduce costs. They must also negotiate as to how they will split the costs
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Builder 1 Builder 2

Pipes (uncut)

House 1 House 2

Figure 6.1: Two builders need to decide how much pipe they should buy. They can

either buy the pipe independently, or buy it together, leading to possible savings.

and benefits of the joint solution, if they agree to carry out a joint solution. However,

before agents can decide whether to carry out a joint solution or the two individual

solutions, they must have solutions (possible packings) for the three problems.

6.2 The General Setting

In general the methods in this chapter are needed in any setting with two self-

interested agents where each agent has an intractable individual problem and there is

a potential savings from pooling the problems, giving rise to an intractable joint prob-

lem. We also assume that the value of any solution to an agent’s individual problem

is not affected by what solution the other agent uses for its individual problem.

Applications with these characteristics are ubiquitous, including transportation as

discussed above, manufacturing (where two companies that potentially subcontract

with each other need to construct their manufacturing plans and schedules), electric

power negotiation between a custom provider and an industrial consumer (where the

participants need to construct their their production and consumption schedules),

classroom scheduling, scheduling of scientific equipment among multiple users, and
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bandwidth allocation and routing in multi-provider multi-consumer computer net-

works to name a few.

In order to determine the gain generated by pooling instead of each agent operating

individually, agents need to compute solutions to both agents’ individual problems as

well as to the joint problem.

By computing on the joint problem, an agent reduces the amount of resources it

has for computing on its individual problem. This may increase the joint value to the

agents (reduce the agents’ costs), but makes this agent’s fall back position worse when

it comes to bargaining how the joint value should be divided between the two agents.

Also, if one agent is computing on the joint problem, would it not be better for the

other agent to compute on something different so as not to waste computation? In

this chapter we present models where each agent strategically decides on how to use

its limited deliberation resources in order to maximize its own expected payoff in such

settings.

6.3 The Model

6.3.1 The Agents

We assume that two agents, α and β, are computationally limited, and as described

in Chapter 2, are defined by their cost functions, sets of anytime algorithms, and

performance profile trees. The agents do not know their values for different outcomes.

For example, neither agent has a solution in hand for what to do if no agreement is

reached. Instead, each agent must compute or gather information in order to be able

to fully participate in the bargaining process. Each agent is allowed, and has the

appropriate algorithms and performance profiles, to compute on the problem of agent

α, the problem of agent β, or the joint problem.

We let T ji denote the performance profile tree that agent i has for problem j.

As described in Chapter 5, we assume that performance profiles and algorithms are

common knowledge, accessible to all agents, and are independent, unless otherwise

noted. We use the notation nji (tj) to denote the node in the performance profile tree

T ji that agent i has reached after allocating tj steps to problem j. We let V (nji (tj))

denote the value or solution quality associated the node nji . We will sometimes use

the abbreviation vji to also represent the value, if the actual node is not important to
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the discussion.

While in theory we put no restrictions on the cost functions of the agents, there

is a natural restriction which arises from the bargaining interactions. At some point

in time, an agreement must be reached. This agreement may be to either cooperate

on the joint problem, or for each agent to act independently. We call this agreement

time the deadline D and model the cost function of agent i as as

costi((tα, tβ, tjoint)) =

{
∞ if tα + tβ + tjoint > D

0 otherwise

where tj is the number of computing steps that agent i has allocated to problem

j ∈ {α, β, joint}.
The values that have been computed by the agents affect the bargaining process

and outcomes. For example, if both agents decide to not compute on the joint prob-

lem, then it is unlikely that any agreement will be reached in the bargaining process on

whether to execute the joint solution. Instead, both agents would likely act indepen-

dently, implementing their own individual solutions. If, on the other extreme, both

agents compute only on the joint problem, then it is more likely that agreement will

be reached. The bargaining strategies of the agents are determined by the solutions

that have obtained for all problems. The offer that an agent makes is determined

by the value of the joint solution that it has obtained as well as the solution it has

obtained for its individual solution. Similarly, the offer that an agent will accept is

determined by the value that it has obtained for its individual problem, since that is

its fallback value (that is, the agent is guaranteed to receive at least that amount of

the agreement is not reached).

6.3.2 Bargaining

The term bargaining is used to refer to a situation where

1. Two agents have the possibility of concluding a mutually beneficial agreement.

2. There is a conflict of interests about which agreement to conclude.

3. No agreement may be imposed on any individual without its approval.

Bargaining models for agents have been well studied by both economists (see, for

example [85, 100]) and AI researchers [57, 111]. In our setting, two agents, α and β,
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bargain over how to divide a surplus (or cost) associated with implementing some joint

solution. Call the value of the solution computed by the deadline by agent i ∈ {α, β}
to agent α’s problem vαi , to agent β’s problem vβi , and to the joint problem vjoint

i .

Through bargaining, the agents decide whether to pool or not, and in the former case

they also decide how to divide the value of the solution to the joint problem. If the

value of the solution to the joint problem is higher than the sum of the values of the

solutions to the individual problems, then there is a potential gain from agreeing to

implement the joint solution.

We study two different negotiation settings; a single-shot bargaining game and an

alternating offers bargaining game. We start with the single-shot bargaining game.

6.4 Single-shot Bargaining Game

The first negotiation model we study is single-shot bargaining, also know as an ulti-

matum game. We restrict the bargaining protocol so that only one agent is allowed

to make an offer, while the other agent has the ability to either accept or reject the

offer made (that is, the agents are involved in an ultimatum game). If a proposal is

accepted, the joint solution is implemented and the surplus is divided as determined

by the agreed upon proposal. If no agreement is reached, then the agents implement

their individual solutions with no further interaction. We assume that if there is an

agreement, it must occur at or before a specified deadline D.

Say that agent α is the proposer. It makes a take-it-or-leave-it offer, xoα, to the

other agent, β, about how much agent β’s payoff will be if they pool.1 Agent β can

then accept or reject the offer. If agent β accepts the offer, the agents pool and use

agent α’s solution to the joint problem. Agent β’s payoff is xoα as proposed and agent

α gets the rest of the value of the solution: vjoint
α − xoα. If agent β rejects, both agents

implement their own computed solutions to their own individual problems, in which

case agent α’s payoff is vαα and agent β’s payoff is vββ . The payoffs are presented in

Table 6.1.

Before the deadline, the agents may or may not know which one of them is the

proposer. In any case, if the agents agree to implement the joint solution, the joint

solution computed by the proposer is used. In our model the probability that agent

1We allow an agent to make a negative “unacceptable” offer which signals that it does not want

to coordinate or implement the joint solution.
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Agent Payoff if the offer is accepted Payoff if the offer is rejected

α vjoint
α − xoα vαα

β xoα vββ

Table 6.1: Each agent i has computed a value vji for problem j. If agent α makes an

offer, xoα, then agent β has the choice of either accepting or rejecting it. The payoffs

for the agents in either situation are listed in the table below.

α will be the proposer is Pprop, and this is common knowledge. When agents reach

the bargaining stage, each agent’s strategy is captured by an offer-accept vector. An

offer-accept vector for agent α is OAα = (xoα, x
a
α) ∈ R2, where xoα is the amount that

agent α would offer if it were the proposer, and xaα is the minimum value it would

accept if agent β made the proposal. The offer-accept vector for agent β is defined

similarly.

6.4.1 Strategies for the Single-shot Game

The strategies of the agents in this ultimatum game incorporate both computing and

bargaining actions.

Definition 37 (Strategy for the ultimatum game). Let cj denote the action of

taking one computing step on problem j, let ∅ denote the act of not computing, and

let Φi(t) denote the set of all states of deliberation for agent i at time t. A strategy

for agent i in the ultimatum game with deadline D is

Si = (σti)
D
t=0

where

σti : Φi(t) 7→ {cα, cβ, cjoint, ∅} for t < D

and

σti : Φi(D) 7→ R2.

If it is before the deadline, the strategy specifies which computing action the agent

should take, given its current state of deliberation. If it is at the bargaining deadline,

the strategy specifies which offer-accept vector an agent should declare.
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Our analysis will also allow mixed strategies. A mixed strategy for agent i, S̃i is

a mapping from a state of deliberation to a probability distribution over computing

actions if t is before the deadline, otherwise it is a mapping from a state of deliberation

to a probability distribution over offer-accept vectors.

6.5 Analysis of Single-shot Bargaining

There are many parameters in the single-shot bargaining mechanism which influence

what strategies agents will choose to follow in equilibrium. These parameters include

• which agent is the proposer,

• whether or not the proposer is known in advance of the deadline,

• whether the deadlines are common knowledge, and

• how much uncertainty arises while computing.

In this section we study the effects of these parameters on the equilibria which

arise in the bargaining game. In addition, we investigate properties of the equilibria,

such as the existence of pure strategy equilibria, and whether equilibria are also Pareto

optimal.

6.5.1 Known Proposer

For an agent that is never going to make an offer, we can prescribe a dominant

strategy independent of the statistical performance profiles:

Theorem 3. If an agent, β, knows that it cannot make a proposal at the deadline D,

then it has a dominant strategy of computing only on its own problem and accepting

any offer xoα such that xoα ≥ V (n) where n is the node in the performance profile T β
that agent β has reached at time D. If the performance profile does not flatten before

the deadline (V (n′) < V (n) for every node n′ on the path to n), then this is the unique

dominant strategy. This result does not depend on a common knowledge assumption.

Proof. In the event that an agreement is not reached, agent β could not have achieved

higher payoff than by computing on its individual problem (even if it knows that
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further computation will not improve its solution). In the event that an agreement is

reached, agent β would have been best off by computing so as to maximize the minimal

offer it will accept, V (nββ). Since solution quality is nondecreasing in computation

time, if agent β deviates and computes t steps on a different problem, then the value

of its fallback is V (n′ββ) ≤ V (nββ) where time(nββ) = time(n′ββ) + t. If V (n′) < V (n) for

every node n′ on the path to n, then this inequality is strict.

Corollary 1. In the games where the proposer is known, there exists a pure strategy

PBE.

Proof. By Theorem 3, the receiver of the offer has a dominant strategy. Say the

proposer were to use a mixed strategy. In general, every pure strategy that has

nonzero probability in a best-response mixed strategy has equal expected payoff [71].

Since mixing by the proposer will not affect the receiver’s strategy, the proposer might

as well use one of the pure strategies in its mix.

The equilibrium differs based on whether or not the deadline is known, as discussed

in the next subsections.

Known Proposers, Known Deadline

In the simplest setting, both the deadline and proposer are common knowledge. With-

out loss of generality we assume that agent α is the proposer and the deadline is at

time T . Therefore, from Theorem 3, agent β has a dominant strategy, Sβ, which is

to compute on the solution for it’s own problem and accept any offer that is greater

than (or equal to) the value of its computed solution. Knowing this, agent α can

determine a strategy which is a best–response.

Assume that by computing according to a certain strategy Sα, the proposing

agent α reaches deliberation state φα(D) = 〈nαα, nβα, njoint
α 〉 at time D. It is possible to

compute agent α’s expected utility, uα, from offering some amount xoα to agent β in

this situation. The expected utility is

E[uα(xoα|φα(D), Sβ)] = Pa(x
o
α|nβα)[V (njoint

α )− xoα] + (1− Pa(xoα|nβα))V (nαα) (6.1)

where Pa(x
o
α|nβα) is the probability that agent β will accept an offer xoα, conditioned

on agent α reaching node nβα. When it is clear from the context, we will use Pa(x
o
α)

to represent Pa(x
o
α|nβα).
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Figure 6.2: A performance profile tree for agent β. The probability that agent β

would accept an offer xoα = 2 is equal to 13
18

These probabilities are determined by agent α’s beliefs about what value agent

β has computed for its own individual problem. In a setting where agent β has a

dominant strategy (that is, it computes only on the solution for its own problem),

agent α can compute its beliefs that agent β will accept an offer of x with probability

Pa(x), simply by noting the values of the nodes that can be reached by time D in the

performance profile for agent β’s individual problem, and computing the probability

of reaching each node. Since we use performance profile trees, this is easily done,

since the probability of reaching some node n(t) in tree T at depth t is simply the

product of the probabilities on the edges in the path to node n(t). If we let P (n(t))

denote the probability of reaching node n(t), then

Pa(x
o
α) ≡ Pa(x

o
α|nβα) =

∏

n(D)∈{T ββ (nβα)|V (n(D))≥xoα}

P (n(D))

Figure 6.2 provides an example to illustrate this.

We can determine the proposer’s expected utility from following a particular strat-

egy as follows. Assume agent α is executing strategy Sα = (σti)
D
t=0. At time D,

when the agent must make a proposal, it is in some deliberation state φα(D) =

〈nαα, nβα, njoint
α 〉 where time(nαα) = tαα, time(nβα) = tβα, and time(njoint

α ) = tjoint
α .

If σDi dictates that in deliberation state φα(D) it makes an offer of xoα, then agent

α’s expected utility from following Sα is

E[Uα(Sα, Sβ)] =
∑

φα(D)∈Φα(tαα,t
β
α,t

joint
α )

p(φα(D))(Pa(x
o
α)[V (njoint

α )− xoα] + (1− Pa(xoα))V (nαα))

(6.2)

where p(φα(D)) is the probability of being in deliberation state φα(D).
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The game differs based on whether the performance profiles of the proposing agent

have a branching factor greater than one (stochastic performance profiles), or whether

they are simply branches (deterministic performance profiles).

Deterministic Performance Profiles

In an environment where the performance profiles are deterministic, the equilibria

can be analytically determined.2

Theorem 4. Assume that the agents’ performance profiles T αα , T βα , T joint
α ,T αβ , T ββ ,

and T joint
β are deterministic and agent α knows agent β’s performance profiles. Then

there exists a PBE where agent β will only compute on its own problem, and agent α

will never split its computation. It will either compute solely on its own problem or

solely on the joint problem. The PBE payoffs to the agents are unique, and the PBE

is unique unless the performance profile that an agent is computing on flattens, after

which time it does not matter where the agent computes since that does not change

its payoff or bargaining strategy. The PBEs are also the only Nash equilibria.

Proof. Let njoint
α be the node in T joint

α that agent α reaches after allocating all of its

computation on the joint problem. Let nαα be the node in T αα that agent α reaches

after allocating all of its computation on its own problem. Let nββ be the node in T ββ
that agent β reaches after allocating all of its computation on its own problem.

By Theorem 3, agent β has a dominant strategy to compute on its own solution

(unless its performance profile flattens after which time it does not matter where the

agent computes since that does not change its payoff). Agent α’s strategies are more

complex since they depend on agent β’s final fallback value, V (nββ), and also on what

potential values the joint solution and α’s individual solution may have.

1. Case 1: V (njoint
α ) − V (nββ) > V (nαα). Agent β will accept any offer greater

than or equal to V (nββ) since that is its fallback. If agent α makes an offer

that is acceptable to agent β, then the highest payoff that agent α can receive

is V (njoint
α ) − V (nββ). If this value is greater than V (nαα) –that is, the highest

fallback value agent α can have—then agent α will make an acceptable offer. To

maximize the amount it will get from making the offer, agent α must compute

2In Chapter 2 we defined deterministic performance profiles. While there is no uncertainty as to

what value will result from computing, an agent still needs to compute in order to obtain the value.
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only on the joint problem. Any deviation from this strategy will result in agent

α receiving a lesser payoff (and strictly less if its performance profile has not

flattened).

2. Case 2: V (njoint
α )− V (nββ) < V (nαα). Any acceptable offer that agent α makes

results in agent α receiving a lesser payoff than if it had computed on its own

solution solely, and made an unacceptable offer (and strictly less if its perfor-

mance profile has not flattened). Therefore agent α will compute only on its

own problem until that performance profile flattens, after which it does not

matter where it allocates the rest of its computation.

3. Case 3: V (njoint
α ) − V (nββ) = V (nαα). By computing only on its own problem,

agent α’s payoff is V (nαα). By computing only on the joint problem, the payoff

is V (njoint
α ) − V (nββ). These payoffs are equal. However, by dividing the com-

putation across the problems, both payoffs decrease (unless at least one of the

two performance profiles has flattened, after which it does not matter where the

agent allocates the rest of its computation).

The above arguments also hold for Nash equilibrium.

Stochastic Performance Profiles

If the performance profiles are shared but stochastic, determining the equilibrium

is more difficult. By Theorem 3, agent β has a dominant strategy, Sβ, and only

computes on its individual problem. If that performance profile has flattened and

agent β has computed on agent α’s or the joint problem thereafter, this does not

change agent β’s fallback, and this is the only aspect of agent β that agent α cares

about.

However, based on the results it has obtained so far, agent α may decide to switch

between problems on which it is computing—possibly several times. The problem

is similar to computing values and policies for a sequential decision problem with

stochastic actions, except that the deadlines mean that the game has a finite hori-

zon. The payoffs can be seen as state–dependent reward values and the accessibility

functions can be modeled as the probability of transferring into a deliberation state,

given the action taken.

There are two different cases that affect agent α’s capabilities when it comes to
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speculating as to what value agent β has obtained from deliberation. If the two agents

share algorithms and, therefore, performance profiles, then agent α can deliberate on

agent β’s problem, and be sure that the results obtained are related to those that agent

β has obtained. Agent α might then find it useful to deliberate on agent β’s problem

in order to refine its beliefs as to what value agent β has obtained. On the other hand,

if the agents have different algorithms and, therefore, different performance profiles,

any deliberation that agent α does on agent β’s problem, using its own algorithm,

may not correctly reflect the solutions that agent β has achieved. It gets no utility

from computing on agent β’s problem since its beliefs can not be updated.

In this section we do not assume that the performance profiles are common knowl-

edge. However, it is required that at least agent α can observe the performance profiles

for agent β. Agent β does not need to know that agent α can view its performance

profiles. This knowledge does not change agent β’s behavior as it has a dominant

strategy.

We use a dynamic programming algorithm to determine agent α’s best response

to agent β’s strategy. The base case involves looping through all possible deliberation

states φα(D) for agent α at the deadline D. Each φα(D) determines a probability

distribution over the set of nodes agent β reached by computing T time steps. For

any offer x that agent α may make, the probability that agent β will accept is

Pa(x) =
∑

nβ

P (nβ) (6.3)

where nβ ∈ {n|n is in subtree T β(nβα) at depth D − time(nβα) and V (n) ≤ x}.3

The offer, xoα, that maximizes the expected utility of agent α, given that α is in

the state of deliberation φα(D) = 〈nα,α , nβα, njoint
α 〉 is

xoα(φα(D)) = arg max
x

[
Pa(x)(V (njoint

α − x)(1− Pa(x))V (nαα)
]
. (6.4)

We denote the optimal bargaining action, given the deliberation state φα(D) by

B∗α(φα(D)) = (xoα(φα(D)), V (nαα)). (6.5)

The expected utility to agent α from following a strategy Sα which results in

deliberation state φα(D) and where agent α offers B∗α(φα(D)) to agent β who has
3Since the agents have performance profile trees, it is straightforward to compute P (nβ). It is

simply the product of the probabilities on the edges of the path to node nβ , starting at node nβα.

That is, the performance profile tree representation stores the conditional probabilities.
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executed its dominant strategy S∗β is

E[Uα(Sα, S
∗
β)] = Pα(x)(V joint

α )− x) + (1− Pα(x))V (nαα) (6.6)

where x = xoα(φα(D)).

It is possible to work backwards and to determine which computing action cz is

optimal if agent α finds itself in deliberation state φα(t) at time t once the optimal

offers have been determined for each final deliberation state. Let

UC
α ((cz, φα(t)), Sβ)

denote the utility of agent α of computing on problem z at time t+ 1, given that at

time t it is in deliberation state φα(t) and it will make the optimal offer at time D

given that agent β is following strategy S∗β. Then

E[UC
α ((cz, φα(D)), Sβ)] = Pα(x)(V joint

α )− x) + (1− Pα(x))V (nαα) (6.7)

where x = xoα(φα(D)), and

E[UC
α ((cz, φα(t)), Sβ)] =

∑

φα(t+1)∈Φα(t+1)

P (φα(t+ 1)|φα(t), cz) max
cy

E[UC
α ((ay, φα(t+ 1)), Sβ)]

where P (φα(t+ 1)|φα(t), cz) is the probability of reaching deliberation state φα(t+ 1)

given that in deliberation state φα(t) the agent took computing action cz. This

probability is read directly from the performance profiles.

The optimal computing action in deliberation state φα(t) is simply

cz∗(φα(t)) = arg max
cz

E[UC
α ((cz, φα(t)), Sβ)].

The sequence of actions (cz∗(φα(t)))Dt=0 coupled with the offer-accept vectors (xoα(φα(D)),

V (nαα)) for each deliberation state φα(D), define a best-response strategy to S∗β. Al-

gorithm 1 computes the best-response strategy for agent α.

Theorem 5. Algorithm 1 correctly computes a PBE strategy for agent α.4 Assume

that the number of children of any node in T αα , T βα and T joint
α is at most k. Algorithm 1

runs in O(kD−1D3) time.

4By keeping track of equally good actions at every step, Algorithms 1, 2, and 3 can return all

PBE strategies for agent α. Again, the dominant strategy of agent β is to compute on its own

problem (unless the performance profile flattens out after which it does not matter what agent β

computes on.
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Algorithm 1 Known Proposer, Known Deadline

input: Performance profile trees, D

for each deliberation state φα(D) ∈ Φα(D) do

xoα(φα(D))← arg maxx
[
Pa(x)(V (njoint

α − x) + (1− Pa(x)V (nαα)
]

end for

for each t from D − 1 down to 0 do

for each deliberation state φα(t) ∈ Φα(t) do

cz∗(θα(t))← arg maxcz E[UC
α ((cz, φα(t)), Sβ)]

end for

end for

return (cz∗(φα(t)))Dt=0 and (xαo (φα(D)), V (nαα))φα(D)∈Φα(D)

Proof. The nonproposing agent, β, has a dominant strategy, Sβ. Algorithm 1 com-

putes the best–response for agent α, at every time and for every state of deliberation.

Let k be the maximum number of children of any node in the performance profiles.

At time t the number of states of deliberation is at most kt
(
t+2

2

)
= kt(t+2)(t+1)

2
. Since

D−1∑

t=0

kt
(t+ 1)(t+ 2)

2
≤ kD−1

D−1∑

t=0

(t+ 1)(t+ 2)

2

= kD−1D(D + 1)(D + 2)

6

the algorithm runs in O(kD−1D3) time.

Known Proposer, Unknown Deadline

There are situations where agents may not know the deadline. We represent this

by a probability distribution Q = {q(i)}Di=1 over possible deadlines where D is some

maximum deadline. Q is assumed to be common knowledge.

Whenever time t is reached but the deadline does not arrive, agents update their

beliefs about Q. The new distribution is Q′ = {q′(i)}Di=t where

q′(t) =
q(t)∑D
j=t q(j)

.
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Algorithm 2 Deterministic PPTrees, Known Proposer, Unknown Deadline

input: Performance profile trees, Q

for each deliberation state Γα(D) do

xoα(Γα(D))← arg maxx
[
Pα(x)(V (njoint

α )− x+(1− Pα(x))V (nαα)
]

end for

for each t from D − 1 down to 0 do

q′(t)← q(t)∑D
j=t q(j)

for each deliberation state Γα(t) do

xoα(Γα(t))← arg maxx
[
Pα(x)(V (njoint

α )− x+(1− Pα(x))V (nαα)
]

cz∗(Γα(t))← arg maxcz
[
(1− q′(t))E[UC

α ((cz,Γα(t)), Sβ)
]

end for

end for

return (cz∗(Γα(t)))Dt=0 and (xoα(Γα(t)), V (nαα))Dt=0

Deterministic Performance Profiles

Since there is no uncertainty as to agent β’s fallback value, agent α need never com-

pute on agent β’s problem. Therefore, agent α will only be in deliberation states

〈nαα, nβα, njoint
α 〉 where time(nβα) = 0. Therefore, strategies that include computation

actions aβ need not be considered. This, and the lack of uncertainty in which delibera-

tion state action a leads to, greatly reduce the space of deliberation states to consider.

Denote by Γα(t) any deliberation state of agent α where time(nαα) + time(njoint
α ) = t

and time(nβα) = 0. The algorithm (Algorithm 2) for determining agent α’s equilibrium

strategy differs from Algorithm 1 in that it incorporates the probability that the dead-

line may arrive at any time, and considers only the restricted space of deliberation

states.

Theorem 6. With deterministic performance profiles, Algorithm 2 correctly com-

putes a PBE strategy for agent α in O(D2) time.

Proof. The nonproposing agent, β, has a dominant strategy, Sβ. Algorithm 2 com-

putes the best–response for agent α, at every time and for every state of deliberation.

