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Abstract

We revisit the classical problem of scalar replacement of array elements and pointer accesses. We generalize
the state-of-the-art algorithm, by Carr and Kennedy [CK94], to handle a combination of both conditional
control-flow and inter-iteration data reuse. The basis of our algorithm is to make the dataflow availability
information precise using a technique we call SIDE: Statically Instantiate and Dynamically Evaluate. In
SIDE the compiler inserts explicit code to evaluate the dataflow information at runtime.
Our algorithm operates within the same assumptions of the classical one (perfect dependence information),
and has the same limitations (increased register pressure). It is, however, optimal in the sense that within
each code region where scalar promotion is applied, given sufficient registers, each memory location is read
and written at most once.
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1 Introduction

The goal of scalar replacement (also called register promotion) is to identify repeated accesses made to the
same memory address, either within the same iteration or across iterations, and to remove the redundant
accesses (here we only study promotion within the innermost loop bodies, but the ideas we present are ap-
plicable to wider code regions as well). The state-of-the-art algorithm for scalar replacement was proposed
in 1994 by Steve Carr and Ken Kennedy [CK94]1. This algorithm handles very well two special instances of
the scalar replacement problem: (1) repeated accesses made within the same loop iteration in code having
arbitrary conditional control-flow; and (2) code with repeated accesses made across iterationsin the ab-
sence of conditional control-flow. For (1) the algorithm relies on PRE, while for (2) it relies on dependence
analysis and rotating scalar values. However, that algorithm cannot handle arbitrary combinations of both
conditional control-flow and inter-iteration reuse of data.

Here we present a very simple algorithm which generalizes and simplifies the Carr-Kennedy algorithm
in an optimal way. The optimality criterion that we use throughout this paper is the number of dynamically
executed memory accesses. After application of our algorithm on a code region, no memory location is
read more than once and written more than once in that region. Also, after promotion, no memory location
is read or written if it was not so in the original program (i.e., our algorithm does not perform speculative
promotion). Our algorithm operates under the same assumptions as the Carr-Kennedy algorithm. That is,
it requires perfect dependence information to be applicable. It is therefore mostly suitable for FORTRAN
benchmarks. We have implemented our algorithm in a C compiler, and we have found numerous instances
where it is applicable as well.

For the impatient reader, the key idea is the following: for each value to be scalarized, the compiler
creates a 1-bit runtime flag variable indicating whether the scalar value is “valid.” The compiler also creates
code which dynamically updates the flag. The flag is then used to detect and avoid redundant loads and to
indicate whether a store has to occur to update a modified value at loop completion. This algorithm ensures
that only the first load of a memory location is executed and only the last store takes place. This algorithm
is a particular instance of a new general class of algorithms: it transforms values customarily used only at
compile-time for dataflow analysis into dynamic objects. Our algorithm instantiatesavailability dataflow
information into run-time objects, therefore achieving dynamic optimality even in the presence of constructs
which cannot be statically optimized.

We introduce the algorithm by a series of examples which show how it is applied to increasingly com-
plicated code structures. We start in Section 2 by showing how the algorithm handles a special case, that
of memory operations from loop-invariant addresses. In Section 3.3 we show how the algorithm optimizes
loads whose addresses are induction variables. Finally, we show how stores can be treated optimally in
Section 3.4. In Section 4 we describe two implementations of our algorithm: one based on control-flow
graphs (CGFs), and one relying on a special form of Static-Single Assignment(SSA) named Pegasus. Al-
though the CFG variant is simpler to implement, Pegasus simplifies the dependence analysis required to
determine whether promotion is applicable. Special handling of loop-invariant guarding predicates is dis-
cussed in Section 5. Finally, in Section 7, we quantify the impact of an implementation of this algorithm
when applied to the innermost loops of a series of C programs.

This paper makes the following new research contributions:

• it introduces the SIDE class of dataflow analyses, in which the analysis is carried statically, but the
computation of the dataflow information is performed dynamically, creating dynamically optimal
code for constructs which cannot be statically made optimal;

1In this paper we do not consider speculative promotion, which has been extensively studied since then.



while (1) {
if (cond1) statement1;
if (cond2) statement2;
...
if (cond_break1) break;
...

}

Figure 1:For ease of presentation we assume that prior to register promotion, all loop bodies are predicated.

• it introduces a new register-promotion algorithm as a SIDE dataflow analysis;

• it introduces a linear-time2 term-rewriting algorithm for performing inter-iteration register promotion
in the presence of control-flow;

• it describes register promotion as implemented in Pegasus, showing how it takes advantage of the
memory dependence representation for effective dependence analysis.

1.1 Conventions

We present all the optimizations examples as source-to-source transformations of schematic C program
fragments. For simplicity of the exposition we assume that we are optimizing the body of an innermost
loop. We also assume that none of the scalar variables in our examples have their address taken. We write
f(i) to denote an arbitrary expression involvingi which has no side effects (butnot a function call). We
write for(i) to denote a loop havingi as a basic induction variable; we assume that the loop body is
executed at least once.

For pedagogical purposes, the examples we present all assume that the code has been brought into a
canonical form through the use ofif-conversion[AKPW83], such that each memory statement is guarded
by a predicate; i.e., the code has the shape in Figure 1. Our algorithms are easily generalized to handle
nested natural loops and arbitrary forward control-flow within the loop body.

