
���������
	���
����������
�������������� "!�#$��%'&(�
���)���
�+*�
'�,�,��	��,�����.-0/���12�)�� "�3���

4�53687:9:5�;=<0>@?BA,CEDGF,H0IKJLFMCONQPRCTSVUXW:6�AG9�H0Y[ZG\^]`_�aRb

N�Fdc3PRFd68e0FMCgf3HihGjGjkf

l�mon2p`l
q�p$r,sMpTtvuwr

xwy{z�|'|d}�|�~0��|v�����w������xwy����T��y��
���������T�v�������T}�}�|v���������d���{�����L�
� �������$�������vzQ� �����E�v���T

¡2¢�£{¤�¥�¦M§E¤
¨:©dª¬«k­L®{¯w°T­^±�ª¬«�²�³�°E´¬´¬®{³�±Lª¬°Eµ)°�¶'«^ª¸·¹²�­^±Lª¬³{´¬®{«�°Eµ�º
°�»d®�´v³�©M®�³$¼�ª¬µM½0ª¬µ�±L©d®:²T¾d«B±^­�²T³�±Lª¬°Tµw¿�­L®$À'µM®�º
®{µX±k¶�­�²�º
®�Á:°�­L¼�Â
¨:©dª¬«3¶�­�²�º
®�Á:°�­L¼
ªÃ«3ÄM«^®`»
¾XÅ
ÆT²�­Lª¬°EÄd«3±L®{³�©MµMªÃÇXÄM®�«�¶È°�­:±�²T³�¼�´¬ªÃµd½�±L©d®�«B±�²�±L®�ÉÊ«^¯'²�³{®�®�·v¯d´Ã°T«^ª¬°Eµ@¯v­L°E¾d´Ã®�º+±L©M²�±Ëª¬«¶�­L®`ÇXÄM®{µX±L´¸Å2®{µM³�°EÄMµX±L®�­L®{».ª¬µ�º
°�»d®�´�³�©M®�³$¼�ª¬µM½vÂ

���������
	���
�� ��|��w��}��^y{z��Ty��'������� � ���L�����dy`����|d���V�����,���������M�

� z������$�$�Èy�}��T��y�|d}�}��Ty��$� �O���K�$z��È�������G|v�$���v�$���Ê��� |v���w�T��|v~:�v���G�T���{���,y������
���
	���
������������������ �!��"$#�
�%$&��'&(��)�*+�,���.-��/%$���0���,1��2�������3�,� ��}È��� �v�d��4������.�,�T�$�,�65vz����67�����8Ë�����$z:9 �<;
���>=�?A@B)'�<*��'&C?D)+*+�/����-��/%$����"$EF�$1G�2���
�����
�*+%H�I#FJ�KMLN���2&>OB�.-QP�%H�2�RK:�'���+��%H�I#S@��'-'P���%$T�
���*'� ��}È��� �v�d�

4����w�{����U)� �'��}È����x'�$����y{z��[�v�V9 W ;

 6�X?F
������������'&
?D)�*+�,�Q��-��,%$���YEF�$1G�2���
�����[Z����\OB��&����R]P��'-Q^�%H�I#(K:���,#.�_=2�`���`�_=��6�.-'�+*a
�*'%H��#S=�?A@
)'�<*��'&b	�����cd%$-���?F�2���fe<*+%g*'� ��z�����z,�����,��}È��� �v�d�6U)� �'��}�����xw���������I8Ë�T�Ã��z��6h8�����b9 ��;

i��>=�?A@N)'�<*��'&aLj���'&�%$-'�����>?D)�*+�,�Q��-��,%$���_Z����>k\���Q&�lG���Q�bm3���+% 1n-'���,%$����� ��}È��� �v�d� � ��}��������T�6h8�����o9 i�;

����kp%q#<PDK:��r<���sm3���+% 1d-'���/%$���t�uZC	v�����/������J+�3�`���6*+%Hr��G=3e<*+�`���_*pw:*+%H�I#RLd���'&�%$-Q���`��?D)�*+�,�Q��-��,%$����� ��}È��� �v�d�
4��$���2�G������� � ��}��������E� h8�����o9 �;

W �xm3���+% 1n-'���/%$���y�uZ\kAe�)��+%$&b=3e<*+�����_*_zC��*��Q&{���|	���
��3�`�����Q�I����� �!��"+}d
�%$&.�'&(?D)�*+�,���.-��/%$���{EC�,1�� ��"
�
�����/� ��}È��� �v�v� ~��Tz�� �d���E� �¹����� U)�$|d�vz��¸xM�������$�G������� � z���|d����} �o9 ��;

�

� �������	��

�����	�����

� z���� �$�T�,|d���[�È� �8y�|v}�}��Ty`����|d� |�~
����� �������'��|v���$}�� ������}����$z�� � �v������y�}��E��|v��y�|d���M�$�T�$���w�v����}�� �V�d��� �w� �
�������$�{�vy��$��|v�g�����,���������M� ��� �@|��w�T}�y{z��Ty��'�������
��� ��|v���M����������������}����B�v��� �w� �g���,�L�����dy`�$��|v�O�$� �����T�@�T�M��9 �<;
��� x �v� ���v�$� � � �����$�{�vy��$��|v������� ���������T�d�����$�������u7 � ��� �O� �dy{z������p7��T�v�$������� � �Ty{z������M���E�p9 W ;
 6��� �w��|v�[�X��� � � �,�L�����dy`�$��|v����� ���������T�d��~ |v� ��|��w�T}3��z��Ty��'������7Q�v�$�d�)xM�{�X���2x'���vy��T�����$�����gx �v�
���v�$� ����|v�	����y�� � ���v}��w�$����9 ��;

i�� x �v� ���v�$� � � ��� �w�Èy����$� � �,�L�����dy`�$��|v�O~ |v���¹�������������C8Ë�������,y����$��|v�{9 i�;
��� � ���vzY7��T�v�T}[8Ë����� �,yT�X����|d�O|v~Ë��|v�M���$|d} �^�d�������$���v��x'�w�L�����[�����$����� � ��� �w�Èy����$� � �����$�{�vy��$��|v�{9 �;
W � 8Ë����� �Gy��X����|d�8|�~R� �'����� �ox'�w���$�T���"!��d��� � |v� ��|v���M����������������}����u4���� �w� � � �����$�{�vy��$��|v�#��� �������
�����M�\9 ��;

� z�� y�|d}�}��Ty��$��|v�@���:���T�v�M�Ë~ |v�i�$�������v�$��$������
��� �.y�|v���������������$z����X������|v���:�������$|M�vy{z��E���$|��$z��È�Ë����|v� �
}��T� �$z,�X�%������� �����v�T}�|d�,� �g��� |v�����d�$|d���g���K�$z��
}È�v�����$z������
�d�T�v��� �w� �������v�T�[|�~:�������'��|d���&��|d� �[|d�
�$z��È���$����'L�Ty��
�M� |��$z����
���T�$�T���{y{z �d�$|d�����)�����G�T�v������� �$z��[���$�$�Èy�}��T����z����[�$��}��v�E� �]� z��[�v���L�����dy`����|d���
�$� ���������T�d��~ ���v������|v� �"���v� �����v�T}�|d�,� ���'�
U)�����$z����[���[��z����E����}��)(+*-, �0���
�w�T�0��z������v��� KM� -'���q%�. ��"
�,%$���(EC�'&�
�-��/%$���3��� ��z�|d��� �w�E�$y��$���w����|d�O|v~���z����/��|v� �g�v���,�E���{����� 910 ;`�

2 354%687:9
;<���	=>���	�����@?BA:6 CD��6FEG6F�H�JI��	=>EG6 KL�M�	N

4����d����� ��|��w��}�O �v�
� � ����|v�G���$�L�QP��:�$z�� �������$�{�vy��$��|v��RX�$� �����T�@�T�M�2~ �{��������|v� � �T��y��v���$��}����$�E�
�R�v�$��|v�,�@�v�w�$|d�[�X�$�Èy ��}��v|d�$���$z��[�.~ |v� �,�
�w�����o��� �������$�{�vy��$� �o��|��w��}TSO ���Ã��z �$z�� ~ |d}�}�|U������� ����|
���$|d�,�T�������E��� �������T�VSO y�|v�M�{������� �T��|v���dz ���w~ |d�$�[���$��|v� ~ |v��y{z��Ty��'��������z����$z��T�DOXWYZP ���
���$�Ty�|v�
���
SO��È�3�v�Q�$�[��}�}d�d���G|d��������}��v�T�$|�y{z��Ey��'��������z����$z����[SO\WYVP yT�����G� �w|d���i��][y����T�M�$}�� �<� z�����~ ���v������|v� �
������� �����,|d���{���M�0��|'|v},~ |v�i�{�vy��'}��������$z�� �'��|U��� �L�{�X�����B���w��}�|d�$��|d�[���$|d��}���� ���O�@|��w�T}Gy{z��Ty��'����� �.� z��
~ ���v�@�^��|d� �[z,�v��~ |v��� �L�������T���v��~ |d}�}�|U� ���
��� 4������T�����$�
���K�����Ã�����v}Q���,�L�����dy`����| ����}_SO �
��� ���$�
��| ����}Qy{z��Ey��'�����.�$|[y{z��Ey��`��z����$z��T�aSObWYcP � �B~3�d�T�T�w�$���$����� � ���
d �Ê� � � � ��O\WYePv� �
 6� ��z��Ty��f��z����$z��T�g��z�� y�|v���M�$�T�$����������}�� y����+�,� �����2��}È�X��� � |d���$z�� y�|d��y�������� ��| ����} � �B~��d�T�T�
�$���$�����o~ � 7�x	d � � � � � �gOihW YVPv� �

i�� �����,���jSO �����
�K�d|2��| �L����� ���
� � ��}��v|v�����$z������ �$z�����~ �{��������|v� �@�@|��w�T}�y{z��Ty��w����� �L����� � � �������$�
���T�$���T��|�~��@|��w�T}��kSOLl<m�n^n�n�m�SOQo
� � � � ~ |v���v� �v�$���Ã�����v�$� � � � 7 ~ |d�$�.��}È�)p���qsr�t 9 *�n�n^nvuxw ��; nfSO#y&W YzpV{ SO#y�|B}"W Yzp¹�:SO#y%hY~SO#y�|�}
���
��SOJo�W Y8P:{�O�WY8P �[� z��@���T�$���T��|�~i��|��w��}È��SOLl�m�n^n�n^m)SOQo@�È� �w�������d� � �'���w���,�������O��� �������$�È��}
-Q���6*����+r<���,%Hr�� �.)+*+�/����-��,%$��� ~ ����y`����|d�������
� �$�T�,�E�X�$� �w}��K�����,�������g���
� y�|v�,���T�$�X�X�����d�2���,�L�����dy`�$��|v�,���,�����
~ |v�����v}�}��v�G�����2���,�L�����dy`�$��|v�,���$z,�X�¹|d��}��K��� � �$�{���,�����$��|v��� �$|g�$z��.�@|��w�T} �[� z��È���L�'�G�.|v~0�������$�{�vy��$��|v�
y����g�$�E����}������[~Ê�v}��$�����T�d���$���v�T�T��� � � � �w�$��������|d���0y�|v���M����������������}��T�T�����w����|v����� ~Ê��}È�$� �,|M�����$���v�E�Q� ��� |����
�$z���� ���K�$z��@��|d������yT�v�$��SO o YzO ����z��Èy{z ������}����E���$z,�X���$z���������|wy��E�$���È��y�|d�@��}����$� �

� z����$�Ey{z������d���T� �w�E�$y��$���,� � ��� �$z��g����� �v������y�}��E� �w���G�T�
~ �$|d� �T�dy{z8|��$z����
���_� % � �$z������R����z����
�,�T��~ |d�$� �T�dy{z[|�~��$z�� ~ |v�������$���,�0|v~��$z���~ ���v�@�^��|d� �k�v�v�
�L� %H% � ��z��X���L�'�,�¹|�~�y�|d��y�������� ��| ����}È�i��z����
y����g�,�
������}���� �[�$| � ~3��� �k� �����������[�$�������v�$��$��E�i��z��T�$� �w���k�������,y��T� ��� z����v������y�}��a9 ��; ���0�$z���|v��}��[|d���
�$z������d�$�$�����T��� z'�'����� �����w��|v�[�X��|v������z��Èy{z ����y�}��
�w�E� �w����y��������K�v�
� y�|v�M�$���'��|v�,���w�'���v����yT�.�v�
�

�

z�����y�� ���T��y������G�T�����g�����,���Ã�����^�L�{�X�����$�w�L����� ��� z��¹|v�$z��T� ���v���v���������¹�$z�������z��)y�|v�,y������$����|��w��}kz��d�
� �,���Ã�����^�L�{�X��� �w�T��y��������$��|v� �

� z��
���v��}��������M�$��|v��� �$z����$�����[�������E��� �B��� � ,,�v�
��� !���� ,,�$���{� |�~i�������$�T�T�	��z��Èy{z �����������,|d���{���M�
��}��������M���������$z������������������M�@�$�Ty{z������M�����v����}���� � �'�o�G|���z 9 �<; �v�
� 9 W ;`� h�z���}��K��z��T�$�K�$�����[�[�����
~ |v�����v}�}�� �w������� ����� �$z��@���$�$�Èy�}��T� �$z��T���$��}��v�E���g���2���w��}È����� �$z��T�"z�����������~ |v�����v}�}�� � h�z���� �@|��w�T} �
y{z��Ty��'����� SO#yi|X�d���%P ���T�$��}Ã�{����� � y�|d���M�$�T�$���w�v����}�����z��X�)y�������|����G�.�$���.��}È�X�$� � |v�K�$z��.y�|d��y��������
�@|��w�T}sO �<�������v�d�0�$z��¹�$� ���������T�d�����$|wy��T���Ë�$|2��}����������X��� �$z�����y�|v���d����������������}��v�d� � � � �+���%�����M�i��|
�v�������{�X�$�.�[�$� ����� ����| ����}[SO#y�|�}��$��y{z �$z,�X���$z��È�¹y�|v���M����������������}��2y��v����|����,�@��������|��w��y�� � �3� z��
�$�E�v�$|v�.�$z����0�$z���y�|d���M�$���������v�@��}�� yT������|����,���$���2��}È�X��� ��|v� O �È�Ë�$z,�X�0�������������T�$���M�{�Ë�)�$�{�vy����$z����
����y�}�� �w�T�:����|
y�|d�����Ey��w�����d���������$�{�vy��Ë�������$�E�����	m	�
� |B}0��z��X�iz,�R�v�����$�{�����$���$��|v�@�,�������T���@�$z��T�=��� SO#yL�
���w�0��|v�i��� O �.� z���� �¹�T��� �B���
� ,d�L�{�X�$�E�
���(�������$z��¹�����i|�~�y�|d��y����������������$�E�:�$z����0�������������$� �����
�w���
� � �v�
� �����.���T�dy{z�����}��2�'�È�K���X��z����$z������$���$�È�L~ ����z��[y�|d���M�$���������v�@��}�� �s� |��������v}��.�$�{�����$�Ã����|d� ~ ��|v�
����y����K���T�vy{zK�[y�|d��y����������������$�
����� � |B} �wz�����y��)�$z��
�,������� �¹�T��� �V�T�
� , ��� z���� ����� ,��L�{�X�$�E��� �����
�$z��2�$��� |v~i�L�{�X�$�E������� � �$z�����y���� }��T���K�$| y�|d��y��������
�L�{�X�$�E������� � |B} � !�� �����������$��|v�Q���������GY�� �
� z��[�$�E�v�$|v� �$z������$z�� y�|v���d����������������}��[�$���$�È� �,�T�jSO y �È�
��z��X����� ���
��� �����[�������$� �8���
�w�T�
�$z��
�$�v�@�@�������$�{�vy��¹�����X����� � �2� z��.�$� �����T�@�T�M�¹����|wy�� �����$�.��� �,|v�$zN9 �<; ��� � 9 W ; ���$�K�$|K���T�����{�X���
�$z��T�$�
����|[�$���������M�$| �w���k�������M� �������$�{�vy����������$�E���'��zM�,����}����������X�������.��z���y�|d���M�$�T�$���w�v����}�� �

� z��0���Ty{z������M�������(9 ��; ����}������3�T�dy{z2�������$�{�vy��3�������$����}�|v������z���y�|d���M�$���������v�@��}��i���M�$|¹����|��������$�{�vy��
�L�{�X�$�E���M|v������z��X��y�|v�����T�$�,|d�
���Ë��|2��z��)y�|v�M�����'��|d���0�������$�T�0�$z,�X��y����O�,�����T�vy{z�� �[��� �[�$z��¹|v�$z��T��|d���
�$|��$z��)y�|v�M�$���'��|v�,���L�{�X�$�E���$z�����y��v����|����G�
�$�E�vy{z�� �O�v}�|d���.�$z���y�|v���M�$�T�$����������}��¹�����$z �

� z����$� ���������T�d�:���Ty{z������M���T�:���Y9 ��; �69 i�; �v�
�(9 �; �������v}�}w�,�v�$� �.|v�����������v}��w�$���3|�~ky�|d�����Èy`�i�v�{����z��
�$z����0������������}��i�'�
�$z�� x �v� �$|v}��v��� ��z��T�2��z���~ |v���2��}��¹���
���*����/%g*H1d��)��!����� z����������X����� �,����}������,�L�{����y��
y�|v�����T�$�,|d�
���k��|¹��~ |d�$�.��}È���$z,�X�3y�|v�U'L|d���,����z����v���L�����dy`��y�|v���M����������������}��M�����$z���z���y�|v�,y������$�0�@|��w�T} �
h�z������$z���y�|v���M�$�T�$����������}��KyT������|v�@�G�������2��}����$� � |v���$z���y�|v��y��$���$�g�[�dy{z������v�:�$z����@~ |d�$�.��}�� ���
�������X�$�È� �,����}�� � !��O�����v}�� $������@�$z��2y�|d�����Èy`� �v�{����zKy�|v���$�E���G|v�
�������.�$|���z�� �w�T�$���X�X�$��|v� |v~���z��
�����w�L�
y�}È�����$�v�X��z����@� �w���M�$��~ �.�$z���y�}��v���$�T�i�v�
�@�R�v�$�È����}��E�:�$z�����y�|d�M�$���������$� �.��|)�$z���y�|v�M�$�{������y��$��|v���v�v�
�@���$�
�$z��È�����w~ |v���[�X�$��|v�O�$|����������)�$z��
��|��w��} �
� z������$�$�Èy�}��T�@���,y�}��
�w����|d���O���'�G�������@�T�M����}����T�$��}�����y�|d�@�,��������� �$z�� ������z�|���� �i� �d|'| � ���T�v�$�����
~ |v� ��z��2�$��y�y��T��� |v~:�E�vy{z �v}��d|v���Ã��z�� �Ê|��$z���� ��z���� ��z�����|��{��}Q������������� �$���@�<���È����z��.�$��$T��|�~:��z��2}È�v���
�������$�{�vy��$� �K��|��w��}8SOQo���� �K�$z����'���.�,�T�DuK|v~:���^�M������� � ���$���{�X����|d������| �$�E�vy{zK�$z������@|��w�T} � ��}��E����}��
�$z����$��$T�)|�~ SOQo�z��T�R�'��}�� �w�T�,�T�
����|d��O ���
��P �

Af6 � 6F�	6F���s6B;

! Â�"�²�µM¼T²$#&%3©'²�ÄM©'²�µ�')(Q»dº¹ÄMµM»�%3´Ã²�­L¼R®
'+*R²�º
®{«-,�Äd¼�ÄM´Ã².'./v²Tº
ª¸­
/v²T¯v­�².'10�®{´¬º�Äd±32Q®{ª¸±L©�'�²�µ'»�4�°Eµd½�5�²Tµd½dÂ
6 Äd±L°Eº�²�±L®`»
²T¾d«B±^­�²T³�±Lª¬°Tµ.­L®�ÀMµM®{º
®{µX±Q¶È°�­Ëº
°�»d®{´M³$©d®{³$¼�ª¬µM½ ´Ã²�­L½T®�«B±�²�±L®�«^¯'²�³{®{«:Äd«^ªÃµd½¹«L²�±Ë¾'²�«^®`»�³{°Eµ.7'ª¬³�±²�µ'²T´¸Åv«^ª¬«{Â98Vµ 6 ²�½R²E²�­�»�:<; =�®`²�­^Å1',®`»vª¬±L°�­>'@?BADC.EGFIH�JGK+FMLNENKPOQFSRTAQKPO
UWV AQK	X>LNEYLNKPZGL�AQK�?BAQEG[�O
U]\�LNFIH+A>^Q_�RIK
V AQ[a`PC)FMLNEcbed�RT^1Lf^hgiLN_YRkjQKmle?@\�VBdag9n oDp>q>'d´Ãµd³{«	'r"k°T­^±L´Ã²TµM»s't:�­L®�½E°Eµs'ru�°�Æ�vDw
w
v�Â

vXÂ�(ËÂBxOÂ�%3´�²�­L¼R®
'B:¹Âsy�­LÄdº�¾w®�­L½.'�/�Ât*E©M².'tz�Â{=,Ä�'�²�µ'»90¹Ât2Q®{ª¸±L©,Â|%3°EÄMµX±L®�­L®$·M²�º
¯M´¬®�ÉÊ½EÄdªÃ»d®`»[²�¾M«B±^­�²T³$±LªÃ°Tµ­L®�ÀMµM®{º
®�µ�±`ÂP8Vµh(ËÂ 6 Â)(�º
®�­L«^°Tµ�²Tµ'» 6 Â)"kÂ./vª¬«B±L´Ã².'R®`»dª¸±L°T­L«	'+}&EfA>Z$~ ! vQ�e��JGK+FTUk~@V AQK	X>LNEYLNKPZGL|ADK�V AQ[a`PC)FMLNE
d�RT^�LY^��rLNENR �-ZYOQFSRTAQK�lYVBd|�an o�oNq>'dÆR°E´¬ÄMº
® !>���Q� °T¶3��LfZcFM~��|ADFMLN_�ReK�V AQ[W`t~��PZcR�~P/�¯d­Lª¬µM½T®�­^É�2�®�­L´Ã²�½+'PvQw
wQwvÂ

� Â�(Q»dº¹ÄMµ'»�%3´Ã²�­L¼E®
't:�­LµM²�y�­LÄMº¹¾w®�­L½+'+x@Äv­�²T´¬ªÃ»d©M²�­�¨k²T´¬ÄM¯dÄd­>'d²TµM»�4�°TµM½i5�²Tµd½dÂ@0�ªÃ½T©@´¬®{ÆR®�´,ÆR®$­Lª¬ÀM³`²�±Lª¬°Tµ°�¶�³{°EµX±^­L°T´�ª¬µX±L®{µM«^ª¬ÆR®.«BÅv«B±L®{º
«
ÄM«^ª¬µM½O¯d­L®`»vª¬³`²�±L®[²�¾M«B±^­�²�³�±Lª¬°Eµ,Â�8 µ�?�AQEN[�O
U-\�LNFIH+A>^Q_9OQK{^�\�A>^1LcU _WX	AQE
V A>^1LN_YRkjQK�le\��3\m��V��3g��hn p)o�oQ�	q>'Px@°EµX±a/d²�ªÃµX±^É�x@ª¬³$©d®{´S'{�d­�²�µM³{®Q'P*EÄdµM®|vDw
w � Â

�vÂ�(Q»dº¹ÄMµ'»�%3´Ã²�­L¼R®Q'
x@Äd­�²�´¬ª�»v©'²�­�¨k²�´¬ÄM¯MÄv­>'Ë²�µ'»�4�°EµM½�5 ²Tµd½dÂ�/d²�±.¾M²T«^®`»8¯v­L®`»dª¬³`²�±L® ²T¾d«B±^­�²T³�±Lª¬°Eµ8¶�°T­©M²�­�»vÁ:²�­L® ÆR®�­Lª¸ÀM³`²�±Lª¬°Eµ�Â@8Vµ��.dW��n oQ�
'P/�ÂPx�²�­L½T©M®�­Lª¸±�²�=�ªÃ½TÄd­L®�É-"k°T­^±L°�À'µM°��S8 ±�²T´¸År�N'rx�²{Å9vDw
w � Â

%:²�±L®�½E°T­^Å � v�� � ��� � � �
\�A>^1LcU »dª¬«^³�­L®$±L®�À'µMª¸±L®�ÉÊ«B±�²�±L® »dª¬«^³�­L®$±L® ÀMµMª¸±L®�ÉÊ«B±�²�±L® »dª¬«^³�­L®$±L®�¿�³{°TµX±LªÃµ�Äd°EÄM«
d��c_YFSEfO�ZcFSRSAQK �0®{¯M´Ã²T³�ªÃµd½�"�­L®`»dª¬³`²�±L®{« x�²T¼�ª¬µM½
ÆT²�­LªÃ²�¾M´¬®{« %3°EµX±Lª¬µ�ÄM°TÄM«Ë«B±�²�±L®$É «^¯M²T³{®Áiª¸±L©	�3°X°T´¬®`²Tµ
 ª¬µvÆ�ª¬«^ª¬¾M´¬®
; ''ª Â ®EÂ °T¶k®`²T³�©[»dª¬«^³�­L®$±L®�«B±�²�±L®ÆT²�­LªÃ²T¾d´Ã®�«{Â ­L®{º
°�Æ�ª¬µM½¹±L©d®�´¬°E½Eª¬³ � ´¬°X³`²�±Lª¬°Tµ{�

±L©'²�±�»d®�ÀMµM®{«:±L©d®{ª¸­ ª¬«i¯'²�­^±Lª¸±Lª¬°Eµd®`»²T´¬´¬°`Á:®`»@±^­�²�µM«^ª¸±Lª¬°Eµd«	' ª¬µX±L°�¯w°E´¸Åv©M®{»v­�²vÂ²TµM».­L®�¶�®�­^­Lª¬µM½�±L°
±L©M®�º ²T«Ë¶�­L®{®�ª¬µd¯MÄd±L«{Â

VBHrLfZ��DReK1jhFIHrL :
�-4�4�« / 6 ¨ °�ÆR®�­^É ²T¯d¯d­L°`·vª¬º�²�±Lª¬°Eµd«
ZYAQC)KrFMLNEfL���OQ[W`{UkL °T¶k³{°EµX±Lª¬µ�ÄM°EÄd«»vÅvµM²Tº
ª¬³{«
�
Le� KtLN[�LNKrF %3°Eº
¯dÄd±Lª¬µM½�Áiª¸±L© /d²�º
¯M´¬ª¬µM½�±L©M®�«^®�±0°T¶ /v¯d´¬ª¬±i´¬°X³`²�±Lª¬°EµM«

:
�-4�4�«:±L©M®�¶�ÄM´¬´G«^®�± 4�®`²T»vÉÊ®{µM»@²TµM»��:²T» ²T´¬°TµM½)±L©M®°T¶�4�®`²E»�ÉÊ®{µ'».²Tµ'» «B±�²�±L®�«�²�µ'»2ÀMµ'»vªÃµd½)² ³{°TÄMµX±L®�­L®�·d²Tº
¯d´¬®�¾'²�«^®`»
�:²T»@«B±�²�±L®{«0²�µ'» «^º�²T´¬´�«^®�±0°T¶�ÆT²�­LªÃ²T¾d´¬®{« °Eµ.³{°Eº
¯dÄd±L®`»«^®{¯M²�­�²�±Lª¬µd½�±L©M®{º�Â ±L©'²�±0«^®{¯'²�­�²�±L®�±L©M®�º�Â °�ÆR®�­^É ²T¯d¯d­L°`·vª¬º�²�±Lª¬°Eµd«°T¶G­L®`²T³�©'²�¾M´¬® «B±�²�±L®{«{Â

%:²�±L®{½T°T­^Å � ! � � ��� � � �
\�A>^1LcU 4�ª¬«^³�­L®�±L®�ÀMµMª¸±L®�ÉÊ«B±�²�±L® 4�ª¬«^³�­L®�±L®�ÀMµMª¸±L®�ÉÊ«B±�²�±L® 4�ª¬«^³�­L®$±L®�À'µMª¸±L®�ÉÊ«B±�²�±L®»v®{«^³�­Lª¬¾Mª¬µM½�%3°EµX±^­L°E´

8 µ�±L®�µM«^ª¬ÆR®|/XÅd«B±L®�º
«
d��c_YFSEfO�ZcFSRTADK /d²�º
®�²T«�� ��� "�­L®`»dª¬³`²�±L® ²T¾M«B±^­�²�³�±Lª¬°Eµ "�­L®`»dª¬³`²�±L®�²T¾M«B±^­�²�³�±Lª¬°Eµ
VBHrLfZ��DReK)j�FIHrL / 6 ¨ / 6 ¨ / 6 ¨
ZYAQC)KrFMLNEYL���OD[W`{UkL
��Le�@KtLN[�LNKrF 8B»v®{µX±Lª¸¶�Åvª¬µM½�ÆT²�­LªÃ²�¾M´¬®{« 8B»v®{µX±Lª¸¶�Åvª¬µM½�ÆT²�­LªÃ²�¾M´¬®{« /v²Tº
®�²�«�� ���±L©'²�±�»d®`»vÄM³{®�±L©d® ³{°�­^­L®{«^¯w°EµM»dª¬µM½�±L°®{º
¯v±VÅ�³{´Ã²TÄd«^®�ª¬µ@±L©M® ¯d­L®{»dª¬³`²�±L®�«i±L©M²�±0»v®`»dÄd³{®

/ 6 ¨8¾'²�«^®`»@³�©M®{³�¼�°T¶ ±L©M®�®{º
¯d± Å�³{´Ã²TÄM«^®�ª¬µ±L©M®�³�°EÄMµX±L®�­L®$·M²�º
¯M´¬®EÂ ±L©M®�/ 6 ¨8¾'²T«^®{»@³$©d®{³�¼°T¶G±L©M®�³{°TÄMµX±L®�­L®�·d²�º
¯M´¬®EÂ
����������� 6 ©Mª¬½E©vÉ ´¬®{ÆE®{´i³{°Eº
¯M²�­Lª¬«^°Eµ °T¶�±L©d®@«^ª¸· ²T¯d¯d­L°E²T³�©M®{«
Áiª¸±L© ­L®�«^¯w®{³�±
±L°O±L©d®@ÆT²�­Lª¬°EÄd«
«B±�²T½T®{«�°T¶�±L©d®²�¾M«B±^­�²�³�±Lª¬°Eµg¿�­L®�ÀMµM®{º
®�µ�±3¶�­�²Tº
®$Á:°T­L¼

i

� Â�(ËÂ xOÂ3%3´�²�­L¼R®
' 6 Â]�M®{©dµM¼R®$­>'��kÂ�0�²�µ�' �0Â],�­L°E½T©�' :¹Â /X±LÄd­L«^¾w®�­L½.'�²TµM»mxOÂ�¨:©M®�°E¾'²�´Ã»�Â�2�®�­Lª¸ÀM³`²�±Lª¬°Eµ�°�¶©XÅv¾d­LªÃ» «BÅv«B±L®{º
«�¾'²T«^®{» °Eµ8³�°EÄMµX±L®�­L®$·M²�º
¯M´¬®�ÉÊ½EÄdªÃ»d®`» ²T¾d«B±^­�²T³�±Lª¬°Eµ ­L®�À'µd®{º
®{µX±`Â�8 µ��.diVBdW�r'�ÆR°E´¬Ädº
®
v�� !�� °�¶3��� V]�MÂP/v¯v­LªÃµd½E®�­>'PvQwQw � Â

��Â�(ËÂ xOÂ+%3´�²�­L¼R®
' 6 Â.y�ÄM¯v±�².'1*vÂ),�ÄM¼�ÄM´Ã².'R²TµM»h:¹Â./�±^­Lª¬³�©Mº�²Tµ�Âs/ 6 ¨ ¾'²T«^®{»2²�¾M«B±^­�²�³�±Lª¬°Eµ�ÉG­L®�ÀMµM®{º
®{µX±QÄM«^ª¬µd½
8�=B" ²TµM»)º�²T³�©Mª¬µM®0´¬®`²�­LµdªÃµd½�±L®�³$©dµMªÃÇXÄM®{«{Âs8Vµ�(ËÂ ��­Lª¬µM¼�«^º�²�²TµM»�,)Â y¹Â.=,²�­L«^®{µs'v®`»dª¸±L°T­L«	'+}&EfA>Z$~ ! � �S� JGK+FTUk~
V AQK	X>LNEYLNKPZGL�AQK�V AQ[W`rC.FMLNE�d�RT^�LY^��rLNEGR �-ZYOQFSRTADK lYVBd|�an oDp>q>'GÆR°E´¬ÄMº
®�vD��wD� °T¶a��� V]�r',¯'²�½E®{« v�� ��� v�� � '
%3°T¯w®{µM©M²T½E®�µ�'P4�®{µMº�²�­L¼t'.*TÄM´¸Å9vDw
w
v�Ât/�¯d­Lª¬µM½T®�­^É�2�®$­L´�²�½dÂ

�XÂ
� Âr,�Äv­L«^©'²�µ,Â|V AQ[W`rC.FMLNE OQRT^�LY^��QLNEGR �-ZYOQFSRTADK�A XiZYA>AQEf^DReK{OQFSRIK)ji`PE A>ZGLN_G_cLN_LÂ�"�­LªÃµd³{®�±L°Tµ
	�µMª¬ÆR®$­L«^ª¬± Å�"�­L®{«^«	'
!���� �vÂ

�

Counterexample-guided Abstraction Refinement
�

Edmund Clarke
�
, Orna Grumberg

�
, Somesh Jha

�
, Yuan Lu

�
, and Helmut Veith

��� �

�
Carnegie Mellon University, Pittsburgh, USA

�
Technion, Haifa, Israel�

Vienna University of Technology, Austria

Abstract. We present an automatic iterative abstraction-refinement methodol-
ogy in which the initial abstract model is generated by an automatic analysis of
the control structures in the program to be verified. Abstract models may admit
erroneous (or “spurious”) counterexamples. We devise new symbolic techniques
which analyze such counterexamples and refine the abstract model correspond-
ingly. The refinement algorithm keeps the size of the abstract state space small
due to the use of abstraction functions which distinguish many degrees of abstrac-
tion for each program variable. We describe an implementation of our method-
ology in NuSMV. Practical experiments including a large Fujitsu IP core design
with about 500 latches and 10000 lines of SMV code confirm the effectiveness of
our approach.

1 Introduction

The state explosion problem remains a major hurdle in applying model checking to
large industrial designs. Abstraction is certainly the most important technique for han-
dling this problem. In fact, it is essential for verifying designs of industrial complex-
ity. Currently, abstraction is typically a manual process, often requiring considerable
creativity. In order for model checking to be used more widely in industry, automatic
techniques are needed for generating abstractions. In this paper, we describe an auto-
matic abstraction technique for ACTL

	
specifications which is based on an analysis of

the structure of formulas appearing in the program (

���
�� 	

is a fragment of
��
�� 	

which only allows universal quantification over paths). In general, our technique com-
putes an upper approximation of the original program. Thus, when a specification is
true in the abstract model, it will also be true in the concrete design. However, if the
specification is false in the abstract model, the counterexample may be the result of
some behavior in the approximation which is not present in the original model. When
this happens, it is necessary to refine the abstraction so that the behavior which caused
the erroneous counterexample is eliminated. The main contribution of this paper is an
efficient automatic refinement technique which uses information obtained from erro-
neous counterexamples. The refinement algorithm keeps the size of the abstract state
�

This research is sponsored by the Semiconductor Research Corporation (SRC) under Contract
No. 97-DJ-294, the National Science Foundation (NSF) under Grant No. CCR-9505472, and
the Max Kade Foundation. One of the authors is also supported by Austrian Science Fund
Project N Z29-INF. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of SRC, NSF, or
the United States Government.

space small due to the use of abstraction functions which distinguish many degrees of
abstraction for each program variable. Practical experiments including a large Fujitsu
IP core design with about 500 latches and 10000 lines of SMV code confirm the com-
petitiveness of our implementation. Although our current implementation is based on
NuSMV, it is in principle not limited to the input language of SMV and can be applied
to other languages.

Our paper follows the general framework established by Clarke, Grumberg, and
Long [10]. We assume that the reader has some familiarity with that framework. In
our methodology, atomic formulas are automatically extracted from the program that
describes the model. The atomic formulas are similar to the predicates used for abstrac-
tion by Graf and Saidi [13] and later in [11, 20]. However, instead of using the atomic
formulas to generate an abstract global transition system, we use them to construct an
explicit abstraction function. The abstraction function preserves logical relationships
among the atomic formulas instead of treating them as independent propositions. The
initial abstract model is constructed by adapting the existential abstraction techniques
proposed in [8, 10] to our framework. Then, a traditional model checker is used to de-
termine whether

���
�� 	
properties hold in the abstract model. If the answer is yes,

then the concrete model also satisfies the property. If the answer is no, then the model
checker generates a counterexample. Since the abstract model has more behaviors than
the concrete one, the abstract counterexample might not be valid. We say that such a
counterexample is spurious. Such abstraction techniques are also known as false nega-
tive techniques.

In our methodology, we provide a new symbolic algorithm to determine whether
an abstract counterexample is spurious. If the counterexample is not spurious, we re-
port it to the user and stop. If the counterexample is spurious, the abstraction function
must be refined to eliminate it. In our methodology, we identify the shortest prefix of
the abstract counterexample that does not correspond to an actual trace in the concrete
model. The last abstract state in this prefix is split into less abstract states so that the
spurious counterexample is eliminated. Thus, a more refined abstraction function is ob-
tained. Note that there may be many ways of splitting the abstract state; each determines
a different refinement of the abstraction function. It is desirable to obtain the coarsest
refinement which eliminates the counterexample because this corresponds to the small-
est abstract model that is suitable for verification. We prove, however, that finding the
coarsest refinement is NP-hard. Because of this, we use a polynomial-time algorithm
which gives a suboptimal but sufficiently good refinement of the abstraction function.
The applicability of our heuristic algorithm is confirmed by our experiments. Using the
refined abstraction function obtained in this manner, a new abstract model is built and
the entire process is repeated. Our methodology is complete for the fragment of

���
�� 	

which has counterexamples that are either paths or loops, i.e., we are guaranteed to ei-
ther find a valid counterexample or prove that the system satisfies the desired property.
In principle, our methodology can be extended to all of

���
�� 	
.

Using counterexamples to refine abstract models has been investigated by a num-
ber of other researchers beginning with the localization reduction of Kurshan [14]. He
models a concurrent system as a composition of � -processes � ����������� ��� (� -processes
are described in detail in [14]). The localization reduction is an iterative technique that

starts with a small subset of relevant � -processes that are topologically close to the
specification in the variable dependency graph. All other program variables are ab-
stracted away with nondeterministic assignments. If the counterexample is found to be
spurious, additional variables are added to eliminate the counterexample. The heuris-
tic for selecting these variables also uses information from the variable dependency
graph. Note that the localization reduction either leaves a variable unchanged or re-
places it by a nondeterministic assignment. A similar approach has been described by
Balarin in [2, 15]. In our approach, the abstraction functions exploit logical relation-
ships among variables appearing in atomic formulas that occur in the control structure
of the program. Moreover, the way we use abstraction functions makes it possible to
distinguish many degrees of abstraction for each variable. Therefore, in the refinement
step only very small and local changes to the abstraction functions are necessary and
the abstract model remains comparatively small.

Another refinement technique has recently been proposed by Lind-Nielson and An-
dersen [17]. Their model checker uses upper and lower approximations in order to han-
dle all of CTL. Their approximation techniques enable them to avoid rechecking the
entire model after each refinement step while guaranteeing completeness. As in [2, 14]
the variable dependency graph is used both to obtain the initial abstraction and in the
refinement process. Variable abstraction is also performed in a similar manner. There-
fore, our abstraction-refinement methodology relates to their technique in essentially
the same way as it relates to the classical localization reduction.

A number of other papers [16, 18, 19] have proposed abstraction-refinement tech-
niques for CTL model checking. However, these papers do not use counterexamples
to refine the abstraction. We believe that the methods described in these papers are or-
thogonal to our technique and may even be combined with ours in order to achieve
better performance. A recent technique proposed by Govindaraju and Dill [12] may be
a starting point in this direction, since it also tries to identify the first spurious state in
an abstract counterexample. It randomly chooses a concrete state corresponding to the
first spurious state and tries to construct a real counterexample starting with the image
of this state under the transition relation. The paper only talks about safety properties
and path counterexamples. It does not describe how to check liveness properties with
cyclic counterexamples. Furthermore, our method does not use random choice to ex-
tend the counterexample; instead it analyzes the cause of the spurious counterexample
and uses this information to guide the refinement process. A more detailed comparison
with related work will be given in the full version

Summarizing, our technique has a number of advantages over previous work:

(i) The technique is complete for an important fragment of ACTL
	

.
(ii) The initial abstraction and the refinement steps are efficient and entirely auto-

matic. All algorithms are symbolic.
(iii) In comparison to methods like the localization reduction, we distinguish more

degrees of abstraction for each variable. Thus, the changes in the refinement are
potentially finer in our approach.

(iv) The refinement procedure is guaranteed to eliminate spurious counterexamples
while keeping the state space of the abstract model small.

We have implemented our new methodology in NuSMV [6] and applied it to a number
of benchmark designs [6]. In addition we have used it to debug a large IP core being de-
veloped at Fujitsu [1]. The design has about 350 symbolic variables which correspond
to about 500 latches. Before using our methodology, we implemented the cone of influ-
ence reduction [8] in NuSMV to enhance its ability to check large models. Neither our
enhanced version of NuSMV nor the recent version of SMV developed by Yang [23]
were able to verify the Fujitsu IP core design. However, by using our new technique, we
were able to find a subtle error in the design. Our program automatically abstracted 144
symbolic variables and performed three refinement steps. Currently, we are evaluating
the methodology on other complex industrial designs.

The paper is organized as follows: Section 2 gives the basic definitions and termi-
nology used throughout the paper. A general overview of our methodology is given in
Section 3. Detailed descriptions of our abstraction-refinement algorithms are provided
in Section 4. Performance improvements for the implementation are described in Sec-
tion 5. Experimental results are presented in Section 6. Future research is discussed in
Section 7.

