
Web servers under overload: How scheduling can help

Bianca Schroeder Mor Harchol-Balter
May 2002

CMU-CS-02-143

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Most well-managed web servers perform well most of the time. Occasionally, however, every popular web server
experiences transient overload. An overloaded web server typically displays signs of its affliction within a few
seconds. Work enters the web server at a greater rate than the web server can complete it, causing the number of
connections at the server to build up. This implies large delays for clients accessing the server.
This paper provides a systematic performance study of exactly what happens when a web server is run under transient
overload, both from the perspective of the server and from the perspective of the client. Second, this paper proposes
and evaluates a particular kernel-level solution for improving the performance of web servers under overload. The
solution is based on SRPT connection scheduling.
We show that SRPT-based scheduling improves overload performance across a variety of client and server-oriented
metrics.

Keywords: Web servers, overload, transient be-
havior, connection-scheduling, HTTP requests, priority,
M/G/1, shortest processing remaining time, starvation,
heavy-tailed workloads, time-sharing, Linux, Apache.

1 Introduction

“A web site that fails to deliver its con-
tent, either in a timely manner or at all,
causes visitors to quickly lose interest, wast-
ing the time and money spent on the site’s
development”[43].

Most well-managed web servers perform well most
of the time. Occasionally, however, every popular web
server experiences transient overload. Overload is de-
fined as the point when the demand on at least one of
the web server’s resources exceeds the capacity of that
resource. While a well designed web server should not
be persistently overloaded, transient periods of overload
are often inevitable due to the burstiness of web traffic
and web hot spots.

An overloaded web server typically displays signs of
its affliction within a few seconds. Work enters the web
server at a greater rate than the web server can complete
it. This causes the number of connections at the web
server to build up. Very quickly, the web server reaches
the limit on the number of connections which it can han-
dle. From the client perspective, the client’s request for
a connection will either never be accepted or will get
through only after several trials. Even when the client’s
request for a connection does get accepted, the time to
service that request may be very long because the re-
quest has to timeshare with all the other requests at the
server.

The contribution of this paper is two-fold: First, the
paper provides a performance study of a web server un-
der overload. We experiment with both persistent over-
load (load exceeds 1 during the entire experiment) and
transient overload (alternate between periods of over-
load and low load). We evaluate a full range of complex
environmental conditions, which are summarized in Ta-
ble 2. These include: the effect of WAN delay and loss,
the effect of user aborts, the effect of persistent connec-
tions, the effect of SYN cookies, the effect of the RTO
TCP timer, the effect of the packet length, the effect of
the SYN queue and ACK queue lengths. Second, the
paper proposes and evaluates a particular kernel-level
improvement based on connection scheduling.

Our work is based on a standard Apache web server
running on Linux, and servicing static requests, of the
form “Get me a file.” The workload in all experiments
is based on web traces. Measurements [31, 30, 24] have
suggested that the request stream at most web servers
is dominated by static requests. Serving static requests
quickly is the focus of many companies e.g., Akamai
Technologies, and much ongoing research.

To understand the performance of a web server un-
der overload, we need to understand which resource in

a web server experiences overload first, i.e., which is
the bottleneck resource. The three contenders are: the
CPU; the disk to memory bandwidth; and the server’s
limited fraction of its ISP’s bandwidth. On a site con-
sisting primarily of static content, a common perfor-
mance bottleneck is the limited bandwidth which the
server has bought from its ISP [28, 18, 5]. Even a
fairly modest server can completely saturate a T3 con-
nection or 100Mbps Fast Ethernet connection. Also,
buying more bandwidth from the ISP is typically rela-
tively more costly than upgrading other system compo-
nents like memory or CPU. In fact, most web sites buy
sufficient memory so that all their files fit within mem-
ory (keeping disk utilization low) [5]. For static work-
loads, CPU load is typically not an issue.

In this paper, we model the limited bandwidth that the
server has purchased from its ISP by placing a limitation
on the server’s uplink, as shown in Figure 1. In all our
experiments the bandwidth on the server’s uplink is the
bottleneck resource. System load is therefore defined in
terms of the load on the server’s uplink. For example, if
the web server has a 100 Mbps uplink and the average
amount of data requested by the clients is 80 Mbps, then
the system load is 0.8. Although in this paper we assume
that the bottleneck resource is the limited bandwidth that
the server has purchased from its ISP, the main ideas can
also be adapted for alternative bottleneck resources.

To evaluate the performance of our server under over-
load, we use a trace-based workload and generate re-
quests according to an open system model as shown in
Figure 4. We evaluate performance both from the client
and the server perspective. To evaluate the client expe-
rience we record at the client side response time. This
is the time from when a client first sends out the SYN
until the client receives the last byte. To monitor the
server’s health we have instrumented the kernel in the
server to provide us with detailed information about the
state of the server such as the length of the SYN-queue,
the length of the ACK queue, number of active connec-
tions and other statistics. Under all conditions tested, we
find that under even mild overload, the number of con-
nections grows rapidly, resulting in very high response
times.

These high response times motivate us to look at new
ways to reduce the queueing delays at web servers un-
der overload using connection scheduling. Our idea is
simple. Traditionally, requests at a web server are time-
shared: the web server proportions its resources fairly
among those requests ready to receive service. We call
this scheduling policy FAIR scheduling. We propose,
instead, unfair scheduling, in which priority is given
to short requests, or those requests with short remain-
ing time, in accordance with the well-known scheduling

1

ISP
router SERVER

Client

Client

Client

rest of
Internet

of ISP’s bandwidth
Server buys limited fraction

ISP’s connection to Internet

SERVER’s
PERFORMANCE
BOTTLENECK

(a)

Client

Client

Client

WAN

SERVERswitch

EMU

WAN
EMU

EMU
WAN

Server’s Uplink
We limit the bandwidth
on the server’s uplink
to represent the limitation
on server’s portion of
ISP’s bandwidth.