2 Scalar Replacement of Loop-Invariant Memory Operations

In this section we describe a new register promotion algorithm which can eliminate memory references
made to loop-invariant addresses in the presence of control flow. This algorithm is further expanded in Sec-
tion 3.3 and Section 3.4 to promote memory accesses into scalars when the memory references have a
constant stride.

2.1 The Classical Algorithm

Figure 2 shows a simple example and how it is transformed by the classical scalar promotion algorithm.
Assumingp cannot point toi , the key fact is*p always loads from and stores to the same address, therefore
*p can be transformed into a scalar value. The load is lifted to the loop pre-header, while the store is moved

2This time does not include the time to compute the dependences, only the actual register promotion transformation.
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for (i)
*p += i;

-------------

tmp = *p;
for (i)

tmp += i;
*p = tmp;

Figure 2:A simple program before and after register promotion of loop-invariant memory operations.

for (i)
if (i & 1)

*p += i;

Figure 3:A small program that is not amenable to classical register promotion.

after the loop. (The latter is slightly more difficult to accomplish if the loop has multiple exits going to
multiple destinations. Our implementation handles these as well, as described in Section 4.2.2.)

2.2 Loop-Invariant Addresses and Control-Flow

However, the simple algorithm is no longer applicable to the slightly different Figure 3. Lifting the load or
store out of the loop may be unsafe with respect to exceptions: one cannot lift a memory operation out of a
loop it if may never be executed within the loop.

To optimize Figure 3, it is enough to maintain avalid bit in addition to the thetmp scalar. Thevalid
bit indicates whethertmp indeed holds the value of*p , as in Figure 4. Thevalid bit is initialized tofalse.
A load from*p is performed only if thevalid bit is false. Either loading from or storing to*p sets the
valid bit to true. This program will forward the value of*p through the scalartmp between iterations
arbitrarily far apart.

The insight is that it may be profitable to compute dataflow information at runtime. For example, the
valid flag within an iteration is nothing more than the dynamic equivalent of theavailability dataflow in-
formation for the loaded value, which is the basis of classical Partial Redundancy Elimination (PRE) [MR79].
When PRE can be applied statically, it is certainly better to do so. The problem with Figure 3 is that the
compiler cannot statically summarize when condition(i&1) is true, and therefore has to act conserva-
tively, assuming that the loaded value is never available. Computing the availability information at run-time
eliminates this conservative approximation. Maintaining and using runtime dataflow information makes
sense when we can eliminate costly operations (e.g., memory accesses) by using inexpensive operations
(e.g., Boolean register operations).

This algorithm generates a program which is optimal with respect to the number of loads within each
region of code to which promotion is applied (if the original program loads from an address, then the
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/* prelude */
tmp = uninitialized;
tmp_valid = false;

for (i) {
/* load from *p becomes: */
if ((i & 1) && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* store to *p becomes */
if (i & 1) {

tmp += i;
tmp_valid = true;

}
}

/* postlude */
if (tmp_valid)

*p = tmp;

Figure 4:Optimization of the program in Figure 3.

optimized program will load from that address exactly once), but may execute one extra store:3 if the
original program loads the value but never stores to it, thevalid bit will be true, enabling the postlude
store. In order to treat this case as well, adirty flag, set on writes, has to be maintained, as shown in
Figure 5.4

Note: in order to simplify the presentation, the examples in the rest of the paper will not include the
dirty bit. However, its presence is required for achieving an optimal number of stores.

3 Inter-Iteration Scalar Promotion

Here we extend the algorithm for promoting loop-invariant operations to perform scalar promotion of
pointer and array variables with constant stride. We assume that the code has been subjected to standard
dependence analysis prior to scalar promotion.

3.1 The Carr-Kennedy Algorithm

Figure 6 illustrates the classical Carr-Kennedy inter-iteration register promotion algorithm from [CCK90],
which is only applicable in the absence of control-flow. In general, reusing a value afterk iterations re-
quires the creation ofk distinct scalar values, to hold the simultaneously live values ofa[i] loaded fork

3However, this particular program is optimal for stores as well.
4The dirty bit may also be required for correctness, if the value is read-only and the writes within the loop are always

dynamically predicated “false.”
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/* prelude */
tmp = uninitialized;
tmp_valid = false;
tmp_dirty = false;

for (i) {
/* load from *p becomes: */
if ((i & 1) && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* store to *p becomes */
if (i & 1) {

tmp += i;
tmp_valid = true;
tmp_dirty = true;

}
}

/* postlude */
if (tmp_dirty)

*p = tmp;

Figure 5:Optimization of store handling from Figure 4.

consecutive values ofi . This quickly creates register pressure and therefore heuristics are usually used to
decide whether promotion is beneficial. Since register pressure has been very well addressed in the literature
[CCK90, Muc97, CMS96, CW95], we will not concern ourselves with it anymore in this text.

A later extension to the Carr-Kennedy algorithm [CK94] allows it to also handle control flow. The
algorithm optimally handles reuse of valueswithin the same iteration, by using PRE on the loop body.
However, this algorithm can no longer promote valuesacrossiterations in the presence of control-flow.
The compiler has difficulty in reasoning about the intervening updates between accesses made in different
iterations in the presence of control-flow.