2 Preliminaries

A program � has a finite set of variables ������� � �	�	�
� � � ��� , where each variable
�	
 has an associated finite domain ���	� . The set of all possible states for program �
is ���	��� �	�
� ���	� which we denote by � . Expressions are built from variables in � ,
constants in ���	� , and function symbols in the usual way, e.g. � ����� . Atomic formulas
are constructed from expressions and relation symbols, e.g. � ������� � . Similarly,
predicates are composed of atomic formulas using negation (!), conjunction ("), and
disjunction (#). Given a predicate $,
&%('*),+.- $0/ is the set of atomic formulas occurring
in it. Let $ be a predicate containing variables from � , and 12� - 1 � ������� � 1 �3/ be an
element from � . Then we write 154 �6$ when the predicate obtained by replacing each
occurrence of the variable �
 in $ by the constant 1
 evaluates to true.

Each variable �
 in the program has an associated transition block, which defines
both the initial value and the transition relation for the variable �
 . An example of a
transition block for the variable �
 is shown in Figure 1, where 7
98 � � � is the initial

init(:	;) := <=; ;
next(:	;) := case> �; : ? �; ;> �; : ? � ; ;@=@.@ : @=@=@ ;>&A

; : ? A; ;
esac;

init(B) := C ;
next(B) := caseD=E
F=E
G�HJILK�MON : C ;B�P2Q : BSRJT ;B H Q : C ;

else : B ;
esac;

init(Q) := T ;
next(Q) := caseD=E
F=E
G�HJILK�MON : C ;U B H QWV0XZY U Q H\[V : QORJT ;U B H QWV : C ;

else : Q ;
esac;

Fig. 1. A generic transition block and a typical example

expression for the variable �
 , each condition]�^
 is a predicate, and _`^
 is an expression.

The semantics of the transition block is similar to the semantics of the case statement
in the modeling language of SMV, i.e., find the least � such that in the current state
condition]�^
 is true and assign the value of the expression _&^
 to the variable �
 in the
next state.

We assume that the specifications are written in a fragment of
��
�� 	

called

���
�� 	

(see [10]). Assume that we are given an

���
�� 	

specification � , and a program � . For
each transition block �
 let

&%(') +.- ��
(/ be the set of atomic formulas that appear in the
conditions. Let

&%('*),+.- ��/ be the set of atomic formulas appearing in the specification
� .

&%(') + - ��/ is the set of atomic formulas that appear in the specification or in the

conditions of the transition blocks.
Each program � naturally corresponds to a labeled Kripke structure � �-�� � 7 ��� � � / , where

� � � is the set of states, 7 8 �
is a set of initial states,� 8 � � � is a transition relation, and �	� ��

�����������������

is a labelling given by
� - 13/9� ���!
&%('*),+.- ��/�4�124 �"� � . Translating a program into a Kripke structure is
straightforward and will not be described here.

An abstraction # for a program � is given by a surjection #$�3�
 %� . Notice that
the surjection # induces an equivalence relation & on the domain � in the following
manner: let 1 ��' be states in � , then

1(& ' iff # - 13/ �)# - ' / �
Since an abstraction can be represented either by a surjection # or by an equivalence
relation & , we sometimes switch between these representations to avoid notational over-
head.

Assume that we are given a program � and an abstraction function # for � . The
abstract Kripke structure *� � -+%� � %7 � %� � %� / corresponding to the abstraction function
is defined as follows:

1.
%�

is the abstract domain
%� .

2.
%7 - %1 / iff , 1 - # - 13/ � %1 " 7 - 13/(/ .

3.
%� - %1 � � %1 � / iff , 1 � , 1 � - # - 1 � / � %1 � "-# - 1 � / � %1 � " � - 1 � � 1 � /(/ .

4.
%� -+%13/ �).0/ �21��43651 � - 13/ . (This definition will be justified in Theorem 1.)

This abstraction technique is called existential abstraction [8]. An atomic formula
� respects an abstraction function # if for all 1 and 187 in the domain � ,

- 19& 1:7 /<;- 1 4 �=�?> 1�7 4 �=� / . Let
%1 be an abstract state.

%� - %13/ is consistent, if all concrete
states corresponding to

%1 satisfy all labels in
%� -@%13/ , i.e., for all 1A B#DC � -+%1 / it holds that

1,4 �FE0G�H 5I �J51@� � .

Theorem 1. Let # be an abstraction and � be an

���
�� 	

specification where the
atomic subformulas respect # . Then the following holds: (i)

%� -+%13/ is consistent for all
abstract states

%1 in *� ; (ii) *� 4 �)�K; � 4 �F� .

In other words, correctness of the abstract model implies correctness of the concrete
model. On the other hand, if the abstract model invalidates an

���
�� 	
specification,

i.e., *�ML4 �N� , the actual model may still satisfy the specification.

Example 1. Assume that for a traffic light controller (see Figure 2), we want to prove� ��������� -	��

��
 ' ��� ' 13/ using the abstraction function # - � ' 13/ ��� ' 1 and
# -�� � ' '�� / � # -�� '����	��� /,� � � . It is easy to see that � 4 � �

while *� L4 � �
. There

exists an infinite trace ��� ' 1 � � � � � � ��������� that invalidates the specification.

gored red green yellow !

Fig. 2. Abstraction of a Traffic Light.

If an abstract counterexample does not correspond to some concrete counterexample,
we call it spurious. For example, �"� ' 1 � � � � � � �������	� in the above example is a spurious
counterexample.

When the set of possible states is given as the product � � � �	�	� � � of smaller
domains, an abstraction # can be described by surjections #
 � �

 *�
 , such that
- 1 ��������� � 1 � / is equal to

- # � - 1 � / ������� � # � - 1 �0/(/ , and
%� is equal to *� � � �	�
� *� � . In

this case, we write # � - # ��������� � # � / . The equivalence relations &
 corresponding to
the individual surjections #
 induce an equivalence relation & over the entire domain
� � � � � �	�	� � � � in the obvious manner:

- 1 ���
�	�	� � 1 � / & - ' ���	�
�	����' �0/ iff 1 � & � ' � " �	�
� " 1 � & � ' �
In previous work on existential abstraction [10], abstractions were defined for each

variable domain, i.e., ��
 in the above paragraph was chosen to be ���	� , where ���	� is
the set of possible values for variable �W
 . Unfortunately, many abstraction functions #
can not be described in this simple manner. For example, let � � ��# �%$ � � � � �&# ��$ � � � ,
and

%� � ��# �%$ � �J�&# ��$ � . Then there are ')(&� �+*�� $ ',' functions # from � to
%� . Next,

consider #5� - # ��� # � / . Since there are
� � �.- functions from ��# �%$ � � � to �&# ��$ � , there

are only
* ' functions of this form from � to

%� .
In this paper, we define abstraction functions in a different way. We partition the set

� of variables into sets of related variables called variable clusters ��] ��������� � �]0/ ,
where each variable cluster �]
 has an associated domain �2143��B� �65 � H 143 � � � .
Consequently, � � �7143��`� �	�
� �714398 . We define abstraction functions as surjections
on the domains �7143�� , i.e., �
 in the above paragraph is equal to �:143�� . Thus, the
notion of abstraction used in this paper is more general than the one used in [10].

3 Overview

For a program � and an

���
�� 	

formula � , our goal is to check whether the Kripke
structure � corresponding to � satisfies � . Our methodology consists of the following
steps.

1. Generate the initial abstraction: We generate an initial abstraction # by examining
the transition blocks corresponding to the variables of the program. We consider
the conditions used in the case statements and construct variable clusters for vari-
ables which interfere with each other via these conditions. Details can be found in
Section 4.1.

2. Model-check the abstract structure: Let *� be the abstract Kripke structure corre-
sponding to the abstraction # . We check whether *� 4 � � . If the check is affir-
mative, then we can conclude that � 4 �K� (see Theorem 1). Suppose the check
reveals that there is a counterexample

%�
. We ascertain whether

%�
is an actual coun-

terexample, i.e., a counterexample in the unabstracted structure � . If
%�

turns out
to be an actual counterexample, we report it to the user, otherwise

%�
is a spurious

counterexample, and we proceed to step 3.
3. Refine the abstraction: We refine the abstraction function # by partitioning a single

equivalence class of & so that after the refinement the abstract structure *� corre-
sponding to the refined abstraction function does not admit the spurious counterex-
ample

%�
. We will discuss partitioning algorithms for this purpose in Section 4.3.

After refining the abstraction function, we return to step 2.

4 The Abstraction-Refinement Framework

4.1 Generating the Initial Abstraction

Assume that we are given a program � with � variables ��� � �
�	�
� � � �0� . Given an atomic
formula � , let ����� - �0/ be the set of variables appearing in � , e.g., ����� -�� � � / is � � � � � .
Given a set of atomic formulas � , ����� - � / equals . G�H�	 ����� - � / . In general, for any
syntactic entity
 , ����� -
5/ will be the set of variables appearing in
 . We say that two
atomic formulas � � and � � interfere iff ����� - � � /�
������ - � � / L��� . Let &�� be the equiv-
alence relation on

&%(') +.- ��/ that is the reflexive, transitive closure of the interference
relation. The equivalence class of an atomic formula �
&%(') +.- ��/ is called the for-
mula cluster of � and is denoted by � ��� . Let � � and � � be two atomic formulas. Then
����� - � � /�
������ - � � / L��� implies that � � � �`��� � � � . In other words, a variable �
 cannot
appear in formulas that belong to two different formula clusters. Moreover, the formula
clusters induce an equivalence relation & 1 on the set of variables � in the following
way:

�
 & 1\� ^ if and only if �
 and � ^ appear in atomic formulas that belong to the
same formula cluster.

The equivalence classes of & 1 are called variable clusters. For instance, consider
a formula cluster ��]`
2� ��� ��� � � � � � � � � . The corresponding variable clus-
ter is �]`
 � ��� � � � � � . Let ����] � ������� � ��] /S� be the set of formula clusters and
� �] � ������� � �] /�� the set of corresponding variable clusters. We construct the initial
abstraction # � - # � ������� � # / / as follows. For each #0
 , we set � 1 3 � � 5 � H 143�� ��� , i.e.,
� 143 � is the domain corresponding to the variable cluster �]
 . Since the variable clus-
ters form a partition of the set of variables � , it follows that � � � 143 � � �
�	� � 143 8 .
For each variable cluster ��]
 � �W�
 � ������� � �
 � � , the corresponding abstraction #
 is
defined on � 143�� as follows.

 - 1 ���	�	�
� � 1��W/ � #
 - ' � �	�
�	� ��' � / iff for all atomic formulas � ��]
 ,- 1 ���	�
�	� � 1�� /&4 �N� > - ' ���
�	�
� ��' � / 4 � � .

In other words two values are in the same equivalence class if they cannot be “dis-
tinguished” by atomic formulas appearing in the formula cluster ��]9
 . The following
example illustrates how we construct the initial abstraction # .

Example 2. Consider the program � with three variables
� � � 2�&# ��$ � � � , and � ' � '

�
������ �	�
 ��
�� � shown in Figure 1. The set of atomic formulas is

&%('*),+.- ��/5�

� - � ' � '
 �
����
� / � - � � � / � -�� � � / � -	� � � / � . There are two formula clusters,
��] � � � -�� � � / � - � � � / � -�� � � / � and ��] � � � - � ' � '
 �
������ / � . The corre-
sponding variable clusters are � � � � � and �&� ' � '
 � , respectively. Consider the formula
cluster ��] � . Values

- # � # / and
- $ ��$ / are in the same equivalence class because for all

the atomic formulas � in the formula cluster ��] � it holds that
- # � # / 4 �)� iff

- $ �%$ /&4 �F� .
It can be shown that the domain ��# �%$ � � � �2��# �%$ � � � is partitioned into a total of five
equivalence classes by this criterion. We denote these classes by the natural numbers
�%$ � � � � � ' , and list them below:

#S� � - # � # / � - $ ��$ / � �$ � � - # �%$ / � �� � � - # � � / � - $ � � / � �� � � - $ � # / � -�� � #*/ � -�� ��$ / � �
'�� � -�� � � / �

The domain �
����
� �	�
 ��
�� � has two equivalence classes – one containing �

 ��
��

and the other

����
�

. Therefore, we define two abstraction functions # � �3�&# ��$ � � � �

�&# ��$ � � � � � ' � and # � ���
����
� ���
 ��
�� �
 �
������ �	�
 ��
�� � . The first function
� is given by # � - # � # / � # � - $ ��$ /,� # , # � - # ��$ /,� $, # � - # � � / � # � - $ � � / � �

,
� - $ � # /&� # � -�� � #*/&��# � -�� �%$ /&� � , # � -�� � � /&� ' . The second function # � is just the
identity function, i.e., # � - � ' � '
 / � � ' � '
 . Given the abstraction functions, we use the
standard existential abstraction techniques to compute the abstract model.

4.2 Model Checking the Abstract Model

Given an

���
�� 	

specification � , an abstraction function # (assume that � respects
), and a program � with a finite set of variables � � �W� ���
�	�
� � ��� � , let *� be the
abstract Kripke structure corresponding to the abstraction function # . We use standard
symbolic model checking procedures to determine whether *� satisfies the specification
� . If it does, then by Theorem 1 we can conclude that the original Kripke structure also
satisfies � . Otherwise, assume that the model checker produces a counterexample

%�
corresponding to the abstract model *� . In the rest of this section, we will focus on
counterexamples which are either (finite) paths or loops.

Identification of Spurious Path Counterexamples First, we will tackle the case when
the counterexample

%�
is a path � %� ���
�	�
� � * � � � . Given an abstract state % � , the set of con-

crete states
�

such that # -�� /S� % � is denoted by #�C � - % � / , i.e., #DC � - % � /9� � � 4 # -	� /9� % � � .

We extend #DC � to sequences in the following way: # C � - %� / is the set of concrete paths
given by the following expression

�,� � � �	�
�	� � � � � 4
��

 3 � #
-��
 / � %�
 " 7 -�� � /�"

� C ��

 3 �

� -��
 � �
�� � / � �
We will occasionally write # C ���� ��� to emphasize the fact that #�C � is applied to a sequence.

Next, we give a symbolic algorithm to compute # C � - %� / . Let
� � � #DC � - %� � /
 7 and �

be the transition relation corresponding to the unabstracted Kripke structure � . For$ ���
	 � , we define
�
 in the following manner:

�
 � � 7�� � -��
 C � ��� /�
B#DC � - %�
 / .
In the definition of

�
 , 7�� ��-��
 C � ��� / is the forward image of
�
 C � with respect to the

transition relation � . The sequence of sets
�
 is computed symbolically using OBDDs

and the standard image computation algorithm. The following lemma establishes the
correctness of this procedure.

Lemma 1. The following are equivalent:

(i) The path
%�

corresponds to a concrete counterexample.
(ii) The set of concrete paths #�C � - %� / is non-empty.
(iii) For all $ 	
��	 � ,

�
 L� � .

����
����

����
���� � !" #$#$#$##$#$#$##$#$#$#%$%$%%$%$%%$%$% &$&$&$&&$&$&$&&$&$&$&&$&$&$&

'$'$''$'$''$'$''$'$'($($(($($()$)$))$)$)*+,- .$.$.$..$.$.$..$.$.$..$.$.$.
/$/$//$/$//$/$//$/$/1

2

3

4 7

11

12

8

6

5

9

10

0� 0� 010�

Fig. 3. An abstract counterexample

Algorithm SplitPATH243 H6587 � U:9F � V<; <=>3 H T
while
U 2@?H6ACBEDGF = P@H VJI=K3 H = RJT2MLONQPSR>3 H 22T3 H <VUXW U 28Y[Z V\; 5 7 � U:9F^] V`_

if
2a?HbA then output counterexample

else output j,
2cLONdPeR

Fig. 4. SplitPATH checks spurious path.

Example 3. Consider a program with only one variable with domain � � � $ �	�
�	� �%$ � � .
Assume that the abstraction function # maps

� � to f -��hg $ /^i �kj�� $. There
are four abstract states corresponding to the equivalence classes � $ � � � � � , �%' � � � * � ,
�ml � - �[n � , and � $ # ��$,$ �%$ � � . We call these abstract states

% $, % � , % � , and
% ' . The transitions

between states in the concrete model are indicated by the arrows in Figure 3; small
dots denote non-reachable states. Suppose that we obtain an abstract counterexample%� � � % $ � % � � % � � % ' � . It is easy to see that

%�
is spurious. Using the terminology of Lemma 1,

we have
� � � � $ � � � � � , � � � �%' � � � * � , � � � � n � , and

� 1 ��� . Notice that
� 1 and

therefore 7�� � -�� � ��� / are both empty.

It follows from Lemma 1 that if # C � - %� / is empty (i.e., if the counterexample
%�

is spurious), then there exists a minimal � (
� 	��J	 �) such that

�
 ��� . The sym-
bolic Algorithm SplitPATH in Figure 4 computes this number and the set of states in

�
 C � . In this case, we proceed to the refinement step (see Section 4.3). On the other
hand, if the conditions stated in Lemma 1 are true, then SplitPATH will report a “real”
counterexample and we can stop.

Identification of Spurious Loop Counterexamples Now we consider the case when
the counterexample

%�
includes a loop, which we write as � %� � �	�	�
� � %�
 � ����
 � � �	�	�
� � * � � � � .

The loop starts at the abstract state ��
�� � and ends at * � � . Since this case is more compli-
cated than the path counterexamples, we first present an example in which some of the
typical situations occur.

Example 4. We consider a loop � %� ��� � %� � � %� ��� � as shown in Figure 5. In order to find out
if the abstract loop corresponds to concrete loops, we unwind the counterexample as
demonstrated in the figure. There are two situations where cycles occur. In the figure,

��
��

��
	

��
�

��
�� ������

�� ������
������

�� ��

 !"# $�$%
&�&'(�()�)

*+
,�,-�-
.�./�/
0�01�1

2�23�3
45 6�67�7

8�89�9
:�:;�;
<�<=�=

>?

@A

BC

DE
F�FG
H�HI J�JK�K

L�LM�M

N�NO�O

P�PQ�Q

R�RS�S
TU

V�VW�W
X�XY�Y
Z�Z[�[

\�\]�]

^_ `a bc

d�de

f�fg�g

hijk lm

n o � n oqpn oqr sut � sutr sutp s �r s �p s rr s rp

Fig. 5. A loop counterexample, and its unwinding.

for each of these situations, an example cycle (the first one occurring) is indicated by
a fat dashed arrow. We make the following important observations: (i) A given abstract
loop may correspond to several concrete loops of different size. (ii) Each of these loops
may start at different stages of the unwinding. (iii) The unwinding eventually becomes
periodic (in our case

�wv� � � ��), but only after several stages of the unwinding. The size
of the period is the least common multiple of the size of the individual loops, and thus,
in general exponential.

We conclude from the example that a naive algorithm may have exponential time
complexity due to an exponential number of loop unwindings. The following sur-
prising result shows that for

%� � � %� ���
�	�
� � %�
 � �x��
�� ���
�	�
� � * � � � � , the number of un-
windings can be bounded by � � � �)zy|{

�� �~} ^ } � 4 # C
� - %� ^ /	4 , i.e., the number of un-

windings is at most the number of concrete states for any abstract state in the loop.
Let

%�����~��� ���
denote this unwinded loop counterexample, i.e., the finite abstract path

� %� � ������� � %�
 � ����
�� � ������� � * � � � /
 � . Then the following theorem holds.

Theorem 2. The following are equivalent: (i)
%�

corresponds to a concrete counterex-
ample. (ii) # C ���� ��� - %� ������� ��� / is not empty.

It can be seen from Example 4 that loop counterexamples are combinatorially more
complicated than path counterexamples. Therefore, the proof of Theorem 2 is not im-
mediate; for details, we refer to [7]. We conclude from Theorem 2 that the Algorithm

SplitPATH can be used to analyze abstract loop counterexamples with minor modifi-
cations. For easy reference we shall refer to this algorithm as SplitLOOP.

4.3 Refining the Abstraction

First, we will consider the case when the counterexample
%� � � %� � �	�	�
� � * � � � is a path.

Since
%�

does not correspond to a real counterexample, by Lemma 1 (iii) there exists a
set
�
S8 # C � - %�
 / with $ 	 �9� � such that 7k� ��-��
 ��� /�
9#DC � - ��
 � � /���� and

�
 is
reachable from initial state set #�C � - %� � /�
57 . Since there is a transition from %�
 to ��
�� �
in the abstract model, there is at least one transition from a state in #�C � - %�
 / to a state
in #DC � - ��
�� � / even though there is no transition from

�
 to #DC � - ��
 � � / . We partition
C � - %�
 / into three subsets

�
 � v , �
 � � , and
�
 � � as follows (compare Figure 6):

�
 � v � �
�
 � � � � � 9# C � - %�
 /
4 , � 7 9# C � - ��
�� � / � � -�� � � 7 / ��
 � � �N#DC � - %�
 / � -��
 � v�� �
 � � / �
Intuitively,

�
 � v denotes the set of states in #�C � - %�
 / that are reachable from initial states.�
 � � denotes the set of states in #�C � - %�
 / that are not reachable from initial states, but
have at least one transition to some state in # C � - ��
�� � / . The set

�
 � � cannot be empty
since we know that there is a transition from # C � - %�
 / to #DC � - ��
 � � / . �
 � � denotes the
set of states that are not reachable from initial states, and do not have a transition to a
state in #�C � - ��
�� � / . For illustration, consider again the example in Figure 3. Note that� � � � $ � � � � � , � � � �%' � � � * � , � � � � n � , and

� 1 � � . Using the notation introduced
above, we have

� � � v � � n � , � � � � � �Vl � , and
� � � � � ��- � . Since

�
 � � is not empty, there
is a spurious transition %�

 ��
�� � . This causes the spurious counterexample

%�
. Hence

in order to refine the abstraction # so that the new model does not allow
%�

, we need a
refined abstraction function which separates the two sets

�
 � v and
�
 � � , i.e., we need an

abstraction function, in which no abstract state simultaneously contains states from
�
 � v

and from
�
 � � .

It is natural to describe the needed refinement in terms of equivalence relations:
Recall that #DC � - % � / is an equivalence class of & which has the form � � � �	�	� ��� / ,
where each �
 is an equivalence class of &
 . Thus, the refinement & 7 of & is obtained by
partitioning the equivalence classes � ^ into subclasses, which amounts to refining the
equivalence relations & ^ . The size of the refinement is the number of new equivalence
classes. Ideally, we would like to find the coarsest refinement that separates the two sets,
i.e., the separating refinement with the smallest size. We can show however that this is
computationally intractable.

Theorem 3. (i) The problem of finding the coarsest refinement is NP-hard; (ii) when�
 � � � � , the problem can be solved in polynomial time.

We find that the previously known poblem PARTITION INTO CLIQUES can
be reduced to the coarsest refinement problem. The proof is omitted due to
space restrictions. On the other hand, we describe a polynomial time algorithm
PolyRefine corresponding to case (ii) of Theorem 3 in Figure 7. Let � �^ � � C^ be
two projection functions, such that for

� � - 1 ��������� � 1,/ / , � �^ -	� / � 1 ^ and

� C^
-�� / � - 1 ��������� � 1 ^ C � � 1 ^ � ��������� � 1,/ / . Then $ � � � -��
 � v � � � � / denotes the projec-

tion set ��� C^
-	� /	4 � �^ -	� / � � � � �
 � v � . Intuitively, the condition $ � � � -��
 � v � � � � / L�

$ � � � -��
 � v � � ��� / in the algorithm means that there exists
- 1 � ������� � 1 ^ C � � 1 ^ � � ������� � 1 / / $ � � � -��
 � v � � � � / and

- 1 � ������� � 1 ^ C � � 1 ^ � � ������� � 1 / / L $ � � � -��
 � v � � ��� / . According to
the definition of $ � � � -��
 � v � � � � / , � � � - 1 � ������� � 1 ^ C � �

� � 1 ^ � � ������� � 1 / / �
 � v and� � � - 1 � ������� � 1 ^ C � ����� 1 ^ � � ������� � 1 / /-L �
 � v , i.e.,
� � �
 � � . Note that

� � and
� � are

only different at � -th component. Hence, the only way to separate
� � and

� � into differ-
ent equivalence classes is that

�
and � have to be in different equivalence classes of & 7^ ,i.e.,

� L& 7^ � .
Lemma 2. When

�
 � � � � , the relation &<7^ computed by PolyRefine is an equivalence
relation which refines & ^ and separates

�
 � v and
�
 � � . Furthermore, the equivalence

relation &<7^ is the coarsest refinement of & ^ .
Note that in symbolic presentation, the projection operation $ � � � -��
 � v � � � � /

amounts to computing a generalized cofactor, which can be easily done by stan-
dard BDD methods. Given a function � � �
 ��# �%$ � , a generalized co-
factor of � with respect to

� � - E��� 3�� �
� � 1�� / is the function ��� �

� - � ��������� � � � C � � 1 � ������� � 1 � �
�
� � ��������� � � � / . In other words, ��� is the projection of �

with respect to
�

. Symbolically, the set
�
 � v is represented by a function �
	*��� t ���

�&# ��$ � , and therefore, the projection $ � � � -��
 � v � � � � / of
�
 � v to value

�
of the � th com-

ponent corresponds to a cofactor of �
	*��� t .

/�
 � � 5� � � /�
 � ���� � �3� �/�
 � ���� �
 � �

	 ��� �
	 ��� �
	 ��� t

Fig. 6. Three sets
2 ;�� � Y 2 ;�� � , and

2 ;�� �

Algorithm PolyRefine
for j := 1 to m I���] 3 H �]

for every � Y��! #"] I
if $ D�% = U 2 ;&� � YS=:Y � V ?H $ D�% = U 2 ;�� � YS=�Y'� V

then � �] 3 H � �])(I U � Y�� V _ _:_
Fig. 7. The algorithm PolyRefine

In our implementation, we use the following heuristics: We merge the states in
�
 � �

into
�
 � � , and use the algorithm Polyrefine to find the coarsest refinement that separates

the sets
�
 � v and

�
 � � � �
 � � . The equivalence relation computed by PolyRefine in this
manner is not optimal, but it is a correct refinement which separates

�
 � v and
�
 � � , and

eliminates the spurious counterexample. This heuristic has given good results in our
practical experiments.

Since according to Theorem 2, the algorithm SplitLOOP for loop counterexamples
works analogously as SplitPATH, the refinement procedure for spurious loop coun-
terexamples works analogously, too. Details are omitted due to space restrictions. Our
refinement procedure continues to refine the abstraction function by partitioning equiv-
alence classes until a real counterexample is found, or the

���
�� 	
property is verified.

The partitioning procedure is guaranteed to terminate since each equivalence class must
contain at least one element. Thus, our method is complete.

Theorem 4. Given a model � and an

���
�� 	

specification � whose counterexample
is either path or loop, our algorithm will find a model *� such that *� 4 �F� > � 4 �F� .

5 Performance Improvements

The symbolic methods described in Section 4 can be directly implemented using BDDs.
Our implementation uses additional heuristics which are outlined in this section. For
details, we refer to our technical report [7].

1

2

3

� � � �

Fig. 8. A spurious loop counterexample � 9 T Y 9 [����

Two-phase Refinement Algorithms. Consider the spurious loop counterexample
%� �

� % $�� % � � � of Figure 8. Although
%�

is spurious, the concrete states involved in the example
contain an infinite path � $ ��$ ��������� which is a potential counterexample. Since we know
that our method is complete, such cases could be ignored. Due to practical performance
considerations, however, we came to the conclusion that the relatively small effort to
detect additional counterexamples is justified as a valuable heuristic. For a general loop
counterexample

%� � � % � � ������� � % �
 � � % �
�� ��������� � % � � � � , we therefore proceed in two phases:
(i) We restrict the model to the state space

�	� ��
 � � � � - . �~}
 } � # C � - %�
 /(/ of the coun-
terexample and use the standard fixpoint computation for temporal formulas (see
e.g. [8]) to check the property on the Kripke structure restricted to

��� ��
 � � . If a con-
crete counterexample is found, then the algorithm terminates.
(ii) If no counterexample is found, we use SplitLOOP and PolyRefine to compute a
refinement as described above.
This two-phase algorithm is slightly slower than the original one if we do not find a con-
crete counterexample; in many cases however, it can speed up the search for a concrete
counterexample. An analogous two phase approach is used for finite path counterexam-
ples.

Approximation. Despite the use of partitioned transition relations it is often infeasi-
ble to compute the total transition relation of the model � [8]. Therefore, the abstract
model *� cannot be computed from � directly. In previous work [2, 10], a method
which we call early approximation has been introduced: first, abstraction is applied to
the BDD representation of each transition block and then the BDDs for the partitioned
transition relation are built from the already abstracted BDDs for the transition blocks.
The disadvantage of early approximation is that it over-approximates the abstract model

*� [9]. In our approach, a heuristic individually determines for each variable cluster
�]
 , if early approximation should be applied or if the abstraction function should
be applied in an exact manner. Our method has the advantage that it balances overap-
proximation and memory usage. Moreover, the overall method presented in our paper
remains complete with this approximation.

Abstractions For Distant Variables. In addition to the methods of Section 4.1, we
completely abstract variables whose distance from the specification in the variable de-
pendency graph is greater than a user-defined constant. Note that the variable depen-
dency graph is also used for this purpose in the localization reduction [2, 14, 17] in a
similar way. However, the refinement process of the localization reduction [14] can only
turn a completely abstracted variable into a completely unabstracted variable, while our
method uses intermediate abstraction functions.

6 Experimental Results

We have implemented our methodology in NuSMV [6] which uses the CUDD pack-
age [21] for symbolic representation. We performed two sets of experiments. One set is
on five benchmark designs. The other was performed on an industrial design of a mul-
timedia processor from Fujitsu [1]. All the experiments were carried out on a 200MHz
PentiumPro PC with 1GB RAM memory using Linux.

The first benchmark designs are publicly available. The PCI example is extracted
from [5]. The results for these designs are listed in the table.

Design #Var #Prop NuSMV+COI NuSMV+ABS
#COI Time � � Z � � �

>
� #ABS Time � � Z � � �

>
�

gigamax 10(16) 1 0 0.3 8346 1822 9 0.2 13151 816
guidance 40(55) 8 30 35 140409 30467 34-39 30 147823 10670
p-queue 12(37) 1 4 0.5 51651 1155 5 0.4 52472 1114
waterpress 6(21) 4 0-1 273 34838 129595 4 170 38715 3335
PCI bus 50(89) 10 4 2343 121803 926443 12-13 546 160129 350226

In the table, the performance for an enhanced version of NuSMV with cone of influence
reduction (NuSMV + COI) and our implementation (NuSMV + ABS) are compared.
#Var and #Prop are properties of the designs: #Var =

� -�� / means that
�

is the number
of symbolic variables, and

�
the number of Boolean variables in the design. #Prop is

the number of verified properties. The columns #COI and #ABS contain the number of
symbolic variables which have been abstracted using the cone of influence reduction
(#COI), and our initial abstraction (#ABS). The column ”Time” denotes the accumu-
lated running time to verify all #Prop properties of the design. 4 � � 4 denotes the maxi-
mum number of BDD nodes used for building the transition relation. 4 �],4 denotes the
maximum number of additional BDD nodes used during the verification of the proper-
ties. Thus, 4 � � 4 � 4 �],4 is the maximum BDD size during the total model checking
process. For the larger examples, we use partitioned transition relations by setting the
BDD size limit to 10000.

Although our approach in one case uses 50% more memory than the traditional cone
of influence reduction to build the abstract transition relation, it requires one magnitude

less memory during model checking. This is an important achievement since the model
checking process is the most difficult task in verifying large designs. More significant
improvement is further demonstrated by the Fujitsu IP core design.

The Fujitsu IP core design is a multimedia assist (MMA-ASIC) processor [1]. The
design is a system-on-a-chip that consists of a co-processor for multimedia instructions,
a graphic display controller, peripheral I/O units, and five bus bridges. The RTL imple-
mentation of MM-ASIC is described in about 61,500 lines of Verilog-HDL code. After
manual abstraction by engineers from Fujitsu in [22], there still remain about 10,600
lines of code with roughly 500 registers. We translated this abstracted Verilog code into
9,500 lines of SMV code. In [22], the authors verified this design using a ”navigated”
model checking algorithm in which state traversal is restricted by navigation conditions
provided by the user. Therefore, their methodology is not complete, i.e., it may fail to
prove the correctness even if the property is true. Moreover, the navigation conditions
are usually not automatically generated.

In order to compare our model checker to others, we tried to verify this design
using two state-of-the-art model checkers - Yang’s SMV [23] and NuSMV [6]. We
implemented the cone of influence reduction for NuSMV, but not for Yang’s SMV.
Both NuSMV+COI and Yang’s SMV failed to verify the design. On the other hand, our
system abstracted 144 symbolic variables and with three refinement steps, successfully
verified the design, and found a bug which has not been discovered before.

7 Conclusion and Future Work

We have presented a novel abstraction refinement methodology for symbolic model
checking. The advantages of our methodology have been demonstrated by experimen-
tal results. We believe that our technique is general enough to be adapted for other forms
of abstraction. There are many interesting avenues for future research. First, we want
to find efficient approximation algorithms for the NP-complete separation problem en-
countered during the refinement step. Moreover, in a recent paper [4], the fragment
of ACTL

	
that admits “trace”-like counterexamples (of a potentially more complicated

structure than paths and loops) has been characterized; we plan to extend our refinement
algorithm to this language. Since the symbolic methods described in this paper are not
tied to representation by BDDs, we will also investigate how they can be applied to
recent work on symbolic model checking without BDDs [3]. We are currently applying
our technique to verify other large examples.

References

1. Fujitsu aims media processor at DVD. MicroProcessor Report, pages 11–13, 1996.
2. F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative approach to language containment.

In Computer-Aided Verification, volume 697 of LNCS, pages 29–40, 1993.
3. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using SAT

procedures instead of BDDs. In Design Automation Conference, pages 317–320, 1999.
4. F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. On ACTL formulas having deterministic

counterexamples. Technical report, Vienna University of Technology, 1999. available at
http://www.kr.tuwien.ac.at/research/reports/index.html.

5. P. Chauhan, E. Clarke, Y. Lu, and D. Wang. Verifying IP-core based System-On-Chip design.
In IEEE ASIC, September 1999.

6. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model
checker. Software Tools for Technology Transfer, 1998.

7. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. Technical Report CMU-CS-00-103, Computer Science, Carnegie Mellon Uni-
versity, 2000.

8. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Publishers, 1999.
9. E. Clarke, S. Jha, Y. Lu, and D. Wang. Abstract BDDs: a technique for using abstraction

in model checking. In Correct Hardware Design and Verification Methods, volume 1703 of
LNCS, pages 172–186, 1999.

10. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Trans-
actions on Programming Languages and System (TOPLAS), 16(5):1512–1542, September
1994.

11. S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In Computer-Aided
Verification, volume 1633 of LNCS, pages 160–171. Springer Verlag, July 1999.

12. Shankar G. Govindaraju and David L. Dill. Verification by approximate forward and back-
ward reachability. In Proceedings of International Conference on Computer-Aided Design,
November 1998.

13. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Computer-Aided
Verification, volume 1254 of LNCS, pages 72–83, June 1997.

14. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton University
Press, 1994.

15. Y. Lakhnech. personal communication. 2000.
16. W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi. Tearing based abstraction for CTL

model checking. In Proceedingsof the International Conferenceon Computer-Aided Design,
pages 76–81, November 1996.

17. J. Lind-Nielsen and H. R. Andersen. Stepwise CTL model checking of state/event systems.
In Computer-Aided Verification, volume 1633 of LNCS, pages 316–327. Springer Verlag,
1999.

18. A. Pardo. Automatic Abstraction Techniques for Formal Verification of Digital Systems. PhD
thesis, University of Colorado at Boulder, Dept. of Computer Science, August 1997.

19. A. Pardo and G.D. Hachtel. Incremental CTL model checking using BDD subsetting. In
Design Automation Conference, pages 457–462, 1998.

20. H. Saidi and N. Shankar. Abstract and model checking while you prove. In Computer-Aided
Verification, number 1633 in LNCS, pages 443–454, July 1999.

21. F. Somenzi. CUDD: CU decision diagram package. Technical report, University of Colorado
at Boulder, 1997.

22. K. Takayama, T. Satoh, T. Nakata, and F. Hirose. An approach to verify a large scale system-
on-chip using symbolic model checking. In International Conference of Computer Design,
pages 308–313, 1998.

23. B. Yang et al. A performance study of BDD-based model checking. In Formal Methods in
Computer-Aided Design, volume 1522 of LNCS. Springer Verlag, 1998.