SERVER’S
PERFORMANCE
BOTTLENECK

(b)

Figure 1: (a) Server’s bottleneck is the limited fraction
of bandwidth that it has purchased from its ISP. (b) How
our implementation setup models this bottleneck by lim-
iting the server’s uplink bandwidth.

algorithm preemptive Shortest-Remaining-Processing-
Time-first (SRPT).

Although it is well-known from queueing theory that
SRPT scheduling minimizes queueing time [40], ap-
plications have shied away from using SRPT for two
reasons: First SRPT requires knowing the size of the
request

�

(i.e. the time required to service the request).
Our experiments show that the size of a request is well-
approximated by the file size (modulo a small over-
head), which is well-known to the server. Second, there
is the fear that SRPT “starves” big requests [11, 19, 42].
The intuition commonly given is that a big request won’t
complete because it will continuously be interrupted by
the arrival of more and more small requests. The above
statement would be obvious if the system were perma-
nently overloaded. However, it’s not clear what happens
in the case of transient overload. A major goal of this
paper is to resolve this question.

Since the server’s uplink link is the bottleneck re-
source, we apply the SRPT idea to the uplink. Our idea
is to control at the kernel level the order in which the
server’s socket buffers are drained onto the link. Tra-
ditionally, the different socket buffers are drained in

�

Strictly speaking, it is not the size of the request but the size
of the response that we are talking about. We use these two terms
interchangeably.

Round-Robin Order (each getting a fair share of the
bandwidth on the uplink). We call such a traditional
server the FAIR server. We instead propose modifying
the server to give priority to those sockets corresponding
to connections for small file requests or those for which
the remaining data required is small. We refer to this
modified server as the SRPT server.

1.1 Organization of paper

Section 2 explains our implementation of SRPT. Sec-
tion 3 describes the experimental setup used throughout
the paper. Section 4 studies exactly what happens in a
traditional (FAIR) web server under overload and con-
trasts that with the performance of the modified (SRPT)
web server. Section 5 analyzes where exactly SRPT’s
performance gains come from. Section 6 discusses rel-
evant previous work, and Section 7 concludes.

2 Implementing an SRPT web server

In this section we describe our implementation of SRPT
in an Apache web server running on Linux.

2.1 Achieving priority queueing in Linux

Figure 2 (left) shows the data flow in standard Linux.
There is a socket buffer corresponding to each con-

nection. Data streaming into each socket buffer is then
processed by TCP and IP. Throughout this process-
ing, the packet stream corresponding to each connec-
tion is kept separate from every other connection. Fi-
nally, there is a single

�

“priority queue”, into which
all streams feed. Provided that all streams are identi-
cal (have equal amounts of data ready to send), they get
equal turns draining into the priority queue. This single
“priority queue,” can get as long as 100 packets. Packets
leaving this queue drain into a short Ethernet card queue
and out to the network.

To implement SRPT we need more priority levels.
Our approach is to build the Linux kernel with sup-
port for the user/kernel Netlink Socket, QOS and Fair
Queueing, and the Prio Pseudoscheduler. Then we use
the tc[2] user space tool to switch the device queue
from the default 3-band queue to the 16-band prio
queue.

Figure 2 (right) shows the flow of data in Linux af-
ter the above modification. Again, the data is passed
from the socket buffers through TCP and IP processing.
Throughout this processing, the packet streams corre-
sponding to each connection are kept separate. Finally,

�

The queue actually consists of 3 priority queues, a.k.a. bands.
By default, however, all packets are queued to the same band.

2

TCP
processing

IP
processing

TCP
processing

IP
processing

TCP
processing

IP
processing

Network
Wire

Single Priority Queue Ethernet Card

Socket 1

Socket 2

Socket 3 (transmit queue)

FEED FAIRLY

Socket 1

Socket 2

Socket 3

TCP
proc.

IP
proc.

TCP
proc.

IP
proc.

TCP
proc.

IP
proc.

1st Priority Queue

2nd Priority Queue

Ethernet Card

Network
Wire

first!

second.

feed

feed

(a) Standard Linux - FAIR (b) Modified Linux - SRPT

Figure 2: Data flow in standard Linux (left) and in Linux with priority queueing (right).

there are 16 priority queues. All the connections of pri-
ority

�
feed fairly into the

�
th priority queue. The priority

queues then feed in a prioritized fashion into the Ether-
net Card queue. Priority queue

�
is only allowed to flow

if priority queues � through
�����

are all empty. Ob-
serve that since scheduling occurs after TCP processing
it does not interfere with TCP or IP.

2.2 Modifications to Apache

In order to approximate SRPT using the priority queues,
for each request, we first have to initialize its socket to
a priority corresponding to the requested file’s size. We
later need to update the priority in agreement with the
remaining size of the file. Both are done via the set-
sockopt() system call within the web server code.

The only remaining problem is that SRPT assumes
infinite precision in ranking the remaining processing
requirements of requests. In practice, we are limited to
16 priority bands.

It turns out that the way in which request sizes are par-
titioned among these priority levels is somewhat impor-
tant with respect to the performance of the web server.
We have experimentally derived some good rules-of-
thumb that apply to the heavy-tailed web workloads.
Denoting the cutoffs by � ��� � �	��
�
�
� �� :
� The lowest size cutoff � � should be such that about

50% of requests have size smaller than � � . The
intuition here is that the smallest 50% of requests
comprise so little total load in a heavy-tailed distri-
bution that there’s no point in separating them.

� The highest cutoff ��� needs to be low enough that
the largest (approx.) 0.5% – 1% of the requests
have size ��� � . This is necessary to prevent the
largest requests from starving.

� The middle cutoffs are far less important. Anything
remotely close to a logarithmic spacing works well.

