
Combining Two Forms of Type Refinements

Jana Dunfield

September 2002

CMU-CS-02-182R

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Type refinements allow invariants about algebraic datatypes to be expressed through the type system. We

present a small functional language and type system that elegantly combines datasort refinements (com-

monly called refinement types) and dependent index refinements, so that one can specify invariants using

whatever refinement is most suitable. Our type system has intersections (novel in the presence of index

refinements) and restricted dependent products; we believe ML-style references and polymorphism could

be added easily. As an example, we show how the type system cleanly captures several representation

invariants of red-black trees.

The author is supported in part by the National Science Foundation, under a Graduate Research Fellowship

and by grant ITR/SY+SI 0121633: “Language Technology for Trustless Software Dissemination.” Any opinions,

findings, conclusions or recommendations expressed in this publication are those of the author and do not necessarily

reflect the views of the National Science Foundation.

Keywords: Type refinements, datasort refinements, index refinements, refinement types, dependent

types

1 Introduction

Conventional static type systems such as that of Standard ML [14] enable the expression of many program

invariants, allowing compilers to check those invariants at compile time. However, conventional type

systems are too coarse-grained to check many desirable properties; we would like to have more refined

type systems. Two major efforts toward this goal are the datasort refinements (often called refinement

types) of Freeman, Davies, and Pfenning [10, 9, 7], and the index refinements of Xi and Pfenning [19, 17].

Both systems refine the simple types of Hindley-Milner type systems.

A datasort refinement divides the set of values inhabiting a type into several subtypes called datasorts,

according to a description corresponding to a finite regular tree grammar. As a consequence of the

grammar being regular, we can decide if a value c(v1, . . . , vn) belongs to some datasort by examining

only c and the datasorts of its arguments v1, . . . , vn. A value can belong to more than one datasort, and

if every value of datasort δ1 is also of datasort δ2, we say that the first is a subsort of the second: δ1 � δ2.

A given constructor or function may have several properties: for example, if we refine lists by whether a

list is of odd or even length, Cons takes even-length lists to odd-length lists and vice versa. This is done

with intersection types A&B. We can then write the type of Cons this way:

Cons : (int ∗ even → odd)& (int ∗ odd → even)

A significant limitation of datasort refinements is that they can define only a finite set of refinements—

there is no way to express the property that Cons returns a list exactly one element longer than its second

argument. However, Xi and Pfenning formulated a type system [19, 17] in which a restricted form of

dependent typing yields a system of type refinements without this limitation. Types are refined by indices

drawn from some constraint domain, such as integers with linear inequalities. Now the type of Cons can

be written as

Cons : Πa:N . int ∗ list(a) → list(a+ 1)

which may be read “for any natural number a, Cons takes an integer and a list of length a to a list of length

a + 1.” The Π is like a universal quantifier (and can be viewed as the infinitary form of the intersection

type constructor &).

Xi gave several significant applications of his index refinements, such as the elimination of array-

bounds checks and the verification of red-black tree invariants. The practical motivation for our work

is that some properties are best expressed by datasort refinements, while others can be expressed only

by index refinements. For example, the color of a node in a red-black tree is cleanly expressed by a

datasort refinement, but awkwardly expressed by an index refinement: Xi had to resort to encoding the

colors as integers. On the other hand, the black height of a red-black tree cannot be expressed by datasort

refinements—doing so would require an infinite number of datasorts—but is expressed nicely by refining

the type with an integer index.

We present a type system that includes both datasort refinements and index refinements, along with

intersection types (novel in the presence of index refinements). The basic direction and goal of the type

systems for the individual refinements we combine is not to admit more programs than a simple static type

system, but fewer. Thus, each system is conservative in the sense that if a program is well typed in the

simple type system and uses no type refinements, it is also well typed in the system with refinements. We

share the goal of admitting fewer programs, and our approach too is conservative. Like the type systems

it conceptually combines, ours is not a pure type inference system. Instead, we check bidirectionally:

essentially, we either infer a type for a term or check a term against some type determined (directly

or indirectly) from type annotations given by the programmer. Thus, the demands on the user are like

those made by the individual refinement systems: if the user wants the compiler to guarantee additional

invariants via the refined type system, she must add type annotations. Like the system of Xi and Pfenning,

our type system is parametric in a constraint domain; moreover, we need only a very few properties of

that domain. We prove in Section 3.7 that our system is sound.

In Section 4, we show how red-black trees can be refined in our system and examine how typecheck-

ing works for a function operating on red-black trees.

2 Related work

We have briefly described the type refinements we have combined: the datasort refinements of Freeman,

Davies, and Pfenning, and the index refinements of Xi and Pfenning. Let us more closely examine that

1

work. Datasorts were introduced by Freeman and Pfenning in 1991 [10], and Freeman gave a datasort

inference algorithm (in the style of abstract interpretation) in his thesis [9]. Datasort inference is decidable

and not too inefficient, but has the counterintuitive defect of inferring too much information. In brief, a

function may have well-defined behavior on certain arguments, even though the user does not intend to

ever apply the function to those arguments. Passing an unintended argument will not cause an error, so

if the typechecker catches the mistake, it will not catch it where the argument was passed but at some

seemingly arbitrary location. Moreover, the refined type corresponding to a function can be much longer

than the type corresponding to that function’s intended use (which only specifies intended behavior, not

all behavior), making “type mismatch” errors more confusing. Hence the later work of Davies and

Pfenning [6] focused instead on datasort checking, in which the user must add some type annotations

explicitly giving the intended refined types. Davies has implemented a practical datasort refinement

typechecker for most of Standard ML around the ML Kit compiler. In addition to an ordinary SML

datatype declaration

datatype list = Nil | Cons of int * list

the user writes a refinement declaration

(*[datasort odd = Cons of int * even

and even = Nil | Cons of int * odd]*)

from which the typechecker determines the types of the constructors (specifically, Cons has type (int ∗
even → odd)& (int ∗ odd → even) and Nil has type even).

Xi and Pfenning realized that restricting dependent type indices to values drawn from a decidable con-

straint domain yields a remarkably expressive type system, while retaining decidability of typechecking

[19, 17]. Again type inference is avoided, so the user is obliged to add type annotations1. An important

difficulty arises: with only the universal dependent type Π, one cannot express the types of functions

in which the result’s refined type is not uniquely determined by the argument’s refined type. A simple

example is the filter(f, l) function on lists of integers, which returns all the elements of l such that

f(l) returns true. It has the simple type

filter : (int → bool) ∗ list → list

Indexing lists by their length, the refined type should be something like

filter : Πn:N . (int → bool) ∗ list(n) → list()

But we cannot fill in the blank. Xi’s solution was to add a limited dependent sum type Σ that can be read

as “there exists.” We can then express the fact that filter returns a list of length m where m ≤ n:

filter : Πn:N . (int → bool) ∗ list(n) → (Σm:{N |m ≤ n}. list(m))

Xi added an index refinement checker (for the domain of integers with linear inequalities) to the Caml

Light compiler. He extended the Caml datatype syntax; to obtain the type

Cons : Πa:N . int ∗ list(a) → list(a+ 1)

for Cons, one writes (notating Πa:N . as {a : nat}):

datatype list with nat = Nil(0)

| {a:nat} Cons(a + 1) of int * list(a)

We turn now to other related work. Intersection types were introduced into the simply-typed λ-

calculus by Coppo et al. [4]; their intersection type had the form (in our notation) A1 & . . . &An → B,

with a greatest type ω. They showed that every well-typed term has a head normal form and that a term

has a normal form if and only if its type includes ω in certain positions (or not at all). Reynolds used

intersection types in the explicitly-typed imperative language Forsythe [16] for several purposes, includ-

ing to formulate the distinctions between readable, writable, and read/writable procedure arguments. He

1In Xi’s examples, the type annotations are “typically” [18] less than 20% of the length of the source code.

2

showed that (despite the explicit typing) typechecking Forsythe is PSPACE-hard; the argument is by re-

duction to the evaluation of a quantified Boolean formula. The same argument applies to a language with

datasort refinements, but there is no reason to suppose pathological cases arise in practice more often

than in Standard ML—a language in which type inference can require superexponential time [12].

The well-known Curry-Howard isomorphism allows one to extract a program from a proof in a type

theory, but the extracted program may contain logical information irrelevant to the (computational) result,

making the program longer and less efficient than it should be. Hayashi [11] invented an impredicative

type theory ATTT with refinement types, intersection types, and union types. His theory is designed to

facilitate the exclusion of computationally irrelevant information from extracted programs.

For another purpose very different from ours, Denney [8] applied refinement types to yield a theory of

structured program specification, combining conventional program-level type theory with program logic.

Cayenne [2] is a language similar to Haskell with unrestricted dependent type indices: any term can

be used as an index. Consequently, typechecking in Cayenne is undecidable; the Cayenne typechecker

“times out” if typechecking takes more than a specified number of steps. This approach appears to

function reasonably well in practice. However, Cayenne does not define any kind of datatype refinement;

its main concerns are with admitting more programs (such as a typechecked analogue of C’s printf)

rather than fewer, and with an economy of mechanism achieved by merging modules and records. It is

not clear if the Cayenne approach could be extended with datatype refinements.

Systems for carrying out type inference in dynamically typed languages, known as soft typing [3], can

reduce the runtime overhead characteristic of dynamic typing: runtime checks are inserted only where the

type inference engine cannot prove the check must always succeed. Being type inference systems, these

have the advantage of requiring no additional information (no type annotations) from the user. Aiken,

Wimmers, and Lakshman [1] give a soft typing system with intersection, union, and conditional types.

Their system infers remarkably accurate types, but fails to capture certain invariants readily expressed

by datasort refinements; Davies [6] gives an example program for which it infers substantial information

about a function but does not infer a property easily expressed through a datasort refinement.

3 The language and type system

Ours is a small functional language similar to that presented by Davies and Pfenning [7], with lambda

abstraction, application, and fixed point constructs; unit and product types; let; refined datatypes and a

simple case construct; and a form of explicit type annotation. The syntax is given in Figure 1. Most of

these constructs require no explanation. The case construct cannot have nested patterns (by the grammar)

and must be non-redundant and exhaustive: a case on a datatype τ must include exactly one arm c ⇒ e
for each constructor c of τ . Explicit type annotations allow us to annotate any term e with a type A by

writing (e : A).
We omit polymorphism and effects (mutable references), but we believe our type system could readily

be extended to handle these, following the approach of [7] for a type system with only datasort refine-

ments. Our system has several of that system’s attributes (such as a value restriction for intersection

types) precisely because those attributes avoided unsoundness in the system of datasort refinements and

effects.

e ::= x | ()

| (e1, e2) | π1(e) | π2(e)

| c(e) | case e of ms

| lam x. e | e1(e2)

| fix f. e

| let x = e1 in e2 end

| e : A

ms ::= · | c(x) ⇒ e|ms

Figure 1: The syntax of terms.

3

Parameters: base index sorts s, datasorts δ, propositions P over index expressions i, j, k

γ ::= s | ⊥ | 1 | γ1 ∗ γ2 —Base, empty, unit, product sorts

P ::= ⊥ —Falsehood

| i
.
= j —Index equality

| . . .

i, j, k ::= a —Index variables

| () —Unit index

| (i, j) | fst(i) | snd(i) —Pairing, left and right projection

| . . .

A,B,C ::= 1 | A ∗B | A → B

| δ(i) —Refinement by the datasort δ and index i

| Πa:γ.A —Universal dependent types

| A&B —Intersection types

Figure 2: Syntax of types.

The syntax of types—including index sorts γ, propositions P , indices i, j, k, and the types A, B
themselves—is shown in Figure 2. The system is parametric in the base sorts s, datasorts δ, and the

language of propositions P over index expressions i, j, k.

We assume that for each refined datatype we are given a relation � over the datasorts that is reflexive,

transitive, and antisymmetric. This relation � is over the datasorts, not the index sorts; the actual

subtyping relation, which considers index sorts as well as datasorts, is defined in Section 3.2.

As stated, the language of propositions and indices is a parameter of the system. We require only that

a few constructs be present in each: the propositions P must include falsehood ⊥ and equality of indices

i
.
= j; the index expressions i, j, k must include index variables and pairs, along with projections fst and

snd to take a pair’s first and second elements. Other constructs may be included as well—we will see

an example in Section 3.1 with arithmetic operations among the index expressions—but any first-order

language with the aforementioned elements will fit our system.

For the types A,B,C, we have unit (1), products A ∗ B, and functions A → B. We also have

refinements δ(i), intersection types A&B, and universal dependent types Πa:γ.A. (The latter are often

called dependent products, but we prefer a name evoking universal quantification.) While δ(i) is a double

refinement—by a datasort δ and by an index i—it is straightforward to utilize only one form of refinement.

Suppose we have a datatype τ we wish to refine by a datasort only. For the index refinement, one simply

chooses the sort 1 as the index sort; 1 is inhabited only by (), so the indices will always match up and it

will be just as if our system had no index refinements. Likewise, if we want to refine τ by an index but

do not need to refine it by a datasort, we use one datasort δ and it will be just as if we had no datasort

refinements.2

The simple type of a type A is A with all refinements δ(i) replaced by the name of the type refined, all

Π’s erased, and all intersections B1 &B2 replaced by the simple type of B1 and B2, if the simple types

of B1 and B2 are the same. If A contains an intersection B1 &B2 such that B1’s simple type differs from

B2’s simple type, then we say that A has no simple type.