3.2 Partial Redundancy Elimination

Before presenting our solution let us note that even the classical PRE algorithm (without the support of
special register promotion) is quite successful in optimizing loads made inconsecutiveiterations. Figure 7
shows a sample loop and its optimization bygcc , which doesnot have a register promotion algorithm at
all. By using PRE alonegcc manages to reuse the load fromptr2 one iteration later.

The PRE algorithm is unable to achieve the same effect if data is reused in any iteration other than the
immediately following iteration or if there are intervening stores. In such cases an algorithm like Carr-
Kennedy is necessary to remove the redundant accesses. Let us notice that the use ofvalid flags achieves
the same degree of optimality as PREwithin an iteration, but at the expense of maintaining run-time infor-
mation.
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for (i = 2; i < N; i++)
a[i] = a[i] + a[i-2];

--------------------------------------------

/* pre-header */
a0 = a[0]; /* invariant: a0 = a[i-2] */
a1 = a[1]; /* a1 = a[i-1] */
for (i = 2; i < N; i++) {

a2 = a[i]; /* a2 = a[ i ] */
a2 = a0 + a2;
a[i] = a2;

/* Rotate scalar values */
a0 = a1;
a1 = a2;

}

Figure 6:Program with no control-flow before and afer register promotion performed by the Carr-Kennedy
algorithm.

do {
*ptr1++ = *ptr2++;

} while(--cnt && *ptr2);

------------------------

tmp = *ptr2;
do {

*ptr1++ = tmp;
ptr2++;
if (--cnt) break;
tmp = *ptr2;
if (! tmp) break;

} while(1);

Figure 7:Sample loop and its optimization using PRE. (The output is the equivalent of the assembly code
generated by gcc .) PRE can achieve some degree of register promotion for loads.
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for (i = 2; i < N; i++)
if (f(i)) a[i] = a[i] + a[i-2];

Figure 8:Sample program which cannot be handled optimally by either PRE or the classical Carr-Kennedy
algorithm.

3.3 Removing All Redundant Loads

However, the classical algorithm is unable to promote all memory references guarded by a conditional, as
in Figure 8. It is, in general, impossible for a compiler to check whenf(i) is true in both iterationi and
in iterationi-2 , and therefore it cannot deduce whether the load froma[i] can be reused asa[i-2] two
iterations later.

Register promotion has the goal of only executing thefirst load and thelast store of a variable. The
algorithm in Section 2 for handling loop-invariant data is immediately applicable for promoting loads across
iterations, since it performs a load as soon as possible. By maintaining availability information at runtime,
using valid flags, our algorithm can transform the code to perform a minimal number of loads as in
Figure 9. Applying constant propagation and dead-code elimination will simplify this code by removing
the unnecessary references toa2 valid .

3.4 Removing All Redundant Stores

Handling stores seems to be more difficult, since one should forgo a store if the value will be overwritten
in a subsequent iteration. However, in the presence of control-flow it is not obvious how to deduce whether
the overwriting stores in future iterations will take place. Here we extend the register promotion algorithm
to ensure that only one store is executed to each memory location, by showing how to optimize the example
in Figure 10.

We want to avoid storing toa[i+2] , since that store will be overwritten two iterations later by the store
to a[i] . However, this is not true for the last two iterations of the loop. Since, in general, the compiler
cannot generate code to test loop-termination several iterations ahead, it looks as if both stores must be
performed in each iteration. However, we can do better than that by performing within the loop only the
store toa[i] , which certainly will not be overwritten. The loop in Figure 11 does exactly that. The loop
body never overwrites a stored value but may fail to correctly update the last two elements of arraya.
Fortuitously, after the loop completes, the scalarsa0 , a1 hold exactly these two values. So we can insert a
loop postlude to fix the potentially missing writes. (Of course,dirty bits should be used to prevent useless
updates.)

4 Implementation

This algorithm is probably much easier to illustrate than to describe precisely. Since the important message
was hopefully conveyed by the examples, we will just briefly sketch the implementation in a CFG-based
framework and describe in somewhat more detail the Pegasus implementation.

7



a0_valid = false;
a1_valid = false;
a2_valid = false;
for (i) {

fi = f(i);

/* load a[i-2] */
if (fi && !a0_valid) {

a0 = a[i-2];
a0_valid = true;

}

/* load a[i] */
if (fi && !a2_valid) {

a2 = a[i];
a2_valid = true;

}

/* store a[i] */
if (fi) {

a2 = a0 + a2;
a[i] = a2;
a2_valid = true;

}

/* Rotate scalars and valid flags */
a0 = a1;
a1 = a2;
a0_valid = a1_valid;
a1_valid = a2_valid;
a2_valid = false;

}

Figure 9:Optimal version of the code in Figure 8.