In the experiments throughout this paper, we use only
5 priority classes (1KB, 2KB, 5KB, and 50KB) to ap-

proximate SRPT. Using more improved performance
only slightly.

A potential problem with our approach is the over-
head of the setsockopt system call to modify pri-
orities. However, this overhead is mitigated by the low
system call overhead in Linux and the limited number of
system calls: since there are only 5 priority classes the
priority changes at most 4 times, and only for the very
largest of the file requests.

3 Experimental Setup

We start with a brief overview over some important
server internals in Section 3.1. Section 3.2 describes our
machine configuration; Section 3.3 defines the trace-
based workload that we use and the request generator at
the clients. Finally, Section 3.4 describes how we emu-
late WAN conditions in our setup.

3.1 Background on Server Internals

For a better understanding of our choice of performance
metrics and of the results of our performance study,
we review the processing of an incoming request in an
Apache server running on Linux.

A connection begins with a client sending a SYN.
When the server receives the SYN it allocates an entry in
the SYN-queue and sends back a SYN-ACK. After the
client ACKs the server’s SYN-ACK, the server moves
the connection record to its ACK-queue, also known as
the Listen queue. The connection waits in the ACK-
queue until an Apache process becomes idle and pro-
cesses it. Apache maintains some number of ready pro-
cesses, each of which can handle at most one request
at a time. When an Apache process finishes handling a
connection, the connection sits in the FIN-WAIT states
until an ACK and FIN is received from the client.

There are standard limits on the length of the SYN-
queue (128), the length of the ACK-queue (128), and
the number of Apache processes (150). Both the size of

3

the queues and the number of Apache processes is often
increased for high-performance web servers.

The limits above impose many sources of delays. If
the server receives a SYNwhile the SYN-queue is full, it
discards the SYN forcing the client to wait for a timeout
and then retransmit the SYN. Similarly, if the server re-
ceives the ACK for a SYN-ACKwhile the ACK-queue is
full, the ACK is dropped and must be retransmitted. The
timeouts are long (typically 3 seconds) since at this time
the client doesn’t have an estimate for the retransmis-
sion timer (RTO) for its connection to the server. Lastly,
if no Apache process is available to handle a connection
the connection must wait in the ACK-queue.

3.2 Machine Configuration

Our experimental setup involves six machines con-
nected by a 10/100 Ethernet switch. switch. Each
machine has an Intel Pentium III 700 MHz processor
and 256 MB RAM, and runs Linux 2.2.16. One of the
machines is designated as the server and runs Apache
1.3.14. The other five machines act as web clients
and generate requests as described in Section 3.3. The
switch and the network cards of the six machines are
forced into 10Mbps mode to make it easier to create
overload at the bottleneck device

�
.

On the server machine we increased the size of the
SYN and the ACK-queue as is common practice for
high performance web servers We experimented with
several values for the size of these queues and found
a size of 512 for each of them to give the best results
for our system. We also increased the upper limit on the
number of Apache processes from 150 to 350.

�
.

Furthermore, we have instrumented the kernel of the
server to provide detailed information on the internal
state of the server. This includes the length of the SYN
and ACK-queues, the number of packets dropped in-
side the kernel, and number of incoming SYNs that are
dropped. We also log the number of active sockets at
the server, which includes all TCP connections that have
resources in the form of buffers allocated to them, ex-
cept for those in the ACK-queue. Essentially, this means
sockets being serviced by an Apache process, and sock-
ets in the FIN-WAIT state.

�
Experiments were also performed under 100 Mbps mode, but

not in overload since that puts too much strain on the client ma-
chines, see Section 3.3.3.�

Our FAIR server performed best with the above values: SYNQ
= ACKQ = 512, and #Apache Processes = 350. The SRPT server is
not affected at all by these limits, since SYNQ occupancy is always
very low under SRPT.

3.3 Workload

3.3.1 The trace

The workload is based on a 1-day trace from the Soc-
cer World Cup 1998 obtained from the Internet Traf-
fic Archive [27]. The trace contains 4.5 million mostly
static HTTP requests. In our experiments, we use the
trace to specify the time at which the client makes the
request and the request size in bytes. Results for exper-
iments with other logs are given in Appendix B.

Some statistics about our trace workload: The mean
file size requested is 5K bytes. The min size file re-
quested is a 41 byte file. The max size file requested is a
2.02 MB file. The distribution of the file sizes requested
fits a heavy-tailed Pareto distribution. The largest �����
of the requests make up ��� � � of the total load, exhibit-
ing a strong heavy-tailed property. � � � of files have
size less than 1K bytes. 	 � � of files have size less than
9.3K bytes. These characteristics are similar to that of
workload generated by Surge[9].

3.3.2 Defining persistent and transient overload

In our experiments we consider two types of overload,
persistent overload and transient overload.

Persistent overload is used to describe a situation
where the server is run under a fixed load
 � � during
the whole experiment. The motivation behind experi-
ments with persistent overload is mainly to gain insight
into what happens under overload. However, if a real
web server is persistently overloaded the inevitable con-
sequence is to upgrade the system. Nevertheless, due to
the burstiness of web traffic even in the case of regular
upgrades a popular web server is still likely to experi-
ence transient periods of overload.

We consider two different types of transient overload:
In the first type, called alternating overload, the load
alternates between overload and low load, where the
length of the overload period is equal to the length of
the low load period (see Figure 3(left)). In the second
type, called intermittent overload, the load is almost al-
ways low, but there are occasional “spikes” of overload,
evenly spaced apart (see Figure 3(right)).

Throughout, since the bandwidth on the uplink is the
bottleneck resource, we define load to be the ratio of
the bandwidth requested and the maximum bandwidth
available on the uplink. To obtain a particular load we
scale the interarrival times in the trace appropriately.