Remark 1. Davies’ intersection A&B [6] is well-formed only if A and B refine the same simple type.

Our intersections lack this restriction. We discuss this further in Section 3.3, in connection with the

contradiction rule.

We will make use of three forms of context whose syntax is given in Figure 3: Γ which quite con-

ventionally maps program variables x to types, ϕ which maps index variables a, b to index sorts and

furthermore may contain propositions P representing assumptions about relationships among indices,

and the constructor signature S which maps datatype constructors to types. No variable may appear

twice in any of the contexts. Thus, we can reorder any context as we like, and we will do so without re-

2It seems likely that primitive types such as integers that we might wish to refine by an index, but not a datasort, could also be

handled in the manner described for datatypes.

4

Γ ::= · | Γ, x:A

ϕ ::= · | ϕ, a:γ | ϕ, P

S ::= · | S, c:A

Figure 3: Syntax of program variable contexts, index variable contexts, and constructor signatures.

Property 1 (Substitution). If ϕ ⊢ i : γ and ϕ, a:γ |= P then ϕ |= [i/a]P . Similarly, if ϕ ⊢ i : γ and

ϕ, a:γ ⊢ j : γ′ then ϕ ⊢ [i/a] j : γ′.

Property 2 (Weakening).

(i) If ϕ ⊢ i : γ then ϕ, a:γ′ ⊢ i : γ, provided a is new in ϕ.

(ii) If ϕ |= P then ϕ, a:γ |= P , provided a is new in ϕ.

Property 3. If ϕ ⊢ i : γ and ϕ ⊢ j : γ and ϕ ⊢ k : γ for some index sort γ, then:

(i) The relation ϕ |= i
.
= i holds.

(ii) If ϕ |= i
.
= j then ϕ |= j

.
= i.

(iii) If ϕ |= i
.
= j and ϕ |= j

.
= k, then ϕ |= i

.
= k.

Property 4. The relation · |= ⊥ does not hold.

Property 5. ϕ, a:γ ⊢ a : γ.

Property 6. If ϕ |= P1 and ϕ, P1 |= P2 then ϕ |= P2.

Figure 4: Necessary properties of the |= and ⊢ index relations.

mark. As an example, ·, a:N , b:N , a
.
= b+ 1 represents the assumption that a and b are natural numbers

such that a equals b+ 1. We often omit the ·.
Throughout this work, [i/a] denotes a standard capture-avoiding substitution; [i/a]P is the propo-

sition P with all free occurrences of the variable a replaced by the index i. The application of [i/a] to

propositions P , indices j, types A, terms e, and variable contexts Γ is defined in the obvious way. The

application of the term variable substitution [e/x] to terms e′ is likewise defined as one would expect.

We assume we have some procedure for deciding a satisfaction relation of the form

ϕ |= P

which can be read as “for all variables declared in ϕ, the propositions in ϕ imply P .” In the examples

we present, the only base sort is N , the natural numbers. Then all inequalities contained in P must be

linear, since systems of integer inequalities are undecidable in general but for linear inequalities, decision

procedures such as Fourier-Motzkin [5] do exist.

It is important to note that the context ϕ can be inconsistent, causing every proposition to be satisfied.

One can create an inconsistent ϕ by adding an index variable of the empty sort ⊥ or by inserting an

unsatisfiable proposition such as a
.
= a+1. Any proposition, including falsehood (⊥), is then vacuously

satisfied.

We also assume an appropriate index typing relation giving appropriate sorts to indices:

ϕ ⊢ i : γ

We require that the satisfaction and index typing relations have some natural properties listed in

Figure 4. Perhaps the most important of these are that we can substitute an index for a variable (Property

1), that we can weaken the context ϕ (Property 2), and that index equality
.
= is an equivalence relation

(Property 3). Each property listed is used somewhere in our proofs.

5

3.1 Example: bitstrings

An example of a refined datatype is strings of bits refined firstly by a datasort expressing the properties

of having no leading zeroes and of being strictly positive, and secondly by an integer index denoting the

bitstring’s binary value. For this example, the parameters to our system are:

s ::= N —The natural numbers

δ ::= bits | pos | nat —Datasorts

P ::= ⊥ —Falsehood

| i
.
= j —Index equality

i, j, k ::= a | (i, j) | fst(i) | snd(i) —Variables, pairing, projections

| 0 | 1 | 2 | 3 | . . . —Natural literals

| i+ j | i− j | i ∗ j —Arithmetic operations

The datatype has three constructors ǫ, 0, and 1. We refine the datatype by datasorts bits, nat, pos:

• bits includes all bitstrings. Examples: ǫ (the empty bitstring), ǫ0, ǫ1, ǫ0010.

• nat includes all bitstrings without leading zeros. So ǫ is a nat, but ǫ001 and ǫ0 are not.

• pos includes every bitstring that has no leading zeros and has a nonzero binary value. Thus ǫ is not

included in pos (its binary value is 0); ǫ01 is not pos (it has a leading zero); but ǫ10 is (its binary

value is 2).

The subsort relation is shown in Figure 5.

pos

✻

nat

✻

bits

Figure 5: The subsort relation for bitstrings. It can be read “pos is a subsort of nat and nat is a subsort of

bits.”

The bitstrings are indexed by their binary value: ǫ10’s binary value is 2, so it is indexed by 2; ǫ is

indexed by 0, etc.

Figure 6 gives the signature S defining the types of the constructors. Recall that a type A&B means

“both A and B”, while a universal dependent type such as Πa:N can be read as “for all indices a
having sort N (the naturals), . . . ”.

S(ǫ) = 1 → nat(0)

S(0) =
(

Πa:N . pos(a) → pos(2∗a)
)

&
(

Πa:N . nat(a) → bits(2∗a)
)

&
(

Πa:N . bits(a) → bits(2∗a)
)

S(1) =
(

Πa:N . pos(a) → pos(2∗a+1)
)

&
(

Πa:N . nat(a) → pos(2∗a+1)
)

&
(

Πa:N . bits(a) → bits(2∗a+1)
)

Figure 6: The signature S giving the types of bitstring constructors.

6

ϕ ⊢ A ≤ A
(refl-≤)

ϕ ⊢ A1 ≤ A2 ϕ ⊢ A2 ≤ A3

ϕ ⊢ A1 ≤ A3
(trans-≤)

ϕ ⊢ A&B ≤ A
(sect-left-≤)

ϕ ⊢ A&B ≤ B
(sect-right-≤)

ϕ ⊢ B1 ≤ A1 ϕ ⊢ A2 ≤ B2

ϕ ⊢ A1 → A2 ≤ B1 → B2
(arrow-≤)

ϕ ⊢ A ≤ B1 ϕ ⊢ A ≤ B2

ϕ ⊢ A ≤ B1 &B2
(sect-≤)

ϕ ⊢ A1 ≤ B1 ϕ ⊢ A2 ≤ B2

ϕ ⊢ A1 ∗A2 ≤ B1 ∗B2
(prod-≤)

δ1 � δ2 ϕ |= i
.
= j

ϕ ⊢ δ1(i) ≤ δ2(j)
(sort-index-≤)

ϕ ⊢ i : γ

ϕ ⊢ Πa:γ.A ≤ [i/a]A
(pi-1-≤)

ϕ, a:γ ⊢ A ≤ B

ϕ ⊢ A ≤ Πa:γ.B
(pi-2-≤)

with a not free in A

Figure 7: Subtyping rules.

3.2 Subtyping

A subtyping judgment ϕ |= A ≤ B means that A is a subtype of B under the context ϕ. A set of

inference rules for deriving a subtyping judgment are shown in Figure 7. Subtyping should be reflexive

and transitive, so we have the rules (refl-≤) and (trans-≤). If something has type A&B it should have

type A and type B, so we have (sect-left-≤) and (sect-right-≤). The rules (sect-≤) and (prod-≤) are

straightforward. (arrow-≤) is the usual subtyping rule for function types, contravariant in the argument

and covariant in the result. To understand the (pi-1-≤) and (pi-2-≤) rules, recall that Π is like a universal

quantifier. Thus (pi-1-≤) says that if i is of sort γ, we can replace a with i in A, yielding a type [i/a]A
that is a supertype of Πa:γ.A. For instance, Πa:γ. bits(a) → bits(2 ∗ a) is the type of functions from

bitstrings to bitstrings that double the value of their argument. According to (pi-1-≤),

Πa:γ. bits(a) → bits(2 ∗ a) ≤ bits(3) → bits(2 ∗ 3)

In (pi-2-≤), we derive that a type A is a subtype of Πa:γ.B (“for all a of sort γ, B”) by putting a:γ
into the context and deriving A ≤ B.

The (sort-index-≤) rule is key; it defines the subtyping relation for instances of refined datatypes. Our

two kinds of refinements come together in this rule: δ1(i) is a subtype of δ2(j) if δ1 is a subsort of δ2 and

i equals j.

We omit the usual distributivity rule

(A → B)& (A → B′) ≤ A → (B&B′)

which is unsound when used with side-effecting functions [7]. (The present language is pure, but we

intend to incorporate effects in future work.) Moreover, without the distributivity rule, no subtyping rule

contains more than one type constructor: the type constructors are orthogonal. (Davies and Pfenning [7]

pointed out that this orthogonality would allow one to easily add type constructors to their system. This

was borne out in the development of our system, which unlike theirs has a product type constructor.)

The rules in Figure 7 are simple but highly nondeterministic, making them hard to reason about and

hard to implement. The nondeterminism of (sect-left-≤) and (sect-right-≤) is inevitable, but we can

eliminate the remaining nondeterminism (for example, that arising from the (trans-≤) rule): following

[7], we formulate a system of algorithmic subtyping rules (Figure 8). This system defines a E relation

equivalent to the ≤ relation in the sense that A E B holds if and only if A ≤ B holds. A superscripted

o, as in Bo, denotes that a type is “ordinary”—neither a universal type Π nor an intersection &.

To see the utility of the algorithmic system, consider deriving the judgment

⊢ Πa:N . bits(a) → nat(2 ∗ a) E Πb:N . bits(b) → bits(b+ b)

In the first subtyping system, we do not know if we should apply (pi-1-≤), (pi-2-≤), or (trans-≤). In

the algorithmic system, the only rule deriving a judgment with a Π as the supertype is (pi-2-E). Then,

7

ϕ ⊢ 1 E 1
(unit-E)

ϕ ⊢ A1 E Bo

ϕ ⊢ A1 &A2 E Bo (sect-left-E)
ϕ ⊢ A2 E Bo

ϕ ⊢ A1 &A2 E Bo (sect-right-E)

ϕ ⊢ B1 E A1 ϕ ⊢ A2 E B2

ϕ ⊢ A1 → A2 E B1 → B2
(arrow-E)

ϕ ⊢ A E B1 ϕ ⊢ A E B2

ϕ ⊢ A E B1 &B2
(sect-E)

ϕ ⊢ A1 E B1 ϕ ⊢ A2 E B2

ϕ ⊢ A1 ∗A2 E B1 ∗B2
(prod-E)

δ1 � δ2 ϕ |= i
.
= j

ϕ ⊢ δ1(i) E δ2(j)
(sort-index-E)

ϕ ⊢ [i/a]A E Bo ϕ ⊢ i : γ

ϕ ⊢ Πa:γ.A E Bo (pi-1-E)
ϕ, a:γ ⊢ A E B

ϕ ⊢ A E Πa:γ.B
(pi-2-E)

with a not free in A

Figure 8: Algorithmic subtyping rules. Bo: a type B that is not a Π or a &.

when we try to derive the premise of (pi-2-E),

b:N ⊢ Πa:N . bits(a) → nat(2 ∗ a) E bits(b) → bits(b+ b)

we have a Π on the left and an ordinary type on the right, so we must use (pi-1-E).

To prove that ϕ ⊢ A E B if and only if ϕ ⊢ A ≤ B (Theorem 9), we need a number of lemmas.

Most of these are inversion and weakening lemmas; we also prove a substitution property and show that

E is reflexive and transitive. With these lemmas, the proof of Theorem 9 will be straightforward.

Lemma 1 (Substitution (Subtyping)). If ϕ, a:γ ⊢ A E B and ϕ ⊢ i : γ then ϕ ⊢ [i/a]A E [i/a]B.

Proof. By induction on the derivation D of ϕ, a:γ ⊢ A E B.

We show three cases; the omitted cases are similar to the last of them.

