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Abstract

Self-securing network interfaces (NIs) examine the packets that they move between network links and host software,
looking for and potentially blocking malicious network activity. This paper describes self-securing network interfaces,
their features, and examples of how these features allow administrators to more effectively spot and contain malicious
network activity. We present a software architecture for self-securing NIs that separates scanning software into appli-
cations (called scanners) running on an NI kernel. The resulting scanner API simplifies the construction of scanning
software and allows its powers to be contained even if it is subverted. We illustrate the potential via a prototype self-
securing NI and two example scanners: one that identifies and blocks known e-mail viruses and one that identifies and
inhibits rapidly-propagating worms like Code-Red.
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1 Introduction

Multi-purpose computer systems are, and likely will remain, vulnerable to network intrusions for
the foreseeable future. Implementers and administrators are unable to make them bulletproof,
because the software is too big and complex, supports too many features and requirements, and
involves too many configuration options. As a result, most network environments rely on firewalls
and service proxies, with moderate success, to keep malicious parties from exploiting OS and
service weaknesses. These special-purpose components observe and filter network traffic before it
reaches the vulnerable systems. Usually placed at the boundary between a LAN and the “rest of
the world,” these components generally limit themselves to trivial filter rules.

More complete protection could be provided by extending individual network interfaces (NIs)
to observe and even contain malicious network activity. Embedding such functionality in each
machine’s NI has a number of advantages over firewalls placed at LAN boundaries. First, dis-
tributing firewall functionality among end-points [20] avoids a central bottleneck and protects sys-
tems from local machines as well as the WAN. Second, a misbehaving host can be throttled at its
source; as with firewalls, embedding checks and filtering into NIs [17] isolates them from vulnera-
ble host software, preventing a successful intruder or malicious insider from disabling the checks.
Third, and most exciting, each NI can focus on a single host’s traffic, digging deeper into the
lower-bandwidth, less noisy signal comprised of fewer aggregated communication channels. For
example, reconstruction of application-level streams and inter-connection relationships becomes
feasible without excessive cost. We refer to NIs extended with intrusion detection and containment
functionality as self-securing network interfaces.

Counters to two common network attacks highlight the potential of self-securing NIs. First,
e-mail viruses can be contained much more effectively than the current approach of sending e-
mail warnings. Specifically, once a new virus is discovered, the administrator can update all self-
securing NIs to identify propagation attempts to and from their hosts, prevent them, and identify
machines already infected. Second, the recent Code Red worm [8] (and follow-ons [9, 41]) can be
readily identified by the traffic pattern at a self-securing NI. Specifically, these worms spread ex-
ponentially by the abnormal behavior of targeting large numbers of randomly-chosen IP addresses
with no corresponding DNS translations.

Digging deeply into network traffic, as promoted here, will greatly increase the codebase ex-
ecuting in an NI. Further, it will inevitably lead to less-expert and less-hardened implementations
of scanning code, particularly code that examines the application-level exchanges. As a result,
well-designed system software will be needed for self-securing NIs, both to simplify scanner im-
plementations and to contain rogue scanners (whether buggy or compromised).

This paper describes a software architecture that addresses both issues. A trusted NI kernel
controls the flow of packets between the host interface and the network wire. Scanners, running
as application processes, look for and possibly block suspicious network activity. With the right
permissions, a scanner can subscribe to see particular traffic via a socket-like interface, pass or
clip parts of that traffic, and inject pre-registered packets. The simple API should simplify scanner
implementation. More importantly, the separation of power offers a critical degree of safety: while
it can disrupt traffic flow, a rogue scanner cannot act arbitrarily as a man-in-the-middle.

We have built a prototype of this self-securing NI software architecture and a number of in-
teresting scanners, including scanners for the e-mail virus and Code Red examples. The internal
protection boundary between scanners and the trusted base comes with a reasonable cost. More
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(a) Conventional security configuration (b) Addition of self-securing NIs

Figure 1: Self-securing network interfaces. (a) shows the common network security configuration, wherein a
firewall protects LAN systems from some WAN attacks. (b) shows the addition of self-securing NIs, one for each
LAN system.

importantly, our experiences indicate that the scanner API meets its programmer support goal. In
particular, the network interaction part of writing scanner code is straightforward; the complexity
is where it belongs: in the scanning functionality.

The remainder of this paper is organized as follows. Section 2 expands on the case for NI-
embedded intrusion detection and containment functionality. Section 3 discusses the design of NI
system software for supporting such functionality. Section 4 details our prototype implementation.
Section 5 evaluates our prototype and some example scanners. Section 6 discusses related work.

2 Self-Securing NIs

The role of the network interface (NI) in a computer system is to move packets between the sys-
tem’s components and the network. A self-securing NI additionally examines the packets being
moved and enforces network security policies. Like a firewall, the security administrator can con-
figure each self-securing NI to examine packet headers and simply not forward unacceptable pack-
ets into or out of its computer system. A self-securing NI can also dig deeper into traffic patterns,
slow strange behavior, alert administrators of potential problems, etc. By embedding this traffic
management functionality inside the NI, one enjoys its benefits even when the host OS or other
machines inside the LAN border are compromised. This section makes a case for self-securing
NIs by describing the system architecture in more detail and discussing its features.

2.1 Basic architecture

A self-securing NI extends the NI’s base functionality of transferring packets between the host
software and the wire [18]. In most systems, this base functionality is implemented in a network
interface card (NIC). For our purposes, the component labeled as “NI” will have three properties:
(1) it will perform the base packet moving function, (2) it will do so from behind a simple interface
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with few additional services, and (3) it will be isolated (i.e., compromise independent) from the
remainder of the host software. Examples of such NIs include NICs, DSL or cable modems, and
NI emulators within a virtual machine monitor [39]. As well, leaf switches have these properties
for the hosts directly connected to them. The concepts and challenges of embedding the new
functionality in an NI applies equally to each of these.

We define such an NI to be a self-securing NI if it internally monitors and enforces policies on
packets forwarded in each direction. No change to the host interface is necessary; these security
functions can occur transparently within the NI (except, of course, when suspicious activity is
actively filtered). For traditional NIs, which exchange link-level messages (e.g., Ethernet frames),
examination of higher-level network protocol exchanges will require reconstruction within the self-
securing NI software. Although this work is redundant with respect to the host’s network stack, it
allows self-securing NIs to be deployed with no client software modification. For NIs that offload
higher-level protocols (e.g., IP security or TCP) from the host [11, 13], redundant work becomes
unnecessary because the only instance of the work is already within the NI.