Since the setting is deterministic, agent α need only consider deliberation states

at time t of the form θα(t) = 〈nαα, nβα, njoint
α 〉 where time(nβα) = 0. At time t there are

t+1 deliberation states of this form. Each calculation in the algorithm takes constant

time. The first loop is repeated D+ 1 times. In the second loop, the calculations are
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Algorithm 3 Stochastic PPTrees, Known Proposer, Unknown Deadline

input: Performance profile trees, Q

for each deliberation state φα(D) ∈ Φα(D) do

xoα(φα(D))← arg maxx
[
Pa(x)(V (njoint

α )− x) + (1− Pa(x))V (nαα)
]

end for

for each t from D − 1 down to 0 do

q′(t)← q(t)∑D
j=t q(j)

for each deliberation state φα(t) ∈ Φα(t) do

xoα(φα(t))← arg maxx
[
Pa(x)(V (njoint

α )− x) + (1− Pa(x))V (nαα
]

cz∗(θα(t))← arg max(cz(1− q′(t))E[UC
α ((cz, φα(t)), Sβ)]

end for

end for

return (cz∗(φα(t)))Dt=0 and (xαo (φα(D)), V (nαα))φα(D)∈Φα(D)

done t + 1 times for t = 0 to D − 1, or D(D + 1)/2 times. Therefore, the algorithm

takes O(D2) time.

Stochastic Performance Profiles

The algorithm differs from Algorithm 1 in that it considers the probability that the

deadline might arrive at any time. Any deliberation state is possible in equilibrium.

Theorem 7. Algorithm 3 correctly computes a PBE strategy for agent α. Assume

that the number of children of any node in T αα , T βα and T joint
α is at most k. Algorithm 3

runs in O(kD−1D3) time.

Proof. The nonproposing agent, β, has a dominant strategy, Sβ. Algorithm 3 com-

putes the best–response for agent α, at every time and for every state of deliberation.

Let k be the maximum branching factor for the performance profiles. At time t the

number of states of deliberation is kt
(
t+2

2

)
= kt(t+2)(t+1)

2
. Since

D−1∑

t=0

kt
(t+ 1)(t+ 2)

2
≤ kD−1

D−1∑

t=0

(t+ 1)(t+ 2)

2

= kD−1D(D + 1)(D + 2)

6

the algorithm runs in O(kD−1D3) time.
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Agent α
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0.00
1.0
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Joint

4.00
1.0

Figure 6.3: Performance profile trees for the example where there is no pure strategy

Nash equilibrium.

6.5.2 Unknown Proposer

This section discusses the case where the proposer is unknown but the probability of

each agent being the proposer is common knowledge. The deadline may be common

knowledge. Alternatively, the deadline is not known but its distribution is common

knowledge. This is a more complex setting since neither agent may have a dominant

strategy.

Nonexistence of a Pure Strategy Equilibrium

In this subsection we show that in some cases, there is no pure strategy equilibrium.

Theorem 8. There exist instances (defined by the performance profile trees) of the

game that have a unique mixed strategy PBE, but no pure strategy PBE (not even

a pure strategy Nash equilibrium) This result does not reply on an assumption about

independence of performance profiles..

Proof. Assume that the agents have the performance profiles in Figure 6.3 and are

allowed to take only one deliberation action (D = 1). Assume, also, that with equal

probability either agent may be named as the proposer, that is, agent α is the proposer

with probability 1
2
. Let ∅ represent a null offer, where the proposer does not want to

implement a joint solution.

The undominated strategies for agent α are

• S1
α = {aα, (∅, 3.0)}: Agent α computes one time step on its own problem. If it
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is chosen as the proposer then it makes a null offer, otherwise it accepts any

offer that is greater than or equal to the fallback value of 3.0.

• S2
α = {ajoint, (0.0, 0.0)}: Agent α computes one time step on the joint problem.

If it is chosen as the proposer then it makes an offer of 0.0, otherwise it accepts

any offer greater than or equal to the fallback value of 0.0.

The undominated strategies for agent β are

• S1
β = {ajoint, (0.0, 0.0)}: Agent β computes on the joint problem. If it is chosen

proposer then it offers 0.0, otherwise it accepts anything greater than or equal

to the fallback value of 0.0.

• S2
β = {ajoint, (3.0, 0.0)}: Agent β computes on the joint problem. If it is chosen

as the proposer, then it offers 3.0, otherwise it accepts anything greater than or

equal to the fallback value of 0.0.

The game can be represented in normal form (Table 6.2). There is no pure strategy

S1
β S2

β

S1
α 3.0, 0.0 3.0, 0.5

S2
α 2.0, 2.0 3.5, 0.5

Table 6.2: Reduced normal form of the bargaining game with performance profiles in

Figure 6.3. There is no pure strategy Nash equilibrium.

Nash equilibrium for this game. It is easy to prove this by checking each strategy

profile.

1. (S1
α, S

1
β) is not a Nash equilibrium since agent β would respond with S2

β if α

played S1
α.

2. (S1
α, S

2
β) is not a Nash equilibrium since agent α would respond with S2

α is agent

β played S2
β.

3. (S2
α, S

2
β) is not a Nash equilibrium since agent β would respond with S1

β if agent

α played S2
α.

4. (S2
α, S

1
β) is not a Nash equilibrium since agent α would respond with S1

α if agent

β played S1
β.
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There does exist a mixed strategy Nash equilibrium. If agent α plays S1
α with prob-

ability γ and if agent β plays S1
β with probability δ then α’s expected payoff is

uα = γ(3.0δ + 3.0(1− δ)) + (1− γ)(2.0δ + 3.5(1− δ))
= 1.5γδ − 0.5γ − 0.5δ + 3.5.

The first order condition is

0 =
duα
dγ

= 1.5δ − 0.5

⇒ δ =
1

3
.

Similarly for agent β

uβ = δ(2.0(1− γ)) + (1− δ)(0.5γ + 0.5(1− γ))

= −2.0γδ + 1.5δ + 0.5.

The first order condition is

0 =
duβ
dδ

= −2.0γ + 1.5

⇒ γ =
3

4
.

Therefore, in Nash equilibrium, agent α plays S1
α with probability 3

4
and agent β plays

S1
β with probability 1

3
.

Suboptimal Outcome

It is often of interest to ask whether an outcome is “optimal”. An essential require-

ment for any optimal outcome is that it possess the property of Pareto efficiency.

An outcome is Pareto efficient if there is no alternative outcome where some agent

is better off without making some other agent worse off. Unfortunately, as we show

below, in the setting where there is uncertainty as to which agent will be the pro-

poser, agents may allocate their deliberation resources in a nonoptimal manner in

equilibrium, so the outcome will not be Pareto efficient. In other words, if the agents

would use different deliberation strategies, they would both be better off.

Theorem 9. There exist instances (defined by T α, T β, and T joint) of the game where

the outcome of the unique Nash equilibrium is not Pareto efficient. This result does

not depend on independence of performance profiles.
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Joint
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Figure 6.4: Performance profile trees where the equilibrium outcome is not Pareto

efficient.

Proof. Consider the performance profiles in Figure 6.4. Let the probability that agent

α will be the proposer be 1
2
. The agents are allowed only one deliberation step each,

(D = 1). Let ∅ represent a null offer, where the proposer does not want to implement

a joint solution.

The undominated strategies for agent α are

• S1
α = {aα, (∅, 2.4)}: Agent α computes on its own problem and makes a null

offer if it is the proposer. Otherwise, it accepts anything greater than or equal

to 2.4.

• S2
α = {ajoint, (0.0, 0.0)}: Agent α computes on the joint problem and offers

nothing if it is the proposer. Otherwise, it accepts anything greater than or

equal to 0.0.

• S3
α = {ajoint, (1.4, 0.0)}: Agent α computes on the joint problem and offers 1.4

if it is the proposer. Otherwise, it accepts anything greater or equal to 0.0.

The undominated strategies for agent β are

• S1
β = {aβ, (∅, 1.4)}: Agent β computes on its own problem and makes a null

offer if it named as the proposer. Otherwise it accepts any offer greater than or

equal to 1.4.

• S2
β = {ajoint, (0.0, 0.0)}: Agent β computes on the joint problem and offers

nothing if it is the proposer. Otherwise, it accepts anything greater than or

equal to 0.0.
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S1
β S2

β S3
β

S1
α 2.4, 1.4 2.4, 0.0 2.4, 0.705

S2
α 0.0, 1.4 1.905, 1.905 3.105, 0.705

S3
α 1.205, 1.4 1.205, 2.605 2.405, 1.405

Table 6.3: Normal form representation of the bargaining game where the performance

profiles are found in Figure 6.4, and the probability of agent α being the proposer is
1
2
. The pure strategy Nash equilibrium is (S1

α, S
1
β). The Pareto efficient outcome is

(S3
α, S

3
β).

• S3
β = {ajoint, (2.4, 0.0)}: Agent β computes on the joint problem and makes an

offer of 2.4 if it is the proposer. Otherwise it accepts anything greater or equal

to 0.0.

The game can be represented in normal form (Table 6.3). There is a unique pure

Nash equilibrium where agent α plays strategy S1
α and agent β plays strategy S1

β, that

is, both agents compute on their own problems. However, the equilibrium outcome is

not Pareto efficient. Both agents would be strictly better off if agent α played S3
α and

agent β played S3
β. Unfortunately, the strategies S3

α and S3
β are not in equilibrium. If

agent α played S3
α then agent β would deviate to S2

β. Similarly, if β played S3
β then

agent α would deviate to S2
α.

A General Method for Solving the Game with an Unknown Proposer

In general, solving an unknown proposer problem is difficult, as neither agent may

have a dominant strategy. Instead, the strategy of one player depends on the strategy

of the other. One approach of solving for perfect Bayesian equilibria is to convert the

game into its normal form by considering all pure strategies for each player and the

resulting payoffs when these strategies are employed. There are relatively efficient

algorithms for solving normal form games [1, 119], but the conversion itself usually

incurs an exponential blowup since the number of pure strategies is often exponential

in the depth of the game tree because a pure strategy specifies a move for each

information set of the player.

A more recent approach is to represent the extensive form game in its sequence

form [115]. In the rest of this subsection we show how that technique can be used in
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our setting. A sequence of choices of a player corresponds to a node a in the game

tree. The sequences replace the set of pure strategies in the normal form. In our

setting a sequence is either;

1. ∅, the empty sequence,

2. a sequence of deliberation actions,

3. a sequence of deliberation actions followed by a proposal, or

4. a sequence of deliberation actions followed by either an accept or reject action.

All nodes in an information set, I, of an agent are defined by the same sequence, σI .

If, after reaching information set I, an agent then makes action c, the new sequence

is denoted σIc. The set SQα denotes the set of all sequences for agent α. Similarly

the set SQβ is the set of all sequences for agent β.

Payoffs to agents α and β are represented by matrices A and B respectively. Each

row corresponds to a sequence of agent α and each column corresponds to a sequence

of agent β. Every leaf in the game tree defines a pair of sequences, that is, actions

that both agents must have taken in order to reach that node. For each sequence pair

defined by a leaf node, the agent’s payoff is the payoff it received at the leaf node if

there are no chance moves. If there are chance moves, as there are in our setting,

then a pair of sequences may correspond to more than one leaf node. The payoff

entry is the sum of the payoffs over all leaves that correspond to the sequence pair

weighted by the probabilities of reaching the leaves given the sequence pair. If a pair

of sequences does not correspond to a leaf node, then the payoff entry is zero. The

matrices, A and B, are sparse as the only (possible) nonzero entries occur at sequence

pairs defined by leaf nodes which is linear in the size of the game tree.

Both agents also have realization plans, which are nonnegative vectors that rep-

resent the realization probabilities for the sequences of the agent when it is playing a

mixed strategy. Let x be the realization plan for agent α and let y be the realization

plan for agent β. The plans for agent α are characterized by the following constraints.

x(∅) = 1

−x(σI) +
∑

c∈CI
x(σIc) = 0
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for all information sets I of agent α where CI is the set of possible moves that agent

α can make at information set I. This means that at any information set, I, the

probability of reaching I is the same as the sum of the probabilities of taking an

action that leaves I. The constraints for the realization plan, y, for agent β are

similarly defined.

The realization plans can be represented by

Ex = e and Fy = f

where E and F are constraint matrices. The first row is (1, 0, 0, . . . ) and corresponds

to the empty sequence having probability one. The other rows corresponds to the

information sets of the respective agent. The vectors e and f are equal to the vector

(1, 0, 0, . . . , 0)T which is of the appropriate size.

The Nash equilibrium of the game is a solution to a linear programming problem.

The vectors x and y are in Nash equilibrium if they are mutual best responses. If y

is fixed, then x is a best response if and only if it is an optimal solution to the linear

program

maximizex xT (Ay)

subject to xTET = eT ,

x ≥ 0.

The dual linear program is

minimizep eTp

subject to ETp ≥ Ay

where p is an unconstrained vector of variables.

Similarly, y is a best response to x if it is an optimal solution to

maximizey yT (Bx)

subject to yTF T = fT ,

y ≥ 0.

with dual

minimizeq fT q

subject to F T q ≥ Bx
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where q is an unconstrained vector of variables.

The feasible solutions to the linear programming problems are optimal only if the

two objective function values are equal. That is, x is a best response to y only if

xT (−Ay + ETp) = 0

and y is a best response to x only if

yT (−Bx+ F T q) = 0.

Any Nash equilibrium x, y is part of a solution x, y, p, q to the previous constraints.

These constraints define a linear complementarity problem and therefore the solution

to the linear complementarity problem is also a Nash equilibrium [1]. The standard

linear complementarity problem is to find a vector z ∈ Rn so that

z ≥ 0

b+Mz ≥ 0

zT (b+Mz) = 0.

where b ∈ Rn and M is an n× n matrix.

It is possible to create a linear complementarity problem that is equivalent to the

linear programming problems [53]. First, set

M =




−A ET −ET

−BT F T −F T

−E
E

−F
F




and

b =




0

0

e

−e
f

−f




.

115



Let z = (x, y, p′, p′′, q′, q′′)T where p′, p′′, q′, q′′ are nonnegative vectors such that p =

p′ − p′′ and q = q′ − q′′.
Using this representation, the equilibria for the extensive form game can be de-

termined by similar algorithms that are known for the normal form, such as Lemke’s

algorithm for solving linear complementarity problems. Often, these algorithms run

exponentially faster than with the standard approach since the size of the sequence

form is linear, and not exponential, in the size of the game tree [53].

However, these are general techniques which do not take advantage of specific

properties of the particular game. It can be the case that the performance profiles

will affect the payoffs in such a way that finding the equilibrium strategies is straight-

forward (for example, in situations where it is always better not to coordinate actions

and implement the joint solution). Thus, specially designed algorithms can sometimes

take advantage of the special structure and be more efficient than general techniques

for computing equilibria. Earlier in this chapter we presented such specialized al-

gorithms for the setting with a known proposer, but currently we only have general

algorithms for the setting with an unknown proposer.

6.6 Alternating-offers Bargaining Game

In this section we study a different bargaining game: the alternating offers model.

In this model the agents take turn making offers and counteroffers about whether to

perform a joint plan or whether to act individually. However, unlike in the single-

shot bargaining model where most computation is done before the agents negotiate,

in the alternating-offers model the computing actions and the negotiation actions are

intertwined. The process is divided into discrete stages. At each stage agents can

compute one step on one of the three problems. After each agent has made the single

computing step, one agent is allowed to make an offer to the other, specifying how

much it would be willing to pay if the other agent agreed to cooperate on the joint

problem, using the solution computed by the proposing agent. The agent receiving

the proposal can either accept or reject. If the offer is accepted, the joint solution

is implemented and the game ends. If the offer is rejected, the game continues for

another stage, where the roles of the agents are switched. While both agents can

observe all proposals and responses, the computational actions of the agents are pri-

vate, i.e., an agent cannot directly observe what the other has computed on, but can
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only try to deduce this information from the other agent’s offers and accept–reject

decisions.

6.6.1 Formal Model

The game is divided into stages. In every stage, both agents are allowed to perform

one computational action on any problem they want. The computational action is

followed by bargaining actions. In each stage one agent is the proposer and the other

agent is the responder. The proposer makes an offer, x. If the offer is accepted by the

responder, the game ends. The joint solution is executed, the utility for the responding

agent is x and the utility for the proposing agent is the value it has computed for the

joint solution at that point in time minus x. If the proposal is rejected then in the

next stage, the two agents switch roles for the bargaining portion. The actions and

strategies in such a game can be defined formally as follows.

Definition 38. Assume that at time t agent i is the proposer. An action for agent i

at time t is

Ai(t) = (cz, x)

where cz ∈ {cα, cβ, cjoint} is a computing action and x ∈ R∪ ∅ is an offer. The empty

offer, ∅, signals that the agent does not want to implement the joint solution at time

t.

At time t+ 1, agent i’s action is

Ai(t+ 1) = (cz, res)

where cz is a computing action and res ∈ {yes, no} is agent i’s response to the opposing

agent’s offer.

A history describes the computing state of both agents at time t and the offers

and responses of both agents.

Definition 39. At time t, a history, H(t), is

H(t) = czα(t− 1)× czβ(t− 1)× φα(t− 1)× φβ(t− 1)× ((x, res)i)
t−1
i=0

where (czi (t − 1)) is the sequence of computing steps that agent i has taken up until

time t−1, φi(t−1) is its current state of deliberation, and ((x, resi)
t−1
i=0 is the sequence

of all offers and responses observed up until time t− 1.
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Let Hi(t) = {H(t)} be the set of all possible histories at time t. A strategy for an

agent specifies an action for every possible history after which it has to move.

Definition 40. A strategy for agent i, Si, is

Si = (σti)
D
t=0

where D is agent i’s deadline and

σti : Hi(t− 1)→ Ai(t).

We also allow for mixed strategies where σi(t) is a mapping from the set of histories

at time t− 1 to a probability distribution over actions at time t.

In our analysis we use the perfect Bayesian equilibrium which was described in

Chapter 4.

6.6.2 Agents’ Beliefs and the Role of Signaling

In earlier sections we studied a protocol where agents are restricted to only one round

of communication. This form of bargaining has the advantage that agents did not leak

information about their computation strategies. On the other hand, in the alternating

offers model, each proposal and response provides information as to what problems

the agents have computed on and what solutions have been obtained. Proposals

and responses are signals that can be used by agents to update their beliefs about

where the other has computed. Each agent uses this information, along with the

values obtained by its own computing actions, to guide its future computing actions,

proposals and responses.

Each agent’s beliefs are centered on the state of computation that the other agent

is in. Recall, that a state of computation is a list specifying which nodes in which

performance profile trees an agent has reached by computing. An agent i’s belief at

time t, Bei(t), is a probability distribution over the set of states of computation that

agent j (j 6= i) may be in at time t. Let bi(φj(t)) be the probability with which agent

i believes that agent j is in state of computation φj(t). An agent updates its beliefs

whenever it receives some form of relevant information. This information comes from

one of two sources; the agent’s own computation, and the other agent’s proposals and

responses. The rest of this section describes how agents use these information sources

to update beliefs.
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First, we require that beliefs be consistent. For example, if at time t − 1, agent

i believed that bi(φj(t − 1)) = 0 for some computation state φj(t − 1), then agent

i must have belief bi(φj(t)) = 0 if computation state φj(t) can only be reached by

passing through φj(t−1). Second, agents obtain information from their own states of

computation. This information can be used to update their beliefs about what com-

putation states the other agent is in. In particular, given its own state of deliberation

at time t, φi(t), agent i is able to compute the probability with which it is possible

to move from some state φj(t − 1) to φj(t) by either reading the probabilities from

the edges of the performance profile subtrees rooted at the nodes in φi(t), or from

already having computed along paths that contained nodes in φj(t). We denote by

Pcz(φj(t− 1)→ φj(t)|φi(t)) to be the probability that agent j may have moved from

computation state φj(t−1) to φj(t), given that it took computing action cz and agent

i’s own knowledge from computing.5 Then

bi(φj(t)) =
∑

φj(t−1)

P (φj(t− 1) 7→ φj(t)|φi(t))bi(φj(t− 1)).

Agents also use information obtained from observing the bargaining actions of

their opponent. Assume that agent i receives a proposal, x, from agent j at time t.

Since we assume that agents are individually rational in the sense that they would

never knowingly make a proposal that, if accepted, would make them worse off than

under no agreement, agent j’s proposals give information about the possible com-

putation states it is in. In particular, it must be in a computing state φj(t) such

that

vjoint(tjoint)− x ≥ E[vβ(D − tβ − tjoint)].

Therefore, once an offer, x, is observed, agent i can update its beliefs by using

Bayes Rules. That is, given original belief bi(φ
′
j(t)), agent i updates it to b′i(φ

′
j(t)) by

computing

b′i(φ
′
j(t)) =

P (x|φ′j(t))bi(φ′j(t))∑
o∈{φj(t)} P (x|o)bi(o)

.

5Even though agent i does not know with certainty what action agent j has taken, it does know

that agent j is trying to maximize its own utility and thus, can reason about the likelihood of a

certain action being taken since it has information about possible outcomes of each action.
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6.6.3 Results

The bargaining settings differ based on whether agents have the same deadline or dif-

ferent deadlines, and whether the performance profiles are deterministic or stochastic.

Without loss of generality, we assume that agent α gets to make the first proposal at

time t = 1. This means that agent α proposes whenever time t is odd, and agent β

proposes whenever time t is even.

Common Deadline

The setting where there is a common deadline T is analyzed first. The deadline is the

time when the agents have to start execution of their solutions. Agreement between

agents can be reached at any time before T , however if no agreement is reached by T ,

the agents must act on their individual solutions. No computation can occur beyond

time T .

The expression “flattening out” is used in this section to refer to paths in the

performance profiles. We say that a path of a performance profile to problem z has

”flattened out” if for some t′, vz(t′) = vz(t) for all t ≥ t′.

Deterministic Performance Profiles

In a deterministic setting there exist situations (determined by the performance pro-

files) where there is a unique perfect Bayesian equilibrium, and other settings where

there are multiple equilibria. The next theorem characterizes these different settings.

Theorem 10. Case 1: Deadline D is odd.

1. vα(D) ≤ vjoint(D)− vβ(D) and either none of the performance profiles or only

agent α’s flatten out. Agent β has a dominant strategy Sβ = (σβ(t))Dt=1 where

σβ(t) =





(aβ, yes) if t odd, t ≤ D, and x ≥ vβ(D)

(aβ, no) if t odd, t ≤ D, and x < vβ(D)

(aβ, ∅) if t is even

That is, agent β computes only on its individual solution, makes no offers and

only accepts an offer if it is greater than or equal to the value it expects to obtain

for its individual solution.
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Agent α has a unique best response, Sα = (σα(t))Dt=1 where

σα(t) =





(ajoint, ∅) if t odd, t < d

(ajoint, vβ(D)) t = D

(ajoint, no) t even, t < D, and

x < vjoint(D)− vβ(D)

(ajoint, yes) otherwise

That is, agent α computes only on the joint solution, makes no offers and accepts

only offers that are greater than the difference between the best computable joint

solution and the best computable solution for agent β’s individual problem. It is

required that agent α knows the performance profiles of agent β, but the result

is independent of whether agent β knows the performance profiles of agent α.

2. vα(D) ≤ vjoint(D) − vβ(D) and the solution to β’s individual problem flattens

out. Agent β has multiple equilibrium strategies. It computes until it obtains the

maximum value for its own problem and then may compute on any of the prob-

lems. It makes empty proposals and accepts any offer greater than its fallback.

Agent α’s best response strategy remains the same as in the first situation.

3. vα(D) ≤ vjoint(D) − vβ(D) and the solution to the joint problem flattens out.

Agent β has a dominant strategy as in the first situation. However, α no longer

has a unique best response strategy. Once it has computed the maximum value

for the joint problem it can then compute on any of the three problems. The

bargaining part of its strategy remains the same as in the first situation.

4. vα(D) > vjoint(D) − vβ(D) and either none of the performance profiles or else

only the one for the joint problem flattens out. Agent β has the same dominant

strategy as in the first situation. Agent α also has a dominant strategy which

is to compute on its own problem, make empty offers when t is odd and accept

any proposal greater than vα(D).

5. vα(D) > vjoint(D)−vβ(D) and β’s performance profile flattens out. There is no

longer an undominated strategy for agent β. Once it has computed the maximum

value for its individual problem then it may continue computing on any of the

three problems. It makes empty proposals and accepts any offer which is greater

than its maximum fallback value. Agent α has the same dominant strategy as

in situation 4.

121



6. vα(D) > vjoint(D) − vβ(D) and α’s performance profile flattens out. β has the

same dominant strategy as in the first situation. Agent α has no unique best

response strategy. Once it has computed the maximum value for its own problem,

it may then compute on any of the three problems. It will make the empty offer

whenever t is odd and accept any offer greater than vα(D).