1. Case (sort-index-E): D =
δ1 � δ2 ϕ, a:γ |= j1

.
= j2

ϕ, a:γ ⊢ δ1(j1) E δ2(j2)
(sort-index-E)

ϕ |= [i/a] (j1
.
= j2) By Property 1

ϕ |= [i/a] j1
.
= [i/a] j2 By definition of substitution

ϕ ⊢ δ1([i/a] j1) E δ2([i/a] j2) By (sort-index-E)

ϕ ⊢ [i/a] δ1(j1) E [i/a] δ2(j2) By definition of substitution

2. Case (pi-1-E): D =
ϕ, a:γ ⊢ [j/b]A E Bo ϕ, a:γ ⊢ j : γ′

ϕ, a:γ ⊢ Πb:γ′. A E Bo
(pi-1-E)

ϕ ⊢ [i/a] [j/b]A E [i/a]Bo By the IH

ϕ ⊢ [[i/a]j / b] [i/a]A E [i/a]Bo By definition of substitution

ϕ ⊢ [i/a] j : γ′ By Property 1

ϕ ⊢ Πb:γ′. [i/a]A E [i/a]Bo By (pi-1-E)

ϕ ⊢ [i/a] Πb:γ′. A E [i/a]Bo By definition of substitution

3. Case (pi-2-E): D =
ϕ, a:γ, b:γ′ ⊢ A E B

ϕ, a:γ ⊢ A E Πb:γ′. B
(pi-2-E)

ϕ, b:γ′ ⊢ [i/a]A E [i/a]B By the IH

ϕ ⊢ [i/a]A E Πb:γ′. [i/a]B By (pi-2-E)

ϕ ⊢ [i/a]A E [i/a] Πb:γ′. B By definition of substitution

Lemma 2 (Inversion).

8

(i) If ϕ ⊢ A E B1 &B2, then ϕ ⊢ A E B1 and ϕ ⊢ A E B2.

(ii) If ϕ ⊢ A E Πa:γ.B′, then ϕ, a:γ ⊢ A E B′.

(iii) If ϕ ⊢ A1 → A2 E B1 → B2, then ϕ ⊢ B1 E A1 and ϕ ⊢ A2 E B2.

(iv) If ϕ ⊢ A1 ∗A2 E B1 ∗B2 then ϕ ⊢ A1 E B1 and ϕ ⊢ A2 E B2.

(v) If ϕ ⊢ Πa:γ.A E Bo then there is an index i such that ϕ ⊢ i : γ and ϕ ⊢ [i/a]A E Bo.

(vi) If ϕ ⊢ A1 &A2 E Bo is derivable then at least one of the judgments ϕ ⊢ A1 E Bo and

ϕ ⊢ A2 E Bo is derivable.

Proof. By inspection of the algorithmic subtyping rules. For example, the only rule with an intersection

as the supertype is (sect-E); the premises of that rule imply the first property. The other parts are similar.

Lemma 3 (ϕ-E Weakening). If ϕ ⊢ A E B then for any a not free in ϕ and any γ, the judgment

ϕ, a:γ ⊢ A E B is derivable.

Proof. By induction on the derivation D of ϕ ⊢ A E B. The proof is totally straightforward in all but

four cases:

1. Case (sort-index-E): Follows from Property 2(i) (weakening ϕ in the premise ϕ |= i
.
= j).

2. Case (pi-1-E): Follows from Property 2(ii).

3. Case (pi-2-E): D =
ϕ, b:γ′ ⊢ A E B′

ϕ ⊢ A E Πb:γ′. B′
(pi-2-E)

By the IH,

ϕ, b:γ′, a:γ ⊢ A E B′

is derivable. Applying (pi-2-E) gives ϕ, a:γ ⊢ A E Πb:γ′. B′, which was to be shown.

Lemma 4 (& Left Introduction). If ϕ ⊢ A E B then ϕ ⊢ A&A′ E B and ϕ ⊢ A′ &A E B.

Proof. By induction on the structure of B. We show the first conclusion; the proof of the second is

symmetric.

1. B = Bo We have ϕ ⊢ A E Bo. By (sect-left-E), ϕ ⊢ A&A′ E Bo.

2. B = Πb:γ.B′

ϕ ⊢ A E Πb:γ.B′ Given

ϕ, b:γ ⊢ A E B′ By Lemma 2(ii)

ϕ, b:γ ⊢ A&A′ E B′ By the IH at B′

ϕ ⊢ A&A′ E Πb:γ.B′ By (pi-2-E)

3. B = B1 &B2

ϕ ⊢ A E B1 &B2 Given

ϕ ⊢ A E B1 By Lemma 3

ϕ ⊢ A&A′ E B1 By the IH

ϕ ⊢ A E B2 By Lemma 3

ϕ ⊢ A&A′ E B2 By the IH

ϕ ⊢ A&A′ E B1 &B2 By (sect-E)

Lemma 5 (Π Left Substitution). If ϕ ⊢ [i/a]A E B and ϕ ⊢ i : γ then ϕ ⊢ Πa:γ.A E B.

Proof. By induction on the structure of B.

9

1. B = Bo Simply apply (pi-1-E).

2. B = Πb:γ′. B′

ϕ ⊢ [i/a]A E Πb:γ′. B′ Given

ϕ, b:γ′ ⊢ Πa:γ.A E B′ By Lemma 2(ii)

ϕ, b:γ′ ⊢ [i/a]A E B′ By the IH at B′

ϕ ⊢ [i/a] Πa:γ.A E Πb:γ′. B By (pi-2-E)

3. B = B1 &B2

ϕ ⊢ [i/a]A E B1 &B2 Given

ϕ ⊢ A E B1 By Lemma 2(i)

ϕ ⊢ A E B2 By Lemma 2(i)

ϕ ⊢ [i/a]A E B1 By the IH at B1

ϕ ⊢ [i/a]A E B2 By the IH at B2

ϕ ⊢ [i/a]A E B1 &B2 By (sect-E)

Lemma 6 (E Reflexivity). ϕ ⊢ A E A.

Proof. By structural induction on A.

1. A = δ(i)

δ� δ Reflexivity of �
ϕ |= i

.
= i By Property 3(i)

ϕ ⊢ δ(i) E δ(i) By (sort-index-E)

2. A = 1

ϕ ⊢ A E A By (unit-E)

3. A = A1 ∗A2

ϕ ⊢ A1 E A1 By the IH

ϕ ⊢ A2 E A2 By the IH

ϕ ⊢ A1 ∗A2 E A1 ∗A2 By (prod-E)

4. A = A1 → A2

ϕ ⊢ A1 E A1 By the IH

ϕ ⊢ A2 E A2 By the IH

ϕ ⊢ A1 → A2 E A1 → A2 By (arrow-E)

5. A = Πa:γ.A′

ϕ, a:γ ⊢ A′ E A′ By the IH

ϕ, a:γ ⊢ [a/a]A′ E A′ By [a/a]A′ = A′

ϕ, a:γ ⊢ a : γ By Property 5

ϕ, a:γ ⊢ Πa:γ.A′ E A′ By Lemma 5

ϕ ⊢ Πa:γ.A′ E Πa:γ.A′ By (pi-2-E)

6. A = A1 &A2

ϕ ⊢ A1 E A1 By the IH

ϕ ⊢ A2 E A2 By the IH

ϕ ⊢ A1 &A2 E A1 By Lemma 4

ϕ ⊢ A1 &A2 E A2 By Lemma 4

ϕ ⊢ A1 &A2 E A1 &A2 By (sect-E)

Lemma 7 (∗ Right Inversion). If ϕ ⊢ A E B1 ∗B2 then there exist A1, A2 such that ϕ ⊢ A E A1 ∗A2

and ϕ ⊢ A1 E B1 and ϕ ⊢ A2 E B2.

10

Proof. By induction on the derivation D of the judgment.

Rules (sect-E), (unit-E), (arrow-E), (sort-index-E), and (pi-2-E) cannot derive any judgment with a

product on the right-hand side.

1. Case (sect-right-E): D =
ϕ ⊢ A′

2 E B1 ∗B2

ϕ ⊢ A′

1 &A′

2 E B1 ∗B2
(sect-right-E)

ϕ ⊢ A′

2 E A1 ∗A2 By the IH

ϕ ⊢ A1 E B1 By the IH

ϕ ⊢ A2 E B2 By the IH

ϕ ⊢ A′

1 &A′

2 E A1 ∗A2 By (sect-right-E)

2. Case (sect-left-E): Similar to (sect-right-E).

3. Case (prod-E): D =
ϕ ⊢ A1 E B1 ϕ ⊢ A2 E B2

ϕ ⊢ A1 ∗A2 E B1 E B2
(prod-E) .

ϕ ⊢ A1 ∗A2 E A1 ∗A2 By Lemma 6

The premises in the derivation constitute the rest of what was to be proved.

4. Case (pi-1-E): D =
ϕ ⊢ [i/a]A′ E B1 ∗B2 ϕ ⊢ i : γ

ϕ ⊢ Πa:γ.A′ E B1 ∗B2
(pi-1-E)

ϕ ⊢ [i/a]A′ E A1 ∗A2 By the IH

ϕ ⊢ A1 E B1 By the IH

ϕ ⊢ A2 E B2 By the IH

ϕ ⊢ Πa:γ.A′ E A1 ∗A2 By (pi-1-E)

Lemma 8 (E Transitivity). If D1 derives ϕ ⊢ A1 E A2 and D2 derives ϕ ⊢ A2 E A3, then

ϕ ⊢ A1 E A3.

Proof. By structural induction on both derivations D1,D2.

If either derivation concluded with (unit-E), the proof is easy: If (unit-E) concluded D1 then A1 =
1 = A2. Since ϕ ⊢ A2 E A3 and A1 = A2, it follows that ϕ ⊢ A1 E A3. Likewise, if (unit-E)

concluded D2 we have A2 = 1 = A3 and so ϕ ⊢ A1 E A2 implies ϕ ⊢ A2 E A3. We have now dealt

with (unit-E).

If D2 ended with (sect-E), then A3 = B1 &B2. From the derivation we have ϕ ⊢ A2 E B1 and

ϕ ⊢ A2 E B2. By the IH, ϕ ⊢ A1 E B1 and ϕ ⊢ A1 E B2, so we apply (sect-E) to obtain

ϕ ⊢ A1 E B1 &B2.

If D2 ended with (pi-2-E), then A3 = Πa:γ.B. From the derivation, ϕ, a:γ ⊢ A2 E B. a cannot be

free in A. So if ϕ ⊢ A1 E A2, then by Lemma 3 (weakening) we have ϕ, a:γ ⊢ A1 E A2. Now by the

IH, ϕ, a:γ ⊢ A1 E B. The result follows by (pi-2-E).

Now we proceed by cases on the rule concluding D1, omitting cases already dealt with.

1. Case (sect-E): A1 = A and A2 = B1 &B2.

From D2, A E B1 and A E B2.

There are four rules in which the type on the left of E can be an intersection:

(a) Case (sect-left-E): D1 =
. . .

ϕ ⊢ A E B1 &B2
(sect-E) D2 =

ϕ ⊢ B1 E Bo

ϕ ⊢ B1 &B2 E Bo (sect-left-E)

By the IH, A E Bo.

(b) Case (sect-right-E): Similar to the preceding case.

(c) Case (sect-E): Handled above.

(d) Case (pi-2-E): Handled above.

11

2. Case (sect-left-E): D1 =
ϕ ⊢ A′

1 E Bo

ϕ ⊢ A′

1 &A′

2 E Bo
(sect-left-E)

ϕ ⊢ Bo E A3 Given

ϕ ⊢ A′

1 E A3 By the IH

ϕ ⊢ A′

1 &A′

2 E A3 By Lemma 4

3. Case (sect-right-E): Similar to (sect-left-E).

4. Case (arrow-E): A1 = A′

1 → A′

2 and A2 = B1 → B2.

Rules that can derive a judgment with an arrow on the left of E :

(a) Case (arrow-E):

D1 =
ϕ ⊢ B1 E A′

1 ϕ ⊢ A′

2 E B2

ϕ ⊢ A′

1 → A′

2 E B1 → B2
(arrow-E)

D2 =
ϕ ⊢ B′

1 E B1 ϕ ⊢ B2 E B′

2

ϕ ⊢ B1 → B2 E B′

1 → B′

2

(arrow-E)

ϕ ⊢ B′

1 E A′

1 By the IH

ϕ ⊢ A′

2 E B′

2 By the IH

ϕ ⊢ A′

1 → A′

2 E B′

1 → B′

2 By (arrow-E)

(b) Case (sect-E): Handled above.

(c) Case (pi-2-E): Handled above.

5. Case (prod-E): Similar to the preceding case (without the contravariance).

6. Case (sort-index-E): A1 = δ1(i), A2 = δ2(j).

Rules where the LHS can have the form δ2(j):

(a) Case (sort-index-E): A3 = δ3(k).

From D1 and D2 we have

δ1 � δ2, ϕ |= i
.
= j, δ2 � δ3, ϕ |= j

.
= k

The subsort relation is transitive so δ1 � δ3. By transitivity of
.
= (Property 3(iii)) we have

ϕ |= i
.
= k. Now we simply apply (sort-index-E).

(b) Case (sect-E): Handled above.

(c) Case (pi-2-E): Handled above.