Self-securing NIs enforce policies set by the network administrator, just as a centralized fire-
wall would. In fact, administrators will configure and manage self-securing NIs over the network,
since they must obviously be connected directly to it — doing so allows an administrator to use
the NI to protect the network from its host system as well as the other way around. This approach
also decouples the NI-enforced policies from the host software; even the host OS and its most-
privileged users should not be able to reconfigure or disable the NI’s policies. Prior work provides
solid mechanisms for remote policy configuration of this sort, and recent research [5, 7, 17, 20]
and practice [2, 24] clarifies their application to distributed firewall configuration.

In addition to configuration over the network, alerts about suspicious activity will be sent to
administrative systems via the network. The same secure channels used for configuration can be
reused for this purpose. These administrative systems can log alerts, construct an aggregate view
of individual NI observations, and notify administrators if so configured. As with any intrusion
detection system, policy-setting administrators must balance the desire for containment with the
damage caused by acting on false alarms. Self-securing NIs can watch for suspicious traffic and
generate alerts transparently. But, if they are configured to block or delay suspicious traffic, they
may disrupt legitimate user activity.

2.2 Why self-securing NIs

The self-securing NI architecture described above has several features that combine to make it a
compelling design point. This subsection highlights six. Two of them, scalability and full coverage,
result from distributing the functionality among the endpoints [20]. Two, host independence and
host containment, result from the NI being close to and yet separate from the vulnerable host
software [17]. Two, less aggregation and more per-link resources, build on the scalability benefit
but are worthy of independent mention.

Scalability. The work of checking network traffic is distributed among the endpoints. Each
endpoint’s NI is responsible for checking only the traffic to and from that one endpoint. The
marginal cost of the required NI resources will be relatively low for common desktop network
links. More importantly, the total available resources for examining traffic inherently scales with
the number of nodes in the network, since each node should be connected to the network by its own
self-securing NI. In comparison, the cost of equivalent aggregate resources in a centralized firewall
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configuration make them expensive (in throughput or dollars) or limit the checking that they can
do. This argument is much like cost-effectiveness arguments for clusters over supercomputers [4].

Full coverage. Each host system is protected from all other machines by its self-securing NI,
including those inside the same LAN. In contrast, a firewall placed at the LAN’s edge protects local
systems only from attackers outside the LAN. Thus, self-securing NIs can address some insider
attacks in addition to Internet attacks, since only the one host system is inside the NI’s boundary.

Host independence. Like network firewalls, self-securing NIs operate independently of vul-
nerable host software. Their policies are configured over the network, rather than by host software.
So, even compromising the host OS will not allow an intruder to disable the self-securing NI func-
tionality. (Successful intruders and viruses commonly disable any host-based mechanisms in an
attempt to hide their presence.)

Host containment. Self-securing NIs offer a powerful control to network administrators: the
ability to throttle network traffic at its sources. Thus, the LAN and its other nodes can be protected
from a misbehaving host. For example, a host whose security status is questionable could have its
network access slowed, filtered, or blocked entirely.

Less aggregation. Connected to only one host system, a self-securing NI investigates a rela-
tively simple signal of network traffic. In comparison, a firewall at a network edge must deal with
a noisier signal consisting of many aggregated communication channels. The clearer signal may
allow a self-securing NI to more effectively notice strange network behavior.

More per-link resources. Because each self-securing NI focuses on only one host’s traffic,
more aggressive investigation of network traffic is feasible. Although this is really a consequence
of the scalability feature, it is sufficiently important that we draw it out explicitly. Also, note that
not all traffic must be examined in depth; for example, a self-securing NI could decide to examine
e-mail and web traffic in depth while allowing NFS and Quake traffic to pass immediately.

Each feature alone is valuable, which is why most other network security configurations in-
clude one or more of them. Self-securing NIs are a compelling addition, because they offer all of
these features. Switches and routers within an organization’s networking infrastructure share many
of these features, though some (e.g., scalability and host containment) degrade the further one gets
from the end systems. The following subsection provides some concrete examples of the potential
benefits of these features.

2.3 Spotting and containing attacks

The most obvious use of the self-securing NI is to enforce standard firewall filtering rules [10].
These rules typically examine a few fields of packet headers and allow only those for allowed
network protocols to pass. Because the filtering occurs within an NI, it can also prevent basic
spoofing (e.g., of IP addresses) and sniffing (e.g., by listening with the NI in “promiscuous mode”)
of network traffic. Previous researchers [17, 20] have made a strong case for distributing such rules
among the endpoints, and at least one product [1] has been put on the market.

Traditional firewall rules, however, barely scratch the surface of what can be done with self-
securing NIs. The reduced aggregation and reduced link rate/usage make it possible to analyze
more deeply the traffic seen. Examples include reconstructing and examining application-level
exchanges, shadowing protocol state and examining state transitions, and shadowing host state and
correlating inter-protocol relationships. Several concrete examples of network attacks that can be
discovered and mitigated are described below.
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E-mail viruses. One commonly observed security problem is the rapidly-disseminated e-
mail virus. Even after detecting the existence of a new virus, it often takes a significant amount
of time to prevent its continued propagation. Ironically, the common approach to spreading the
word about such a virus is via an e-mail message (e.g., “don’t open unexpected e-mail that says
‘here is the document you wanted’”). By the time a user reads the message, it is often too late.
An alternative, enabled by self-securing NIs, is for the system administrator to immediately send
a new rule to all NIs: check all in-bound and out-bound e-mail for the new virus’s patterns.1

E-mail exchanges generally conform to one of a small set of known protocols. Thus, a properly
configured self-securing NI could scan attachments for known viruses before forwarding them. In
many cases, this would immediately stop further spread of the virus within an intranet, as well as
quickly identifying many of the infected systems. At the least, it would reduce the lifetimes of
given e-mail viruses, which usually persist long after they are discovered and automated detection
methods are available. Section 5.2 explores this example in greater depth.

Buffer overflow attacks. The most common technique used to break into computer systems
over the network is the buffer overflow attack. A buffer overflow attack exploits a particular type
of programming error: failing to perform bounds checks and consequently writing past the end of
a finite array in memory. The memory beyond the array often holds variables of importance to
subsequent program execution. If an attacker knows of such a programming error, he may be able
to send to the software messages that exploit the error. Such attacks are particularly powerful when
the overflowed buffer is allocated on the stack [29]. A clever attacker with full program knowledge
can carefully craft a stack overflow to rewrite the return address of the current procedure to point
further up the stack and place code he wishes to execute at that location. With such an attack,
a malicious party can run their own code with the permissions of the compromised application
process (often “Administrator” or “root” for network services).