7. If all performance profiles flatten out before D then it is possible that in equilib-

rium agreement may or may not be reached before the deadline.

Case 2: Deadline D is even. Therefore agent β gets to make the final proposal. The

equilibrium strategy for agent α is the same as the equilibrium strategy for agent β is

Case 1. The equilibrium strategy for agent β is the same as that of agent α in Case

1.

Proof. We will only provide a proof of Case 1. The other cases follow a similar

argument. Since D is odd, if the game reaches time D then agent α will get to make

the final proposal. At this moment, the agents are engaged in a take–it or leave–it

game. Agent α will try to make the lowest acceptable offer to agent β and agent β

will want to be in its strongest bargaining position by having a high fallback value.

That is, vβ(D). Since vjoint(D) − vβ(D) ≥ vα(D), and both agents knew this before

beginning the game, agent α will offer x = vβ(D) and agent β will accept.

Assume that agent β had made an offer, x, at time t < D. Since we assume

that neither agent would make or accept an offer that would result in a utility that

is less than their expected utility from making no offer, it must be the case that at

time t, vjoint(t) − x ≥ vβ(D − t). Since vβ(D − t) ≤ vβ(D), upon seeing an offer of

x, agent α would update its beliefs about what possible solution agent β is able to

compute for its own problem, reject the offer and propose vβ(D− t) at time D. This

results in a lower utility for agent β. If agent α makes an offer y such that y ≥ vβ(D)

then agent β will accept it as this offer is greater than what it expects it can receive

if it stays longer in the game. Agent α has a best response strategy to agent β’s

strategy. It knows that by computing only on the joint problem and offering agent

β an amount of vβ(D) at time D, then its utility will be vjoint(D) − vβ(D). If it

computes t time steps on its own problem anytime in the game then its utility would

be max[vjoint(D− t)− vβ(D), vα(t)] ≤ vjoint(D)− vβ(D). Assume that at time t < D

agent α makes an offer of x. If the offer is accepted by agent β then agent α must

update its beliefs about what solution agent β has obtained and must conclude than
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it has made an offer which is too high. Therefore, agent α would deviate from this

strategy, and would want to make a lower offer. In the limit, the offer agent α would

want to make (after all belief updates) is ∅.

Stochastic Performance Profiles

In the stochastic setting there is uncertainty associated with the values being com-

puted. Agents no longer generally have dominant strategies when it comes to com-

puting and bargaining. A proposal becomes a signal which leaks information to the

other agent about what values the agent has computed. Each agent would like the

other to believe that it is in a strong bargaining position, i.e., it has a high fallback

value and is willing to bargain hard in order to get the best possible deal. We obtain

the following result.

Theorem 11. Assume that the deadline D is odd and that there exists at least one

path in each performance profile that does not flatten out before D. Agent β has a

dominant strategy (σβ(t))Dt=1 where

σβ(t) =





(aβ, no) for odd t, t < D

(aβ, yes) for t = D and x ≥ vβ(D)

(aβ, no) for t = D and x < nβ(D)

(aβ, ∅) for even t

That is, agent β computes only on its individual problem, makes no offers and

only accepts an offer if it is made at time D and is greater than, or equal to the value

it can obtain from the solution of its individual solution.

Agent α has possibly multiple equilibrium strategies which all have the same form.

At odd t, t < D, it offers ∅, for even t, t < D it accepts any offer greater than

max[max{vα(D)},max{vjoint(D)}]. It follows a computing policy and makes an offer

at the deadline such that its expected utility, E[uα] is maximized, i.e.,

E[uα] = max
x,(tα,tβ ,tjoint)

{P (x ≥ vβ(D))(vjoint(tjoint)− x)

+(1− P (x ≥ vβ(D)))vα(tα)}

where (tα, tβ, tjoint) ∈ Part(D). If D is even, the equilibrium strategies of the agents

are reversed.
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Proof. The proof follows a similar argument to that of Theorem 10. The difference

is that the agents no longer know with certainty what final solutions their opponent

may have obtained from computing as there is uncertainty in the performance profiles.

Therefore, the agent who gets to make the final offer at time D may use some of its

own computational resources in order to refine its beliefs about what its opponent’s

fallback value is.

In other words, no proposals are made before the deadline. At the deadline, an

agreement may or may not be reached. There are some special cases where there

are multiple equilibria. If D is odd and every path in agent β’s individual problem’s

performance profile flattens out before D, then agent β will compute until it has

obtained the maximum fallback value possible after which it may compute on any of

the three solutions. Agreement still may or may not be reached at time D. If every

single path in all performance profiles flatten out before D, then it is possible that

the game will end before D.

The beauty of this result is that it takes a complex situation and reduces it to a

simple one. While the space of possible actions for both agents is extremely large,

in equilibrium agents behave as if they were in a restricted action space where only

one agent is allowed to propose at only one time point (i.e., at the deadline). This

simplified problem was discussed in an earlier paper where an algorithm was presented

for determining the agents’ equilibrium strategies (Algorithm 1). Given Theorem 11,

this algorithm can also be used in the alternating offers setting. Then, using the

equilibrium strategies, and depending on the algorithms’ performance profiles and

the problem instance, agreement may or may not be reached at the deadline.

Different Deadlines

Another situation which may arise is the case where agents have different deadlines.

Let the agents’ deadlines be noted by dα and dβ. Since a deadline, di, means that at

time t = di agent i must begin executing a solution to a problem, the final deadline

for the joint solution is d = min[dα, dβ]. If d < di for i = α or β, and no agreement is

reached by d, then it is in the best interest for agent i to continue computing on the

solution to its individual problems.

What is interesting in this setting is that the agent who has the most power in the

negotiation is not necessarily the one with the latest deadline (unlike in, e.g., [111]).
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Instead, which agent gets to make the offer at the earliest deadline also plays a vital

role in which strategies the agents will want to execute.

If both deadlines are common knowledge, the game is similar to the settings de-

scribed in the previous section except that agreement must be reached by min[dα, dβ].

However, the agents have to take into account that the agent with the later deadline

can compute on its own problem also after the first deadline (and before its own

deadline). The results from the previous section still hold with the following slight

modifications to account for this.

Theorem 12. With different deadlines that are common knowledge, Theorems 11

and 12 hold if vα(D) is replaced by vα(dα), vβ(D) is replaced by vβ(dβ) and vjoint(D)

is replaced by vjoint(min[dα, dβ]).

If the deadlines are private information, but there is common knowledge of the

joint distribution from which the deadlines are drawn, f(dα, dβ), then the situation

is more complicated. Agents must maintain a second set of beliefs about when its

opponent’s deadline will occur. As time passes, the beliefs are updated using Bayes

rule and are used in speculating what the opponents fallback values might be.

In both the deterministic and stochastic settings a similar problem arises. The

only equilibria that exist have the agents waiting for the first deadline to arrive.

Early proposals leak too much information to the opposing agent and thus reduces

the proposing agent’s expected utility.

Theorem 13. If the agents’ private deadlines are drawn from a joint distribution,

f(dα, dβ), then there will be no proposing and counter-proposing until the earliest

deadline is reached. At that time an agreement may or may not occur.

6.6.4 Comparison with Classic Results

The alternating-offers bargaining game has been well studied in the game theory and

economics literature (see, for example [71, 100]). The standard model of the game

consists of two agents bargaining over how to split v dollars. In the first period, one

agent can propose any split and the other agent can accept of reject it. If the offer

is accepted then the proposed split is implemented and the game ends. If the offer is

rejected, then the second agent proposes a split and the first agent has the option of

accepting or rejecting. Additionally, a time discount factor, δ, is introduced so that

a dollar now is worth more than a dollar later.
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There are two variations of the game that are normally studied. In the first,

it is assumed that there is a finite number of bargaining rounds, D, after which, no

agreement can be reached and both agents get payoffs of zero. In the second variation

there is no deadline, instead agents are allowed to bargain for an infinite number of

rounds. Interestingly, the equilibrium in both variations specifies that agents should

reach agreement in the first round. In the finite horizon model, the first agent is best

off offering a split (δD−1v, 0) and the second agent should accept it. In the infinite

horizon model the first agent is best off offering a split ( v
(1+δ)

, δv
(1+δ)

), and the second

agent should accept it.

In this chapter we showed that in the alternating offers game, agents do not

communicate or reach agreement until the deadline. At first glance this appears

to be in contradiction of the classic results. However, there are some fundamental

differences in our alternating-offers game compared to the classic game. First, in our

model the agents do not start with some initial value v in which they have to decide

whether to split. Instead, they require time to compute on different problems in order

to determine the joint value, as well as their fall back values if the bargaining fails to

reach an agreement on a split. Second, we do not introduce a time discount factor in

our model. Instead, time is used to improve the values (or improve knowledge about

the values), which can result in better payoffs for the agents. Additionally it should be

noted that cost functions are different from time discount factors. The cost incurred by

an agent only increases (or remains the same) if the agent actively takes a computing

step. In our model agents are permitted to not compute for a time step, thus not

incurring any penalty. A discount factor, on the other hand, decreases the value

each time step, no matter what the agents do. If we modified our alternating-offers

model, so that all computation must be completed before any bargaining occurred,

and additionally introduced a time discount factor for each bargaining round, then

we would have a similar game to the classic alternating-offers game, and the results

in the classic model could be applied (to at least the bargaining part of the game).

There has also been research on bargaining models where agents have dead-

lines [111]. Sandholm and Vulkan present a model where agents with private deadlines

negotiate over how to split an item. At each point in time an agent can change its

offer, however once the first deadline is reached, if there is no agreement, then neither

agent gets the item. The only sequential equilibrium outcome is one where the agents

wait until the first deadline, and the agent with the earlier deadline concedes every-

thing to the other agent. This result still holds if discounting is included in the model.
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There are some parallels between our results and the Sandholm-Vulkan results. In

our model, if an agreement is reached, it is reached at the first deadline. One of the

reasons for this is, like in the Sandholm-Vulkan paper, early offers signal too much

information about the agent, thus weakening its bargaining position. However, our re-

sults do not directly follow from the earlier work since our model has some substantial

differences. First, in our model it is possible that the agents will reach an agreement

to split the value of the joint solution, since agents potentially have non-zero fallback

values. Second, time plays an additional role in our model. Time is considered to be

a resource that agents use to compute or gather information on both the joint value

and the fallback values. This potentially provides an additional motivation for agents

to postpone agreement, as they wish to compute for the appropriate amount of time

so as to improve the payoffs they will receive in the final outcome.

6.7 Summary

In this chapter we studied negotiation protocols where two agents must reach agree-

ment as to whether to cooperate in order to execute some joint problem, or whether

to both act independently. Additionally, if agents decide to coordinate their actions,

they must reach agreement as to how to divide any costs or awards associated with the

successful completion of the task. In our model, the agents must exert computational

effort in order to determine the value of the different outcomes.

We studied two different protocols. The first bargaining model we used was one

where one agent is allowed to make a single proposal which the other agent can choose

to accept or act independently. Under different assumptions about whether it was

known in advance which agent would be the proposer, when the deadline would occur,

and the degree of uncertainty that arose through computing, we were able to analyze

different scenarios. We showed that if an agent knew that it would never propose

then it had a dominant strategy which was to compute only on its own problem.

The other agent, who knew it was the proposer, could best respond to this strategy.

We provided algorithms for determining the best-response strategy under settings

where the deadline was known in advance or only probabilistically. If the proposer

was unknown then agents did not necessarily have dominant strategies. Instead, we

described a general method that could be used for finding the equilibrium. We also

showed that there a pure strategy equilibrium may not exist, and that the equilibrium
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outcome may not be efficient.

The second setting we studied was an alternating-offers model where agents could

take turns making offers and counter-offers, at the same time as they computed to

find solutions for the different problems. We provided an equilibrium analysis of this

setting, and showed that because of the information leaked during the negotiating

rounds, agents were best off acting as though they were playing an ultimatum game,

where the proposing agent was the one who was able to propose at the deadline. This

means that in order to determine the optimal deliberation policies for agents in an

alternating-offers negotiation protocol, we can use the algorithms developed for the

ultimatum game.

A problem that is not addressed in the model presented in this chapter, is the

situation where after agents have reached an agreement, a better, outside offer ap-

pears, thus causing one of the agents to want to cancel the agreement. However,

we believe that the bargaining approaches outlined in this chapter can be coupled

with leveled commitment contracts in order to provide additional stability for the

agreements [110, 112].
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Chapter 7

One-to-Many Negotiation:

Auctions

In this chapter we study the behavior of computationally limited agents who are

bidding in different auction mechanisms. We assume that the agents do not a priori

know their valuations for the items being auctioned. Instead, they must use their

limited computing resources in order to determine their valuations, which in turn

influences how they bid. We are interested in discovering two things:

1. How different forms of computational limitations influence the strategic actions

taken by the agents.

2. How different types of auction mechanisms influence the strategic behavior of

computationally limited agents.

The rest of the chapter is organized in the following way. In the next section

(Section 7.1) we describe the auction mechanisms studied in this chapter and describe

the equilibria which occur when bidding agents are fully rational. In Section 7.2 we

study the impact that computational limitations have on the optimal strategies of

agents participating in different auction mechanisms. In particular, we show that

strategic deliberation occurs in all common auction mechanisms when agents have

a cost associated with computing. We provide a discussion about what happens

when agents are faced with a choice of algorithms for computing their valuations

(Section 7.3) and also show that the Vickrey auction and ascending auction are not

strategically equivalent if the bidding agents are computationally limited (Section 7.4).
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We conclude this chapter by presenting results from a series of experiments that were

performed in order to discover whether the strategic deliberation was an artifice of

the analysis, or whether it was something which occurred under realistic conditions

(Section 7.5).

They can also compute on other agents’ valuation problems so as to gain informa-

tion about the others’ valuations, allowing for better strategic bidding. We present

a fully normative model of deliberation control and define agents’ strategies in this

setting, as well as the concepts of strong and weak strategic computing. We ana-

lyze different auction mechanisms and settings, presenting results on whether or not

strategic computing occurs in equilibrium.

7.1 Auctions

Auctions are stylized markets and have been well studied in the game theory and

economics literature [74, 123]. The term auction is used for settings where there is one

seller of items and multiple buyers. In particular, auctions are bidding mechanisms

that are described by a set of rules which specify how a winner is determined, and how

much the winner should pay. Auctions can be classified in many different ways. As is

commonly done, in this paper we focus solely on auction categories where agents have

private values, are risk neutral and have quasilinear utility functions. That is, the

value of an item to a bidder depends only on that bidder’s own preferences (private

value), and if an agent wins an item in the auction, the agent’s utility is equal to its

own value for the item minus the amount that it must pay (ui = vi − pi). There are

many different types of auction mechanisms that have these properties. In this paper

we will study standard single item and multiple item auctions.

Single-Item Auctions

As the name implies, in single item auctions there is only one item for sale. Agents

place bids on the item and the auctioneer determines who gets the item and what

amount should be paid. There are three commonly studied single item auctions;

first-price sealed-bid, ascending, and Vickrey.

• First-price sealed-bid auction: Each agent submits one bid without knowing

the other agents’ bids. The highest bidder wins the item and pays the amount of
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its bid. There is no dominant bidding strategy for rational agents. An optimal

strategy depends on the bids of the other agents [58].

• Ascending auction: The auctioneer raises the price of the item. At any point

in time a bidder can decide to withdraw from the auction. It does this by

making an announcement to the auctioneer. Once a bidder has left the auction,

it is not allowed to reenter. For rational agents there is a dominant strategy.

An agent should stay in the auction until the price is equal to its value. As soon

as the price rises above an agent’s value, then that agent should withdraw.1

• Vickrey auction: The Vickrey auction is also known as the second-price sealed-

bid auction. Each bidder submits one bid without knowing what the others’ bid.

The highest bidder wins the item but pays the amount of the second highest

bid. For rational agents there is a (weakly) dominant strategy which is for each

agent to bid its true valuation [58]. The Vickrey auction is a member of the

Vickrey-Clarke-Groves family of mechanisms (Chapter 4).

Multi-Item Auctions

In auctions where multiple distinguishable items are sold, bidding strategies for agents

can be complex. A bidder’s valuation for a combination of items might not be the

sum of the individual items’ valuations. It may be greater, smaller, or the same. In

traditional auction formats where items are auctioned separately, in order to decide

how much to bid on an item, an agent needs to estimate which other items it will

receive in the other auctions. This can lead to inefficient allocations where bidders

do not get the combinations they want or else get combinations that they do not

want [107].

Combinatorial auctions can be used to overcome these deficiencies. In a combina-

torial auction, bidders may submit bids on combinations of items which allows the bid-

ders to express complementarities between items. Based on the bids on the combina-

tions of items, or bundles, the goods are allocated to the agents. Let X = {x1, . . . , xm}
be a set of items. A bundle is a subset of the items, for example, {x1} or {x1, xm}.
An allocation of items among a set, N , of agents is Y = (y1, . . . , y|N |) where yi ⊆ X,

∪|N |i=1yi ⊆ X and yi ∩ yj = ∅ for i 6= j. The generalized Vickrey auction (GVA) is a

1Note that an ascending auction is not the same as an English auction.
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combinatorial auction where the payments are structured so that each bidder’s dom-

inant strategy is to bid truthfully. It is an application of the Clarke tax mechanism

to auctions [20].

The generalized Vickrey auction (GVA) works in the following manner.

1. Each agent declares a valuation function. So vi(yi) is agent i’s valuation for

allocation Y where it is given yi.

2. The GVA chooses an optimal allocation Y ∗ = (y∗1, . . . , y
∗
|N |) that maximizes the

sum of all the agents’ declared valuations.

3. The GVA announces the winners and their payment pi:

pi =
∑

j 6=i
vj(y

′
j)−

∑

j 6=i
vj(y

∗
j )

where Y ′ = (y′1, . . . , y
′
i−1, y

′
i+1, . . . , y

′
|N |) is the allocation that maximizes the

sum of all agents’ valuations assuming that agent i did not participate.

Under the usual assumption that each agent has quasilinear preferences ui(yi) =

vi(yi)− pi, the utility of bidder i in the GVA is

ui(y
∗
i ) = vi(y

∗
i )− pi = vi(y

∗
i ) +

∑

j 6=i
vj(y

∗
j )−

∑

j 6=i
vj(y

′
j).

The GVA has several nice properties for rational agents. First, if the agents have

quasilinear preferences, the GVA is incentive compatible. The dominant strategy for

rational agents is to bid their true valuations for the bundles of items. Second, the

GVA is Pareto efficient. There is no other way to allocate the items (and compute

payments) that would make some agent better off without making some other agent

worse off. Finally, it is individually rational for agents to participate. An agent’s

utility obtained from participating in the GVA is never lower than if it had not

participated (that is, the agent will never end up paying more for its bundle of items

than its true valuation for the bundle).

GVA Example: We now provide an example to illustrate how the GVA works. Let

there be two agents, agent α and agent β, and let there be two items, g1 and g2.

Agents can bid on either item or on the bundle {g1, g2}. An agent’s bid is represented

by a tuple: (a bid for {g1}, a bid for {g2}, a bid for {g1, g2} where the bids are XOR’ed

together). Suppose the agents bid as follows
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Auction Dominant strategy equilibrium?

First-price-sealed-bid no

Ascending yes

Vickrey yes

GVA yes

Table 7.1: For rational agents the type of equilibrium outcome depends on the auction

rules. For example, in a Vickrey auction, agents have dominant strategies while in a

first-price-sealed-bid auction, an agent’s optimal strategy depends on what strategies

other agents are following.

• Agent α’s bid: (20, 5, 25)

• Agent β’s bid: (10, 15, 30)

The GVA allocates g1 to agent α and g2 to agent β since this allocation maximizes

the sum of the agents’ valuations. The amount that each agent pays is computed

as follows. If agent α did not bid, then {g1, g2} would have been allocated to agent

β whose valuation for this bundle is 30. When g1 is allocated to agent α, agent β’s

valuation is only 15 since it receives g2. Therefore, agent α’s payment is calculated

as 30− 15 = 15 and its utility is 20− 15 = 5. Agent β’s payment is 25− 20 = 5 and

its utility is 15− 5 = 10.

Comparison of Auctions

The auctions described have been well studied for the rational agent setting. The

ascending auction, Vickrey auction and the generalized Vickrey auction all have dom-

inant strategy equilibria or optimal best response equilibria [58, 118] . This means

that agents participating in the auction do not have to guess what strategies other

agents are following in order to play optimally. The first-price-sealed-bid auction has

only Nash equilibria. An agent’s optimal strategy depends on the strategies of the

other agents. Table 7.1 shows which auctions have dominant strategy equilibria for

rational agents.
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7.2 Analysis

In this section we study different auction types in order to understand how the re-

strictions placed on the bidding agents computing capabilities affect their strategies.

There are some standard game-theoretic assumptions that are made in this section.

Unless otherwise noted, we assume that the agents’ performance profiles and cost

functions are common knowledge and that they are independent. We also assume

that given a feature vector for a problem of some agent, it is possible for all other

agents to determine the value of that solution from the feature vector. We assume

that all agents are risk neutral, that we are in a private value setting, and an agent’s

utility is defined as

u =

{
v − p− cost if the agent is allocated the item

−cost otherwise

where v is the (computed) value of the item, p is the price paid for the item, and cost

is the cost the agent incurred by determining the value.

7.2.1 First-price Sealed-bid Auctions

In a first–price sealed–bid auction each agent submits one bid without knowing what

the other agents’ have bid. The strategy, Si, of agent i is defined as follows

Si = (σti)
∞
t=0

where

σti : Φi(t− 1) 7→ Ci if t 6= D

and

σti : Φi(t− 1) 7→ Ci ×R if t = D

where Φi(t) is the set of deliberation states at time t and Ci is the set of all possible

computing actions (see Chapter 5 for full explanation of notation).

The highest bidder wins the item and pays the amount of its bid. For fully rational

agents there is no dominant bidding strategy for agents. An optimal strategy depends

on the bids of the other agents. If an agent knows what the submitted bids of other
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agents are, then it can tailor its bid so as to maximize its own utility. Not surprisingly,

computing agents may have incentive to use some of their computing resources in order

to discover what valuations the other agents may have for the item up for auction as

allowing agents to compute on each others problems simply supplies the agents with

a strong tool for concrete speculation. This is independent of whether the agents

have costly or free but limited computing resources, whether agents must do all their

computing before the auction occurs or whether they are allowed to compute after the

bids have been submitted and a winner has been determined. The agents deliberation

and bidding strategies depend upon the performance profiles that the agents have for

their valuation problems.

While in this auction strategic computing is the norm, situations where there are

no strategic deliberation is of interest. We find that in general, for the first-price

sealed-bid auction the only time when agents do not use strategic deliberation is

when the performance profiles of any type contain no uncertainty. That is, that all

the performance profiles can be transformed to deterministic performance profiles.

This is independent of whether computing is free or limited, and whether agents

compute to improve or refine their valuations.

Theorem 14. Assume that agents in a first-price sealed-bid auction all have deter-

ministic performance profiles. Then only weak strategic deliberation will occur in Nash

equilibrium. This is independent of whether agents have costly or limited computing

and whether agents are computing to improve or refine their valuations.

Proof. Assume that all agents are computing to refine their valuations. Assume also

that all agents have deterministic performance profiles. As there is no uncertainty to

be removed by computing, no strategic deliberation will occur either. However, weak

strategic deliberation can occur as agents can check each others’ performance profiles

so as to learn what the different valuations are.

Assume that agents are computing to improve their valuations. If the agents all

have deterministic performance profiles then all agents can determine what valuations

the other agents will be able to compute, given their deadlines (weak strategic delib-

eration). Agents have (weakly) dominant deliberation strategies where they compute

solely on their own problem. Overall, the agents’ strategies will not be (weakly) dom-

inant as the bid submitted by one agent depends on what it believes the other agents

will submit as bids.
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7.2.2 Ascending and Vickrey Auctions

In this subsection we study the strategic behavior of computationally limited agents

in Vickrey and ascending auctions. The strategy space for agents participating in

the Vickrey auction is the same as the strategy space for agents participating in a

first-price sealed-bid auction (though the equilibrium strategies differ). The strategies

of a computationally limited agent, i, in an ascending auction are defined as

Si = (σti)
∞
t=0

where

σti : Φi(t− 1)× R 7→ Ci × {stay in, exit}

where Φi(t) is the set of deliberation states at time t, Ci is the set of computing

actions, and {stay in, exit} is the set of decisions that the agent can make about

whether to stay in the auction at the current price, or leave the auction for good.

In particular, the strategy specifies for each state of deliberation and price, what

computing action the agent should take and whether it should remain in the auction.