7. Case (pi-1-E): D1 =
ϕ ⊢ [i/a]A E Bo ϕ ⊢ i : γ

ϕ ⊢ Πa:γ.A E Bo (pi-1-E)

ϕ ⊢ Bo E A3 Given

ϕ ⊢ [i/a]A E A3 By the IH

ϕ ⊢ Πa:γ.A E A3 By Lemma 5

8. Case (pi-2-E):

(a) Case (pi-1-E): D1 =
ϕ, a:γ ⊢ A1 E A′

ϕ ⊢ A1 E Πa:γ.A′
(pi-2-E) D2 =

ϕ ⊢ [i/a]A′ E Bo ϕ ⊢ i : γ

ϕ ⊢ Πa:γ.A′ E Bo
(pi-1-E)

ϕ, a:γ ⊢ A1 E A′ From D1

ϕ ⊢ i : γ From D2

ϕ ⊢ [i/a]A1 E [i/a]A′ By Lemma 1

ϕ ⊢ [i/a]A′ E Bo From D2

ϕ ⊢ [i/a]A1 E Bo By the IH

[i/a]A1 = A1 a is not free in A1

ϕ ⊢ A1 E Bo By the previous two statements

12

(b) Case (sect-E): Handled above.

(c) Case (pi-2-E): Handled above.

We are now ready to state and prove Theorem 9.

Theorem 9 (Subtyping Equivalence). ϕ ⊢ A E B is derivable if and only if ϕ ⊢ A ≤ B is derivable.

Proof. We first show the rightward direction: If ϕ ⊢ A E B then ϕ ⊢ A ≤ B. The proof is by

induction on the derivation of ϕ ⊢ A E B. Cases:

1. Case (sect-E): B = B1 &B2. By the IH, A ≤ B1 and A ≤ B2. By (sect-≤), A ≤ B1 &B2.

2. Case (unit-E): A = B = 1. By (refl-≤) 1 ≤ 1, that is, A ≤ B.

3. Case (sect-left-E): A = A1 &A2 (and B is ordinary). By (sect-left-≤), A1 &A2 ≤ A1. By

the IH, A1 ≤ B. Then by (trans-≤), A1 &A2 ≤ B.

4. Case (sect-right-E): Similar.

5. Case (arrow-E): A = A1 → A2 and B = B1 → B2. By the IH, B1 ≤ A1 and A2 ≤ B2.

Therefore A1 → A2 ≤ B1 → B2 by (arrow-≤).

6. Case (prod-E): A = A1 ∗ A2 and B = B1 ∗ B2. By the IH, A1 ≤ B1 and A2 ≤ B2.

Therefore A1 ∗A2 ≤ B1 ∗B2 by (prod-≤).

7. Case (sort-index-E): Immediate.

8. Case (pi-1-E): A = Πa:γ.A′. By the IH, [i/a]A′ ≤ B. By (pi-1), Πa:γ.A′ ≤ [i/a]A′.

Then by (trans-≤), Πa:γ.A′ ≤ B.

9. Case (pi-2-E): B = Πb:γ.B′. By the IH, ϕ, b:γ ⊢ A ≤ B′. By (pi-2), ϕ ⊢ A ≤ Πb:γ.B′.

With our arsenal of lemmas, the other direction is also straightforward. We must show that if ϕ ⊢
A ≤ B then ϕ ⊢ A E B. The proof is by induction on the derivation of ϕ ⊢ A ≤ B. Cases:

1. Case (refl-≤): B = A. By Lemma 6, A E A.

2. Case (trans-≤): A = A1 and B = A3. By the IH, A1 E A2 and A2 E A3. By Lemma 8,

A1 E A3.

3. Case (sect-left-≤): Follows from Lemma 4.

4. Case (sect-right-≤): Follows from Lemma 4.

5. Case (sect-≤): By the IH, A E B1 and A E B2. By (sect-E), A E B1 &B2.

6. Case (arrow-≤): Symmetric to the arrow-Sub case for the other direction.

7. Case (prod-≤): Symmetric to the prod-Sub case for the other direction.

8. Case (pi-1-≤): A = Πa:γ.A′. By Lemma 6, [i/a]A E [i/a]A. We have ϕ ⊢ i : γ from

(pi-1). Then by Lemma 5, Πa:γ.A′ E B.

9. Case (pi-2-≤): B = Πb:γ.B′. By the IH, ϕ, a:γ ⊢ A E B′. By (pi-2-E), ϕ ⊢ A E Πb:γ.B′.

10. Case (sort-index-≤): Symmetric to the case in the other direction.

13

3.3 Typing

We make no attempt to infer all types; instead, our type system is bidirectional, with two judgment forms.

In the first, ϕ; Γ ⊢ e ↑ A, we infer for e a type A. In the second, ϕ; Γ ⊢ e ↓ A, we check e against the

type A. In many cases, the programmer must explicitly write type annotations e : A. Before giving the

typing rules, we must define the values v, as some of our typing rules are restricted to giving types to

values (for reasons discussed in Section 3.3.1).

v ::= x | () | (v1, v2)

| lam x. e

| c(v)

The typing rules are given in Figure 9. The rules (cons), (matches), (match-δ-c) and (case) are a function

of the signature S giving types to constructors of refined datatypes. (match-δ-c) represents a family of

inference rules, one for each datasort/constructor pair. The judgments it derives, which have the form

ϕ; Γ ⊢ c(x) ⇒ e ↓δ(i) C

should be read as “e typechecks against C, assuming c(x) has type subsort δ(i).” Likewise, the judgment

form

ϕ; Γ ⊢ ms ↓δ(i) C

should be read as “all the expressions in ms typecheck against C, assuming the value being matched has

type δ(i).”

Remark 2. The (sect-up-1) rule seems to do exactly the same thing as (sect-left-E) when used to derive

(sub-down)’s premise, but it is not redundant. The distinction is that (sect-up-1) derives an inference

judgment (ϕ; Γ ⊢ e ↑ A) whereas (sub-down) derives a checking judgment (ϕ; Γ ⊢ e ↓ A). We have

(sect-up-2) and (pi-elim) for the same reason.

We forbid the application of (case) unless the case expression includes exactly one arm ci ⇒ ei for

every constructor of the type τ refined by δ. Moreover, to simplify the proofs involving these rules, we

require that each of the types in the signature S be an intersection A1 & . . . &Am where each conjunct

Ak has the form

Πak:γk. Lk → δk(jk)

This restriction enables us to have just one rule, (cons), for typing an unapplied constructor c. It also

yields a relatively straightforward formulation of the (match-δ-c) rules. We define the various symbols

appearing in (matches) as follows: Let Aδ1, . . . , Aδn be those conjuncts in S(c) such that δk (the sort to

the right of the arrow) is a subsort of δ, and let aδk, γδk, Lδk, δδk, jδk be defined by

Aδk = Πaδk:γδk. Lδk → δδk(jδk)

Let Lδk be the type to the left of the arrow in Aδk, for 1 ≤ k ≤ n. Likewise, let δk(jk) be the type to

the right of the arrow in Aδk.

An example will clarify how we construct the (match-δ-c) rule family. Consider the bitstring con-

structor 0. From Figure 6, its type S(0) is given by

S(0) =
(

Πa:N . pos(a) → pos(2∗a)
)

&
(

Πa:N . nat(a) → bits(2∗a)
)

&
(

Πa:N . bits(a) → bits(2∗a)
)

Thus, according to the above definitions, we have

Abits1 = Πa:N . pos(a) → pos(2∗a)

Abits2 = Πa:N . nat(a) → bits(2∗a)

Abits3 = Πa:N . bits(a) → bits(2∗a)

Since every datasort is a subsort of the “top” datasort bits (Figure 5) Abits has all the conjuncts of S(0).
More interestingly, we also have

Anat1 = Πa:N . pos(a) → pos(2∗a)

14

ϕ; Γ ⊢ e ↑ A&B

ϕ; Γ ⊢ e ↑ A
(sect-up-1)

ϕ; Γ ⊢ e ↑ A&B

ϕ; Γ ⊢ e ↑ B
(sect-up-2)

ϕ; Γ ⊢ v ↓ A1 ϕ; Γ ⊢ v ↓ A2

ϕ; Γ ⊢ v ↓ A1 &A2
(sect-down)

ϕ; Γ ⊢ e ↑ Πa:γ.A ϕ ⊢ i : γ

ϕ; Γ ⊢ e ↑ [i/a]A
(pi-elim)

ϕ, a:γ; Γ ⊢ v ↓ A

ϕ; Γ ⊢ v ↓ Πa:γ.A
(pi-intro)

ϕ |= ⊥

ϕ; Γ ⊢ e ↓ A
(contra-down)

Γ(x) = A

ϕ; Γ ⊢ x ↑ A
(var-up)

ϕ; Γ ⊢ e ↑ A ϕ ⊢ A E B

ϕ; Γ ⊢ e ↓ B
(sub-down)

ϕ; Γ ⊢ e1 ↑ A → B ϕ; Γ ⊢ e2 ↓ A

ϕ; Γ ⊢ e1(e2) ↑ B
(app-up)

ϕ; Γ ⊢ e1 ↑ B ϕ; Γ, x:B ⊢ e2 ↓ A

ϕ; Γ ⊢ let x = e1 in e2 end ↓ A
(let-down)

ϕ; Γ ⊢ e ↓ A

ϕ; Γ ⊢ (e : A) ↑ A
(anno-up)

ϕ; Γ, f :A ⊢ e ↓ A

ϕ; Γ ⊢ fix f. e ↓ A
(fix-down)

ϕ; Γ ⊢ e ↑ A ∗B

ϕ; Γ ⊢ π1(e) ↑ A
(fst-up)

ϕ; Γ ⊢ e ↑ A ∗B

ϕ; Γ ⊢ π2(e) ↑ B
(snd-up)

ϕ; Γ ⊢ () ↓ 1
(unit-down)

ϕ; Γ ⊢ e1 ↓ A1 ϕ; Γ ⊢ e2 ↓ A2

ϕ; Γ ⊢ (e1, e2) ↓ A1 ∗A2
(prod-down)

ϕ; Γ, x:A ⊢ e ↓ B

ϕ; Γ ⊢ lam x. e ↓ A → B
(lam)

S(c) =
(

Πa1:γ1. L1 → δ1(j1)
)

& · · · &
(

Πan:γn. Ln → δn(jn)
)

ϕ ⊢ i : γℓ

ϕ ⊢ c : [i/aℓ]Lℓ → δℓ(jℓ)
(cons)

1 ≤ ℓ ≤ n

ϕ ⊢ c : A → δ2(i) ϕ ⊢ δ2(i) E δ1(j) ϕ; Γ ⊢ e ↓ A

ϕ; Γ ⊢ c(e) ↓ δ1(j)
(cons-app)

(

ϕ, aδk:γδk, i
.
= jδk; Γ, x:Lδk ⊢ e ↓ C

)

k

ϕ; Γ ⊢ c(x) ⇒ e ↓δ(i) C
(match-δ-c)

first premise is repeated for appropriate k (see text)

ϕ; Γ ⊢ c(x) ⇒ e ↓δ(i) C ms ↓δ(i) C

ϕ; Γ ⊢ c(x) ⇒ e |ms ↓δ(i) C
(matches)

ϕ; Γ ⊢ · ↓δ(i) C
(null-matches)

ϕ; Γ ⊢ e ↑ δ(i) ms ↓δ(i) C

ϕ; Γ ⊢ case e of ms ↓ C
(case)

Figure 9: Typing rules. See the text for an explanation of (cons), (match-δ-c), (matches), and (case).

This is the only Anat type, for the datasort bits appearing on the right hand side of the arrow in the other

two conjuncts of S(0) is not a subsort of nat. Finally, Apos’s is

Apos1 = Πa:N . pos(a) → pos(2∗a)

From Apos we generate the premises of (match-pos-0). We have

Lpos1 = pos(a), apos1 = a, γpos1 = N , jpos1 = 2∗a, δpos1 = pos(a)

Thus, the resulting rule is

ϕ, a:N , i
.
= 2∗a; Γ, x:pos(a) ⊢ e ↓ C

ϕ; Γ ⊢ e0 ↓pos C
(match-pos-0)

The entire family of (match-δ-c) rules for bitstrings is given in Figure 11.

We can now justify the presence of (contra-down) through an example. It is quite sensible that, if b
has type bits(0), the expression

case b of ǫ ⇒ ǫ1 | x0 ⇒ ǫ1 | y1 ⇒ ǫ01

15

should check against the type nat(1): The last case arm constructs a value ǫ01 with a leading zero, but

that arm is unreachable since b is indexed by 0 and any value of the form y1 is not indexed by 0. By

the construction of the (match-δ-c) rules, we do not check arms that are unreachable by virtue of an

impossible datasort refinement: in (match-δ-c) we generate no premises corresponding to c if none of the

datasorts on the right hand side of the arrows in S(c) are subsorts of δ. The contradiction rule effectively

excludes from typechecking arms made unreachable by virtue of an impossible index refinement: If the

equation i
.
= jδk does not hold under ϕ then ϕ, . . . , i

.
= jδk |= ⊥. Therefore we can apply (contra-down)

to derive the premise

ϕ, aδk:γδk, i
.
= jδk; Γ, x:Lδk ⊢ e′ ↓ C

For the example above, the relevant premise in (match-bits-pos) is

ϕ, a:N , 0
.
= 2∗a+1; Γ, x:Lδk ⊢ ǫ01 ↓ nat(1)

There is no natural number a such that 0 = 2a + 1, so the relation ϕ, a:N , 0
.
= 2∗a+1 |= ⊥ holds

and we can apply (contra-down).