����� ���	��

�������������	��������������

 !��
#"$
#�%�'&��(�)��*,+.-0/
�1���32 �	�546�)��
7-0

�	�8�6�)��*9�:
#�546�6��;�&�
#�=<

>5?A@�BDCE?6FHGJILKNMPORQ S#CTBEUDVEIRWYXZBE[A\]I^Q _TI`@%ObadceBDM^BDGfILg h#ijO)K#k^\NK]lJmnVD@oILCpQ

qsrAt�usv	wPxPy{z]|5}`~n��zn�T~]zs�Dt(��|{�Tzn�b��z���zn����us�o�H�T���Rz]|{����y����L����y�y{���TxL|{�s�E�^�D�
���A�.���)�R�R�s L�b¡���¢)£��s¤L¥b¦��R¥p§��]�`��§¨�s©s�

ª`r^}`�L�TubwT�«�L�n�P¬�z����Rz]|�y{ub���D­�®
r�¯ � ¯ �`°R�s¦`¥)±b�L¢)²P¥)±`¥p§��s¢n�

³1´.µn¶n·�¸^¹b¶sºZ» z�¼Lzn��~]|{���Az��Pz]½¾y{zn~¿�T�P�ÁÀ�xPzn�ÃÂJub|�v	u`¼Lzn�^~¿�Tzn~¿Ä`���P�
���1y{�Tz5~nubxT�PÅ
y{z]|{zNÆT�)v	wT��zÇ�sxT��¼Lz�¼È�)�T�«y�|¿�)~]y{��us�AÉ�|{z]Ê^�Pznv	zn��yeÂÁ|¿�bv	z]½�ub|{ÄAr�Ë(�Tzo�)�T�«y�|¿�)~]y{��us�
wP�^�b��z%Ì �T��¼Pz]�nÍ.y{�TzÇ��ub�s��~%u)Â��b�)|{��usxP�Z�b�)|{���b�P��zn�n�Î�Tzn�P~nzÇ~nus�P���Á¼Lz]|{���T�Ïy{�TznvÐ�b�
���TwPxPy{�nr�Ë(�T���1y¨�LwAz%ubÂ#�)�T�«y�|¿�)~]y{��us�Ñv1�n�!��zn�s¼Òy{u!Ì ��wTxL|{��usxT�nÍ�~nusxP��y{z]|{z]ÆP�bveÅ
wP��z]�n�8�jr zsr�y�|¿�)~nzn��y{�T�)y�~��b�:�Tu)y%�Az�����v�xT���)y{zn¼¾us�0y{�TzÏub|{���s���T�b�1ÓÔ~nus�P~]|{z]y{z�Õ
v1�)~N�P���Pzsr » z1~N�Pzn~NÄÏ½8�TzNy{�Tz]|Z�o~nusxP�`y{zN|{z]ÆP�bv	wT��z	���
|{z��b�(u)|e��wPxP|{��usxP�#½8��y{�
��}P��ËÖ~¿�Tzn~¿ÄRz]|�r » z#y{�Pzn�ÏxT��zZ�Ç~nubvZ�P���T�)y{��us�Ïu)Â(×¨��y{zn�bz]|ÙØE���Tz���|#�Î|{ub�b|¿�bveÅ
v	���T�1ÓÔ×¨Øp�ÃÕÃ�b�T¼	v1�b~¿�T���Tz5��z��)|{�P���P�#y{z]~N�P�T��À�xTzn��Âfub|�|{z]Ê^�P���P�#y{�Pz��)�T�«y�|¿�)~]y{��us�
�T�b��z�¼1us�1y{�TzH~nusxP�`y{zN|{z]ÆP�bv	wT��zsr�Ë(�Tz�wL|{u�~nzn�������(|{znwAz���y{z�¼1xT��y{���^zn��y{�Tz]|5�Ù|{z��)�
~nubxT��y{z]|{z]ÆP�)v	wT��zÎ���EÂfubxT�^¼Ùu)|py{�TzÎwL|{uswAz]|�y��d���p�RzN|{��ÊTz�¼Er » z��^���RzÎ��v	wT��znv	zn��y{z�¼
y{�Pzn��z�y{zn~¿�T�P�ÁÀ�xPzn�Úus�#y{usw�ubÂ^y{�Pz�v	u`¼Pz]�L~¿�Tz]~NÄRzN|.Û�x^}T��ÜÈ�b�^¼Ùy{�Tz�}P��ËY��us���Rz]|
t��T�)Ý.rAÞ.ÆLwAz]|{��v	zn��y¿�b�A|{zn��xP��y{�8wL|{u)�sz�y{�Tzd�`���b�P������y���u)ÂÚy{�Tzn��zÙ�Pz]½0y{zn~¿�T�T��À�xTz]�nr

ß àTá5âAãDäÙå�æ#çpâDè{ä5á

éêVDlÁGJOÏa¿\]I�\]Ooë`iH\NVDOÏILK¿\	@%ëA?AO)G5mnVEObmnMLObK]aembI`CÒWLO)K]lÁijì!m�lJK]m)BDlÁ\]aeíÙlÁ\NVÑa¿ObWLObK]ILG�V^BDC�?AKNOs?
GJI`\]mnVDOsa)îA@oI`C^ì�lÁCE?DBEa{\]KNlfI`GÎm)lÁKnm�BEl�\na
I`K]O	I�\
GJObILa¿\#I`CYëLKn?AObKÙë`i(@%ILïLCDlÁ\NB�?AO	GJILKNïPO)Ksð^ñ8I`KNò
lÁëPBEaÇm)ëLCEaNO)K]W�I�\NlJWLOÏILUEa¿\NKnILm�\]lÁëPCÒ\NObmnVECDlJóTBDOsaÇmbI`C0UpOÏBEaNOb?¾\]ëôUDK]lJ?DïLOo\]VDlJa�ïPIL[Îð�kABEmnV
I`UEa¿\NKnILm�\NlJëLCô\]ObmnVDCElJóTBDOsae@ÇBEa¿\	[DKNOsa¿ObKNWPO�ILGÁG(\]VDOoU�ObVEIRW^lÁëPK]a�ë`iH\NVDOÏm)ëLCEm)KNO)\NO%a¿ìAa¿\NOb@Yî
UDBA\d@%IRì�lJCP\]KNëA?AB�m�O
UpO)VEIRW^lJëLKna�\]VEI�\dI`K]O
CDë`\�[DK]ObaNO)CT\5ëLK]lJïLlJCEI`GJGÁìPðPõdV^BEabîLlÁiÃI	BDCElÁWPO)KnaNILG
[DKNëP[�ObK¿\{ì÷öjl¨ð OPð�ILC0S#F�õÙø�ùY[EKNëP[�ObK¿\{ìDúelfa	\]KNBDO�lÁCÑ\]VDO�ILUEa¿\NKnILm�\ÇaNìAa{\]O)@�î�l�\ÇíÙlJGJG�ILGJaNë
U�O�\NK]BDO�lJCÑ\]VDOYm)ëLCEm)KNO)\NO�aNìAa{\]O)@�ð8h�CÑ\NVDOYë`\]VDO)K�VEI`C�?.î(l�i#I!BDCDlJWLO)Kna]I`G5[EKNëP[�ObK¿\{ìÒlJa
i�I`Gfa¿O	lJC�\NVDO�I`UEa¿\NKnILm�\#a¿ìAa¿\NO)@�îDlÁ\#@oIRì�a¿\NlJGJG�UpO	\NK]BDO1lJC�\NVDO�m�ëLC�m�K]O�\NO	aNìAa{\]O)@�ðEû�C�\]VDlJa
m)ILaNOLî5CDëLCDO6ëLie\NVDOôUpO)V�IRWTlJëLKna�\NV�I�\�W^lJëLGfI�\NOY\]VDOô[DK]ëL[pO)KN\{ì:lJCü\NVDOÈI`UEa¿\NKnILm�\oaNìAa{\]O)@
m)I`CÑUpO�K]O)[EKNëA?ABEm)Ob?ÒlJCÑ\NVDO�m�ëLC�m�K]O�\NO�a¿ìAa¿\NO)@�ð�FHëLBDCT\NObKNO)ýDI`@%[DGJOba1m)ëLK]KNOsa¿[pëLCE?DlÁCDïY\]ë
\NVDOsa¿O1UpO)V�IRWTlJëLKnaÙI`K]O1a]I`lf?�\]ëÏUpOoþ¨ÿ����������^þ�ð�éêVDO)C!aNBEmnV6IÏm)ëLBDCT\NObKNO)ýDI`@%[DGJOZlfaÙijëPBDCE?.î
\NVDO1ILUEa{\]K]IPm�\]lÁëPC�m)ILC�UpO	KNO
	ECDOs?�lJC�ëLKn?AO)K�\Në%ObGÁlJ@%lÁCEI`\NOZ\NVEO1a¿[DBEKNlJëLBEa�UpO)VEIRW^lJëLKsðAõdVDlJa
� Ë(�T���1|{zn��z���|{~N�¾½(�b����wAub�T��u)|{z�¼¾���Èy{�Pz�}Lznv	��~nub�^¼PxP~]y{ub|Ç®5zn��z���|{~N�0t�u)|{wAub|¿��y{��ub� Ó�}`®5t�Õ
xT�T¼Pz]|H~nub�`y�|¿�)~]yd�PuPr
���)Å�Ë��bÅ����
�P�Dy{�Tz#Ûd��y{��us�^�)�Î}L~]��z]�T~nz��TusxP�^¼P�)y{��us�ôÓÔÛÙ}��ÎÕ8xP�^¼Lz]|��)|¿�b��y
�TuLr�t�t�®8Å������������
�L�5y{�PzÏ­��	~nzÏu)Â
Ûd���s�)�H®5zn��z���|{~N�÷Ó�­�Û�®�ÕN���)�^¼Èy{�PzoÛd���b�b�5®Hzn��zn�)|{~¿�
Øp�)�Aub|¿��y{ub|��ÏÓÔÛ�®HØÚÕÚxP�^¼PzN|�~nub��y�|¿�b~]y��PuPr�Û������Lq �)Å��Lq]Å{qNÅ!�������LrTË(�Tz5�L��z]½8�(�b�^¼	~nub�T~n��xP����ub�T�
~nub�`y¿�)���Tz�¼�����y{�T���#¼Pu�~nxPv	zn��y
�)|{zey{�Pus��z	ubÂ�y{�Tz	�)xPy{�Tu)|��b�^¼����TubxT��¼Y�Tu)y
�Aze����y{z]|{wP|{z]y{zn¼
�b�Ã|{znwP|{zn��z]�`y{���P�#y{�Pz�u��e~n���b�DwAus����~n��zn�n�Pzn��y{�Tz]|�zNÆPwL|{zn����z�¼1ub|���v	wP����z�¼D�`ubÂ.}L®5tH��Ûd}"���P­�Û�®
�
Û�®HØ��`y{�Pzd��r }DrP�su��RzN|{�Tv	zn��y�u)|��)����u)y{�Tz]|5zn��y{��y¨��r

[DKNëAm)Oba]a
lfa#K]O)[pObI`\NOb?ôBDCT\NlJG�Obl�\]VDO)KeIÏK]ObILGÃm)ëLBDCT\NObKNO)ýDI`@%[DGJO1lJa#ijëLBECE?.îÚëLK#\NVDO%I`UEa¿\NKnILm�\
a¿ìAa¿\NO)@ a]I�\Nlfa 	EObaÎ\NVDOH[DKNëP[�ObK¿\{ìPð�û�Ce\NVEO5GfI�\¿\]O)K�m)ILaNOLîbíHO5MTCEë�í!\]VEI�\Ã\NVDO�m�ëLC�m�K]O�\NO8aNìAa{\]O)@
aNI`\Nlfa 	EOsa�\NVDO	[EKNëP[�ObK¿\{ìÏIPadíHObGÁG¨îEaNlÁCEm)OZ\NVDO1ILUEa{\]K]IPm�\]lÁëPC�lfa
m�ëPCEa¿ObKNW�I`\NlJWLOLð

õdVDO)K]O�I`K]OÏ@oI`C^ì¾M^CDë�íÙC¾\NOsmnVDCDlfóTBDObabî�aNëL@%OYI`BA\]ëL@oI�\]lJmÏILCE?0aNëL@%O�@oILCTB�I`G¨î�ijëPK
ïLO)CEO)KnI�\NlJCDï�\NVDOdlJCDlÁ\NlfI`GDI`U�a{\]K]IPm�\NlJëLC�I`CE?ÇijëLK�ILUEa{\]K]IPm�\]lÁëPC � K]O 	ECEO)@%O)CT\bðRõdVDO
ILBA\NëP@%I`\Nlfm
\NObmnVECDlJóTBDOsaHILKNOÙ@%ëPKNO
K]O)GJO)W�ILCP\H\Në	\]VDlfa5[EIL[�ObKbîTCDëL\HëLCEGÁì�U�Osm)ILBEa¿O#ëLBDKH@�O)\NVDëA?�lJa8ijBDGÁGJì
I`BA\]ëL@oI�\]lJmLîLUDBA\dI`Gfa¿ëÇU�Osm)I`B�a¿O
ëLi.\NVDOZm�GJObILK5[DKnILm�\Nlfm)I`G�IL?AW�I`CT\nI`ïLOÙëLi�I`BA\]ëL@oI�\]lÁëPCÎð^h�BEK
@�O)\NVDëA?AëPGÁëPïLì6lfaeUEILaNOb?!ëLC¾I`CÈl�\]O)KnI�\NlJWLO%I`U�a{\]K]IPm�\NlJëLC � K]O 	ECDOb@%O)CT\�[DK]ëAm�OsaNabð.S
UEa¿\NKnILm�ò
\NlJëLC÷lJa%[pO)KNijëLK]@%Ob?ÖUTìÖa¿ObGÁOsm�\NlJCDïÑI¾a¿O)\oë`i�GfI�\nmnVDOba%ëPK%WRILKNlfI`UEGÁOsa�ILCE?Ö@%ILM^lÁCDïÈ\NVEO)@
�������fþ ���	��
)îAl�ð OLðJî`\]VDO)ìoILKNOÙ\]KNOsI�\]Ob?oILa5lÁCE[DBA\]abðTû�CÏObIPmnV�lÁ\NObK]I`\NlJëLCÎîPíHOZmnVDObmnM�íÙVDO�\]VDO)KH\NVEO
I`UEa¿\NKnILm�\�aNì^a¿\NOb@ aNI`\Nlfa 	EOsa1\]VDO�a¿[pObm)l 	�mbI�\]lÁëPC:íÙlÁ\NVÖIÒa¿\]I`C�?DI`Kn?:h
�����#ò¨U�ILaNOb?:aNì^@�ò
U�ëPGÁlfmÇ@%ëA?AObG(mnVEObmnMLObKbðpû«iHIYm�ëPBDCT\NO)K]O�ýDIL@�[EGÁO1lfaZKNOb[�ëPK¿\]Ob?!UTìY\]VDO%@�ëA?AObG�mnVDObmnMPO)KsîEí�O
\NK]ìÇ\]ëÇa¿lJ@ÇBEGJI`\NO
lÁ\HëPC�\]VDO�m)ëLCEm)KNO)\NO
aNìAa{\]O)@ íÙl�\]V�Iei�ILa¿\�kAS�õêaNëLGJWLObKbð�û�C�ë`\NVEO)K8í�ëLKn?Dabî
íHOeïLObCDO)KnI�\]OZILCE?Ya¿ëPGÁWPOeI%kAS�õ lÁC�a{\nI`CEm)O�\]VEI�\
lfaÙa]I�\Nlfa 	�I`UDGJOel�i�I`C�?�ëPCDGÁì�l�i�\NVDO1m)ëLBDCDò
\NO)K]O�ýDIL@�[EGÁO�lJa�K]ObI`G¨ðTû«iÎ\NVDOelJCEa¿\]I`C�m�O#lfa�CDë`\Ùa]I�\Nlfa 	�I`UDGJOLîTí�O�GJë^ëLM�ijëLK�\NVEO���� ��� ����
eþ�������
�î
íÙVDlJmnV¾lfaZ\NVDOoGfILa¿\Ça¿\]I�\]O%lÁCÒ\NVEOÏGÁëPCDïLOsa{\	[DK]O 	Eý!ë`i�\NVDOÏm)ëLBDCT\]O)K]O�ýDI`@%[DGJOÇ\]VEI�\1lfa1a¿\NlJGÁG
aNI`\Nlfa 	�ILUDGJOLð��#ë`\]O1\NV�I�\#\]VDlfa#[DK]ëAm�OsaNa�m)I`C!CDë`\#UpO�ObILaNlJGÁìY[�ObK¿ijëPKN@%Os?�íÙl�\]VÈIÏa¿\]ILCE?DI`Kn?
m�lJK]m)BDl�\
aNlÁ@�BDGfI�\NëPKbî^UpObmbI`BEaNOZ\NVDO1ILUEa{\]K]IPm�\Ùm�ëPBDCT\NO)KdO)ýAIL@%[DGÁO	?Aë^OsadCDë`\ÙlJCEm�GJBE?AOeW�I`GJBDOba
ijëLK
I`GJG.lJCD[DBA\na)ð

éÈO8B�a¿O(\]VDO�i�I`lJGJBDKNOHa{\nI�\NO�lJC	ëLKn?AObKÚ\Në
K]O 	ECEO(\NVDO5ILUEa¿\NKnILm�\]lÁëPCÎð)õdVDOHI`UEa¿\NKnILm�\.aNìAa{\]O)@
VEILa�\NKnI`C�a¿lÁ\NlJëLCEa#ijK]ëL@ \NVEOÇi�ILlÁGJBDK]O�a¿\]I`\NO�\NVEI`\e?AëYCDëL\ZO)ý^lfa¿\ZlJCô\]VDOom�ëLC�m�K]O�\NO�a¿ìAa¿\NOb@Yð
éÈOeO)GJlJ@�lJCEI`\NOe\NVEObaNO�\]K]ILCEaNl�\]lÁëPCEa�UTì�KNO
	ECDlJCDïÇ\]VDO	I`UEa¿\NKnILm�\NlJëLCÎî^l¨ð OPðÁîEUTìo@oILMTlJCDïoaNëL@%O
WRILKNlfI`UEGÁOsa5W^lfa¿lJUDGJO
\NV�I�\ÙíHObKNO�[DK]O)W^lÁëPBEaNGÁì�lÁC^W^lfa¿lJUDGJOLðAõdVDOZ[DKNëPUDGJO)@=ë`iÃaNO)GJObm�\NlJCDï%IÇaN@%ILGÁG
a¿O)\Ïë`ieWRILKNlfI`UEGÁOsa�\NëÑ@oI`MPO6WTlfaNlÁUDGJO6lfaoëLCDO�ëLi�\]VDOô@oI`lJCülJa]a¿BEOba%\]VEI�\Ïí�OôIL?D?DKNOsaNa%lJC
\NVDlfa1[EIL[�ObKbð�û«\ÇlJa1lÁ@%[pëLKN\]I`CT\	\]ë 	ECE?¾I6aN@%ILGÁG�a¿O)\1lÁCÑëPK]?DO)Ke\Në6MPO)Ob[È\]VDO�aNl��bOoë`id\NVEO
I`UEa¿\NKnILm�\Ùa¿\]I`\NOÇaN[EIPm�Oe@oI`CEILïLObILUDGJOLðDõdVDlfa
[DK]ëLUEGÁOb@Ðm)ILC�U�O1K]Ob?DBEm�Os?�\]ëÏI%[DK]ëLUDGJO)@Ðë`i
a¿Ob[EI`KnI�\]lÁCDï�\{í�ë�aNO�\naeë`ida{\nI�\NOsaoö�ILUEa{\]K]IPm�\]lÁëPCÈBDCEl�\]Oba1m)ëLCEm)KNO)\NO%a{\nI�\NOsa)îÃI`CE?!\NVDObKNO)ijëLK]O
KNO
	ECDlJCDïÏI`CôILUEa{\]K]IPm�\]lÁëPCYlfaÙ\]VDO1ëP[D[�ëTa¿lÁ\NO	ëP[�ObK]I`\NlJëLCÎîEl�ð OLðJîpaNO)[�I`KnI�\NlJëLCYë`i8a¿\]I`\NObanú�ð��DëPK
KNOsI`GJlJa¿\Nlfm1aNì^a¿\NOb@oa)î�ïLO)CEO)KnI�\NlJCDï%\]VDObaNO�aNO�\na
lfa
CDëL\#ijObIPa¿lJUDGJOLî�U�ëL\NVôO)ý^[EGÁlfm�lÁ\NGJì6I`CE?ôaNì^@�ò
U�ëPGÁlfm)ILGÁGJìLð �6ëPKNObë�WLO)KsîA\]VDO�@%lJCDlJ@ÇBD@�aNO)[�I`KnI�\NlJëLC6[EKNëPUDGÁOb@ lJaZM^CDë�íÙC6\]ë�UpO!��"�ò«VEI`Kn?
# $�% ð^éÒOem)ëL@�UDlÁCEOÇþ	��&#ÿ�� ���('ZíÙlÁ\NVYû�CP\]O)ïPO)KdøÎlJCDObILK�"5KNëPïLKnI`@%@%lÁCEïÏöjû{ø)"�ú5ILCE?Ï@oIPmnVDlÁCEO
GÁOsI`K]CDlÁCEï6\NëÈVEI`CE?DGÁO�\NVDlfa�[DKNëPUDGJO)@�ð*�!ILmnVDlJCDO�GJObILKNCElÁCDïÈI`GJïLëLK]lÁ\NVD@oaÇILKNO�a¿BEmbm�OsaNa¿ijBDGJGÁì
BEa¿Os?6lJCÈIÏíÙlf?AO�K]ILCDïLO1ëLi5[DK]ëLUDGJO)@�?AëP@oI`lJCEa
GJlÁMPO�?DI`\]I�@�lJCDlJCDï�I`CE?6ëL\NVDObK�[EKNëPUDGÁOb@oa
íÙVDO)K]OÏlÁ\�lfaÇCDOsm�OsaNa]I`K]ìô\]ë!O�ý^\]K]IPm�\ÇlJ@%[DGÁlfm�lÁ\�lJCAijëPKN@oI�\]lÁëPC¾ijKNëP@ I6GJILKNïPO�?DI`\]I`U�ILaNOoë`i
aNIL@�[EGÁOsa #�+-,.% ð�õdVDObaNOÈILGÁïPëLK]l�\]VD@oaoO�ýA[DGJëLlÁ\�lf?AObIPaÏijK]ëL@ IÖ?AlÁWPO)Kna¿OÈa¿O)\�ë`iÇ?DlJa]m�lJ[DGJlÁCDOsa)î
lÁCEm)GÁB�?AlÁCEïolÁCAijëPKN@oI`\NlJëLC�\NVDObëLK]ìLîDa¿\]I�\]lJa¿\Nlfm)aÙILCE?Ym�ëL@%[DGJO�ýAlÁ\{ìo\NVEO)ëLK]ìLð

õdVDOÈm)GÁëTa¿Osa{\�í�ëLK]MÖ\Në0\]VDO¾m�BDK]KNObCT\�ëLCDO!\NVEI`\Yí�O!ILKNOÒIRí�ILKNO6ëLi1í�IPa�?AOsaNm)KNlJU�Os?
lÁC # $�% ðÙøÎlJMLOÈ\NVEOÒm)BDKNK]O)CT\YíHëPKNMÚîH\NVDObì I`Gfa¿ëÖBEa¿O¾I`C I`BA\]ëL@oI�\]lJmLîHlÁ\NObK]I`\NlJWLO¾I`UEa¿\NKnILm�ò
\NlJëLC � KNO
	ECDO)@%ObCP\
[EKNëAm�Os?ABDK]OZ\NVEI`\#lJa
ïLBDlf?AOb?�U^ì�\NVDOÇm)ëLBDCT\]O)K]O�ýDI`@%[DGJOLîDILCE?�\NVDObìYILGJaNë
\NK]ì#\]ë#O)GJlJ@�lJCEI`\NO�\]VDOHm)ëLBDCT\NObKNO)ýDI`@%[DGJO8U^ìZaNëLGJW^lÁCDïd\]VDOHa¿\]I`\NO)ò«aNO)[EILK]I`\NlJëLCe[DK]ëLUDGJO)@�ð/�HBD\
\NVDObKNOÇILKNOZ\]VDKNObO1@oI`lJCô?Al�0pObKNObCEm�OsaÙU�O)\{íHObO)C�\]VDO	\{í�ëo@�O)\NVDëA?Dabð���lJK]a¿\bîE\NVDOblÁKZI`UEa¿\NKnILm�ò
\NlJëLC!lfaZUEILaNOb?!ëLCÈKNOb[DGJIPm�lJCDï�[EKNOs?AlJmbI�\]Oba�ë`i8\]VDO�[EKNëPïLKnI`@ íÙl�\]VÈCDObí lJCD[DBA\	W�I`K]lJILUDGJObabî
íÙVDlÁGJO6ëLBEK%ILUEa¿\NKnILm�\]lÁëPCÖlfa%[pO)KNijëLK]@�Os?:U^ì0@oILMTlJCDïÑaNëL@%O�ë`i#\]VDO6W�I`K]lJILUDGJOba�lÁC^W^lfa¿lJUDGJO
öÔ\NV^BEabî5í�O6VDlf?AO�\NVEOôO)CT\NlJK]O6GÁëPïLlfm�\]VEI�\Y?AO 	ECEOba%\]VDObaNO6W�I`K]lJILUDGÁOsa]ú�ð5S#aÏíHO6íÙlJGÁG�GJI`\NObK
a¿VDë�í	î�\NVEO�IP?AW�I`CT\]ILïLO	ë`i5\NVDlfaeI`[D[DK]ëPIPmnV�lJa#\NVEI`\em)ëL@%[DBA\]lÁCEïYI�@�lJCDlJ@oI`G(I`UEa¿\NKnILm�\NlJëLC

ijBDCEm�\]lÁëPCÑU�Osm�ëP@�Osa1OsILaNìLð�k^Osm�ëLC�?AGÁìPîÃmnVDOsmnM^lÁCDï�íÙVDO)\NVDObK1\]VDO�m�ëPBDCT\NObKNO)ýAIL@%[DGÁO%lfa1K]ObILG
ëLKHaN[DBDK]lJëLBEa�ídILa8[�ObK¿ijëPKN@%Ob?%lJCo\]VDO)lJK5í�ëLK]M�aNì^@ÇUpëLGJlJmbI`GJGÁìPî`BEaNlÁCDï%h
���
�Za)ðTéÈOZ?Aë	\]VDlJa
a{\nI`ïLO�íÙlÁ\NV I0kAS�õ aNëLGJWLObKbî�íÙVDlfmnV÷ijëLKo\]VDlfaÏ[EILK¿\]lJm)BDGJILK%\]IPa¿MÖlJaoO)ý^\NK]O)@%O)GJì:O��om)lÁObCT\
ö�?ABDO�\NëÇ\NVDO�GJILKNïPO
C^BD@ÇUpO)KHë`i�aNëLGJBA\NlJëLC�a8\]ë1\NVEOZkAS�õêlJCEa¿\]ILCEm�ORú�ð^õdVDlÁKn?AGJìLîP\NVDObìo?AO)K]lÁWPO
\NVDO�KNO
	ECDO)@%ObCP\�a¿ì^@ÇUpëLGJlfm)I`GJGJìLðÃk^lJCEm)O 	ECE?AlJCDï!\NVDOYm�ëPILK]aNOba¿\	KNO
	ECDOb@�ObCT\ÇlJa � "8ò¨VEILK]?Îî
\NVDObì0[DK]ObaNO)CT\%IÈ[pëLGJìTCEëL@%lJILGÙ[DK]ë^m)Ob?ABEKNO�\NVEI`\%lJC÷ïLO)CEO)KnI`GÙm�ëP@�[EBA\NOsa�I¾aNBDUAò«ëL[A\]lÁ@oILG
a¿ëPGÁBA\]lÁëPCÎð �DëPK
a¿ëP@%OZí�O)GJGÎ?AO
	ECDOb?�mbILaNOba�\NVEOea]I`@%Oe[DK]ëAm�Ob?DBDKNO	m)ëL@%[DBA\]Oba�\NVEO	ëL[A\]lÁ@oI`G
KNO
	ECDO)@%ObCP\sð(éÈOPî�ëPCÑ\NVEOYëL\NVDObK�V�I`CE?.î�IRWPëLlf?Ò\NVDO�m�ëP@�[EGÁO)ý^lÁ\{ì¾U^ì0m�ëLC�a¿lf?AO)K]lJCDïôëLCEGÁì
aNIL@�[EGÁOsa8ë`i.\]VDOea{\nI�\NOsa5aNO�\na)îTíÙVDlfmnVÏíHOZm�ëP@�[EBA\NO�O�ýA[DGJlJm)l�\]GÁìPð ��ì%?AëLlJCDï�a¿ë1í�O�ILGJaNë1[EIRì
\NVDO�[DKNlfm�O�ë`iÎëP[A\NlJ@oI`GJl�\{ì��P\NVDlfa5[EKNëAm�Os?ABDK]O
ì^lÁObGJ?EaHI	K]O 	�CDO)@%O)CT\da{\]O)[ÏíÙVDlfmnVÏlfa5CEë`\HCEObm�ò
Oba]aNILKNlJGÁì�ëL[D\NlJ@%ILG�ö�l�ð OLðJî^íHOZ?Aë�CDë`\�CDObm)Oba]aNILKNlJGÁì 	ECE?Ï\NVDOeaN@%ILGÁGJOba¿\HC^BD@�U�ObKHëLiÎlÁC^W^lfa¿lJUDGJO
WRILKNlfI`UEGÁOsa5\]VEI�\#aNVDëPBDGJ?�UpObm�ëP@%O	WTlfaNlÁUDGJOelÁC�ëPK]?AObK�\Në%O)GJlÁ@%lJCEI�\]Oe\NVDO1m)ëLBDCT\]O)K]O�ýDI`@%[DGJOsú�ð
�8O�\díHO#aNBDïPïLOba¿\HIÇ@�O)\NVDëA?%ijëPK5O��om)lÁObCT\da]I`@%[DGJlÁCEïEîLíÙVElJmnVÏlJCÏ@%ëPa¿\�mbILaNObaHI`GJGÁë�í
a�B�a8\]ë
O��Ïm�lJO)CT\NGJì�m)ëL@%[DBA\]O	I`C�ëL[A\]lÁ@oILG.KNO
	ECDO)@%ObCP\sð

õdVDO�í�ëLK]M¾ë`i # � % aNVDëPBDGJ?ÖI`Gfa¿ëÒUpOY@%ObCP\]lÁëPCDOb?:lÁCÖ\NVElJaom)ëLCT\NO)ýT\sî�a¿lJCEm�O�lÁ\olJa�WLObKNì
a¿lJ@%lÁGfI`Ke\]ë # $ % î.\]VDOo@oI`lJCÒ?Al�0ÚO)K]O)CEm)OoU�OblÁCDïY\]VDOoKNO
	ECDOb@�ObCT\ÇI`GJïLëLK]lÁ\NVD@��ÚK]I`\NVDObKe\NVEILC
m�ëL@%[DBD\NlJCDï%\NVDOeK]O 	ECEO)@%O)CT\
U^ì�I`C�I`GJì(�blÁCEïÇ\]VDO1I`UEa¿\NKnILm�\di�I`lJGÁBDK]O	a{\nI�\]OLîA\]VDO)ì�m)ëL@�UDlÁCEO
IY\NVDObëLK]O)@'[DK]ë�WLObKeíÙl�\]V0I�ïLK]O)Ob?Dì!I`GJïLëPKNlÁ\NVD@'\NVEI`\ 	ECE?Da1I6aN@oI`GJG5aNO�\1ë`id[DK]O)W^lJëLBEaNGÁì
I`UEa¿\NKnILm�\NOb?![DK]Ob?Alfm)I`\NObaZ\]VEI�\	ObGÁlJ@%lÁCEI`\NO%\]VDOÏm�ëPBDCT\NO)K]O�ýDIL@�[EGÁOPðÚõdVEO)ì!IP?D?ô\]VDlfa1a¿O)\	ë`i
[DKNOs?Alfm)I�\]ObaÙIPaÙI�CEO)í m�ëLC�a{\]K]ILlÁCT\�\Në�\NVDO1ILUEa¿\NKnILm�\Ù@%ëA?AO)G¨ð

"8K]O)W^lÁëPBEaZíHëPKNM6ëPCÑI`UEa¿\NKnILm�\NlJëLC!U^ìÈ@%ILM^lÁCDï�W�I`K]lfI`UDGJObaelJC^WTlfaNlÁUDGJOôöÔ\]VDlfae\NOsmnVDCDlfóPBEO
í�IPa�BEaNOb?%BDCE?DO)KH?Dl 0ÚO)K]O)CT\5CEIL@%Oba8lJC%\NVEO#[EIPa{\�ú(lÁC�m�GJBE?AOÙ\]VDO
GJë^mbI`GJl��sI�\]lÁëPC�K]Ob?DBEm�\]lÁëPCoë`i
ceBDK]aNVEILC # ��% ILCE?�@%ILC^ì1ë`\]VDO)KnaÙö�aNO)OPî�ijëLK8O)ýDI`@%[DGJO #�+ î
	 % ú�ðLõdVEOÙGÁëAm)ILGÁl �bI`\NlJëLC�KNOs?ABEm�\]lÁëPC
ijëLGJGÁë�í
aH\NVEOe\{ìT[ElJmbI`G.I`UEa¿\NKnILm�\NlJëLC � KNO
	ECDOb@�ObCT\HlÁ\NO)KnI�\]lÁWPO�[EKNëAm�OsaNabð^û«\#a{\nI`KN\]a�U^ìÏ@oI`M^lJCDï
I`GJGAUDBA\�\NVEOÙ[DKNëP[�ObK¿\{ì	W�ILKNlfI`UDGJOba�lJC^WTlfaNlÁUDGJOLð�éêVEO)CoIea¿[DBEKNlJëLBEa�m)ëLBDCT\]O)K]O�ýDI`@%[DGJOHlfa(lf?AO)CAò
\Nl 	EOb?.îLl�\8K]O 	ECEOba�\NVEO
a¿ìAa¿\NO)@�UTìÇ@%ILM^lÁCDïe@%ëLK]O�WRILKNlfI`UEGÁOsaÃW^lfa¿lJUDGJOLðLõdVEO�W�ILKNlfI`UDGJOba�@oIL?DO
WTlfaNlÁUDGJO�ILKNO�a¿ObGÁOsm�\NOs?ÏILmbm�ëPK]?AlJCDï	\]ë1\]VDO�W�ILKNlfI`UDGJO#?AOb[�ObCE?AObCEm�ìoïPK]IL[DVÏI`CE?ÏlÁCAijëPKN@oI`\NlJëLC
\NVEI`\�lfad?AO)K]lÁWPOb?%ijK]ëL@=\]VDOem�ëLBECP\]O)K]O�ýDI`@%[DGJOLðTõdVDOem)I`C�?AlJ?EI�\NOsa�lÁC�\NVDOZCDO�ý^\dKNO
	ECDOb@�ObCT\
a{\]O)[ÈILKNOÇ\NVDëTa¿O�lJCTW^lfa¿lJUDGJO�W�ILKNlfI`UDGJOba
\NVEI`\1I`K]O�IL?��¿ILm�ObCT\�ëLC!\NVDO%W�I`K]lfI`UDGJO�?AOb[�ObCE?AObCEm�ì
ïLKnI`[DV�\Në�m)BDK]KNObCP\]GÁì�WTlfaNlÁUDGJO	W�I`K]lJILUDGJObabðpFHVDë^ëPaNlÁCEï%IL@%ëLCDï�\NVEObaNO1W�I`K]lJILUDGÁOsadlJa#?AëLCDO	U^ì
O�ý^\NKnILm�\NlJCDï�lJCAijëPKN@oI�\]lÁëPC!ijK]ëL@'\NVDOÏm)ëLBDCT\NObKNO)ýDI`@%[DGJOLð.S
CDëL\NVDObK	KNObGÁObW�I`CT\	íHëPKNM6lfa	?AO�ò
aNm)KNlJU�Os?0lJC #�+/$�% ð(õdVDObìÑBEa¿O�
�ò«W�I`GJBDOb?Öa¿lJ@ÇBEGJI`\NlJëLC0\]ëÒaNlJ@ÇBDGfI�\]O�\]VDOYm)ëLBDCT\]O)K]O�ýDI`@%[DGJO
ëLCÒ\NVDO�m�ëLC�m�K]O�\NOo@%ëA?AObG5I`CE?¾lf?AObCP\]l�ijìÈ\NVEOÏlÁC^W^lfa¿lJUDGJOoWRILKNlfI`UEGÁOsaeíÙVDëPaNOoW�I`GJBDOba	lJC¾\NVEO
m�ëLC�m�K]O�\NO#@�ëA?AObGpm)ëLC���lJm�\5íÙl�\]VÏ\]VDO�m)ëLBDCT\NObKNO)ýDI`@%[DGJOLð`ñ8ILKNlfI`UDGJObaHI`K]O#mnVDëTa¿ObC�ijK]ëL@ \]VDlJa
a¿O)\eëLiHlJC^WTlfaNlÁUDGJO%W�I`K]lJILUDGÁOsaZUTì!WRILKNlJëLB�a#KnI`CDM^lJCDïYVDO)BDK]lfa{\]lJmba)ð �EëLKeO�ýDI`@%[DGJOLî.GJlJMLO%GÁëAmbI`GÁò
l��sI�\NlJëLC�îL\]VDO)ì%[DK]O�ijObK5W�I`K]lJILUDGJOba�\]VEI�\dI`K]O#m�GJëPaNO#ëPC%\NVDOZW�I`K]lJILUDGJO#?AO)[pO)C�?AO)CEm)ì%ïLKnI`[DV%\]ë
\NVDO1m)BDKNK]O)CT\]GÁìÏW^lfa¿lJUDGJOeWRILKNlfI`UEGÁOsa)ð

õdVDOÇK]Oba¿\�ëLi�\NVDO�[EI`[pO)K�lJaZëPKNïTI`CDl �)Os?YIPa
ijëPGÁGJë�í
abðEû�C6\]VDO�CEO�ý^\eaNObm�\NlJëLC6í�OÇUDK]lJO��Eì
ïLlJWLOY\NVDOô\NObmnVECDlJmbI`G
U�ILmnM^ïLK]ëLBDC�?0ë`i	I`U�a{\]K]IPm�\NlJëLCüI`C�?ÖK]O 	�CDO)@%O)CT\ÏlJCê@%ë^?DO)G#mnVDOsmnMTò
lÁCDï�ð^û�C�aNObm�\]lÁëPC�
�íHOe?AOsaNm)KNlJU�OZëLBEK�m)ëLBDCT\NObKNO)ýDI`@%[DGJO#ïLBElJ?AOs?�ILUEa{\]K]IPm�\]lÁëPC � K]O 	ECEO)@%O)CT\
ijK]IL@�ObíHëPKNMÚð�éÈO�ObGJILU�ëPK]I`\NOYlÁCÖ\NVDlfaÏaNObm�\NlJëLC:ëPCÖVEë�í \NVDO6m)ëLBDCT\NObKNO)ýDI`@%[DGJO�lfa%U�OblÁCEï
mnVDObmnMPOb?:ILCE?ÖVDë�í í�O�K]O 	ECEO�\]VDO6I`UEa¿\NKnILm�\NlJëLCÎð(éÒO6I`Gfa¿ë¾?AOba]m�K]lJU�OYKNO
	ECDOb@�ObCT\oIPa%I
GÁOsI`K]CDlÁCEï	[DKNëPUDGJO)@�ð`û�CÏaNObm�\]lÁëPCEa��1ILCE? $ íHO
ObGJILU�ëPK]I`\NOdëLC%ëPBDK5aNO)[EILK]I`\NlJëLC�\NObmnVECDlJóTBDOsa)ð
õdVDObaNO�\NObmnVECDlJóTBDOsa	I`K]O�m)ëL@�UDlÁCEOb?ÈíÙl�\]V!\]VDOoO��Ïm�lJO)CT\1a]I`@%[DGJlÁCDïY\]ObmnVDCDlfóTBDOLî.íÙVElJmnVÒlJa
?AOba]m�K]lÁUpOb?1lÁCÇaNObm�\NlJëLC��EðbéÒO5ïPlÁWPO8O�ýA[pO)K]lÁ@%O)CT\nI`GLK]ObaNBDGÁ\]a�lÁCÇaNObm�\NlJëLC � î)íÙVDlfmnV1[DK]ë�WLOsaÚ\NVEO

WTlfI`UElÁGJl�\{ì�ë`i.ëPBDK8@%O�\]VDëA?Da5m)ëL@%[EI`K]lJCDïe\NëÇI	a¿\]I`\NO
ëLiÚ\NVDO#ILK¿\H@�ëA?AObG�mnVDOsmnMLObK
ö¨F�IL?DO)CEm)O
k �6ñ�ú�ðEéÈO1?Alfa]m�BEa]aÙm�ëPCEm�GJBEaNlÁëPCEaÙI`CE?�ijBA\]BDKNO	í�ëLK]MolJC�aNObm�\NlJëLC � ð

� �����LâAã���çpâDè{äHáÐèNá	� ädå�

������
Ãç��Ùè¿á��
éÈO�a{\nI`KN\�íÙlÁ\NV÷I!UDK]lJO�i#?AOsaNm)KNlJ[A\NlJëLC:ë`i
\]VDO�B�a¿OYë`i#ILUEa{\]K]IPm�\]lÁëPCÑlÁCÖ@�ëA?AObGÙmnVDObmnM^lJCDï
öÔijëLKe@%ëLK]O%?AO�\nI`lJGJaZK]O�ijO)K�\Në #�+�% ú�ðÃFHëLC�a¿lf?AO)KeI�[DKNëPïLKnI`@ íÙl�\]VÒIYaNO�\eë`i5W�I`K]lfI`UDGJOba����
��� Q���������� �! #" îLíÙVDObKNO
OsILmnV%W�I`K]lJILUDGJO �!$ K]ILCDïLOsa(ë�WLO)KHI	CDëLCDò¨Ob@�[D\{ì�?AëP@%ILlÁC&%('*)nðP>HILmnVa{\nI�\NO�+
ë`iE\]VDOÙ[DK]ëLïPK]IL@ ILa]a¿lJïLCEa�W�I`GJBDOsa�\NëZ\NVDOÙW�ILKNlfI`UDGJOba�lJC&�oðLõdVDOÙaNO�\8ëLipI`GJGA[pëPa]a¿lJUDGJO
a{\nI�\NOsaZijëLKZ\NVEOo[DKNëPïLKnI`@ lJa-,.�/%('103254�4�4#26%7'*8pð�õdVDO%[DK]ëLïPK]IL@ lfaZ@%ë^?DO)GJOb?ÒU^ìôI
\NKnI`CEaNl�\]lÁëPCYaNìAa{\]O)@:9;��ö<, �>=?�>@ úHíÙVDObKNO
+ ð�,ÖlJa�\]VDO1a¿O)\
ë`i(a{\nI�\NOsa)ð
A ð =CB ,0lfad\NVEO1a¿O)\dëLi�lJCDlÁ\NlfI`G�a¿\]I`\NOsa)ð

Dð @DB ,E2F,:lJaÙ\NVDO1aNO�\Ùë`i�\NKnI`C�a¿lÁ\NlJëLCEabð
éÈO1B�a¿OZ\NVEO1CDë`\nI�\]lÁëPC = ö<+RúH\]ëÏ?AO)CDëL\NOe\]VDO	i�ILm�\Ù\NVEI`\#Ioa{\nI�\]OG+	lfaÙlÁC = î�ILCE?�í�O	íÙK]l�\]O
@ öH+ Q1� + g ú�l�i�\NVDOe\]K]ILCEaNl�\]lÁëPC�UpO�\{í�O)ObC�\]VDO1a¿\]I�\]Oba�+ Q I`C�?I+ g lfadlÁC @ ðS
C�I`UEa¿\NKnILm�\NlJëLCÏijBECEm�\]lÁëPCKJ�ijëPK�\NVDO1aNìAa{\]O)@ lfadïLlJWLObC�U^ì�I%a¿BEK �{Osm�\NlJëLCFJ��L,NMPO,dî
íÙVDlJmnVÑ@oIL[Ea1I6m�ëPCEm�K]O�\]OÏa{\nI�\]OolÁCQ, \NëÈI`CÑI`UEa¿\NKnILm�\Ça{\nI�\]OolÁCRO,dð�XZlÁWPO)C0I6m�ëPCEm�K]O�\]O
a{\nI�\NOG+ $TS ,dîDí�O1?AO)CDëL\NO1U^ìFJ�öH+ $ ú�\NVEOÇI`UEa¿\NKnILm�\
a{\nI�\NOe\]ëÏíÙVDlfmnV�l�\#lfaÙ@oI`[E[�Os?�UTìFJÎð
S#m)m)ëLKn?AlJCDïLGJìLîAí�O	?AO)CDëL\NOeU^ìIJVU.Q`ö O+RúH\NVDO1aNO�\ÙëLi(a¿\]I`\NOba�+Ça¿B�mnV�\]VEI�\WJÃö<+RúX� O+Lð
Y[Z]_^a`cb�`cd#^.e!fhgji
�@%lÁCElÁ@oI`GeI`U�a{\]K]IPm�\o\NKnI`C�a¿lÁ\NlJëLC aNìAa{\]O)@ O9 �,ö O, � O=�� O@ ú�k ������
�lþ�ÿ ���jm���� ' � � � �����.�Dþ����!�����ÈþonRþ���
�&p9q� öH, �r=!�r@ ú ���jm �.� � ��þ��!���sk	�!����� � � �#k	�����.�KJ �fþ
m
<t ��
om �Rþ � ����� �vu(þ�w
xsy O,N� � O+[z!{�+ � + S ,F|FJÃö<+RúX� O+ " y}]y O= � � O+Iz!{�+ �j= öH+RúV|[JÃö<+RúT� O+ "~Ly O@ � � ö O+ Q�� O+ g ú�z?{�+ Qv� {�+ gL�!@ ö<+ Qv� + g ú�|FJÃö<+ Q ú�� O+ Q |FJ�öH+ g úX� O+ g "
û�CP\]BDlÁ\NlJWLO)GJìLî�@�lJCDlJ@oI`GJl�\{ìÈ@�OsI`CEa	\NVEI`\ O9 mbI`C¾a{\nI`KN\1lÁCÑa¿\]I�\]O�J�öH+RúZl�iÙI`CE?ÒëPCDGÁìÈl�i�9
m)I`Côa¿\]ILK¿\ZlÁCÈa{\nI�\NO7+�îÚI`C�? O9 m)I`C�\]K]ILCEaNl�\]lÁëPC�ijKNëP@�JÃö<+RúÙ\Në[JÃö<+*�ÔúÙlÁi5I`CE?ôëLCDGJì�lÁi�9
m)I`C�\NKnI`C�a¿lÁ\NlJëLC�ijKNëP@:+e\]ë&+ � ð