4.1 CFG-Based Implementation

In general, for each constant reference toa[i+ j] (for a compile-time constantj) we maintain a scalart j
and a valid bitt jvalid . Then scalar replacement just makes the following changes:

• Replaces every load froma[i+ j] with a pair of statements:
t j = t jvalid ? t j : a[i+ j]; t jvalid = true

• Replace every storea[i+ j] = e with a pair of statements:
t j = e; t jvalid = true .
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for (i) {
a[i]++;
if (f(i)) a[i+2] = a[i];

}

---------------------------------------

a0_valid = true;
a0 = a[0]; /* a[i] */
a1_valid = false;
a2_valid = false;
for (i) {

fi = f(i);

/* load a[i] */
if (!a0_valid)

a0 = a[i];

/* store a[i] */
a0 = a0+1;
a[i] = a0;

/* store a[i+2] */
if (fi) {

a2 = a0;
a[i+2] = a2;
a2_valid = true;

}

/* Rotate scalars and valid flags */
a0 = a1;
a1 = a2;
a0_valid = a1_valid;
a1_valid = a2_valid;
a2_valid = false;

}

Figure 10:Program with control-flow and redundant stores and its optimization for an optimal number of
loads. The store to a[i+2] may be overwritten two iterations later by the store to a[i] .
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a0_valid = true; /* a[i] */
a0 = a[0];
a1_valid = false;
a2_valid = false;
for (i) {

fi = f(i);

/* load a[i] */
if (!a0_valid)

a0 = a[i];

/* store a[i] */
a0=a0+1;
a[i] = a0;

/* store a[i+2] */
if (fi) {

a2 = a0;
/* No update of a[i+2]: may be overwritten */
a2_valid = true;

}

/* Rotate scalars and valid flags */
a0 = a1;
a1 = a2;
a0_valid = a1_valid;
a1_valid = a2_valid;
a2_valid = false;

}

/* Postlude */

if (a0_valid)
a[i] = a0;

if (a1_valid)
a[i+1] = a1;

Figure 11:Optimal version of the example in Figure 10.

Furthermore, all stores except the generating store5 are removed. Instead compensation code is added
“after” the loop: for eacht j append a statementif (t jvalid) a[i+ j] = t j .

Complexity: the algorithm, aside from the dependence analysis, is linear in the size of the loop6.
Correctness and optimality: follow from the following invariant: the t jvalid flag is true if and

only if t j represents the contents of the memory location it scalarizes.
5According to the terminology in [CCK90], a generating store is the one writing toa[i+ j] for the smallestj promoted.
6We assume that a constant number of scalar values are introduced.
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Compiler pass LOC
Depdendence analysis 162
Loop-invariant load/store promotion 100
Register promotion of array elements205
Induction variable analysis 447
Memory disambiguation 646

Table 1: Size of C++ code implementing analyses and optimizations related to register promotion.

4.2 An SSA-based algorithm

We have implemented the above algorithms in the C Compiler named CASH. CASH relies on a Pega-
sus [BG02b, BG02a, BG03], a dataflow intermediate representation. In this section we briefly describe the
main features of Pegasus and then show how it enables a very efficient implementation of register promo-
tion.

As we argued in [BG03], Pegasus enables extremely compact implementations of many important op-
timizations; register promotion corroborates this statement. In Table 1 we shows the implementation code
size of all the analyses and transformations used by CASH for register promotion.

4.2.1 Pegasus

Pegasus represents the program as a directed graph where nodes are operations and edges indicate value
flow. Pegasus leverages techniques used in compilers for predicated execution machines [MLC+92] by
collecting multiple basic blocks into one hyperblock; each hyperblock is transformed into straight-line
code through the use of the predicated static single-assignment (PSSA) form [CSC+00]. Instead of SSA
φ nodes, within hyperblocks Pegasus uses explicitmultiplexor (mux) nodes; the mux data inputs are the
reaching definitions. The mux predicates correspond to the path predicates in PSSA.

Hyperblocks are stitched together into a dataflow graph representing the entire procedure by creating
dataflow edges connecting each hyperblock to its successors. Each variable live at the end of a hyperblock
gives rise to anetanode [OBM90]. Eta nodes have two inputs—a value and a predicate—and one output.
When the predicate evaluates to “true,” the input value is moved to the output; when the predicate evaluates
to “false,” the input value and the predicate are simply consumed, generating no output. A hyperblock with
multiple predecessors receives control from one of several different points; such join points are represented
by mergenodes.

Operations with side-effects are parameterized with a predicate input, which indicates whether the oper-
ation should take place. If the predicate is false, the operation is not executed. Predicate values are indicated
in our figures with dotted lines.

The compiler adds dependence edges between operations whose side-effects may not commute. Such
edges only carry an explicit synchronizationtoken— not data. Operations with memory side-effects (loads,
stores, calls, and, returns) all have a token input. When a side-effect operation depends on multiple other
operations (e.g., a write operation following a set of reads), it must collect one token from each of them.
For this purpose acombineoperator is used; a combine has multiple token inputs and a single token output;
the output is generated after it receives all its inputs. In figures (e.g., see Figure 12) dashed lines indicate
token flow and the combine operator is depicted by a “V”. Token edges explicitly encode data flow through
memory. In fact, the token network can be interpreted as an SSA form for the memory values, where the
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Figure 12:Pegasus representation of the loop from Figure 8 (the loop bound is 10), before register promo-
tion. Solid lines represent value flow, dotted lines indicate predicate flow and dashed lines represent tokens.
The up-triangles are merge operators (i.e., SSA φ nodes), and the down-triangles are eta operators. The
dark eta sends the token value out of the loop on loop completion. The merge-eta nodes labeled “@a” are
used to carry the token mediating all accesses to array a.

combine operator is similar to aφ function. The tokens encode both true-, output- and anti-dependences,
and they are “may” dependences. In Figure 12(A) there is one load and two stores. A load is denoted
by “=[ ] ” and has 3 inputs: address, predicate and token; it produces two outputs: the loaded value and
another token. A store is denoted by “[ ]= ” and has four inputs: address, data, predicate and token; the
only output is a token.