One can take unreachability too far: we probably do not want

case ǫ of ǫ ⇒ ǫ1 | x0 ⇒ () | y1 ⇒ ()

to be well-typed, despite the fact that the second and third arms will never be evaluated. We see two

justifications for banning such expressions. The first is that allowing them to typecheck seems simply

nonsensical. The second is that, for our refinements to be a conservative extension of some language (say

SML), every program that is well-typed in the language with refinements added should be well-typed

in unrefined SML. This is consistent with our goal: to catch more bugs, not to admit more programs3;

moreover, programmers can then correctly understand the type system as an already-familiar system

which has been augmented with refinements. Therefore, a real compiler should use a two-phase strategy:

First typecheck the program in an unrefined type system, with both kinds of refinements erased; if simple

typechecking succeeds, invoke the refined typechecker. In this way, the programs admitted are those in

the shaded region in Figure 10.

Note that this two-phase strategy excludes programs making use of intersection types in a way not

allowed by a refinement restriction (which restricts the types A, B in A&B to be refinements of the same

simple type). Thus, the practical strategy necessitated by the contradiction rule leads to the exclusion of

these programs, which inhabit the regions marked & in Figure 10, despite the fact that our formal system

has no refinement restriction.

3.3.1 The value restriction

In our formulation, the typing rules (sect-down) and (pi-intro), which are respectively the introduction

rules for & and Π, can only type values v. Without this restriction, two problems would appear—one in

connection with both type constructors, one with Π.

First, we could not extend the language with effects, for Davies and Pfenning demonstrated [7] that

combining mutable references and intersection types leads to unsoundness unless the intersection intro-

duction rule is restricted to values. (The issue has similarities to that of polymorphism, which led to a

value restriction being added to Standard ML [14].) Briefly, one can put a value of a subsort δ in a refer-

ence cell, write a value of a supersort δ′ of δ to the cell, and then read from the cell under the assumption

that the cell contains something of sort δ.

Second, if (pi-intro) is not restricted to values, some non-values are well-typed but irreducible. An

example:

let x = (()() : Πa:⊥. A) in e end

Suppose (pi-intro) could type non-values. In the premise of (pi-intro) we have

a:⊥; · ⊢ ()() ↓ A

a:⊥ is inconsistent (that is, a:⊥ |= ⊥), so the premise is immediately derivable by applying (contra-

down). But ()() is not a value and cannot be reduced. Thus, we lose type safety if (pi-intro) is not

restricted to typing values.

3In contrast, the main goal of the Cayenne type system is to (safely) admit more programs. Augustsson [2] shows some situations

in which admitting more programs is reasonable and desirable, but unreachable-case-arm programs like the above seem useless.

16

δ, &δ, &R

δ⊥, &R

δ⊥, &

programs
admitted
 in an
 unrefined
 system

Figure 10: Set relationship of admitted programs, with and without refinements (δ), refinements with the

(contra-down) rule (δ⊥), unrestricted intersection (&), and intersection restricted to types refining the

same simple type (&R). The leftmost circle contains those programs admitted in a simple type system

with no refinements and no form of intersection. The shaded area represents those programs admitted if

we first do simple typechecking (rejecting all programs outside the leftmost circle).

ϕ, a:1, i
.
= 0; Γ ⊢ e ↓ C

ϕ; Γ ⊢ ǫ ⇒ e ↓bits C
(match-bits-ǫ)

ϕ, a:N , i
.
= 2∗a; Γ, x:bits(a) ⊢ e ↓ C

ϕ; Γ ⊢ x0 ⇒ e ↓bits C
(match-bits-0)

ϕ, a:N , i
.
= 2∗a+1; Γ, y:bits(a) ⊢ e ↓ C

ϕ; Γ ⊢ y1 ⇒ e ↓bits C
(match-bits-1)

ϕ, a:1, i
.
= 0; Γ ⊢ e ↓ C

ϕ; Γ ⊢ ǫ ⇒ e ↓bits C
(match-nat-ǫ)

ϕ, a:N , i
.
= 2∗a; Γ, x:pos(a) ⊢ e ↓ C

ϕ; Γ ⊢ x0 ⇒ e ↓bits C
(match-nat-0)

ϕ, a:N , i
.
= 2∗a+1; Γ, y:nat(a) ⊢ e ↓ C

ϕ; Γ ⊢ y1 ⇒ e ↓bits C
(match-nat-1)

ϕ; Γ ⊢ ǫ ⇒ e ↓bits C
(match-pos-ǫ)

ϕ, a:N , i
.
= 2∗a; Γ, x:pos(a) ⊢ e ↓ C

ϕ; Γ ⊢ x0 ⇒ e ↓bits C
(match-pos-0)

ϕ, a:N , i
.
= 2∗a+1; Γ, y:nat(a) ⊢ e ↓ C

ϕ; Γ ⊢ y1 ⇒ e ↓bits C
(match-pos-1)

Figure 11: The family of (match-δ-c) rules for bitstrings.

17

ϕ; Γ ⊢ v : A1 ϕ; Γ ⊢ v : A2

ϕ; Γ ⊢ v : A1 &A2
(sect-down)

ϕ, a:γ; Γ ⊢ v : A

ϕ; Γ ⊢ v : Πa:γ.A
(pi-intro)

Γ(x) = A

ϕ; Γ ⊢ x : A
(var)

ϕ; Γ ⊢ e : A ϕ ⊢ A E B

ϕ; Γ ⊢ e : B
(sub)

ϕ |= ⊥

ϕ; Γ ⊢ e : A
(contra)

ϕ; Γ ⊢ e1 : A → B ϕ; Γ ⊢ e2 : A

ϕ; Γ ⊢ e1(e2) : B
(app)

ϕ; Γ ⊢ e1 : B ϕ; Γ, x:B ⊢ e2 : A

ϕ; Γ ⊢ let x = e1 in e2 end : A
(let)

ϕ; Γ, f :A ⊢ e : A

ϕ; Γ ⊢ fix f. e : A
(fix)

ϕ; Γ ⊢ e : A ∗B

ϕ; Γ ⊢ π1(e) : A
(fst)

ϕ; Γ ⊢ e : A ∗B

ϕ; Γ ⊢ π2(e) : B
(snd)

ϕ; Γ ⊢ () : 1
(unit)

ϕ; Γ ⊢ e1 : A1 ϕ; Γ ⊢ e2 : A2

ϕ; Γ ⊢ (e1, e2) : A1 ∗A2
(prod)

ϕ; Γ, x:A ⊢ e : B

ϕ; Γ ⊢ lam x. e : A → B
(lam)

ϕ ⊢ c : A → δ2(i) ϕ ⊢ δ2(i) E δ1(j) ϕ; Γ ⊢ e : A

ϕ; Γ ⊢ c(e) : δ1(j)
(cons-app)

S(c) =
(

Πa1:γ1. L1 → δ1(j1)
)

& · · · &
(

Πan:γn. Ln → δn(jn)
)

ϕ ⊢ i : γℓ

ϕ ⊢ c : [i/aℓ]Lℓ → δℓ(jℓ)
(cons)

1 ≤ ℓ ≤ n

(

ϕ, aδk:γδk, i
.
= jδk; Γ, x:Lδk ⊢ e : C

)

k

ϕ; Γ ⊢ c(x) ⇒ e ↓δ(i) C
(match-δ-c)

first premise is repeated for appropriate k

ϕ; Γ ⊢ c(x) ⇒ e ↓δ(i) C ms ↓δ(i) C

ϕ; Γ ⊢ c(x) ⇒ e |ms ↓δ(i) C
(matches)

ϕ; Γ ⊢ · ↓δ(i) C
(null-matches)

ϕ; Γ ⊢ e : δ(i) ms ↓δ(i) C

ϕ; Γ ⊢ case e of ms : C
(case)

Figure 12: Rules for the (undirected) type assignment system. See Section 3.3 for an explanation of

(cons), (match-δ-c), (matches), and (case).

3.4 A type assignment system

To simplify the proof of type safety, we introduce an undirected type system (Figure 12). This system is

almost the same as the bidirectional system, with all ↓- and ↑-judgments changed to :-judgments. How-

ever, it lacks the rules (sect-up-1), (sect-up-2), and (pi-elim), which are not needed: the rule (sub-down)

is now an undirected rule (sub), so that the omitted rules can be derived from (sub) and the subtyping

rules (using Lemmas 4 and 5). Here, we are not interested in the practicality of type-checking, so we can

omit the rule (anno-up) (which is necessary since the typechecker cannot “guess” type annotations).

The type assignment system is related to the one given in Figure 9 in the following sense:

Theorem 10 (Portability of Typing). Let ||e|| denote the term e with type annotations erased, that is,

with all occurrences of (e : A) replaced by e.

If D is a derivation of ϕ; Γ ⊢ e ↓ A, then there exists a derivation D′ of ϕ; Γ ⊢ ||e|| : A.

Proof. To obtain D′ from D:

(1) erase the type annotations and replace every ↑ and ↓ by :,

18

(2) remove uses of (anno-up), which now have the form

...

ϕ; Γ ⊢ e : A

ϕ; Γ ⊢ e : A

(3) convert uses of (sect-up-1), (sect-up-2), and (pi-elim) into uses of (sub), as

...

ϕ; Γ ⊢ e : A&B

ϕ; Γ ⊢ e : A −→

...

ϕ; Γ ⊢ e : A&B ϕ ⊢ A&B E A

ϕ; Γ ⊢ e : A

The derivability of the subtyping judgment follows from Theorem 9 and the rules (sect-left-≤), (sect-

right-≤), and (pi-1-≤).

Because any ↑-judgment can be turned into a ↓-judgment by applying (sub-down) with second premise

ϕ ⊢ A E A, we also have

Corollary 11. If ϕ; Γ ⊢ e ↑ A is derivable, then ϕ; Γ ⊢ ||e|| : A is derivable.

We will prove that this system, not the bidirectional system, is sound with respect to the dynamic se-

mantics that follows. The bidirectionality was to make typechecking practical, and now only complicates

matters (particularly the proof of safety). In addition, we want to allow types to be erased by runtime, and

therefore want a dynamic semantics in which types do not appear. Programs typed by the type assignment

system have no type annotations, so the type assignment system fits such a semantics.

3.5 Dynamic semantics

A deterministic call-by-value dynamic semantics over type-erased terms is defined by the rules in Figure

13. Since the terms have all their type annotations erased, there is no rule for (e : A). Note that the case

expression in (ev-case) must have exactly one arm for each constructor.

Theorem 12 (Determinism). If e 7→ e′ and e 7→ e′′, it must be the case that e′ = e′′.

Proof. Assume e 7→ e′. The proof is by cases on the form of e; we give two representative cases.

1. e = π1(e
′′) If e′′ is a value and π1(e

′′) steps to e′, it must do so by (ev-fst). Otherwise, e′′

is not a value and so π1(e
′′) can step only by (ev-fst-arg). In either case, at most one rule can be

applied, so e′ is uniquely determined.

2. e = e1(e2) If e1 is not a value and e1(e2) 7→ e′, it must do so by (ev-app-fn). If e1 is a

value but e2 is not, e1(e2) 7→ e′ only by (ev-app-arg). (Note that an unapplied constructor is not an

expression, so we do not consider e = c(e2) here.) If both e1 and e2 are values, the only rule that

could possibly apply is (ev-beta). In all cases, e′ is uniquely determined.

3.6 Lemmas for type safety

Lemma 13 (Substitution of an index variable). If ϕ, a:γ; Γ ⊢ e : A and ϕ ⊢ i : γ then ϕ; [i/a]Γ ⊢ e :
[i/a]A.

Proof. By induction on the derivation D of ϕ, a:γ; Γ ⊢ e : A. The only interesting case is for the rule

(contra).

19

e1 7→ e′1
(e1, e2) 7→ (e′1, e2)

(ev-pair-1)
e2 7→ e′2

(v, e2) 7→ (v, e′2)
(ev-pair-2)

π1(v1, v2) 7→ v1
(ev-fst)

π2(v1, v2) 7→ v2
(ev-snd)

e 7→ e′

π1(e) 7→ π1(e
′)

(ev-fst-arg)
e 7→ e′

π2(e) 7→ π2(e
′)

(ev-snd-arg)

e1 7→ e′1
let x = e1 in e2 end 7→ let x = e′1 in e2 end

(ev-let-arg)
let x = v in e2 end 7→ [v/x] e2

(ev-let)

e1 7→ e′1
e1(e2) 7→ e′1(e2)

(ev-app-fn)
e2 7→ e′2

v(e2) 7→ v(e′2)
(ev-app-arg)

e 7→ e′

c(e) 7→ c(e′)
(ev-cons-arg)

(lam x. e) v 7→ [v/x] e
(ev-beta)

fix f. e 7→ [fix f. e / f] e
(ev-fix)

e 7→ e′

case e of . . . 7→ case e′ of . . .
(ev-case-arg)

case c(v) of . . . | c(x) ⇒ e | . . . 7→ [v/x] e
(ev-case)

Figure 13: Evaluation rules.