The infamous “Internet worm” of 1988 [37] exploited a known such weakness (in the fin-
gerd application) and the recent Code Red worms did the same (in Microsoft’s IIS server). In
each case, the particular overflow attack was well-known ahead of time, but the software fixes were
slow to appear and administrators remained vulnerable until the software owners provided patches.
By having a self-securing NI look for network service requests that would trigger such overflows,
one can prevent them from reaching the system until patches are provided.

SYN bombs. Another frequently cited network attack, called a “SYN bomb,” exploits a char-
acteristic of the state transitions within the TCP protocol [31] to prevent new connections to the
target. The attack consists of repeatedly initiating, but not completing, the three-packet hand-
shake of initial TCP connection establishment, leaving the target with many partially completed
sequences that take a long time to “time out”. Specifically, an attacker sends only the first packet (a
packet with the SYN flag set), ignoring the target’s correct response (a second packet with the SYN
and ACK flags set). This attack is difficult to deal with at the target machine, but a self-securing
NI connected to the attacking machine (often a compromised host) can easily do so.

There are two variants of the SYN bomb attack. In one variant, the attacker uses its true
address in the source fields, and the target’s response goes to the attacker but is ignored. To
detect this, a self-securing NI can simply notice that its host is not responding with the necessary

1Many sites route e-mail through a dedicated mail server, which makes it a natural site for this kind of checking (as
long as scalability is not an issue). In general, dedicated proxies are a good place to check the associated application-
level exchanges. Self-securing NIs are a good place for such checks when dedicated proxies are not present, not
checking, or not required and enforced (since an intruder does not have to conform to client configurations).
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final packet of the handshake (an ACK of the target’s SYN flag). Upon detecting the problem,
the NI could prevent continued “bombing” or even repair the damage itself (e.g., by sending an
appropriate packet with the RST flag set to eliminate the partial connection). In the second variant,
the attacker forges false entries in the initial packet’s source fields, so that the target’s reply goes
to some other machine. A self-securing NI can prevent such spoofing easily, even if the host OS
has been compromised.

Random, exponential spread (Code Red). A highly-visible network attack in 2001 was the
Code Red worm (and follow-ons) that propagated rapidly once started, hitting most susceptable
machines in the Internet in less than a day [27]. Specifically, these worms spread exponentially
by having each compromised machine target random 32-bit IP addresses. Extensions to this basic
algorithm, such as hitlist scanning and local subnet scanning, can reduce the propagation time
to less than an hour [41]. Looking deeply at the network traffic, however, reveals an abnormal
signature: contacting new IP addresses without first performing DNS translations. Although done
occasionally, such behavior is uncommon, particularly when repeated rapidly. To detect this, a self-
securing NI can shadow its one host’s DNS table and check the IP address of each new connection
against it. The DNS table can be shadowed easily, in most systems, since the translations pass
through the NI. Section 5.3 explores this example in greater depth.

2.4 Costs and Limitations

Self-securing NIs are promising, but there is no silver bullet for network security. They can only
detect attacks that use the network and, like most intrusion detection systems [6], are susceptible
to both false positives and false negatives. Containment of false positives yields denial of service,
and failure to notice false negatives leaves intruders undetected. Also, until anomaly detection
approaches solidify, only known attack patterns will be detected.

Beyond these fundamental limitations, there are also several practical costs and limitations.
First, the NI, which is usually a commodity component, will require additional CPU and memory
resources for most of the attack detection and containment examples above. Although the marginal
cost for extra resources in a low-end component is small, it is non-zero. Providers and adminis-
trators will have to consider the trade-off between cost and security in choosing which scanners
to employ. Second, additional administrative overheads are involved in configuring and manag-
ing self-securing NIs. The extra work should be small, given appropriate administrative tools, but
again will be non-zero. Third, like any in-network mechanism, a self-securing NI cannot see in-
side encrypted traffic. While IP security functionality may be offloaded onto NI hardware in many
systems, most application-level uses of encryption will make opaque some network traffic. If and
when encryption becomes more widely utilized, it may reduce the set of attacks that can be identi-
fied from within the NI. Fourth, each self-securing NI inherently has only a local view of network
activity, which prevents it from seeing patterns of access across systems. For example, probes
and port scans that go from system to system are easier to see at aggregation points. Some such
activities will show up at the administrative system when it receives similar alerts from multiple
self-securing NIs. But, more global patterns are an example of why self-securing NIs should be
viewed as complementary to edge-located protections. Fifth, for host-embedded NIs, a physical
intruder can bypass self-securing NIs by simply replacing them (or plugging a new system into
the network). The networking infrastructure itself does not share this problem, giving switches an
advantage as homes for self-securing NI functionality.
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3 Self-Securing NI Software Design

Self-securing NIs offer exciting possibilities for detecting and containing network security prob-
lems. But, the promise will only be realized if the required software can be embedded into network
interfaces effectively. In particular, the proposed network traffic analyses will involve a substantial
body of new software in the NI. Further, some of this software will need to be constructed and
deployed rapidly in response to new network security threats. These characteristics will require
an NI software system that simplifies the programming task and mitigates the dangers created by
potentially buggy software running within the NI.

This section discusses design issues for self-securing NI system software. It expresses major
goals, describes a software structure, and discusses its merits. The next section describes a system
that implements this structure.

3.1 Goals

The overall goal of self-securing NIs is to improve system and network security. Clearly, there-
fore, they should not create more difficult security problems than they address. In addition, writing
software to address new network security problems should not require excessive expertise. Other
goals for NI-embedded software include minimizing the impact on end-to-end exchanges and min-
imizing the hardware resources required.

Containing compromised scanning code. As the codebase inside the NI increases, it will
inevitably become more vulnerable to many of the same attacks as host systems, including re-
source exhaustion, buffer overflows, and so on. This fact is particularly true for code that scans
application-level exchanges or responds to a new attack, since that code is less likely to be expertly
implemented or extensively tested. Thus, a critical goal for self-securing NI software is to contain
compromised scanning code. That is, the system software within the NI should be able to limit the
damage that malicious scanning code can cause, working on the assumption that it may be possible
for a network attacker to subvert it (e.g., by performing a buffer overflow attack).