If agents are fully rational, then in both the ascending and Vickrey auctions agents

have dominant bidding strategies. In particular, the two auctions are strategically

equivalent as it is possible to find an isomorphism between the equilibrium strategies.

For computationally limited agents the optimal bidding strategies for agents in both

the ascending and Vickrey auction are similar to those of fully rational agents. Using

arguments identical to those used in the fully rational setting, it is possible to show

that in a Vickrey auction, a computationally limited agent is best off submitting a

bid equal to its computed value or equal to its expected computed value (since we

assume agents are risk neutral). Similarly, an agent in an ascending auction is best off

staying in the auction only until the price becomes greater than its computed value

(or expected computed value). However, there is a potential difference between the

deliberation strategies of agents in the auctions.

Consider the following simple example. Assume that there are two agents, α and

β. Each agent has their own cost function, costα() and costβ(), and performance

profiles PPα and PPβ. Finally, assume that the performance profiles are such that

after one step of computing each agent will know its true value. vi ∈ [ai, bi]. In a

Vickrey auction, an agent has two time points where it is useful to acquire information

about its value. It can either acquire information before it places a bid, or it can bid
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its expected value and then wait to determine its true value only after it has been

allocated the item.2 Since the auction is sealed-bid, an agent learns nothing about its

competitor’s actions. In an ascending auction, the agents have the luxury of being

able to wait for further information before deciding whether to compute on their value

problem. In the small example, even without computing agent i knows that its value

must be at least ai. It need not do any computing to learn its value while the price is

below ai since, if it is allocated the item, its utility will surely be greater than zero.

Therefore it is possible that there exist situations where agents would compute to find

their valuations in a Vickrey auction, but would not need to in an ascending auction.

The previous discussion was independent of the type of restriction on the agents

computing resources. We will now study whether having costly or limited computing

affects agents equilibrium strategies.

Limited Computing

If agents have limited computing, then in both an ascending auction and a Vickrey

auction no form of strategic deliberation occurs. Agents have (weakly) dominant

strategies which have them computing only on their own value problems, independent

of their own and other agents’ performance profiles and deadlines, and whether they

compute to improve or refine their values. We show this by first proving two lemmas

and then combining the lemmas into the final theorem.

Lemma 1. Assume agents have limited deliberation and compute to improve their

values. In an ascending auction or an a Vickrey auction agents have (weakly) domi-

nant strategies which involve no strategic deliberation (not even weak strategic delib-

eration).

Proof. Since agents have limited computing, for each agent i there exists a deadline

Di such that the cost function of agent i is

costi(t) =

{
0 if

∑
j tj ≤ Di

∞ if
∑

j tj > Di

where t = (t1, . . . , tm). This means that agent i can compute up to Di time steps

for free, but will never compute more than Di steps as then ui = −∞. Assume that

agent i computes ki ≤ Di on its own problem. Then, its value is vi(fi(k)).
2Recall, that if the agent computes to improve its value, then it must compute once it has acquired

the item as the item has no value without the occurrence of computing.
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First, consider a Vickrey auction. Assume that the highest bid among the set

of agents not including agent i is b. If v(fi(k)) > b then agent i is allocated the

object and ui = v(fi(k)) − b. Since agents are computing to improve their values,

vi(fi(k)) ≤ vi(fi(Di)) and so agent i would have higher utility if it computed Di steps

on its own problem. If b > vi(fi(k)) then ui = 0. If agent i computed for Di steps

then either b > v(fi(Di)) and so ui = 0 or b ≥ v(fi(Di)) and ui ≥ 0. Computing on

another agent’s problem does not change the second highest bid, and computing less

time on its own problem only lowers its utility, therefore in a Vickrey auction agents

should compute only on their own problem until their deadline.

In an ascending auction the argument is identical.

Lemma 2. Assume agents have limited computing and compute to refine their values.

In an ascending auction or Vickrey auction agents have (weakly) dominant strategies

which involve no strategic deliberation (not even weak).

Proof. Since agents have limited computing, for each agent i there exists a deadline

Di such that the cost function of agent i is

costi(t) =

{
0 if

∑
j tj ≤ Di

∞ if
∑

j tj > Di

where t = (t1, . . . , tm). This means that agent i can compute up to Di time steps for

free, Agent i will not compute for more than Di steps since then ui = −∞.

Let Pri be the initial probability distribution over the set of all feature tuples

which describe solutions for the problem of agent i. Let ŝi denote the true solution

and let vi(ŝi) denote the value of solution ŝi to agent i. Recall from Chapter 2 that

vi : Fi 7→ R.

Assume agent, i has computed ki ≤ Di steps on its own problem. This means that

it has collected information info(ki), and has current distribution Pr
info(ki)
i (definition

of refining). This distribution, Pr
info(ki)
i , induces a probability distribution over the

space of values for solutions for problem i, V ali = {vi(si)|si ∈ Fi}. Define the

probability distribution over V ali induced by Pr
info(ki)
i as Pr

info(ki)
V ali

where

Pr
info(ki)
V ali

(v) =
∑

{si|vi(si)=v}
Pr

info(ki)
i (ŝi = si)
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Using this probability distribution, agent i is able to determine the expected value

of the solution, given its current information info(ki). That is

E[vi(ŝi)|info(ki)] =
∑

v∈V ali
vPr

info(ki)
V ali

(v).

In a Vickrey auction, an agent is best off submitting a bid equal to its expected

value of the solution. At time ki, agent i can either stop computing and submit a

bid equal to E[vi(ŝi)|info(ki)], compute on an opponent’s problem, or compute on its

own problem. Let b be the largest bid submitted among all agents other than i.

The utility of the agent for submitting a bid equal to E[vi(ŝi|info(ki)] is

ui = Prob(E[vi(ŝi)|info(ki)] ≥ b) [ŝi − b] .

If the agent begins to allocate resources to a competitors problem then either, it

results in a utility ui = −∞ since they compute for more than D time steps in total,

or, if the total time allocated is less than D, then the utility of the agent does not

change. This is because the information gathered on other agents’ problems does not

change the information about the agent’s own problem, which is the only factor that

could improve the utility of the agent (independence of performance profiles). Thus,

the agent is better off not computing as opposed to strategically deliberating.

In an ascending auction the argument is identical.

Combining Lemmas 1 and 2 we derive the following theorem.

Theorem 15. If agents have limited computing then in both the ascending and Vick-

rey auctions there always exist (weakly) dominant strategy equilibria where no strategic

deliberation occurs (not even weak strategic deliberation).

Costly Computing

If agents incur a cost while computing then their optimal strategies may be quite

different. It may be of use for an agent to actually compute on other agents’ problems

in order to learn what their values are. That is, strategic deliberation may occur in

equilibrium.
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To illustrate the phenomena we present a simple scenario. Assume that there

are two agents, α and β, participating in an ascending auction. (The argument for a

Vickrey auction is identical except that the timing of the computing may be different.)

Assume that agent α has the performance profile PPα such that before computing it

knows that its value, vα, after one step lies in the interval [a, b], and the probability

that its value is vα = x is f(x). After one step of computing it knows its true value.

Assume that agent β has a performance profile PPβ such that before computing it

knows that its value, vβ, after one step lies in the interval [c, d] where c ≤ a, and the

probability that its value of vβ = y is g(y). After one step of computing it knows its

true value. Finally, assume that the cost function of agent α is

costα(〈tα, tβ〉) = Btβ where B > b

and the cost function of agent β is

costβ(〈tα, tβ〉) = tα + 2tβ.

It is easy to show that agent α has a dominant strategy which is to compute one

step on its own problem. Since the cost of computing on its competitor’s, β, problem

is higher than its highest possible computed value, agent α will never compute on it.

If agent α chooses to not participate then its utility is

unothing
α = 0.

An agent also has the possibility of computing for one step on its problem before

submitting a bid. It would incur a cost for doing so (though in this example the cost

to agent α is 0), but would be able to bid knowing its true value. An agent is also

able to bid blindly. By this we mean that an agent can submit a bid without knowing

in advance what its true value is. By doing so, the agent does not incur a cost if it

does not win the auction since it never needs to compute on the problem, however

the agent only knows its expected value for the item, and not its true value.

In expectation, for agent α the strategies of bidding blindly, or computing one

step on its problem to determine its value have the same utility. That is, if agent β

submits a bid, b∗, then

ublind
α = uαα =

∫ b

a

∫ vα

c

(vα − b∗)f(vα)g(b∗)db∗dvα ≥ 0.
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Therefore, agent α is best off computing on its own problem only and staying in the

auction until the price reaches its computed value.

To determine the best-response for agent β, one must recall that each computing

step it takes incurs a cost. While in an ascending auction, agent β can wait until the

price reached c before making a decision as to whether to compute or not, since in

this example c ≤ a, waiting provides no information about agent α’s value.

Agent β always has the option of doing nothing. In such a situation, its utility is

unothing
β = 0. (7.1)

Agent β may decide to compute only on its own problem. If it does decide to do

this, then it will compute only one step since more steps incur a cost but do not refine

or improve its value. Following this strategy results in expected utility

uββ = −2 +

∫ d

c

∫ vβ

a

(vβ − vα)f(vα)dvαg(vβ)dvβ. (7.2)

Agent β may decide to bid blindly. By this, we mean that agent β may decide to

not compute on its value before bidding. Instead, it may bid only using its expected

value. If it is allocated the item then under the improving model it must compute on

its own problem, while under the refining model it does not need to compute since it

learns its value once it obtains the item. Let

V =

∫ d

c

vβg(vβ)dvβ.

The utility for agent β under the improving model is

ublind improve
β =

∫ d

c

∫ V

a

(vβ − vα − 2)f(vα)dvαg(vβ)dvβ. (7.3)

and the utility for agent β under the refining model is

ublind refine
β =

∫ d

c

∫ V

a

(vβ − vα)f(vα)dvαg(vβ)dvβ. (7.4)

Finally, it is possible that agent β will compute on agent α’s problem. It will never

compute on agent α’s problem after it knows its own value since once it knows its

own value it can bid optimally. However, there may exist situations where it can use

information about agent α’s problem to help decide whether to compute on its own
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problem. In particular, if agent β learns that the value for agent α is greater than

some threshold v∗ then agent β may decide not to compute on its own problem since

the likelihood of it winning the auction is small, and so it wishes to avoid the cost

of computing. The utility for agent β following a strategy where it first computes on

agent α’s value problem, and then computes on its own problem only if vα ≤ v∗ is

uα β
β = −

∫ b

v∗
f(vα)dvα − 3

∫ v∗

c

∫ v∗

a

f(vα)dvαg(vβ)dvβ

+

∫ d

v∗

∫ vβ

a

(vβ − vα)f(vα)dvαg(vβ)dvβ (7.5)

where

v∗ = arg maxx

[
−
∫ b

x

f(vα)dvα − 3

∫ x

c

∫ x

a

f(x)dxg(vβ)dvβ

+

∫ d

x

∫ vβ

a

(vβ − vα)f(vα)dvαg(vβ)dvβ

]
. (7.6)

Agent β will partake in strategic deliberation only when Equation 7.5 is greater

than Equations 7.1, 7.2, and 7.3 or 7.4. The question is

Does there exist actual performance profiles such that strategic

deliberation occurs?

Using the performance profiles that were mentioned earlier, let agents α’s perfor-

mance profile be [a, b] = [12, 30] with the distribution

f(x) =





p if x = 30

1− p if x = 12

0 otherwise.

Let the performance profile of agent β be [3, 22] with distribution

g(x) =





q if x = 22

1− q if x = 3

0 otherwise.

Using these performance profiles, it is possible to determine the utility agent β

would have from following the strategies outlines above. That is

unothing
β = 0
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uββ = −2 + 10(1− p)q

ublind imp
β = 8(1− p)q − 11(1− p)(1− q)

or

ublind ref
β = 10(1− p)q − 9(1− p)(1− q)

and

uα β
β = −p+ 7(1− p)(1− q)− 3(1− p)(1− q).

It is possible to determine for which values of p and q each strategy is dominant. In

the case where agents compute to improve their values,each strategy is the dominant

strategy for agent β is the following regions.

1. Nothing: The agent does not compute on any problem, and does not bid in

the auction.

0 < p ≤ 1

2
, 0 < q <

−1

5p− 5

1

2
< p ≤ 53

72
, 0 < q <

2p− 3

10p− 10

53

72
< p < 1, 0 < q <

11

19

2. Blind: The agent submits a bid before its has done any computing. It only

determines its value once it has won the auction.

0 < p ≤ 1

2
,

11p− 9

9p− 9
< q < 1

1

2
< p ≤ 53

72
,

9p− 8

9p− 9
< q < 1

53

72
< p < 1,

11

19
< q < 1
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3. Alpha Beta: The agent first computes on its competitor’s problem, and then,

based on the results it obtained, decides whether to compute on its own problem.

Strategic deliberation occurs.

1

2
< p <

53

72
,

2p− 3

10p− 10
< q <

9p− 8

9p− 9

4. Beta: The agent only computes on its own problem.

0 < p <
1

2
,
−1

5p− 5
< q <

11p− 9

9p− 9

The regions where different strategies are dominant are shown in Figure 7.1.

0 0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

q

Nothing

Blind

β α−β

Figure 7.1: Agents are computing to improve their valuations. For different values of

p and q, different strategies for agent β are the best response to agent α’s dominant

strategy. If 1
2
< p < 53

72
and 2p−3

10p−10
< q < 9p−8

9p−9
agent β is best off computing one step

on agent α’s problem.
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If the two agents are computing to refine their values, then each of agent β’s

strategies are dominant in the following regions.

1. Nothing: The agent does not compute on any problem, nor does it submit a

bid to the auction.

0 < p ≤ 1

2
, 0 < q <

−1

5p− 5

1

2
< p ≤ 33

52
, 0 < q <

2p− 3

10p− 10

33

52
< p < 1, 0 < q <

9

19

2. Beta: The agent computes on its own problem only.

0 < p <
1

2
,
−1

5p− 5
< q <

9p− 7

9p− 9

3. Alpha Beta: The agent computes first on its competitor’s problem, and then

based on the results, decides whether to compute on its own problem. Strategic

deliberation occurs.

1

2
< p <

33

52
,

2p− 3

10p− 10
< q <

7p− 6

9p− 9

4. Blind: The agent bids without first computing on its problem. Since this is

the refining model, once the agent is given the item it learns its true value.

0 < p ≤ 1

2
,

9p− 7

9p− 9
< q < 1

1

2
< p ≤ 33

52
,

7p− 6

9p− 9
< q < 1

33

52
< p < 1,

9

19
< q < 1

Figure 7.2 illustrates these regions.

The example that has just been presented made no assumption as to the type of

performance profile used, other than to assume that it was not deterministic. The

example did not make any assumptions on whether the anytime algorithm was a

contract or interruptible algorithm either. The following theorem has been proved.
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0 0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

q

Nothing

α−β

Blind

β

Figure 7.2: Agents are computing to refine their values. For different values of p and

q, different strategies for agent β are the best response to agent α’s dominant strategy.

If 1
2
< p < 33

52
and 2p−3

10p−10
< q < 7p−6

9p−9
agent β is best off computing one step on agent

α’s problem.

Theorem 16. If agents have anytime algorithms, costly computing and their perfor-

mance profiles are not deterministic then in ascending and Vickrey auctions strategic

deliberation may occur in equilibrium.3

Theorem 16 only is true if the performance profiles are not deterministic. Agents

compute on each others’ problems in order to remove uncertainty as to their com-

petitors possible values. If all agents have deterministic performance profiles then all

agents know what the results of computing are with certainty.

Lemma 3. If agents have anytime algorithms, costly computing, and their perfor-

mance profiles are deterministic, then in an ascending or Vickrey auction no strategic

3This result holds whether agents are computing to improve or refine their values, and does not

depend on an independence of performance profiles assumption.
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deliberation occurs. This result holds whether agents compute to improve or refine

their values.

Proof. If agents compute to refine their values, then, if their performance profiles

are deterministic, agents do not need to compute. Their performance profiles tell

the agents with certainty what their values are, without having to compute and thus

incur a cost. Trivially, since agents do not compute, there is no strategic deliberation.

Assume agents compute to improve their values. Since all performance profiles

and cost functions are common knowledge each agent is able to determine what each

agent’s value function and cost function is. If agent j computes on agent i’s value

problem, it does not obtain any new information, but does incur a cost, thus reducing

its utility. Therefore, no strategic deliberation occurs.

Even though there is no strategic deliberation, weak strategic deliberation can still

be a problem.

Lemma 4. If agents have anytime algorithms, costly computing, and their perfor-

mance profiles are deterministic, then in an ascending or Vickrey auction weak strate-

gic deliberation can occur in equilibrium. This result holds whether agents compute to

improve or refine their values.

Proof. Assume there are two agents, α and β, competing in either an ascending or

Vickrey auction, with deterministic performance profiles PPα and PPβ. Assume that

the cost functions of the agents are common knowledge. Using the deterministic

performance profiles, each agent it able to determine

t∗α = arg max
tα

[vα(fα(tα))− costα(〈0, . . . , 0, tα, 0, . . . , 0〉)]

and

t∗β = arg max
tβ

[vβ(fβ(tβ))− costβ(〈0, . . . , 0, tβ, 0, . . . , 0〉)]

In a Vickrey auction, agent i will submit a bid equal to vi(fi(ti)), and in an ascending

auction an agent will drop out when the price reaches vi(fi(ti)). If agent β knows

(from PPα) that

vα(fα(tα)) > vβ(fβ(tβ))
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then it will not compute because it is certain to lose to auction and thus have utility

uβ = −costβ(〈0, . . . , 0, tβ, 0, . . . , 0〉)

Since agent β’s utility from not computing is 0, its best strategy is to not participate.

That is, agent β determines its strategy using information from agent α’s performance

profile. In other words, weak strategic deliberation can occur.

Combining Lemmas 3 and 4 leads to Theorem 17

Theorem 17. If agents have anytime algorithms, costly computing, and their per-

formance profiles are deterministic, then in an ascending or Vickrey auction weak

strategic deliberation can occur in equilibrium but strategic deliberation does not. This

result holds whether agents compute to improve or refine their values.

7.2.3 Generalized Vickrey Auction

The generalized Vickrey auction (GVA) inherits some of the properties of the single

item Vickrey auction. For rational agents, the dominant bidding strategy is to submit

bids which are equal to the agents’ true values. For agents with bounded resources for

determining values, properties from the single item Vickrey auction also are prevalent

in the GVA. In particular, if agents have costly computing resources then strategic

deliberation may occur in equilibrium.

Theorem 18. If agents have anytime algorithms, costly computing and their perfor-

mance profiles are not deterministic, then in the generalized Vickrey auction strategic

deliberation can occur in equilibrium. This result holds whether agents are computing

to improve of refine their values. This result does not depend on an assumption about

independence of performance profiles.

Proof. From Theorem 16 it is known that in a single item Vickrey auction with

costly computing strategic deliberation can occur in equilibrium. Since the single

item Vickrey auction is a special case of the generalized Vickrey auction, it can

be concluded that strategic deliberation can also occur in the generalized Vickrey

auction.

There are additional problems faced by agents participating in the GVA. Agents

have multiple valuation problems of their own. If there are M items then there are
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2M bundles of items in which the agents may place bids. The agents may not have

enough computing resources to be able to compute values for each bundle. Instead

they must decide on which bundles to focus their attention. However, this can not

be done in a greedy fashion. It does not work for each agent to simply compute the

valuations for bundles that will have the highest utility to the agent in isolation. The

agents must take into consideration what bundles other agents will express interest in.

Even if agents are not in direct competition for the same bundles of items, they may

be interested in overlapping bundles, that is bundles that share some of items. By

deliberating on other agents’ problems, an agent may be able to determine whether it

is likely to win a bundle of items or not. It can then focus its attention on deliberating

on the valuation problems for bundles in which it is more likely to be able to win.

In the single item Vickrey auction, if agents had free but limited computing re-

sources then there was no incentive for them to compute on any other problem other

than on their own value problem (Theorem 15). However, due to the relations be-

tween bundles of goods, strategic deliberation may occur as agents partially evaluate

competitors’ bundles in order to determine their chances of being allocated certain

bundles

Theorem 19. If agents have anytime algorithms, free but limited computing and

their performance profiles are not deterministic then in a generalized Vickrey auction

strategic deliberation may occur in equilibrium. This result does not depend on an

assumption about independence of performance profiles.

Proof. By example. We will use the performance profile tree representation in this

proof for illustrative purposes. Other performance profile representations have the

same property. Let there be two agents, α and β, and three items, g1, g2, and

g3. The performance profiles for the agents’ valuation problems are in Figure 7.3.

Valuation problems that remain zero no matter how much computing is allocated to

them are not shown.

Assume that both agents’ deadlines, dα and dβ, occur at t = 3. Assume, also, that

the auction closes at T = 3. Agent β has a dominant strategy. In the first time step it

computes on the valuation for {g3}. If vg3β (1) = 1.0 then it computes two more time

step on {g3} to obtain a valuation of 22.0. At time T it would bid its true valuation

for all bundles. If vg3β (1) = 0.0 then it performs two computing steps on {g2, g3} and

obtains a valuation v
{g2,g3}
β (2) = 7.0. At time T it would bid its true valuation.
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Agent α

{g1}
0.0 0.25 1.0 1.25

{g2}
0.0 1.0 4.0 4.5

{g2, g3}
0.0 2.0 9.0 10.0

Agent β

{g3}
0.0

1.0

1
2

20.0 22.0

0.0

1
2

2.0 3.0

{g2, g3}
0.0 2.0 7.0 7.5

Figure 7.3: Performance profiles for agents α and β. There is uncertainty in agent

β’s valuation for bundle {g3}.

Agent α’s best response is to compute the first time step on agent β’s valuation

problem for {g3} (i.e. perform strategic deliberation). If after one time step, agent

α determines that v
{g3}
β (1) = 1.0 then agent α computes two time steps on its own

valuation problem for {g1}. Otherwise it computes two steps on its own valuation

problem for {g2, g3}.
Agent α realizes that if after one computing step, v

{g3}
β (1) = 1.0 then agent β

will continue computing on the problem, obtain a valuation of 22.0, and include it

in its bid. Since in any optimal allocation, the item g3 will be awarded to agent β,

agent α could never be awarded any bundle that contains g3. Therefore it is better

off computing on the valuation problem for {g1} and bidding its true valuation.

However, if v
{g3}
β (1) = 0.0 then agent α knows that it can win the bundle {g2, g3}

and so computes two steps on the valuation problem.

The expected utility for each agent is

E[uα] =
1

2
(1.0− 0.0) +

1

2
(9.0− 7.0) = 1.5

E[uβ] =
1

2
(22.0− 0.0) +

1

2
(0) = 11.0

In the single item Vickrey auction, if the performance profiles were deterministic

and computing was free but limited, then agents would not even partake of any weak
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strategic deliberation. However, in the GVA, this property no longer holds. Agents

may at times have incentive to base their computing choices on the deterministic

performance profiles of their competitors.

Theorem 20. If agents have anytime algorithms, free but limited computing and

their performance profiles are all deterministic, then in a generalized Vickrey auction,

weak strategic deliberation may occur in equilibrium. This result does not depend on

any assumption about independence of performance profiles.

Proof. By example. Let there be two agents, α and β and 3 goods, g1, g2, g3. Assume

that the performance profiles of the agents are defined as follows.

fαb (t) =





0 if t = 0

4 if t > 0 and b = {g1}
1 if t > 0 and b = {g2}
0 if t > 0 and b = {g3}
0 if t > 0 and b = {g1, g2}
6 if t > 0 and b = {g1, g3}
0.5 if t > 0 and b = {g2, g3}
2 if t > 0 and b = {g1, g2, g3}

fβb (t) =





0 if t = 0

0 if t > 0 and b = {g1}
0 if t > 0 and b = {g2}
0 if t > 0 and b = {g3}
0 if t > 0 and b = {g1, g2}
0 if t > 0 and b = {g1, g3}
12 if t > 0 and b = {g2, g3}
0 if t > 0 and b = {g1, g2, g3}

Assume that the deadline of both agents is at time t = 1. The agents must decide

how to use their single computing step. Agent β has a dominant strategy which is to

compute one step on bundle {g2, g3} and submit a bid equal to the computed value.

If agent α ignored agent β then it would want to compute on bundle {g1, g3} and

submit a bid equal to 6. However, agent α would not be awarded this bundle since it

shares an item (g3) with agent β’s desired bundle which will be allocated to agent β.

Therefore, agent α is best off using information from agent β’s performance profile

and computing one step on the value problem for bundle {g1} and then bidding its

computed value.