1. Case (contra): D =
ϕ, a:γ |= ⊥

ϕ, a:γ; Γ ⊢ e : A
(contra)

ϕ ⊢ i : γ Given

ϕ |=⊥ By Property 1

ϕ; [i/a]Γ ⊢ e : [i/a]A By (contra)

2. Case (sub): D =
ϕ, a:γ; Γ ⊢ e : B ϕ, a:γ ⊢ B E A

ϕ, a:γ; Γ ⊢ e : A
(sub)

ϕ; [i/a]Γ ⊢ e : [i/a]B By the IH

ϕ; [i/a]Γ ⊢ [i/a]B E [i/a]A By Lemma 1

ϕ; [i/a]Γ ⊢ e : [i/a]A By (sub)

3. Case (fst): D =
ϕ, a:γ; Γ ⊢ e : A ∗B

ϕ, a:γ; Γ ⊢ π1(e) : A
(fst)

ϕ; [i/a]Γ ⊢ e : [i/a]A ∗B By the IH

ϕ; [i/a]Γ ⊢ e : [i/a]A ∗ [i/a]B By definition of substitution

ϕ; [i/a]Γ ⊢ π1(e) : [i/a]A By (fst)

Lemma 14 (Substitution of a program variable). If ϕ; Γ, x:B ⊢ e : A and ϕ; Γ ⊢ v : B, then ϕ; Γ ⊢
[v/x] e : A.

Proof. By induction on the derivation D of ϕ; Γ, x:B ⊢ e : A. We show only a few cases.

1. Case (var): D =
(Γ, x:B) (x) = A

ϕ; Γ, x:B ⊢ x : A
(var)

(Γ, x:B) (x) = A so it must be that A = B. We are given ϕ; Γ ⊢ v : B, which—since [v/x]x =
v—is the same as ϕ; Γ ⊢ [v/x]x : A.

20

2. Case (sub): By the induction hypothesis, ϕ; Γ ⊢ [v/x] e : A. From the derivation, ϕ ⊢ A E B.

Then by (sub), ϕ; Γ ⊢ [v/x] e : B.

3. Case (let): D =
ϕ; Γ, x:B ⊢ e1 : B′ ϕ; Γ, x:B, y:B′ ⊢ e2 : A

ϕ; Γ, x:B ⊢ let y = e1 in e2 end : A
(let)

ϕ; Γ, x:B ⊢ e1 : B′ From D
ϕ; Γ ⊢ [v/x] e1 : B′ By the IH

ϕ; Γ, x:B, y:B′ ⊢ e2 : A From D
ϕ; Γ, y:B′, x:B ⊢ e2 : A Reordering the context

ϕ; Γ, y:B′ ⊢ [v/x] e2 : A By the IH

ϕ; Γ ⊢ let y = [v/x] e1 in [v/x] e2 end : A By (let)

ϕ; Γ ⊢ [v/x] let y = e1 in e2 end : A By definition of substitution

Lemma 15. If ϕ |= P1 and ϕ, P1 ⊢ A E B then ϕ ⊢ A E B.

Proof. By induction on the derivation of ϕ, P1 ⊢ A E B, and totally straightforward in all but one case:

1. Case (sort-index-E): D =
δ1 � δ2 ϕ, P1 |= i

.
= j

ϕ, P1 ⊢ δ1(i) E δ2(j)
(sort-index-E)

ϕ |=P1 Given

ϕ, P1 |= i
.
= j From D

ϕ |= i
.
= j By Property 6

δ1 � δ2 From D
ϕ ⊢ δ1(i) E δ2(j) By (sort-index-E)

Lemma 16. If ϕ |= P1 and D derives ϕ, P1; Γ ⊢ e : A then ϕ; Γ ⊢ e : A can be derived.

Proof. Straightforward (using Lemma 15) in all cases but one:

1. Case (contra): D =
ϕ, P1 |= ⊥

ϕ, P1; Γ ⊢ e : A
(contra)

ϕ |=P1 Given

ϕ, P1 |=⊥ From D
ϕ |=⊥ By Property 6

ϕ; Γ ⊢ e : A By (contra)

Lemma 17 (Inversion on ∗). If D derives ⊢ v : B and D′ derives ⊢ B E B1 ∗ B2, then v has the form

(v1, v2) where ⊢ v1 : B1 and ⊢ v2 : B2.

Proof. By induction on the derivations of the typing and subtyping judgments.

1. Case (prod): D =
⊢ v1 : A1 ⊢ v2 : A2

⊢ (v1, v2) : A1 ∗A2
(prod)

⊢ v : A1 ∗A2 Given

⊢ A1 ∗A2 E B1 ∗B2 Given

⊢ A1 E B1 By Lemma 2(iv)

⊢ A2 E B2 By Lemma 2(iv)

v = (v1, v2) From D
⊢ v1 : A1 From D
⊢ v2 : A2 From D
⊢ v1 : B1 By (sub)

⊢ v2 : B2 By (sub)

21

2. Case (sect): D =
⊢ v : A1 ⊢ v : A2

⊢ v : A1 &A2
(sect)

⊢ A1 &A2 E B1 ∗B2 Given

By Lemma 2(vi), at least one of the following is derivable:

⊢ A1 E B1 ∗B2 ⊢ A2 E B1 ∗B2

If the judgment on the left is derivable, then:

⊢ A1 E A′

1 ∗A
′

2 By Lemma 7

⊢ A′

1 E B1 By Lemma 7

⊢ A′

2 E B2 By Lemma 7

⊢ v1 : A′

1 By the IH

⊢ v2 : A′

2 By the IH

⊢ v1 : B1 By (sub)

⊢ v2 : B2 By (sub)

If the judgment on the left is not derivable, the judgment on the right must be. The next steps are

similar, with A2 in place of A1.

3. Case (pi-intro): D =
a:γ ⊢ v : A

⊢ v : Πa:γ.A
(pi-intro)

⊢ Πa:γ.A E B1 ∗B2 Given

⊢ [i/a]A E B1 ∗B2 (for some i s.t. ⊢ i : γ) Inversion: (pi-1-E) was used

⊢ v : [i/a]A By substitution (Lemma 13)

By the IH applied to the last line, v = (v1, v2) and ⊢ v1 : B1 and ⊢ v2 : B2.

4. Case (sub): By transitivity, ⊢ A E B1 ∗ B2. By Lemma 7, there exist A1, A2 such that

⊢ A E A1 ∗ A2 and ⊢ A1 E B1 and ⊢ A2 E B2. By the IH, v = (v1, v2) and ⊢ v1 : A1 and

⊢ v2 : A2.

Applying (sub) twice, we obtain ⊢ v1 : B1 and ⊢ v2 : B2.

5. Case (contra): The context ϕ is empty. By Property 4, (contra) could not have been applied.

Lemma 18 (Variable Type Shrinking). If D is a derivation of ϕ; Γ, x:A ⊢ e : B and ϕ ⊢ A′ E A, then

ϕ; Γ, x:A′ ⊢ e : B is derivable.

Proof. By induction on D. Essentially, in D: (1) replace Γ, x:A with Γ, x:A′, and (2) replace every use

of (var-up) on x with a (var-up) and a (sub):

(Γ, x:A′)(x) = A′

ϕ; Γ, x:A′ ⊢ x : A′ ϕ ⊢ A′ E A

ϕ; Γ, x:A′ ⊢ x : A

This is legitimate because (var-up) is the only rule that inspects Γ.

D derived ϕ; Γ, x:A ⊢ e : B and we replaced all the Γ, x:A’s with Γ, x:A′’s, so we have the desired

derivation of ϕ; Γ, x:A′ ⊢ e : B.

Lemma 19 (Inversion on →). If D is a derivation of ⊢ v : B and ⊢ B E B1 → B2, then v has the form

lam x. e where x:B1 ⊢ e : B2.

Proof. By cases on the rule concluding the derivation D.

1. Case (sect): Similar to the case in the proof of Lemma 17.

2. Case (pi-intro): Similar to the case in the proof of Lemma 17.

22

3. Case (lam): D =
·;x:A1 ⊢ e : A2

⊢ lam x. e : A1 → A2
(lam)

⊢ A1 → A2 E B1 → B2 Given

⊢ B1 E A1 By Lemma 2(iii)

·;x:A1 ⊢ e : A2 From D
·;x:B1 ⊢ e : A2 By Lemma 18

⊢ A2 E B2 By Lemma 2(iii)

·;x:B1 ⊢ e : B2 By (sub)

4. Case (sub): D =
⊢ e : A ⊢ A E B

⊢ e : B
(sub)

⊢ A E B From D
⊢ B E B1 → B2 Given

⊢ A E B1 → B2 By transitivity (Lemma 8)

v = lam x. e By the IH

x:B1 ⊢ e : B2 By the IH

5. Case (contra): By Property 4, (contra) could not have been used.

Lemma 20 (Inversion on δ(i)). If D is a derivation of ⊢ v : B and ⊢ B E δ(i), then there exist

v′, c, δ2, j such that v = c(v′), ⊢ v′ : A, c : A → δ2(j), and ⊢ δ2(j) E δ(i).

Proof. By induction on the derivation D of ⊢ v : B. Cases:

1. Case (sub): By transitivity of subtyping (Lemma 8), we can apply the IH, yielding the result.

2. Case (contra): Could not have been used (Property 4).

3. Case (pi-intro): D =
a:γ ⊢ v : A

⊢ v : Πa:γ.A
(pi-intro)

By Lemma 2(v) we have

⊢ [j/a]A E δ(i)

for some j such that ⊢ j : γ. Replacing a with j in the derivation of a:γ ⊢ v : A yields an equally

long derivation of ⊢ v : [j/b]A to which we can apply the induction hypothesis.

4. Case (sect): If B = A1 &A2 E δ(i) then at least one of ⊢ A1 E δ(i) and ⊢ A2 E δ(i) is

derivable (Lemma 2(vi)). Thus we can apply the IH to yield the result.

5. Case (cons-app): D =
⊢ c : A → δ2(j2) ⊢ δ2(j2) E δ1(j1) ⊢ v′ : A

⊢ c(v′) : δ1(j1)
(cons-app)

The rule types a term v of the form c(e). By the definition of values, e must be some value v′.

⊢ δ2(j2) E δ1(j1) From derivation D
⊢ δ1(j1) E δ(i) Given

⊢ δ2(j2) E δ(i) By Lemma 8 (transitivity of subtyping)

⊢ c : A → δ2(j2) From derivation D
⊢ v′ : A From derivation D

The last three judgments constitute the result.

Lemma 21 (Constructor Typing Inversion). If ⊢ c : A → δ′(j′) such that ⊢ δ′(j′) E δ(j), then there

exist a natural number k and an index i (where ⊢ i : γδk) such that A = [i/aδk]Lδk and |= j
.
=

[i/aδk] jδk.

23

Proof. There is only one rule for typing a constructor, (cons), so the derivation was

S(c) =
(

Πa1:γ1. L1 → δ1(j1)
)

& · · · &
(

Πan:γn. Ln → δn(jn)
)

ϕ ⊢ i : γℓ

ϕ ⊢ c : [i/aℓ] Lℓ → δℓ(jℓ)

with δℓ = δ′ � δ. By definition of Aδk, if Πaℓ:γℓ. Lℓ → δℓ(j) is a conjunct of S(c) and δℓ is a subsort of

δ, that conjunct is among the Aδk’s. Therefore, there is a k such that

A = [i/aδk]Lδk, j′ = [i/aδk] jδk.

By inversion it follows from ⊢ δ′(j′) E δ(j) that |= j′
.
= j, so by the identity of j′ and [i/aδk] jδk,

|= j
.
= [i/aδk] jk

3.7 Type safety

We state and prove type safety as a single theorem, rather than as two separate theorems of preservation

(stepping does not change types) and progress (every term either steps or is a value). The proofs of the

two separate theorems would share most of their structure, so it is easier to prove the combined theorem.

Theorem 22 (Type Safety). If ·; · ⊢ e : A, then either

1. e is a value, or

2. there exists a unique term e′ such that e 7→ e′ and ·; · ⊢ e′ : A.

Proof. By induction on the derivation D of ⊢ e : A. We need no cases for the rules excluded from the

undirected system: (anno-up), (sect-up-. . .), and (pi-elim). Suppose e is not a value (if it is a value, we’re

done). Now we can dispense with cases for those rules that can only type values: (sect), (pi-intro), (var),

(unit), and (lam). We will show that there exists an e′ with the desired properties; we know by Theorem

12 that e′ must be unique.

1. Case (sub): D =
⊢ e : A ⊢ A E B

⊢ e : B
(sub)

⊢ e : A From the derivation D
e 7→ e′ By induction hypothesis

⊢ e′ : A By induction hypothesis

⊢ A E B From D
⊢ e′ : B By (sub)

2. Case (contra): By Property 4, the (contra) rule could not have derived ·; · ⊢ e : A.

3. Case (app): D =
⊢ e1 : B → A ⊢ e2 : B

⊢ e1(e2) : A
(app)

There are three cases, depending on which of e1 and e2 are values.