�DëLK�aNlÁ@%[DGJlfm�lÁ\{ìLî`í�OdKNOsa{\]KNlfm�\�ëLBEK8?AlJa]m�B�aNaNlÁëPC1\]ë	@�ëA?AObGDmnVDObmnM^lJCDïeë`ij�C���%ijëPKN@�BDGfILabî
íÙVDO)K]O��Òlfa1IYCDëPCAò�\]O)@%[pëLKnI`G�[DK]ëL[pëPaNl�\]lÁëPCEI`G�ijëPKN@�BDGJIEð.õdVDO%\NVDObëLK]ì!m)ILCÈUpOoO�ý^\]O)CE?AOs?
\Në	VEILCE?AGJO#I`C^ì�a]I�ijO)\{ì1[DK]ëL[pO)KN\{ìLî`UpObmbI`BEaNO
aNBEmnV�ijëLK]@ÇBDGfILa�V�IRWLOÙm�ëPBDCT\NO)K]O�ýDIL@�[EGÁOsa�\NVEI`\
I`K]O�	�CDl�\]O	[EI�\]VEabð
Y[Z]_^a`cb�`cd#^���f-� ÿ�� �]ÿ �Rþ��������.���.��� � ��& � ���-�0K]ObaN[�Osm�\]a ��� � ��þ��!���sk	�����.� � � �jk��!�����6J � �
� ��� �.���!+ S ,��aJÃö<+Rú�z �N�[��+Gz �N� y
õdVDO#OsaNaNO)CEm)O
ë`i�m)ëLCEaNO)K]W�I�\]lÁWPO
I`UEa¿\NKnILm�\NlJëLC%lJa5\NVEO
ijëLGJGJë�íÙlÁCDïÇ[DKNOsa¿ObKNW�I`\NlJëLC�\NVDObëLK]O)@ # ��% î
íÙVDlJmnV�lfaÙa{\nI�\]Ob?YíÙl�\]VDëLBD\
[DKNë^ëLi{ð
�-� Z�d!��Z]�qe!f-�)
	� O9 �
 �.� � ��þ������Lk��!����� � �79 k ������
�þ¨ÿ
�.�#m���� ' � � ��i�
 � ��þ������Lk��!�����
� � �#k	�����.�(JV� ���jmT� �

�dÿ�� �nÿ
��þ��������.������� � ��& � ��� ��i �.� �
�þ¨ÿ�
>k	��þXJ y gji
	� O9�z ���&�7�[�
9�z ���C���

õdVDO�m)ëLC^WLObK]aNO%ë`iÙ\NVEO�I`Upë�WLOo\]VDO)ëPKNOb@ lfa1CEë`\Ç\]KNBEOLî�VEë�íHObWLO)KsðÎ>8WPO)CÑlÁiÙ\NVDOYI`UEa¿\NKnILm�\
@�ëA?AObG1lJCTW�ILGÁlf?DI�\]ObaY\]VDO0a¿[pObm)l 	pm)I�\]lÁëPCÎîd\NVEO:m�ëPCEm�K]O�\]OÈ@%ëA?AO)GÇ@%IRì a{\]lÁGJGÇa]I�\Nlfa¿ijì \NVEO
a¿[pObm)l 	�mbI�\]lÁëPCÎðDû�CY\NVDlfa
mbILaNOLî^\NVEOÇI`UEa¿\NKnILm�\dm)ëLBDCT\]O)K]O�ýDI`@%[DGJOeïLO)CEO)KnI�\NOs?�U^ì�\NVDO	@%ëA?AO)G
mnVDObmnMPO)KdlJa	þ�ÿ ���������^þ�îDl¨ð OPðDlÁ\#?Aë^ObaÙCDëL\#m�ëPKNK]ObaN[�ëPCE?o\]ëoIom�ëLC�m�K]O�\NOe[EI`\NVÎð�õdVDO1I`UEa¿\NKnILm�ò
\NlJëLC¾ijBDCEm�\NlJëLCÑlfae\Në^ë!m)ëPILK]aNOÇ\]ëôW�I`GJlJ?EI�\NO%\]VDO�aN[�Osm�l 	�m)I`\NlJëLCÎî�I`CE?Òí�OoCDO)Os?Ò\Në6K]O 	ECEO
l�\sð
Y[Z]_^a`cb�`cd#^��Vf�� ���
	� �
��� ���Dþ����!������þ nRþ��
	&�9 � ö<, �>=?�>@ ú ���#m �.� � ��þ �!���Lk��!����� � � �#k�l
�����.�IJV�aJ � �fþ �	K]O 	ECDOb@%O)CT\ � �WJ � �

xsy�� � � �����j+ Q � + g S ,��aJ!��öH+ Q úX��J!�¨ö<+ g ú ��&
ÿ � ��
�þWJ�öH+ Q úT��JÃö<+ g ú y}]y gji

��

��"�fþ���þ�+ Q1� + g S , þ��?koi ��i ��� JÃö<+ Q úX� J�öH+ g ú �.�#m7J?�¨ö<+ Q ú����J!��öH+ g ú y

	 �����LâAã���çpâDè{äHá�

�����������������

����� �
!#"�$�%�&'�(�*)+"-,���!'�/.0$'12%�13"*$+�54+6��7$'"-68!9�:�<;/=<13)+�7"�>'=Gk@?-A9B0CED5F�D��HGJI�KML2DON*A9Pcm*DomQG*R�l
S CTF�GLk/CTPU?-BVF�D<tWBMD/IXD5B0C0Y0=�"9;/�
!9>'=<�*Z9[�12,��5$#�\%�=@�J$0��12%�13"*$#��]9�^%<�5_p9`�J$0!#�(�<�-ab�/%^]cY'=<"*Y'd
�5=�%^]#e�f
g Z�[��5$'�:=<�J%��7�J$�13$'1h%<13�*i��J)+�^%<=<��;j%�13"*$kab>'$0;/%�13"*$hJ�Z
A ZmlV"9!9�5in;@&'�:;@o O9pZ'qra O9 z ste�49%�&'�:$ 9 z sue�Z+vm�/%<>'=�$Vwmv�xzyzZ
{ Z�qra O9 �z s|e�4};@&'�:;@o~%�&0�k;/"�>'$�%��:=��5�9�*_cY'i2�X"�$�%�&0�k;/"�$0;/=<�/%<��_c"9!9�5iTZ�qra�%<&'�k;5"*>'$'d

%��:=��5�9�*_cY'i2��1��m=<�:�JiT4�9��z sue�Z0vm�/%<>'=<$Q�9�O�n�9yzZ
�0Zmvm�/.+$'�GJ�4+�J$0!k�*"�%�"X� %��:Y A Z

w�&'���J)�"-,*��Y0=�"9;/�
!9>'=<��1��V;/"�_�Y0i2�5%��~ab"*=�.0$'12%���� %<�-%<����]9�^%<�5_X�:Zm�912$0;5���:�*;@&�=��5.0$'�5d
��:$�%�� %��:Y�Y0�J=�%�12%�13"*$+���J%�i3�:�*� %�"�$'�O�*)0� %�=@�*;j%��^%@�-%<�*4�%�&'��$H>'()��5=�"Ja�i3"H"*Y�12%��:=<�J%�13"*$0��13�
)+"�>'$0!9�
!V)H]k%<&'�($H>'_�)+�:=z"*a�;/"*$+;/=<�/%����^%@�-%��
�5Z�qE$V%<&'�($'�5�H%���>')0���:;j%<12"�$0�:406��\�/�9Y'i��J13$
12$Q_c"*=<�7!9�/%@�J13i�&'"-6u6���Y+�:= ab"�=�_��:�*;@&��^%<�5Y�Z

�Vf<e YIZ]\ ^ `c^�����^��9�}��b����0�vb�`<d!^u�T� ^��vb�`<d!^
�~�VY0�*= %<1h%<12"�$�%�&'� ���/%�"*a�,-�J=<1��J)'i3�:�X¡¢13$�%<"�%^6�"����/%@�5f£%<&'� ���/%�"Jac¤
P S PUR5L2D�,��*=�1��J)0i2�
�
6m&'13;@&�6��c!9�5$0"J%���)H]Q¥¦�*$0!Q%�&0�����/%�"JazP§B+¤:P S PUR5L2D�,-�J=<13�*)'i2�
��6m&'1�;@&�6���!'�5$'"*%��()H]�¨mZ
qE$�%<>'12%�13,*�5i3]*4�¥©;/"�=�=<�:��Y�"*$0!'��%<"Q%�&'�#Y0�J=�%\"Ja�%�&0�#�]9� %��:_ª%�&+�-%(1��\;/>0=�=<�5$�%�i3]�)��5i313�5,*�
!
%�"()���12_cY�"*=�%<�J$�%�ab"*=�,��5=<1hab]H13$'�7%<&'�OY0=�"�Y+�:= %^]�Z�w�&'���J)0� %�=@�*;/%�13"*$�ab>'$0;/%�13"*$FJ#�*)0�^%<=<��;j%@�
"*>9%�%�&0�712=<=��:i2�:,-�J$�%�!'�/%<�*12i��:49$0�J_c�5i3]X%<&'�712$H,H1�� 13)'i3��,-�*=�1��J)'i3�:�:Z9w�&'��12$01h%<13�*i��J)0� %�=@�*;/%�13"*$
12$c�^%<�5Y g �J$0!(%�&'��=<�/.0$0�5_c�5$�%£12$c� %��5Y���;/"*=<=<�:��Y+"�$0!7%<"�!'1h«M�5=<�5$�%£Y0�J=�%�12%�13"*$+�n"*a0%<&'�m� �5%
"Ja�,-�J=<1��J)'i3�:�:Z��O���J$�13$'12%�1��Ji£�J)+�^%<=<��;j%�13"*$�4�¥813$0;/i3>0!9�
�z%<&'�c,-�J=<13�*)'i2�
��13$�%<&'��Y'=�"�Y+�:= %^]
e�ZHqE$��:��;@&�=��5.0$'�:_��:$�%�� %��:Y�4H6���_c"-,*��,-�J=<1��J)'i3�:��ab=�"�_©¨�%<"�¥O49�*��6���6m12i3iM�/�9Y'i��J13$#13$
� >')'dr���:;/%�13"*$ { Z { Z

lV"*=<��ab"*=<_c�*i2i3]*4�i3�/%c¬�­U®�¯/4�® S ¡°!'�5$'"*%��c%�&0��,-�Ji3>'�X"Ja�,-�J=<13�*)'i2�c®±13$��V�^%@�-%<�#¬*Z
[�12,��5$±� ���/%("*a�,-�J=<13�*)'i2�
��²³sª´:µ�¶
·5¸:¸5¸:· µ0¹�º�4£² B ¡X4£¬�»�!9�:$'"J%<�:�\%�&'�kY+"�= %<12"�$�"Ja
¬k%�&0�J%X;5"*=<=��
� Y�"*$+!'�7%<"�%<&'�Q,��*=�1��J)0i2�
�(13$�²�4�P y D y ¬-»�s¼­T¬�­Uµ�¶5¯j¸3¸2¸½¬�­bµ0¹�¯ ¯jZp���/%X¥|s
´:¾�¶�·:¸5¸:¸5· ¾*¿Hº�Z0w�&'�(Y0�J=�%�12%�13"*$'13$'��!9�5.0$'�
��"*>0=z�J)0� %�=@�*;/%�13"*$kab>'$0;/%�13"*$6J f9À5M OÀ8f+w�&0�
� �5%�"Jaz�*)0� %�=@�*;j%��^%@�-%��
�(1�� OÀÁsÃÂcÄ@Å�Æ�Ç5Ç:Ç�Æ�Â�Ä@ÈQ�J$+!�%�&'�Q�J)+�^%<=<��;j%�13"*$�ab>'$+;j%�13"*$É13�
� 13_cY'i2]FJ�­T¬�¯Wsu¬
Ê}Z

[�12,��5$.J�4�6���$'�:�:!�%<"�;/"*_cY'>'%��~%�&'��_c12$012_X�Ji7�*)0�^%<=<��;j%<12"�$�Z��0"*=V�J$8�J=<)'12%�=@�J=<]
�]9� %��5_�9 �*$0!±�*)0�^%<=<��;j%<12"�$�ab>'$0;j%<12"�$ J�4}1h%c13��"Ja§%<�5$ %�"H"��5�HY��5$+� 13,*�k"*=�12_cY�"��<� 13)'i3�
%�" ;/"�$0� %�=<>0;j%7%<&'�X_c12$'13_X�Ji��J)0� %�=@�*;/%�13"*$ O9 � ��� Z��z"-6��:,*�5=
4M"*>'=��J)0� %�=@�*;/%�13"*$ ab>0$0;j%<12"�$
�Ji3i2"-6��z>0��%<"�;5"*_cY'>9%<� O9 ���X;512�:$�%�i3]Qab"*=��]9� %��5_X�z6m&'�5=<�\%<&'�(%<=<�*$0��1h%<12"�$ =��:i3�J%�13"*$ @13�c13$��~ab>'$+;j%�13"*$+�Ji�ab"*=<_Q4}�*Z �0ZW���	��>'�5$�%<13�*i�;512=@;/>01h%@�5ZW�0"*=�%�&'�
� �V��]9�^%<�5_X�54 O9 ;5�J$�)��
;/"*_cY'>'%��:!�!913=<�:;j%<i2]�ab=�"�_ª%<&'�XY'=<"*�*=@�J_°%<�/�H%:4�)H]�=<�5_c"-,H13$'�#%<&'��i3"*��13;�%�&+�-%(!9�5.0$'�:�
%�&'�713$H,�1���12)'i3��,-�J=<13�*)'i2�
�m�J$0!#%�=<�:�J%�13$'��%�&'�:_�����12$'Y0>9%<�:Z

�Vf��
 � Z����V`<^n� b � Z

�d��a^jb*ZL��Z����������cZ
�'"*=7�<�-ab�5%^]VY'=�"�Y+�:= %<12�
�54�%<&'�X;/"*>0$�%<�5=<�/�'�J_cY'i3�(���5$'�:=<�J%��
!V)H]Q%�&'�c_c"9!9�5iW;@&'�
;@o*�:=O1����
Y0�-%<&�� O¬ ¶ · O¬��J·:¸5¸5¸ O¬����/Z}w�&0�k���/%c"JaO;5"*$0;5=��5%���Y0�J%�&0��%<&0�-%X;/"�=�=<�:��Y+"�$0!'��%<"�%<&'1���;5"*>'$'d
%��5=<�/�'�*_�Y0i2��1����*13,*�5$�)H]

��� s¦´�� ¬-¶n¸5¸:¸<¬ � �3z = ­T¬�¶5¯V|
� U ¶�
��� ¶ @

­T¬ � ·<¬ �� ¶5¯�|
�
�
��� ¶
Jn­ ¬ � ¯Ws O¬ � º ­ g ¯

�z;5;5"*=@!913$'��%<"O���:;j%<12"�$ { Z g 4�Jn­ ¬ � ¯�1�����13_�Y0i2]7�OY'=�""!^�:;/%�13"*$7"JaM¬ � %�"O%�&0��,H1�� 13)'i3��,-�J=<13�*)'i3�:�:Z
w�&'��=�13�*&�% dr_c"�� %�;5"*$�!^>'$+;j%�13��%<&'�5=<�/ab"�=����(=<�:� %�=<13;/%�13"*$k"Ja�%<&'��,�1���12)'i3��,��*=�1��J)0i2�
��13$�� %��:Y
%�"c%<&'�513=m,-�Ji3>'�:�m13$k%�&'�\;5"*>'$�%��:=��5�'�J_cY'i3�*Z

w�&'�O;5"*>'$�%��:=��5�'�J_cY'i3�z1�����Y'>'=<12"�>0��1han�*$0!�"�$'i3]�12a�%<&'�7� �5% �$� 13���5_cY9%^]�ZH�~��;@&'�:;@o
ab"*=�%<&0�-%�)�]�� "�i2,H13$'� �$� 6m12%�&\�O�9�£w�� "�i2,��5=
Z/w�&'13��ab"*=<_(>'i���1���,*�:=�]�� 13_c12i��J=�12$(� %�=<>0;/%�>'=<�
%�"�%<&'�\ab"�=�_�>'i��*��%<&0�-%��J=<13���\13$���"*>'$0!'�:!VlV"9!9�:i$%�&'�
;@oH12$'��­U��l&%�¯ � { � Z'��"-6��5,*�:=:4 ���
13�c�
�*��12�:=c%�"�� "�i2,��Q)+�
;5�J>+� ��%�&0�VY0�-%<&É1��X=<�:� %�=<13;/%��:! %�"�%<&'� ;/"�>'$�%��5=<�/�'�*_�Y0i2��Z}l "�� %
_�"9!9�:i�;@&'�
;@o*�:=<��%<=��
�-%�13$'Y'>9%@�n����i��-%<;@&0�:�:4:�J$+!z%<&'�5=<�/ab"�=��W%�&'��;5"*>'$�%<�5=<�/�'�J_cY'i3�£12$+;/i3>0!9�:�
�*�<� 13�*$'_c�:$�%@�n%�"�12$0Y'>9%<�:Z-��&'13i2����13_(>'i��-%<12$'�O%�&0��;/"*>0$�%<�5=<�/�'�J_cY'i3�*4�6����*i3��"�=��
�^%<=�1�;j%}%�&0�
,��*i2>0�:��"Ja�%<&'�c­b"*=<13�*13$0�Ji§¯£13$'Y'>9%@��%�&0�J%m�*=��OY0�J=�%�"*a�%�&0��!9�5.0$'12%�13"*$�­bi312��"*$#%�&'��v(���'¯�"Ja
%�&'�7,H1�� 13)'i3��,-�*=�1��J)'i3�:�:496m&'1�;@&#ab>0= %<&'�5=z��13_�Y0i212.0�:�m%�&'��ab"�=�_�>'i3�0Z

qra}�c�<�-%�1�� ab]�13$'��������12��$'_c�5$�%�13��ab"�>'$0!�406��7oH$'"-6u%�&0�J%m%�&'�\;5"*>'$�%��:=��5�'�J_cY'i3��;5"*=<=��5d
� Y�"*$0!0�}%�"\�7;5"*$0;5=��5%���Y0�-%<&�4*6m&013;@&c_c�:�*$0�}%�&+�-%W6���ab"*>'$0!X��=<�:�*i')'>'�+Z�)z%�&'�:=�6m1����*4-6��
%�=<]�%�"ci3"H"*oXab"�=m%�&'�+* aU�J13i3>'=��-,'13$0!9�/�/.�491 Z �*Z'%�&'�7_X�-�913_X�Ji�13$0!9�5�0.�41.
243�40��>0;@&�%�&0�J%
�$5 1������J%�1��^.+�*)'i3�*Z'[�12,��5$6.�47� O¬ ¶ ·5¸:¸5¸ O¬ 5 ��13��%�&0�Oi3"*$'���:� %�Y'=<�/.0��"Ja�%<&'��;5"*>'$�%<�5=<�/�'�J_cY'i3�
%�&0�J%�;/"�=�=<�:��Y�"*$0!'�m%�"#�k;/"*$+;/=<�/%��7Y+�-%�&�Z7)O>'=O12_cY'i3�5_c�:$�%@�-%<12"�$�� ����>'�5$�%�1��Ji3i3]����:�*=<;@&'�
�
12$�%<&'�#=@�J$'��� g ¸3¸ 3 ab"*=7%<&'�#&'13�*&0�:� %(,-�Ji3>'�8.�� >0;@&�%<&0�-% � 5 13�����J%�1��^.��J)'i3�*Z��0"*=�i2"�$'�
;/"*>0$�%<�5=<�/�'�J_cY'i3��%<=<��;/�
�54�6��Q�Ji���"�&0��,��k�J$É"*Y9%<12"�$ "*aOY��5=�ab"*=<_�13$'����)'13$0�*=�]±���:�*=<;@&
"-,*�5=�%�&'1���=<�*$'�*��4�13$#6m&013;@&�;5�*����%<&'��$H>'_()��5=�"Ja��'�£wt13$0�^%@�J$0;5�:��6�����"*i3,*�z1���)+"�>'$0!9�
!
)�]#i2"��93~Z

�Vf�� :[ZL_^ `c^�� b � Z �'����b��-�'�sb�`cd#^
�z��)+�5ab"*=<�*4Mi3�/%;.�!9�5$0"J%���%�&0��aU�*12i3>'=<��13$0!9�5��ZM���/%7Â !9�:$'"J%<�(%<&'�X� �5%�"*a��Ji3i£�^%@�-%<�:�=< 5
� >0;@&#%�&0�J%�%�&'�:=����/�91��^%@����"*_c�+�><9¶-¸3¸3¸ < 5 ��13$ � 5 Z9�~�7;:�Ji3iMÂ %�&'�7���/%m"Ja m*D@Gsm�D/Bjm��^%@�-%��
�5Z
��]k!9�/.0$01h%<12"�$�4�%�&'�:=���1��m$'"X;/"�$0;/=<�/%<�O%<=<�*$0��1h%<12"�$#ab=<"*_|Â�%<"CJ U ¶ ­ O¬ 5 ¶:¯jZ

�H12$+;/��%�&'�:=���1��£�J$c�J)0� %�=@�*;/%n%<=<�*$0� 12%�13"*$(ab=�"�_ O¬ 5 %�" O¬ 5 ¶�4�%�&0�5=<��1��£��$'"*$'dT�:_�Y'%^]\� �5%
"Ja'%<=<�*$0� 12%�13"*$+��? 5 ab=<"*_ JVU ¶ ­ O¬ 5 ¯�%<"�JVU ¶ ­ O¬ 5 ¶/¯�%�&+�-%W�J��=��:��6m12%�&�%�&'��;/"�>'$�%��5=<�/�'�*_�Y0i2��Z

w�&'�\� �5%m"Ja�%�=@�J$0��1h%<12"�$0�(? 5 1��m!9�/.0$0�:!Q�*��ab"�i2i3"-6��5f

? 5 s8´�� ¬ 5 ·@¬ 5 ¶ �3z @ ­ ¬ 5 ·<¬ 5 ¶/¯�|FJn­ ¬ 5 ¯�s O¬ 5 |FJ�­T¬ 5 ¶5¯�s O¬ 5 ¶�º ­ A ¯
[�12,��5$~%�&'�X!9�5.0$'12%�13"*$�"Ja�J�4�? 5 =��:Y'=��
� �:$�%<���Ji3iW;/"*$+;/=<�/%���Y0�-%<&0��ab=<"*_ª� %��5Y�.�%<"Q� %��:Y
. � g 406m&'�5=<��%�&'�(,�1���12)'i3�7,-�J=<13�*)'i3�:��13$Q%�&'�
� �(� %��:Y0���*=���=<�:� %�=<13;/%��:!k%<"c%�&'�:12=O,��*i2>0�:�m13$
%�&'�\;5"*>'$�%��:=��5�'�J_cY'i3�*Z'���5%�� !9�5$0"J%���%<&'�\���/%�"Ja£�Ji3i�� %<�-%<�:��� 5 � >0;@&�%<&0�-%m%<&'�5=<���/�913� %<�
� "�_�� ��� 5 ·�� 5 ¶ ��13$/? 5 Z'���\;5�*i2i���%<&'�\���/%m"Ja�R@Gsm�� %<�-%<�:�7­ � �:��.0�*>'=<� g ¯/Z

w�&'�z;/"�>'$�%��:=��5�9�*_cY'i2���5�H1�� %<�W)��:;:�J>0���m%<&'�5=<��1����J$��*)0� %�=@�*;j%£%<=<�*$0��1h%<12"�$�ab=<"*_ ¬ 5 %<"
¬ 5 ¶�%�&0�J%O!9"H�:�m$0"J%O;5"*=<=��
� Y�"*$0!#%�"��*$H]k;/"�$0;/=<�/%<��%�=@�J$0��12%�13"*$�Z0w�&0��%�=@�J$0��1h%<12"�$Q�/�913� %<�
)+�
;5�J>+� ��%<&'�O!9�
�*!9�:$0!c�J$0!c)+�*!X� %<�-%<�:�£i313��12$c%<&'�z�<�J_c���J)+�^%<=<��;j%�� %<�-%<�*Z�w�&'13��� >'���*�
�^%@�
��_c�:;@&+�J$'1�� _¢%<"~=<�/.0$0��%�&0���*)0�^%<=<��;j%<12"�$�Z�w�&0���*)0�^%<=<��;j%<12"�$EJ±1���=��5.0$'�
!�%�"���$0�56
�J)0� %�=@�*;/%�13"*$�J!�£��>0;@&�%<&0�-%
	7< S Â ·�	�� S �¢­HJ?�r­ <�¯��s J?�T­
�5¯ ¯jZnw�&'�c$'�56��J)0� %�=@�*;/%�13"*$
Y'>9%<�#%�&0��!9�:��!9�5$+!t�J$0!�)+�*!�� %<�-%<�:�#12$�%�"É� �:Y0�J=@�-%<� �J)0� %�=@�*;/%#�^%@�-%��
�#�*$0!�%�&'�:=��5ab"*=<�
�5i312_c13$0�-%<�:��%<&'�\� Y0>'=�13"*>+��%<=<�*$0��1h%<12"�$#ab=<"*_ %<&'�\�J)+�^%<=<��;j%��]9� %��:_�Z

Trace

end
Dead

Bad

Abstract

Concrete
Trace

{

}

������������������� �"!$#%���'&(#%��)�*"+(�"+-,�.0/1��2$+�&�#3���"+(����#%)�4 �5*"#
.�&�#3)�&(�"+(*"+6��.7*"89*"8�.0*;: < �"+=.3>?�-:�!$)@*"8A+
B .3!2!$)�C@�D*E.0*"+%F�G58�+ B .3!2!$)�C1�D*E.0*"+��A)�!H*"+��'&�#3)�&(�"+(*"+I: 4 +=.%4 +�)�4�:J.0)�4K: <�.%4�:��D*E.0*"+(�

�Vf�L :[ZL_^ Z]�QZ]^jb(��MON
Z���� �-� b*`cd#^���^QPSRTZH� ��^ `c^��
���/%�À�s ´�¬ ¶ ¸3¸3¸ ¬���ºz�J$0!UT�s¦´3V ¶ ¸3¸3¸ V"W�ºz)���%^6�"\���/%<��"Ja�� %<�J%��:�z­b)'13$0�J=<]�,*�:;/%�"�=<�@¯�"Ja���1YX:�
Z 49=<�5Y'=<�:���5$�%�13$'�c�*�<� 13�*$0_��:$�%<��%�"X�c���/%�"Ja�,-�J=<13�*)'i2�
��[�Z
Y[Z]_^a`cb�`cd#^\L
fc­Uw�&0�(�^%@�-%<�����5Y0�*=<�J%�13"*$�Y'=�"�)'i3�5_�¯ � P§Bjm�GkI�P§B0P§IXG-L S D/C�?E]\¤-G-FjPUG*R5L2D S
²³s°´
µ�¶
¸3¸3¸ µ�¿�ºs��²_^`[� S A?k�a�Cba'GJC5]/?JF�D@Gsk�aQK'GJP§F�?"] S CrGJCrD S ­ ¬ � ·-V�c
¯o� ged #fd 36�
g1dhgKdji �WCba'D5F�D�D<��P S C S GX¤-G-FjPUG�R/L2D�µlk S ² S A?k�aQCba'GJC}¬ � ­bµlk:¯O�sSV�c�­bµlk5¯ y
���/%�ÂnmO�*$0!U�
mO!9�:$'"J%<��%<&'�z=<�:� %�=<13;/%�13"*$X"*a�Â �J$0!o��4�=��
� Y��:;/%�13,*�5i3]*4*%�"(%�&'�:12=�12$H,H1�� 13)'i3�
Y0�J=�%<�:4�P y D y 4�Ânm�s¢´�¬ m z ¬ S ÂQºQ�*$0!j�Im~s¼´�¬ m z ¬ S ��º�Z£���5%Up S ¨p)+�V��� �5%X"Ja
,��*=�1��J)0i2�
��%<&0�-%\���5Y0�*=<�J%��:��Ânm�ab=�"�_q�Im�Z�w�&'�c=��5.0$'�:_��:$�%�1���"*)9%@�J13$'�:!�)H] �*!'!913$'�rp
%�"#¥OZ�l 12$'13_X�Ji31h%^]�"Ja�p¼1���$0"J%O;5=�>0;513�*i 4+=<�J%�&'�:=�12%O1��O�X_X�J% %��:=z"*a}����;/13�5$0;5]*Z��H_X�Ji3i2�:=
� �5%<�O"JaW,H13��13)'i2��,-�J=<13�*)'i2�
�m_X�Jo��(12%O�:��� 13�5=z%�"k_�"9!9�:i�;@&0�:;@ok%�&'�c�J)0� %�=@�*;/%O��]H� %��:_Q40)'>9%
;5�J$��Ji�� "�)+��&0�*=<!9�:=�%<"(.+$0!�Z9qE$�aU��;j%
4�12%�;5�*$�)+�7��&'"-6m$X%<&0�-%m;/"�_�Y0>9%�13$'��%�&'��_c12$012_X�Ji
� �:Y0�J=@�-%<12$'�c���/%�1��ts�u£dr&0�*=<! � v � Z

RTZ��5�±�Ne#fFgla0D�B�D�uÉG*R S C F<Gsk5C PU?JB]@A9Bjk/CTPU?-BCJ!� S DEK'GJF�G-CEDom�Â]@F�?JI �|P§B�C a0D7G*R S C F�GLk/C
S n S CED/I y
��F�?
?"] y ���/%;< S Â �J$0!�� S �#Z�w�&'�X=<�/.0$'�
!��J)0� %�=@�*;/%�13"*$ ab>0$0;j%<12"�$QJ � ;5"*=<=��
� Y�"*$+!'�
%�"�%�&'�V,H1�� 13)'i3�V� �5%X¥��7sª¥�� p�Z��H13$0;/� p ���5Y0�*=<�J%��:�cÂ m �J$+! � m 4}%<&'�5=<�Q�/�91��^%@�X�
µ S p �5Z %:Z9<�­bµ�¯��s �-­UµM¯/ZWw�&�>+�54}ab"�=�� "�_��Qµ S ¥�� 4 <+­UµM¯��s_�J­bµ�¯jZ���] !9�5.0$'12%�13"*$�4
J?�T­><H¯�sÁ­><�­bµ ¶ ¯j¸3¸3¸ <�­bµ ¿ ¯�¯��J$0!FJ?�T­
�5¯�s ­��-­bµ ¶ ¯/¸2¸3¸ �J­bµ ¿ ¯ ¯/4'µ � S ¥��UZ+w�&�>+�54?J!� ­ <�¯��s�J!� ­��/¯jZ

��
w�&'�W$0�*12,��W6���]O"Ja'���5Y0�*=<�J%�13$'��%�&'��� �5%n"Ja'!9�
�*!9�:$0!7� %<�-%<�:�nÂ8ab=�"�_u%<&'�����/%�"*a9)0�*!7� %<�J%��:�
�Á6�"*>'i�!c)��z%<"(�*�:$'�5=@�-%<�z�J$+!�� �:Y0�J=@�-%<�zÂ �*$0!U��4H�:1h%<&'�5=��/�9Y'i313;51h%<i2]X"�=���]H_()�"*i313;:�Ji3i2]�Z
x�$9ab"�= %<>'$0�-%<�5i3]*4�ab"�=\�]9� %��:_c��"*a�=<�:�*i21��^%<13;c��1YX:�*4M%<&'13�\13��>0��>0�*i2i3]�$'"*%7Y+"�����12)0i2��Z��'"*=\�*i2i
)'>9%X%�&0� � 13_cY'i2�
�^%��5�'�J_cY'i3�:�:4}%�&'�Q$H>'_()��5=#"Ja�� %<�J%��
�c12$�Â �J$0!\� 1���%�"H"�i3�*=����#%<"
�5$H>'_c�5=@�-%<���5�HY0i21�;/12%�i3]*Z��'"�=7�]9� %��5_X��6m12%�&�_�"9!9�:=<�J%��c;/"�_�Y0i2�5�H12%^]*4�%<&'�:�������/%@�7;5�*$�)��
;/"*_cY'>'%��:!k�]H_�)+"�i21�;5�*i2i3]�6m12%�&Q�������:Z��z"-6��:,*�:=:4J�:,*�:$�%�&013��13��$'"*%�Y�"��<��12)'i3��ab"�=�i��J=<�*�:=
�]9� %��5_X�:Z�l "*=<�5"-,*�:=:40�5,*�:$ 12a�1h%�6��:=���Y+"�����13)'i2�(%�"k�*�5$0�5=@�-%���Â �J$+! ��4M12%�6�"*>'i�! � %�13i2i
)+�\;5"*_cY'>9%@�-%�13"*$+�Ji3i2]��5�9Y+�:$0� 13,*��%<"�1�!9�:$�%<1hab]#%�&'�\���5Y+�J=@�-%�13$'��,-�J=<13�*)'i2�
�5Z

qE$0�^%<�:��!�4£6��Q���5i3�:;j% S GJI�KML2D S ab=�"�_ Â �J$0!j�¼�J$0! %�=<]�%<"�13$9ab�:=c%�&'� ���5Y0�*=<�J%�13$'�
,��*=�1��J)0i2�
��ab"*=(%�&'�k�5$�%�13=��k� �5%<�(ab=�"�_ %<&'�:���k�<�J_cY'i3�:�:Z�)za�;/"�>'=@� ��4�%�&0�5=<��13���V%<=<��!9�5"*«
)+�5%^6��:�5$�%�&0��;/"�_cY'>9%<�J%�13"*$0�*i*;/"�_cY'i2�5�91h%^]O"Ja'�*�:$'�5=@�-%<12$0��%<&'���<�J_cY'i3�:�:45�*$0!�%�&'� ��>0�Ji31h%^]
"Ja�%<&'�����5Y0�*=<�J%�13$'�k,-�*=�1��J)'i3�:�:ZM��1h%<&'"*>'%(��;5"*_cY'i3�/%<�c���5Y+�J=@�-%�13"*$~"Ja�Â¢�*$0!h�°1h%\;5�*$
$'"J%�)��V�*>0�*=<�*$�%��5�
!�%�&+�-%X%�&0� ;/"*>0$�%<�5=<�/�'�J_cY'i3��6m12i3i�)��V�5i312_c13$0�-%<�:!�Z �z"-6��:,*�:=:4}"*>0=
�Ji3�*"*=<12%�&'_©1��£;/"�_cY'i2�5%���4J)+�
;5�*>0� ��%<&'��;/"�>'$�%��5=<�/�'�*_�Y0i2��6m13i2i'�:,*�:$�%<>0�Ji3i3]\)+�m�:i213_c12$+�-%��
!
12$ ��>')0���	��>'�:$�%O=��5.0$'�5_c�:$�%O1h%<�5=@�-%�13"*$+�5Z')O>0=��/�9Y��5=<12�:$0;/�(��&'"-6���%<&0�-%��^%@�-%��("Ja}%�&'���J=�%
�9�£wÉ��"*i3,*�:=<��i312o�� %�&0�-« � g*g � ;:�J$��*�:$'�5=@�-%<��_X�*$�]����*_�Y0i2�
�£12$X����&'"*=�%W�J_c"*>'$�%W"*a0%�13_c�*Z
w�&'�zaU��;j%�%�&0�J%�Â��J$0! �p�*=���i��J=<�*�z_c�*o*�
��12%�=<�5i��-%<12,��5i3]��
�*��]�ab"*=m�9�£wt��"*i3,*�5=@�£%<"(.+$0!
���J%�1��^ab]H13$'���*�<� 13�*$0_��:$�%<��%�"X����>0�-%<12"�$0� g �J$+! A ;5"*_cY0�*=��
!�%<"X%^]HY'13;:�Jin�'�£w�13$0� %<�*$0;/�
�
"Ja£� 13_c12i��J=m��1YX:�*Z

w�&'�c13!9�
��"Ja�i3�:�*=�012'�kab=<"*_ª�<�J_cY'i3�:��&0���O)��5�:$��^%<>0!913�:!~�/�H%��:$0� 13,*�:i2]�12$~%�&'�X_X�Jd
;@&'12$0��i3�:�*=�$012$'��i31h%<�5=@�-%<>'=���ZJ��$�>0_()��5=W"*a+i3�:�J=<$'13$'��_�"9!9�:i3���J$0!��Ji3�*"�=�12%�&'_X��&0��,���)��5�:$
Y'=�"�Y+"�� �
!�Z'qE$V%<&'�($0�/�H%�%^6�"#� �
;j%<12"�$0�54+6���!9�:�<;/=<12)��7%<&'�\%<�:;@&'$'1 ��>'�:��%�&0�J%O6��\>0���:!�%<"
� �:Y0�J=@�-%<��� �5%<�7"*am�<�J_cY'i3�:�("Ja�!9�
�*!9�:$0!��J$0!�)0��!��^%@�-%<�:�:4n!9�:$'"J%<�:!�)H]�À
	��k�J$0!�À�
��
=��
� Y��:;/%�13,*�5i3]*Z

� ���
���������������������}�������H� �W�
��!"� �z�
����#$���%�&���£���'���(�)�����%*�+ ���

� ab"*=<_(>0i3�J%�13"*$Q"Ja£%<&'�\Y'=<"*)'i3�5_Ã"Ja����5Y+�J=@�-%�13$'��À 	 �(ab=�"�_°À
 ���*���*$ qE$�%��:�*�5=O��13$'�:�*=
uW=<"*�*=@�J_c_c13$'�k­Uq^� u�¯�Y'=<"*)0i2�:_|1��m!9�5Y'1�;j%<�:!�13$Q��13�*>'=<�-,9Z

. !)0/)1 231465�798 4
���A<;:�+�&(*�*"#9<>=@?BA�C0DBE �GF =@?3H�CIDBJ �KF L

ÅNM;OPM�Q RSQ T
UWVYX O[Z]\5B^ VYX O_Z

8 4 `ba

����� �dc �fe�*E.0*"+(e?+���.7�E.0*"!$#%)hg�!H*"8hi
)?*"+(C%+(�&j !)A+=.0�lk��"#%C0�E.3/1/1!$)�C

w�&'��,-�Ji3>'��"*aM�
�*;@&X13$�%��5���5=W,-�*=�1��J)'i3� ¶ ¾�¶J¸3¸2¸ ¾�� ����12$c%<&'�zq^� u�Y'=<"*)'i3�5_�13��12$�%<�5=<Y'=��5%��
!X�*�:f
¾ � s g 12aW�J$0!�"�$'i2]#1ha}¾ � 1��m12$�%<&'�(���5Y0�*=<�J%�13$'�����/%
Z0yW,��5=<]�;/"�$0�^%<=<�*12$�%�;/"�=�=<�:��Y�"*$0!'��%<"
�XY0�J13=z"*a��^%@�-%<�:�(­T¬ � ·-V�c5¯/4�� %<�J%�13$'��%<&0�-%��-%Oi3�:���^%O"*$'�\"*a£%�&'��,-�J=<13�*)'i2�
��%�&+�-%����5Y+�J=@�-%��
�
­U!91��^%<12$0�*>'1�� &0�:�@¯�)��/%^6��5�:$7%�&'��%^6�"z�^%@�-%<�:��� &'"�>'i�!7)+�����5i3�:;j%<�:!�Z�w�&H>0�:45%<&'�5=<���*=���z À�	��]zEÆ
z À�
���zH;/"�$0� %�=@�J13$�%@�5Z
�£�HG-IzK�L2D xsy %�"*$0��1�!9�5=#%�&'�~ab"*i3i2"-6m13$'��%^6�" Y+�J13=<�#"Ja�� %<�J%��:�:f�¬ ¶ s ­��'· g ·��0· g ¯j·<¬��±s
­ g · g · g ·���¯z�*$0! V ¶ sÃ­ g · g · g · g ¯/·EV �csÃ­��'·	�'·	�'· g ¯jZ�w�&'�X;/"�=�=<�:��Y�"*$0!913$'��q^� u8Y'=<"*)'i3�5_
6m12i3i�)��

lV12$ /�
 � � ¶ ¾ �
� >') !^�:;j%m%<"0f

¾ ¶ � ¾
� � g ��� �H�5Y+�J=@�-%�13$'��¬ ¶ ab=�"�_ V ¶����
¾ � � g ��� �H�5Y+�J=@�-%�13$'��¬ ¶ ab=�"�_ V � ���
¾
 � g ��� �H�5Y+�J=@�-%�13$'��¬��Oab=�"�_ V ¶����
¾�¶ � ¾ � � ¾ � � ¾
 � g ��� �H�5Y+�J=@�-%�13$'��¬ � ab=�"�_ V � ���

w�&'�c"*Y9%<12_X�Ji£,-�*i2>'�c"*a�%�&0�X"*) !^�
;j%�13,*��ab>'$0;/%�13"*$�13$�%<&'13�(;5�*����13� { 4�;/"*=<=<�:��Y+"�$0!913$'��%<"
"*$'��"Ja�%�&0��%^6�"c"*Y'%�13_c�*i�� "�i2>'%�13"*$0�7­U¾�¶-·�¾ � · ¾
 ¯��J$0!�­U¾ � ·�¾ � · ¾
 ¯jZ

� ���
������������������� � �(���������W� ������� �'��� !\�
���0��� �(�
w�&'�(q^� u£dr)0�*���:!Q���5Y0�*=<�J%�13"*$V�Ji3�*"�=�12%�&'_Ã"*>'%�Y'>9%@��%<&'�(_c13$'13_c�*i����5Y+�J=@�-%�13$'�����/%
Z'�z"-6�d
�5,*�:=:4�%<&'�\�Ji3�*"�=�12%�&'_ &+�*�m��&'13�*&Q;/"*_cY'i3�/�912%^]��J$0!�;5�*$'$'"*%�&+�J$0!9i3�7��i3�*=����O$H>'_�)+�:=m"Ja
,��*=�1��J)0i2�
��"*=����*_cY'i2�
�5Z+qE$ %<&'13�����:;j%<12"�$�4�6��7ab"�=�_�>'i��-%��(%�&'��� �:Y0�J=@�-%<12"�$QY'=�"�)'i3�5_³�*�O��z�
;/1�� 13"*$�wn=��:�z���
�J=<$'13$'�+­_�Owm��¯£Y'=<"*)'i3�5_Q4�6m&'13;@&X1���Y+"�i2]H$'"�_�1��Ji0)+"*%�&�13$X%�&0�z$H>'_()��5=
"Ja},��*=�1��J)0i2�
���*$0!#%�&'�7$H>'_�)+�:=�"Ja}���*_�Y0i2�
�5Z