4.2.2 Register Promotion in Pegasus

We sketch the most important analysis and transformation steps carried out by CASH for register promotion.
Although the actual promotion in Pegasus is slightly more complicated than in a CFG-based representation
(because of the need to maintainφ-nodes), the dependence tests used to decide whether promotion can be
applied are much simpler: the graph will have a very restricted structure if promotion can be applied.7 The
key element of the representation is the token edge network whose structure can be quickly analyzed to
determine important properties of the memory operations.

We illustrate register promotion on the example in Figure 8.

1. The token network for the Pegasus representation is shown in Figure 13. Memory accesses that
may interfere with each other will all belong to a same connected component of the token network.
Operations that belong to distinct components of the token network commute and can therefore be
analyzed separately. In this example there is a single connected component, corresponding to accesses
made to the arraya.

7The network encodes relatively simple dependence information. However, as pointed in [CMS96], elementary dependence
tests are sufficient for most cases of register promotion.
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Figure 13:Token network for the Pegasus representation of the loop in Figure 8.

2. The addresses of the three memory operations in this component are analyzed: they are all determined
to be induction variables having the same step, 1. This implies that the dependence distances between
these accesses are constant (i.e., iteration-independent), making these accesses candidates for register
promotion.

The induction step of the addresses indicates the type of promotion: a 0 step indicates loop-invariant
accesses, while a non-zero step, as in this example, indicates strided accesses.

3. The token network is further analyzed. Notice that prior to register promotion, memory disambigua-
tion has already proved (based on symbolic computation on address expressions) that the accesses to
a[i] anda[i+2] commute, and therefore there is no token edge between them. The token network
for a consists of twostrands: one for the accesses toa[i] , and one fora[i+2] ; the strands are
generated at the mu, on top, and joined before the etas, at the bottom, using a combine (V). If and
only if all memory accesses within the same strand are made to the same address can promotion be
carried.

CASH generates the initialization for the scalar temporaries and the “valid” bits in the loop pre-header.
We do not illustrate this step.

4. Each strand is scanned from top to bottom (from the mu to the eta), term-rewriting each memory
operation:

• Figure 14 shows how a load operation is transformed by register promotion. The resulting
construction can be interpreted as follows: “If the data is already valid do not do the load (i.e.,
the load predicate is ‘and’-ed with the negation of the valid bit) and use the data. Otherwise
do the load if its predicate indicates it needs to be executed.” The multiplexor will select either
the load output or the initial data, depending on the predicates. If neither predicate is true, the
output of the mux is not defined, and the resultingvalid bit is false.

• Figure 15 shows the term-rewriting process for a store. After this transformation, all stores
except the generating store are removed from the graph (for this purpose the token input is
connected directly to the token output, as described in [BG03]). The resulting construction is
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Figure 14:Term-rewriting of loads for register promotion. “d” and “valid” are the register-promoted data
and its valid bit respectively.

p [ ]=

tk

addr tk data
p

![ ]= ||

&&

addr tk

tk

d valid

d

data

valid

(A) (B)

Figure 15:Term-rewriting of stores for register promotion.

interpreted as follows: “If the store occurs, the data-to-be-stored replaces the register-promoted
data, and it becomes valid. Otherwise, the register-promoted data remains unchanged.”

5. Code is synthesized to shift the scalar values and predicates around between strands (the assignments
t j−1 = t j), as illustrated in Figure 16.

6. The insertion of a loop postlude is somewhat more difficult in general than a loop prelude, since by
definition natural loops have a unique entry point, but may have multiple exits. In our implementation
each loop body is completely predicated and therefore all instructions get executed, albeit some are
nullified by the predicates. The compensating stores are added to the loop body and executed only
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Figure 16:Shifting scalar values between strands. A similar network is used to shift the “valid” bits.

for (i) {
if (c1) *p += 1;
if (c2) *p += 2;
if (f(i)) *p += i;

}

Figure 17:Sample code with loop-invariant memory accesses. c1 and c2 stand for loop-invariant expres-
sions.

during the last iteration. This is achieved by making the predicate controlling these stores to be the
loop-termination predicate. This step is not illustrated.

5 Handling Loop-Invariant Predicates

The register promotion algorithm described above can be improved by handling specially loop-invariant
predicates. If the disjunction of the predicates guarding all the loads and stores of a same location contains
a loop-invariant subexpression, then the initialization load can be lifted out of the loop and guarded by that
subexpression. Consider Figure 17 on which we apply loop-invariant scalar-promotion.

By applying our register promotion algorithm one gets the result in Figure 18. However, using the fact
thatc1 andc2 are loop-invariant the code can be optimized as in Figure 19. Both Figure 18 and Figure 19
execute the same number of loads and stores, and therefore, by our optimality criterion, are equally good.
However, the code in Figure 19 is obviously superior.

We can generalize this observation: the code can be improved whenever the disjunction of all condi-
tions guarding loads or stores from*p is weaker than some loop-invariant expression (even if none of the
conditions is itself loop-invariant), such as in Figure 20. In this case the disjunction of all predicates is
f(i)||!f(i) which is constant “true.” Therefore, the load from*p can be unconditionally lifted out of
the loop as shown in Figure 21.