• e1 and e2 are values. By Lemma 19 the applied expression e1 has the form lam x. e and

x:B ⊢ e : A. Thus, e1(e2) 7→ [e2/x]e (ev-beta), and by Lemma 14, ⊢ [e2/x]e : A.

• e1 is a value but e2 is not a value: By the IH, e2 7→ e′2 and ⊢ e′2 : A. So by (ev-app-arg)

e1(e2) steps to e1(e
′

2). By (app), ⊢ e1(e
′

2) : B.

• e1 is not a value: e1 7→ e′1 (ev-app-fn) and ⊢ e′1 : B → A. Therefore e1(e2) 7→ e′1(e2),
which by (app) has type A.

4. Case (let): D =
·; · ⊢ e1 : B ·;x:B ⊢ e2 : A

·; · ⊢ let x = e1 in e2 end : A
(let)

24

• Suppose e1 is a value.

let x = e1 in e2 end 7→ [e1/x] e2 By (ev-let)

⊢ [e1/x] e2 : A By Lemma 14

• Suppose e1 is not a value.

⊢ e1 : B From D
e1 7→ e′1 By the IH

⊢ e′1 : B By the IH

let x = e1 in e2 end 7→ let x = e′1 in e2 end By (ev-let-arg)

⊢ let x = e′1 in e2 end : A By (let)

5. Case (fix): D =
·; f :A ⊢ e : A

·; · ⊢ fix f. e : A
(fix)

fix f. e 7→ [fix f. e/f] e By (ev-fix)

·; f :A ⊢ e : A From D
·; · ⊢ [fix f. e/f] e : A Substitution (14)

6. Case (fst): D =
⊢ e : A ∗B
⊢ π1(e) : A

(fst)

By the induction hypothesis, either e is a value or e 7→ e′ with ⊢ e′ : A ∗B.

• If e is a value, by inversion (Lemma 17) it must be some (v1, v2) with ⊢ v1 : A and ⊢ v2 : B.

By (ev-fst), π1(e) 7→ v1. Since ⊢ v1 : A, we’re done.

• If e 7→ e′ then π1(e) 7→ π1(e
′) by (ev-fst-arg). By the IH, ⊢ e′ : A∗B. By (fst), ⊢ π1(e

′) : A.

7. Case (snd): Similar to (fst).

8. Case (prod): e = (e1, e2).

• Suppose e1 is not a value.

e1 7→ e′1 By the IH

⊢ e′1 : A By the IH

(e1, e2) 7→ (e′1, e2) By (ev-pair-1)

⊢ (e1, e2) : A ∗B By (prod)

• If e1 is a value, then e2 must not be a value (otherwise (e1, e2) would itself be a value,

contrary to assumption).

e2 7→ e′2 By the IH

⊢ e′2 : B By the IH

(e1, e2) 7→ (e1, e
′

2) By (ev-pair-2)

⊢ (e1, e
′

2) : A ∗B By (prod)

9. Case (cons-app): If e is a value, then c(e) is a value and there is no more to do. If e is not a

value, by the IH, e 7→ e′ and ⊢ e′ : A. Applying (cons-app) yields ⊢ c(e′) : δ1(j).

10. Case (case): D = ⊢ e : δ(i)
D′

⊢ ms ↓δ(i) C

⊢ case e of ms : C
(case)

If e is not a value, then by the IH, e 7→ e′ and e′ : δ(i).

If e is a value, we step by (ev-case). By our requirement that case expressions be exhaustive, ms
contains a match c(x) ⇒ e′ for every constructor c, so there must be a subderivation

aδk:γδk, i
.
= jδk;x:Lδk ⊢ e′ : C

contained in D′.

25

⊢ e : δ(i) From D
∃v. e = c(v) By Lemma 20

⊢ c : A → δk(j) By Lemma 20

⊢ δk(j) E δ(i) By Lemma 20

∃k ∈ N, j′. ⊢ j′ : γδk
and [j′/aδk]Lδk = A

By Lemma 21

aδk:γδk, i
.
= jδk;x:Lδk ⊢ e′ : C From D′

·, i
.
= [j′/aδk]jδk;x:A ⊢ e′ : [j′/aδk]C Substituting j′ for aδk

·, i
.
= [j′/aδk]jδk;x:A ⊢ e′ : C aδk not free in C

|= i
.
= [j′/aδk] jδk By Lemma 21

·;x:A ⊢ e′ : C Lemma 16

⊢ v : A By Lemma 20

⊢ [v/x] e′ : C By substitution (Lemma 14)

Remark 3. We showed above that if (pi-intro) is not restricted to typing values, the system becomes

unsound. Here is how the proof fails without a value restriction: We would need to apply the induction

hypothesis to a premise a:γ; · ⊢ e : A, which has a ϕ context that is not empty! We see no way to

generalize the hypothesis: it is unclear what evaluating under any ϕ but · means, especially if γ is an

empty sort such as ⊥.

4 Example: red-black trees

A red-black tree is a classic form of binary search tree. Each node in a red-black tree is either empty

or a branch node; a branch node is either red or black. An empty node is considered to be black. Two

invariants ensure that red-black trees are (approximately) balanced:

(1) the children of every red node are black;

(2) for every node x, there exists a natural number bh(x) such that the number of black nodes on every

path from x to its leaves is bh(x).

We call bh(x) the black height of x. The useful consequence of the two invariants is that the height of a

red-black tree containing n non-empty nodes can be at most 2 log2(n+ 1).
The obvious algebraic datatype, in SML syntax, is

datatype ’a dict = E (* empty *)

| R of ’a * ’a dict * ’a dict (* red branch *)

| B of ’a * ’a dict * ’a dict (* black branch *)

However, for simplicity—and because our language lacks polymorphism—we will refine this datatype

instead:

datatype dict = E (* empty *)

| R of dict * dict (* red branch *)

| B of dict * dict (* black branch *)

Our type system can express both invariants. Datasort refinements alone are sufficient to express

the color invariant (1), but not the black height invariant (2), since a node’s black height belongs to an

infinite set (the natural numbers); we cannot express the fact that the black heights of the left and right

children are the same element of that set with only a finite collection of datasorts. But we can use index

refinements for this purpose. Indexing a tree by the number of nodes it contains and the tree’s black

height leads to the constructor types of Figurereffig:rbt-sig. Invariant (2) is captured simply by writing h
for the second index of both arguments, in every conjunct. We do not represent a third invariant that for

any branch node x containing a key k, the keys in its left subtree are less than k and the keys in its right

subtree are greater than k.

26

Our subsort relation (Figure 14) is more elaborate than one might expect. This is because in practice,

it is expedient to temporarily break the color invariant (1): the operations on red-black trees are typically

implemented using functions that take a tree in which either the root or a child of the root may not satisfy

the color invariant and do appropriate rotations, returning a tree satisfying both invariants.4 If a tree

has sort badRoot, the color invariant may be violated at the root; if it has sort badLeft (or badRight),

the color invariant may be violated at the left (or right) child. Sort rbt is the sort of trees for which no

invariant is violated, and red and black are simply the sorts of trees with a root of that color satisfying

both invariants.5

red
✑
✑✑✸

black
◗

◗❦

rbt

✻

❩
❩

❩❩⑥

✚
✚

✚✚❃

badRoot
✟✟✟✟✟✯

badLeft

✻

badRight
❍❍❍❍❍❨

dict

Figure 14: The subsort relation for red-black trees.

Figure 16 shows the (match-δ-c) inference rules generated by the method described in Section 3.3.

(As an aside, some of the rules are suboptimal in that some of the premises are redundant; rbt(. . .) ∗
rbt(. . .), the type of y in the last premise of (match-dict-black), is a supertype of the types of y in the

two premises that precede it.)

4.1 Typechecking restore right

To see how the rules work on real code, consider the restore right function in Figure 17. Given a

red-black tree t with a possible color violation at t’s right child (i.e. t’s right child may be red but has

a non-black child), restore right returns an equivalent tree with no color violations. We express this

behavior through a type annotation:

(lam arg. . . .) : Πn:N .Πh:N . badRight(n, h) → rbt(n, h)

We do not index the tree by the keys it contains, so we cannot check that the result actually contains the

same keys. However, we can and do use the first index refinement to check that the result has the same

number of nodes n as the argument.

Since our language has only non-nested and tuple-free patterns, a full translation of restore right

would be tedious and confusing. Instead, we show three of the cases (Figure 18). Typechecking the

function requires that, for each case arm, we derive a judgment

arg:badRight(n, h), . . . ;n:N , h:N , . . . ⊢ case-arm : rbt(n, h)

1. In the first case, the argument is just E, and the body of the case arm is E as well. We need to satisfy

the premise of (match-badRoot-E),

arg:badRight(n, h);n:N , h:N , (n, h)
.
= (0, 0) ⊢ E ↓ rbt(n, h)

The derivation is simple:

. . . ; . . . ⊢ E ↑ black(0, 0) By (cons-app)

black� rbt

n:N , h:N , (n, h)
.
= (0, 0) |=(0, 0)

.
= (n, h)

n:N , h:N , (n, h)
.
= (0, 0) ⊢ black(0, 0) E rbt(n, h) By (sort-index-E)

arg:badRight(n, h);n:N , h:N , (n, h)
.
= (0, 0) ⊢ E ↓ rbt(n, h) By (sub-down)

4See, for instance, Okasaki’s Standard ML implementation of red-black trees [15].
5This refinement scheme for red-black trees is due to Rowan Davies.

27

S(E) = Πa:1. 1 → black(0, 0),

S(R) =
(

ΠnL, h, nR:N . black(nL, h) ∗ black(nR, h) → red(nL + nR + 1, h)
)

&
(

ΠnL, h, nR:N . black(nL, h) ∗ rbt(nR, h) → badRoot(nL + nR + 1, h)
)

&
(

ΠnL, h, nR:N . rbt(nL, h) ∗ black(nR, h) → badRoot(nL + nR + 1, h)
)

,

S(B) =
(

ΠnL, h, nR:N . badRoot(nL, h) ∗ rbt(nR, h) → badLeft(nL + nR + 1, h+ 1)
)

&
(

ΠnL, h, nR:N . rbt(nL, h) ∗ badRoot(nR, h) → badRight(nL + nR + 1, h+ 1)
)

&
(

ΠnL, h, nR:N . rbt(nL, h) ∗ rbt(nR, h) → black(nL + nR + 1, h+ 1)

Figure 15: Signature of red-black tree constructors. For clarity, we write

ΠnL, h, nR:N nL . . . h . . . nR instead of Πa:N ∗ (N∗N). . . . fst(a) . . . fst(snd(a)) . . . snd(snd(a)),
which is what our formulation actually requires.

2. In the second case, the argument has the form B(R(ll, lr), R(rl, rr)). When we check the case arm

R(B(ll, lr), B(rl, rr)) against rbt(n, h), the contexts ϕ and Γ are as follows:

ϕ = n:N , h:N , aL:N , aR:N , b:N ,

(n, h)
.
= (aL + aR + 1, b+ 1),

aLL:N , aLR:N , aL
.
= aLL + aLR + 1,

aRL:N , aRR:N , aR
.
= aRL + aRR + 1;

Γ = arg:badRight(n, h),

l:rbt(aL, b),

r:badRoot(aR, b),

ll:black(aLL, b), lr:black(aLR, b),

rl:rbt(aRL, b), rr:black(aRR, b)

Here is an outline of the derivation.

ϕ; Γ ⊢ B(ll, lr) ↓ black(aLL+aLR+1, b+1) By (cons) and (cons-app)

ϕ; Γ ⊢ B(rl, rr) ↓ black(aRL+aRR+1, b+1) By (cons) and (cons-app)

ϕ |=(n, h)
.
= ((aLL+aLR+1) + (aRL+aRR+1) + 1, b+1) See ϕ above

ϕ ⊢ red(aLL+aLR+1) + (aRL+aRR+1) + 1, b+1) E rbt(n, h) By (sort-index-≤)

ϕ; Γ ⊢ R(B(ll, lr), B(rl, rr)) ↓ rbt(n, h) By (cons) and (cons-app)

3. In the third case, the argument matches B(B(ll, lr), R(R(rll, rlr), rr)). The derivation proceeds

much as in the preceding case, so we omit it.

4.2 Comparison to the individual refinement systems

There is no way to express the black height invariant with datasort refinements, so the combined system

has a clear advantage over datasort refinements alone. The advantage over index refinements is not as

obvious, for Xi showed that it is possible to check the color invariant using index refinements; one simply

encodes the color as an integer in {0, 1} and refines the red-black tree datatype by a tuple whose first

component is the encoded color [18]. However, we consider this encoding both inelegant and unfortunate:

the type annotations needed are substantially less clear than ours. For users, the burdens of using type

refinements are precisely inventing appropriate refinements and writing refined type annotations, so these

burdens should be as light as possible.

Unfortunately, the insert function which inserts a key k into a tree x cannot be typed in our system.

The height of insert’s result is not uniquely determined by the height and number of elements of x, so

we have nothing to write for the index of insert’s result. To type insert, we need existential dependent

types.