���:�*=�012'�~6m1h%<&�!'�:;/1���12"�$±%�=<�5�
�(1��c"*$0�k"*a�%�&'�Q_c"�� %c6m13!9�:i2]�>+� �
!É�*$0!±Y'=@�*;/%�1�;5�*i
_��5%�&'"9!'�Oab"�=O�JY0Y'=�"��913_X�-%�13$'�#!'13�<;/=<�/%<�/dr,��*i2>0�:!�ab>'$0;/%�13"*$0�:Z�� ��wm� �*i2��"*=<1h%<&'_Ã12$'Y0>9%<�
�(���/%�"Ja��/�'�*_�Y0i2�
���*$0!X�*�:$'�5=@�-%<�:���(!9�
;/1�� 13"*$X%<=��:��%<&0�-%m;/i��*�<� 12.0�
�£%�&0�5_QZ9��$#�5�'�J_cY'i3�
13��!'�:�<;/=<12)��:!�)H] �����/%�"Ja7�-%�%�=<12)0>9%��
�X�J$0!É%�&0��;/"�=�=<�:��Y+"�$0!913$'��;/i��*�<� 12.+;5�J%�13"*$�Z£y��*;@&
12$�%��:=�$+�Ji�$'"9!9�V13$ %<&'��%�=<�5�V� Y��:;51h.+�:�X�~%��
�^%X"*$���"*_c���J% %<=�13)'>9%<�*4��*$0! �
�*;@&É)'=<�*$0;@&
!9�:�<;/�:$0!913$'� ab=<"*_ %<&0�-%c$'"9!9�Q;/"*=<=<�:��Y+"�$0!'�7%<"~"�$'�#"*a�%�&0�kY�"��<� 13)'i3�k,-�*i2>'�
�\ab"�=�%�&0�J%
�-% %<=�13)'>9%<�*Z0y��*;@&ki2�
�-a}12$�%�&0��%�=<�5�7;/"�=�=<�:��Y+"�$0!'��%�"X�c;/i��*�<��1h.+;:�-%<12"�$�Z�O�J%<�V1��(;5i3������1h.+�:!�)H]�� %<�*= %<12$'�~�-%\%<&'�#=<"H"J%\$'"9!9��"*am%�&'�k!9�:;513��12"�$�%�=<�5��4�%��
�^%<12$0�
%�&'���J% %<=�13)'>9%<��� Y��:;51h.+�:!�)H]±%<&'1���$'"9!9��4��*$0!É%�&'�:$t_c"-,�13$'�±!9"-6m$�%<&'�V%�=<�5��)'=<�*$0;@&
;/"*=<=<�:��Y+"�$0!913$'��%�"É%�&'�~,-�Ji3>'�~"*a7%�&'���-%�%�=<12)0>9%���Z�w�&'�~Y'=<"H;5�:�<�#1��k=��:Y+�
�-%��
!�ab"*=k%�&0�
� >')'%�=<�5�£=<"�"*%��
!��J%�%�&'��)'=<�*$0;@&�>'$�%�13i*"*$0�£"JaH%�&'��i2�
�-aU��1���=<�:�*;@&0�:!�4j6m&'1�;@&71���i3�*)+�:i2�
!�6m1h%<&
%�&'��;5i3������1h.�;5�-%<12"�$�ZMw�&'�XY'=<"*)'i3�5_³"*a����5Y0�*=<�J%�13$'�QÀ
	���ab=<"*_¢À�
��c;5�J$�)��cab"*=<_(>'i��-%<�:!
�*�m�h�Owm��Y0=�"�)'i2�:_|�*��ab"�i2i3"-6��:f

� w�&'�\�-%�%�=<12)0>9%��
�m;/"*=<=<�:��Y+"�$0!X%<"c%�&'�713$H,�1���12)'i3��,-�J=<13�*)'i2�
�5Z
7 �62H*"8A#%��C38r*"8�+-i]jfkj�A�"#3<�2$+�/ !$�
�D*E.0*"+�4 B #3�
!)�*"+�C3+(�! 3.0�"! .0<�2$+��#"�*"8�+@&�#3)��D*��E.0!)�*"�
.3)�4r#3<%$:D+(&(*"!& + B ��)A&(*"!$#%)nC3��.7�E.3)�*"+�+��;*"8�.0*�*"8A+�!H�' 3.32$��+�g�!$2$2l<�+t+�!H*"8A+(�)(#0� a F�G58?���#"A*"8�+	*9&=.0)K<�+
"8�#3��C38?�# B .3�,+Q#�#32 +�.3)- 3.0�"! .3<A2 +(��F

� w�&'�\;/i��*�<��1h.+;:�-%<12"�$0���J=<� � g �J$+!�� g 49;/"*=<=<�:��Y+"�$0!913$'�(%<"#À 	 �7�J$0!QÀ
 ��Z
� w�&'�7�/�'�*_�Y0i2�
�m�J=<��À 	 �7i��J)��5i3�:! � g 4'�*$0!VÀ
 ��i��J)��5i3�:!�� g Z

�~���*�:$'�5=@�-%<�z�(!9�
;/1�� 13"*$�%�=<�5�Oab"*=�%�&'1���Y0=�"�)'i2�:_QZ�w�&'�����5Y0�*=<�J%�13$'�(���/%�%�&0�J%�6��z"*>'%�Y'>9%
;/"*$�%@�J13$0�m�Ji3iM%�&'�7,-�*=�1��J)'i3�:��Y'=<�:���5$�%��-%z�*$k13$�%��:=�$0�*i�$'"9!9�:��"*an%<&'�\!9�
;/1�� 13"*$k%�=<�5��Z
R � �5�±�6���Fgla0D�G�R@?-¤-D�GJL N�?-FjP§CbaHIª?-A9ChK�A9C S G S DrK0G-F�GJC P§BHN S D5C�]/?JFOÀ�	��kGJB#m�À�
�� y
��F�?
?"] y ���/% <���À 	 �c�*$0!h��� À
 �*Z�w�&'�c!9�:;513��12"�$ %<=��:��6m13i2i£;5i3������1hab] <Q��� � g �J$0!h�
�*�	� g Z��H"+4'%<&'�5=<�(�5�H1�� %<�z��$'"9!9� i 13$V%�&'��!9�:;513��13"*$V%<=��:�*40i��J)��5i3�:! 6m1h%<&��X,-�J=<13�*)'i3�\¾+4
� >0;@&k%�&+�-% <�­b¾9¯��s �J­b¾9¯jZ0��]#;5"*$0� %�=<>0;j%<12"�$�49¾�i312�
�m13$#%<&'�7"*>9%<Y'>9%z���/%
Z ��
�£�HG-IzK�L2D }]y [�"*13$'�7)0��;@o\%�"(�/�'�J_cY'i3� g 4-%<&'�z;5"*=<=��
� Y�"*$0!'12$'� ��wm�VY'=<"*)'i3�5_p&0�*�W�\�-% d
%�=<12)'>'%��:��­b¾�¶-· ¾ � · ¾ � · ¾
 ¯��J$0!X�����*i26���]9�54-%^6�"\;/i��*�<��1h.+;:�-%<12"�$0��­ � g ·
� g ¯/Z�w�&'��� �5%�"Ja��5�Hd
�J_cY'i3�:��1����©s¦´H­ ­��'· g ·��0· g ¯/· � g ¯�4*­�­ g · g · g ·	��¯j· � g ¯n4*­�­ g · g · g · g ¯j·�� g ¯n4*­ ­��'·	�'·��0· g ¯j·
� g ¯@º�Z
w�&'��ab"*i3i2"-6m13$'��%�=<�5�\;5"*=<=��
� Y�"*$0!0�W%<"c%�&'�\���5Y0�*=<�J%�13$'�c� �5%7­U¾ ¶ ·�¾ �J·�¾
 ¯/Z

−1 +1 +1 −1

10

v4
0 1 0 1

v2

v1

�°$�>0_()��5=c"Ja7�Ji3�*"�=�12%�&'_X��&0��,*��)��5�5$�!9�:,*�:i2"�Y+�
!�ab"*=Xi3�:�*=�012'��!9�
;/1�� 13"*$É%�=<�5�
�54}�*Z �0Z
q�� { � g , � 49%��+Z v1� g
{ � Z��zi2i�%<&'�:���V�Ji3�*"�=�12%�&'_X���:�<���5$�%�1��Ji3i2]�Y��5=�ab"*=<_ ��� 13_cY'i2��%<"*Y9dE!9"-6m$
�*=<�5�:!']~���:�J=@;@&~%�&'=<"*>'��&�%�&'�#��Y0��;/�X"Ja�Y�"��<� 13)'i3�#!9�:;513��13"*$�%�=<�5�
�5Z�����13_cY'i2�:_c�5$�%��
!��
� 13_cY'i212.0�
!~,��5=@� 13"*$�"Ja�%�&0�Xq�� { �*i2��"*=<1h%<&'_Q4�6m&013;@&�1��\!9�:�<;/=<13)+�
!~13$���12��>'=�� { � g � � Z���%

������������ =�������� �"!#� A%$'&&H H(��)�*,+3H-� A F
a F�. �"+=.7*"+�.0/21
1 HQ)�#?4A+ B #3��*"8�+ *��"+(+%F3 F�i B .32$2 +-,�.0/1��2$+���.7�"+t&�2 .3����!54�+=4 *"8A+ �".3/1+ "A�"+(*"� �")6/21
1 H�g�!H*"8 *"8�!$��&�2 .3����!54�&=.0*"!$#%) F
7 F j +(*�&989: � A H-&%H H;�
)�*<+3H;� =�������� �"!#� A%$�&&H_H;�
)�*<+3H;�dA F F;j�.3<�+�2=/21�1 H�g�!H*"8K.7*�*��"!$<��A*"+>&�F
? FA@�#0�B) CDC (�$ a�E "�2 +-*2�A�F�G� �"!#� A 4 <�+ *"8�+ ���A<���+(*;# B �A�F�G�H�"!#� A 8�. ?!$)�C %.02$��+A) B #0�>&�FI FA@�#0�J)hCKC (�$ a
E "'.34�4 .0)9)
<A�E.0)�&E8 *"#r*"8A+L/21�1 H1��#3!)�*"!$)�Cr*"#e���A<A*��"+�+KC3+�)�+-�E.0*"+=4 < *

����WH(�%��� =��A�F�G�H�"!M�dA 4 $-&&H H(��)�*,+3H-� AONPC�& E F FQ F �"+(*"� �")6/21
1 H(F

�������
R �TS +�&�!$��!$#%)nG��"+�+(j�+�.0�")�!$)AC@�62$C%#0�"!$*"8A/

�:�*;@&�=<�:;5>'=<��13"*$�4�%�&0�#�Ji3�*"�=�12%�&'_ &0�*��%<"VY'1�;@o~�J$��J% %�=<13)'>9%��c%<"V%��
�^%(�J%7%�&'�#=�"H"J%
Z����
$'�5�
!#��_��
�*��>'=<�z"Ja�%<&'� ��>0�Ji31h%^]c"*an�J$��-% %<=�13)'>9%<�*ZH����� %<�*= %�6m1h%<&k!9�5.0$'13$'�c� ��>0�*$�%<1h%^]
;5�Ji3i3�:!~D5B0CTF�?@K#n-496m&'1�;@�����;5"*_c_c"*$'i3]X>0���:!�$0"J%�13"*$k12$�13$9ab"*=<_X�-%�13"*$#%�&'�:"*=<]*Z9[�12,��5$��
� �5%\Àu;/"�$�%@�J13$'13$'� iVU Y�"���1h%<12,����5�9�*_cY'i2�
���J$0! iVW $'�:���J%�13,*���/�'�J_cY'i3�:�:4�%�&'�c�5$�%<=�"�Y�]
"JaWÀ±1����*13,*�:$k)H]Mf

� i V-XZYo�\[M­TÀW¯Ws]� � U Z Y%^ � � U �I� W Z Y%^ � � W

6m&'�5=<�G� U s¢­ i U ¯ � ­ i U � i W ¯(�*$0!K� W s¢­ i W ¯ � ­ i U � i W ¯/Z}qE$�%<>'12%�13,*�5i3]*4��5$�%<=�"�Y�]
;@&0�J=@�*;/%��5=<1�X5�:��%<&'��,��*=�13�/%^]k12$������/%O"*aW�/�'�J_cY'i3�:�:Z+w�&0�(_X�-�913_(>'_Ã,-�Ji3>'�\ab"�=z�5$�%<=�"�Y�]
13� g 4�6m&'1�;@&k;5"*=<=��
� Y�"*$0!0�}%�"c�(;5"*i3i2�
;j%�13"*$�%�&0�J%�&0�����*$#����>+�Ji�$�>0_()��5=�"Ja�Y�"���1h%<12,��O�*$0!
$'�5���-%�13,*���5�9�*_cY'i2�
�5Z+w�&'�7_c12$'13_(>0_�,-�Ji3>'�7"*a}�:$�%�=<"*YH]�1�� �'4'6m&013;@&V;/"�=�=<�:��Y�"*$0!'��%<"��
;/"*i3i3�:;j%<12"�$V6m1h%<&V"*$'i3]�Y+"�� 12%�13,*�\"�=�"*$0i2]�$'�5���-%<12,��7�/�'�J_cY'i3�:�:Z'����;5�*V'"-6¦!9�/.0$0�\%�&0�
��>+�Ji31h%^]O"Ja9�J$7�-%�%�=<12)'>'%�����)H]z%�&'�£=<�:!9>+;j%�13"*$�13$7�5$�%�=<"*YH]�"�$�Y0�J=�%�12%�13"*$'13$'��%<&'�W�/�'�*_�Y0i2�
�
>0� 13$'���\Z+w�&'13��_��
�*��>'=<�*49;5�*i2i3�:!k%�&0�XP§B3]/?-FjIXG-CTPU?-BVN�G-P§BX1���!9�/.+$'�:!Q�*��ab"�i2i3"-6��:f

��� #Di ­'�X·���¯�s � i V-XZYo�\[M­'�(¯��Q­rz ����z � z ��z ¯�Ç � i V-XZYo�T[�­'����¯��Q­rz � ¶ z � z ��z ¯�Ç � i V-XZYo�\[M­'� ¶ ¯

6m&'�5=<�P�����*$0! � ¶ �J=<��%�&'�~� >')+� �5%<�X"*a��5�'�J_cY'i3�:�c&0��,H13$'��%�&'�V,-�*i2>'� ���J$0! g 4�=��5d
� Y��:;/%�13,*�5i3]*4
ab"�=��J% %�=<13)'>9%��	�\Z-w�&'� ��
-¬3V���V�V-X # �@µ V�
H­ �7® � 37� Z
-¬*·
��V�V-X # �@µ V�
�¬�¯MY0=�"9;/�
!9>'=<�
=��5%�>'=<$0��%�&0�\�-% %<=�13)'>9%<���K����V�V-X # �jµ�V�
-¬�%<&0�-%�&0����%�&'�7&012��&'�:� % ��� #�i ­'�7® � 37� Z
�¬�·
�O¯jZ
�£�HG-IzK�L2D ~Ly �~�c13i2i3>0� %�=@�-%<�(%<&'��6�"*=<oH12$0�#"Ja�"*>'=��Ji3�*"�=�12%�&'_°6m12%�&��J$~�/�'�J_cY'i3�*Z�%�"*$'d
%�13$�>012$'�k6m1h%<&�"�>'=zY'=<�5,H13"*>0�O�/�'�*_�Y0i2��406���;5�*i3;5>'i��-%��(%�&'�����*12$0�zab"*=z%�&'�c�-%�%�=<12)0>9%��
�O�J%
%�&'��%<"*YQ$'"9!9��"Ja�%�&'�\!'�:;/1���12"�$#%<=��:�*Z

� i V-XZYo�T[�­ ��¯�sK�\­ , � �H¯ Z Y%^ � ­_, � ��¯ ��­_, � ��¯ Z Y%^ � ­ , � ��¯£s g ¸ �%�
��� #�i ­'�X· ¾�¶5¯Ws g �\­_, � ��¯/Ç � i V-X Yo�\[�­ ��ÄjÅ � � ¯��\­_, � ��¯/Ç � i V-XZYo�\[M­ Ä@Å � ¶5¯�s �0¸ �%�
��� #�i ­'�X· ¾ � ¯Ws g �\­ g � ��¯/Ç � i V-X Yo�\[�­ ��Ä
� � � ¯��\­ { � ��¯/Ç � i V-XZYo�\[M­ Ä�� � ¶5¯�s �0¸ {0g
��� #�i ­'�X· ¾ � ¯Ws g �\­_, � ��¯/Ç � i V-X Yo�\[�­ ��Ä
� � � ¯��\­_, � ��¯/Ç � i V-XZYo�\[M­ Ä�� � ¶5¯�s �0¸ �%�
��� #�i ­'�X· ¾
 ¯Ws g �\­ g � ��¯/Ç � i V-X Yo�\[�­ ��Ä�� � � ¯��\­ { � ��¯/Ç � i V-XZYo�\[M­ Ä�� � ¶5¯�s �0¸ {0g

w�&'�\Â�
��=T�X�
�
7�Ji3�*"�=�12%�&'_|6m12i3i�Y'1�;@o#¾ ��"*=m¾
 %<"ci3�*)+�:i�%�&'���0YZY VjZ

� ��� ���^�������3�£� � + ���(� ��� ��� �n�9� �
�9�J_cY'i312$0�OÂnm��J$0!@�
m�!9"H�:�n$'"J%}&0��,*�W%�"z)����J=<)'1h%<=<�*=�]�Z5�z��6���$'"-6±��&'"-674:1h%}13�nY�"��<� 13)'i3�
%�"X!913=��
;j%�%�&'�\���:�*=<;@&�ab"*=��<�J_cY'i3�:��%�&0�J%z;/"�$�%@�J13$#_c"*=<��12$'ab"*=<_c�J%�13"*$#%�&0�*$k"*%�&'�:=<�:Z'���5%
� ­UÂnm*·(�Im�¯m!9�:$'"J%<��%�&'�(_�13$'13_X�Ji����5Y0�*=<�J%�13$'�X� �5%mab"*=zÂnm\�*$0!r�Im�Z+��13$0!913$'� � ­ Â m�·-�
m�¯
)�]c�5�HY0i21�;/12%�i3]�;/"�_�Y0>9%�13$'�cÂ m��*$0!U�
m��*$0!����5Y0�*=<�J%�13$'�\%<&'�5_ 1���%�"H"�;5"*_cY'>9%@�-%<12"�$0�Ji3i2]
�/�9Y+�:$0��12,��*40)��:;:�J>0���\)�"J%<&V%�&'��� 1�X5�("Ja£%�&0�:���(� �5%<���J$0!�%<&'�("�Y9%�13_X�Ji�� �:Y0�J=@�-%<12"�$k%<�:;@&9d
$'1���>'�
���J=<�(6�"*=@�^%�dr;:�*���\�/�9Y�"*$'�:$�%<13�*i ZM���(%<&'�5=<�/ab"�=���i3"�"�o�ab"*=7���*_cY'i2�
��À 	 �c�*$0!~À
 �
%�&0�J%O�J=<�7� _X�Ji3i��:$'"*>'��&�%�"#;5"*_cY'>9%<�\�J$0!Q���5Y0�*=<�J%��*4+�J$0!�40"*$�%�&'�("J%�&0�5=�&0�*$0!�4'_X�*12$9d
%<�J13$ � ­ À 	 ��·<À
 ��¯�s � ­UÂ m ·-� m ¯/Z+��12$+!912$0�c%�&'�
� �\���/%@�m13��6m&0�-%�6��7=��5ab�5=�%<"��*�m���X;512�:$�%
���*_�Y0i213$'�0Z

�~�(��>'���*�:� %z�J$V12%��:=<�J%�13,*�(�*i2��"*=<1h%<&'_ ab"�=z���X;512�:$�%O���*_cY'i213$'�+Z+���5%�À�
>��À�
3V�!9�:$'"J%<�
%�&'�#;5>'=<=��:$�%(���5Y+�J=@�-%�13$'�V���/%:ZnqE$'12%�1��Ji3i2]�4�À�
>��À�
3V7s! 'Z�qE$��:��;@&��^%<�5Y #�" ��%�&0�k�Ji3�*"*d
=�12%�&'_ .+$0!'�����*_cY'i2�
�£%<&0�-%m�J=<�z$'"*%����5Y0�*=<�*)'i3��)H]#À�
>��À�
%V�%�&0�J%�6��*��;/"�_�Y0>9%��
!�13$�%�&0�
Y'=��:,H12"�>0�z12%��:=<�J%�13"*$�Z�%�"�_�Y0>9%�13$'�V�#$0�56ÁY+�J13=�"*a�!9�
�*!Hdr�5$0!~�J$0!~)0��!�� %<�-%<�:�O%�&+�-%\�J=<�
$'"J%z���5Y0�*=<�*)'i3�O)H]kÀ�
>�MÀ�
%Vj4H;:�J$�)+�\!'"*$'�7)H]#��"*i3,H12$'��#m­TÀ�
>��À�
%V ¯j4'���m!9�/.+$'�:!�)��5i3"-67f

#m­ À�
>�MÀ�
%V ¯ ¸s � 5 | ? � 5 | �
Ä O�$&%(' ¹ %)'+* ¾ � s�¾ �� ­ { ¯

6m&'�5=<� � 5 �J$+!
? 5 �J=<�\%�&0�(ab"�=�_�>'i3���z=<�5Y0=��
� �:$�%<12$0�X%�&'�X!9�
�*!9�:$0!��*$0!V)0��!�� %<�J%��:�����
!9�/.0$0�:!~12$��	��>0�J%�13"*$0� g �J$0! ,9Z�w�&'�cY'=<12_c�c�]H_�)+"�i�"-,��5= ? 5 !9�5$0"J%��
�O%�&'��aU�*;/%�%�&0�J%

6���=<�5Y'i��*;5���
�*;@&�,-�J=<13�*)'i2��¾ �0? 5 6m12%�&V��$'�:6�,-�J=<1��J)'i3��¾]�W­U$'"J%<��%�&0�J%�"J%<&'�5=<6m13���*49)H]
!9�/.0$01h%<12"�$�4*%<&'�z;5"*$�!^>'$+;j%�13"*$X"*a � 5 6m12%�&8? 5 1��W>0$0���J%�1��^.��J)'i3�
¯/Z�w�&'��=<13�*&�% dr_c"�� %�;/i��J>0���
12$�%�&0���*)+"-,���ab"�=�_�>'i��O��>0�J=@�J$�%<�5�:��%�&+�-%£%�&0��$0�56����*_�Y0i2�
�}"Ja�!'�:�*!'�5$0!��J$0!�)0��!�� %<�J%��:�
�J=<��$0"J%�� �:Y0�J=@�J)0i2��)H]�%�&0�\;/>'=<=��:$�%����5Y0�*=<�J%�13$'�c� �5%:Z

��i3�*"*=<12%�&'_��MGJI�KML2D l GJB#mvl��MDEK'GJF�G-CED/4m!9�
��;5=�13)��:!�13$u��12��>'=<� � 4�>0���:�#ab"*=<_(>'i�� { %<"
;/"*_cY'>'%��O%�&'��_c12$'13_X�JiM� �:Y0�J=@�-%<12$0�(� �5%�"*a�Ânm��*$0!U�
m�6m1h%<&'"*>9%��/�9Y'i313;51h%<i2]�;5"*_cY'>9%<12$0�
"*=7� �:Y0�J=@�-%<12$0�#%<&'�5_QZ�qE$��:��;@&�� %��:Y # 4�12%7.0$0!'�7�<�J_cY'i3�:� < � � ÂnmX�J$0! � � � �ImX%�&0�J%
�J=<�V$'"J%k���5Y+�J=@�J)'i3�Q)�] %�&'�~;/>'=<=��:$�%#� �:Y0�J=@�-%<12$'�±���/%kÀ�
r�MÀ�
%VjZWqr%�%<&'�5$�=<�/dE;/"�_�Y0>9%��
�
À�
>��À�
%V�ab"*=(%�&'�k>'$'13"*$±"*az� �5%<�(%�&0�J%�6��5=<�#;/"�_cY'>9%��
!�>'Y�%<" %<&'�k;5>'=�=<�5$�%�1h%<�5=@�-%�13"*$�Z
��] =��:Y+�
�-%�13$'�~%�&'1��XY'=<"9;/�
����>'$�%�13i�$'"���>0;@&É�<�J_cY'i3�:�c�5�H1�� %:4£12%c��>0�J=@�J$�%<�5�:�(%�&+�-%X%�&0�
=��
� >'i2%�13$'��� �:Y0�J=@�-%<12$'��� �5%����5Y0�*=<�J%��
��Â m ab=�"�_ � m Z�s�"J%<��%<&0�-%�%�&0����1YX:�z"*a�À�
>��À�
%V£;5�*$
�512%�&'�:=m12$0;5=��
�*����"*=�� %<��]X>'$0;@&+�J$'���:!k12$Q�:��;@&k12%��:=<�J%�13"*$�Z

D �-��D � HV8����
) 8 (��
�
	��
	
�����
���
	��
	�� C

� ��� =[D �-��D � H F������ �������!
	�� � ��	#" 4 ��$
 * 4 ���
�&% � ��'�(
� � �)$ � 	
' � 	�	�* � � �D��-��D � H�8#+;=-, 4. 50/ C " . E $1, 4. 50/ C�* .%E F �) 8)02 a � E
�������)3 �;�62$C%#0�"!H*"8�/5476�8:97;=<?>-6�@7A�>B47<-9C6�DE6�F-< !$/1�A2 +(/1+�)�*"� +?G1&�!$+�)�*@�".0/1��2$!$)�Cr< * !H*"+(�E.0*"!& +�2 *
��+�.0�"&E8�!$)�C B #3�;�D*E.0*"+���*"8�.7*;.0�"+t)A#3*;��+���.7�E.3<A2 +t< *@*"8�+ &��A���"+�)�*���+���.0�E.7*"!)AC1��+(*=F

w�&'���Ji3�*"�=�12%�&0_ 13$t�n13�*>0=�� � .+$0!'����� 13$'�*i3����"*i3>9%�13"*$�%<" #m­ À�
>�MÀ�
%V ¯X�J$0!�&'�:$0;/�~�
� 13$'�*i3��Y0�J13=�"Ja�� %<�J%��
��< � �J$+!h� � Z ��"-6��5,��5=
40%<&'�X� 1�X5��"Ja��:�*;@&����*_cY'i2�c;5�*$~)��ci3�*=����5=
Z
���J=<�*�:=��<�J_cY'i3�:�W_X��]�=��
!9>0;/�z%�&'�O$H>'_()��5=�"Ja�12%��5=@�-%<12"�$0�:4J)'>9%m�Ji�� "7=<�	��>'13=<��_c"*=<��%�13_��
%�"�!9�:=�13,*���*$0!����5Y0�*=<�J%��*Znw�&'��"*Y'%�13_c�*i�$H>'_�)+�:=("Jam$'�:6 ���*_�Y0i2�
�712$��
�*;@&�12%��:=<�J%�13"*$
!9�5Y��5$0!0��"*$Q,-�J=<13"*>0��aU��;j%<"*=@�549i312o��7%�&0�\� ��;/13�5$+;/]#"*a}%�&'���'�£w8��"*i3,*�:=:4H%<&'�(���5Y0�*=<�J%�13"*$
%��:;@&0$'1���>'���J$0!�%�&'���/�'�J_c13$'�:!±_�"9!9�:i Z9)O>'=�12_cY'i3�5_c�:$�%@�-%<12"�$±i2�5%<�(%�&'��>0���5=�;/"*$�%<=�"�i
%�&'1���Y'=<"H;5�:�<��)�] ��! !^>0� %�13$'��%^6�"�Y0�*=<�*_��5%��:=<�:f0%<&'�c$H>'_()��5=�"Ja����*_cY'i2�
���*�5$0�5=@�-%��
! 13$
�:�*;@&�12%��5=@�-%<12"�$�4'�J$+!�%<&'�7_X�-�912_�>'_|$H>'_�)+�:=m"Ja}1h%<�5=@�-%<12"�$0�5Z

H �JI �7�
�B���p�n��� ��+���� � ��+E���
�~�c13_�Y0i2�:_��:$�%��:!~"*>0=Oab=@�J_c�:6�"�=�o�12$+� 1�!9�Ks�>+�'lLK � � � Z��~�c>0���ns�>+�9lMK �*����ab=<"*$�%�d
�5$0!�40ab"*=OY0�J=@� 13$'���9lLKÁ.0i3�:���*$0!�ab"*=����5$'�:=<�J%�13$'���J)+�^%<=<��;j%�13"*$+�5Z �z"-6��:,*�5=
4Hab"*=��*;/%�>0�*i
_�"9!9�:i�;@&0�:;@oH12$0�04'6��\>0��� %��*!'�5$0;5���9lLK�4+6m&'1�;@& 13_cY'i2�:_c�5$�%<�z%��
;@&'$'1 ��>0�:��i313o*�(;5"*$'�5d
"Ja§dr12$7N+>'�5$0;5��=��
!9>0;j%<12"�$�49;/>9%�dTY�"*13$�%<�:4H�/%<;*Z9�~��13_cY'i2�:_c�5$�%��
!k��,-�J=<13�*$�%�"Jan%�&'��q�� { � g , �
�Ji3�*"*=<12%�&'_¢%�"��*�:$'�5=@�-%<�#!9�
;/1�� 13"*$ %�=<�5�:�:Z��~�Q>0���k�~Y'>')'i31�;k!9"�_X�J13$É� up� "�i2,��5= � , � %<"
� "�i2,��#"*>0=�13$�%��:�*�5=�i312$'�
�J=cY'=<"*��=<�*_c�:Z����Q>0���/%�&0�J« � g*g � �*��"*>'=X�9�£w�� "�i2,��5=
Z}�H"�_c�
_�"9!912.+;:�-%�13"*$+��6��5=<�7_c��!9�7%<" %�&0�-«~%�"�����;/13�5$�%�i3]k���5$'�:=<�J%��7_�>'ih%<12Y0i2���^%@�-%������*_�Y0i2�
�
12$Q����13$'�*i3��=�>'$�Z)O>0=��5�9Y+�:=�13_c�5$�%<��6��5=<�OY��5=�ab"*=<_c�:!#"*$�%<&'�LO q^xQP\aU�*_c12i3]�"Ja�;/13=<;5>'1h%@�54
6m&'13;@&��J=<�z,-�J=<13"*>0���J)0� %�=@�*;/%�13"*$0��"Jan�*$�13$�%<�5=�aU�*;5�O;/"�$�%�=<"*iM;/13=<;5>'1h%�ab=<"*_ �H]H$'"*Y+�]9�:ZH�zi2i
�/�9Y+�:=�13_c�5$�%<��6��5=<��Y+�:= ab"�=�_c�
!X"*$#� g Z v [=��X��z>+�Ji���%�&'i3"*$#_c��;@&'13$'�z6m12%�& { [�)#v��Ol
�J$0! =�>'$0$'12$0����12$H>9��Z's�"�Y'=<�/dE;/"*_cY'>'%��:! ,-�J=<13�*)'i2�k"*=@!9�5=<13$'� .0i3�:��6��5=<�#>0���:! 12$É%�&0�
�/�9Y+�:=�13_c�5$�%<�:Z

.Q!H�"&���!H* e3.�� eA.0/1��2$!$)�C $ i]jfk eA.0/1��2$!$)�C $VStG�j ����F e .3/1� F�$VStG�j
G5!$/1+ + S>S G5!$/1+ + S>S e j G5!$/1+ +OS>S e j G5!$/1+ +OS>S e j

��� 7 ((�
 ada Q�� (� (� a a
 7 a (a (
� a a
 7 a (a � �$� a
 7 a (a
��� 7 I (� Q a ? � ? �%Q (� a 3
7 I
 (a (
� a 3�7 I
 (a � �$� 3�7 I
 (a
����? (a � 3 3�3%I�I ?%? Q � 7 3 a 3 ? � 7 ? (
� � a���� 7 (I Q � � � aGa (3 � 3 7
����? I 7
�� I 3�I%I ? I%3 (Q � a a
�
 (3 7 ? a � a a���� ?�
 I Q � � � a (Q�7 ? 3 7
��� I (3�7 � 7 3 (� ?�
 3
7 a � �
 a ((Q ?�
 a 7 a ? ��� � � (Q�� a a 7 a ? 3 ?�� (a 3
�? 3 ? (? a

��� I%I $ $ $ $ $ $ 3 (�
 3 I a
 (7 � 3%I Q � R�� � Q ? 7 � Q a Q
��� Q ($ $

� � a�� 7 �;aGa ?

�� � a�� 7 �;ada ?
 3�� � a (��7���7 a Q
��� Q I $ $

� � a � 3 � (Q ?

�� � a � 3 � (Q ?
 R�� � ?�
 I ? Q a I
����
 ($ $ � � a a � 3 � (Q ?
 � � 3 a � 3 � (Q ?
 R�� � ?�
 I ? Q a I
����
 I a (3 � �
 (Q �
 I�3 7 3 � (a ? 3�I ? Q � a (3 ?�� I 7��
 Q 3 (a 7 a ? c 3�� � I%I (�
 3 3

��� � (Q (7 �
 7���� � �%Q � 3 7 a �
 3 a I ? (�? � a (?�?�� (7 ? a (a�� a 7 a ? c 3�� � a�� Q�Q%Q%3 3

��� � I 3 � 7 3
 Q 3
7 3
 ��� 7%7 � a 3
7 (�
 � � a (?�?�� Q ?%? 7
 � I a 7 a ? c���� c a � � 7 I � 3

��� � ($ $ 7%7 � (3
7 (�
 � � a (?�?�� Q ?%? 7
 � I a 7 a ? c���� 3 a � � 7 I � 3

����� ��� �f. #?4 +�2 &E8�+(&->?!$)�C��"+�����2H*"� B #3�;� �"#%��+(��*�* a F

w�&'�m=��
� >0ih%@�£�J=<��Y'=<�:���5$�%<�:!�12$X��12��>'=<� v �*$0!���13�*>'=<� � ZJw�&'��%^6�"�%<�J)0i2�
�£;/"*=<=<�:��Y+"�$0!7%<"
%^6�"�!91h«M�5=<�5$�%�Y'=�"�Y+�:= %<12�
�5Z+�~�c;/"�_cY0�J=<�:!�%<&'�(ab"�i2i3"-6m13$'�X%��
;@&'$'1 ��>'�:�:f g ¯ * �9lLK ,2f�%��Jd
!9�5$0;5���9lLK�4 ,�¯ *½�9�*_cY'i213$'�*dTq^� u(,3f+�9�J_cY'i313$'�040���5Y+�J=@�-%�13"*$�>0��12$0�XqE$�%<�5���5=z��12$'�
�J=�u�=�"*d
�*=@�J_c_c12$'�+4 v �����*_�Y0i2�
�OY��5=7=<�/.+$'�5_c�5$�%�1h%<�5=@�-%<12"�$�4 { ¯ *½�'�J_cY'i312$'�*d]��wm�9,3f��9�*_�Y0i213$'�04
� �:Y0�J=@�-%<12"�$�>+� 13$'� �O�:;513��13"*$ wn=��:�#���
�J=<$'13$'�04 v � �<�J_cY'i3�:��Y+�:=�=<�/.+$'�5_c�5$�%�1h%<�5=@�-%�13"*$�4
��¯=*½y£«}Z��9�J_cY�Z dN�Owm� ,2fMy$��;/13�5$�%����*_�Y0i213$'�04M���5Y0�*=<�J%�13"*$V>0��12$0� �z�
;/1�� 13"*$�w�=<�5�����:�*=�$'d
12$'�+Z+�0"*=��:�*;@&Q=<>'$�4�6��(_��
�*��>'=<�:!�%�&0�\%�"*%<�*i�=<>'$'$'13$'�X%<12_c�Q­ *½w�12_c�",½¯j4+%�&0�(_X�-�913_(>'_
$�>0_()��5=�"*a������Á$'"9!9�:�m�*i2i3"9;5�J%��:!�­ *½����� ,½¯j4'%<&'�\$H>'_�)+�:=m"Ja}=��5.0$'�5_c�:$�%�� %��:Y0�\­ * � ,½¯j4
�J$0!#%�&'�7$H>'_�)+�:=�"Jani��-%@;@&'�:��13$k%�&'��.0$+�Ji��J)+�^%<=<��;j%�13"*$�­ *½�9,½¯jZ'w�&'�7"�=�13�*13$0�*i+$H>'_�)+�:=m"Ja
i3�J%<;@&'�
�m12$V�
�*;@&V;/13=@;/>'12%z13$V12$0!'13;:�-%��
!Q12$V12%<�z$0�J_c��Z+� *#������]H_()�"*i�13$0!91�;5�J%��
��%�&0�J%z6��
=<�*$X"*>9%�"*a�_c�5_c"*=<]*Z��~��;/"*>0i3!c$'"*%���"*i3,*��u�=�"�Y+�:= %^]h,�ab"*=�;/13=<;5>'1h%@�"!9² v v ¸2¸3¸ !H²$#
��6m1h%<&
�J$H]�"Jan%�&'�7_c�5%�&'"9!'�:Z

w�&'�W�/�9Y��5=<12_c�:$�%@��13$0!91�;5�J%��£%<&0�-%�"*>'=�%<�:;@&'$01���>'���/�9Y+�
!912%��:�n�^%@�J$0!0�J=@!�_�"9!9�:i�;@&'�
;@o�d
12$'�+4n)�"J%<& 13$�%��:=�_X��"Ja��5�H�
;/>9%<12"�$�%�13_c���*$0!�=<�	��>'13=��
!�_c�5_c"*=<]*Z}�z��Y'=<�:!91�;j%<�:!�4�%�&0�
$�>0_()��5=z"*a£1h%<�5=@�-%�13"*$+��1����*�:$'�5=@�Ji3i3]#=<�:!9>0;5�:!Q6m&'�:$ �512%�&0�5=zq^� u�"*=z� ��;/13�5$�%��<�J_cY'i313$'�
13���JY'Y'i313�:!�ZnqE$�_�"��^%�;5�*���:�:4�%<&'13�\%�=@�J$0��i��-%��
��%�"~�Q=��
!9>0;j%<12"�$�12$�%<&'��%<"J%@�JiW�5�H�
;/>9%<12"�$
%�13_���Znw�&'�:=��c6��5=<��;5��� �
�54�&'"-6��5,��5=
4M6m&'�5$���_c�*i2i3�5=\���/%@�7"Jam���5Y0�*=<�J%�13$'�Q,��*=�1��J)0i2�
��=��5d
� >'i2%��
!c12$ci��J=<�*�:=W� � ���5ZH�H>0;@& * $0"*1�� �-,J12$c%<&'�m�/�9Y��5=<12_c�:$�%@�Ji'=<�:��>'i2%<�£1��}%^]HY'1�;5�*i'"Ja������
)0�*���:!#%��
;@&'$'1 ��>0�:�:Z

% & ��� ��+ ��� ������� �£�('*) ��� ���'�,+ �%��-
�~��&0��,��zY'=<�:���5$�%��
!��J$��J>9%<"*_X�-%<13;�;/"�>'$�%��:=��5�9�*_cY'i2�O�*>'1�!9�
!#�J)+�^%<=<��;j%�13"*$'dT=<�/.0$0�5_c�5$�%
�Ji3�*"*=<12%�&'_ %�&0�J%�>0���:���9�£w�4nq^� u©�J$+!�%��:;@&0$'1���>'�
�7ab=<"*_ _X�*;@&'13$'��i3�:�*=�$012$'�+Z)O>'=��Ji2d
�*"*=<12%�&'_ "�>9%�Y��5=�ab"*=<_X���^%@�J$0!'�*=<!k_c"9!9�5i�;@&0�:;@oH12$0�04H)+"*%�&Q13$k%<�5=<_X��"Jan�5�9�:;/>'%�13"*$k%�13_��
�J$0!X_c�:_�"�=�]c=<�	��>'13=��:_c�5$�%<�:Z)O>0=�=<�/.0$0�5_c�5$�%�%<�:;@&'$01���>'��13��,*�:=�]c���5$'�:=<�*i+�J$+!�;5�*$#)��
�/�H%��:$0!9�:!�%<"��ci3�*=�����,��*=�13�/%^]#"JaW�]9� %��:_c�:Z0�0"*=m�/�'�*_�Y0i2��4'12$;5"*$�!^>0$0;j%<12"�$V6m1h%<&VY'=��
!912d
;5�-%<���J)0� %�=@�*;/%�13"*$�4�6���;5�*$��*Y'Y'i3]("*>0=}%��:;@&0$'1���>'�
�}%�"\��"Ja§%^6��J=<��_�"9!9�:i0;@&'�
;@o�13$'�+ZJw�&'�5=<�

.Q!H�"&���!H* e3.�� eA.0/1��2$!$)�C $ i j k eA.0/1��2$!$)�C $OStG�j � ��F eA.0/1��F
$VStG�j
G5!$/1+ + S>S G5!$/1+ + S>S e j G5! /1+ +OS>S e j G5!$/1+ +OS>S e j

��� 7 (

� 7 7%3 ? 3�Q � � � (ada 7 a�� � 7 3 (

� I aGa 7 a�� � 7 3 (��� � aGa 7 a�� � 7 3 (
��� 7 I a � � a Q
 �%3%3 ? aGa � � a�� Q (�
 ? 3 a a 3 �
 a�� Q (�
 ? 3 a ��� � � a�� Q (�
 ? 3 a
����? (I�7 � Q ada ((� I
Q 3%I � � 3
Q (3���� Q 3�7 a � � (3 (�
 a ��� I 3%3 �	��� � 3 (�
 a ��� I 3�3
����? I 3%3
Q � a Q (Q (3%I
Q 3 � � 7 ? aGa � I%3 I 3%3 3%I � 7 ? ada �%I%3 I 3%3 c c�� � ? ada �%I%3 I 3�3
��� I (a
 I ? 3�I a (3 (� 3 a Q (� ? 3 (�? Q�� �Sa a 7 7 3 �����$� Q (I%I (a a (3
 a I a 3 (7
 � a�� 3�Q
 7 a
����
 I $ $ a (� (7
 a Q 3%I�I 3 a 7 � I � Q �
 aGa
 � (7�� a Q 7%7 ��R � � � a (I (((�
 I 3
Q
��� � ($ $ aGa 7%Q 7�7
 ��� Q (3 a 7 � I%I%3 � I aGa I � (�
 Q a Q 7%7 �	��R�� 3 a ((� (7 (I 3
Q
��� � I $ $ aGa Q 3 7 ? ��7 a ? 7 3 a 7 � I �;a � 3 a 3
 3 � a I a Q 7%7 �	����� � a (�
 � (�? 7 I 3
Q
��� � ($ $ �%Q%I 7
 a 3 ?�
�
 3 (7
 I � 7 � 7 a 3
 a � a I a Q 7%7 �	�����$� a (�
 � (�? 7 I 3
Q