7.3 Algorithm Choice

So far, a basic assumption has been that each agent only has one algorithm for each

problem in which it is interested. However, one can imagine situations where agents

have access to several different algorithms. In such settings, agents are faced not

only with the decision of how to allocate their computing resources across problems,
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but must also decide how to allocate their computing resources between algorithms

for the same problem. It is possible that the choice of algorithm for a problem may

depend on what algorithms other agents have chosen and what values that the agents

have obtained.

Clearly, in situations where agents incur a cost for computing, strategic delibera-

tion can occur when agents have multiple algorithms for the same problem. However,

in settings where agents have limited computing resources, if agents have multiple

algorithms, then it is possible that strategic deliberation can occur.

Consider the following example. Assume there are two agents, α and β, partici-

pating in a Vickrey auction who have limited computing resources with deadlines Dα

and Dβ and are computing to improve their values. Agent α has two algorithms for

its valuation problem. Algorithm 1 performs well on some types of problems, while

Algorithm 2 performs well on other types of problems. However, for the first k steps,

both algorithms perform identically (returning a value of 0) so it is impossible for the

agent to determine which is the best algorithm to use until after computing k steps.

Agent β has only one algorithm, but it has the property that it always performs well

on problems that Algorithm 1 performs well on, and performs poorly on problems

that Algorithm 2 performs well on. An agent using this algorithm of agent β learns

after only l < k steps whether the algorithm is performing well or not. Additionally,

to further simplify the problem, we assume that the agents have very different uses

for the item and so the solution found by the algorithm(s) of one agent is not usable

by the other agent. Instead, the results from one agent’s algorithm can only be used

as a signal about the problem instance being computed on, and not as a solution for

the other agent.

If agent α only computes using its own algorithms then, in the worst case, it

will have to compute k + 1 steps before it computes a value which is greater than 0.

However, by first computing l steps using agent β’s algorithm, agent α can determine

the type of problem it is facing. It can, therefore, choose the appropriate algorithm

for the problem, resulting in a higher expected utility. Using a similar example, it

is possible to show that strategic deliberation can also occur if agents computed to

refine their values. We obtain the following theorem.

Theorem 21. Assume agents have limited computing resources and compute to im-

prove or refine their values. If agents have a choice between multiple algorithms for

solving their valuation problems, then strategic deliberation may occur in equilibrium.
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7.4 (Non)strategic Equivalence of the Vickrey

and Ascending Auction

In this chapter we have shown that interesting strategic behavior, namely strategic de-

liberation, can occur in both the Vickrey and the ascending auctions. In the classical,

fully rational setting, the Vickrey auction and the ascending auction are strategically

equivalent, in that it is possible to construct an isomorphism between the strategy

spaces of the agents participating in the auctions.

If the agents have computational limitations then it is unlikely that this isomor-

phism still exists. Due to the structure of the auctions, the agents are able to deduce

different information about each other as the auction runs. In particular, in the as-

cending auction an agent may be able to deduce information about an competitor

agent without having to do any computing, while in the Vickrey auction, to get the

same information, the agent would have to strategically compute.

Theorem 22. The ascending and Vickrey auctions are not strategically equivalent

if agents are computationally limited. The occurrence of strategic deliberation in the

Vickrey auction does not imply that there will be strategic deliberation in an ascending

auction.4

Proof. We prove this theorem by providing an example of performance profiles and

cost functions where strategic deliberation occurs in equilibrium in the Vickrey auc-

tion, but does not occur in equilibrium in an ascending auction.

Assume that there are two agents, agent 1 and agent 2, with performance profiles

as shown in Figure 7.4. Assume that the cost functions of the agents’ are

cost1((t1, t2)) = 0

and

cost2((t1, t2)) = t1 + 3t2.

In both the Vickrey and ascending auctions, agent 1 has a (weakly) dominant

strategy which is to compute only on its own problem to obtain value a or b and then

bid as though it was a fully rational agent participating in the auction.

4This result does not rely on any independence assumptions.
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Agent 1 0

a
1
2

b1
2

Agent 2 0

x
1
2

y1
2

a > x > y > b

Figure 7.4: Performance profiles for agent 1 and agent 2. In an ascending auction,

agent 2 would never compute on the problem of agent 1 since it can obtain this infor-

mation in a timely manner through the auction mechanism.

In an ascending auction, agent 2 has no incentive to compute on the problem of

agent 1. Instead, agent 2 can wait until the price has risen to p = b. If the value of

agent 1 is b then agent 1 will withdraw from the auction, leaving the item for agent

2 to get it at price b. If, however, at price b + ε agent 1 is still in the auction, then

agent 2 can deduce that agent 1 values the item at a which is higher than what agent

2 will ever value it. Therefore, agent 2 still has no incentive to pay a cost to compute

on the problem of agent 1.

In a Vickrey auction, however, agent 2 does not have the opportunity to learn the

value of agent 1 for free. Instead, it has incentive to compute first on the problem

of agent 1, in order to determine if the value of agent 1 is high, under the following

conditions:

0 < −1 +
1

2

[
1

2
(x− b) +

1

2
(y − b)− 3

]

and

−3 +
1

4
[(x− b) + (y − b)] < −1 +

1

2

[
1

2
(x− b) +

1

2
(y − b)− 3

]
.

These two conditions hold when the values of a, b, x, y are as follows:

5 < x ≤ 10, 10− x < y < x, 0 < b <
1

2
(x+ y − 10), a > x

or

x > 10, 0 < y < 10− x, 0 < b < y, a > x

or

x > 10, x− 10 ≤ y < x, 0 < b <
1

2
(x+ y − 10), a > x.
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Agent 1 0

301
2

12

1
3

2
1
6

Agent 2 0

22
3
5

32
5

Figure 7.5: Performance profiles for agent 1 and agent 2. While strategic deliberation

can occur in the ascending auction, it does not imply that the same instances (per-

formance profiles and cost functions) will lead to strategic deliberation in the Vickrey

auction.

The ascending auction is not strategically equivalent to the Vickrey auction. How-

ever, the counterexample presented in the above theorem seems to suggest that, with

respect to strategic deliberation, the ascending auction is a more robust mechanism

in that strategic deliberation occurs less often in it compared to the Vickrey auction.

However, as we show in the next theorem, this is not true. There exist situations

where strategic deliberation occurs in the ascending auction, but not the in the Vick-

rey auction.

Theorem 23. The occurrence of strategic deliberation in the ascending auction does

not imply that strategic deliberation will also occur in the Vickrey auction.

Proof. Assume that there are two agents, agent 1 and agent 2, with performance

profiles as shown in Figure 7.5. Assume that the cost functions are as follows:

cost1((t1, t2)) = 0

and

cost2((t1, t2)) = t1 + 2t2.

Agent 1 has a dominant strategy in both the ascending and Vickrey auctions. It

is best off computing only on its own problem and bidding using the fully rational

agent bidding strategy given its computed value.
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The strategy of agent 2 depends on which auction it is participating in. In the

ascending auction, agent 2 is best off not doing anything until the price increases to

p = 2. If agent 1 drops out of the auction at this point, then agent 2 will be allocated

the item. If however, agent 1 does not withdraw from the auction, then agent 2 learns

that agent 1 has either 30 or 12 as its value. Using Bayes rule to update its beliefs

about what value agent 1 has computed, agent 2 places probability 3
5

on the value

being 30 and and 2
5

on the value being 12. Agent 2 is then best off computing one step

on the problem of agent 1 and then computing on its own problem only if the value

of agent 1 is 12 (with expected utility of 0.6), as opposed to doing nothing (expected

utility of 0) or computing only on its own problem (expected utility of 0.4).

In the Vickrey auction, agent 2 is best off computing only on its own problem and

submitting a bid equal to its computed value. If it follows such a strategy it has an

expected utility equal to 3.067, as opposed to doing nothing (expected utility of 0) or

computing on the problem of agent 1’s first in order to learn whether agent 1 has a

value of 30 (expected utility of 2.067).

The two previous theorems show that with respect to strategic deliberation, it is

not possible to claim that either the ascending or Vickrey auction is more robust than

the other. While strategic deliberation is prevalent in both auction mechanisms, the

existence of strategic deliberation, given an instance defined by the agents, does not

imply that strategic deliberation will also occur in the other auction mechanism.

7.5 Experiments

In this chapter we have studied the occurrence of strategic deliberation in differ-

ent auction mechanisms. While we have shown that for all auctions of interest (the

ascending auction, the Vickrey auction, and the first-price, sealed-bid auction) strate-

gic deliberation was prevalent, depending on the performance profiles of the agents.

However, in showing the existence of strategic deliberation, we relied on hand crafted

examples, and it was not clear whether strategic deliberation was an actual issue or

an artifice of the analysis.

Using performance profile trees as our deliberation control procedure, we con-

ducted a series of experiments to explore the effect that limited deliberation resources

has on agents’ strategies. After generating performance profiles using data from differ-
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ent real-world application domains, we used Gambit [73], a popular solver for finding

game-theoretic equilibria, to find and categorize all Nash deliberation equilibria.

7.5.1 Application Scenarios

We conducted our experiments using data from two different scenarios; vehicle routing

and single-machine manufacturing scheduling. We treated the domain problem solvers

as black boxes. We outline the main properties of each domain, but the full details

are found in Chapter 3.

Vehicle Routing

In the real-world vehicle routing problem (VRP) in question, a dispatch center is

responsible for a certain set of tasks (deliveries) and has a certain set of resources

(trucks) to take care of them. Each truck has a depot, and each delivery has a pickup

location and a drop-off location. The dispatch center’s problem is to minimize trans-

portation cost (driven distance) while still making all of its deliveries and honoring

the following constraints:

• each vehicle has to begin and end its tour at its depot, and

• each vehicle has a maximum load weight and maximum load volume constraint.

• each delivery has to be included in the route of some vehicle.

To generate data for our experiments, an iterative improvement algorithm was

used for solving the VRP. The problem instances were generated using real-world

data collected from a dispatch center that was responsible for 15 trucks and 300

deliveries. We generated two independent sets by randomly dividing the deliveries in

half. To generate 1000 instances for each set used to build PPTrees, we randomly

selected (with replacement) 60 deliveries.

Manufacturing Scheduling

The second domain is a single-machine manufacturing scheduling problem with sequence-

dependent setup times on the machines, where the agent’s objective is to minimize
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Figure 7.6: Performance profile trees for the scheduling domain Each node in a tree

contains two numbers. The first number is the solution quality and the second number

is the probability of reaching the node, given that its parent was reached.

weighted tardiness,

∑

j∈J
wjTj =

∑

j∈J
wj max(fj − dj, 0),

where Tj is the tardiness of job j, and wj, fj, dj are the weight, finish time, and

due-date of job j.

In our experiments, we used a state-of-the-art scheduler developed by others [19]

as the domain problem solver. It is an iterative improvement algorithm that uses a

scheduling algorithm called Heuristic Biased Stochastic Sampling [16]. We treated

the domain problem solver as a black box without any modifications.

The problem instances were generated according to the standard benchmark out-

lined in [68]. The due-date tightness factor was set to 0.3 and the due-date range

factor was set to 0.25. The setup time severity was set to 0.25. These parameter

values are the ones used in standard benchmarks [68]. Each instance consisted of

100 jobs to be scheduled. We generated two independent sets of instances by using

different random number seeds.

7.5.2 Generating Performance Profiles

We used independent sets of 1000 instances per set from both application domains to

generate performance profile trees for the agents. Due to limitations in Gambit [73],

the software used for the game-theoretic analysis, we were required to use coarse

discretizations on both solution quality and time steps. Each tree had depth two (an

agent could compute for two time steps on a single problem). The solution quality
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Figure 7.7: Performance profile trees for the trucking domain . Each node in a tree

contains two numbers. The first number is the solution quality and the second number

is the probability of reaching the node, given that its parent was reached.

was coarsely discretized in order to reduce the branching factor of the PPTrees so that

the problems were feasible for Gambit. Figures 7.6 and 7.7 show sample performance

profile trees produced when the solution quality was uniformly discretized into buckets

of size 25000 for scheduling and size 10000000 for the trucking domain.5 Later in

this chapter we discuss the implications caused by using such a coarse discretization,

whether we believe the discretization influenced the observed results in a marked way,

and whether we believe there is any approach in which more refined performance

profiles can be used for such analysis.

7.5.3 Cost Functions

In our model there are costs associated with deliberating. The costs for agent i are

represented by a function ci(t1, t2) = K1
i t1+K2

i t2 where tj is the amount of time agent

i deliberated on the valuation problem of agent j, and K1
i , K

2
i ≥ 0 are predefined

constants. The cost functions of the agents are either symmetric or asymmetric.

Definition 41. A cost function ci(t1, t2) = K1
i t1 + K2

i t2 is symmetric if K1
i = K2

i .

A cost function ci(t1, t2) = K1
i t1 +K2

i t2 is asymmetric if K1
i 6= K2

i .

Symmetric costs naturally model situations where agents compute on problems

in order to determine valuations. For example, an agent may pay some amount K

for each CPU cycle used running an algorithm. Asymmetric cost functions naturally

5We experimented with other feasible uniform discretizations. The results were all similar to the

results reported in this paper. Therefore, due to space considerations we do not include them.
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model information gathering scenarios as it is not unreasonable that there are different

costs associated with gathering information from different sources.

7.5.4 The Reverse Vickrey Auction

We provide a motivating example. A company wishes to contract out a set of 100

tasks as a sole-source contract, i.e., the entire set is allocated to one manufacturer.

The company runs a reverse Vickrey auction to allocate the set to one of two possible

manufacturers. Each task in the set has a deadline, and a task-specific penalty for

each unit of time that the task is late. The manufacturer has to pay the total weighted

tardiness to the company as a penalty. If agent i wins the auction, has obtained a

valuation, vi, by deliberating, and has incurred cost ci while doing so, then its utility

is

ui = x− vi − ci

where x = min(bj, R) where bj is the second lowest bid (if any) and R is the company’s

reserve price, i.e., the company’s maximum willingness to pay to get the task set

manufactured. If agent i does not win, its utility is

ui = −ci.

In our experiments there were two agents, agent 1 and agent 2. Each agent had

different valuation problems and thus different performance profiles. The performance

profile trees were common knowledge. At each time step an agent had a choice

of actions available to it: it could deliberate on its own valuation problem, on its

competitor’s problem, or it could choose not to deliberate. Once both agents stopped

deliberating (after at most two time steps), they submitted bids to the auctioneer.

7.5.5 Representing Equilibria

We denote a (deliberation) strategy by AiBi where Ai is the deliberation action taken

by agent i in the first step, and Bi is the set of deliberation actions taken by agent i

in the second step, conditional on the results observed after the first step. We do not

denote the bidding actions since agents are motivated to always submit their value

obtained by deliberating.

We represent the deliberation actions as follows:
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• N is the action of not deliberating,

• O is the action of deliberating for one step on its own problem, and,

• Z is the action of deliberating for one step on its opponent’s problem.

Agents may play mixed strategies, that is, they randomize between multiple actions.

For example, at a given time step, an agent may decide to randomize between not de-

liberating (N) and deliberating on its own problem (O). We denote this by m(O,N).

Consider the following example. Assume that there exists an equilibria where

agent 1 randomizes between deliberating on its own problem and the problem of agent

2, and then either tops deliberating of deliberates for one step on its own problem

in the second stage. Agent 2 randomizes between all three actions, and then stops.

This is denoted by

(m(O,Z)(O,N),m(O,Z,N)N ).

7.5.6 Symmetric Cost Functions

We first investigate what happens if agents have symmetric, but potentially different,

cost functions. For both application domains we ran a series of reverse Vickrey auc-

tions, varying the reserve prices and cost functions of the agents. Table 1 presents

a complete taxonomy of all Nash (deliberation) equilibria in the scheduling domain,

when the reserve price was taken from the set {25000, 50000, 100000}. These price

choices span the interesting range for the scheduling domain. Reserve prices cap the

potential utility of the agents. At the bottom end the agents’ utilities are capped

so that there is a potential that even if both agents deliberate on their own prob-

lems, neither agent will win the auction. At the high end the reserve price has little

influence, since the cap is set high enough such that as long as agents deliberate,

an agent will win the auction. The cost functions of the agents were of the form

ci(t1, t2) = Ki(t1 + t2) for Ki ∈ {10, 100, 12500, 25000, 50000}. These value choices

span the interesting range for the scheduling domain: at the bottom end the values

are low enough so that deliberation on problems is a potential strategy, while at the

top end there is the potential that the deliberating cost is higher than any possible

utility that could be achieved.6

6We experimented with other reserve prices and cost functions. The results of these experiments

were similar to the ones presented in the paper.
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There are several observations. First, we did not observe any equilibria where

strategic deliberation occurred. Second, the cost functions of the agents influenced

their strategic behavior. For example, when K1 = 100 then agent 1 always spent

the first time step deliberating on its own problem. However, the action it took in

the second time step depended on the actions of agent 2. Third, multiple and mixed

equilibria appeared when the costs were high enough (12500), and disappeared when

the costs became too high (compared to the reserve price). Finally, reserve prices

influenced the deliberation equilibria. For example, the equilibria that occurred when

c1(t1, t2) = 50000 · (t1 + t2) and c2(t1, t2) = 25000 · (t1 + t2) changed according to

the reserve price. When the reserve price was R = 25000 then there was a single

equilibrium: neither agent deliberated on any problem. When R = 50000, there

was a different, single equilibrium. Finally, when R = 100000 there were multiple

equilibria: two pure equilibria where one agent deliberated on its own problem for

one time step while the other did not deliberate at all, and a mixed equilibrium

where both agents randomized between not deliberating and deliberating on their

own problem in the first step.

7.5.7 Asymmetric Cost Functions

We conducted experiments with asymmetric cost functions. Tables 2 and 3 present

results from the vehicle routing domain, where the reserve price, R, was set to 5 · 107,

i.e., high enough so that it did not introduce additional strategic considerations, and

where Kj
i ∈ {1000, 2.5 · 106, 5 · 106, 1 · 107}. These values were chosen so as to span

the interesting range for the routing domain.

We only present results where cost functions had the form ci(t1, t2) =
∑2

j=1 K
j
i · tj

where K i
i ≥ Kk

i . If the cost of deliberating on a competitor’s valuation problem

is higher than the cost of deliberating on the agent’s own problem, then clearly no

strategic deliberation will occur in equilibrium.

Several interesting phenomena were observed. First, when the cost of deliberating

on the other agent’s valuation problem was low, strategic deliberation occurred in

equilibrium. This is illustrated by Table 2. Almost every mixed Nash equilibrium

involved agent 1 deliberating on the problem of agent 2 with positive probability.

However, when K2
1 = 2.5·106, then agent 1 never deliberated on the valuation problem

of agent 2. The same behavior was observed for agent 2 (see Table 3). Second, if K j
i

was high enough then no strategic deliberation occurred, irrespective of the value of
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Ki
i (Table 3). Third, the other agent’s actions also play an important role. That is,

agents’ do not have dominant strategies which are parameterized by their own cost

functions, instead, complex strategic behavior occurs. This can be observed from

Table 3.7

How much asymmetry is required in order for strategic deliberation to occur?

The experiments reported in Tables 2 and 3 involved gross asymmetries. It was not

clear whether large differences in deliberating costs are required in order to force

strategic deliberation, or whether just an ε-difference in the cost constants could

produce interesting strategic behavior. Using the scheduling domain as our sample

application, we fixed the cost function of agent 2 as c2(t1, t2) = 100 · (t1 + t2) and

set c1(t1, t2) = 100 · t1 + K2
1 · t2. We decreased K2

1 by increments of 0.5. When

K2
1 ≥ 97.0 the unique Nash (deliberation) equilibrium was (ON , ON). However, for

K2
1 < 97.0 the unique Nash (deliberation) equilibrium was (Z(O,N), ON). It appears as

though we can conclude that gross asymmetries are not required in order for strategic

deliberation to occur, however there should be more than an ε-difference between the

costs associated with deliberating on different problems.

7.5.8 Discussion

From studying the results from both the symmetric and asymmetric cost function

experiments, there are some interesting points that arise. First, in order for strategic

deliberation to occur, there must be a certain amount of asymmetry between the

problems of the agents. This asymmetry may arise due to differences in cost functions,

or the relative difficulty of different agents’ valuation problems. For example, in a

vehicle routing problem, it might be very easy to find a short route in one problem

instance, yet not be so easy in a different problem instance. Even if there is no

strategic deliberation (as in the symmetric cost function setting) agents’ optimal

strategies depend on what strategies the other agents are following: dominant strategy

equilibria do not always exist. For example, there may exist situations where an agent

may decide to not compute on any problem in order to avoid incurring a cost, given

that a competitor intends to solve its own valuation problem.

Second, the (reverse) Vickrey auction is a very simple auction mechanism and

when agents are fully rational, they have dominant strategies. In spite of its simplicity,

7Using PPTrees generated from data from the scheduling domain, we repeated the experiments

and observed similar equilibria. Due to space limitations we do not present the results in this paper.
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in recent work it has been shown that the information structures which appear in the

Vickrey auction and drive the theoretical strategic deliberation results, also appear in

many multi-stage auctions such as the English auction and variants [65]. Thus, while

our experiments focus only on one auction type, we believe that the conclusions are

applicable across a wide range of auction mechanisms.

A criticism of these experiments is that in order to make the games small enough

so that the software, Gambit, could actually load and solve them, we had to use a

very coarse discretization of both time and solution quality. This meant that a lot of

information about the algorithms’ performance was lost as potentially very different

runs of the algorithms were treated identically. We do not believe that the observed

strategic deliberation was an artifice caused by the discretization choices. If anything,

by using a finer discretization we believe that there would have been increased asym-

metry in the performance profile trees, which, we know from the theoretical analysis,

can lead to the occurrence of strategic deliberation. We did not observe any strategic

deliberation in the symmetric cost function experiments, and this may be due to the

coarse discretization. As just mentioned, the discretization removed a lot of useful

information from the performance profiles, particularly removing possible asymme-

tries. Therefore, we are not willing to conclude that strategic deliberation will never

occur in equilibrium when there are symmetric cost functions.

Gambit is a state-of-the-art general game solver, and unless there is a significant

breakthrough in the algorithms for finding equilibrium, we believe that we will al-

ways be faced with the problem of having to work with coarse discretizations in the

performance profile trees. However, there are a few glimmers of hope. First, for some

sets of performance profile trees there may be enough structure so that the game

description could be reduced, making the equilibrium finding problem easier. Second,

it may be possible to design auction mechanisms that explicitly take into account the

computational limitations of the agents and guaranteeing good equilibrium behavior.

This would eliminate the need of using such tools as Gambit to find all equilibria,

since the mechanism would provide the correct incentives for the agents to play a

particular equilibrium.
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7.6 Summary

Auctions provide efficient and distributed ways of allocating goods and tasks among

agents. For rational agents, bidding strategies have been well studied in the game

theory literature. However, not all agents are fully rational. Instead they may have

computing limitations which curtail their ability to compute valuations for the items

being auctioned. This adds another dimension to the agents’ strategies as they have to

determine not only the best bid to submit, but how to use their computing resources

in order to determine their valuations and gain information about the valuations of

the other agents participating in the auction.

We investigated agents strategic behavior under different computational settings

and auction mechanisms. We showed that in most standard auction settings, in

equilibrium agents are willing to use their deliberation resources in order to compute

on valuation problems of competitors, even if this means that their knowledge about

their own true valuation is lessened. In particular, we showed that strong strategic

computing does not depend on the type of anytime algorithm, nor in general does it

depend on the type of performance profile. The critical property is whether or not

there is uncertainty as to what values will result from further computing. In particular

we have shown that if all agents’ performance profiles are deterministic then

• No strong strategic computing occurs. This is true for all auctions studied

(first-price sealed-bid, Vickrey, ascending and GVA), for both types of anytime

algorithms (contract and interruptible) and for both costly and limited com-

puting.

• If computing is costly, then weak strategic computing may occur in all auctions.

• If computing is limited, weak strategic computing may occur in the first-price

sealed-bid auction and GVA. Weak strategic computing will not occur in the

ascending and Vickrey auctions. This is true for both contract and interruptible

algorithms.

If agents’ performance profiles are not deterministic (there is uncertainty as to

what values will result from computing) then the following results were derived. This

is true for both contract and interruptible algorithms.

• If computing is limited then in the ascending and Vickrey auction neither strong
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nor weak computing occurs in equilibrium. This is true for both contract and

interruptible algorithms.

• If computing is limited then in the first-price sealed-bid and GVA strong strate-

gic computing may occur in equilibrium. This is true for both contract and

interruptible algorithms.

• If computing is costly, strong strategic computing may occur in all auctions

studied. This is true for both contract and interruptible algorithms.

These results are summarized in Tables 7.5 and 7.6.