We run all experiments in this paper for several dif-
ferent alternating and intermittent workloads, which are
defined in Table 1. All our results are based on 30 min
experiments although we show only shorter fragments
in the figures for better readability.

4

Load

Time

Overload Overload

Low load Low load Low load

Overload

Load

Time

Overload Overload Overload

Low load Low load Low load

Figure 3: Two different types of transient overload, alter-
nating (left) and intermittent (right). Note, that in the exper-
iment, the load will never look as constant as in the figure,
since arrival times and request sizes come from a trace.

Work- Type Duration Duration Low Over- Avg.
load low load overload load load load
W1 Alt 25 sec 25 sec ��� 0.2 ��� 1.2 0.7
W2 Alt 10 sec 10 sec ��� 0.2 ��� 1.2 0.7
W3 Alt 50 sec 50 sec ��� 0.2 ��� 1.2 0.7
W4 Alt 25 sec 25 sec ��� 0.4 ��� 1.4 0.9
W5 Alt 10 sec 10 sec ��� 0.4 ��� 1.4 0.9
W6 Int 20 sec 3 sec ��� 0.5 ��� 2 0.7
W7 Int 13.3 sec 2 sec ��� 0.5 ��� 2 0.7
W8 Int 20 sec 3 sec ��� 0.735 ��� 2 0.9
W9 Int 13.3 sec 2 sec ��� 0.735 ��� 2 0.9

Table 1: Definition of workloads

3.3.3 Generating requests at the client machines

Experimenting with persistent overload is inherently
more difficult than running experiments where the load
is high but remains below 1. The main issue in exper-
imenting with overload is that running the server un-
der overload is very taxing on client machines. While
both the client machines and the server must allocate re-
sources (such as TCP control blocks or file descriptors)
for all accepted requests, the client machines must addi-
tionally allocate resources for all connections which the
server has repeatedly refused (due to full SYN-queue).

Existing web workload generators include Surge [9]
and Sclient [6]. Surge mimics a closed system with
several users, where each user makes a request and af-
ter receiving the response waits for a certain think time
before it makes the next request. Note that in a closed
system it is not possible to create overload, since a new
request will be made only if another request finishes (see
Figure 4). Although Surge was easily modified into an
open system, we found that it does not scale to the high
number of connections that our clients need to maintain.
This is because Surge is based on multithreading, main-
taining one thread per connection.

Using Sclient (based on the select() call) to handle
multiple connections simultaneously, we were able to
generate the required load. However, Sclient does not
support persistent connections.

Instead of extending Sclient’s functionality, we chose
to implement our own trace-based web workload gen-

Get responseGenerate request Leave

Each user has this behavior:

Open System

Closed System
Fixed number of users (N) sit at same web site forever.
Each user has this behavior:

Get response

Generate request

User visits web site just once.

Figure 4: Two models for how the requests to a web
server are generated. In creating overload, one must
use an open system model.

erator based on the libwww library [45]. libwww is
a client side Web API based on select(). One obstacle
in using libwww in building a web workload generator
is that it does not support multiple parallel connections
to the same host. We modified libwww in the fol-
lowing way to perform our experiments with persistent
connections: Whenever our application passes a URL
to our modified libwww, it first checks whether there is
a socket open to this destination that is (a) idle and (b)
that has not reached the limit on the maximum number
of times that we want to reuse a connection. If it doesn’t
find such a socket it establishes a new connection.

We ran all the experiments that do not involve persis-
tent connections with both Sclient and our new work-
load generator and found the results to be the same.

3.4 Emulating WAN effects

The two most frequently used tools for WAN emulation
are probably NistNet [36] and Dummynet [39].

NistNet is a separate package available for Linux
which can drop, delay or bandwidth-limit incoming
packets. Dummynet applies delays and drops to both
incoming and outgoing packets, hence allowing the user
to create symmetric losses and delays. Since Dummynet
is currently available for FreeBSD only we implement
Dummynet functionality in form of a separate mod-
ule for the Linux kernel. More precisely, we changed
the ip rcv() and the ip output() function in the
Linux TCP-IP stack to intercept in- and out-going pack-
ets to create losses and delays.

In order to delay packets, we use the add timer()
facility to schedule transmission of delayed packets.
We recompile the kernel with HZ=1000 to get a finer-

5

grained millisecond timer resolution.
In order to drop packets we use an independent, uni-

form random loss model (as in Dummynet) which can
be configured to a specified probability.

4 Experimental Results

In this section we study exactly what happens in a stan-
dard (FAIR) web server under overload and contrast that
with the performance of our modified (SRPT) server.
Table 2 describes the various factors we consider in
our study. In Section 4.1, we evaluate performance for
workload W1 only. In Section 4.2, we consider the other
workloads in Table 1.

4.1 Results for workload W1

(A) The simple baseline case

In this section we study the simple baseline case de-
scribed in Table 2, row (A). We first look at persistent
overload and then at transient overload. Since the main
observations for persistent overload are the same as for
the overload portion of transient overload, we later con-
sider only transient overload.

Persistent overload

In this section we run the web server under persis-
tent overload of 1.2, i.e., the average amount of data re-
quested by the clients per second exceeds the bandwidth
on the uplink by a factor of 1.2. We analyze our obser-
vations from two different angles, the server’s view and
the client’s view.

We start with the server’s view. One indication for the
health of a server is the buildup in the number of connec-
tions at the server shown in Figure 5(left). In FAIR, af-
ter 40 to 50 sec the number of connections reaches 350 –
the maximum number of Apache processes. At this time
all the Apache processes are busy and consequently the
SYN and the ACK queues fill up and incoming SYNs
are dropped. In the SRPT server the number of con-
nections grows at a much slower rate. The growth rate
under SRPT is imperceptible under the short timescale
in the figure – it takes more than 300 seconds until the
maximum number of connections is reached. Once the
SRPT and the FAIR server start to drop SYNs they drop
SYNs at a comparable rate.