Assuming that the scanning code decides whether the traffic it scans can be forwarded, ma-
licious scanning code can certainly perform a denial-of-service attack on that traffic. Malicious
scanning code also sees the traffic (by design) and will most likely be able to leak information
about it via some covert channel. The largest concerns revolve around the potential for man-in-
the-middle attacks and for effects on other traffic. Our main goal is to prevent malicious scanning
code from executing these attacks: such code should not be able to replace the real stream with
its own arbitrary messages and should not be able to read or filter traffic beyond that which it was
originally permitted to control.

Reduced programming burden. We anticipate scanning code being written by non-experts
(i.e., people who do not normally write NI software or other security-critical software). To assist
programmers, the NI system software should provide services and interfaces that hide unnecessary
details and reduce the burden. In the best case, programming new scanning code should be as easy
as programming network applications with sockets.

Containing broken scanning code. Imperfect scanning code can fail in various ways. Be-
yond preventing security violations, it is also important to fault-isolate one such piece of code from
the others. This goal devolves to the basic protection boundaries and bounded resource utilization
commonly required in multi-programmed systems.
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Transparency in common case. Although not a fundamental requirement, one of our goals
is for self-securing NI functionality to not affect legitimate communicating parties. Detection can
occur by passively observing network traffic as it flows from end to end. Active changes of traffic
occur only when needed to enforce a containment policy.

Efficiency. Efficiency is always a concern when embedding new functionality into a system.
In this case, the security benefits will be weighed against the cost of the additional CPU and
memory resources needed in the NI. Thus, one of our goals is to avoid undue inefficiencies. In
particular, non-scanned traffic should incur little to no overhead, and the system-induced overhead
for scanned streams should be minimal. Comprehensive scanning code, on the other hand, can
require as many resources as necessary to make their decisions — administrators can choose to
employ such scanning code (or not) based on the associated trade-off between cost and security.

3.2 Basic design achieving these goals

This section describes a system software architecture for self-securing NIs that addresses the above
goals. As illustrated in Figure 2, the architecture is much like any OS, with a trusted kernel and
a collection of untrusted applications. The trusted NI kernel manages the real network interface
resources, including the host and network links. The application processes, called scanners, use
the network API offered by the NI kernel to get access to selected network traffic and to convey
detection and containment decisions. Administrators configure access rights for scanners via a
secure channel.

Scanners. Non-trivial traffic scanning code is encapsulated into application processes called
scanners. This allows the NI kernel to fault-isolate them, control their resource usage, and bound
their access to network traffic. With a well-designed API, the NI kernel can also simplify the task
of writing scanning code by hiding some unnecessary details and protocol reconstruction work. In
this design, programming a scanner should be similar to programming a network application using
sockets, both in terms of effort required and basic expertise required. (Of course, scanners that
look at network protocols in detail, rather than application-level exchanges, will involve detailed
knowledge of those protocols.)

Scanner interface. Table 1 lists the basic components of the network API exported by the NI
kernel. With this interface, scanners can examine specific network traffic, alert administrators of
potential problems, and prevent unacceptable traffic from reaching its target.

The interface has four main components. First, scanners can subscribe to particular network
traffic, which asks the NI kernel for read and/or contain rights; the desired traffic is specified
with a packet filter language [26]. The NI kernel grants access only if the administrator’s config-
uration for the particularly scanner allows it. In addition to the basic packet capture mechanism,
the interface should allow a scanner to subscribe to the data stream of TCP connections, hiding the
stream reconstruction work in the NI kernel.

Second, scanners ask the NI kernel for more data via a read command. With each data item
returned, the NI kernel also indicates whether it was sent by or to the host. Third, for subscriptions
with contain rights, a decision for each data unit must be conveyed back to the kernel. The
data unit can either be passed along (i.e., forwarded to its destination) or cut (i.e., dropped without
forwarding). For a data stream subscription, cut and pass refer to data within the stream; in the
base case, they refer to specific individual packets. For TCP connections, a scanner can also decide
to kill the connection.
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Figure 2: Self-securing NI software architecture. An “NI kernel” manages the host and network links. Scanners
run as application processes. Scanner access to network traffic is limited to the API exported by the NI kernel.

Fourth, a scanner can inject pre-registered data into scanned communications, which may
involve insertion into a TCP stream or generation of an individual packet. A scanner can also send
an alert, coupled with arbitrary information or even copies of packets, to an administrative system.

The scanner interface simplifies programming, allows necessary powers, and yet restricts the
damage a rogue scanner can do. A scanner can look at and gate the flow of traffic with a few
simple commands, leaving the programmer’s focus where it belongs: on the scanning algorithms.
A scanner can ask for specific packets, but will only see what it is allowed to see. A scanner can
decide what to pass or drop, but only for the traffic to which it has contain rights. A scanner
can inject data into the stream, but only pre-configured data in its entirety. Combining cut and
inject allows replacement of data in the stream, but the pre-configured inject data limits the power
that this conveys. Alerts can contain arbitrary data, but they can only be sent to a pre-configured
adminsitrative system.

NI Kernel. The NI kernel performs the core function of the network interface: moving pack-
ets between the host system and the network link. In addition, it implements the functionality
necessary to support basic scanner (i.e., application) execution and the scanner API. As in most
systems, the NI kernel owns all hardware resources and gates access to them. In particular, it
bounds scanners’ hardware usage and access to network traffic.

Packets arrive in NI buffers from both sides. As each packet arrives, the NI kernel examines
its headers and determines whether any subscriptions cover it. If not, the packet is immediately
forwarded to its destination. If there is a subscription, the packet is buffered and held for the
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Command Description

Subscribe Ask to scan particular network data
Read Retrieve more from subscribe buffers
Pass Allow scanned data to be forwarded
Cut Drop scanned data
Kill Terminate the scanned session (if TCP)
Inject Insert pre-registered data and forward
Alert Send an alert message to administrator

Table 1: Network API exported to scanner applications. This interface allows an authorized scanner to examine
and block specific traffic, but bounds the power gained by a rogue scanner.

appropriate scanners. After each contain-subscribing scanner conveys its decision on the packet,
it is either dropped (if any say drop) or forwarded.