����� ��� �f. #?4 +�2 &E8�+(&->?!$)�C��"+�����2H*"� B #3�;� �"#%��+(��*�* 3 F

�J=<�#� �:,*�:=<�*i}ab>9%�>'=<�#=<�:���:�*=<;@&�!913=��
;j%<12"�$0�7%<"�"*>0=\6�"�=�oMZ����k�*=��k;/>'=<=��:$�%�i3]��/�9Y'i3"*=<13$'�
;/=<1h%<�5=<13��"*%�&'�:=W%�&+�J$c%�&0�O��1YX:��"JaM%�&0�O���5Y0�*=<�J%�13$'�7� �5%�ab"*=�;@&0�J=@�*;/%��5=<1�X513$'�7�7�*"H"9!c=��5.0$'�5d
_��:$�%:Z������Ji�� "�6��J$�%�%�"V�/�9Y'i3"*=<��"J%�&0�5=7_X�*;@&'13$'�ci3�:�J=<$'13$'��%��
;@&'$'1 ��>0�:��%�"V��"*i3,*��%�&0�
�^%@�-%��7���5Y0�*=<�J%�13"*$kY'=�"�)'i3�5_QZ

��� �<� �'��� �M� �
a F�@QF +5.32 .7�"!) .3)�4���F&e .3)AC%!$# %.0)�)�! $ � !$)
 +�)�*"+�2$2$! FS�6)�!H*"+(�E.7*"!& +o.3��� �"# .0&-8�*"# 2 .3)�C3��.0C%+

&(#%)�*E.3!$)�/1+()?*=F �������	�
���
 F
3 F�. F +Q+(�">%+�2 .%.0�=F 2$����#32 %+ " %+(�"��!$#%) 3 F (?F ��!$)�4 8�# +�)��)A! �FAG +�&E8�F&"�G58�+��6+(*"8�+(�"2 .0)�4A��F
7 F���F +Q!$+(�"+ "���F .Q!$/@.7*�*"! " ��F .Q2 .0�"> + "�.3)�4��
F���8 � F e
* /
<�#32$! &
/1#?4A+�2�&E8�+�&E>?!)AC g�!H*"8�#3�A*
+ S>S ��F ��������� 4 �
�
�
 F

?AF���F=.Q! /@.7*�*"! " �'F .Q2 .7�"> + " @QF�� !$��)A&-8A! C32$!Y.
"�.0)�4 . F��6# +-�"!bF��6� e9.���< .)A+ g � *A/I<�#%2$!$&
/1#?4 +�2J&-8A+�&E> +(�=F � @ F"!�#%$'&
D @76�;�$)(4*$)(F,+ 6�D < � $-$�; ./(0$�D � <21�3
@4$�;5$76'8 � DE6�@9.:(< D " a ��� � FI F �'F .Q2 .0�"> + "<;IF<�6�"��/
<�+-�"C%" e�F/=%8�.
">�
F
j � " .0)�4@?IF�� +�!H*"8�F .Q#%�A)?*"+-�"+(,A.3/1��2$+	$ C3��! 4A+=4
.0<��D*��E.0&(*"!$#%) �"+<4�)�+�/1+()?*=F �������	� A�A�
 F

Q F �'F . FZ.Q2 .7�"> + "%;IF��6�"�A/
<�+(�"C�"%.0)�4 S
F ��FGj�#3)�CAF . #?4A+�2 &E8�+�&E>?!)AC .0)�4
.0<��D*��E.0&(*"!$#%)�F ����B
� DE6�@C.0!ED D2$76F!EG�6�@%6F! 498H.�! " a Q = I F < a I a 3-I a I ? 3 " a ��� ? F

?F�e�F=S .3�I.3)�4 SIF j�F S !$2$2 F e �A&�&�+�����!& +9.0���A�"#=, !$/@.0*"!$#%) # B .3<A�D*��E.3&(*I*��E.3)A��!$*"!$#3)r�"+�2 .0*"!$#%)A��F
� G�� � 4 � A�J�
 F

� F���FLKt� �"��8�.0)�F � $�8 94&
F-< DJ6HM A
<EAON�< D�M P 1 6�F,M,$�@Q$)(R17$-$�DEAHM @76�F,M @%6 9 D)$-1 <�.7.?<�."F k��"!$)�&�+(*"#3)
�6)�!& +(�"��!H*�*"k��"+����#" a ��� ?AF

� FS= F
j�!$)�4
$T� !$+�2$��+�) .3)�4@?IF��;)�4 +(�"��+�)�F e�*"+�� g�!$��+6.5G�j /1#?4A+�2 &-8A+�&E> !$)ACK# B �D*E.0*"+VU7+# +�)�*
� * �D*"+�/1��F �������	�
�
�
 F

a (F�G F . F . !$*"&E8�+(2 2 F B 6�1�3FM @0<WG <E6�D @CM @%63FYX . +ZUG. &V�6�E. g�$T? !$2$2 " a ���
�Fada F�. F . #%��>%+ g�!$&0[" .6F .n.%4 ! C%.3) "9�
F9��8�.0#%"3j F4�J8�.3)�C�"�.0)�4 eJF .n.32$!$>JFO.Q8�. ��< �)AC%!$)�+�+-�"!)AC
.0) +?G &�!$+�)�*�e � G ��#32& +(�=F �]\^���S� A�J�
 F

a 3 FS= F ��F4_ ��!$)�2 .3) F
i�)�4A��&-*"! #3) # B 4A+�&(! ��!$#3)n*��"+�+���F B 6�1�3%M @0<	G�< 6�D @CM @%6 " a � � Q Fa 7 FS= F ��F _ ��!$)�2 .0)�F �E� !a`FbLD D2$76�D�6�8c.S(�$�D B 6�1�3%M @0<�G <E6�D @9M @F63F�. #3�"C%.3)dK�.0� B /@.3)�) " eA.0).n.7*"+�#%"".5� " a ���%7 Fa ?AFS= F klF . F;e?! 2& 3.t.3)�4cK F ��FSe .3>3.32$2 .38 F��	� � e9k $.t)�+ g ��+=.7�"&-8@.02 C3#3�"!H*"8�/ B #0�5�".7*"! �;4�.3<A! 2$!H* *�F
G�+�&-8A)�!$&=.02��;+���#3��*;GL� $(.�e�� $ 3�� 3 ����Q "*�6)�!& +(�"��!H* *9# B . !$&-8A! C3+�) " a ���%Q Fa I FASIF�Xr.3)�C�"�klF�? #%"�=AF�j #%)AC%">= F�Kt��>?�A2Y.
"��IF>��8?� " G F
.n.
"�.3)�4e��F\St.0/1!Y.0)�# F6@�#0�"/@.32
� �"#%��+(��*�* %+(�"!54�&=.7*"! #3)1< * .0<��D*��E.3&-*"! #3)1�"+<4�)A+�/1+�)�*�g�!H*"8 B #3�"/@.02 "%��!$/
��2 .7*"! #3)9.3)�4I8
* < �"!Y4
+()�C%!$)A+���F \^���S� A�J F

Automated Abstraction Refinement for Model
Checking Large State Spaces using SAT based

Conflict Analysis?

Pankaj Chauhan1 Edmund Clarke1 James Kukula3

Samir Sapra1 Helmut Veith2 Dong Wang1

1 Carnegie Mellon University 2 TU Vienna, Austria
3 Synopsys Inc., Beaverton, OR

Abstract. We introduce a SAT based automatic abstraction refinement frame-
work for model checking systems with several thousand state variables in the
cone of influence of the specification. The abstract model is constructed by des-
ignating a large number of state variables as invisible. In contrast to previous
work where invisible variables were treated as free inputs we describe a compu-
tationally more advantageous approach in which the abstract transition relation
is approximated by pre-quantifying invisible variables during image computa-
tion. The abstract counterexamples obtained from model-checking the abstract
model are symbolically simulated on the concrete system using a state-of-the-art
SAT checker. If no concrete counterexample is found, a subset of the invisible
variables is reintroduced into the system and the process is repeated. The main
contribution of this paper are two new algorithms for identifying the relevant
variables to be reintroduced. These algorithms monitor the SAT checking phase
in order to analyze the impact of individual variables. Our method is complete
for safety properties in the sense that – performance permitting – a property is
either verified or disproved by a concrete counterexample. Experimental results
are given to demonstrate the power of our method on real-world designs.

1 Introduction

Symbolic model checking has been successful at automatically verifying temporal spec-
ifications on small to medium sized designs. However, the inability of BDD based model
checking to handle large state spaces of “real world” designs hinders the wide scale ac-
ceptance of these techniques. There have been advances on various fronts to push the
limits of automatic verification. On the one hand, improving BDD based algorithms
improves the ability to handle large state machines, while on the other hand, various
abstraction algorithms reduce the size of the design by focusing only on relevant por-
tions of the design. It is important to make improvements on both fronts for successful
verification.
? This research is sponsored by the Semiconductor Research Corporation (SRC) under con-

tract no. 99-TJ-684, the Gigascale Silicon Research Center (GSRC), the National Science
Foundation (NSF) under Grant No. CCR-9803774, and the Max Kade Foundation. One of
the authors is also supported by Austrian Science Fund Project N Z29-INF. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of SRC, GSRC, NSF, or the United States
Government.

2

A conservative abstraction is one which preserves all behaviors of a concrete sys-
tem. Conservative abstractions benefit from a preservation theorem which states that
the correctness of any universal (e.g. ACTL∗) formulae on an abstract system auto-
matically implies the correctness of the formula on the concrete system. However, a
counterexample on an abstract system may not correspond to any real path, in which
case it is called a spurious counterexample. To get rid of a spurious counterexample,
the abstraction needs to be made more precise via refinement. It is obviously desirable
to automate this procedure.

This paper focuses on automating the abstraction process for handling large designs
containing up to a few thousand latches. This means that using any computation on
concrete systems based on BDDs will be too expensive. Abstraction refinement [1, 6,
8, 11, 13, 17] is a general strategy for automatic abstraction. Abstraction refinement
usually involves the following process.

1. Generation of Initial Abstraction. It is desirable to derive the initial abstrac-
tion automatically.

2. Model checking of abstract system. If this results in a conclusive answer for
the abstract system, then the process is terminated. For example, in case of exis-
tential abstraction, a “yes” answer for an ACTL∗ property in this step means that
the concrete system also satisfies the property, and we can stop. However, if the
property is false on the abstract system, an abstract counterexample is generated.

3. Checking whether the counterexample holds on the concrete system.
If the counterexample is valid, then we have actually found a bug. Otherwise,
the counterexample is spurious and the abstraction needs to be refined. Usually,
refinement of abstraction is based on the analysis of counterexample(s) generated.

Our abstraction function is based on hiding irrelevant parts of the circuit by make
a set of variables invisible. This simple abstraction function yields an efficient way
to generate minimal abstractions, a source of difficulty in previous approaches. We
describe two techniques to produce abstract systems by removing invisible variables.
The first is simply to make the invisible variables into input variables. This is shown to
be a minimal abstraction. However, this leaves a large number of input variables in the
abstract system and, consequently, BDD based model checking even on this abstract
system becomes very difficult [19]. We propose an efficient method to pre-quantify
these variables on the fly during image computation. The resulting abstract systems
are usually small enough to be handled by standard BDD based model checkers. We
use an enhanced version [3, 4] of NuSMV [5] for this. If a counterexample is produced
for the abstract system, we try to simulate it on the concrete system symbolically using
a fast SAT checker (Chaff [16, 21] in our case).

The refinement is done by identifying a small set of invisible variables to be made
visible. We call these variables the refinement variables. Identification of refinement
variables is the main focus of this paper. Our techniques for identifying important
variables are based on analysis of effective boolean constraint propagation (BCP) and
conflicts [16] during the SAT checking run of the counterexample simulation. Recently,
propositional SAT checkers have demonstrated tremendous success on various classes
of SAT formulas. The key to the effectiveness of SAT checkers like Chaff [16], GRASP
[18] and SATO [20] is non-chronological backtracking, efficient conflict driven learning
of conflict clauses, and improved decision heuristics.

3

SAT checkers have been successfully used for Bounded Model Checking (BMC)
[2], where the design under consideration is unrolled and the property is symbolically
verified using SAT procedures. BMC is effective for showing the presence of errors.
However, BMC is not at all effective for showing that a specification is true unless
the diameter of the state space is known. Moreover, BMC performance degrades when
searching for deep counterexamples. Our technique can be used to show that a specifi-
cation is true and is able to search for deeper concrete counterexamples because of the
guidance derived from abstract counterexamples.

The efficiency of SAT procedures has made it possible to handle circuits with a
few thousand of variables, much larger than any BDD based model checker is able
to do at present. Our approach is similar to BMC, except that the propositional for-
mula for simulation is constrained by assignments to visible variables. This formula
is unsatisfiable for a spurious counterexample. We propose heuristic scores based on
backtracking and conflict clause information, similar to VSIDS heuristics in Chaff, and
conflict dependency analysis algorithm to extract the reason for unsatisfiability. Our
techniques are able to identify those variables that are critical for unsatisfiability of
the formula and are, therefore, prime candidates for refinement. The main strength of
our approach is that we use the SAT procedure itself for refinement. We do not need
to invoke multiple SAT instances or solve separation problems as in [8].

Thus the main contributions of our work are, (a) use of SAT for counterexample
validation, (b) refinement procedures based on SAT conflict analysis, and, (c) a method
to remove invisible variables from the abstract system for computational efficiency.

Outline of the Paper

The rest of the paper is organized as follows. In the next section, we describe related
work. Section 3 briefly reviews how abstraction is used in model checking and intro-
duces notation that is used in the following sections. In Section 4, we describe in detail,
our abstraction technique and how we check an abstract counterexample on the con-
crete model. The most important part of the paper is Section 5, where we discuss our
refinement algorithms based on scoring heuristics for variables and conflict dependency
analysis. In section 6, we present experimental evidence to show the ability of our ap-
proach to handle large state systems. Finally, we conclude in Section 7 with directions
for future research.

2 Related Work

Our work compares most closely to that presented in [6] and more recently [8]. There
are three major differences between our work and [6]. First, their initial abstraction
is based on predicate abstraction, where new set of program variables are generated
representing various predicates. They symbolically generate and manipulate these ab-
stractions with BDDs. Our abstraction is based on hiding certain parts of the circuit.
This yields an easier way to generate abstractions. Secondly, the biggest bottleneck
in their method is the use of BDD based image computations on concrete systems for
validating counterexamples. We use symbolic simulation based on SAT accomplish this
task, as in [8]. Finally, their refinement is based on splitting the variable domains. The
problem of finding the coarsest refinement is shown to be NP-hard in [6]. Because our

4

abstraction functions are simpler, we can identify refinement variables during the SAT
checking phase. We do not need to solve any other problem for refinement.

We differ from [8] in three aspects. First, we propose to remove invisible variables
from abstract systems on the fly by quantification. This reduces the complexity of
BDD based model checking of abstract systems. Leaving a large number of input vari-
ables in the system makes it very difficult to model check even an abstract system
[19]. Secondly, computation overhead for our separation heuristics is minimal. In their
approach, refinement is done by separating dead-end and bad states (sets of concrete
states contained in the failure state) with ILP solvers or machine learning. This requires
enumerating all dead-end and bad states or producing samples of these states and sep-
arating them. The sampling scheme they propose requires calling multiple instances of
the SAT checker. Experiments on large circuits have shown that efficiently generating
these samples is a major bottleneck in their method. We avoid this step altogether and
cheaply identify refinement variables from the analysis of a single SAT check that is
already done. We do not claim any optimality on the number of variables, however,
this is a small price to pay for efficiency. We have been able to handle a circuit with
about 5000 variables in cone of influence of the specification, for which their method
gets stuck in the sampling phase. Finally, we believe our method can identify a better
set of invisible registers for refinement. Although [8] uses optimization algorithms to
minimize the number of registers to refine, their algorithm relies on sampling to provide
the candidate separation sets. When the size of the problem becomes large, there could
be many possible separation sets. The quality of the separating set can not be judged
by its size, instead a better selection criteria is required. Our method is based on SAT
conflict analysis. The Boolean constraint propagation (BCP) algorithm in a SAT solver
naturally limits the number of candidates that we will need to consider. We use conflict
dependency analysis to reduce further the number of candidates for refinement.

The work of [10] focuses on algorithms to refine an approximate abstract transition
relation. Given a spurious abstract transition, they combine a theorem prover with a
greedy strategy to enumerate the part of the abstract transition that does not have
corresponding concrete transitions. The identified bad transition is removed from the
current abstract model for refinement. Their enumeration technique is potentially ex-
pensive. More importantly, they do not address the problem of how to refine abstract
predicates.

Previous work on abstraction by making variables invisible includes the localization
reduction of Kurshan [13] and other techniques (e.g. [1, 14]). Localization reduction
begins with the set of variables in the property as visible variables. The set of variables
adjacent to the present set of visible variables in the variable dependency graph are
chosen as the candidates for refinement. Counterexamples are analyzed in order to
choose variables among these candidates.

The work presented in [19] combines three different engines (BDD, ATPG and sim-
ulation) to handle large circuits using abstraction and refinement. The main difference
between our method and that in [19] is the strategy for refinement. In [19], candidates
for refinement are based on those invisible registers that get assigned in the abstract
counterexample. In our approach, we intentionally throw away invisible registers in the
abstract counterexample, and rely on our SAT conflict analysis to select the candidates.
We believe there are two advantages to disallowing invisible registers in the abstract
counterexample. First of all, generating an abstract counterexample is computationally

5

expensive, when the number of invisible registers is large. In fact, for efficiency reasons,
a BDD/ATPG hybrid engine is used in [19] to model check the abstract model. By
quantifying the invisible variables early, we avoid this bottleneck. More importantly,
in [19], invisible registers are free inputs in the abstract model, their values are totally
unconstrained. When checking such an abstract counterexample on the concrete ma-
chine, it is more likely to be spurious. In our case, the abstract counterexample only
includes assignments to the visible registers and hence a real counterexample can be
found more cheaply.

3 Abstraction in Model Checking

We give a brief summary of the use of abstraction in model checking and introduce
notation that we will use in the remainder of the paper (refer to [7] for a full treatment).
A transition system is modeled by a tuple M = (S, I,R,L, L) where S is the set of
states, I ⊆ S is the set of initial states, R is the set of transitions, L is the set of
atomic propositions that label each state in S with the labeling function L : S → 2L.
The set I is also used as a predicate I(s), meaning the state s is in I. Similarly,
the transition relation R is also used as a predicate R(s1, s2), meaning there exists a
transition between states s1 and s2. Each program variable vi ranges over its non-empty
domain Dvi . The state space of a program with a set of variables V = {v1, v2, . . . , vn}
is defined by the Cartesian product Dv1

×Dv2
× . . .×Dvn .

In existential abstraction [7] a surjection h : S → Ŝ maps a concrete state si ∈ S
to an abstract state ŝi = h(si) ∈ Ŝ. We denote the set of concrete states that map to
an abstract state ŝi by h−1(ŝi).

Definition 1. The minimal existential abstraction M̂ = (Ŝ, Î, R̂, L̂, L̂) corre-
sponding to a transition system M = (S, I,R,L, L) and an abstraction function h
is defined by:

1. Ŝ = {ŝ|∃s.s ∈ S ∧ h(s) = ŝ}.
2. Î = {ŝ|∃s.I(s) ∧ h(s) = ŝ}.
3. R̂ = {(ŝ1, ŝ2)|∃s1.∃s2.R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2}.
4. L̂ = L.
5. L̂(ŝ) =

⋃
h(s)=ŝ L(s).

Condition 3 can be stated equivalently as

∃s1, s2(R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2)⇔ R̂(ŝ1, ŝ2) (1)

An atomic formula f respects h if for all s ∈ S, h(s) |= f ⇒ s |= f . Labeling L̂(ŝ)
is consistent, if for all s ∈ h−1(ŝ) it holds that s |= ∧

f∈L̂(ŝ) f . The following theorem

from [6, 15] is stated without proof.

Theorem 1. Let h be an abstraction function and φ an ACTL∗ specification where
the atomic sub-formulae respect h. Then the following holds: (i) For all ŝ ∈ Ŝ, L̂(ŝ) is
consistent, and (ii) M̂ |= φ⇒M |= φ.

This theorem is the core of all abstraction refinement frameworks. However, the con-
verse may not hold, i.e., even if M̂ 6|= φ, the concrete model M may still satisfy φ. In

6

this case, the counterexample on M̂ is said to be spurious, and we need to refine the
abstraction function. Note that the theorem holds even if only the right implication
holds in Equation 1. In other words, even if we add more transitions to the minimal
transition relation R̂, the validity of an ACTL∗ formula on M̂ implies its validity on
M .

Definition 2. An abstraction function h′ is a refinement for the abstraction function
h and the transition system M = (S, I,R,L, L) if for all s1, s2 ∈ S, h′(s1) = h′(s2)
implies h(s1) = h(s2). Moreover, h′ is a proper refinement of h if there exist s1, s2 ∈
S such that h(s1) = h(s2) and h′(s1) 6= h′(s2).

In general, ACTL∗ formulae can have tree-like counterexamples [9]. In this paper, we
focus only on safety properties, which have finite path counterexamples. It is possible to
generalize our approach to full ACTL∗ as done in [9]. The following iterative abstraction
refinement procedure for a system M and a safety formula φ follows immediately.

1. Generate an initial abstraction function h.
2. Model check M̂ . If M̂ |= φ, return TRUE.

3. If M̂ 6|= φ, check the generated counterexample T̂ on M . If the counterexample is
real, return FALSE.

4. Refine h, and goto step 2.

Since each refinement step partitions at least one abstract state, the above proce-
dure is complete for finite state systems for ACTL* formulae that have path counterex-
amples. Thus the number of iterations is bounded by the number of concrete states.
However, as we will show in the next two sections, the number of refinement steps can
be at most equal to the number of program variables.

We would like to emphasize that we model check abstract system in step 2 using
BDD based symbolic model checking, while steps 3 and 4 are carried out with the help
of SAT checkers.

4 Generating Abstract State Machine

We consider a special type of abstraction for our methodology, wherein, we hide a set
of variables that we call invisible variables, denoted by I. The set of variables that we
retain in our abstract machine are called visible variables, denoted by V. The visible
variables are considered to be important for the property and hence are retained in
the abstraction, while the invisible variables are considered irrelevant for the property.
The initial abstraction and the refinement in steps 1 and 4 respectively correspond
to different partitions of V . Typically, we would want |V| � |I|. Formally, the value
of a variable v ∈ V in state s ∈ S is denoted by s(v). Given a set of variables U =
{u1, u2, . . . , up}, U ⊆ V , let sU denote the portion of s that corresponds to the variables
in U , i.e., sU = (s(u1)s(u2) . . . s(up)). Let V = {v1, v2, . . . , vk}. This partitioning of

variables defines our abstraction function h : S → Ŝ. The set of abstract states is
Ŝ = Dv1

×Dv2
. . .×Dvk and h(s) = sV .

In our approach, the initial abstraction is to take the set of variables mentioned in
the property as visible variables. Another option is to make the variables in the cone
of influence (COI) of the property visible. However, the COI of a property may be too

7

large and we may end with a large number of visible variables. The idea is to begin
with a small set of visible variables and then let the refinement procedure come up
with a small set of invisible variables to make visible.

We also assume that the transition relation is described not as a single predicate,
but as a conjunction of bit relations Rj of each individual variable vj . More formally,
we consider a sequential circuit with registers V = {v1, v2, . . . , vm} and inputs I =
{i1, i2, . . . , iq}. Let s = (v1, v2, . . . , vm), i = (i1, i2, . . . , iq) and s′ = (v′1, v

′
2, . . . , v

′
m).

The primed variables denote the next state versions of unprimed variables as usual.
Thus the bit relation for vj becomes Rj(s, i, v

′
j) = (v′j ↔ fvj (s, i)).

R(s, s′) = ∃i
m∧

j=1

Rj(s, i, v
′
j) (2)

4.1 Abstraction by Making Invisible Variables as Input Variables

As shown in [8], the minimal transition relation R̂ corresponding to R and h described
above is obtained by removing the logic defining invisible variables and treating them
as free input variables of the circuit. Hence, R̂ looks like:

R̂(ŝ, ŝ′) = ∃sI∃i
∧

vj∈V
Rj(s

V , sI , i, v′j) (3)

The quantifications in Equation 3 are performed during each image computation in
symbolic model checking of the abstract system. This is done so as not to build a
monolithic BDD for R̂ and enjoy the benefits of early quantification.

We call this type of abstraction an input abstraction. We write s as sV , sI to stress
the fact that we are leaving invisible variables as input variables in R̂. When dealing
with systems with a large number of registers, quantifying so many variables for each
image computation is expensive (e.g. [19]). An invisible variable can in the support of
multiple partitions of the transition relation. In input abstraction, each occurence of
an invisible variable has the same value in different partitions of the abstract transition
relation. Thus, we say input abstraction preserves correlations between different occur-
rences of an invisible variable. In the next type of abstraction, we pre-quantify most of
the invisible variables, to reduce the number of variables during image computation.
This means that different occurrences of an invisible variable get de-coupled when we
push the quantifications inside Equation 3, making the abstraction more approximate.

4.2 Abstraction by Pre-quantifying Invisible Variables

Input abstraction leaves a large number of variables to quantify during the image
computation process. We can however, quantify these variables a priori, leaving only
visible variables in R̂. The transition relation that we get by quantifying invisible
variables from R̂ in the beginning is denoted by R̃. We can even quantify some of
the input variables a priori in this fashion to control the total number of variables
appearing in R̃. Let Q ⊆ I ∪ I denote the set of variables to be pre-quantified and let
W = (I ∪ I) \Q, the set of variable that are not pre-quantified.

8

Quantification of a large number of invisible variables in Equation 3 is computa-
tionally expensive [15]. To alleviate this difficulty, it is customary to approximate this
abstraction by pushing the quantification inside conjunctions as follows.

R̃(ŝ, ŝ′) = ∃sW
∧

vj∈V
∃sQRj(sV , sI , i, v′j) (4)

Since the BDDs for state sets do not contain input variables in the support, this is a
safe step to do. This does not violate the soundness of the approximation, i.e., for each
concrete transition in R, there will be a corresponding transition in R̂, as stated below.

Theorem 2. ∃s1, s2(R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2)⇒ R̃(ŝ1, ŝ2).

The other direction of this implication does not hold because of the approximations
introduced.

Preserving Correlations We can see in Equation 4 that by existentially quantifying
each invisible variable separately for each conjunct of the transition relation, we lose
the correlation between different occurrences of a variable. For example, consider the
trivial bit relations x′1 = x3, x

′
2 = ¬x3 and x3 = x1 ⊕ x2. Suppose x3 is made an

invisible variable. Then quantifying x3 from the bit relations of x1 and x2 will result in
the transition relation being always evaluated 1, meaning the state graph is a clique.
However, we can see that in any reachable state, x1 and x2 are always opposite of
each other. To solve this problem partially without having to resort to equation 4, we
propose to cluster those bit relations that share many common variables. Since this
problem is very similar to the quantification scheduling problem (which occurs during
image computations), we propose to use a modification of VarScore algorithms [3] for
evaluating this quantification. This algorithm can be viewed as producing clusters of bit
relations. We use it to produce clusters with controlled approximations. The idea is to
delay variable quantifications as much as possible, without letting the conjoined BDDs
grow too large. When a BDD grows larger than some threshold, we quantify away a
variable. We can of course quantify a variable that no longer appears in the support
of other BDDs. Effective quantification scheduling algorithms put closely related oc-
currences of a variable in the same cluster. Figure 1 shows the VarScore algorithm for
approximating existential abstraction.

A static circuit minimum cut based structural method to reduce the number of in-
visible variables was proposed in [12] and used in [19]. Our method introduces approx-
imations as needed based on actual image computation, while there method removes
the variables statically. Our algorithms achieves a balance between performance and
accuracy. This means that the approximations introduced by our algorithm are more
accurate as the parts of the circuits statically removed in [12] could be important.

4.3 Checking the Validity of an Abstract Counterexamples

Given an abstract model M̂ and a safety formula φ, we run the usual BDD based
symbolic model checking algorithm to determine if M̂ |= φ. Suppose that the model
checker produces an abstract path counterexample s̄m = 〈ŝ0, ŝ1, . . . , ŝm〉. To check
whether this counterexample holds on the concrete model M or not, we symbolically

9

Given a set of conjuncts RV and variables sQ to pre-quantify
Repeat until all sQ variables are quantified

1. Quantify away sQ variables appearing in only one BDD
2. Score the variables by summing up the sizes of BDDs in which a variable occurs
3. Pick two smallest BDDs for the variable with the smallest score
4. If any BDD is larger then the size threshold, quantify the variable from BDD(s) and

go back to step 2.
5. If the BDDs are smaller than threshold, do BDDAnd or BDDAndExists depending

upon the case

Fig. 1. VarScore algorithm for approximating existential abstraction

simulateM beginning with the initial state I(s0) using a fast SAT checker. At each stage
of the symbolic simulation, we constrain the values of visible variables only according
to the counterexample produced. The equation for symbolic simulation is:

(I(s0) ∧ (h(s0) = ŝ0)) ∧ (R(s0, s1) ∧ (h(s1) = ŝ1)) ∧ . . .
∧(R(sm−1, sm) ∧ (h(sm) = ŝm)) (5)

Each h(si) is just a projection of the state si onto visible variables. If this propositional
formula is satisfiable, then we can successfully simulate the counterexample on the
concrete machine to conclude that M 6|= φ. The satisfiable assignments to invisible
variables along with assignments to visible variables produced by model checking give
a valid counterexample on the concrete machine.

If this formula is not satisfiable, the counterexample is spurious and the abstraction
needs refinement. Assume that the counterexample can be simulated up to the abstract
state ŝf , but not up to ŝf+1 ([6, 8]). Thus formula 6 is satisfiable while formula 7 is
not satisfiable, as shown in Figure 2.

(I(s0) ∧ (h(s0) = ŝ0)) ∧ (R(s0, s1) ∧ (h(s1) = ŝ1)) ∧ . . .
∧(R(sf−1, sf) ∧ (h(sf) = ŝf)) (6)

(I(s0) ∧ (h(s0) = ŝ0)) ∧ (R(s0, s1) ∧ (h(s1) = ŝ1)) ∧ . . .
∧(R(sf , sf+1) ∧ (h(sf+1) = ŝf+1)) (7)

Using the terminology introduced in [6], we call the abstract state ŝf a failure state.
The abstract state ŝf contains many concrete states given by all possible combinations
of invisible variables, keeping the same values for visible variables as given by ŝf . The
concrete states in ŝf reachable from the initial states following the spurious counterex-
ample are called the dead-end states. The concrete states in ŝf that have a reachable
set in ŝf+1 are called bad states. Because the dead-end states and the bad states are
part of the same abstract state, we get the spurious counterexample. The refinement
step then is to separate dead-end states and bad states by making a small subset of
invisible variables visible. It is easy to see that the set of dead-end states are given by
the values of state variables in the f th step for all satisfying solutions to Equation 6.

10

Concrete
Trace

Abstract
Trace

dead−end
states

bad states

0ŝ

0ŝ ŝ1 ŝ2 fŝ ŝ f+1

0ŝ)
−1

h ()
−1

h ()
−1

h ()
−1

h (

−1
h (ŝ

fŝ2ŝ1ŝ
f+1)

failure
state

Fig. 2. A spurious counterexample showing failure state [8]. No concrete path can be extended
beyond failure state.

Note that in symbolic simulation formulas, we have a copy of each state variable for
each time frame.

We do this symbolic simulation using the SAT checker Chaff [16]. We assume that
there are concrete transitions which correspond to each abstract transition from ŝi
to ŝi+1, where 0 < i ≤ f . It is fairly straightforward to extend our algorithm to
handle spurious abstract transitions. In this case, the set of bad states is not empty.
Since s̄f is the shortest prefix that is unsatisfiable, there must be information passed
through the invisible registers at time frame f in order for the SAT solver to prove the
counterexample is spurious. Specifically, the SAT solver implicitly generates constraints
on the invisible registers at time frame f based on either the last abstract transition
or the prefix s̄f . Obviously the intersection of these two constraints on those invisible
registers is empty. Thus the set of invisible registers that are constrained in time frame
f during the SAT process is sufficient to separate deadend states and bad states after
refinement. Therefore, our algorithm limits the refinement candidates to the registers
that are constrained in time frame f .

Equation 5 is exactly like symbolic simulation with Bounded Model Checking. The
only difference is that the values of visible state variables at each step are constrained
to the counterexample values. Since the original input variables to the system are
unconstrained, we also constrain their values according to the abstract counterexample.
This puts many constraints on the SAT formula. Hence, the SAT checker is able to
prune the search space significantly. We rely on the ability of Chaff to identify important
variables in this SAT check to separate dead-end and bad states, as described in the
next section.

5 SAT Based Refinement Heuristics

The basic framework for these SAT procedures is Davis-Putnam-Logeman-Loveland
backtracking search, shown in Figure 3. The function decide_next_branch() chooses
the branching variable at current decision level. The function deduce() does Boolean
constraint propagation to deduce further assignments. While doing so, it might infer
that the present set of assignments to variables do not lead to any satisfying solution,
leading to a conflict. In case of a conflict, new clauses are learned by analyse_conflict()

11

while(1) {

if (decide_next_branch()) { // Branching

while (deduce() == conflict) { // Propagate implications

blevel = analyse_conflict(); // Learning

if (blevel == 0)

return UNSAT;

else

backtrack(blevel); // Non-chronological

// backtrack

}

}

else // no branch means all vars

// have been assigned

return SAT;

}

Fig. 3. Basic DPLL backtracking search (used from [16] for illustration purpose)

that hopefully prevent the same unsuccessful search in the future. The conflict analy-
sis also returns a variable for which another value should be tried. This variable may
not be the most recent variable decided, leading to a non-chronological backtrack. If
all variables have been decided, then we have found a satisfying assignment and the
procedure returns. The strength of various SAT checkers lies in their implementation
of constraint propagation, decision heuristics, and learning.

Modern SAT checkers work by introducing conflict clauses in the learning phase and
by non-chronological backtracking. Implication graphs are used for Boolean constraint
propagation. The vertices of this graph are literals, and each edge is labeled with the
clause that forces the assignment. When a clause becomes unsatisfiable as a result of
the current set of assignments (decision assignments or implied assignments), a conflict
clause is introduced to record the cause of the conflict, so that the same futile search
is never repeated. The conflict clause is learned from the structure of the implication
graph. When the search backtracks, it backtracks to the most recent variable in the
conflict clause just added, not to the variable that was assigned last. For our purposes,
note that Equation 7 is unsatisfiable, and hence there will be much backtracking.
Hence, many conflict clauses will be introduced before the SAT checker concludes that
the formula is unsatisfiable. A conflict clause records a reason for the formula being
unsatisfiable. The variables in a conflict clause are thus important for distinguishing
between dead-end and bad states. The decision variable to which the search backtracks
is responsible for the current conflict and hence is an important variable. We call the
implication graph associated with each conflict a conflict graph.The source nodes of this
graph are the variable decisions, the sink node of this graph is the conflicting assignment
to one of the variables. At least one conflict clause is generated from a conflict graph.
We propose the following two algorithms to identify important variables from conflict
analysis and backtracking.

12

5.1 Refinement Based on Scoring Invisible Variables

We score invisible variables based on two factors, first, the number of times a variable
gets backtracked to and, second, the number of times a variable appears in a conflict
clause. Note that we have adjust the first score by an exponential factor based on the
decision level a variable is at, as the variable at the root node can potentially get just
two back tracks, while a variable at the decision level dl can get 2dl backtracks globally.
Every time the SAT procedure backtracks to an invisible variable at decision level dl,
we add the following number to the backtrack score.

2
|I|−dl
c

We use c as a normalizing constant. For computing the second score, we just keep
a global counter conflict score for each variable and increment the counter for each
variable appearing in any conflict clause. The method used for identifying conflict
clauses from conflict graphs greatly affects SAT performance. As shown in [21], we use
the most effective method called the first unique implication point (1UIP) for identifying
conflict clauses. We then use weighted average of these two scores to derive the final
score as follows.

w1 · backtrack score + w2 · conflict score (8)

Note that the second factor is very similar to the decision heuristic VSIDS used
in Chaff. The difference is that Chaff uses these per variable global scores to arrive
at local decisions (of the next branching variable), while we use them to derive global
information about important variables. Therefore, we do not periodically divide the
variable scores as Chaff does.

We also have to be careful to guide Chaff not to decide on the intermediate variables
introduced while converting various formulae to CNF form, which is the required input
format for SAT checkers. This is done automatically in our method.

5.2 Refinement Based on Conflict Dependency Graph

The choice of which invisible registers to make visible is the key to the success of
the refinement algorithm. Ideally, we want this set of registers to be small and still
be able to prevent the spurious trace. Obviously, the set of registers appearing in the
conflict graphs during the checking of the counterexample could prevent the spurious
trace. However, this set can be very large. We will show here that it is unnecessary to
consider all conflict graphs.

Dependencies Between Conflict Graphs We call the implication graph associated
with a conflict a conflict graph. At least one conflict clause is generated from a conflict
graph.

13

Definition 3. Given two conflict graphs A and B, if at least one of the conflict clauses
generated from A labels one of the edges in B, then we say that conflict B directly
depends on conflict A.

For example, consider the conflicts depicted in the conflict graphs of Figure 4.
Suppose that at a certain stage of the SAT checking, conflict graph A is generated.
This produces the conflict clause ω9 = (¬x9 + x11 + ¬x15). We are using the first UIP
(1UIP) learning strategy [21] to identify the conflict clause here. This conflict clause
can be rewritten as x9 ∧ ¬x11 → ¬x15. In the other conflict graph B, clause ω9 labels
one of the edges, and forces variable x15 to be 0. Hence, we say that conflict graph B
directly depends on conflict graph A.

directly
depends

x2(5)

x14(5)

−x12(3)

conflict

x16(5)

−x11(2)

x17(4)

x9(1)

−x11(2)

Using conflict clause

Conflict graph B

conflict

Conflict graph A

−x11(2)

ω1
ω3

x10(5)

ω4

ω4

ω6

ω5

ω6

ω5

ω9

ω9

ω3

−x15(5)
x15(5) ω2

x9(1)

ω2

ω1

1UIP cut

Fig. 4. Two dependent conflict graphs. Conflict B depends on conflict A, as the conflict clause
ω9 derived from the conflict graph A produces conflict B.

Given the set of conflict graphs generated during satisfiability checking, we construct
the unpruned conflict dependency graph as follows:

– Vertices of the unpruned dependency graph are all conflict graphs created by the
SAT algorithm.

– Edges of the unpruned dependency graph are direct dependencies.

Figure 5 shows an unpruned conflict dependency graph with five conflict graphs.
A conflict graph B depends on another conflict graph A, if vertex A is reachable from
vertex B in the unpruned dependency graph. In Figure 5, conflict graph E depends
on conflict graph A. When the SAT algorithm detects unsatisfiability, it terminates
with the last conflict graph corresponding to the last conflict. The subgraph of the
unpruned conflict dependency graph on which the last conflict graph depends is called
the conflict dependency graph. Formally,

Definition 4. The conflict dependency graph is a subgraph of the unpruned de-
pendency graph. It includes the last conflict graph and all the conflict graphs on which
the last one depends.

14

conflict
graph E

conflict
graph C

conflict
graph A

conflict
graph B

last
conflict
graph

graph D
conflict

Fig. 5. The unpruned dependency graph and the dependency graph (within dotted lines)

In Figure 5, conflict graph E is the last conflict graph, hence the conflict dependency
graph includes conflict graphs A,C,D,E. Thus, the conflict dependency graph can be
constructed from the unpruned dependency graph by any directed graph traversal
algorithm for reachability. Typically, many conflict graphs can be pruned away in this
traversal, so that the dependency graph becomes much smaller than the unpruned
dependency graph. Intuitively, all SAT decision strategies are based on heuristics. For
a given SAT problem, the initial set of decisions/conflicts a SAT solver comes up with
may not be related to the final unsatisfiability result. Our dependency analysis helps
to remove that irrelevant reasoning.

Generating Conflict Dependency Graph Based on Zchaff We have implemented
the conflict dependency analysis algorithm on top of zchaff [21], which has a powerful
learning strategy called first UIP (1UIP). Experimental results from [21] show that
1UIP is the best known learning strategy. In 1UIP, only one conflict clause is generated
from each conflict graph, and it only includes those implications that are closer to the
conflict. Refer to [21] for the details. We have built our algorithms on top of 1UIP,
and we restrict the following discussions to the case that only one conflict clause is
generated from a conflict graph. Note here that the algorithms can be easily adapted
to other learning strategies.

After SAT terminates with unsatisfiability, our pruning algorithm starts from the
last conflict graph. Based on the clauses contained in this conflict graph, the algorithm
traverses other conflict graphs that this one depends on. The result of this traversal is
the pruned dependency graph.

Identifying Important Variables The dependency graph records the reasons for
unsatisfiability. Therefore, only the variables appearing in the dependency graph are
important. Instead of collecting all the variables appearing in any conflict graph, those
in the dependency graph are sufficient to disable the spurious counterexample.

Suppose s̄f+1 = 〈ŝ0, ŝ1, . . . , ŝf+1〉 is the shortest prefix of a spurious counterexam-
ple that can not be simulated on the concrete machine. Recall that ŝf is the failure
state. During the satisfiability checking of s̄f+1, we generate an unpruned conflict de-
pendency graph. When Chaff terminates with unsatisfiability, we collect the clauses
from the pruned conflict dependency graph. Some of the literals in these clauses cor-
respond to invisible registers at time frame f . Only those portions of the circuit that

15

correspond to the clauses contained in the pruned conflict dependency graph are nec-
essary for the unsatisfiability. Therefore, the candidates for refinement are the invisible
registers that appear at time frame f in the conflict dependency graph.