28

5 Conclusion

We have presented a language and type system combining two kinds of type refinements: datasort re-

finements and index refinements, proved its soundness, and shown how typechecking works in a small

realistic example. However, we have not included several important features. Our system lacks polymor-

phism and effects, but it seems likely that the approaches taken by Davies and Pfenning [7] for datasort

refinements alone are directly applicable. We already have a value restriction in the introduction rules for

both intersection and dependent universal types (the (sect-down) and (pi-intro) rules, Figure 9).

So far, we have followed Xi in constructing a system parametric in some constraint domain, but

presenting only examples in the domain of integers. Other domains hold the hope of expressing still more

properties. Our system can express the invariants of red-black trees (color and black height), but cannot

express all the properties of the basic operations—insert, etc.—on red-black trees; it can guarantee that

the result of restore right satisfies the invariants, but it cannot check that restore right returns a

tree containing the same information (keys) as the original. But suppose we indexed red-black trees by

a set of keys. A system capable of doing this would perfectly refine red-black trees: any two red-black

trees with the same refinements (datasort and index) would have to be the same insofar as having the same

contents and the same behavior in terms of the basic operations.6 Whether typechecking in such domains

is feasible is an open question; tools such as Hilberticus[13], which implements a decision procedure for

a fragment of set theory, indicate there is more hope than one might suppose.

We have tried to design our system to be as simple as possible. In particular, our system of types, while

very much in the spirit of Xi and Pfenning’s original work [17], does not include several of its constructs,

notably subset sorts {a:s | P} (for example, the sort of integers greater than 2 is {a:N | a > 2}) and

various propositional connectives. These constructs are entirely compatible with the system—we simply

put them in place of the ellipses in Figure 2. (One might worry that issues would arise from empty subset

sorts in combination with the contradiction rule, but we already have an empty sort ⊥). However, logical

conjunction ∧ may be redundant in the presence of intersection types: it would seem that, instead of

Πa:{a:s | P ∧Q}. A

we could write

(Πa:{a:s | P}. A)& (Πa:{a:s |Q}. A)

But we have not proved this, and at any rate the former type is more legible. Similarly, we might add

union types instead of adding logical disjunction ∨.

It is natural to question the necessity of the contradiction rule. The system is sound without it,

but it is worthwhile in practice since it allows us to exclude many unreachable case arms. As pointed

out in Section 3.3, it does require that we do simple typechecking first to avoid admitting nonsensical

programs. But doing simple typechecking—essentially forcing typechecking to be conservative—allows

us to dispense with a restriction [6] on the intersection type operator, simplifying the formal system. (We

have not explored applications of the unrestricted use of &. If it turns out to be sufficiently valuable,

perhaps a non-conservative extension would be acceptable. Note that one obvious unrestricted use of &,

to simulate polymorphism (for example, the identity function can be given the type (A → A)& (B →
B)& . . . for all types A,B, . . .), is subsumed by Hindley-Milner polymorphism.)

Given a solver for some constraint domain, it should be easy to construct a bidirectional typechecker

for the language we have presented. However, such a checker would be of limited utility: without exis-

tential dependent types (dependent sums), we cannot express the behavior of many functions, such as the

filter function on lists indexed by their length and the insert function on red-black trees. Extending

the system with existential dependent types and formulating a practical approach to typechecking that

system is an important future research direction.

We expect that other classic data structures besides red-black trees could be usefully refined in our

system (even without existential dependent types). For example, B-trees seem amenable to refinement:

the invariants of a B-tree involve bounds on the number of keys stored at a node—the bounds vary

depending on whether the node is the root—and the distance from the root to the leaves. A datasort

refinement is suitable for distinguishing roots from internal non-root nodes, and index refinements appear

suitable for expressing bounds on the number of keys and the distance to the leaves. Moreover, B-trees

are widely used in databases and would constitute a quite compelling application.

6We ignore differences in time and space behavior.

29

Acknowledgments. I would like to thank Frank Pfenning for many enlightening discussions about this

work, and Karl Crary, Margaret DeLap, and Derek Dreyer for useful comments on various drafts.

References

[1] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with conditional types.

In Conference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Portland, Oregon, pages 163–173, New York, NY, 1994.

[2] Lennart Augustsson. Cayenne—a language with dependent types. In Proc. Int’l Conf. Functional

Programming, pages 239–250, 1998.

[3] R. Cartwright and M. Fagan. Soft typing. In Proc. SIGPLAN ’91 Conf. Programming Language

Design and Implementation (PLDI), volume 26, pages 278–292, 1991.

[4] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.

Zeitschrift f. math. Logik und Grundlagen d. Math., 27:45–58, 1981.

[5] G. Dantzig and B. Eaves. Fourier-Motzkin elimination and its dual. J. Combinatorial Theory (A),

14:288–297, 1973.

[6] Rowan Davies. Practical refinement-type checking. PhD thesis proposal, Carnegie Mellon Univer-

sity, 1997.

[7] Rowan Davies and Frank Pfenning. Intersection types and computational effects. In Proc. Int’l

Conf. Functional Programming (ICFP 2000), pages 198–208, 2000.

[8] Ewen Denney. Refining refinement types. In Informal Proc. Types Workshop on Subtyping, Inheri-

tance and Modular Development of Proofs, University of Durham; http://www.dai.ed.ac.uk/

daidb/people/homes/ewd/papers/durham.ps, September 1997.

[9] Tim Freeman. Refinement types for ML. PhD thesis, Carnegie Mellon University, 1994. CMU-CS-

94-110.

[10] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proc. SIGPLAN ’91 Conf. Program-

ming Language Design and Implementation (PLDI), pages 268–277, Toronto, Ontario, June 1991.

ACM Press.

[11] Susumu Hayashi. Singleton, union, and intersection types for program extraction. Information and

Computation, 109:174–210, 1994.

[12] Paris C. Kanellakis, Harry G. Mairson, and John C. Mitchell. Unification and ML type recon-

struction. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of Alan

Robinson, pages 444–478. 1991.

[13] Jörg Lücke. Hilberticus – a tool for deciding an elementary sublanguage of set theory. In Rajeev

Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proc. 1st Int’l Joint Conference on Automated

Reasoning (IJCAR 2001), Siena, Italy, June 18-23, 2001, volume 2083 of LNCS. Springer, 2001.

[14] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML

(Revised). MIT Press, 1997.

[15] Chris Okasaki. Purely Functional Data Structures. Cambridge, 1998.

[16] John C. Reynolds. Design of the programming language Forsythe. Technical Report CMU-CS-96-

146, Carnegie Mellon University, 1996.

[17] Hongwei Xi. Dependent types in practical programming. PhD thesis, Carnegie Mellon University,

1998.

[18] Hongwei Xi. Dependently typed data structures. Revised version superseding that presented

at WAAAPL ’99; http://www.ececs.uc.edu/~hwxi/academic/papers/DTDS.ps, February

2000.

30

[19] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In A. Aiken, editor,

Conference Record of the 26th Symposium on Principles of Programming Languages (POPL ’99),

pages 214–227. ACM Press, 1999.

31

Let ϕ′ be ϕ, nL:N , b:N , aR:N .

ϕ′, i
.
= (aL+aR+1, b); Γ, x:black(aL, b) ∗ black(aR, b) ⊢ e ↓ C

ϕ′, i
.
= (aL+aR+1, b); Γ, x:black(aL, b) ∗ rbt(aR, b) ⊢ e ↓ C

ϕ′, i
.
= (aL+aR+1, b); Γ, x:rbt(aL, b) ∗ black(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ R(x) ⇒ e ↓dict(i) C
(match-dict-R)

ϕ′, i
.
= (aL+aR+1, b+1); Γ, y:badRoot(aL, b) ∗ rbt(aR, b) ⊢ e ↓ C

ϕ′, i
.
= (aL+aR+1, b+1); Γ, y:rbt(aL, b) ∗ badRoot(aR, b) ⊢ e ↓ C

ϕ′, i
.
= (aL+aR+1, b+1); Γ, y:rbt(aL, b) ∗ rbt(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ B(y) ⇒ e ↓dict(i) C
(match-dict-B)

ϕ, a:1, i
.
= (0, 0); Γ, x:1 ⊢ e ↓ C

ϕ; Γ ⊢ E ⇒ e ↓dict(i) C
(match-dict-E)

ϕ, a:1, i
.
= (0, 0); Γ, x:1 ⊢ e ↓ C

ϕ; Γ ⊢ E ⇒ e ↓badRoot(i) C
(match-badRoot-E)

ϕ′, i
.
= (aL+aR+1, b); Γ, x:black(aL, b) ∗ black(aR, b) ⊢ e ↓ C

ϕ′, i
.
= (aL+aR+1, b); Γ, x:black(aL, b) ∗ rbt(aR, b) ⊢ e ↓ C

ϕ′, i
.
= (aL+aR+1, b); Γ, x:rbt(aL, b) ∗ black(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ R(x) ⇒ e ↓badRoot(i) C
(match-badRoot-R)

ϕ′, i
.
= (aL+aR+1, b+1); Γ, y:rbt(aL, b) ∗ rbt(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ B(y) ⇒ e ↓badRoot(i) C
(match-badRoot-B)

ϕ, a:1, i
.
= (0, 0); Γ, x:1 ⊢ e ↓ C

ϕ; Γ ⊢ E ⇒ e ↓badLeft(i) C
(match-badLeft-E)

ϕ, a:1, i
.
= (0, 0); Γ, x:1 ⊢ e ↓ C

ϕ; Γ ⊢ E ⇒ e ↓badRight(i) C
(match-badRight-E)

ϕ′, i
.
= (aL+aR+1, b); Γ, x:black(aL, b) ∗ black(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ R(x) ⇒ e ↓badLeft(i) C
(match-badLeft-R)

ϕ′, i
.
= (aL+aR+1, b+1); Γ, y:badRoot(aL, b) ∗ rbt(aR, b) ⊢ e ↓ C

ϕ′, i
.
= (aL+aR+1, b+1); Γ, y:rbt(aL, b) ∗ rbt(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ B(y) ⇒ e ↓badLeft(i) C
(match-badLeft-B)

ϕ′, i
.
= (aL+aR+1, b); Γ, x:black(aL, b) ∗ black(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ R(x) ⇒ e ↓badRight(i) C
(match-badRight-R)

ϕ′, i
.
= (aL+aR+1, b+1); Γ, y:rbt(aL, b) ∗ badRoot(aR, b) ⊢ e ↓ C

ϕ′, i
.
= (aL+aR+1, b+1); Γ, y:rbt(aL, b) ∗ rbt(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ B(y) ⇒ e ↓badRight(i) C
(match-badRight-B)

ϕ, a:1, i
.
= (0, 0); Γ, x:1 ⊢ e ↓ C

ϕ; Γ ⊢ E ⇒ e ↓rbt(i) C
(match-rbt-E)

ϕ′, i
.
= (aL+aR+1, b);

Γ, x:black(aL, b) ∗ black(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ R(x) ⇒ e ↓rbt(i) C
(match-rbt-R)

ϕ′, i
.
= (aL+aR+1, b+1); Γ, y:rbt(aL, b) ∗ rbt(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ B(y) ⇒ e ↓rbt(i) C
(match-rbt-B)

ϕ; Γ ⊢ E ⇒ e ↓red(i) C
(match-red-E)

ϕ′, i
.
=(aL+aR+1, b); Γ, x:black(aL, b)∗black(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ R(x) ⇒ e ↓red(i) C
(match-red-R)

ϕ; Γ ⊢ B(y) ⇒ e ↓red(i) C
(match-red-B)

ϕ′, i
.
=(aL+aR+1, b+1); Γ, y:rbt(aL, b)∗rbt(aR, b) ⊢ e ↓ C

ϕ; Γ ⊢ B(y) ⇒ e ↓black(i) C
(match-black-B)

ϕ, a:1, i
.
= (0, 0); Γ, x:1 ⊢ e ↓ C

ϕ; Γ ⊢ E ⇒ e ↓black(i) C
(match-black-E)

ϕ; Γ ⊢ R(x) ⇒ e ↓black(i) C
(match-black-R)

Figure 16: The typing rules for matches on red-black trees.

32

fun restore_right (B(R lt, R (rt as (R _,_)))) = R(B lt, B rt) (* re-color *)

| restore_right (B(R lt, R (rt as (_,R _)))) = R(B lt, B rt) (* re-color *)

| restore_right (B(l, R(R(rll, rlr), rr))) =

B(R(l, rll), R(rlr, rr)) (* l is black, deep rotate *)

| restore_right (B(l, R(rl, rr as R _))) =

B(R(l, rl), rr) (* l is black, shallow rotate *)

| restore_right dict = dict

Figure 17: restore right in SML.

(

lam arg.

case arg of

E ⇒ E

| B(l, r) ⇒

(case l of

R(ll, lr) ⇒

case r of

R(rl, rr) ⇒

case rl of

R ⇒ R(B(ll, lr), B(rl, rr)) (* re-color *)

. . .

| B(ll, lr) ⇒

case r of

R(rl, rr) ⇒

case rl of

R(rll, rlr) ⇒ B(R(B(ll, lr), rll), R(rll, rr)) (* l is black, deep rotate *)

. . .

. . .
)

: Πn:N .Πh:N . badRight(n, h) → rbt(n, h)

Figure 18: A fragment of the translation of restore right into our language.

33