We also conducted a series of experiments to study whether strategic deliberation

occurs in practice or was merely an artifice of the analysis. We ran reverse Vick-

rey auctions with bidding agents who had limited deliberation resources and were

provided with fully normative deliberation control methods. We observed no strate-

gic deliberation when agents had symmetric cost functions.8 However, if the cost

functions of the agents were asymmetric then strategic deliberation occurred in equi-

librium. This supports our position that when designing electronic markets and other

multiagent systems, it is of both theoretical and practical importance to consider the

deliberation actions of agents.

8This is not proof that it never occurs in practice. If more deliberation actions were allowed,

then we may observe it experimentally.
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R=25000 100 1000 12500 25000 50000

100 ON , O(O,N) ON , ON O(O,N), N O(O,N), N O(O,N), N

1000 N,O(O,N) N,O(O,N) N,ON ON , N ON , N

m(O,N)N ,m(N,O)N

ON , N

12500 N,O(O,N) N,O(O,N) N,ON ON , N ON , N

m(O,N)N ,m(N,O)N

ON , N

25000 N,O(O,N) N,O(O,N) N,ON N,N N,N

50000 N,O(O,N) N,O(O,N) N,ON N,N N,N

R=50000

100 ON , O(O,N) ON , ON O(O,N), N O(O,N), N O(O,N), N

1000 N,O(O,N) N,O(O,N) N,ON N,ON ON , N

m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

ON , N ON , N

12500 N,O(O,N) N,O(O,N) N,ON N,ON ON , N

m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

ON , N ON , N

25000 N,O(O,N) N,O(O,N) N,ON N,ON ON , N

m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

ON , N ON , N

50000 N,O(O,N) N,O(O,N) N,ON N,ON N,N

R=100000

100 ON , O(O,N) ON , ON O(O,N), N O(O,N), N O(O,N), N

1000 N,O(O,N) N,O(O,N) N,ON N,ON N,ON

m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

ON , N ON , N ON , N

12500 N,O(O,N) N,O(O,N) N,ON N,ON N,ON

m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

ON , N ON , N ON , N

25000 N,O(O,N) N,O(O,N) N,ON N,ON N,ON

m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

ON , N ON , N ON , N

50000 N,O(O,N) N,O(O,N) N,ON N,ON N,ON

m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

ON , N ON , N ON , N

Table 7.2: All Nash equilibria for the scheduling domain with symmetric cost func-
tions. The rows are different cost functions for agent 1 and the columns are different
cost functions for agent 2. Each cell contains all Nash equilibria given the agents’
cost functions and the reserve price R.
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(1000,1000) 1000 2.5E6 5E6 1E7

1000 ON , ON ON , N ON , N ON , N

2.5E6 N,ON N,ON N,ON N,ON

∗m(O,Z)(O,N),m(O,Z)(O,N) ∗m(O,Z)(O,N),m(O,Z)(O,N) ∗m(Z,N)(O,N),m(O,N)N

ON , N ON , N ON , N

5E6 N,ON N,ON N,ON N,ON

∗m(O,Z)(O,N),m(O,Z)(O,N) ∗m(O,Z)(O,N),m(O,Z)(O,N) ∗m(Z,N)(O,N),m(O,N)N

ON , N ON , N ON , N

1E7 N,ON N,ON N,ON N,ON

∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N)

ON , N ON , N ∗m(O,Z,N)(O,N),m(O,Z,N)(O,N)

∗m(Z,N)(O,N),m(O,N)N

ON , N

(1000,2.5E6)

1000 ON , N ON , N ON , N

2.5E6 N,ON N,ON N,ON

∗m(O,Z)(O,N),m(O,N)N ∗m(Z,N)(O,N),m(O,N)N ∗m(Z,N)(O,N),m(O,N)N

ON , N ON , N ON , N

5E6 N,ON N,ON N,ON

∗m(O,Z)(O,N),m(O,N)N ∗m(O,Z)(O,N),m(O,N)N ∗m(Z,N)(O,N),m(O,N)N

ON , N ON , N ON , N

1E7 N,ON N,ON N,ON

∗m(O,Z)(O,N),m(O,N)N ∗m(O,Z)(O,N),m(O,N)N ∗m(Z,N)(O,N),m(O,N)N

ON , N ON , N ON , N

Table 7.3: Nash (deliberation) equilibria for the routing domain with asymmetric
cost functions. The reserve price is R = 5 · 107. The cost function of agent 1 is
c1 = K1

1 · t1 + 1000 · t2. he entry in the upper left hand corner cell of each subtable
specifies (K2

1 , K
1
2 ) The values for K1

1 are listed in the rows, and the values for K2
2

are listed in the columns. The subtables (1000, 5E6) and (1000, 1E7) were identical
to subtable (1000, 2.5E6).
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(2.5E6, 1000) 1000 2.5E6 5E6 1E7

2.5E6 N,ON N,ON N,ON N,ON

∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N)

ON , N ON , N ON , N

5E6 N,ON N,ON N,ON N,ON

∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N)

0N , N ON , N ON , N

1E7 N,ON N,ON N,ON N,ON

∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N)

ON , N ON , N ON , N ON , N

(2.5E6,2.5E6)

2.5E6 N,ON N,ON N,ON

m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

ON , N ON , N ON , N

5E6 N,ON N,ON N,ON

m(O,N)(O,N),m(O,N)N m(O,N)(O,N),m(O,N)N m(O,N)(O,N),m(O,N)N

ON , N ON , N ON , N

1E7 N,ON N,ON N,ON

m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

ON , N N,ON N,ON

Table 7.4: Nash (deliberation) equilibria for the routing domain with asymmetric
cost functions. The reserve price is R = 5 · 107. The cost function of agent 1 is
c1 = K1

1 · t1 + 2.5 · 106 · t2. he entry in the upper left hand corner cell of each subtable
specifies (K2

1 , K
1
2 ) The values for K1

1 are listed in the rows, and the values for K2
2 are

listed in the columns. The subtables (2.5E6, 5E6) and (2.5E6, 1E7) were identical to
subtable (2.5E6, 2.5E6).
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Strategic computation?

Auction Counterspeculation by Limited Costly

mechanism rational agents? computation computation

Single item 1st price sealed bid yes weak only weak only
Vickrey no no weak only

Ascending no no weak only

Multiple items GVA no weak only weak only

Table 7.5: Strategic deliberation does not occur in equilibrium when agents have
deterministic performance profiles. However, agents do not have dominant strategies.
Instead, when ever there is a cost associated with computing, an agents strategy will
depend on the performance profiles of the other agents (i.e. weak strategic deliberation
occurs.)

Strategic computation?

Auction Counterspeculation by Limited Costly

mechanism rational agents? computation computation

Single item 1st price sealed bid yes yes yes
Vickrey no no yes
Ascending no no yes

Multiple items GVA no yes yes

Table 7.6: If there is uncertainty in the results from computing, then strategic de-
liberation occurs in equilibrium when ever there is a cost associated with computing.
Additionally, in the 1st-price sealed-bid auction and the GVA strategic deliberation
occurs even when computing is limited by deadlines.
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Chapter 8

Mechanism Design for

Computationally Limited Agents

In this chapter we study the problem of designing mechanisms for computationally

limited agents. Instead of looking at the properties of mechanisms that were designed

for fully rational agents, we ask the question:

“Is it possible to design mechanisms that have desirable properties for com-

putationally limited agents?”

We propose a set of weak, intuitive properties that are desirable for mechanisms

designed for such agents. In particular, we propose that mechanisms should not solve

the deliberation problems for the agents, that strategic deliberation should not occur

in equilibrium, and that agents should not have incentive to provide false informa-

tion about their computing results. We show that no (interesting) direct-revelation

mechanism satisfies these properties. Moving beyond direct-revelation mechanisms,

we show that no value-based mechanism (that is, any mechanism where the agents

are only asked to report valuations - either partially or fully determined ones) satisfies

these properties.

The rest of the chapter is organized as follows. We first show that it is possible

to derive a Revelation Principle for computationally limited agents, but argue that

the direct mechanism produced in the proof has highly impractical properties. We

propose a set of mechanism properties which, we believe, are important when the

mechanism is to be used by computationally limited agents (Section 8.2). In Section
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8.3 we look at the space of interesting mechanisms, and present our impossibility

result, before concluding the chapter in Section 8.4.

8.1 A Revelation Principle

One of the fundamental tools of mechanism design is the Revelation Principle. It

states that under very weak conditions, mechanism designers need to only focus on

incentive-compatible direct mechanisms in order to determine which social choice

functions are implementable. That is, mechanism designers can restrict their attention

to mechanisms where agents reveal their type truthfully to the mechanism center. The

problem with computationally limited agents is that it is not clear what their types

are. In this section we propose one definition for an agent’s type, and show that it

is possible to derive a Revelation Principle using this definition. However, we argue,

that this approach results in impractical mechanisms, both from the perspective of

the agents and the mechanism center.

We propose defining the type of a computationally limited agent to be its entire set

of tools and information it uses to determine its preferences over different outcomes.

That is, the type of an agent i depends on its set of algorithms (Ai = {Aji}mj=1), its

set of performance profiles (PP i = {PP j
i }mj=1), its cost function (costi(·)), and the

set of problem instances it is computing on ({x1, . . . , xm} ⊆ I).1 The type of agent

i given problem instances {x1, . . . , xm} is

θi({x1, . . . , xm}) = 〈Ai,PP i, costi(·), {x1, . . . , xm}〉.

Using this definition it is straightforward to derive a Revelation Principle for

computationally limited agents.

Theorem 24. Suppose there exists a mechanism M = (S1, . . . , Sn, g()) that imple-

ments the social choice function f(·) in dominant strategies. Then f(·) is truthfully

implementable in dominant strategies.

Proof. The proof follows an argument similar to that of the original Revelation Prin-

ciple. Assume agent i has m problems it can deliberate on. Let Ai be the set

1We let m denote the number of problems that the agent can compute on. These problems may

be its own problems or the problems of other agents.
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of algorithms and all required tools for running the algorithms for agent i, PP i
be the set of performance profiles, costi(·) be the cost function of agent i, and

let {x1, . . . , xm} ⊆ I be the specific problem instances. The type of agent i is

θi({x1, . . . , xm}) = 〈{Aji}mj=1, {PP j
i }mj=1, costi(·), {x1, . . . , xm}〉.

Suppose an indirect mechanism M = (S1, . . . , SI , g(·)) implements social choice

function f(·) in dominant strategies. Then, there exists a strategy profile

s∗ = (s∗1, . . . , s
∗
n)

such that

ui(g(s∗i (θi({x1, . . . , xm})), s−i(θ−i)))− costi(s
∗
i (θi({x1, . . . , xm}))

≥

ui(g(s′i(θi({x1, . . . , xm})), s−i(θ−i)))− costi(s
′
i(θi({x1, . . . , xm})))

for all s′i and s−i.

Alter the mechanism in the following way. Introduce a mediator who announces to

each agent i: “Tell me your true type, and when you say your type is θi({x1, . . . , xm}),
the strategy s∗i (θi({x1, . . . , xm})) will be executed. This includes computing on the

problems as specified by s∗i . An amount costi(s
∗
i (θi({x1, . . . , xm})) will be charged

for executing the strategy.”

If s∗i (θi({x1, . . . , xm})) is the optimal strategy for agent i for each θi({x1, . . . , xm})
in the initial mechanism M , for any strategy chosen by the other agents, then agent i

will find telling the truth to be a dominant strategy in this new mechanism. Therefore,

there exists an incentive-compatible direct mechanism that implements social choice

function f(·).

Using an identical argument it is possible to derive a Bayes-Nash Revelation Prin-

ciple.

Theorem 25. Suppose there exists a mechanism M = (S1, . . . , Sn, g()) that imple-

ments the social choice function f(·) in Bayesian Nash equilibrium. Then f(·) is

truthfully implemented in Bayesian Nash equilibrium.
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At one level Theorems 24 and 25 imply that mechanism design for computation-

ally limited agents can be reduced to mechanism design for fully rational agents.

In theory, it is possible to simply allow the agents to reveal, in a single step, the

information needed by the mechanism to implement the appropriate social choice

function. However, the Revelation Principles derived in Theorems 24 and 25 make

unrealistic assumptions about the communication capabilities of the agents as well

the computational capabilities of the mechanism center itself. This is in addition to

the computational issues with the Revelation Principle in classical settings [27].

First, the derived Revelation Principles assume that it is possible for the agents to

reveal their types to the mechanism in a single step. This type revelation would require

an agent to report all the details of all its algorithms (as well as any additional tools

used like random number generators), submit its entire set of performance profiles,

and fully describe its cost function. It is unrealistic to assume that an agent would

be capable of fully communicating all this information in most situations.

The second concern with the Revelation Principles for computationally limited

agents is with respect to the mechanism center itself. The theorems assume that,

once given all information by the agents, the mechanism center has enough computing

resources of its own that it can find the optimal computing policies for all agents.

Additionally, the mechanism must compute the outcome of the mechanism, which can

possibly a computationally difficult problem in and of itself. Clearly, this assumption

about the mechanism center’s computing resources is impractical and unrealistic.

8.2 New Properties for Mechanisms

We believe that mechanisms for computationally limited agents should have good

computing properties in addition to good economic properties. In this section we

propose a set of properties which we argue are desirable.

Property 1 (Non-Deliberative). A mechanism should be non-deliberative. That

is, the mechanism should not compute on or solve the agents’ individual valuation

problems.

If a mechanism is non-deliberative the agents’ are responsible for solving their own

valuation problems. The mechanism’s primary concern is determining an outcome

given the agents’ strategies. We believe that in many settings it is unreasonable to
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assume that the mechanism is capable of both determining optimal deliberation poli-

cies for agents and computing the outcome given the policies. The problem with the

mechanisms presented in Theorems 24 and 25 is that they were not non-deliberative.

Property 2 (Deliberation-Proof). A mechanism should be deliberation-proof. That

is, agents should have no incentive to strategically deliberate.

Recall that strategic deliberation is defined to be the act of actively using comput-

ing resources in order to get information about the valuations of the other agents. We

believe that strategic deliberation places too high of a strategic overhead on agents.

A well designed mechanism reduces the amount of strategizing required by agents

to act optimally and a deliberation-proof mechanism eliminates the need of strategic

deliberation in order for an agent to act optimally.

Many commonly used auction mechanisms are not deliberation-proof. In Chap-

ter 7, we showed that the Vickrey, ascending, first-price sealed-bid, and generalized

Vickrey auction are not deliberation-proof.

Property 3 (Non-Deceiving). A mechanism should be non-deceiving. Assume

that vi is the true computed value of agent i. A mechanism is non-deceiving if the

agent never has incentive to send a report to the mechanism such that if any agent

had seen the report, their belief that agent i’s value is vi would be 0.

A non-deceiving mechanism does not require that an agent directly reveal its

actual computing results. It just ensures that an agent does not lead other agents

to believe that its true value is not possible. For example, assume that an agent

had secretly computed a value v. A mechanism would be deceiving if the agent had

incentive to report that its value was strictly greater than v. The mechanism would

not be deceiving if the agent had incentive to report that its value was greater than

some y, y < v.

Since we desire that mechanisms be non-deliberative, we restrict our attention to

value-based mechanisms for the rest of the chapter.

Definition 42 (Value-based Mechanism). A value-based mechanism, M = (S1,

. . . , SN , g()), is a mechanism where each agent i’s strategies are restricted so that the

only allowable messages are functions of (partially) determined valuation functions

and where g(·) is a function only of the agents declared values.
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Value-based mechanisms are non-deliberative. The mechanism is not given any

of the tools required for it to actively compute on the agents’ valuation problems.

Examples of value-based mechanisms include sealed-bid auctions where agents submit

numerical bids, and ascending and posted-price auctions where agents answer yes or

no to the query of whether they would be willing to buy an item at a specified price.

Mechanisms can be broadly classified into two groups, sensitive and non-sensitive.

Definition 43 (Sensitive). A mechanism is sensitive to agents’ strategies if for

each agent i there exist strategies s′i, s
′′
i , s

′
i 6= s′′i such that for strategy profiles

s′ = (s1, . . . , si−1, s
′
i, si+1, . . . , sn),

s′′ = (s1 . . . , si−1, s
′′
i , si+1, . . . , sI),

it is the case that

g(s′) 6= g(s′′).

Most mechanisms of interest are sensitive. For example, efficient mechanisms such

as all VCG mechanisms are sensitive since the final outcomes depends on the infor-

mation provided by the agents. Non-sensitive mechanisms are ones in which agents’

strategies do not influence the outcome. Examples of non-sensitive mechanisms are

dictatorial mechanisms which always choose the preferred outcome of a specific agent

and completely random mechanisms which choose outcomes in a completely random

fashion.

The next theorem makes the observation that if the agents’ strategies do not

influence the outcome of the mechanism, then there is no incentive for an agent to

invest computing resources into competitors’ valuation problems.

Theorem 26. Assume mechanism M = (S1, . . . , Sn, g(·)) is value-based and non-

sensitive. Then M is non-deliberative, non-deceiving and deliberation-proof.

Proof. Suppose a mechanism M = (S1, . . . , Sn, g(·)) is value-based and non-sensitive.

Clearly, the mechanism is non-deliberative. Since it is value-based, the mechanism

is not provided by the set of tools it would require to solve the agents’ deliberation

problems. Let s′i and s′′i be two strategies for agent i such that all deliberation

actions of specified by the two strategies are the same, but s′i is non-deceiving and s′′i
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is deceiving. Therefore, costi(s
′
i) = costi(s

′′
i ). Since the mechanism is non-sensitive,

g(s′i, s−i) = g(s′′i , s−i) and so

ui(g((s′i, s−i))− costi(s
′
i) = ui(g(s′′i , s−i))− costi(s

′′
i )

and so following a non-deceiving strategy is weakly dominant for agent i.

A similar argument holds when showing that the mechanism is deliberation-proof.

Let si be a strategy such that agent i deliberated only on its own problems. Further

assume that it devotes some amount ri on deliberating. Let s′i be any strategy where

agent i deliberates ri on its own problems and r−i on other agents’ problems. Since

the mechanism is not sensitive,

g(si, s−i) = g(s′i, s−i)

for all s−i. Therefore,

ui(g(si, s−i))− costi(si) ≥ ui(g(s′i, s−i))− costi(s
′
i)

since the cost function is additive and nondecreasing. This holds for any ri. Therefore,

agent i is always better off by not deliberating on other agents’ problems.

This theorem shows us that it is possible to design a mechanism with our three

desired properties. However, at the same time it is not particularly useful as the class

of mechanisms which we have shown to exhibit these properties are not useful in most

settings. In the rest of this chapter we focus solely on mechanisms which have more

practical applications, the sensitive mechanisms.

8.3 Sensitive Mechanisms

In this section we study sensitive mechanisms in order to understand whether it

is possible to design mechanisms which are non-deliberative, deliberation-proof and

non-deceiving. We start by studying the properties of direct mechanisms.

Theorem 27. There exists no value-based sensitive direct mechanism that is deliberation-

proof across all problem instances. (An instance is defined by the agents performance

profiles, cost functions, and current problem instance.)
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Proof. To prove the theorem, we need only show that there exist instances, defined by

the performance profiles, where in equilibrium agents will strategically compute. We

will restrict ourselves to mechanisms which are individually rational. If a mechanism

does not satisfy participation constraints then agents have no incentive to compute

in the first place.

Let M = (S1, . . . , Sn, g(·)) be any incentive compatible mechanism. Since our

agents have quasilinear utilities, it must be the case the g(·) = (k(·), t(·)) where k(·)
is a mapping from strategy profiles into allocations and t(·) is a mapping from strategy

profiles into transfer vectors.

Assume that there are two agents (n = 2), and assume that the agents have access

to the same algorithms. Each agent i has performance profiles PP
{i,j}
i , and a cost

function costi(·) where

cost1((t1, t2)) = ε(t1 + t2)

for some small ε > 0, and

cost2((t1, t2)) = t1 +Kt2

for some constant K > 1. The algorithms, performance profiles, and cost functions

are common knowledge.

Since we are free to choose the instance, we define the performance profiles as

follows. The performance profile for agent 1 is

PP1((t1, t2)) =





0 if
∑
ti = 0

vh1 with probability p if t1 > 0

vl1 with probability 1− p if t1 > 0

The performance profile for agent 2 is

PP2((t1, t2)) =





0 if
∑
ti = 0

vh2 with probability q if t2 > 0

vl2 with probability 1− q if t2 > 0

where vh1 , v
l
1, v

h
2 and vl2 are chosen such that the allocation function specifies k(vh1 , v

∗
2) =

1, k(v∗1, v
l
2) = 1 and k(vl1, v

h
2 ) = 2. The transfers ti(v1, v2) are determined so that the

mechanism is incentive compatible. In particular, the transfer function of agent i can

not be a function of its own declaration.
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For small ε agent 1 has a dominant strategy which is to compute for one step on

its own problem. For example if agent 2 decides not to compute then, clearly, agent

1 is best off computing on its own problem since it does not matter what value agent

2 could have obtained. If agent 2 computes on its own problem, then agent 1 is still

best off computing on its own, since

−ε+ p
[
vh1 + qti(v

h
2 ) + (1− q)t1(vl2)

]
+ (1− p)(1− q)

[
vl1 + t1(vl2)

]
≥ 0

where 0 is the utility if agent 1 does not compute and

−ε+ p
[
vh1 + qti(v

h
2 ) + (1− q)t1(vl2)

]
+ (1− p)(1− q)

[
vl1 + t1(vl2)

]
≥

−εq + (1− q)
[
−2ε+ pvh1 + (1− p)vl1 + t1(vl2)

]

where the left hand side is the utility if agent 1 deliberates on agent 2’s problem and

then deliberates on its own problem only if agent 2’s valuation is vl2. In a similar way

it is easy to show that for small ε agent 1 is best off deliberating on its own problem

when agent 2 deliberates on agent 1’s problem first.

Given that agent 1 will compute on its own problem, agent 2 must determine its

best strategy. It can determine its own true valuation for a cost of K > 1 but it can

also determine the valuation of agent 1 at a cost of 1. Agent 2 will first determine

whether agent 1 has high or low type under the following conditions;

−p+ (1− p)
[
q(vh2 + t2(vl1))− (1 +K)

]
≥ 0,

that is agent 2 is better off computing on agent 1’s problem than not computing at

all, and

−p+ (1− p)
[
q(vh2 + t2(vl1))− (1 +K)

]
≥ −K + (1− p)q

[
vh2 + t2(vl1)

]
,

that is agent 2 is better off computing on agent 1’s problem than computing on its

own problem. This means that agent 2 will strategically deliberate if K is set such

that

p+ (1− p)q
1− (1− p)q ≤ K ≤ q(vh2 + t2(vl1))− 1 + p

1− p

where we are free to choose p, q, vh2 , v
l
1.

We knew that the Vickrey auction and the generalized Vickrey auction were not

strategy-proof from the results in Chapter 7. This proof shows that the problem is not
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with the payment rules or how the allocation is decided, but instead lies with the fact

that the mechanisms are executed in a single-shot and do not provide the agents with

any opportunity to gather information about their competitors, other than through

strategic-deliberation. The proof also provides a way of finding instances for which

strategic-deliberation occurs. In particular it provides a technique for constructing

sets of performance profiles which induce strategic-deliberation.

While direct mechanisms are not deliberation-proof in general, they do allow us to

study why strategic deliberation occurs. First, by learning the valuations of others,

an agent may be able to tailor the announcements in such a way so as to increase their

chances of being included in the final allocation. However, by designing mechanisms

which are incentive-compatible this issue disappears. A more insidious problem is the

following. Agents may be asymmetric due to cost functions, algorithms or problem

instances. It may be more difficult to deliberate on some problems as opposed to

others. If an agent finds itself in a situation where it is easier to deliberate on a com-

petitor’s problem compared to its own problems, then it may strategically deliberate

in order to determine if it is worth while to actually do (or continue doing) its own

deliberation. For example, in a Vickrey auction, if agent 1 can learn for a low cost

that agent 2 has achieved a very high valuation after deliberating then it may be in

agent 1’s best interest to not waste additional deliberation resources on determining

its own problems.

To avoid strategic deliberation, the computationally limited agents must be pro-

vided with enough information by the mechanism so that they can determine whether

to devote resources to their own problems or not.

Many indirect mechanisms reveal information and this information can be used

by the agents to help determine which are the best computing and non-computing

actions to take. For example, in a single item ascending auction, as the price rises

the mechanism may reveal to all agents the number of agents remaining in the auc-

tion. The agents can use this information to deduce valuation information about the

remaining agents.