Refinement Minimization The set of refinement candidates identified from conflict
analysis is usually not minimal, i.e., not all registers in this set are required to invalidate
the current spurious abstract counterexample. To remove those that are unnecessary,
we have adapted the greedy refinement minimization algorithm in [19]. The algorithm
in [19] has two phases. The first phase is the addition phase, where a set of invisible
registers that it suffices to disable the spurious abstract counterexample is identified.
In the second phase, a minimal subset of registers that is necessary to disable the coun-
terexample is identifed. Their algorithm tries to see whether removing a newly added
register from the abstract model still disables the abstract counterexample. If that is
the case, this register is unnecessary and is no longer considered for refinement. In our
case, we only need the second phase of the algorithm. The set of refinement candidates
provided by our conflict dependency analysis algorithm already suffices to disable the
current spurious abstract counterexample. Since the first phase of their algorithm takes
at least as long as the second phase, this should speed up our minimization algorithm
considerably.

6 Experimental Results

We have implemented our abstraction refinement framework on top of NuSMV model
checker [5]. We modified the SAT checker Chaff to compute heuristic scores, to produce
conflict dependency graphs and to do incremental SAT. The IU-p1 benchmark was
verified by conflict analysis based refinement on a SunFire 280R machine with two
750Mhz UltraSparc III CPUs and 8GB of RAM running Solaris. All other experiments
were performed on a dual 1.5GHz Athlon machine with 3GB of RAM running Linux.

The experiments were performed on two sets of benchmarks. The first set of bench-
marks in Table 1 are industrial benchmarks obtained from various sources. The bench-
marks IU-p1 and IU-p2 refer to the same circuit, IU, but different properties are checked
in each case. This circuit is an integer unit of a picoJava microprocessor from Sun. The
D series benchmarks are from a processor design. The properties verified were sim-
ple AG properties. The property for IU-p2 has 7 registers, while IU-p1 and D series
circuits have only one register in the property. The circuits in Table 2 are various
abstractions of the IU circuit. The property being verified has 17 registers. They are
smaller circuits that are easily handled by our methods but they have been shown to be
difficult to handle by Cadence SMV [8]. We include these results here to compare our
methods with the results reported in [8] for property 2. We do not report the results
for property 1 in [8] because it is too trivial (all counterexamples can be found in 1
iteration). It is interesting to note that all benchmarks but IU-p1 and IU-p2 have a
valid counterexample.

In Table 1, we compare our methods against the BDD based model checker Ca-
dence SMV. We enabled cone of influence reduction and dynamic variable reordering
in Cadence SMV. We report total running time, number of iterations and the number
of registers in the final abstraction. The columns labeled with “Heuristic Score” report

16

the results with our heuristic variable scoring method. We introduce 5 latches at a
time in this method. The columns labeled with “Dependency” report the results of
our dependency analysis based refinement. This method employs pruning of candidate
refinement sets. A “-” in a cell indicates that the model checker ran out of memory.

circuit # regs ctrex CSMV Heuristic Score Dependency
length time time iters # regs time iters # regs

D2 105 15 152 105 10 51 79 11 39

D5 350 32 1,192 29 3 16 38.2 8 10

D6 177 20 45,596 784 24 121 833 48 90

D18 745 28 >4 hrs 12,086 69 346 9,995 142 253

D20 562 14 >7 hrs 1,493 56 281 1,947 74 265

D24 270 10 7,850 14 1 6 8 1 4

IU-p1 4855 true - 9,138 22 107 3,350∗ 13 19

IU-p2 4855 true - 2,820 7 36 712 6 13

Table 1. Comparison between Candence SMV (CSMV), heuristic score based refinement and
dependency analysis based refinement for larger circuits. The experiment marked with a ∗

was performed on the SunFire machine with more memory because of a length 72 abstract
counterexample encountered.

Table 2 compares our methods against those reported in [8] on IU series benchmarks
for verifying property 2.

circuit # regs ctrex [8] Heuristic Score Dependency
length time time iters # regs time iters # regs

IU30 30 11 6.5 2.3 2 27 1.9 4 20

IU35 35 20 11 8.9 2 27 10.4 5 21

IU40 40 20 16.1 28.4 3 32 13.3 6 22

IU45 45 20 22.1 32.9 3 32 25 6 22

IU50 50 20 85.1 36 3 32 32.8 6 22

IU55 55 11 - 43 2 27 61.9 4 20

IU60 60 11 - 52.8 2 27 65.5 4 20

IU65 65 11 - 50.3 2 27 67.5 4 20

IU70 70 11 - 55.6 2 27 71.4 4 20

IU75 75 11 130.5 38.5 4 37 15.7 5 21

IU80 80 11 153.4 47.1 4 37 21.1 5 21

IU85 85 11 167.7 44.7 4 37 24.6 5 21

IU90 90 11 167.1 49.9 4 37 24.3 5 21

Table 2. Comparison between [8], heuristic score based refinement and dependency analysis
based refinement for smaller circuits.

We can see that our conflict dependency analysis based method outperforms a
standard BDD based model checker, the method reported in [8] and the heuristic score

17

based method. We also conclude that the computational overhead of our dependency
analysis based method is well justified by the smaller abstractions that it produces.
The variable scoring based method does not enjoy the benefits of reduced candidate
refinement sets obtained through dependency analysis. Therefore, it results in a coarser
abstraction in general. The heuristic based refinement method adds 5 registers at a
time, resulting in some uniformity in the final number of registers, especially evident
in Table 2. Due to the smaller number of refinement steps it performs, the total time
it has to spend in model checking abstract machines may be smaller (as for D5, D6,
D20, IU60, IU65, IU70).

7 Conclusions

We have presented an effective and practical automatic abstraction refinement frame-
work based on our novel SAT based conflict analysis. We have described a simple vari-
able scoring heuristic as well as an elaborate conflict dependency analysis for identifying
important variables. Our schemes are able to handle large industrial scale designs. Our
work highlights the importance of using SAT based methods for handling large circuits.
We believe these techniques complement bounded model checking in that they enable
us to handle true specifications effeciently.

An obvious extension of our framework is to handle all ACTL* formulae. We believe
this can be done as in [9]. Further experimental evaluation will help us fine tune our
procedures. We can also use circuit structure information to accelerate the SAT based
simulation of counterexamples, for example, by identifying replicated clauses. We are
investigating the use of the techniques described in this paper for software verification.
We already have a tool for extracting a Boolean program from an ANSI C program by
using predicate abstraction.

8 Acknowledgements

We would like to thank Ofer Strichman for providing us some of the larger benchmark
circuits.

References

[1] Felice Balarin and Alberto L. Sangiovanni-Vincentelli. An iterative approach to language
containment. In Proceedings of CAV’93, pages 29–40, 1993.

[2] Armin Biere, Alexandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In Proceedings of Tools and Algorithms for the Analysis and
Construction of Systems (TACAS’99), number 1579 in LNCS, 1999.

[3] Pankaj Chauhan, Edmund M. Clarke, Somesh Jha, Jim Kukula, Tom Shiple, Helmut
Veith, and Dong Wang. Non-linear quantification scheduling in image computation. In
Proceedings of ICCAD’01, pages 293–298, November 2001.

[4] Pankaj Chauhan, Edmund M. Clarke, Somesh Jha, Jim Kukula, Helmut Veith, and
Dong Wang. Using combinatorial optimization methods for quantification scheduling.
In Tiziana Margaria and Tom Melham, editors, Proceedings of CHARME’01, volume
2144 of LNCS, pages 293–309, September 2001.

18

[5] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new Symbolic
Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings of the International
Conference on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes in
Computer Science, pages 495–499. Springer, July 1999.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement. In E. A. Emerson and A. P. Sistla, editors, Proceedings of CAV,
volume 1855 of LNCS, pages 154–169, July 2000.

[7] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[8] Edmund Clarke, Anubhav Gupta, James Kukula, and Ofer Strichman. SAT based

abstraction-refinement using ILP and machine learning techniques. In Proceedings of
CAV’02, 2002. To appear.

[9] Edmund Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-like counterexamples
in model checking. In Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science (LICS’02), 2002. To appear.

[10] Satyaki Das and David Dill. Successive approximation of abstract transition relations.
In Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science
(LICS’01), 2001.

[11] Shankar G. Govindaraju and David L. Dill. Counterexample-guided choice of projections
in approximate symbolic model checking. In Proceedings of ICCAD’00, San Jose, CA,
November 2000.

[12] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J. Taylor, and J. Long.
Smart simulation using collaborative formal and simulation engines. In Proceedings of
ICCAD’00, November 2000.

[13] R. Kurshan. Computer-Aided Verification of Co-ordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, 1994.

[14] J. Lind-Nielsen and H. Andersen. Stepwise CTL model checking of state/event systems.
In N. Halbwachs and D. Peled, editors, Proceedings of the International Conference on
Computer Aided Verification (CAV’99), 1999.

[15] David E. Long. Model checking, abstraction and compositional verification. PhD thesis,
Carnegie Mellon University, 1993. CMU-CS-93-178.

[16] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the Design Automation
Conference (DAC’01), pages 530–535, 2001.

[17] Abelardo Pardo and Gary D. Hachtel. Incremental CTL model checking using BDD
subsetting. In Proceedings of the Design Automation Conference (DAC’98), pages 457–
462, June 1998.

[18] J. P. Marques Silva and K. A. Sakallah. GRASP: A new search algorithm for satisfia-
bility. Technical Report CSE-TR-292-96, Computer Science and Engineering Division,
Department of EECS, Univ. of Michigan, April 1996.

[19] Dong Wang, Pei-Hsin Ho, Jiang Long, James Kukula, Yunshan Zhu, Tony Ma, and Robert
Damiano. Formal property verification by abstraction refinement with formal, simulation
and hybrid engines. In Proceedings of the DAC, pages 35–40, 2001.

[20] Hantao Zhang. SATO: An efficient propositional prover. In Proceedings of the Conference
on Automated Deduction (CADE’97), pages 272–275, 1997.

[21] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient
conflict driven learning in a Boolean satisfiability solver. In Proceedings of ICCAD’01,
November 2001.

SAT based Predicate Abstraction for Hardware Verification

Edmund Clarke Muralidhar Talupur Dong Wang

Carnegie Mellon University

Abstract. Predicate abstraction has emerged as one of the most promising abstraction techniques. It has
been used to extract compact finite state models, which are amenable to the current model checking al-
gorithms, from infinite state systems like software. However, there is little work on applying predicate
abstraction for verifying large scale finite state (e.g., hardware) systems. One of the major obstacles is the
inefficiency of the existing refinement algorithms. In this paper, we present two SAT based algorithms
to refine the abstract model. During the abstraction refinement process, constraints are added to remove
spurious transitions (the transitions in the abstract model that do not have any corresponding concrete
transitions). Our first algorithm makes use of the conflict graphs generated by SAT solvers to make the
added constraints as general as possible, thus making the abstract model more accurate. One nice feature
of this algorithm is that it does not need to make any additional calls to SAT solvers once an abstract
transition is determined to be spurious. Even after all the spurious transitions are eliminated, a counterex-
ample might still be spurious. In this case a new predicate needs to be added to the abstract model. Our
second algorithm generates a compact predicate that will eliminate the spurious counterexample. This
algorithm too makes use of the conflict graphs to determine the important concrete variables that render
the counterexample spurious. And then it creates a predicate over these concrete variables, which is added
to the abstract model. Experiments over hardware designs with up to thousands of registers demonstrate
the effectiveness of our methods.

1 Introduction

Abstraction refinement. Model checking [6] is a widely used automatic formal verification technique.
Despite the recent advancements in model checking technology, its application is still limited by the state
explosion problem. For model checking large real world systems abstraction is essential. For the abstraction
to be conservative the abstract model should include all the behaviors of the given system. If the abstraction
is conservative then the correctness of any universal temporal logic formula (e.g., ACTL∗) on the abstract
model implies the correctness of the formula on the concrete model (This is refereed to as the preservation
theorem). We consider only safety properties in this paper. However, a counterexample on the abstract model
may not correspond to any real path, in which case it is called a spurious counterexample. To get rid of
a spurious counterexample, the abstraction needs to be made more precise via refinement. Counterexample
guided abstraction refinement (CEGAR) automates this procedure. It uses the spurious abstract counterexam-
ple to guide the refinement of the current abstraction, so that the counterexample is excluded from the refined
abstract model. The above procedure repeats until the property is confirmed or refuted.

Predicate Abstraction. Predicate abstraction [1, 8, 7, 11–13], is a special case of conservative abstraction.
In predicate abstraction a set of predicates {P1, . . . , Pm}, is identified from the concrete system and the
property to be verified,. These predicates are defined on the variables of the concrete system. They also serve
as the atomic propositions that label the states in the concrete and abstract transition systems, that is, the
set of atomic propositions is A = {P1, P2, .., Pm}. A state in the concrete system will be labeled with all
the predicates it satisfies. The abstract state space has a boolean variable Bj corresponding to each predicate
Pj . So each abstract state is a valuation of these m boolean variables. An abstract state will be labeled with
predicate Pj if the corresponding bit Bj is 1 in that state. The predicates are also used to define a total
function ρ between the concrete and the abstract state spaces. A concrete state s will be related to an abstract
state ŝ through ρ if and only if the truth value of each predicate on s equals the value of the corresponding
boolean variable in the abstract state ŝ. Formally, ρ(s, ŝ) =

∧
1≤j≤m Pj(s) ⇔ Bj(ŝ). We now define the

concretization function γ, which maps a set of abstract states to the corresponding set of concrete states.

Formally, let f̂ be a propositional formula over the abstract state variables, γ(f̂) = f̂ [Bj ← Pj]. In predicate
abstraction [13], the abstract initial states Ŝ0 and the abstract transition relation R̂ are defined as

Ŝ0 =
∧
{Ŷ1 | S0 → γ(Ŷ1)} (1)

R̂ =
∧
{Ŷ → Ŷ ′ | (R ∧ γ(Ŷ))→ γ(Ŷ ′)} (2)

where Ŷ (Ŷ1) is an arbitrary conjunction (disjunction) of the literals over the current abstract state variables
{B1, . . . , Bm} and Ŷ ′ is an arbitrary disjunction of literals over the next state variables {B ′1, . . . , B′m}.
The abstract model built according to equations (1) and (2) is called the most accurate abstract model. Note
that, in this abstract model, every abstract initial state has at least one corresponding concrete initial state,
and every abstract transition has at least one corresponding concrete transition. However, to build the most
accurate abstract model, there are exponential number (in the number of predicates) of implications that need
to be checked in worst case. To reduce the abstraction time, in practice an approximate abstract model is
constructed by intentionally excluding certain implications from consideration. Therefore, there are more
behaviors in the approximate model than in the most accurate abstract model. We call the abstract transitions
that do not have any corresponding concrete transitions spurious transitions (Precise definitions are given in
Section 3.1). Since an approximate abstract model contains all the behaviors of the original concrete system,
the preservation theorem still holds.

Motivation. For software model checking, the use of predicate abstraction (or similar abstraction techniques)
is essential because, most software systems are infinite state and the existing model checking algorithms
cannot handle infinite state systems. Predicate abstraction can extract finite state abstract models, which are
amenable to model checking [6], from infinite state systems. Since hardware systems are finite state, model
checking (or simpler forms of abstraction, e.g., localization reduction [9]) has been traditionally used to verify
them. Existing predicate abstraction techniques for verifying software are not efficient when applied to the
verification of large scale hardware systems.

There are many proof obligations involved in predicate abstraction that require the use of decision proce-
dures. Proof obligations can arise from equations (1) and (2) and also from determining whether an abstract
counterexample is spurious or not. For software verification, these proof obligations are solved using gen-
eral theorem provers. For the verification of hardware systems, which usually have compact representation
in conjunctive normal form (CNF), we can use SAT solvers instead of general theorem provers. With the
advancements in SAT technology, discharging the proof obligations using SAT solvers becomes much faster
than using general theorem provers.

There are two cases for an abstract counterexample to be spurious: One is that there is a spurious tran-
sition, that is, an abstract transition which does not have any corresponding concrete transitions; the other is
that the counterexample has a spurious prefix, that is, there are no concrete paths that correspond to the prefix.

Our first SAT based algorithm deals with the first case. Recall that, it is time consuming to build the
most accurate abstract model when the number of predicates is large. So, we use a heuristic similar to the
one given in [1] to build an approximate abstract model. Instead of considering all possible implications of
the form Ŷ → Ŷ ′ we impose restriction on the lengths of Ŷ and Ŷ ′ in equation (2) (The approximation to
the set of abstract initial states can be similarly done for equation (1)). If the resulting abstract model is too
coarse, an abstract counterexample with a spurious transition might be generated. This spurious transition can
be removed by adding an appropriate constraint to the abstract model (details are given in Section 3.1). The
constraint should be made as general as possible so that many related spurious transitions are also removed.
An algorithm for this has been proposed in [7] which in the worst case requires 2m number of calls to a
theorem prover, where m is the number of predicates. We propose a new algorithm, based on SAT conflict
dependency analysis (presented in Section 2), to generate a general constraint without any additional calls to
the SAT solver. Our algorithm works by analyzing the conflict graphs generated when detecting the spurious
transition. Thus our algorithm can be much more efficient than the algorithm in [7].

Even after removing spurious transitions there could be a spurious prefix of the given abstract counterex-
ample. This happens because the set of predicates is not enough to capture the relevant behaviors of the
concrete system. In such a case, a new predicate is identified and added to the current abstract model to in-
validate the counterexample. To make the abstraction refinement process efficient, it is desirable to compute

a predicate that can be compactly represented. Large predicates are difficult to compute and discharging any
proof obligation involving them will be slow. We propose an algorithm, again based on SAT conflict depen-
dency analysis, to reduce the number of concrete state variables that the new predicate depends on. Then
the predicate is calculated by a projection-based SAT enumeration algorithm. Experiments show that this
algorithm can efficiently compute the required predicates for design with thousands of registers.

Related work. SAT based localization reduction has been investigated in [2]. To identify important registers
for refinement, SAT conflict dependency analysis is used. Their method is similar to our algorithm for reduc-
ing the support of the predicates. However, the two differ in the following ways. First, we have generalized
SAT conflict dependency analysis to find the set of predicates which disables a spurious transition; while
the algorithm in [2] only finds important registers. Second, in this paper, we present a projection-based SAT
enumeration algorithm to determine a new predicate that can be used to refine the abstract model. Third, we
approximate the most accurate abstract model by intentionally excluding certain implications; while in [2],
approximation is achieved through pre-quantifying invisible variables during image computation. Finally,
Our experimental results show significant improvement over the method in [2].

An algorithm to make the abstract model more accurate given a fixed set of predicates is presented in [7].
Given a spurious transition, their algorithm requires 2m number of calls to a theorem prover, where m is the
number of predicates. Our algorithm is more efficient in that no additional calls to a SAT solver are required.
Note that, in general, their algorithm can come up with a more general constraint than ours. However, we
can get the same constraints, probably using much less time, by combining the two algorithms together.
Furthermore, the work in [7] does not consider the problem of introducing new predicates to refine the abstract
model.

Existing refinement algorithms to compute new predicates use techniques such as syntactical transforma-
tions [11] or pre-image calculation [5, 13], etc. While our algorithm is based on SAT. They also neglect the
problem of making the representation of the predicates compact. This could result in large predicates, which
affects the efficiency of abstraction and refinement.

Outline of the paper. The rest of the paper is organized as follows. In Section 2 we describe conflict de-
pendency analysis. We present our method for refining abstract transition relation in Section 3. In the same
section a new method for identifying predicates is described. Section 4 has the experimental results. Section 5
concludes the paper.

2 SAT Conflict Dependency Analysis

In this section, we give a brief review of SAT conflict dependency analysis [2]. Modern SAT solvers rely
on conflict driven learning to prune the search space. As presented in [14], a conflict clause corresponds to
a vertex cut of a conflict graph (an implication graph with the conflict vertex as the sink), that separates the
decision vertices from the conflict vertex. Let G be a conflict graph, κ be the conflict vertex in G, CUT
be a vertex cut which corresponds to the conflict clause cl(CUT). Let G CUT be the subgraph of G where
vertices in CUT are the sources and κ is the sink. For a subgraph G′ of a conflict graph G, let Ω(G ′) be
the set of clauses that label the edges in G′. Since GCUT includes the conflict vertex κ, it is easy to see that
¬cl(CUT) ∧Ω(GCUT)⇒ false. Therefore

Ω(GCUT)⇒ cl(CUT) (3)

Given a CNF formula f , a SAT solver concludes that f is unsatisfiable if and only if the SAT solver derives
a conflict graph without decision vertices. We associate the empty conflict clause, denoted by θ, with this last
conflict graph. Note that since θ is an empty clause, it is logically equivalent to false.

A conflict clause cl(CUT) directly depends on a clause b iff b is one of the clauses in Ω(G CUT). We say
the conflict clause a depends on clause b iff there exist a = c 1, c2, . . . , b = cn, such that for 1 ≤ i < n, ci
directly depends on ci+1. Given a CNF formula f , the set of clauses in f that a given set of conflict clauses
cls depend on is called the dependent set and the set is denoted by dep(cls). Based on equation (3), it is easy

to see that dep(cls) ⇒ cls . If f is an unsatisfiable CNF formula, let SUB(f) = dep(θ). Since dep(θ) ⇒ θ,
SUB(f) ⊆ f is unsatisfiable, i.e.,

f ≡ false⇒ SUB(f) ≡ false (4)

During SAT search, our conflict dependency analysis algorithm keeps track of the set of clauses on which a
conflict clause directly depends. After the SAT solver concludes that f is unsatisfiable, our algorithm iden-
tifies the unsatisfiable subset SUB(f) based on these dependencies. Note that the dependencies and the un-
satisfiable subset that our algorithm computes are determined by the conflict graphs and the conflict clauses
generated by a SAT solver during SAT search. In general, for an unsatisfiable CNF formula f , SUB(f) may
not be the minimal unsatisfiable subset of f , but it can be substantially smaller than f .

3 Refinement for Predicate Abstraction

We first introduce some notation to represent the unrolling of a transition system from initial states. Let
V be a set of variables, let the corresponding set of next state variables be V ′. We call V and V ′ untimed
variables. For every variable in V we maintain a version of that variable at each time i ≥ 0. If V is a set of state
variables, then V i, is the set of timed versions of variables in V at time i ≥ 0. We call V i timed variables
at time i. Using timed abstract state variables Bi corresponding to a set of abstract state variables B, an
abstract counterexample ce(B0, . . . , Bn) is a sequence of abstract states

〈
ce0(B0), ce1(B1), . . . , cen(Bn)

〉
,

where cei(B
i) is a cube over the abstract variables at time i. When it is clear from context, we sometimes

represent a counterexample without explicitly mentioning timed variables. Let f(V) be a boolean function,
which maps the set of states over variables V to {0, 1}. The timed version of f at time i, denoted by f i(V i),
is the same function as f except that it is over the timed variables V i. We define an operator, called utf
(for untimed function), which for a given timed function f i(V i), returns the untimed function f(V), i.e,
f(V) = utf (f i(V i)). Given a relation r(V, V

′
), which maps the set of states over current state variables

V to the set of states over the next state variables V ′, ri(V i, V i+1) is the timed version of r at time i. We
define an operator, called utr (for untimed relation), which for a given timed relation ri(V i, V i+1), returns
the untimed relation r(V, V

′
),i.e., utr(ri(V i, V i+1)) = r(V, V

′
).

Let B = {B1, . . . , Bm} and V be the set of abstract and concrete state variables, respectively. Given a
timed abstract expression f in terms of Bi at time i, its concretization is a timed concrete expression γ(f)
in terms of V i obtained by replacing each Bij in f with the timed version of the corresponding predicate P ij .
Let ce = 〈ce0, ce1, . . . , cen〉 be an abstract counterexample. Let i be a natural number, such that 0 < i ≤ n.
The set of pairs of concrete states corresponding to the abstract transition from ce i−1 to cei is

trans(i− 1, i) = γ(ce i−1) ∧Ri−1 ∧ γ(cei) (5)

The set of concrete paths which corresponds to the prefix of the abstract counterexample up to time i, is a set
of lists of concrete states {〈s0(V 0), . . . , si(V

i)〉} that satisfy the following equation:

prf (i) = S0 ∧ γ(ce0) ∧R0 ∧ · · · ∧ γ(cei−1) ∧Ri−1 ∧ γ(cei). (6)

Let BV be a set of boolean variables and let BV 1 ⊆ BV . If c is a conjunction of literals over BV ,
the projection of c to BV 1, denoted by proj[BV 1](c), is a conjunction of literals over BV 1 that agrees
with c over the literals in BV 1. If f is a CNF formula over BV , the satisfiable set of f over BV1, denoted
by SA[BV 1](f), is the set of all satisfying assignments of f projected on to BV 1. Thus, SA[BV 1](f) =
proj[BV 1](SA[BV](f)). For a SAT solver with conflict based learning, there is a well known algorithm
to compute SA[BV 1](f) without first computing SA[BV](f) [10]. Once a satisfiable solution is found, a
blocking clause over BV 1 is created to avoid generating the same projected solution. After this blocking
clause is added, the SAT search continues. This process repeats until the SAT solver concludes that the set of
clauses is unsatisfiable, i.e., there are no further solutions. The set of all satisfying assignments over BV1 is
the required result, which can be represented as a DNF formula.

Given a set of variables SV that are not necessarily boolean, let BSV be the set of boolean variables in
the boolean encoding of variables in SV . Let f be a CNF formula over BSV .The scalar support of the CNF
formula f , denoted by ssuppt [SV](f), is a subset of SV that includes a variable v ∈ SV iff at least one of
v’s corresponding boolean variables is in f .

An abstract counterexample ce = 〈ce0, ce1, . . . , cen〉 is a real counterexample if and only if the set
prf (n) is not empty. If the abstract counterexample is a real counterexample, then the property is false on the
concrete machine. Otherwise the counterexample is spurious and we need to refine the current abstract model.
There are two possible reasons for the existence of a spurious counterexample: One is that the computed
abstract model is an over-approximation of the most accurate abstract model. The other is that the set of
predicates is insufficient to model the relevant behaviors of the system. In Section 3.1, we describe how
our algorithm deals with the first case (we only show how to remove spurious transitions from the abstract
transition relation. The refinement for an approximate set of abstract initial states is similar.). In Section 3.2
we deal with the case where the the set of predicates is not sufficient.

3.1 Refinement to Exclude Spurious Transitions

Given an abstract counterexample ce = 〈ce0, ce1, . . . , cen〉, if there exists i, 0 < i ≤ n, such that the set
trans(i− 1, i) = Ri−1 ∧ γ(cei−1)∧ γ(cei) is empty, then we call the transition from ce i−1 to cei a spurious
transition. That is, there are no concrete transitions corresponding to the abstract transition from ce i−1 to cei.
Clearly, the counterexample is not a real counterexample. To determine whether trans(i − 1, i) is empty or
not, we convert it into a SAT unsatisfiability problem. Since, in the most accurate abstract model, there is
at least one concrete transition corresponding to every abstract transition, spurious transitions exist only for
approximate abstract transition relations.

Since spurious transitions are not due to the lack of predicates but due to an approximate abstract tran-
sition relation, our algorithm removes spurious transitions by adding appropriate constraints to R̂. For the
spurious transition from ce i−1 to cei, we have Ri−1 ∧ γ(cei−1) ∧ γ(cei) ⇔ false. Therefore, Ri−1 ⇒
(γ(cei−1) → γ(¬cei)). Note that cei−1 is a conjunction over the abstract state variables at time i − 1, and
¬cei is a disjunction over the abstract state variables at time i. Since the concrete transition relation does not
allow any transition from γ(ce i−1) to γ(cei) we should add the constraint utr(ce i−1 → ¬cei) to R̂. The
resulting transition relation is correct and disallows the spurious transition. The constraint ce i−1 → ¬cei can
potentially involve most of the abstract state variables, thus making it very specific and not useful in general.
It is advantageous to make the constraint as general as possible (thus making the abstract transition relation
more accurate), provided that the cost of achieving this is not too large. In the rest of this subsection, we
describe an efficient algorithm which removes some of the literals from cei−1 and cei in cei−1 → ¬cei,
making the constraint more general.

Computing A General Constraint. Let m be the number of predicates. The problem of finding a general
constraint to eliminate a spurious transition can be formalized as follows: Given propositional formulas f and
fj where 1 ≤ j ≤ 2m, which make f ∧∧1≤j≤2m fj unsatisfiable, find a small subset care ⊆ {1, . . . , 2m},
such that f ∧∧j∈care fj is unsatisfiable. It is easy to see that if we let f = Ri−1 and let each fj correspond
to the concretization of a literal in ce i−1 or cei, then we can drop those literals that are not in care from
cei−1 → ¬cei. The resulting constraint will be made more general. The set care can be efficiently calculated
using the conflict dependency analysis algorithm described in Section 2.

Before we run the SAT solver we need to convert f ∧ f1 ∧ f2 ∧ · · · ∧ f2m to CNF, and in this process
some of the fj’s might be split into smaller formulas. Hence it may not be possible to keep track of all fj’s.
To overcome this difficulty, we introduce a new boolean variable tj for each fj in the formula and convert the
formula into

F = ∃t1, t2 . . . , t2m. f ∧
∧

j∈{1,...,2m}
(tj ∧ (tj ≡ fj)). (7)

It is easy to see that this formula is unsatisfiable iff the original formula is unsatisfiable. Once (7) is translated
to a CNF formula, for each tj there is a clause Tj containing only one literal, tj . So, instead of keeping track

of fj’s directly we keep track of Tj’s. Since the CNF formula F corresponding to (7) is unsatisfiable, we
know that SUB(F) ⊆ F is unsatisfiable, where SUB(F) is defined as in Section 2. It can be shown that
care = {j | Tj ∈ SUB(F)} represents the desired set of fj’s. Using the set care, we can add a more general
constraint to R̂.

It is easy to see that our algorithm only analyzes the search process of the SAT problem during which
the spurious transition was identified. In [7], a potentially more general constraint than the one computed by
the above algorithm can be found. It works by testing whether each fj can be removed to keep the resulting
formula unsatisfiable. Their algorithm requires 2m calls to a theorem prover, which is time consuming when
the number of predicates, m, is large. As presented in Section 2, the unsatisfiable subset SUB(F) may not
be a minimal unsatisfiable subset of F . Consequently, in general, the set care our algorithm computes is not
minimal. However, in practice, its size is comparable to a minimal set. It is easy to modify our algorithm to
make care minimal. After the set care is computed, we can try to eliminate the remaining literals one by one
as in [7], which requires |care| additional calls to the SAT solver. Since the size of care is already small, this
is not very expensive.

3.2 Refinement by adding a New Predicate

Even after we have ensured that there are no spurious transitions (and γ(ce0) ∧ S0 6= ∅) in the coun-
terexample ce , the counterexample itself can still be spurious. Let n be the length of the given abstract
counterexample. We are interested in k such that 1 < k ≤ n and the prefix pk−1 = 〈ce0, ce1, . . . , cek−1〉 of
the counterexample corresponds to a valid path but pk = 〈ce0, ce1, . . . , cek〉 does not. Formally, we call pk
a spurious prefix if and only if prf (k − 1) 6= ∅ ∧ prf (k) = ∅. If there is no such k then the counterexample
is real. Otherwise, the set of states SA[V k−1](prf (k − 1)) is called the set of deadend states, denoted by
deadend [5]. Deadend states are those states in γ(cek−1) that can be reached but do not have any transition
to γ(cek). The set of states SA[V k−1](trans(k − 1, k)) is called the set of bad states, denoted by bad [5].
The states in bad are those states in γ(cek−1) that have a transition to some state in γ(cek). For a spurious
abstract counterexample ce without spurious transitions, let k be the length of the spurious prefix of ce . Then
deadend 6= ∅, bad 6= ∅ and (deadend ∩ bad) = ∅. As is pointed out in [5], it is impossible to distin-
guish between deadend and bad states using the existing set of predicates, because the abstraction of the
two is the same abstract state cek−1. Therefore, our refinement algorithm aims to find a separating predi-
cate, sep, such that deadend ⊆ sep and sep ∩ bad = ∅ (the alternative definition for sep, which satisfies
bad ⊆ sep ∧ deadend ∩ sep = ∅, also works). After introducing sep as a new predicate, the abstract model
will be able to distinguish between the deadend and bad states. We call the set of concrete state variables
over which a predicate is defined the support of the predicate. Our algorithm first identifies a minimal set of
concrete state variables. Then a predicate over these variables that can separate the deadend and bad states is
computed.

Minimizing the Support of the Separating Predicate. An important goal of our refinement algorithm is
to compute a predicate that can be represented compactly (called compact predicates for short). For large
scale hardware designs, existing refinement algorithms, such as weakest precondition calculation, preimage
computation, syntactical transformation etc., may fail because the predicates they are trying to compute are
too big to be represented. Our algorithm avoids this problem by first computing a minimal set of concrete
state variables that are responsible for the failure of the spurious prefix. Our algorithm guarantees that there
is a separating predicate over this minimal set that can separate the deadend and bad states. It is usually the
case that the size of any representation of a predicate can be bound by the size of its support.

Our algorithm to compute the desired support is similar to the one used in finding the important reg-
isters in localization reduction in [2]. Since the CNF formula for prf (k) is unsatisfiable, we can use con-
flict dependency analysis from Section 2 to identify SUB(prf (k)) that is unsatisfiable. Let all the con-
crete state variables at time k − 1 whose CNF variables are in SUB(prf (k)) be µ(ce, k − 1). That is
µ(ce, k − 1) = ssuppt [V k−1](SUB(prf (k))). For the sake of brevity we will refer to µ(ce, k − 1) as µ.
Let deadendµ = proj[µ](deadend) be the projection of the deadend states on µ. Let badµ = proj[µ](bad)

be the projection of the deadend states on µ. It can be shown that

µ 6= ∅ ∧ deadendµ ∩ badµ 6= ∅. (8)

Thus any concrete set of states S1 that satisfies (S1 ⊇ deadendµ) ∧ (S1 ∩ badµ = ∅) is a candidate sepa-
rating predicate. To further reduce the size of µ and to make it minimal we use the refinement minimization
algorithm in [2], which eliminates any unnecessary variables in µ while ensuring that equation (8) still holds.
In most of our experiments, the size of µ was less than 20, which is several orders of magnitude less than the
total number of concrete state variables.

Computing Separating Predicates using SAT. Note that, any set of concrete states that separates deadend µ
and badµ is a desired separating predicate. We propose a new projection based SAT enumeration algorithm
to compute such a separating set, which can be represented efficiently as a CNF formula or a conjunction
of DNF formulas. Our algorithm has three steps. First, we try to compute badµ using a SAT enumeration
algorithm, which avoids computing bad first. Since the size of µ is pretty small, this procedure can often
terminate quickly. If that is the case, our algorithm terminates and ¬badµ is the required separating predicate,
which is represented as a CNF formula. Otherwise, we try to compute deadendµ using a similar method. If
this procedure finishes in a reasonably short amount of time, our algorithm terminates and deadendµ is the
desired separating predicate, which is represented as a DNF formula.

In the third case when both deadendµ and badµ can not be computed within a given time limit, we
compute an over-approximation of deadendµ, denoted by ODE . It is possible that the set ODE overlaps
with badµ. Let SODE = proj[µ](ODE ∧ bad) be the intersection of the two. Then the desired separating
predicate is ODE ∧¬SODE , which is represented as a conjunction of DNF formulas. In most cases, SODE
is much smaller than badµ, so it can often be enumerated using SAT. If in a rare case, even SODE can not be
efficiently enumerated using SAT (we do not encounter this problem for all our experiments.), we use other
methods to compute a new predicate. For example, an important register computed using algorithms in [2] can
be added as a new predicate to make sure the abstract model is refined. We now present a projection based
method to compute an over-approximation of deadendµ. We partition the variables in µ into smaller sets
µ1, . . . , µl based on the closeness of the variables (the criterion for closeness is based on circuit structure [3]).
Because each set is small, we can compute each deadendµi easily. The over-approximation is ODE =
∧deadendµi .

After the calculated separating predicate sep is added as a new predicate, suppose we introduce Bm+1 as
the corresponding abstract boolean variable. Then we add the constraint Bm+1 → utr(cek−1 → ¬cek) to
the abstract transition relation. It can be shown that the concrete transition relation implies the concretization
of this constraint. Therefore, the spurious counterexample is invalidated in the refined abstract model.

4 Experimental Results

We have implemented our predicate abstraction refinement framework on top of NuSMV model checker [4].
We modified the SAT checker zChaff [14] to support conflict dependency analysis. We also developed a Ver-
ilog parser to extract useful predicates from the Verilog design directly. We do not go into the details of the
parser due to lack of space. All experiments were performed on a dual 1.5GHz Athlon machine with 3GB
of RAM running Linux. We have two verification benchmarks: one is the integer unit (IU) of the picoJava
microprocessor from Sun Microsystems; the other is a programmable FIR filter (PFIR) which is a component
of a system-on-chip design. All properties verified were simple AG properties. For all the properties shown
in the first column of Table 1, we have performed cone-of-influence reduction before the verification. The
resulting number of registers and gates are shown in the second and third columns. We compare three ab-
straction refinement systems, including the BDD based aSMV [5], the SAT based localization reduction [2]
(SLOCAL), and the SAT based predicate abstraction (SPRED) described in this paper. The detailed results
obtained using aSMV are not listed in Table 1 because aSMV can not solve any of the properties within the
24hr time limit. This is not surprising because aSMV uses BDD based image computation and it can handle
only circuits with hundreds of state variables, provided that good initial variable orderings are given. Since
the time to generate good BDD variable orderings can be substantial, we did not pre-generate them for any of

circuit # regs # gates ctrex Localization Predicate Abstraction
length time iters # regs time iters # predicates

IUscr2 4855 149143 20 29115.0 69 115 13515.0 22 14
IUscr3 4855 149143 true 4794.1 9 31 2003.0 10 6
IUscr7 4855 149143 12 7332.1 17 73 3869.8 10 8
IUprop4 4855 149143 8 5603.7 36 61 3495.9 13 9
PFIRprop8 244 2304 true > 24 hours >37 >91 288.5 68 35
PFIRprop9 244 2304 true >24 hours >33 >85 2448.7 146 46
PFIRprop10 244 2304 true >24 hours >46 >94 6229.3 161 55
PFIRprop12 247 2317 true >24 hours >46 >91 707.0 111 45

Table 1. Comparison between localization reduction [2] and predicate abstraction.

the properties. For the first four properties from IU, SLOCAL takes about twice the time taken by SPRED.
Furthermore, the numbers of registers in the final abstract models from SLOCAL are much larger than the
corresponding numbers of predicates in the final abstract models from SPRED. For the rest of the four prop-
erties from PFIR, SLOCAL can not solve any of them in 24 hours because all the abstract models had around
100 registers. SPRED could solve each of them easily using about 50 predicates.

5 Conclusion

We have presented two SAT based counterexample guided refinement algorithms to enable efficient predicate
abstraction of hardware designs with up to thousands of registers. To reduce the abstraction time, an approx-
imate abstract model is built initially, which could result in spurious transitions. Once a spurious transition
is identified from a given abstract counterexample using SAT, our first SAT based refinement algorithm elim-
inates this transition (and possibly many other related spurious transitions) without any additional calls to a
SAT solver. An abstract model may also fail to determine the result of verification when the generated abstract
counterexample has a spurious prefix. To eliminate a spurious prefix, our second SAT based refinement algo-
rithm can compute a new predicate with the minimal number of supporting concrete state variables. Usually,
the predicates our algorithm computes can be represented compactly as a CNF formula or a conjunction of
DNF formulas. Experimental results show significant improvement of our predicate abstraction algorithms
over popular abstraction algorithms for hardware verification.

References

1. Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Automatic Predicate Abstraction of C
Programs. In PLDI 2001.

2. Pankaj Chauhan, Edmund M. Clarke, Samir Sapra, , James Kukula, Helmut Veith, and Dong Wang. Automated
abstraction refinement for model checking large state spaces using sat based conflict analysis. In FMCAD’02, 2002.

3. H. Cho, G. Hachtel, E. Macii, M. Poncino, and F. Somenzi. Automatic state space decomposition for approximate
fsm traversal based on circuit analysis. IEEE TCAD, 15(12):1451–1464, December 1996.

4. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A New Symbolic Model Verifier. In CAV’99,
pages 495–499, 1999.

5. Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided Abstraction
Refinement. In CAV’00, 200.

6. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 1999.
7. S. Das and D. Dill. Successive approximation of abstract transition relations. In LICS’01, 2001.
8. S. Das, D. Dill, and S. Park. Experience with predicate abstraction. In CAV’99, pages 160–171, 1999.
9. R. P. Kurshan. Computer-Aided Verification. Princeton Univ. Press, Princeton, New Jersey, 1994.

10. K. McMillan. Applying sat methods in unbounded symbolic model checking. In CAV’02, pages 250–264, 2002.
11. K. Namjoshi and R. Kurshan. Syntactic program transformations for automatic abstraction. In CAV’00, 2000.
12. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV’97, pages 72–83, 1997.
13. H. Saidi and N. Shankar. Abstract and model check while you prove. In CAV’99, pages 443–454, 1999.
14. Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient conflict driven learning in a

Boolean satisfiability solver. In ICCAD’01, 2001.

High Level Verification of Control Intensive Systems Using Predicate
Abstraction ∗

Edmund Clarke
Carnegie Mellon Univ.
Pittsburgh, PA 15217

emc@cs.cmu.edu

Orna Grumberg
TECHNION

Technion City, Haifa 32000, Israel
orna@cs.technion.ac.il

Muralidhar Talupur, Dong Wang
Carnegie Mellon Univ.
Pittsburgh, PA 15217

{tmurali,dongw}@cs.cmu.edu

Abstract

Predicate abstraction has been widely used for model
checking hardware/software systems. However, for control
intensive systems, existing predicate abstraction techniques
can potentially result in a blowup of the size of the abstract
model. We deal with this problem by retaining important
control variables in the abstract model. By this method we
avoid having to introduce an unreasonable number of pred-
icates to simulate the behavior of the control variables. We
also show how to improve predicate abstraction by extract-
ing useful information from a high level representation of
hardware/software systems. This technique works by first
extracting relevant branch conditions. These branch condi-
tions are used to invalidate spurious abstract counterexam-
ples through a new counterexample-based lazy refinement
algorithm. Experimental results are included to demon-
strate the effectiveness of our methods.