Another server-oriented metric that we consider is
byte throughput. We find that the byte throughput is the
same under FAIR and SRPT . Despite the differences in
the way FAIR and SRPT schedule requests, they both
manage to keep the link fully utilized.

Next we describe the clients’ experience. In comput-
ing the mean response time for persistent overload, we
consider only those requests that finished before the last
request arrived (subsequently, load will drop). We ob-
serve that for both servers the mean response times in-
crease steadily over time (see Figure 5(right)). In the
FAIR server at time 10 sec (long before the SYN-queue
fills up) the mean response time is 5 sec, already intol-
erable. Under SRPT the response times grow at a much
slower rate. Even after 70 sec the response time under
SRPT is less than 5 sec.

To summarize the above observations, we saw that af-
ter less than 50 seconds of moderate overload the FAIR
server starts to drop incoming requests and the response
times reach values that are not tolerable by users. The
SRPT server significantly extends the time until SYNs
are dropped and improves the client experience notably.

Transient Overload

In this section we use the transient workload exam-
ple W1 introduced in Table 1 to study the performance
under transient overload.

We first consider how the health of the server is af-
fected during the low load and overload periods. We
observe again that the number of connections grows at
a much faster rate under FAIR than under SRPT. While
under SRPT the number of connections never exceeds
50, it frequently exceeds 200 under FAIR. However,
neither server reaches the maximum SYN-queue capac-
ity (since the overload period is short) and therefore no
SYNs are dropped.

Figure 6 (A) shows the response times over time of
all jobs (averaged over 1 sec intervals). What is shown
in all these plots is just 200 sec out of a 30-minute ex-
periment. The overload periods are shaded light grey
while the low load periods are shaded dark grey. Ob-
serve that under FAIR the mean response times go up to
more than 3 seconds during the overload period

�
, while

under SRPT they hardly ever exceed 0.5 sec.
Figure 7(left) shows the distribution of the response

times under FAIR and SRPT. Note, that there is an or-
der of magnitude separation between the curve for FAIR
and SRPT. The mean response time taken over the entire
length of the experiment is 1.1 sec under FAIR com-
pared to only 138 ms under SRPT. Furthermore, the
variance is

�
 � 	 under FAIR compared to 1.08 under
SRPT. Another interesting observation is that the FAIR
curve has bumps at regular intervals. These bumps are
due to TCP’s exponential backoff in the case of packet

�
Note that this is not quite as bad as for persistent overload, be-

cause a job arriving into the overload period in transient overload at
worst has to wait until the low load period to receive service, so its
expected response time is lower than under persistent overload.

6

Setup Factor affecting Specific case shown Range of values studied
performance in Figure 6(left) and (middle) and shown in Figure 6(right)

(A) Baseline Case RTT=0, Loss=0%, No Persistent Conn., RTO=3 sec, pkt. len.=1500,
No SYN cookies, SYNQ=ACKQ=512, #ApacheProcs=350

(B) WAN Delays baseline + 100 ms RTT RTT=0-150 ms
(C) Loss baseline + 5% loss Loss=0-15%
(D) WAN delay & loss baseline + 100 ms RTT+ 5% loss RTT=0-150 ms, Loss =0-15%
(E) Persistent Connections baseline + 5 req. per conn. 0-10 requests/conn.
(F) Initial RTO value baseline + RTO 0.5 sec RTO = 0.5sec-3sec
(G) SYN Cookies baseline (SYN Cookies OFF) SYN cookies=ON/OFF
(H) User Abort/Reload baseline + user aborts: Abort after 3-15 sec with

User aborts after 10 sec and retries up to 3 times up to 2, 4, 6, or 8 retries
(I) Packet length baseline + 536 bytes packet length Packet length=536-1500 bytes
(J) Realistic Scenario RTT=100 ms, Loss=5%, 5 req. per conn., RTO=3 sec, pkt. len.=1500,

No SYN cookies, SYNQ=ACKQ=512, #ApacheProcs=350
User aborts after 7 sec and retries up to 3 times

Table 2: Columns 1 and 2 list the various factors. Column 3 specifies one value for each factor. This value corresponds to
Figure 6(left, middle). Column 4 provides a range of values for each factor. The range is evaluated in Figure 6(right)).

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

Time (sec)

Nu
mb

er
 of

 C
on

ne
cti

on
s

FAIR
SRPT

0 10 20 30 40 50 60 70
0

5

10

15

Me
an

 R
es

p T
im

e (
se

c)

Time (sec)

FAIR
SRPT

Figure 5: Results for a persistent overload of 1.2. (Left) Buildup in connections at the server. (Right) response times.

loss during connection setup. Given that we have a vir-
tually loss-free LAN setup and the SYN-queue never
fills up, the question is where these packets are dropped.
Our measurements inside the kernel show that the time-
outs are due to reply packets of the server being dropped
inside the server’s kernel. We will study the impact of
this effect in greater detail in Section 5.

The big improvements in mean response time are not
too surprising given the opportunistic nature of SRPT:
schedule to minimize the number of connections. A
more interesting question is what price large requests
have to pay to achieve good mean performance.

This question is answered in Figure 7(right) which
shows the mean response times as a function of the re-
quest size. We see that surprisingly even the big requests
hardly do worse under SRPT.

Even for the very biggest request the mean response
time is

� 	
 � sec under SRPT compared to
���
�� sec un-

der FAIR. If we look at the biggest 1 percent of all re-
quests we find that their average response time is �
�� sec
under SRPT compared to �
 	 sec under FAIR, so these
requests perform better on average under SRPT. We will
explain this counter-intuitive result in Section 5.