In general, let us assume that each statements is controlled by predicate withP (s). Then for each
promoted memory locationa[i+ j] :

1. Define the predicatePj = ∨sjP (sj), wheresj ∈ {statements accessinga[i+ j] }.

2. Write Pj as the union of two predicates,P invj ∨ P varj , whereP invj is loop-invariant andP varj is
loop-dependent.
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/* prelude */
tmp_valid = false;

for (i) {
/* first load from *p */
if (! tmp_valid && c1) {

tmp = *p;
tmp_valid = true;

}

/* first store to *p */
if (c1) {

/* tmp_valid is known to be true */
tmp += 1;
tmp_valid = true;

}

/* second load from *p */
if (! tmp_valid && c2) {

tmp = *p;
tmp_valid = true;

}

/* second store to *p */
if (c2) {

tmp += 2;
tmp_valid = true;

}

fi = f(i); /* evaluate f(i) only once */
/* third load from *p */
if (fi && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* third store to *p */
if (fi) {

tmp += i;
tmp_valid = true;

}
}

/* postlude */
if (tmp_valid)

*p = tmp;

Figure 18:Optimization of the code in Figure 17 without using the invariance of some predicates.
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/* prelude */
tmp_valid = c1 || c2;
if (tmp_valid)

tmp = *p;

for (i) {
/* first load from *p redundant */

/* first store to *p */
if (c1)

/* tmp_valid is known to be true */
tmp += 1;

/* second load from *p redundant */

/* second store to *p */
if (c2)

tmp += 2;

fi = f(i);

/* third load from *p */
if (fi && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* third store to *p */
if (fi) {

tmp += i;
tmp_valid = true;

}
}

/* postlude */
if (tmp_valid)

*p = tmp;

Figure 19:Optimization of the code in Figure 17 using the invariance of c1 and c2 .
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tmp = *p;
for (i) {

fi = f(i);
if (fi)

tmp += 1;
if (!fi)

tmp = 2;
}
*p = tmp;

Figure 20:Code with no loop-invariant predicates, but with loop-invariant memory accesses.

3. In prelude initializet jvalid = P invj .

4. In prelude initializet j = t jvalid ? a[i 0+j] : 0 .8

5. The predicate guarding each statementsj is strengthened:P (sj) := P (sj) ∧ ¬P invj .

Our current implementation of this optimization in CASH only lifts out of the loop the disjunction of
all predicates which are actually loop-invariant.

6 Discussion

6.1 Dynamic Disambiguation

Our scalar promotion algorithm can be naturally extended to cope with a limited number of memory ac-
cesses which cannot be disambiguated at compile time. By combining dynamic memory disambiguation
[Nic89] with our scheme to handle conditional control flow, we can apply scalar promotion even when
pointer analysis determines that memory references interfere. Consider the example in Figure 22: even
though dependence analysis indicates thatp cannot be promoted since the access toq may interfere, the
bottom part of the figure shows how register promotion can be applied.

This scheme is an improvement over the one proposed by Sastry [SJ98], which stores to memory all the
values held in scalars when entering an un-analyzable code region (which in this case is the region guarded
by f(i) ).

6.2 Hardware support

While our algorithm does not require any special hardware support, certain hardware structures can improve
its efficiency.

Rotating registerswere introduced in the Cydra 5 architecture [DHB89] to support software pipelining.
These were used on Itanium for register promotion [DKK+99] to shift all the scalar values in one cycle.

Rotating predicate registersas in the Itanium can rotate the “valid” flags.
Software valid bits can be used to reduce the overhead of maintaining thevalid bits. If a value

is reusedk iterations later, then our algorithm requires the use of2k different scalars:k valid bits and
8i 0 is the initial value ofi in the loop.
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tmp = *p;
tmp_valid = true;
for (i) {

fi = f(i);

/* first load */
if (fi & !tmp_valid)

tmp = *p;

/* first store */
if (fi) {

tmp += 1;
tmp_valid = true;

}

/* second store */
if (! fi) {

tmp = 2;
tmp_valid = true;

}
}
if (tmp_valid)

*p = tmp;

-------------------------

tmp = *p;
for (i) {

fi = f(i);
if (fi)

tmp += 1;
if (!fi)

tmp = 2;
}
*p = tmp;

Figure 21:Optimization of the code in Figure 20 using the fact that the disjunction of all predicates guarding
*p is loop-invariant (i.e., constant) “true” and the same code after further constant propagation.
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for (i) {
s += *p;
if (f(i)) *q = 0;

}

-------------------------------------

tmp_valid = false;
for (i) {

if (!tmp_valid) {
tmp = *p;
tmp_valid = true;

}
s += tmp;
if (f(i)) {

*q = 0;
if (p == q)

/* dynamic disambiguation */
tmp_valid = false;

}
}

Figure 22: Code with ambiguous dependences and its non-speculative register promotion relying on dy-
namic disambiguation.

k values. A software-only solution is to pack thek valid bits into a single integer9 and to use masking
and shifting to manipulate them. This makes rotation very fast, but testing and setting more expensive, a
trade-off that may be practical on a wide machine having “free” scheduling slots.