1 Introduction

Background. Abstraction based model checking has
been widely accepted as a valuable method for the verifi-
cation of large hardware/software systems. Predicate ab-
straction [1, 2, 3, 10, 11, 13, 16, 18, 19], in particular, is
one of the most successful abstraction techniques. In pred-
icate abstraction, the concrete system is approximated by
only keeping track of certain predicates over the concrete
state variables. Each predicate corresponds to an abstract
boolean variable. Any concrete transition corresponds to
a change of values for the set of predicates and is subse-

∗This research is sponsored by the Semiconductor Research Corpora-
tion (SRC) under contract no. 99-TJ-684, the Gigascale Silicon Research
Center (GSRC), the National Science Foundation (NSF) under Grant No.
CCR-9803774. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not neces-
sarily reflect the views of SRC, GSRC, NSF, or the United States Govern-
ment.

quently translated into an abstract transition. Using predi-
cate abstraction, it is possible to not only reduce the com-
plexity of the system under verification, but also, for soft-
ware systems, to extract finite models that are amenable to
model checking algorithms.

Predicate abstraction is a special case of existential ab-
straction [6, 9, 15], which is a conservative approach for
model checking universal temporal logic [9] properties (we
only consider safety properties in this paper). That is, the
correctness of any universal formula on an abstract system
automatically implies the correctness of the formula on the
concrete system. However, a counterexample on an abstract
system may not correspond to any real path, in which case
it is called a spurious counterexample [7]. To get rid of a
spurious counterexample, the abstraction needs to be made
more precise via refinement. Counterexample guided ab-
straction refinement [7, 13, 20] (CEGAR) automates this
procedure. It works as follows: For a given system, an ab-
stract model that is guaranteed to include all behaviors of
the original system is built. Model checking is then applied
to the abstract model. If the property holds, it is true of
the concrete model and verification terminates. In case the
property is violated on the abstract model a counterexam-
ple is generated. This abstract counterexample is checked
against the concrete model. If the abstract counterexample
corresponds to a concrete execution path, the property is
proved to be false and verification terminates. Otherwise,
the abstract counterexample is spurious and it is used to
guide the refinement of the abstract model. The above pro-
cedure repeats until the property is confirmed or refuted.

Motivation. It is usually the case that verification effort is
focused more on the control logic than the data computation
because most bugs exist in designing the control logic. Tra-
ditional predicate abstraction techniques can perform badly
when verifying hardware/software systems which contain
extensive control structure (control intensive systems). The
control logic usually consists of concurrent state machines.

Each of these state machines may depend on several control
variables, that encode the change of state. Since the behav-
ior of a control intensive system is determined to a large ex-
tent by the control variables, the number of predicates over
the control variables that are needed can be much larger than
the number of control variables. In such a case, it is better
to use the control variables as predicates, (called variable
predicates), instead of the original predicates (called origi-
nal or formula predicates). We propose a clustering based
heuristic to identify important control variables and retain
these control variables in the abstract model. By doing this
we also circumvent to a certain extent the problem of build-
ing the abstract model. This method works extremely well
in practice.

It is usually the case that different predicates are not in-
dependent. We describe efficient methods to compute con-
straints between predicates, which are added as invariants
to the abstract model to make it more accurate.

Another issue that we address in this paper is the fol-
lowing: Current predicate abstraction methods do not make
use of information available in the high level descriptions
of the system under verification. Most hardware/software
codesign tools use high level design languages, such as ES-
TEREL, graphical FSMs, RTL Verilog/VHDL, C/C++ etc.
But most model checking engines and existing verification
tools use the bit level representation of the design under ver-
ification. There is much useful information that is relevant
to verification in the high level representation, which is lost
once it is translated to bit level representation. To retain this
information, we extract the branch conditions in RTL Ver-
ilog (the language considered in this paper) and use them
as predicates. This technique can be easily adapted to other
design languages.

For a given design, there are usually many branch condi-
tions that we can extract. Not all of them are relevant to the
verification of a given property. We propose a lazy coun-
terexample based refinement algorithm to efficiently iden-
tify the branch conditions that are relevant.

Performance. Experiments we performed demonstrate
the efficacy of our methods. In one series of experiments,
the current predicate abstraction methods could not verify
the given properties even after 24 hrs, whereas, our method
could verify the same properties in less than 15 mins.

Outline of the paper. In the next section we introduce
predicate abstraction and other relevant theory. In Section 3,
we give a clustering based heuristic to identify control vari-
ables and present a modified localization reduction algo-
rithm to bound the size of the abstract model. Algorithms
to compute accurate abstract models are also discussed in
the same section. Section 4 gives the predicate extraction
and refinement algorithm. Some related work is discussed

in Section 5. In Section 6, we describe our experiments.
Section 7 concludes the paper.

2 Preliminary

In this section, we review the theory of existential ab-
straction. We then present predicate abstraction and the
localization reduction as special cases of this concept.

2.1 Existential Abstraction

We model circuits and programs as transition sys-
tems. Given a set of atomic propositions, A, let M =
(S, S0, R, L) be a transition system (refer to [9] for details).

Definition 2.1 Given two transition systems M =
(S, S0, R, L) and M̂ = (Ŝ, Ŝ0, R̂, L̂), with atomic propo-
sitions A and Â respectively, a relation ρ ⊆ S × Ŝ, which
is total on S, is a simulation relation between M and M̂ if
and only if for all (s, ŝ) ∈ ρ the following conditions hold:

• L(s)
⋂
Â = L̂(ŝ)

⋂
A

• For each state s1 such that (s, s1) ∈ R, there exists a
state ŝ1 ∈ Ŝ with the property that (ŝ, ŝ1) ∈ R̂ and
(s1, ŝ1) ∈ ρ.

We say that M̂ simulatesM through the simulation relation
ρ, denoted by M �ρ M̂ , if for every initial state s0 in M
there is an initial state ŝ0 in M̂ such that (s0, ŝ0) ∈ ρ. We
say that ρ is a bisimulation relation between M and M̂ if
M �ρ M̂ and M̂ �ρ−1 M . If there is a bisimulation re-
lation between M and M̂ then we say that M and M̂ are
bisimilar, and we denote this by M ≡bis M̂ .

Theorem 2.1 (Preservation of ACTL* [9])
LetM = (S, S0, R, L) and M̂ = (Ŝ, Ŝ0, R̂, L̂) be two tran-
sition systems, withA and Â as the respective sets of atomic
propositions and let ρ ⊆ S × Ŝ be a relation such that
M �ρ M̂ . Then, for any ACTL* formula, Φ with atomic
propositions in A ∩ Â

M̂ |= Φ implies M |= Φ.

In the above theorem, if ρ is a bisimulation relation, then
for any CTL* formula Φ with atomic propositions inA∩ Â,
M̂ |= Φ ⇔ M |= Φ.

Let M = (S, S0, R, L) be a concrete transition system
over a set of atomic propositions A. Let Ŝ be a set of abstract
states and ρ ⊆ S × Ŝ be a total function on S. Further, let
ρ and L be such that for any ŝ ∈ Ŝ, all states s ∈ S that
satisfy ρ(s, ŝ) have the same labeling over a subset Â of A.

Then an abstract transition system M̂ = (Ŝ, Ŝ0, R̂, L̂) over
Â which simulates M can be constructed as follows:

Ŝ0 = ∃s. S0(s) ∧ ρ(s, ŝ) (1)

R̂(ŝ, ŝ′) = ∃s s′. ρ(s, ŝ) ∧ ρ(s′, ŝ′) ∧R(s, s′) (2)

for each ŝ ∈ Ŝ, L̂(ŝ) =
⋂

ρ(s,ŝ)

(L(s) ∩ Â) (3)

This kind of abstraction is called existential abstraction [6,
15].

2.2 Predicate Abstraction

Predicate abstraction can be viewed as a special case
of existential abstraction. In predicate abstraction a set
of predicates {P1, . . . , Pk}, including those in the prop-
erty to be verified, are identified from the concrete pro-
gram. These predicates are defined on the variables of the
concrete system. They also serve as the atomic proposi-
tions that label the states in the concrete and abstract tran-
sition systems, that is, the set of atomic propositions is
A = {P1, P2, .., Pk}. A state in the concrete system will
be labeled with all the predicates it satisfies. The abstract
state space has a boolean variableBj corresponding to each
predicate Pj . So each abstract state is a valuation of these
k boolean variables. An abstract state will be labeled with
predicate Pj if the corresponding bit Bj is 1 in that state.
The predicates are also used to define a total function ρ be-
tween the concrete and abstract state spaces. A concrete
state s will be related to an abstract state ŝ through ρ if and
only if the truth value of each predicate on s equals the value
of the corresponding boolean variable in the abstract state ŝ.
Formally,

ρ(s, ŝ) =
∧

1≤j≤k
Pj(s)⇔ Bj(ŝ) (4)

Note that ρ is a total function because each Pj can have
one and only one value on a given concrete state and so the
abstract state corresponding to the concrete state is unique.
Using this ρ and the construction given in the previous sub-
section, we can build an abstract model which simulates the
concrete model. We now define the concretization function
γ, which maps a set of abstract states to the corresponding
set of concrete states. Formally, let f̂ be a propositional
formula over abstract state variables,

γ(f̂) = f̂ [Bj ← Pj]. (5)

In predicate abstraction [19], the abstract initial states Ŝ0

and the abstract transition relation R̂ are defined as

Ŝ0 =
∧
{Ŷ1 | S0 → γ(Ŷ1)} (6)

R̂ =
∧
{Ŷ → Ŷ ′ | (R ∧ γ(Ŷ))→ γ(Ŷ ′)} (7)

where Ŷ (Ŷ1) is an arbitrary conjunction (disjunction) of
the literals of the current state variables {B1, B2, . . . , Bk}
and Ŷ ′ is an arbitrary disjunction of literals of the next state
variables {B′1, B′2, . . . , B′k}. It can be shown that (6) is
equivalent to (1) and (7) is equivalent to (2).

Equations (6) and (7) can be used to compute abstract
models for both hardware and software verification. To de-
termine the validity of the proof obligations involved, a gen-
eral theorem prover, such as Simplify [17], is used. For
hardware verification, a SAT solver, such as zChaff, can be
more efficient. In practice, heuristics are used to reduce the
number of calls to the theorem prover [1, 19]. In this paper,
to reduce the abstraction time, we restrict Ŷ1 and Ŷ ′ to be at
most one literal, and restrict Ŷ to include at most two liter-
als. The model so obtained will be an over-approximation
of the abstract model. We rely on refinement to compute a
precise enough abstract model when necessary.

2.3 Localization Reduction

Localization reduction [14] is also a special case of ex-
istential abstraction. In localization reduction, a set of im-
portant state variables, called visible variables, are retained
in the abstract model; while the rest, called invisible vari-
ables, are dropped (Their values are assigned nondetermin-
istically). The abstract transition is obtained by conjunct-
ing the transition relations for the visible variables. For-
mally, let V be the set of concrete state variables, and S be
the concrete state space. The value of a variable v ∈ V
in state s ∈ S is denoted by s(v). Given a set of vari-
ables U = {u1, u2, . . . , uk}, U ⊆ V , let sU denote the
portion of s that corresponds to the variables in U , i.e.,
sU = (s(u1)s(u2) . . . s(uk)). Let U be the set of visible
variables. The set of abstract states for localization reduc-
tion is Ŝ = Du1

×Du2
. . .×Duk . The simulation relation

is ρ(s, ŝ) = (sU ≡ ŝ).
We also assume that neither the concrete transition re-

lation nor the set of initial states is described as a single
formula. Instead, for each individual variable v ∈ V , the
transition relation of v is represented as a propositional for-
mula Rv and the set of initial states of v is represented as a
propositional formula Iv. Thus the abstract initial states Ŝ0

and the abstract transition relation R̂ are defined as

Ŝ0 = ∧v∈UIv (8)

R̂ = ∧v∈URv (9)

It is usually the case that R̂ depends not only on current and
next state variables on U , but also some invisible variables
(precisely those invisible variables that occur in some Rv
or Iv). In the abstract model, these invisible variables are
treated as primary inputs. In general, the abstract model for
localization reduction can be computed very easily, but the

size of the abstract transition relation may be large since it
is directly copied from the concrete model.

3 Clustering Based Predicate Abstraction

In this section, we show how to use clustering based
heuristics to identify control variables. We present an al-
gorithm to build an abstract model by combining localiza-
tion reduction with predicate abstraction. This procedure
ensures that the size of the abstract model is bound by the
size of the concrete model. We also show how to use cor-
relations between predicates and control variables to make
the abstract model more accurate.

3.1 Identifying Control Variables

Predicate abstraction is suitable for handling variables
with large domains. Such variables are usually called data
variables. By replacing important formulas over concrete
data variables with abstract predicates, it is possible to re-
duce the complexity of verification significantly. Besides
data variables, there are other variables with small domains
(e.g., boolean variables) that control the behavior of the sys-
tem to be verified. These variables are called control vari-
ables. Abstracting control variables does not give much
advantage. Because control variables typically have small
domains, the amount of reduction obtained by replacing
a predicate over several control variables with an abstract
boolean variable is not very significant.

We propose a clustering-based heuristic to identify the
important control variables for the verification of the given
property. Let {P1, . . . , Pk} be the set of predicates. Each
predicate Pi is a boolean formula over a set of concrete state
variables, called the supporting variables of Pi. We parti-
tion predicates into small clusters. Initially, each predicate
is a cluster. We merge two clusters if the intersection of
their supports crosses a certain threshold (the support of
a cluster is the union of the supporting variables for each
predicate in the cluster). We continue this process until no
more clusters can be merged. Thus, the clusters we create
partition the predicates into disjoint sets (but the supporting
variables of different clusters may still overlap). Let c be
a cluster, the set of indexes of predicates in c be I(c), the
supporting variables of c be v(c). If all the variables in v(c)
are finite state, each variable can be represented by several
equivalent boolean variables which encode the domain of
this variable. The set of boolean variables for variables in
v(c) is called the set of supporting boolean variables. For
a cluster c, if the number of predicates is comparable to the
number of supporting boolean variables, then this cluster is
called a control cluster and the supporting variables of c are
regarded as control variables.

3.2 Combining with Localization Reduction

It is well known that, given n boolean variables, the
number of distinct propositional formulas over them is 22n .
Since control variables determine the control flow of the
system under verification, in order to approximate the be-
havior of the concrete system, many predicates over the
control variables may be necessary. Each of these propo-
sitional formulas may become a predicate during predicate
abstraction. Therefore, for the verification of control inten-
sive systems, a blowup of the abstract model is likely when
using existing predicate abstraction methods. Furthermore,
building the abstract model using equations (6) and (7) is
time consuming. Both these problems can be avoided by
using our technique of combining the localization reduction
with predicate abstraction. Using our method, it is possible
to bound the size of the abstract model by that of the con-
crete model. We retain most the control variables in the
abstract model (the criteria for retaining a control variable
is discussed later in this section). The concrete transition
relations for these control variables also serve as abstract
transition relations after some minor modifications. So we
can circumvent the problem of building abstract transition
relations for all these control variables.

The modification to the concrete transition relation is as
follows: for a supporting variable v ∈ v(c), let Rv be the
concrete transition relation for v. Let R′v = Rv[Pj ←
Bj , for all j such that Pj is a formula predicate]. That is,
we replace all occurrences of every formula predicate Pj
in Rv by the corresponding abstract boolean variable Bj . If
R′v is finite state, that is, if there are no unbounded variables
or unbounded control (e.g., recursion) in it, then we use v
as an abstract state variable. In such a case we use R′v as
the abstract transition relation for variable v. In the termi-
nology of localization reduction, variable v is visible and
unabstracted. There is one major difference between local-
ization reduction and our method: In localization reduction,
the transition relation for a visible variable is copied from
the concrete model to the abstract model, whereas in our
method, we replace a subformula of the concrete transition
relation if that subformula corresponds to a formula predi-
cate. Doing this has two advantages: Firstly, even if Rv had
unbounded variables, R′v could be finite state because of
the substitutions. Secondly, the transition relations for the
control variables are modified so that the abstract variables
corresponding to formula predicates constrain the possible
next states of the control variables. This leads to a more
accurate model.

Note that the abstract model built using the localization
reduction has more primary inputs (invisible variables) than
the abstract model built using predicate abstraction. This
can increase the size of the abstract model. Therefore, we
retain unabstracted only those variables whose next state

logic has a small number of inputs.

3.3 Correlations between Control Variables and
Predicates

Our abstract model includes real predicates and control
variables. In this subsection, a method to correlate predi-
cates and control variables will be discussed. Recall from
Section 3.1 that the clusters we build partition the predicates
into disjoint sets (although the supporting variables of the
clusters may overlap). Our method replaces the predicates
in the control clusters by the supporting variables. There
might be other predicates which have these control variables
in their support. As an example, suppose we decide to drop
a predicate cluster {P1 ≡ x ∨ y, P2 ≡ x ∧ y} and replace
the two predicates with the variables {x, y}. Suppose also
there are two additional predicates, P3 ≡ x ∨ y ∨ z and
P4 ≡ x ∧ y ∧ w whose corresponding abstract state vari-
ables are B3 and B4, respectively. Thus, the abstract state
variables include x, y,B3, B4. Further assume that the next
state value for variable x is defined as ¬z in the concrete
model. Note that the values of variables x, y and values of
B3, B4 are not independent. The following are three possi-
ble scenarios

• If we know that B3 is false in an abstract state, then
x = false and y = false in that state.

• If we know x = false in an abstract state, thenB4 must
be false in that state.

• If we know B3 is false in an abstract state, then in the
corresponding concrete states, z is false. Therefore, in
the abstract successor states, x will be true.

It is desirable to incorporate the correlations/constraints be-
tween control variables and real predicates into the abstract
model. This will make the abstraction more accurate. Our
method does not directly compute these constraints. In-
stead, we selectively introduce the concrete definitions of
some predicates into the abstract model as invariants. The
model checking procedure will enforce any implied con-
straints through these invariants. Note that, only formula
predicates whose supporting variables are all finite state
are considered in this method. For the above example, we
add z, w as two additional abstract input variables and add
the definitions of the two predicates as abstract invariants:
B3 = (x∨y∨z), andB4 = (x∧y∧w). This will force the
abstract model to observe any constraints between variables
x, y and B3, B4. Note that by doing this we have added two
new variables z, w to the abstract model. This could make
the abstract model larger. To overcome this problem, we
add the definition of a predicate to the abstract model only
if most of the variables in the support of this predicate are
either control variables themselves (e.g. x, y for B3) or in

the support of control variables (e.g. z for x). In this way,
the added invariants will restrict the possible values of the
control variables and predicates. This will ensure we only
add a small number of additional variables, e.g., z and w.

3.4 Correlations Between Formula Predicates

It is also possible that the predicates in a non-control
cluster may not be independent, in the sense that not all
possible combinations of assignments to their abstract state
variables are possible. For the example in the previous para-
graph, when B3 = false, B4 must also be false. For a given
cluster c, let v(c) be the concrete supporting variables in c,
let I(c) be the indexes of the predicates in c. We define
g(c), called the consistent abstract states over cluster c, as
follows

g(c) = {ŝ | ∃s ∈ S.
∧

j∈I(c)
(Pj(s) = Bj(ŝ))} (10)

It is easy to see that any ŝ 6∈ g(c) does not have any corre-
sponding concrete state and therefore it should be excluded
from the abstract model checking. We represent the com-
puted consistent abstract states for each non-control cluster
as invariant in the abstract model. It is possible to compute
a single set of consistent abstract states by conjuncting all
predicates instead of conjuncting predicates of each clus-
ter separately. Although this will result in a more accurate
constraint, it may be computationally expensive when the
number of predicates is large.

We now show how to compute g(c). We have two al-
gorithms depending on whether or not there are any un-
bounded variables in v(c). The first algorithm is based on
BDDs. It only works if all variables in v(c) have finite do-
mains. We can build BDDs for each Pj and Bj , then g(c)
can be calculated by conjuncting Pj(s) = Bj(ŝ), j ∈ I(c)
and quantifying v(c). This is not expensive because the
number of predicates in a cluster is usually small. The sec-
ond algorithm is based on the abstraction function [19]. Let
Ŷ (c) be a disjunction of literals over variables Bj , where
j ∈ I(c). It can be shown that g(c) is the same as

∧
{Ŷ (c) | true⇒ γ(Ŷ(c))} (11)

Essentially, this equation says that a formula over the ab-
stract variables, Ŷ (c), includes the set of consistent abstract
states if the corresponding concrete formula, γ(Ŷ (c)), is
true. The second algorithm works for variables with both
finite and infinite domains. For the finite case, a SAT solver
can be used; while for the other case, a general theorem
prover has to be used. Since the second algorithms may re-
quire solving true ⇒ γ(Ŷ(c)) for all possible disjunctions
over variables in cluster c, it is usually slower than the first
algorithm when variables have finite domains.

4 Exploiting High Level Representation

In this section, we discuss how to improve predicate ab-
straction by using information from the high level represen-
tation of the design under verification. We first describe our
method for extracting branch conditions from RTL Verilog
and then we present our lazy-refinement algorithm to refine
the abstract model.

4.1 Extracting Branch Conditions

High level design languages usually contain branch
statements, such as if, case statements. The if statement
has two branches, while the case statement may have mul-
tiple branches. Usually, a case statement can be converted
to multiple if-then-else statements that are equivalent to it.
We call the boolean predicates that determine which branch
to be executed, branch conditions. We intend to extract the
branch conditions and use them as predicates in predicate
abstraction.

For the purpose of model checking, the high level repre-
sentation of the system under verification is translated into
a formula over the current and next state variables (referred
to as the transition relation). Each extracted branch con-
dition is translated into a subformula of the transition rela-
tion. For a branch condition, the corresponding subformula
of the transition relation is called the flattened branch con-
dition. The transition relation is further converted into dif-
ferent representations that are suitable for different model
checking engines. For example, it is converted to BDDs for
BDD-based model checkers, or CNF for SAT-based model
checkers. For a flattened branch condition, it is straightfor-
ward to identify the corresponding representation inside the
model checking engines.

We will describe a simple method to extract a set of flat-
tened branch conditions for RTL Verilog designs. We be-
lieve it is easy to generalize this method to other design
languages. One possible method is to develop a transla-
tor from RTL Verilog to gate level circuits, which can then
be easily converted into a transition relation. The main dis-
advantage of this method is the amount of work involved
in handling the semantics of Verilog, which is not formally
defined [12]. In practice Verilog is interpreted by a set of
standard commercial tools, such as Synopsys Design Com-
piler. Our method relies on the fact that commercial syn-
thesis tools already exist for Verilog. We first convert the
RTL design into another equivalent design, where the rele-
vant branch conditions are renamed to signals with unique
names. An example is shown in Figure 1. We use the
continuous assignment statement in Verilog to rename the
branch conditions using unique signals, such that the mod-
ified design is equivalent to the original one. After this,

ORIGINAL DESIGN

always @(posedge clk) begin
if (mode != NO CONF) begin

...
end else if (a == b) begin

...
end

end

MODIFIED DESIGN

assign pred1 = mode != NO CONF;
assign pred2 = a == b;
always @(posedge clk) begin

if (pred1) begin
...

end else if (pred2) begin
...

end
end

Figure 1. Replace branch conditions using
unique signals

a gate level circuit is generated from the modified design
using Synopsys Design Compiler. We further translate the
gate level circuit into a transition relation and the flattened
branch conditions can be identified using the unique signal
names. Our method can be easily applied to other design
languages as long as there are language constructs to re-
name boolean predicates using new variables. Our method
can take advantage of existing translators, therefore the im-
plementation time is much shorter than building a translator
from scratch.

It is usually the case that there are many branch condi-
tions that we can extracted from a high level representation
of designs. Not all of them can be used as predicates to
build the initial abstraction, otherwise the abstract model
will become too large. We use the refinement algorithm
in Section 4.2 to identify a subset of the branch conditions
which are necessary to invalidate the given spurious abstract
counterexample.

4.2 Counterexample-based Lazy Refinement

In counterexample guided abstraction refinement, a
given spurious abstract counterexample is invalidated dur-
ing refinement through the introduction of a set of pred-
icates, called invalidating predicates, into the abstract
model. Once an abstract counterexample is determined to

be spurious, our algorithm identifies a subset of the flattened
branch conditions as invalidating predicates.

We first introduce some notation. Let f be a boolean for-
mula, we use ±f to denote f or f . Let v ∈ V be a concrete
state variable, we use v′ ∈ V ′ to denote the corresponding
next state variable. If f is a boolean function over V , then
f ′ is the same function over V ′.

The flattened branch conditions, which have not yet been
added as predicates, are called the candidate predicates. A
naive algorithm to compute the required set of invalidat-
ing predicates is the following: First, the set of candidate
predicates is ordered according to some importance crite-
ria. Using this order, candidate predicates can be added to
the abstract model one at a time and the given counterex-
ample can be checked on the refined abstract model. If the
counterexample is invalidated, the already added candidate
predicates will be the required set of invalidating predicates.
This naive algorithm has two disadvantages. One is that
the order of the predicates affects the size of the result. A
bad order may prevent the discovery of a smaller number
of invalidating predicates. Most importantly, the compu-
tation time is too high, because once a predicate is added,
the abstract model has to be updated as described in Sec-
tion 2.2. Instead, we have developed a new lazy refinement
algorithm, which avoids computing the full refined abstract
model at each stage. Intuitively, in this algorithm, the given
abstract counterexample is extended by assigning 0, 1 or x
values to the abstract variables corresponding to the candi-
date predicates. A candidate abstract variable is given a 0
or a 1 value at time i if it can be determined from the coun-
terexample at time i− 1 and i; otherwise an unknown value
x is given. The counterexample is invalidated if it can not
be extended to the next time step. If that is the case, we per-
form a backward analysis from the time of failure until time
0 to identify those candidate predicates that are responsible
for this failure. The predicates identified in this manner will
invalidate the spurious counterexample.

Suppose there are already m predicates in the abstract
model. Let ce = 〈ce0, ce1, . . . , cen〉 be a spurious abstract
counterexample. Note that, each cej is a conjunction of lit-
erals over the set of abstract state variablesB1, . . . , Bm. Let
cp = {cpm+1, cpm+2, . . . , cpm+k} be the set of candidate
predicates, which are temporarily represented by abstract
state variables {Bm+1, Bm+2, . . . , Bm+k} (These candi-
date predicates have not been added to the abstract model
yet). The example in Figure 2 illustrates how our algo-
rithm works. Suppose there are 2 predicates, 3 candidate
predicates and a spurious abstract counterexample of length
3. The counterexample contains values for predicates P1

and P2 at each time from 0 to 2. Our algorithm first deter-
mines the values for the candidate predicates at time 0. If
(S0∧γ(ce0))→ cp4 is a tautology, then any valid extension
of ce0 must have the abstract variable corresponding to cp4

time 0 time 1 time 2

1
0 1

0 1
1

0

1 1

1
x0

B1
B2

B3
B4
B5

Figure 2. A refinement example

set to 0. The values of other candidate predicates at time 0
can be determined similarly. The resulting extended coun-
terexample at time 0 is denoted by ece0. We then extend the
counterexample at time 1 to obtain ece1. For example, if we
can prove that

(R ∧ γ(ce0) ∧ cp3 ∧ cp4 ∧ cp5 ∧ γ(ce1))→ cp′3 (12)

is a tautology (where cp ′3 is the same as cp3 except that it
is over the next state variables), the value of this candidate
predicate must be 1. Note that we can not determine the
value of cp4 at time 1, therefore its value is unknown in the
extended counterexample. After ece1 is determined, if

(R ∧ γ(ce1) ∧ cp3 ∧ cp5)→ γ(ce2) (13)

is a tautology, then the counterexample can not be extended
to time 2, thus it has been invalidated. Finally, we iden-
tify the set of invalidating predicates. It is possible that
not all candidate predicates in the left hand side of equa-
tions (12) and (13) are necessary in showing that they are
tautologies. Only those in the proof of the tautologies are
necessary. Proofs can be obtained from proof generating
theorem provers (e.g., Simplify) and proof generating SAT
solvers [4]. Suppose, we can determine that cp3, cp5 in
equation (12) and cp5 in equation (13) are not in the respec-
tive proofs for those two implications. Then we can deduce
that, of all candidate predicates, cp3 alone is responsible for
disabling the transition from time step 1 to time step 2 (since
cp5 is not needed in the proof of equation (13)). Moreover,
of all candidate predicates, only cp4 at time 0 determines
the value of cp3 at time step 1 (since cp3, cp5 do not appear
in the proof of equation (12)). Thus the set of invalidating
predicates is {cp3, cp4}. Note, we have worked backwards
along the counterexample. We first found some invalidating
predicates at time step 1 and then used that to find more in-
validating predicates at time step 0. This is the basic idea of
our algorithm to find the set of invalidating predicates.

We now present the lazy refinement algorithm in detail.
Our algorithm is separated into three parts, the first one,
which computes ece0, is shown in Figure 3. The second
one, which computes ece i+1 making use of ece i, is shown
in Figure 4. The last one, shown in Figure 5, computes the
invalidating predicates as a subset of the candidate predi-
cates once the counterexample is invalidated.

COMPUTE INITIAL

1 let ece0 = ce0

2 for each candidate predicate cpm+j

3 if (S0 ∧ γ(ce0))→ cpm+j is a tautology
4 let ece0 = ece0 ∧Bm+j

5 elseif (S0 ∧ γ(ce0))→ cpm+j is a tautology
6 let ece0 = ece0 ∧Bm+j

7 endif
8 endfor

Figure 3. Algorithm to compute ece0

The algorithm to compute ece0 is similar to the algo-
rithm for computing the set of abstract initial states in Sec-
tion 2.2, except that we use S0∧γ(ce0) instead of S0 alone.
This makes sense because our goal is to extend the current
counterexample. The idea is to determine if the set of con-
crete initial states S0 and the concrete states corresponding
to ce0 can imply either the truth or falsity of each candidate
predicate; otherwise the value of the candidate predicate is
unknown.

Given the extended counterexample at time i, the algo-
rithm in Figure 4 extends the counterexample to time i+ 1.
It first checks whether there are any concrete transitions be-
tween γ(ecei) and γ(cei+1). The code for this is given in
lines (1) to (4). If it is not the case, the counterexample has
been invalidated by the candidate predicates, the set of in-
validating predicates is calculated and returned in line (3).
If it is possible to make a concrete transition from γ(ece i)
to γ(cei+1), the algorithm will check whether a candidate
predicate is guaranteed to be true/false for such concrete
transitions. This is computed in line (7) and line (9) and
ecei+1 is updated. If the counterexample can be extended
from time 0 until time n, the set of flattened branch condi-
tions are not enough to invalidate the counterexample. We
will resort to the traditional refinement methods to compute
a new predicate [7] using SAT. Details can be found in [8].

If the counterexample is invalidated at line (1) in Fig-
ure 4, the algorithm in Figure 5 is called with the time t
and f = (R ∧ γ(ecet)) → γ(cet+1). We use the set np
to hold all candidate predicates that are given a 0 or 1 value
in the time steps preceding t and result in the failure of the
counterexample. In line (1), np is initialized to all candidate
predicates that are directly responsible for the failure. This
is done by analyzing the proof for the failure of the coun-
terexample. In the loop between line (2) and line (6), we
go backward in time to find the set of candidate predicates
that are indirectly responsible for the failure. Finally in line
(7), the set of invalidating predicates is returned. Note that,
in line (3), taut(i) is a subset of the tautologies we com-
puted from the algorithm in Figure 4. For each implication

//i: time to extend counterexample
COMPUTE NEXT(i)

1 if (R ∧ γ(ecei))→ γ(cei+1) is a tautology
2 let f = (R ∧ γ(ece i))→ γ(cei+1)

3 return DETERMINE PREDICATES(i, f)
4 endif
5 let ecei+1 = cei+1

6 for each candidate predicate cpm+j

7 if (R ∧ γ(ecei) ∧ γ(cei+1))→ cp′m+j is a tautology
8 let ecei+1 = ecei+1 ∧Bm+j

9 elseif (R ∧ γ(ece i) ∧ γ(cei+1))→ cp′m+j is a
tautology

10 let ecei+1 = ecei+1 ∧Bm+j

11 endif
12 endfor

Figure 4. Algorithm to compute ece i+1

//t: the time when extending counterexample fails
//f = (R ∧ γ(ecet))→ γ(cet+1)

DETERMINE PREDICATES(t, f)
1 let np = {〈±Bm+j , t〉 | ± cpm+j is in the proof of f}
2 for i = t− 1 to 0

3 let taut(i) = {(R ∧ γ(ece i) ∧ γ(cei+1))→ ±cp′m+q |
〈±Bm+q, i+ 1〉 ∈ np}

4 let prf = { proofs for the implications in taut(i)}
5 let np = np ∪ {〈±Bm+w, i〉 |

±cpm+w is in any proof in prf }
6 endfor
7 return {cpm+j | ∃0 ≤ i ≤ t. 〈±Bm+j , i〉 ∈ np}

Figure 5. Algorithm to compute invalidating
predicates

(R ∧ γ(ecei) ∧ γ(cei+1)) → ±cp′m+q in taut(i), we re-

fine the abstract transition relationR̂ by conjuncting it with
ecei → (cei+1 ∨ ±B′m+q). Therefore, our algorithm not
only computes the subset of the flattened branch conditions
which can invalidate the given spurious abstract counterex-
ample but also computes the refined abstract model. Our al-
gorithm does not build the whole refined abstract model and
then test whether it invalidates the counterexample. Instead,
it gradually refines the abstract model until the counterex-
ample is invalidated. Therefore, our lazy algorithm can be
more efficient than the naive algorithm.

5 Related Work

Some researchers have considered combining unab-
stracted control variables with predicate abstraction [16],
but their methods are not automatic. As far as we know,
no one else has considered the correlation between unab-
stracted control variables and predicates. Using the correla-
tions between all predicates to constrain the abstract model
has been investigated in [1]. The correlations are computed
using a general theorem prover. We first partition the set of
predicates into clusters based on the sharing of support sets,
then correlations are computed for each cluster separately.
Although our result is more approximate, the complexity of
our algorithm is much less sensitive to the total number of
predicates. We also give a BDD-based algorithm for the
verification of finite state systems.

Exploiting high level language features for abstraction
has been investigated in [7]. They extract conditions of case
statements in the SMV language in order to build the initial
abstraction. The extraction method in [7] requires modify-
ing the source code of an existing translator from SMV lan-
guage to transition relations, therefore it can not be applied
to commercial tools. The extracted conditions are used only
for the initial abstraction; while we use a new refinement al-
gorithm to check whether branch conditions can invalidate
the spurious abstract counterexample. The branch condi-
tions become predicates only when they invalidate a spuri-
ous counterexample.

Our counterexample-based lazy refinement algorithm
tries to identify the branch conditions that can invalidate
the spurious abstract counterexample, before using the tra-
ditional refinement methods to compute a new predicate.
Therefore, our algorithm is an extension of the existing re-
finement algorithms. Our experiments show that this new
refinement algorithm can identify the set of predicates to
verify the given property much more quickly than the tradi-
tional methods alone.

Lazy abstraction for the verification of C programs has
been investigated in [13]. The goals of their algorithm
and ours are different. In [13], the construction of the ab-
stract model and abstract model checking are performed

only from the state where the spurious abstract counterex-
ample fails on the concrete system. While our refinement al-
gorithm identifies a subset of the branch conditions that can
invalidate a spurious counterexample without constructing
the full refined abstract model.

6 Experimental Results

We have implemented our predicate abstraction refine-
ment framework in NuSMV [5]. We also modified the
zChaff SAT solver [21] to generate proofs of unsatisfiabil-
ity. We have two sets of benchmarks: one is the integer unit
(IU) of the picoJava microprocessor from Sun; the other
is a programmable FIR filter (PFIR) which is a component
of a system-on-chip design. The size of the benchmarks is
shown in Table 1. The first column is the name of the prop-
erty. The first three properties are from the IU design; the
remaining six are from the PFIR design. For all the prop-
erties shown in the first column of Table 2, we have per-
formed cone-of-influence reduction before the verification.
The resulting number of registers and gates are shown in the
second and third columns. Most properties are true, except
PFIRscr1 and PFIRprop5. The lengths of the counterexam-
ples are shown in the fourth column.

circuit # regs # gates ctrex

IUscr1 4855 149143 true
IUscr3 4855 149143 true
IUscr6 4855 149143 true
PFIRscr1 243 2295 16
PFIRprop5 250 2342 17
PFIRprop8 244 2304 true
PFIRprop9 244 2304 true
PFIRprop10 244 2304 true
PFIRprop12 247 2317 true

Table 1. The benchmarks used in the experi-
ments

All these properties are difficult for the state-of-art BDD-
based model checker, Cadence SMV. Except for the two
false properties, Cadence SMV can not verify any in 24
hours. The verification time for PFIRscr1 is 834 seconds,
and for PFIRprop5 is 8418 seconds. In Table 2, we com-
pare predicate abstraction with and without the techniques
presented in this paper. In Table 2, the second to fourth
columns are the results obtained without our techniques;
while the last three columns are the results obtained with
the techniques enabled. We compare the time (in sec-
onds), the number of refinement iterations and the num-
ber of predicates in the final abstraction. In all cases, our

new method outperforms the old one in the amount of time
used; sometimes over an order of magnitude improvement
is achieved. In most cases, we use fewer refinement iter-
ations and smaller predicate sets to verify the given prop-
erties. A detailed analysis of the PFIR results shows that
the extraction algorithm extracted about 9 branch condi-
tions from the RTL Verilog, which were later used as pred-
icates. Without these extracted predicates, the set of predi-
cates computed using traditional refinement algorithm was
not sufficient to finish verification within 24 hours (for 3
properties).

circuit Old New
time iters pred time iters pred

IUscr1 2000 11 7 1265 7 18
IUscr3 2003 10 6 1974 16 7
IUscr6 9976 27 12 3498 20 11
PFIRscr1 746 109 44 386 67 34
PFIRprop5 1616 110 43 756 101 44
PFIRprop8 >24h >276 >80 159 40 25
PFIRprop9 >24h >189 >47 202 43 27
PFIRprop10 6808 170 52 178 50 25
PFIRprop12 >24h >223 >52 591 80 38

Table 2. Comparison without and with our
techniques

7 Conclusion

We have presented two techniques to improve predicate
abstraction for the verification of hardware/software sys-
tems. We give an algorithm based on localization reduc-
tion to avoid the potential blowup of the abstract models
when verifying control intensive systems. This technique
builds a “hybrid” abstract model, which includes predicates
as well as unabstracted control variables. It is usually the
case that the predicates/control variables are not indepen-
dent. We give algorithms to compute correlations between
them, which help to make the abstract model more accu-
rate. We also present algorithms to exploit information in
high level design languages. We give a simple method to
extract branch conditions from high level design represen-
tations. Using a new counterexample-based lazy refinement
algorithm, the necessary branch conditions can be added as
new predicates to invalidate spurious abstract counterexam-
ples. Experimental results demonstrate the usefulness of
our methods.

References

[1] Thomas Ball, Rupak Majumdar, Todd Millstein, and
Sriram K. Rajamani. Automatic Predicate Abstraction
of C Programs. In PLDI 2001.

[2] Thomas Ball, Andreas Podelski, and Sriram K. Raja-
mani. Boolean and cartesian abstractions for model
checking c programs. In TACAS 2001, volume 2031
of LNCS, pages 268–283, April 2001.

[3] Saddek Bensalem, Yassine Lakhnech, and Sam Owre.
Computing abstractions of infinite state systems com-
positionally and automatically. In Computer-Aided
Verification, CAV’98, pages 319–331, 1998.

[4] Pankaj Chauhan, Edmund M. Clarke, Samir Sapra, ,
James Kukula, Helmut Veith, and Dong Wang. Auto-
mated abstraction refinement for model checking large
state spaces using sat based conflict analysis. In FM-
CAD’02, 2002.

[5] A. Cimatti, E. M. Clarke, F. Giunchiglia, and
M. Roveri. NuSMV: A New Symbolic Model Veri-
fier. In CAV’99, pages 495–499, 1999.

[6] E. Clarke, O. Grumberg, and D. Long. Model check-
ing and abstraction. In POPL, pages 343–354, 1992.

[7] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan
Lu, and Helmut Veith. Counterexample-guided Ab-
straction Refinement. In CAV’00, 200.

[8] Edmund Clarke, Muralidhar Talupur, and Dong Wang.
SAT based Predicate Abstraction for Hardware Ver-
ification. Technical Report CMU-ECE-CSSI 02-45,
Carnegie Mellon University, ECE Department, 2002.

[9] Edmund M. Clarke, Orna Grumberg, and Doron
Peled. Model Checking. MIT Press, 1999.

[10] Michael Colon and Tomas E. Uribe. Generating finite-
state abstractions of reactive systems using decision
procedures. In CAV’98, pages 293–304, 1998.

[11] Satyaki Das, David L. Dill, and Seungjoon Park. Ex-
perience with predicate abstraction. In CAV’99, pages
160–171, 1999.

[12] Michael J. C. Gordon. The semantic challenge of Ver-
ilog HDL. In LICS’95, pages 136–145, 1995.

[13] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar,
and Gregoire Sutre. Lazy abstraction. In POPL, pages
58–70, 2002.

[14] R. P. Kurshan. Computer-Aided Verification. Prince-
ton Univ. Press, Princeton, New Jersey, 1994.

[15] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and
S. Bensalem. Property preserving abstractions for the
verification of concurrent systems. Formal Methods in
System Design: An International Journal, 6(1):11–44,
January 1995.

[16] Kedar S. Namjoshi and Robert P. Kurshan. Syntactic
program transformations for automatic abstraction. In
CAV’00, 2000.

[17] Greg Nelson. Techniques for Program Verification.
PhD thesis, Stanford University, 1980.

[18] S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In CAV’97, pages 72–83, 1997.

[19] H. Saidi and N. Shankar. Abstract and model check
while you prove. In CAV’99, pages 443–454, 1999.

[20] Dong Wang, Pei-Hsin Ho, Jiang Long, James Kukula,
Yunshan Zhu, Tony Ma, and Robert Damiano. Formal
Property Verification by Abstraction Refinement with
Formal, Simulation and Hybrid Engines. In DAC’01,
2001.

[21] Lintao Zhang, Conor F. Madigan, Matthew W.
Moskewicz, and Sharad Malik. Efficient conflict
driven learning in a Boolean satisfiability solver. In
ICCAD’01, 2001.