(B) WAN delays

Figure 6(B)(left, middle) shows the effect of adding
WAN delay (setup (B) in Table 2). This assumes a base-
line setup, with an RTT (round-trip-time) delay of 100
msec. While FAIR’s mean response time is hardly af-
fected since it is large compared to the additional delay,
the mean response time of SRPT more than doubles.

Figure 6(B)(right) shows the mean response times for
various RTTs ranging from 0 to 150 msec. Observe that
adding WAN delays increases response times by a con-
stant additive factor on the order of a few RTTs. SRPT
improves upon FAIR by at least a factor of 2.5 for all
RTTs considered.

(C) Network losses

Figure 6(C)(left, middle) shows the mean response
times over time for the setup in Table 2 row (C): a loss
rate of 5%. Note that in this case for both FAIR and
SRPT the response times increase notably compared
to the baseline case. FAIR’s overall response time in-
creases by almost a factor of 2 from 1.1 sec to 1.9 sec.
SRPT’s response time increases from less than 140 ms
in the baseline case to around 930 ms.

Figure 6(C)(right) shows the mean response times for
loss rates ranging from 0 to 15%. We observe that the
response times don’t grow linearly in the loss rate. This

7

(A) FAIR - Baseline (A) SRPT - Baseline

0 50 100 150 2000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

(B) FAIR - Delays (B) SRPT - Delays (B) Comparison

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150
0

1

2

3

4

RTT (msec)

Re
sp

Tim
e (

sec
)

FAIR
SRPT

(C) FAIR - Losses (C) SRPT - Losses (C) Comparison

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 5 10 15
0

2

4

6

8

Loss Rate (%)

Re
sp

Tim
e (

sec
)

FAIR
SRPT

(D) FAIR - Delays and Losses (D) SRPT - Delays and Losses (D) Comparison

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
sp

on
se

 Ti
me

 (s
ec

)

Low Load
Overload

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
sp

on
se

 Ti
me

 (s
ec

)

Low Load
Overload

0 5 10 15
0

2

4

6

8

Loss Rate (%)

Me
an

 Re
sp

 Ti
me

 (s
ec

)

RTT 150 ms − FAIR
RTT 50 ms − FAIR
RTT 150 ms − SRPT
RTT 50 ms − SRPT

(E) FAIR - Persistent (E) SRPT - Persistent (E) Comparison

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Reuse of Connection

Re
sp

Tim
e (

sec
)

FAIR
SRPT

(F) FAIR - Initial RTO (F) SRPT - Initial RTO (F) Comparison

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Re
sp

Tim
e (

sec
)

Initial RTO (sec)

FAIR
SRPT

(H) FAIR - User Abort/Reload (H) SRPT - User Abort/Reload (H) Comparison

0 50 100 150 200
0

1

2

3

4

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

Time until Abort (sec)

Re
sp

Tim
e (

sec
)

6 retries − FAIR
2 retries − FAIR
6 retries − SRPT
2 retries − SRPT

(I) FAIR - Packet length (I) SRPT - Packet length (I) Comparison

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

500 1000 1500
0

0.5

1

1.5

2

Re
sp

 Ti
me

 (s
ec

)

MTU (bytes)

FAIR
SRPT

Figure 6: Each row in the figure compares SRPT and FAIR under workload W1 for one particular setup from Table 2. The left
and middle column in the figure show the response times over time for the specific values given in Table 2, column 3. The right
column in the figure compares the performance of SRPT and FAIR for the range of values given in the column 4 of Table 2.8

0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Response Time (sec)

Pr
(R

es
po

ns
e T

im
e >

 x)

FAIR
SRPT

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

Percentile of requested file size

Re
sp

on
se

 Ti
me

 (s
ec

)

FAIR
SRPT

Figure 7: The distribution of response times (left) and the response times as a function of the request size (right) for W1.

0 50 100 150 200
0

1

2

3

4

Time (sec)

Re
sp

on
se

 Ti
me

 (s
ec

)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

Time (sec)

Re
sp

on
se

 Ti
me

 (s
ec

)

Low Load
Overload

(J) FAIR - Realistic case (J) SRPT - Realistic case

Figure 8: Comparison of FAIR (left) and SRPT (right) for the Real world setup for workload W1.

is to be expected since TCPs throughput is inversely pro-
portional to the square root of the loss.

Introducing frequent losses can increase FAIR’s re-
sponse times to more than 6 sec and SRPT’s response
time to more than 4 sec (as in the case of 15% loss).
Even in this case SRPT still improves upon FAIR by
about a factor of 1.5.

(D) Combination of Delays and Losses

Finally, we look at the combination of losses and de-
lays. Figure 6(D)(left, middle) shows the results for the
setup in Table 2 row (D): an RTT of 100 ms with a loss
rate of 5%. Here SRPT improves upon FAIR by a factor
of 2. Figure 6(D) (right) shows the response times for
various combinations of loss rates and delays. We ob-
serve that the negative effect of a given RTT is slightly
bigger if the loss rate is higher. The reason is that higher
RTTs make loss recovery more expensive since timeouts
depend on the (estimated) RTT.

(E) Persistent Connections

Next we explore how the response times change if
multiple requests are permitted to use a single serial,
persistent connection ([32]). for several requests. Fig-
ure 6(E)(left, middle) shows the results for the setup in
Table 2, row (E): where every connection is reused 5
times. Figure 6(E)(right) shows the response time as a
function of the number of requests per connection, rang-
ing from 0 to 10. We see that using persistent connec-
tions greatly improves the response times of FAIR. For
example, reusing a connection five times reduces the re-
sponse time by a factor of 2. SRPT on the other hand

is hardly affected by using persistent connections. To
see why FAIR benefits more than SRPT observe that
reusing an existing connection avoids the connection
setup overhead; this overhead is bigger under FAIR,
mainly because it suffers from drops inside the kernel.
SRPT doesn’t see this improvement since it experiences
hardly any packet loss in the kernel.