NI kernels should also reconstruct transport-level streams for protocols like TCP, to both sim-
plify and limit the power of scanners that focus on application-level exchanges. Such reconstruc-
tion requires an interesting network stack implementation that shadows the state of both endpoints
based on the packets exchanged. Notice that such shadowing involves reconstructing two data
streams: one in each direction. When a scanner needs more data than the TCP window allows,
indicated by blocking reads from a scanner with pending decisions, the NI kernel must forge ac-
knowledgement packets to trigger additional data sent from endpoints. In addition, when data is
cut or injected into streams, all subsequent packets must have their sequence numbers adjusted
appropriately.

Administrative interface. The NI’s administrative interface serves two functions: receiving
configuration information and sending alerts. (Although we group them here, the two functions
could utilize different channels.)

The main configuration information is scanner code and associated access rights. For each
scanner, provided access rights include allowed subscriptions (read and contain) and allowed
injections. When the NI kernel starts a new scanner, it remembers both, preventing a scanner
from subscribing to any other traffic or injecting arbitrary data (or even other scanners’ allowed
injections).

When requested by a scanner, the NI kernel will send an alert via the administrative interface.
Overall, scanner transmissions are restricted to the allowed injections and alert information sent to
pre-configured administrative systems.

3.3 Discussion

Implemented properly, we believe this design can meet the goals for self-securing NIs. Our ex-
periences indicate that writing scanners is made relatively straightforward by the scanner API.
Moreover, restricting scanners to this API bounds the damage they can do. Certainly a scanner
with contain rights can prevent the flow of traffic that it scans, but its ability to prune other
traffic is removed and its ability to manipulate the traffic it scans is reduced.

A scanner with contain rights can play a limited form of man-in-the-middle by selectively
utilizing the inject and cut interfaces. The administrator can minimize the danger associated with
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inject by only allowing distinctive messages. (Recall that inject can only add pre-registered mes-
sages and in their entirety. Also, a scanner cannot cut portions of injected data.) In theory, the
ability to transparently cut bytes from a TCP stream could allow a rogue scanner to rewrite the
stream arbitrarily. Specifically, the scanner could clip bytes from the existing stream and keep just
those that form the desired message. In practice, we do not expect this to be a problem; unless
the stream is already close to the desired output, it will be difficult to construct the desired output
without either breaking something or being obvious (e.g., the NI kernel can be extended to watch
for such detailed clipping patterns). Still, small cuts (e.g., removing the right “not” from an e-mail
message) could produce substantial changes that go undetected.

Although scanners still have some undesirable capabilities, we believe that the NI software
architecture described is a significant improvement over unbounded access.

4 Implementation

This section describes a prototype implementation of the self-securing NI software architecture
described in Section 3.

4.1 Overview

The prototype self-securing NI is actually an old PC (referred to below as the “NI machine”) with
two Ethernet cards, one connected to the real network and one connected point-to-point to the host
machine’s Ethernet link. Figure 3 illustrates the hardware setup. Clearly, the prototype hardware
characteristics differ from real NIC hardware, but it does allow us to explore the system software
issues that are our focus in this work.

Our software runs on the FreeBSD 4.4 operating system. Both network cards are put into
“promiscuous mode,” such that they grab copies of all frames on their Ethernet link; this config-
uration allows the host machine’s real Ethernet address to be used for communication with the
rest of the network. Our NI kernel, which we call Siphon, runs as an application process and uses
BPF [23] to acquire copies of all relevant frames arriving on both network cards. Frames destined
for the NI machine flow into its normal in-kernel network stack. Frames to or from the host ma-
chine go to Siphon. All other frames are dropped. Scanners also run as application processes, and
they communicate with Siphon via named UNIX sockets. Datagram sockets are used for getting
copies of frames, and stream sockets are used for reconstructed data streams. (In OS architecture
terms, FreeBSD is being used as a microkernel with Siphon as an “NI kernel server.”)

4.2 Scanner interface implementation

Functionally, our implemented scanner interface matches the one described in Section 3 and il-
lustrated in Table 1. The structure of our prototype, however, pushes for a particular style in
the interface. Scanners communicate with Siphon via sockets, receiving subscribed-to traffic via
READ and passing control information via WRITE. This section details the interactions for both
frame-level scanning and reconstructed-stream scanning.

Frame-level scanning interface. Scanners can see and make decisions on raw Ethernet
frames via the frame-level scanning interface, which is a datagram socket connected to Siphon.
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Figure 3: Self-securing NI prototype setup. The prototype self-securing NI is an old PC with two network cards,
one connected directly to the host machine and one connected to the network.

Frames that match any of a scanner’s frame-level subscriptions are written by Siphon to that scan-
ner’s socket. For each successful READ call on the socket, a scanner gets a small header and a
received frame. The header indicates the frame’s length and whether it came from the host or from
the network. In addition, each frame is numbered according to how many previous frames the
scanner has READ: the first frame read is #1, the second frame is #2, and so on.

A frame-level scanner conveys decisions on scanned frames via WRITEs to the socket, each
consisting of a frame number and the decision (cut or pass). A scanner conveys its requests via this
interface as well. Inject requests specify which pre-registered packet should be sent (via an index
into a per-scanner table) and in which direction. Alert requests provide the message that should be
sent to the administrative system. Subscribe requests ask for additional frames to be seen via the
same socket; the desired frames are described via a sequence of <offset,value> pairs, much like
most packet filter languages [26].

Reconstructed-stream scanning interface. Scanners use stream sockets to get reconstructed
TCP streams from Siphon, with a similar interface to that described above. The differences are
changes to some parameters, two new requests, and a way of attaching to new connections as they
are established. The main parameter changes relate to how scanned data is identified: cut and pass
decisions apply to a byte offset and length within the stream in a particular direction. As well,
inject requests must specify the byte offset at which the pre-registered data should be inserted into
the stream (shifting everything after it forward by length bytes). Finally, subscribe requests simply
specify inbound and outbound TCP port numbers (or wildcards) on which to listen.

The two new requests are kill, which tells the NI kernel to terminate the connection being
scanned, and more, which tells the NI kernel that more data is necessary before a decision can be
made. The more request is needed because our application-level NI kernel cannot actually see a
scanner blocking on a READ request, as it would if implemented as a true kernel. The NI kernel
must know about the need for more data, since it may need to offer extra space in the TCP window
to trigger additional data transmission.

For reconstructed-stream scanning, several sockets are required. One is used to convey sub-
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scription requests. A second listens for new connections from Siphon. An ACCEPT on this second
connection creates a new socket that corresponds to one newly established TCP connection be-
tween the host machine and some other system. READs and WRITEs to such new connections
receive data to be scanned and convey decisions and requests.