Predicated data[RC03] has been proposed for an embedded VLIW processor: predicates are not at-
tached to instructions, but to data itself, as an extra bit of each register. Predicates are propagated through
arithmetic, similar to exception poison bits. The proposed architecture supports rotating registers by im-
plementing the register file as an actual large shift register. These architectural features would make the
valid flags essentially free both in space and in time.

6.3 Other Applications of SIDE

This paper introduces the SIDE framework for run-time dataflow evaluation, and presents the register pro-
motion algorithm as a particular instance. Register promotion uses the dynamic evaluation ofavailability
and uses predication to remove memory accesses for achieving optimality. SIDE is naturally applied to the
availability dataflow information, because it is a forward dataflow analysis, and its run-time determination
is trivial.

PRE [MR79] is another optimization which uses of availability information which could possibly ben-
efit from the application of SIDE. In particular,safePRE forms (i.e., which never introduce new compu-
tations on any path) seem amenable to the use of SIDE. While some forms of PRE, such as lazy code

9Most likely promotion across more iterations than bits in an integer requires too many registers to be profitable.
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motion [KRS92], are optimal, they do incur small overheads; for example, safety and optimality together
require the restructuring of control-flow, for example by splitting some critical CFG edges10. A technique
such as SIDE could be used on a predicated architecture to trade-off the creation of additional basic blocks
against conditionally computing the redundant expression.

The technique used by Bodı́k et al. in [BG97] can be seen as another application of the SIDE framework,
this time for the backwards dataflow problem of dead-code. This application is considerably more difficult,
a fact reflected in the complexity of their algorithm.

An interesting question is whether this technique can be applied to other dataflow analyses, and whether
its application can produce savings by eliminating computations more expensive than the inserted code.

7 Experimental Evaluation

7.1 Expected Performance Impact

The scalar promotion algorithm presented here is optimal with respect to the number of loads and stores
executed. But this does not necessarily correlate with improved performance for four reasons.

First, it uses more registers, to hold the scalar values and flags, and thus may cause more spill code, or
interfere with software pipelining.

Second, it contains more computations than the original program in maintaining the flags. The opti-
mized program may end-up being slower than the original, depending, among other things, on the frequency
with which the memory access statements are executed and whether the predicate computations are on the
critical path. For example, if none of them is executed dynamically, all the inserted code is overhead. In
practice profiling information and heuristics should be used to select the loops which will most benefit from
this transformation.

Third, scalar promotion removes memory accesses which hit in the cache,11 therefore its benefit appears
to be limited. However, in modern architectures L1 cache hits are not always cheap. For example, on the
Intel Itanium 2 some L1 cache hits may cost as much as 17 cycles [CL03]. Register promotion trades-off
bandwidth to the load-store queue (or the L1 cache) for bandwidth to the register file, which is always
bigger.

Fourth, by predicating memory accesses, operations which were originally independent, and could be
potentially issued in parallel, become now dependent through the predicates. This could increase the dy-
namic critical path of the program, especially when memory bandwidth is not a bottleneck.

7.2 Performance Measurements

In this section we present measurements of our register promotion algorithm as implemented in the CASH
C compiler. We show static and dynamic data for C programs from three benchmark suites: Media-
bench [LPMS97], SpecInt95 [Sta95] and Spec CPU2000 [Sta00].

Our implementation does not usedirty bits and therefore is not optimal with respect to the number of
stores (it may, in fact, incur additional stores with respect to the original program). However, dirty bits can
only save a constant number of stores, independent of the number of iterations. We have considered their
overhead unjustified. We only lift loop-invariant predicates to guard the initializer; our implementation can
thus optimize Figure 17, but not Figure 20. As a simple heuristic to reduce register pressure, we do not
scalarize a value if it is not reused for 3 iterations.

10“Critical” here means connecting a basic block with multiple successors to a basic block with multiple predecessors.
11Barring conflict misses within the loop.
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Variables Variables
Program Invariant Strided Program Invariant Strided

old new old new old new old new
adpcme 0 0 0 0 099.go 40 53 2 2
adpcmd 0 0 0 0 124.m88ksim 23 10 1 4
gsme 1 1 1 0 129.compress 0 0 1 0
gsmd 1 1 1 0 130.li 1 0 1 1
epic e 0 0 0 0 132.ijpeg 5 1 9 5
epic d 0 0 0 0 134.perl 6 0 0 1
mpeg2e 1 0 1 0 147.vortex 22 20 1 0
mpeg2d 4 3 0 0 164.gzip 20 0 1 0
jpeg e 3 0 7 5 175.vpr 7 2 0 0
jpeg d 2 1 7 5 176.gcc 11 40 5 2
pegwit e 6 0 3 1 181.mcf 0 0 0 0
pegwit d 6 0 3 1 197.parser 20 3 3 5
g721e 0 0 2 0 254.gap 1 0 18 1
g721d 0 0 2 0 255.vortex 22 20 1 0
pgp e 24 1 5 0 256.bzip2 2 2 8 0
pgp d 24 1 5 0 300.twolf 1 2 0 0
rasta 3 0 2 1
mesa 44 4 2 0

Table 2:How often scalar promotion is applied. “New” indicates additional cases which are enabled by our
algorithm. We count the number of different “variables” to which promotion is applied. If we can promote
arrays a and b in a same loop, we count two variables.