Nevertheless, we observe that SRPT still improves
upon FAIR by a factor of 3, even if up to 10 requests
can use the same connection.

(F) Initial TCP RTO value

We observed previously that packets that are lost
in the connection setup phase incur very long delays,
which we attributed to the conservative initial RTO
value of 3 seconds. We now ask how much of the
total delay a client experiences in the FAIR server is
due to the high initial RTO. To answer this question,
we changed the RTO value in Linux’s TCP implemen-
tation. Figure 6(F)(left, middle) shows the results for
the setup in Table 2, row (F): an RTO of 500ms. Fig-
ure 6(F)(right) explores the range from 500 ms up to the
standard 3 sec. We observe that by setting the initial
RTO to 500 ms, we can reduce FAIR’s mean response
time from 1.1 sec to 0.8 sec. SRPT’s response times
don’t improve for lower initial RTOs since SRPT has
little loss in the kernel. Nevertheless, for all initial RTO
values considered there is always at least a factor of 4
improvement under SRPT as compared to FAIR.

Having observed that the mean response times of a
(standard) FAIR server can be significantly reduced by
reducing TCP’s initial RTO, we are not suggesting to
change this value in current TCP implementations, since

9

there are reasons for why it is set conservatively [38].

(G) SYN cookies
Recall that one of the problems under overload is the

dropping of incoming packets due to a full SYN-queue.
This leads us to the idea of using SYN cookies [12]
in overload experiments. SYN cookies were originally
developed to avoid denial of service attacks, however
they have the added side-effect of eliminating the SYN-
queue. Our hope is by getting rid of the SYN-queue to
also get rid of the problems involving a full SYN-queue.

The use of SYN cookies hardly affects the response
times under W1 since in W1 the SYN-queue never fills
up. In other transient workloads which exhibit SYN
drops due to a full SYN-queue, the response times do
improve, but only slightly by 2–5%. The reason is that
now instead of the incoming SYN being dropped it is
the ACK for the SYN-ACK that is dropped due to a full
ACK-queue.

Since SRPT does not lose incoming SYNs its perfor-
mance is not affected by using SYN cookies.

(H) User abort/reload

So far we have assumed that a user patiently waits
until all the bytes for a request have been received. In
practice users abort requests after a while and hit the
reload button of their browser. We model this behavior
by repeatedly aborting a connection if it hasn’t finished
after a certain number of seconds and then opening a
new connection.

Figure 6(H)(left,middle) shows the response times if
a user waits for at most 10 sec before he hits reload and
retries this procedure up to 6 times before giving up.
Figure 6(H)(right) shows mean response times if con-
nections are aborted after 3 to 15 seconds and for either
2 or 6 retries.

We observe that taking user behavior into account
can, depending on the parameters, both increase or de-
crease response times. If users are impatient and abort
connections quickly and retry only very few times the
response times can decrease by up to 10%. This is be-
cause there is now a (low) upper bound on the maximum
response times and also the work at the server is reduced
since clients might give up before the server has even
invested any resources in the request. However, this re-
duced mean response time does not necessarily mean
greater average user satisfaction, since some number of
requests never complete. For example, if users abort a
connection after 3 sec and retry at most 2 times, more
than 5 percent of the requests under FAIR never com-
plete for W1.

If users are willing to wait for longer periods of time
and retry more often, response times significantly in-

crease. The reason is that response times are long both
for those users that go through many retries, but also for
other users, since frequent aborts and reloads increase
the work at the server, which might spend quite some
time on requests that later get aborted. For example, if
users retry up to 6 times and abort a connection only af-
ter 15 sec the response times under FAIR almost double
compared to the baseline case that doesn’t take user be-
havior into account. On the other hand the number of
incomplete requests is very small in this case – under
0.02%.

In comparing FAIR and SRPT we observe that for
all choices of parameters for user behavior the response
times under SRPT improve upon those under FAIR by
at least a factor of 8. Also the number of incomplete
requests is always smaller under SRPT, by as much as
a factor of 7. The reason is that SRPT is smarter than
FAIR. Because SRPT favors small requests, the small
requests (the majority) have no reason to abort. Only
the few big requests are harmed under SRPT. Neverthe-
less, even requests for the longest file suffer no more
incompletes under SRPT than under FAIR.

(I) Packet Length
Next we explore the effect of the maximum packet

length (MSS). There are two different packet lengths
commonly observed in the Internet [25]: 1500 bytes
since this is the MTU (maximum transmission unit) for
Ethernet, and 536 bytes, which is used by some TCP
implementations that don’t perform MTU discovery.

Figure 6 (I)(left,middle) shows the results for setup
(I) in Table 2, where the packet length is changed from
the 1500 bytes in the baseline case to 536 bytes. As
expected the mean response time increases, since for a
smaller packet length more RTTs are necessary to com-
plete the same transfer. FAIR’s response time increases
by almost 50% to 1.6 sec and SRPT’s response time
doubles to 260 msec.

Figure 6 (I)(right) shows the mean response times for
different packet lengths ranging from 500 bytes to 1500
bytes. For all packet lengths considered, SRPT always
improves upon FAIR by at least a factor of 6.

(J) A realistic scenario
So far, we have looked at several factors affecting web

performance in isolation. Figure 8 shows the results for
an experiment that combines all the factors: We assume
an RTT of 100 ms, a loss rate of 5%, no SYN-cookies,
and the use of persistent connections (5 requests per
connection). We leave the RTO at the standard 3 sec and
the MTU at 1500 bytes. We assume users abort after 7
seconds and retry up to 3 times.