4.3 The NI kernel: Siphon

Siphon performs the basic function of a network interface, moving packets between the host and
the network. It also exports the scanner API described above.

During initialization, Siphon sets up a BPF interface from which it can READ all frames sent
to or from the host machine. Each frame is buffered and passed through a packet filter engine. If
the frame does not match any of the packet filter rules, it is immediately forwarded to its target
(either the host machine or the network link). There are three types of packet filter rules: prevent,
scan, and reconstruct. If the frame matches a prevent rule, it is dropped immediately; prevent
rules provide traditional firewall filtering without the overhead of an application-level scanner. If
the frame matches a scan rule, it is written to the corresponding scanner’s datagram socket. If the
frame matches a reconstruct rule, it is forwarded to the TCP reconstruction code. For frames that
match scan and reconstruct rules for subscriptions with contain rights, Siphon keeps copies and
remembers the decisions that it needs. A frame is forwarded if and only if all subscribed scanners
decide pass; otherwise, it is dropped.

Siphon’s TCP reconstruction code translates raw Ethernet frames into the reconstructed-stream
interface described above. While doing so, it tries to minimize the pertubation on an end-to-end
exchange.

In the common case, Siphon can reconstruct TCP streams by just watching the packets that
go by. Upon seeing the first packet of a new TCP connection that matches a subscription, Siphon
creates two protocol control blocks, one to shadow the state of each end-point. Each new packet
indicates a change to one end-point or the other. When the connection is fully established, Siphon
opens and CONNECTs a stream socket to each subscribed scanner. When one side tries to send
data to the other, that data is first given to subscribed scanners. If all such scanners with contain
rights decide pass, the original packets are forwarded. When the TCP connection closes, Siphon
CLOSEs the corresponding stream socket.

Once a scanner asks for an active change to the stream, Siphon can no longer just passively
delay, reconstruct from, and then forward frames for the corresponding TCP connection; it must
now modify some of them. If a scanner asks for some data to be cut, Siphon must prune that
data from the original packets; doing so requires changes to several TCP and IP fields, and it may
require splitting one packet into two. In addition, Siphon must send acknowledgements for the cut
data once all bytes up to it have been acknowledged by the true receiver. Finally, the sequence
numbers and acknowledgements of subsequent packets must be adjusted to account for the cut
data.

A similar set of active changes are needed for inject. Siphon must create, forward, and buffer
packets for the injected data, retransmitting as necessary. Subsequent packets must have their
sequence numbers and acknowledgements adjusted, and one original packet may have to be split
in two if its data spans the inject point.

More requests require less work. For small amounts of additional data, the TCP window
can be opened further to get the sender to provide more data. Otherwise, Siphon must forge
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acknowledgements to the source and then handle retransmissions to the destination. In this case,
Siphon must also drop redundant acknowledgements from the receiver.

Kill requests are handled by forging packets with the RST flag set and sending one to each
end-point.

4.4 Issues

Our prototype focuses on exploring the scanner API, and it does set aside two important implemen-
tation issues on which we do not expect to innovate: administrative interface and bounded resource
utilization. For a full implementation, one would employ well-established technologies for both
issues. Although it is always a dangerous claim, we do not see either of these issues invalidating
the experiences or results arising from use of the current prototype.

The administrative interface for the current prototype consists of a directly-connected terminal
interface. Clearly, this is not appropriate for practical management of per-host self-securing NIs.
Fortunately, well-established cryptography-based protocols [2, 5, 7, 17, 20, 24] exist for remotely
distributing policy updates and receiving alerts.

The current prototype also does not preclude scanners from excessive resource utilization,
instead relying on the underlying FreeBSD kernel to timeshare. A real NI kernel implementation
would need to explicitly prevent any scanner from using too many resources. With each scanner
as a single process with no I/O requirements, such resource management should be relatively
straightforward for an OS kernel.

5 Evaluation

This section evaluates our scanner API and the Siphon prototype. It does so via two very differ-
ent scanners, exploring how the interface supports their construction. The first scanner examines
application-level exchanges for known problems (e-mail viruses). The second scanner looks for a
particular suspicious activity (random IP-based propagation) at the network protocol level. Both
are easily implemented given Siphon’s scanner API.

5.1 Basic overheads

Although its support for scanners is our focus, it is useful to start with Siphon’s effect on NI
throughput and latency. For all experiments in this paper, the NI machine runs FreeBSD 4.4 and is
equipped with a 300MHz Pentium II, 128MB of main memory, and two 100Mb/s Ethernet cards.
After subtracting the CPU power used for packet management functions that could be expected to
be hardware-based, we believe that this dated system is a reasonable approximation of a feasible
NI. The host machine runs FreeBSD 4.4 and is equipped with a 1.4GHz Pentium III, 512MB of
main memory, and a 100Mb/s Ethernet card. Although Siphon is operational, little tuning has been
done.

Table 2 shows results for three configurations: the host machine alone (with no NI machine),
the NI machine with no scanners, and the NI machine reconstructing all TCP streams but then
immediately forwarding them. We observe minimal latency difference among the three configu-
rations. But, the throughput difference between “No NI machine” and “No scanners” highlights a
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Configuration Roundtrip Bandwidth
No NI machine 0.84 ms 7.73 MB/s
No scanners 0.88 ms 4.37 MB/s
Reconstruct 0.88 ms 4.30 MB/s

Table 2: Base performance of our self-securing NI prototype. The roundtrip latency is measured with 20,000
pings. Throughput is measured by RCPing 100MB. “No NI machine” corresponds to the host machine with no self-
securing NI in front of it. “No scanners” corresponds to Siphon immediately passing on each packet. “Reconstruct”
corresponds to reconstructing the TCP stream for scanning but then immediately forwarding it.

disappointing bottleneck in our prototype: the BPF interface from which Siphon gets its packets
bounds its throughput far below the wire’s 100Mb/s bandwidth. A kernel-based implementation
would not have this problem. Reconstructing the TCP stream results in only small additional over-
head.

5.2 Example: e-mail virus scanner

A promising activity for self-securing NIs is to examine application-level exchanges for known
problems, such as viruses or buffer overflows. As a concrete example, this section describes and
evaluates a scanner that examines e-mail traffic.