To explicitly model the information that is revealed to the agents by the mecha-

nism we introduce a feedback game. A feedback game (M,F ) is the extensive form

game induced by mechanism M (this includes the computing actions of the agents)

coupled with a feedback function. At each stage of the game, the feedback function

maps all messages that are sent to the mechanism at that stage to the information
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that would have been revealed to the agents through the mechanism. To illustrate,

we provide two examples. Let M be a direct mechanism. At each stage agents have

the choice of taking a computing action, and at some stage t′ agents submit bids to

the auction. The corresponding feedback function is

F (t, ω(t)) =

{
∅ if t 6= t′

(x, p) if t = t′

where ω(t) is the vector of agents’ messages, and (x, p) specifies the final allocation

(x) and the prices paid by the agents (p).

In an ascending auction more information is revealed by the mechanism. The

feedback function for an ascending auction is

F (t, ω(t), p) = {i| agent i is still in the auction at price p}.

Introducing an explicit feedback function does not change the original mechanism.

However, it provides a tool to the mechanism designer for reasoning about what

information is available to agents and how the agents are doing belief revision given

the information reported by the feedback function.

Lemma 5. Given any mechanism M it is possible to construct a feedback function

such that the equilibria in the feedback game, (M,F ), are the same equilibria in the

original mechanism M .

Proof. Let M = (S1, . . . , Sn, g(·)) be any mechanism and let GM be the extensive

form game that agents play when participating in mechanism M . For each stage t in

the game let ω(t) represent the messages sent to the mechanism by the agents. Let

info(ω(t)) be the information revealed at stage t in the game GM after agents send

ω(t). Define the feedback function F (·) as follows

F (t, ω(t)) = info(ω(t)).

By introducing the feedback function, nothing in the game GM has been changed.

Therefore, the feedback game (M,F ) is equivalent to the game GM .

Using the feedback function as a tool to help in the analysis, we are able to show

our final impossibility result. In general, sensitive value-based mechanisms do not

satisfy the proposed desirable properties.
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Theorem 28. There exists no sensitive value-based mechanism that is

• non-deliberative,

• deliberation-proof, and

• non-deceiving

across all problem instances. (An instance is defined by agents’ performance profiles,

cost functions).

Proof. Let mechanism M be an incentive compatible (non-deceiving) direct mecha-

nism which implements social choice function f(·). Mechanism M is not deliberation-

proof (Theorem 27). Therefore, it is possible to construct problem instances such

that in equilibrium, agents will strategically deliberate. Using the technique in the

proof for Theorem 27 construct performance profiles PP1, PP2 (such that in one

deliberation step agents learn their true valuation) and cost functions, cost1((t1, t2))

cost2((t1, t2)), for 2 agents such that in the mechanism M , one agent (agent 2) has

incentive to strategically deliberate while the other (agent 1) has a dominant strategy

to deliberate only on its own problem.

We also use the additional minor assumptions which make the proof clearer. First,

if an agent decides not to compute and thus has valuation 0, then we assume that

its strategy indicates to the mechanism that vi = 0. Second, we assume that ti(0) ≤
ti(v) ∀v 6= 0. This means that if the agent has not computed and has no value, then

its transfer can not be greater than if it had computed and declared a valuation.

These assumptions do not change the equilibrium behavior of the agents since if an

agent, for all intents and purposes, resigns from the game, declaring its valuation to

be anything else but the default valuation of 0 is weakly dominant.

Since strategic deliberating occurs in equilibrium in the direct mechanism M ,

there exists an information set H2 such that it is agent 2’s turn to move and

E[u2|H2, µ, ((a1, H2)s2, s1] ≥ E[u2|H2, µ, (a2, H2)s2, s1]

or

E[u2|H,µ, ((a1, H2)s2, s1] ≥ E[u2|H2, µ, (∅, H2)s2, s1]
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where (a,H)s denotes the strategy which specifies taking computing action a at in-

formation set H. In particular in the direct mechanism this information set occurs

at the start of computing for agent 2.

Let M ′ = (S1, . . . , Sn, k(·), t1(·), . . . , tn(·)) be an indirect mechanism which also

implements the social choice function f(·). Let s∗ be the equilibrium strategy profile

for mechanism M ′. Since the mechanism implements the same social function as

M the outcomes of the two mechanisms must be the same. Create an appropriate

feedback function F (·) to produce feedback game (M ′, F (·)) (Lemma 5).

Let vi represent agent i’s actual valuation that it could achieve if it computed

on its own problem (Recall that in this example instance, agents need only compute

for one step on a problem to determine the valuation. With no computation their

valuation is 0). At each stage t of the game induced by the mechanism M ′ define Vi(t)

to be a partition that agent i makes of agent j’s possible computable valuations. In

particular, Vi(t) = {V, V ′} where if vi ∈ V then agent i has incentive to compute on

its own problem and if vi ∈ V ′ then agent i is best off stopping all computing. Given

the construction of the problem instance, there exists stages such that V ′ 6= ∅.
The feedback function F can exhibit different properties at each stage t of the

game. In particular, the feedback function can be either pooling or separating.

Definition 44 (Separating). Let Vi(t) = {V, V ′} be a partition for agent i at stage

t. A feedback function F is separating at stage t if for any messages m(vj), m(v′j)

sent by agent j 6= i such that vj ∈ V and v′j ∈ V ′,

F (t, (m(vi),m(vj))) 6= F (t, (m(vi),m(v′j))).

Definition 45 (Pooling). A feedback function F (·) is pooling at stage t if it is not

separating at stage t.

Since agent 1 has a dominant strategy we assume that it determines its own

valuation and then sends signals to the mechanism. Assume that at stage t − 1

agent 2 has partition V i(t − 1) = {V, V ′} where V ′ 6= ∅. Upon observing in stage t

F (t, s1(v1)) agent 2 updates its beliefs about what set the actual valuation of agent

1 is in.

Assume the feedback function F is pooling at stage t. Let m(v∗) be the message

that agent 1 sends to the mechanism in equilibrium and let a∗(F (t,m(v∗)) be the

deliberation action that agent 2 takes upon observing F (t, (v∗)). Since F is pooling
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at stage t, agent 2 must base its beliefs on whether v1 ∈ V or v1 ∈ V ′ solely on the

probability given by the performance profiles. However, this is the same beliefs that

agent 2 would have in a situation where there was a direct mechanism. Therefore,

agent 2 is best off strategically deliberating (since the performance profiles were chosen

so as to have strategic deliberation in the direct mechanism) or doing nothing (not

even sending a message) and waiting for the next stage of the game.2

Assume that at stage t the feedback function is separating. Again, let m(v∗1)

be the signal that agent 1 sends to the feedback mechanism in equilibrium and

let a∗(F (t,m(v∗1))) be the action that agent 2 takes in equilibrium upon observing

F (t,m(v∗1)). In perfect Bayesian equilibrium, the beliefs on the equilibrium path

must be correctly derived from the equilibrium strategies using Bayes Rule. This

implies that upon seeing F (t,m(vh1 )) agent 2 must assign probability one to agent 1

having high type. Similarly it assigns probability one to agent 1 having low type if it

observes F (t,m(vl1)). Upon observing F (t,m(vh1 )) agent 2 believes that agent 1 has

high type, it also believes that the mechanism will choose an outcome preferable to

agent 1 (since the mechanism is implementing social choice function f() which would

select an outcome favorable to agent 1 when it has high type). Therefore, agent 2 is

best off not computing at all since otherwise it would just incur a cost without being

able to recoup the cost from getting a preferred outcome. Therefore, a∗(F (t,m(vh1 ))

is to do nothing, agent 1 gets its preferred outcome and pays t1(0). That is, the utility

of agent 1 is

vh1 + t1(s2(0))− ε = vh1 + t1(0)− ε

If agent 2 witnessed F (t,m(vl1)) then it believes that agent 1 is low type and it has

incentive to deliberate. The expected utility for agent 1 in this situation is

(1− q)(vl1 + t1(s2(vl2)))− ε

However, if agent 1 has a low type but sends a message to the mechanism m(vh1 )

then agent 2 would not deliberate and the utility of agent 1 would be

vl1 + t1(s2(0))− ε ≥ (1− q)(vl1 + t1(s(vl2)))− ε

Therefore, if the feedback function is separating, agent 1 has incentive to misreport its

deliberated value to the feedback mechanism. Therefore, the mechanism is deceiving.

2To avoid situations where agents wait forever, one can introduce a liveness condition which will

force an agent to eventually take some action.
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8.4 Summary

In this chapter we laid out mechanism design principles for computationally limited

agents. We first showed that the revelation principle applies to such settings in a triv-

ial sense by having the mechanism carry out all the computing for the agents. This is

impractical, and we proposed that mechanisms should be non-deliberative: the mech-

anism should not be solving the deliberation problems for the agents. Second, mecha-

nisms should be deliberation-proof : agents should not deliberate on others’ valuations

in equilibrium. Third, the mechanism should be non-deceiving : agents do not strate-

gically misrepresent. Finally, the mechanism should be sensitive: the agents’ actions

should affect the outcome. We showed that no direct-revelation mechanism satis-

fies these four intuitively desirable weak properties. Moving beyond direct-revelation

mechanisms, we showed that no value-based mechanism (that is, mechanism where

the agents are only asked to report valuations - either partially or fully determined

ones) satisfies these four properties.

This result is negative. It states that either we must have mechanisms which do

the computing for the agents, or complex strategic (and costly) counterspeculation

can occur in equilibrium. However, there is some hope. It may be possible to weaken

one of the properties slightly, while still achieving the others. For example, it may be

possible to design multi-stage mechanisms that are not value based; the mechanism

could help each agent decide when to hold off on computing during the mechanism

(and when to compute on one’s own valuation for different bundles of items in a

combinatorial auction). In another direction, by relaxing strategic deliberation and

compensating agents appropriately, it may be possible to design mechanisms where

agents who can solve problems cheaply and efficiently do so for all agents.
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Chapter 9

The Social Cost of Selfish

Computing

In this chapter we study the system-wide impact of computationally limited agents.

We introduce a way of measuring the negative impact on the system as a whole when

agents are free to choose deliberation strategies according to their own self-interest

(i.e. selfishly). Our miscomputing ratio isolates the effect of computing from the

other strategic actions that the agents might take. It compares the social welfare in

the situation where all agents are allowed to freely choose their own strategies against

the optimistic measure of social welfare where a global deliberation controller dictates

the deliberation policies of agents so as to maximize social welfare, while leaving the

agents free in their choice of which other actions to take. Our miscomputing ratio,

like the price of anarchy [55, 99], provides a measure of how bad things can get if

agents are free to act in their own self-interest.

We apply the miscomputing ratio to a Vickrey auction. We chose the Vickrey

auction as our example application for two reasons:

• We have shown that if agents are allowed to compute freely then strategic

deliberation can occur in equilibrium.

• The bidding rules allow for a clear distinction between deliberation actions and

bidding actions.

We show that even in very simple settings, the equilibrium outcome can be far worse

than in the case where a global controller specifies deliberation policies, but that
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by the careful use of small cost functions, it is possible to provide the appropriate

incentives so that the right agents compute on the right problems.

The rest of the chapter is organized as follows. In the next section we introduce

and define the miscomputing ratio. We then apply the miscomputing ratio to a

scenario where computationally limited agents are participating in a Vickrey auction.

We provide an equilibrium analysis, and a discussion of the role of cost functions

and how they should be used. We then conclude with a summary of the chapter

along with a discussion of different settings where the results of this chapter could be

applied.

9.1 The Social Cost of Selfish Computing

A natural question to ask is whether the restrictions on computing resources results

in a loss of efficiency. However, efficiency is difficult to compare in such settings.

For example, the Vickrey auction is efficient in the sense that it always allocates

the item to the bidder with the highest valuation. However, an agent who might

have been able to obtain the highest valuation via computing may have used its

computing resources on a different problem, thus causing a different agent to have

the highest valuation and win the auction. This outcome is still efficient given how

agents computed, but it overlooks the computational issues in an unsatisfying way.

This suggests that Pareto efficiency may not always be the right measure to use in

the context of computationally limited agents. Is there an alternative measure?

Instead of looking at efficiency, we propose to use social welfare as the measure.

We want to know how letting agents freely choose their own computing strategies

impacts the social welfare of the set of all bidders. In particular, we compare the

highest achievable social welfare to the lowest social welfare achievable in any Nash

equilibrium.

When we determine the highest achievable social welfare we optimistically assume

that there is a global controller who imposes each agent’s computing strategy (so as

to maximize social welfare). The controller has full information about all perfor-

mance profiles, deadlines, cost functions, and intermediate results of computing, and

given this information, specifies exactly how each agent must use its computational

resources. In the bidding stage agents are free to bid as they wish, but their goal is

still to maximize their own utility.
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Definition 46. Let o∗ be the outcome that is reached if the global controller dictates

computing policies to all agents, and agents are free to bid as they wish.

On the other extreme, we are interested in what happens when agents are free

to choose to follow any computing and bidding strategy. Let NashEq be the set of

Nash equilibria in that game. We now define what is meant by the worst-case Nash

equilibrium.

Definition 47 (Worst Case Nash). The worst case Nash equilibrium is

NE = arg min
s∈NashEq

SW (o(s)).

We use the following ratio to see how much letting agents choose their own com-

puting strategies reduces the social welfare.

Definition 48 (Miscomputing Ratio). The miscomputing ratio is

R =
SW (o∗)

SW (o(NE))
.

This ratio isolates the impact of selfish computing from the traditional strategic

bidding behavior in auctions. This is because in both the coordinated and uncoordi-

nated scenario, the agents bid based on self-interest.

We actually study the impact of selfish computing in two slightly different settings.

In the first setting we are only interested in the impact on the strategic agents (i.e.

the bidding agents). In this case, if N is the set of bidding agents then

SW (o) =
∑

i∈N
ui(o).

We denote the miscomputing ratio in this setting as RN . In the second setting we

study the impact of computation on all agents in the game, including the auctioneer.

The social welfare of an outcome is computed as

SW (o) =
∑

i∈N
ui(o) + uauc(o)

where uauc(o) is either the amount that was paid to the auctioneer by the winning

bidder, or else the value the auctioneer has for the item up for auction in the case

where no one wins (and so the auctioneer keeps the item). Under this social welfare

measure, the miscomputing ratio is denoted by RN∪{auc}.
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9.2 The Vickrey Auction and the Miscomputing

Ratio

In this section we present the results. In particular, we use the single item Vickrey

auction as an illustrative example of the miscomputing ratio. We chose the Vickrey

auction as our application since it has a straightforward bidding strategy (agents

have incentive to bid truthfully, given their computed valuations), and because it is

representative of all auction mechanisms in that the mechanism provides incentives

for agents to strategically deliberate.

The rest of this section is organized as follows. We first outline the assumptions

made, and prove a result concerning agents’ strategies that is used throughout. We

then do a Bayes-Nash equilibrium analysis of the Vickrey auction with computation-

ally limited agents. Using this equilibrium analysis, it is possible to determine the

miscomputing ratio under different conditions. We show that sometimes it is best

to just allow all agents to compute freely, while at other times cost functions can be

used to motivate all agents to compute “correctly”.

9.2.1 Agents’ Nondominated Strategies

Assume there is a set of bidding agents, N , who are competing in a Vickrey auction

being run by auctioneer agent, auc. Before a bidding agent can submit a bid, it must

first use some of its resources to determine its valuation. For ease of exposition, we

assume that each agent i has a deterministic algorithm, vi, and performance profiles

and that these are common knowledge.1 While this assumption does make the analysis

simpler in that there is less uncertainty in what possible values have been computed,

agents with deterministic performance profiles can still suffer from miscomputing.

Each agent has to use some of its resources (time) while computing. We model this

expenditure by assuming that each agent, i, has a cost function. The cost function

of agent i, costi, is private. However, the cost function is drawn from some set Ci by

distribution fi : Ci 7→ [0, 1] where fi is common knowledge.

An agent’s utility depends on whether it has computed, what value it has obtained

by computing, and whether it has won the auction. If an agent does not compute

1This assumption is not necessary. We can also assume the more general situation where vi is

drawn with distribution gi() from the set of algorithms Vi, where gi() is common knowledge.
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then it does not have a valuation for the item, and so we state that its utility is 0.

Assume an agent computes for town on its own problem and ttotal on all problems. If

it does not win the auction, then its utility is ui = −cost(ttotal). If it does win the

auction, and the second highest bid is b, then its utility is ui = v(town)−cost(ttotal)−b.
Given these assumptions, we can now determine agents nondominated strategies.

Theorem 29. Assume that agent i ∈ N has a deterministic algorithm vi and some

cost function costi(·). Then, agent i has only two possible nondominated strategies.

It will either not compute at all, or it will compute for t∗i steps on its own problem

where

t∗i = arg max
t
{vi(t)− costi(t)}.

If agent i does compute, then it submits a bid equal to vi(t
∗
i ).

Proof. First, the argument that an agent is best off submitting a bid equal to the value

that it has computed is identical to the proof that bidding truthfully is optimal for

rational agents. Thus, we omit this part of the proof. If an agent does not compute

at all, then it cannot submit a bid and be allocated the item. We use this as the

default situation, and assume that an agent i will have utility ui = 0.

Second, agent i is best off never computing on another agent’s valuation problem.

Since the algorithms are deterministic and common knowledge, agent i already knows

what vj(t) is for any agent j and any time t. Therefore, by computing on agent j’s

problem it gains no new knowledge, yet incurs a cost.

Finally, if the agent does compute for t time steps then its utility is

ui =

{
vi(t)− costi(t)− b if vi(t) > b = maxj 6=i{bj}
−costi(t) otherwise

If agent i won the auction, then it is best off computing so as to maximize its utility,

that is computing for t∗i steps on its problem. If agent i did not win, then it is best

off not having computed at all (ui = 0).

9.2.2 When Should an Agent Compute?

From Theorem 29 we know that agent i should either compute so as to maximize

vi(t) − costi(t) or not compute at all. Which strategy it should follow depends on
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Figure 9.1: Assuming that both agent i and agent j have computed, the utility of

agent i is a decreasing function of the computed valuation of agent j. As agent j’s

computed valuation increases, agent i’s utility decreases. Agent i’s utility is 0 when

vj(t
∗
j) = vi(t

∗
i ) − costi(t

∗
i ). When vj(t

∗
j) ≥ vi(t

∗
i ), the utility of agent i is equal to

−costi(t
∗
i ).

what other bidding agents are doing. Figure 9.1 illustrates how an agent’s utility

depends on both its computational actions and the bids of other agents.

So far we have determined how much an agent should compute, if it decides to,

but we still do not know under what conditions an agent should decide to compute. If

agent i knew every other agents’ computed valuations and thus what they would bid,

it would be able to optimally decide whether to compute or not. While an agent does

not have this information available to it, it does have probabilistic information about

the other agents’ cost functions. It can use this information to derive a distribution

over every other agents’ possible computed valuations. Recall that Cj is the set of

possible cost functions for agent j and fj(costj(·)) is the probability that agent j has

cost function costj(·). The distribution, f j, over the valuations that agent j may have

computed is
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f j(x) =

∫

Cj
fj(costj)χcostj(x)dcj

where

χcostj(x) =

{
1 if x = maxt [vj(t)− costj(t)]

0 otherwise.

For ease of presentation we assume that there are just two bidding agents, i and

j.2 Let sj(x) represent the strategy of agent j if vj(t
∗
j) = x. That is

sj(x) =

{
1 if j computes when x = vj(t

∗
j)

0 if j does not compute when x = vj(t
∗
j)

Let Pj(x) be the probability that sj(x) = 0.

The expected utility from computing for agent i depends on what agent j decides

to do. If agent j does not compute, then, by the rules of the Vickrey auction, agent

i will win the auction, and will pay nothing for the item. Its utility will be ui =

vi(t
∗
i ) − costi(t

∗
i ). If agent j does compute, then the utility of agent i depends on

whether the computed valuation of agent j is greater than its own. If vj(t
∗
j) < vi(t

∗
i ),

then the utility of agent i is ui = vi(t
∗
i )− costi(t

∗
i )− vj(t∗j). However, if vj(t

∗
j) > vi(t

∗
i )

then ui = −ci(t∗i ). This is captured in the following equation:

ui =

∫ ∞

0

Pj(x)f j(x)(vi(t
∗
i )− costi(t

∗
i ))dx

︸ ︷︷ ︸
j does not compute

+

∫ vi(t
∗)

0

(1− Pj(x))f j(x)(−costi(t
∗
i ))dx

︸ ︷︷ ︸
j computes and vj(t

∗
j) ≥ vi(t

∗
i )

+

∫ ∞

vi(t∗i )

(1− Pj(x))f j(x)(vi(t
∗
i )− costi(t

∗
i )− x)dx

︸ ︷︷ ︸
j computes and vj(t

∗
j) < vi(t

∗
i )

2The multiple agent setting is not conceptually more difficult. The techniques and logic used to

find the equilibrium is the same as the two agent setting. However, one must keep track of multiple

probability distributions which makes the notation cumbersome. For this reason, we present the two

agent case.
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Agent i will only compute if the above equation is greater than its utility from not

computing (ui = 0). Therefore, agent i will only compute under the condition

costi(t
∗
i ) ≤ vi(t

∗
i )

[
1 +

∫ ∞

vi(t∗i )

Pj(x)f j(x)dx

]

−
∫ vi(t

∗
i )

0

(1− Pj(x))f j(x)xdx

This is a cutoff equilibrium. Agent i will compute only when its cost for computing

is below a certain threshold.

9.2.3 Examples

With the analysis in the previous section, we are able to determine when an agent

should compute and when it should not.

Free Computation with Deadlines

Assume that all agents have cost functions of the following form

costi(t) =

{
0 for t ≤ Di

∞ t > Di.

This corresponds to the situation where agents have free computation but must stop

computing by some deadline. We will assume that the uncertainty between the agents

about the cost functions is caused by having the deadlines be private information.

For each agent i, t∗i = Di since Di = arg maxt{vi(t)− costi(t)}. Clearly

vi(Di)

[
1 +

∫ ∞

vi(Di)

Pj(x)f j(x)dx

]
≥ vi(Di).

Since

∫ vi(Di)

0

(1− Pj(x))xf j(x)dx ≤ vi(Di)

it is always the case that for t∗i = Di
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0 = costi(t
∗
i ) ≤ vi(t

∗
i )

[
1 +

∫ ∞

vi(t∗i )

Pj(x)f j(x)dx

]

−
∫ vi(t

∗
i )

0

(1− Pj(x))f j(x)xdx.

That is, agent i will compute on its own problem until its deadline Di.

Constant Cost Function

Assume that agents i and j share an algorithm, v, such that for all t, v(t) = V .

Assume that the agents have constant cost functions, costi(t), costj(t) such that for

all t, costi(t) = Ki and costj(t) = Kj, where Ki, Kj are drawn uniformly from the

interval [0, K] for some constant K. Each agent knows its own cost function, but only

knows that its competitor’s cost function is drawn uniformly from [0, K].

If agent i decides to compute on its problem, its utility depends on whether or not

agent j also decided to compute on its problem. Assuming that agent i computed,

its utility is

ui =

{
V −Ki if agent j did not compute

−Ki if agent j did compute

since, if both agents computed then the item could be allocated to either of them

but they would have to pay V . In equilibrium, agent i will only compute when its

expected utility from computing is greater than not computing. That is

0 ≤
∫ K

0

Pj(x)(V −Ki)dx+

∫ K

0

(1− Pj(x))(−Ki)dx

As before, this is a cutoff equilibrium. Let K̂i and K̂j be the costs at which each agent

switches from a strategy involving computing to one where it does not compute. Then,

in equilibrium,

K̂i =

∫ K

0

K̂j

K
(V − K̂i)dK̂j +

∫ K

0

(1− K̂j

K
)(−K̂i)dK̂j.

This reduces to

K̂i =
V K

2(K + 1)
,
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Figure 9.2: The cutoff values for agent i as a function of K. For each value of K, if

agent i’s cost of computation falls below the line then it will compute. Otherwise, it

does not. In this example, V = 5.

that is, agent i will compute whenever its cost of computing of less than V K/2(K+1).

The same cutoff equilibrium holds for agent j also. Figure 9.2 displays how the cutoff

changes as K approaches V .

9.2.4 Applying the Miscomputing Ratio

Given the derived tool set, it is possible to estimate what the miscomputing ratio

is for any Vickrey auction. By using the Bayes-Nash equilibrium we can figure out,

in expectation, what the miscomputing ratio will be given information about agents

cost functions.

First, we have learned that if agents have free but limited computation, they will

compute on their own problems only. What is the miscomputing ratio is this setting?

Theorem 30. Let N be the set of bidding agents in a Vickrey auction. Assume that

|N | ≥ 2, and that each agent, i, has free computation and deadline Di. Then, if

the auctioneer is included in the social welfare measure, the miscomputing ratio is
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RN∪{auc} = 1.

Proof. To maximize social welfare, the global controller would select agent i such

that vi(Di) = maxj∈I vj(Dj), and only allow this agent to compute for Di time steps.