Table 2 shows how often scalar promotion can be applied. Column 3 shows that our algorithm found
many more opportunities for scalar promotion that would not have been found using previous scalar pro-
motion algorithms (however, we do not include here the opportunities discovered by PRE). CASH uses a
simple flow-sensitive intra-procedural pointer analysis for dependence analysis.

Figure 23 and Figure 24 show the percentage decrease in the number of loads and stores respectively
that result from the application of our register promotion algorithms. The data labeledPRE indicate the
number of memory operations removed by our straight-line code optimizations only. The data labeledloop
shows the additional benefit of applying inter-iteration register promotion. We have included both bars since
some of the accesses can be eliminated by both algorithms.

The most spectacular results occur for124.m88ksim , which has substatial reductions in both loads
and stores. Only two functions are responsible for most of the reduction in memory traffic:alignd and
loadmem . Both these functions benefit from a fairly straightforward application of loop-invariant mem-
ory access removal. Althoughloadmem contains control-flow, the promoted variable is always accessed
unconditionally. The substantial reduction in memory loads ingsm e is also due to register promotion of
invariant memory accesses, in the hottest function,Calculation of the LTP parameters . This
function contains a very long loop body created using many C macros, which expand to access several
constant locations in a local array. The loop body contains control-flow, but all accesses to the small array
are unconditional. Finally, the substantial reduction of the number of stores forrasta is due to theFR4TR
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Figure 23: Percentage reduction in the number of dynamic load operations due to the application of the
memory PRE and register promotion optimizations.

function, which also benefits from unconditional register promotion.
The impact of these reductions on actual execution time depends highly on hardware support. The

performance impact modeled on Spatial Computation (described in [BG03, Bud03]) is shown in Figure 25.
Spatial Computation can be seen as an approximation for a very wide machine, but which is connected by
a bandwidth-limited network to a traditional memory system.

We model a relatively slow memory system, with a 4 cycles L1 cache hit time. Interestingly, the
improvement in running time is better if memory is faster (e.g., with a perfect memory system of 2 cycle
latency the gsme speed-up becomes 18%). This effect occurs because the cost of the removed L1 accesses
becomes a smallerfractionof total execution cost when memory latency increases.

The speed-ups range from a 1.1% slowdown for 183.equake, to a maximum speed-up of 14% for gsme.
There is a fairly good correlation of speed-up and the number of removed loads. The number of removed
stores seems to have very little impact on performance, indicating that the load-store queue contention
caused by stores is not a problem for performance (since stores complete asynchronously, they do not have
a direct impact on end-to-end performance). 5 programs have a performance improvement of more than
5%. Since most operations removed are relatively inexpensive, because they have good temporal locality,
the performance improvement is not very impressive. Register promotion alone causes a slight slow-down
for 4 programs, while being responsible for a speed-up of more than 1% for only 7 programs.
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Figure 24:Percentage reduction in the number of dynamic store operations due to the application of the
memory PRE and register promotion optimizations.

8 Related work

The canonical register promotion papers are by Steve Carr et al.: [CCK90, CK94]. Duesterwald et al. [DGS93]
describes a dataflow analysis for analyzing array references; the optimizations based on it are conservative:
only busy stores and available loads are removed; they notice that the redundant stores can be removed and
compensated by peeling the lastk loop iterations, as shown in Section 3.4. Lu and Cooper [LC97] study the
impact of powerful pointer analysis in C programs for register promotion. Sastry and Lu [SJ98] introduce
the idea of selective promotion for analyzable regions. None of these algorithms simultaneously handles
both inter-iteration dependences and control-flow in the way suggested in this paper. [SJ98, LCK+98] show
how to use SSA to facilitate register promotion. [LCK+98] also shows how PRE can be “dualized” to
handle the removal of redundant store operations.

Schemes that use hardware support for register promotion such as [PGM00, DO94, OG01] are radically
different from our proposal, which is software-only. Hybrid solutions, utilizing several of these techniques
combined with SIDE, can be devised.

Bod́ık et al. [BGS99] analyzes the effect of PRE on promoting loaded values and estimates the potential
improvements. The idea of predicating code for dynamic optimality was also advanced by Bodı́k [BG97],
and was applied for partial dead-code elimination. In fact, the latter paper can be seen as an application of
the SIDE framework to the dataflow problem of dead-code. Muchnick [Muc97] gives an example in which
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Figure 25:Percentage reduction in the execution time due to application of our memory optimizations.

a load can be lifted out of a loop because it occurs on both branches of anif statement (which would
optimize our Figure 20 directly as shown in Figure 21), but he doesn’t describe a general algorithm for
solving the problem optimally.

9 Conclusions

We have described a scalar promotion algorithm which eliminates all redundant loads and stores even in
the presence of conditional control flow. The key insight in our algorithm is that availability information,
traditionally computed only at compile-time, can be more precisely evaluated at run-time. We transform
memory accesses into scalar values and perform the loads only when the scalars do not already contain
the correct value, and the stores only when their value will not be overwritten. Our approach substantially
increases the number of instances when register promotion can be applied.

As the computational bandwidth of processors increases, such optimizations may become more advanta-
geous. In the case of register promotion, the benefit of removing memory operations sometimes outweighs
the increase in scalar computations to maintain the dataflow information; since the removed operations
tend to be inexpensive (i.e., they hit in the load-store queue or in the L1 cache), the resulting performance
improvements are relatively modest.
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