What the scanner looks for: Commonly, viruses that propagate via e-mail do so in the form
of infected attachments. For example, the attachment may be a malicious script or a complex file
format (e.g., Excel or Word) with a malicious macro. Our scanner parses incoming and outgoing
e-mail messages to identify attachments, which are then passed to virus checking code. By up-
dating the virus checking code, an administrator can immediately identify subsequent attempts to
propagate a known virus.

How the scanner works: There are several e-mail protocols. This scanner focuses on two
common protocols: Post Office Protocol (POP) and Simple Mail Transport Protocol (SMTP).
SMTP [32] is used to send e-mail from one machine to another. POP [33] is used to update a
replica of one’s main mailbox on a second machine. Both protocols function such that e-mail
messages are transfered in their entirety, including all attachments, over a TCP connection. At-
tachments are encoded in MIME format [16].

The e-mail scanner subscribes with contain rights to reconstructed TCP streams corre-
sponding to the default port numbers for these protocols (25 for SMTP and 110 for POP). Any
communications other than e-mail messages are passed immediately. When the start of an e-mail
message is detected, the scanner waits until it has the entire message before making its decision. If
necessary, the scanner uses the more request to tell Siphon that it needs more data from the stream.
The scanner then parses the message, decodes each attachment, and passes it to the virus checking
code. If no viruses are detected, the scanner tells Siphon to pass the entire e-mail message.

The current scanner can use either of two virus checking mechanisms. The first is a simple
table lookup, in which the MD5 hash is compared to a list of known malicious attachments. This
check is time- and space-efficient, but it will only identify non-mutating e-mail viruses. The second
is the Sophos Anti-Virus library [36]. This library uses modern scanning algorithms, with regular
updates, to identify the wide variety of known viruses and even some virus-like signatures.
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Configuration Per-message latency
No scanner 22.4 ms
Null scanner 67.0 ms
Scanner w/MD5 107.1 ms
Scanner w/Sophos 109.9 ms

Table 3: Message latency with the e-mail scanner. The average per-message latency is for one pass through a
month’s worth of e-mail. Each value is an average of three iterations, and all standard deviations are less than 1% of
the mean.

When a virus is detected: The scanner does not allow infected attachments to be forwarded.
It tells Siphon to cut the range of bytes making up the attachment, to inject a replacement attach-
ment at the original offset, and to pass the remainder of the e-mail message. The pre-registered
replacement attachment (MIME-encoded as “text/plain”) informs the recipient that an infected at-
tachment was removed. In addition, the original message is sent to the administrative machine in
an alert, for subsequent analysis. This also ensures that the message data is not lost, since it is
possible that the attachment was flagged in error.

Performance data: We investigate the performance overhead involved with our e-mail scan-
ner by using POP to transfer one month’s worth of the first author’s e-mail (1500 e-mail messages,
with an average size of 8240 bytes and a maximum size of 776KB). Transferring the full set of
messages at maximum speed, we measure the average time per message for four configurations:
no scanner, a null scanner, the e-mail scanner using MD5, and the e-mail scanner using the Sophos
library. Table 3 shows the results.

The results indicate that the scanner will delay e-mail messages. We observe substantial over-
head for parsing the e-mail and exchanging information with Siphon. Much of this is due to
an unoptimized scanner. As an anecdotal experiment in scanner programmability, this scanner
was written by a recent B.S. graduate who learned POP, SMTP, and socket programming for this
project. He observed that constructing an operational e-mail scanner was not difficult, and he
reused functions for parsing e-mail, decoding MIME enclosures, and buffering data read from
sockets.

Fortunately, the impact of slowed e-mail on user experiences should be minimal. Delaying
e-mail delivery by a small amount is unlikely to be noticed. Throughput should also not be a
problem, since even a popular user usually gets fewer than 100 messages in a day.

Discussion: Implementing an e-mail scanner for POP and SMTP was straightforward using
the scanner API; the scanner simply watches for the beginning of an e-mail message and then
examines that message. For more interactive mail exchange protocols, such as IMAP [12], ad-
ditional effort will be required. In particular, IMAP transfers e-mail messages in pieces rather
than as a whole, and those pieces are not self-identifying. An IMAP scanner will have to track
the exchanges to identify when an attachment is being transferred so that it can invoke the virus
scanner. Although this requires more application-level logic in the scanner, we do not expect it to
be difficult.
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5.3 Example: Code-Red scanner

Another promising activity for self-securing NIs is to look for suspicious activity at the network
protocol level, such as unanswered SYN+ACK packets, incomplete IP fragments, and unexpected
IP addresses. As a concrete example, this section describes and evaluates a scanner that watches
for the Code-Red worm’s abnormal network behavior.

What the scanner looks for: The Code-Red worm and follow-ons spread exponentially by
having each compromized machine target random 32-bit IP addresses. This propagation approach
is highly effective because the IP address space is densely populated and relatively small. Although
done occasionally, it is uncommon for a host to connect to a new IP addresses without first per-
forming a name translation via the Domain Name System (DNS) [25]. Our scanner watches DNS
translations and checks the IP addresses of new connections against them. It flags any sudden rise
in the count of “unknown” IP addresses as a potential problem.

How the scanner works: The Code-Red scanner consists of two parts: shadowing the host
machine’s DNS table and checking new connections against it. Upon initialization, therefore, the
scanner subscribes to three types of frames. The first two specify UDP packets sent by the host to
port 53 and sent by the network from port 53; port 53 is used for DNS traffic.2 The third specifies
TCP packets sent by the host machine with only the SYN flag set, which is the first packet of TCP’s
connection-setup handshake. Of these, only the third subscription includes contain rights.

Each DNS reply can provide several IP addresses, including the addresses of authoritative
name servers. When it reads a DNS reply packet, the scanner parses it to identify all provided
IP addresses and their associated times to live (TTLs). The TTL specifies for how long the given
translation is valid. Each IP address is added to the scanner’s table and kept at least until the TTL
expires. Thus, the scanner’s table should contain any valid translations that the host may have in its
DNS cache. The scanner prunes expired entries only when it needs space, since host applications
may utilize previous results from gethostbyname() even after the DNS translations expire.

The scanner checks the destination IP addresses of the host machine’s TCP SYN packets
against this table. If there is a match, the packet is passed. If not, the scanner considers it a
“random” connection. The current policy flags a problem when there are more than two unique
random connections in a second or ten in a minute.