All other agents would be forbidden to compute. Agent i would submit a bid equal

to vi(Di) and all other agents would submit a bid equal to 0. The social welfare of

this outcome, o∗, is SW (o∗) = vi(Di). In equilibrium, as we have seen in Chapter

7, every agent would compute on its own problem until it reached its own deadline.

Each agent would then submit a bid of an amount equal to its computed valuation.

Agent i where vi(Di) = maxj∈N vj(Dj) would be allocated the item. However, the

price agent i would have to pay is equal to

vk(Dk) = max
j∈N\{i}

vj(Dj).

The auctioneer’s utility from this outcome is uauc = vk(Dk). The social welfare is

SW (NE(o)) = (vi(Di)− vk(Dk)) + vk(Dk) + 0.

Therefore, the miscomputing ratio is

RN∪{auc} =
vi(Di)

(vi(Di)− vk(Dk)) + vk(Dk)
= 1.

What happens if we do not include the auctioneer in the computation of the ratio?

It turns out that with limited computing, the miscomputing ratio can be arbitrarily

bad.

Theorem 31. Let N be the set of bidders in a Vickrey auction (|N | ≥ 2). Assume

that each bidder i has free but limited computing with deadline Di. Then, the mis-

computing ratio RN can be infinity.

Proof. Each agent has a dominant strategy which is to deliberate only on its own

valuation problem until its deadline and to submit a bid equal to the valuation that

it has obtained. That is, agent i submits a bid of vi(Di). Without loss of generality,

assume that v1(D1) ≥ v2(D2) ≥ vj(Dj) for all j 6= 1, 2. In equilibrium, agent 1

will win the auction and pay an amount of v2(T ). Therefore, agent 1’s utility is

u1 = v1(D1)− v2(D2). Set u1 = ε. The utility for all other agents is ui = 0 for i 6= 1.

Therefore,
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SW (o(NE)) =
∑

j∈N
uj = ε.

In order to maximize social welfare, the global controller would prohibit all agents

expect for agent 1 from deliberating. Agent 1 would compute on its valuation problem

until time D1 and submit a bid of v1(D1) while all other agents would submit a bid

of 0. Agent 1 would win the item and pay an amount of 0. The utility for agent 1 is

u1 = v1(D1)− 0 = v1(D1), while ui = 0 for all i 6= 1. Therefore

SW (o∗) =
∑

j∈N
uj = v1.

The miscomputing ratio, RN , is

RN =
SW (o∗)

SW (o(NE))
=
v1(D1)

ε
.

As ε→ 0 (that is, as the difference between the highest and second highest valuations

decreases), R→∞.

This is a negative result. Allowing agents to choose their computing strategies

leads to an outcome that can be arbitrarily far from optimal.

In Chapter 7 we showed that in a Vickrey auction, if agents can compute for

free but have deadlines then they have no incentive to strategically deliberate, while

agents who incur a cost with deliberation can have incentive to deliberate on each

others’ valuation problems. This suggests that if there is a system designer who can

control how the agents’ computational capabilities are restricted, the designer should

rather impose limits than costs. However, it turns out that computing costs can be

adjusted so that the optimal miscomputing ratio (R = 1) is reached. This would

mean that charging for computing is at least as desirable as imposing limits.

Theorem 32. Computing cost functions can be used to motivate bidders to choose

strategies that maximize social welfare.

Proof. Consider the following example. Let there be 2 agents, agent 1 and agent 2,

each with a deterministic performance profile. Assume that each agent has free but

limited computing resources, and that the deadlines are D1 and D2. Each agent has
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compute no

compute v1(D1)− v2(D2)− k, −k v1(D1)− k, 0

no 0, v2(D2)− k 0,0

Table 9.1: Normal form game representation of the Vickrey auction where agent i has

cost k for computing until Di, and infinite cost if it computes for more than Di. Agent

1 is the row player and agent 2 is the column player. Each agent would submit a bid

that is equal to its computed valuation minus the cost spent to obtain the valuation.

a dominant strategy, which is to deliberate on their own problem and submit a bid

of vi(Di). Assume that v1(D1) > v2(D2). The equilibrium outcome is to award the

item to agent 1 and have agent 1 pay an amount v2(D2). Agent 1’s utility is then

u1 = v1(D1)−v2(D2) while agent 2’s utility is u2 = 0. To maximize social welfare the

global controller would forbid agent 2 to deliberate, and thus agent 1 could get the

item and need not pay anything. The maximum social welfare would be u1 = v1(D1).

Therefore

R =
v1(D1)

v1(D1)− v2(D2)

Next, consider the case where a simple cost function is introduced. Define

costi(t) =

{
k if t ≤ Di;

∞ if t > Di;

for some constant k, 0 < k ≤ v2(D2) ≤ v1(D1). Any strategy that involves deliber-

ating on the other agent’s valuation problem is dominated as the computing action

incurs a cost without improving the agent’s overall utility. Thus, the remaining strate-

gies are for the agents to compute only on their own valuation problems until the cost

becomes too high, or not to compute at all. The game is represented in normal form

in Table 9.1.

The sole Nash equilibrium is for agent 1 to compute and submit a bid of v1(D1)

and for agent 2 to not compute. The global controller trying to maximize the social

welfare would force each agent to also follow those strategies. Therefore
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RN =
v1(D1)− k
v1(D1)− k = 1.

In the proof the constant k can be made arbitrarily close to zero. Therefore, the

maximum social welfare generated by the global controller in the costly computing

setting can be made arbitrarily close to the maximum social welfare obtainable if

computing resources are free.

9.3 Summary

In this chapter we proposed a way of measuring the impact on the social welfare that

allowing agents to freely choose their own deliberation strategies has. We compared

the social welfare obtained if agents were allowed to choose their own deliberation

strategies freely, to the social welfare obtained if there was some global controller

which dictated deliberation policies onto the agents so that the social welfare was

maximized. Even in the global controller scenario we allowed agents to choose their

own non-deliberation actions. This allowed us to isolate the actual impact that de-

liberation had on the social welfare. We called this ratio the miscomputing ratio.

We presented a Bayes-Nash equilibrium analysis of a Vickrey auction where the

bidders’ strategies include deliberation actions. The equilibrium showed how each

agent’s cost of computing determines the agent’s strategy. The model allowed us to

predict the overhead caused by miscomputing. It also allowed for the design of cost

functions for computing. When including the auctioneer in the welfare measure, free

computing with a deadline is an optimal way to control the cost of computing. If the

auctioneer is not included in the ratio then the outcome can be arbitrarily far worse

than in the case where computations are coordinated. However, by the careful design

of cost functions, it is possible to provide appropriate incentives for bidders to choose

deliberation policies that result in the optimal social welfare. This suggest that if

a system designer can choose how to restrict the agents’ computing, imposing costs

instead of deadlines may be the right approach.
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Chapter 10

Related Research

In this chapter we provide an overview of some of the research which is related to the

work presented in this thesis. In Chapter 2 we discussed the related work on bounded

rationality, and we do not cover it again in this chapter.

10.1 Information Acquisition and Mechanism

Design

In the economics and game theory literature there has been some recent work on

information acquisition and revelation and mechanism design (see, for example, [3, 7,

50, 70]). This work has mainly focused on studying the incentives to acquire infor-

mation in different auction mechanisms. Most work assumes that an agent can only

gather information about its own valuation. Perisco compares first-price and second-

price auctions and shows that if agents have affiliated valuations then agents choose

to acquire more information about their own valuation in a first price auction [92].

Compte and Jehiel compare the ascending price auction with the second price auction

and show that there exist situations where an agent will pay to acquire information in

an ascending auction but not in the second price auction [21, 22]. Rezende also studies

an ascending price auction where agents are allowed to pay to acquire information

about their own valuation [95]. He shows that in such a setting, in equilibrium, a

bidder’s best response function has a simple characterization which is independent

of other agents’ strategies. Bergemann and Välimäki study general mechanisms [8].

They are interested in mechanisms where agents acquire the efficient amount of infor-

201



mation. They show that in the private value model the VCG mechanism is efficient

in the sense that agents have incentive to acquire enough information so as to max-

imize the social welfare. However, in a purely common value setting agents either

over-acquire or under-acquire information.

Rasmusen’s work is the most similar to ours [94]. It assumes that agents do not

know their valuations but must invest to learn them and are also able to invest in

competitors value problems. Like us, he shows that in a second price auction, an

agent may base its decision on whether to learn its true valuation on another agent’s

valuation, but his focus is on understanding behavior such as sniping that is commonly

seen in different online auctions like eBay.

It should also be noted that the computer scientists have noticed that information

gathering might have some form of strategic implication. Sandholm noted that even

with a simple agent model the Vickrey auction may no longer have the dominant-

strategy property [107]. However, this model was different from ours, since like most

of the work in economics, it assumed that an agent was faced with a single decision

as to whether to learn its own value at a cost or not.

Researchers have also investigated the effects of information gathering in mecha-

nisms other than auctions. In particular, there is a body of work which studies the

role of information gathering in contracts [28–30]. The model studied consists of a

principal who can offer a contract and an agent who must decide whether to accept or

not. The agent being offered a contract has uncertainty about its cost of production

and has the possibility of investing some fixed cost in order to learn this information.

The authors that the cost of gathering the information and the timing of when the

information is gathered influence the equilibria. While this work studies a two agent

negotiation problem, it is substantially different from our bargaining setting as it only

allows the agent being made the offer to gather information on its own problem, as

well as it is in a contract setting as opposed to a pure negotiation setting.

10.2 Computational Issues in Mechanism Design

There is a tension between classic game-theoretic solutions and tractable computa-

tional solutions, which is particularly highlighted by combinatorial allocation prob-

lems such as the combinatorial auction. Understanding the tension and the repercus-

sions of limited computation at the mechanism center has been the focus of an area of
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work which falls in the category of computational mechanism design. In this section

we describe some of this literature. It differs from the contributions in this thesis in

that the literature mainly ignores computational issues of the agents, instead focusing

on problems arising in the mechanism itself.

10.2.1 VCG Mechanisms and Computational Issues

The Vickrey-Clarke-Groves (VCG) family of mechanisms are the only social-welfare

maximizing mechanisms which are incentive-compatible when agents have quasi-linear

utilities. However, it has been noted by several researchers that there is a problem with

the VCG mechanism when it is applied to complex combinatorial settings [69, 82, 83].

In combinatorial settings, like in the combinatorial auction, the optimization prob-

lems that the VCG mechanism must solve in order to determine the allocation and

transfers are NP-complete. Using approximation algorithms or heuristics in place

of the exact algorithm can lead to the loss of some of the desirable properties of the

mechanism, in particular incentive-compatibility. Rational agents may have incen-

tive to manipulate their announcements in order to try and “fix” the approximation

in their favor. The observation that approximation algorithms and heuristics can

interfere with the game-theoretic properties of VCG mechanisms has led to the char-

acterization of necessary properties for approximation algorithms for the mechanism

center which retain strategy-proofness of the mechanism [52, 76].

In a different direction, people have proposed studying restrictions on the pref-

erences of the agents in order to avoid situations where the allocation computa-

tion is computationally hard. Lehmann et al showed that if the preferences of the

agents satisfy a single-mindedness condition (each agent is only interested in a sin-

gle set of items) then a simple greedy allocation algorithm will guarantee incentive-

compatibility [69]. Lavi et al showed that in general combinatorial auction settings,

the only truthful auctions have to “almost” affine maximizers [67]. This is a rather

negative result as these “almost” affine maximizers are computationally hard as exact

optimization.

10.2.2 Winner Determination and Combinatorial Auctions

In spite of the computational complexity issues associated with the combinatorial

auction, the practical importance of the problem has driven researchers to develop
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specialized algorithms for solving the winner determination problem [35, 108], or have

proposed formulating the winner determination problem in such a way as so to take

advantage of well developed optimization techniques [31, 51].

Researchers have looked for tractable special-cases for the winner determination

problem. One approach, as mentioned in the previous subsection, is to restrict the

preferences of the agents and then develop special purpose algorithms [69]. Another

direction has been to look for special structure in the bids which lead to tractable

instances [98].

10.2.3 Indirect Mechanisms

Indirect mechanisms have recently gotten a lot of attention from the research com-

munity [4, 90, 91]. Since indirect mechanisms run through multiple stages, they allow

agents to provide incremental information about their preferences. Additionally, they

can solve problems without requiring an agent to reveal all of its information to

the mechanism. While indirect mechanisms have been promoted as a way of solv-

ing mechanism design problems for high-dimensional problems such as combinatorial

auctions, they can also have desirable properties for settings where agents have valu-

ation complexity [89]. In particular, indirect auctions for combinatorial settings have

been presented as a way to simplify the meta-deliberation problems for the agents’,

with the goal of providing incentives for the “right” agents to compute for the “right”

amount of time on the “right” problems, in the hopes of improving efficiency. While

this approach appears to be promising, as the mechanism can help focus agents’ at-

tention on to relevant problems, to date the analysis has not considered scenarios

where agents may strategically-deliberate.

10.3 Preference Elicitation and Communication

Complexity

Preference elicitation is the process of asking queries to determine an agent’s pref-

erences. This is a well established field in artificial intelligence (see, for exam-

ple, [13, 17, 120]), and has recently emerged as an important research topic in the

multiagent system/ecommerce community [24, 26]. One strand of this work has fo-

cused on the problem of finding the minimal number of queries necessary in order to
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come up with the optimal allocation.

Preference elicitation – the process of making queries to determine an agent’s pref-

erences – is another active research area (see for example, [10, 14, 25, 93, 125]). Much

of this work has focused on the combinatorial auction problem. In a combinatorial

auction agents have 2n bundles of items that they can express preferences over (n

is the number of items being auctioned). By cleverly eliciting information from the

agents, it may be possible to avoid having the agents specify a preference for every

bundle [23, 25]. This form of preference elicitation is indirectly related and comple-

ments the problem of having agents invest computing resources in order to figure out

their preferences. By carefully structuring the (order of the) queries, the mechanism

might be able to guide agents in their search for optimal deliberation policies.

A very similar area of research has been directed toward understanding the com-

munication complexity of different mechanisms. Nisan and Segal [84] showed that

for combinatorial auctions every preference elicitation protocol which guarantees that

the optimal allocation will be found must use an exponential number of queries in the

worst case. Blumrosen and Nisan [11] study auctions where the bidders are restricted

in the amount of information they can transmit. This research complements our work

as it studies other restrictions on agents’ resources.

Not all the preference elicitation literature research has focused on combinatorial

auctions. Voting is a way to aggregate multiple agents’ preferences into a single

outcome. Several researchers have studied the computational complexity of eliciting

information from voters [5, 26], and have shown that knowing when a preference

elicitation process should terminate is NP -complete for many voting protocols. This

is an additional issue on top of the problem of agents having to determine their

preferences beforehand.

10.4 Bidding Agents and Proxy Agents

Numerous researchers have studied the problem of designing bidding agents to rep-

resent users in different market settings. The simplest form of agent is the proxy

agent [4, 91]. Proxy agents have traditionally been proposed for use in iterative mech-

anisms and work in the following way. The bidder tells the agent its preferences (not

necessarily truthfully) for the items in the auction. The proxy agent then represents

the bidder in the auction, and follows a prescribed strategy, based on the preferences
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reported to it. The use of proxy agents simplifies the strategic problem of the bidder,

as the bidder need only be concerned with revealing its preferences, and not with the

details of the complex iterative mechanism. The agents which we proposed in this

dissertation are not proxy agents, as they act autonomously from the user. They are

not told the user’s preferences, but instead go out and actively determine them.

The term bidding agent is usually reserved for more sophisticated agents. Some

bidding agents are mobile,and are general enough to move from auction to auction [49].

Other agents are specialized and are based at one specific auction. A prime moti-

vator in the area of bidding agent design has been the Trading Agent Competition

(TAC) [41, 116, 122]. Teams compete by designing agents who, given users’ prefer-

ences, try to maximize their utility by participating in complex market situations

involving multiple simultaneous auctions of different types. These complex domains

mean that the agents are not able to game-theoretically find optimal strategies, and

thus use complicated learning and optimization techniques in order to adapt to the

ever changing environment.

There are several key differences between our computationally limited agents and

the agents designed for settings like those found in TAC. First, the TAC agents are

not computationally limited in our sense. Instead, they are explicitly told the pref-

erences of the users they represent, and their goal is to maximize their utility by

satisfying the preferences. In our model of an agent, the agent is responsible for both

computing the preferences and then satisfying them. Second, the motivation behind

TAC is to encourage the development of sophisticated agents which can participate

in complicated market domains, consisting of multiple simple mechanisms. The mo-

tivation behind our work is to study and understand the strategic behavior of agents

in different domains, and then, if possible, design the market domains so as to reduce

the strategic overhead placed on the agents. Thus, in the long term our goal is to have

(potentially complicated) mechanisms so that the agents can be of a simple design.

10.5 Summary

In this chapter we provided an overview of some of the work in the area of information

acquisition in mechanisms, computational mechanism design and bidding agents. The

work presented in this thesis differs from most of the literature discussed. It is most

similar to the work on information acquisition in mechanisms, though we present a
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more sophisticated model of information acquisition which uncovers new strategic

behavior. The literature in the area of computational mechanism design focuses

on computational limitations, but generally from the perspective of the mechanism

center, as opposed to the agents. Preference elicitation tries to limit the amount of

information that has to be transmitted to the center, thus reducing the overhead on

both agents and the center. We believe that techniques from preference elicitation

can complement our work by helping agents focus their attention on the “right”

problems. Finally, we discussed some of the work on bidding agent design. There has

been substantial work designing agents for complex dynamic markets. These agents,

however, are not computationally limited like our model. One of the philosophies

espoused in this dissertation is that the strategic burden on the agents should be

reduced, if possible, by good mechanism design. This is orthogonal with much of

the work on bidding agents as it is usually assumed that the mechanism is given and

unmodifiable.
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Chapter 11

Conclusions and Future Work

This dissertation set out to study the impact that computational limitations have

on the strategic behavior of agents in multiagent negotiation settings. The thesis

statement was

By using a fully normative model of bounded rationality it is possible to

incorporate agents’ deliberation actions into a game-theoretic setting.

• This will allow one to formally study the impact that limited com-

puting resources has on agents’ strategic behavior.

• This will provide a foundation for game theory and mechanism design

for computationally limited agents.

In this final chapter we summarize the contributions of this dissertation. We also

describe some new directions for future work.

11.1 Contributions

The main contributions of this thesis are:

A normative model of bounded rationality. We presented a model for a

computationally-limited agent (Chapter 2). We defined a computationally lim-

ited agent as having cost functions, anytime algorithms, and performance-profile

deliberation controllers. In particular, we introduced the performance profile
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tree, a fully normative method for determining deliberation control policies.

We showed that the performance profile tree was feasible in practice and lead

to better deliberation control decisions, compared to other approaches from the

literature (Chapter 3).

A formal game theoretic model for computationally limited agents. We

proposed incorporating the deliberation actions of agents in a game theoretic

setting. In Chapter 5 we presented definitions of strategies for agents with com-

putational limitations, and introduced the deliberation equilibrium. We also

discussed new strategic behavior which may arise among computationally lim-

ited agents. In particular, we introduced the phenomenon strategic deliberation.

Analysis of different negotiation mechanisms. In Chapters 6 and 7 we ana-

lyzed different negotiation protocols, using the deliberation equilibrium as the

solution concept. In Chapter 6 we studied two different bargaining protocols; an

ultimatum game and an alternating-offers model. We determined the delibera-

tion equilibria for different variations of these games, and proposed algorithms

that agents can use to solve for the deliberation equilibria strategies.

In Chapter 7 we studied four types of commonly used and studied auctions

mechanisms; the first-price sealed bid auction, the ascending auction, the Vick-

rey auction and the generalized Vickrey auction. We observed that neither the

Vickrey, ascending, nor generalized Vickrey auction preserved their dominant-

strategy equilibria when the bidders were computationally limited. Through a

series of experiments we studied the impact that asymmetry of cost and perfor-

mance profiles has on agents’ strategic behavior.

Mechanism design principles for computationally limited agents. In

Chapter 8 we proposed a set of desiderata for mechanisms designed for computa-

tionally-limited agents. We argued that mechanisms should have good economic

properties as well as good deliberative properties. In particular, we proposed

that mechanisms should not directly solve the deliberation problems of the

agents (non-deliberative), that strategic deliberation should not occur in equi-

librium (deliberation-proof), and that agents should not have incentive to mis-

represent their (partially) computed results (non-deceiving). We showed that

these desiderata are orthogonal, and that tradeoffs in design must be tolerated.

In Chapter 9 we took a different direction, and proposed a new tool for mea-
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suring the impact that strategic deliberation has on the efficiency of different

mechanisms. We introduced the miscomputing ratio which measures the differ-

ence in the social welfare of settings where agents are freely allowed to choose

their deliberation strategies, against settings where a social-welfare maximizing

oracle dictates which deliberation policies agents must follow. This approach

provided a way of isolating the deliberation policies from the rest of the strate-

gic actions that agents may take, and allowed one to compare efficiency across

different mechanisms.

11.2 Directions for Future Work

This dissertation opens up new interesting directions for future research. In this

section we outline some directions which arise from work done in this thesis.

11.2.1 Overcoming the Impossibility Result:

In Chapter 8 we proposed a set of properties which we believed that mechanisms de-

signed for computationally limited agents should exhibit. In particular, we believed

that mechanisms should be non-deliberative, (i.e. the mechanism should not solve the

deliberation problems of agents), that the mechanism should be deliberation-proof

(i.e. the agents should not have incentive to deliberate on competitors’ problems)

and that agents should not have incentive to deceive others about their computed re-

sults. Unfortunately, it was shown that these properties are, together, not attainable.

Therefore, at least one property must be relaxed

One possible approach for avoiding the impossibility result is to ignore the strategy-

proof property and just use the mechanisms already developed for fully rational-

agents. However, it might be possible to go beyond that. For example, if one agent

can solve certain problems easily and cheaply it might be effective, from a social-

welfare perspective, to have that agent solve problems for all agents who need solu-

tions for those problems. There are some interesting incentives issues that need to be

addressed in such a mechanism. For example, appropriate incentives will be needed to

get the computing agent to solve the “right” problems, and to share the information

with all agents to which it pertains.

A different approach would be to relax the non-deliberation property of the mech-
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anism. It might be possible to design mechanisms which, given some deliberation

information by the agents, is able to help guide the agents in their deliberation de-

cisions. This approach may reduce strategic deliberation, as long as agents believe

that the mechanism is making deliberation decisions for them which are in their own

best interest. Some problems that need to be addressed before such an approach can

be used include:

• What sort and how much information should the agents reveal to the mecha-

nism?

• Is there a minimal amount of information that needs to be revealed to the

mechanism so that strategic-deliberation disappears?

• What sort of incentives are required before agents will truthfully reveal this

information?

• What type of feedback should the mechanism provide the agents?

11.2.2 Costly Preference Elicitation in Multi-Item Auctions

In Chapter 9 we introduced the miscomputing ratio as a way of measuring the impact

on social welfare that allowing agents to freely compute on any problem has on the

social welfare. Our analysis has focused on single item auctions, however there are

many interesting problems which also arise in multi-item auctions. In particular, it

has been proposed that indirect mechanisms can lead to increased social welfare in

settings where there is costly preference elicitation [88]. The approach taken in this

dissertation presents a formal method for studying this question.

11.2.3 Learning Features that are Important for Deliberation

Control Decision Making

The performance profile tree is a fully normative deliberation control procedure, which

can, in theory, store any and all information that might be of importance to the agent

when it comes to making deliberation control decisions. However, in practice it is un-

reasonable to assume that all such information can be captured in a performance

profile tree, nor is it reasonable to assume that all information is actually of use to
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an agent. This was illustrated in the experimental results in Chapter 3, where using

additional features to solution quality did not substantially improve the deliberation

control. Combining our deliberation control method with some form of learning tech-

niques in order to determine what are important features (for example, as described in

[15]) may, in practice, bring performance-profile deliberation control closer to optimal

while remaining feasible.

11.3 Summary

We started this dissertation with a motiving quote from Herbert Simon, outlining a

motivation for studying bounded rationality:

“What are the economic consequences of participants using certain pro-

cedures and not others? In what respect are current economic models

deficient in the assumptions they make about reasoning procedures?” [101]

This dissertation has been an attempt to answer these questions. We have demon-

strated that it is possible to incorporate reasoning procedures of agents into a game-

theoretic framework, and have shown that some current economic models (i.e. bar-

gaining protocols and auction mechanisms) exhibit different properties when used by

computationally limited agents as opposed to fully rational agents. It is our hope

that the models and ideas presented in this thesis will serve as a foundation for future

work in the study of bounded rationality.
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