When an attack is detected: The scanner’s current policy reacts to potential attacks by send-
ing an alert to the administrative system and slowing down excessive random connections. It stays
in this mode for the next minute and then re-evaluates and repeats if necessary. The alert provides
the number of random connections over the last minute and the most recent port to which a connec-
tion was opened. Random connections are slowed down by delaying decisions; in attack reaction
mode, the scanner tells Siphon pass for one of the SYN packets every six seconds. This allows
such connections to make progress, somewhat balancing the potential for false positives with the
desire for containment. If all susceptible hosts were equipped with self-securing NIs, this policy
would have increased the 14 hour propagation time of Code-Red (version 2) [27] to over a month
(assuming the original scan rate was 10/second per infected machine [41]).

Two extensions to the current scanner are under consideration. First, the scanner can log the
exchanges of random connections via the alert interface, allowing an administrator to study them
at her convenience. Second, when the rate of random connections is very high, SYN packets can

2Although we see none in our networks, DNS traffic can be passed on TCP port 53 as well. Our current scanner
will not see this, but could easily be extended to do so.
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simply be dropped; this will prevent connections from being established, but can also cause harm
given a false positive.

Performance data: We evaluate two aspects of Code-Red scanner performance: its effect
on latency and the required DNS table size. To evaluate the scanner’s effect on DNS translation
latency, we measured the times for 100 different translations with and without the scanner. The
results indicate that the scanner increases the translation latency by 99% (from 1.5ms to 2.9ms)
compared to having no NI machine. Since DNS translations and SYN packets are minor parts
of overall network activity, we believe that the increased latencies due to scanning would have
negligible impact on performance.

We evaluate the table sizes needed for the Code-Red scanner by examining a trace of all DNS
translations for 10 desktop machines in our research group over 2 days. Assuming translations are
kept only until their TTL’s expire, each machine’s DNS cache would contain an average of 209
IP addresses. The maximum count observed was 293 addresses. At 16 bytes per entry (for the IP
address, the TTL, and two pointers), the DNS table would require less than 5KB. (We also observed
that the average latency over the 700,000 translations was 1.6ms, very close to our baseline “no NI
machine” measurement above.)

It is interesting to consider the table size required for an aggregate table. As a partial answer,
we observe that a combined table for the 10 desktops would require a maximum of 750 entries
(average of 568) or 12KB. This matches the results of a recent DNS caching study [21], which
finds that caches shared among 5 or more systems exhibit a 80–85% hit rate. They found that
aggregating more client caches provides little additional benefit. Thus, one expects an 80–85%
overlap among the caches, leaving 15–20% of the entries unique per cache. Thus, 10,000 systems
with 250 entries each would yield approximately 375,000–500,000 unique entries (6MB–8MB) in
a combined table.

Discussion: The largest danger of the Code-Red scanner is that other mechanisms could be
used (legitimately) for name translation. There are numerous research proposals for such mecha-
nisms [38, 34, 43], and even experimenting with them would trigger our scanner. Administrators
who wish to allow such mechanisms in their environment would need to either disable this scanner
or extend it to understand the new name translation mechanisms.

With a scanner like this in place, different tactics will be needed for worms to propagate
without being detected quickly. One option is to slow the scan rate and “fly under the radar,”
but this dramatically reduces the propagation speed, as discussed above. Another approach is to
use DNS’s reverse lookup support to translate random IP addresses to names, which can then be
forward translated to satisfy the scanner’s checks. But, extending the scanner to identify such
activity would be straightforward. Yet another approach would be to explore the DNS name space
randomly3 rather than the IP address space; this approach would not enjoy the relevant features
of the IP address space (i.e., densely populated and relatively small). There are certain to be
other approaches as well. The scanner described takes away a highly convenient and effective
propagation mechanism; worm writers are thus forced to expend more effort and/or to produce
less successful worms. Security is a “game” of escalation, and self-securing NIs arm those in the
white hats.

Finally, it is worth noting that all of the Code-Red worms exploited a particular buffer overflow
3The DNS “zone transfer” request could short-circuit the random search by acquiring lists of valid names in each

domain. Many domains disable this feature. Also, self-securing NIs could easily notice its use.
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that was well-known ahead of time. An HTTP scanner could easily identify requests that attempt
to exploit it and prevent or flag them. The DNS-based scanner, however, will also spot worms,
such as the Nimda worm, that use random propagation but other security holes.

6 Related Work

Self-securing NIs build on much existing technology and borrow ideas from previous work. In par-
ticular, network intrusion detection, virus detection, and firewalls are well-established, commonly-
used mechanisms [6, 10]. Also, many of the arguments for distributing firewall functions [17, 20,
28] and embedding them into network interface cards [1, 17] have been made in previous work.
This previous work and others [2, 7, 24] also address the issue of remote policy configuration for
such systems. We extend previous work with examples of more detailed traffic analysis and a
system software structure for supporting them.

There are few examples of detailed network intrusion detection documented in the literature,
though many system administrators create tools when the need arises. One well-described example
is Bro [30], an extensible, real-time, passive network monitor. Bro provides a scripting language
for reacting to pre-programmed network events, which works well for experts. Its clean frame-
work replaced a collection of ad hoc scripts, which is how most environments examine network
traffic. Our work builds on such previous work by providing a programming model that should
accommodate less-expert scanner writers and contain broken scanners. As well, embedding scan-
ning functionality into NIs instead of network taps eliminates several of the challenges described
in Bro, such as overload attacks, dropped packets, and crash attacks.

Application proxies, particularly for e-mail and web traffic, can be used as intermediaries be-
tween vulnerable LAN systems and particular application services. Some such proxies examine the
corresponding dataflows to identify and block dangerous data [22, 35]. Each such proxy addresses
a single protocol, introduces a central bottleneck, and sometimes creates a visibility problem by
making all requests appear to come from a single system. Self-securing NIs allow similar checking
in a multi-purpose, scanner-constraining platform.

A substantial body of research has examined the execution of application functionality by
network cards [15, 19] and infrastructure components [3, 14, 40, 42]. Although scanners are not
fully trusted, they are also not submitted by untrusted clients. Nonetheless, this prior work lays
solid groundwork for resource management within network components.

7 Summary

Self-securing network interfaces are a promising addition to the network security arsenal. This
paper makes a case for them, identifies NI software design challenges, and describes an NI soft-
ware architecture to address them. It illustrates the potential of self-securing NIs with a prototype
NI kernel and example scanners that address two high-profile network security problems: e-mail
viruses and Code-Red style worms.
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