We observe that the mean response time of both

10

SRPT and FAIR increases notably compared to the
baseline case. It is now 1.48 sec under FAIR and 764
msec under SRPT – a factor 2 improvement of SRPT
over FAIR. Observe that both these numbers are still
better than those in experiment (D), where we combined
only losses and delays and saw a response time of 2.5
sec and 1.2 sec, respectively. The reason is that the use
of persistent connections alleviates the negative effects
of losses and delays during connection setup.

The largest 1% of requests (counting only those that
complete) have a response time of 2.23 sec under FAIR
and 2.28 sec under SRPT. Even the response time of
the very biggest request is higher under FAIR: 13.2 sec
under FAIR and only 12.8 sec under SRPT. The total
number of incomplete requests is similar under FAIR
and SRPT – about 0.2%.

Observe that it makes sense that unfairness to large
requests is more pronounced in the baseline case be-
cause server delay dominates response time under the
baseline case, in contrast to the realistic case where ex-
ternal factors can dominate.

Under workload W1 there were no SYN drops, neither
for the baseline nor the realistic setup.

4.2 Other transient workloads

Figure 9(left) gives the mean response times for all
workloads from Table 2 for the baseline case (Table 2
row (A)), and Figure 9(right) shows the mean response
time for the largest 1% of requests, again for the base-
line case. The reason that we choose to show perfor-
mance for the baseline case rather than the realistic case
is that this way the effects of the different workloads are
not blurred by external factors. Also, the starvation of
large requests is by definition greater for the baseline
case than the realistic case, as explained above. In the
discussion below, however, we will include the perfor-
mance numbers for both the baseline and the realistic
case.

Mean response time

We find that for the baseline case, the mean response
time of SRPT improves upon that of FAIR by a factor of
4 – 8 across the different workloads. More specifically,
FAIR ranges from 300ms – 2.5 sec, while SRPT ranges
from 50ms – 400 ms.

Under the realistic case SRPT improves mean re-
sponse times upon that of FAIR by a factor of 1.5 –
4 across the different workloads. FAIR ranges from
900ms – 3 sec, while SRPT ranges from 600ms – 900
ms.

We find that for both the baseline and realistic case,
the mean performance under each workload is affected

by (1) the mean system load and (2) the length of the
overload and low load periods. For example workloads
W4, W5, W8, W9, with high mean system load, also
have higher mean response times. Next consider Work-
load 1, 2 and 3 which differ only in the length of the
overload and low period; W2, which has a 10 sec over-
load and low load period, leads to a 10 times lower mean
response time than W3, where each low load and high
load periods lasts 50 sec. The length of the overload
period and the overall load also affect the number of
SYN drops, and consequently the response times. Most
workloads have zero SYN drops, under both the base-
line and realistic setups. However workloads W3 and
W4, which have longer overload periods, result in 1
– 3% SYN drops under the baseline case under FAIR
and 20 – 23% SYN drops under the realistic case under
FAIR. This explains the high response times of work-
loads W3 and W4 under FAIR. SYN drops do not occur
under SRPT.

Performance of large requests

Again, an obvious question to ask is whether this im-
provement in the mean response time comes at the price
of longer response times for the long requests. In par-
ticular, for the workloads with higher mean system load
and longer overload periods it might seem likely that
SRPT leads to a higher penalty for the long requests.

Figure 9(right) shows for each workload the response
times of only the biggest 1% of all requests in the base-
line case. The mean response time for the top 1% of re-
quests is never more than 10% higher under SRPT than
FAIR for any workload.

Under the realistic setup, the mean response time for
the top 1% of requests is never more than 2% higher un-
der SRPT than under FAIR, where we count only com-
pleted requests.

When considering the performance of large requests
in the case of the realistic setup, it is important to also
look at the number of incomplete requests (since the re-
alistic setup incorporates user aborts). We observe that
the lack of unfairness under SRPT in the realistic setup
is not a consequence of a large number of incomplete
large requests. The overall fraction of incomplete re-
quests is only 0.2% for both FAIR and SRPT when load
is 0.7 and ranges from 10 – 15% for both FAIR and
SRPT when load is 0.9. Looking only at the largest 1%
of requests, the fraction of incomplete requests is much
more variable, ranging from 3 – 14% under SRPT and
3 – 26% under FAIR, but is always smaller under SRPT
than under FAIR.

Finally, we observe that for both the baseline and the
realistic setup increasing the length of the overload pe-
riod (W3) or the mean system load (W4, W5, W8, W9)

11

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

Workload

Re
sp

 Ti
me

 (s
ec

)

FAIR
SRPT

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

Re
sp

 Ti
me

 bi
gg

es
t 1

%
(se

c)

Workload

FAIR
SRPT

Mean Response Time - Baseline Mean Response Time of biggest 1% requests - Baseline

Figure 9: Comparison of FAIR and SRPT in the baseline case for the workloads in Table 1. The mean response times over all
requests are shown left, and the mean response times of only the biggest 1% of all requests are shown right.

does not result in more starvation. This also agrees with
the theoretical results in Appendix A.

5 Why does SRPT work?

In this section we will look in more detail at where
SRPT’s performance gains come from and we explain
why there is no starvation of long jobs.

5.1 Where do mean gains come from?

Recall, that we identified in Section 4 three reasons for
the poor performance of a standard (FAIR) server under
overload:

1) High queueing delays at the server due to high num-
ber of connections sharing the bandwidth, see Figure 5.

2) Drops of SYNs because of full SYN queue,

3) Loss of packets inside the kernel.

SRPT alleviates all these problems. It reduces queue-
ing delays by scheduling connections more efficiently.
It has a lower number of dropped SYNs since it takes
longer for the SYN-queue to fill. Finally and less obvi-
ously, an SRPT server also sees less loss inside the ker-
nel. The reason is that subdividing the transmit queue
into separate shorter queues allows SRPT to isolate the
short requests, which are most requests. These short re-
quests go to a queue which is drained more quickly, and
thus experience no loss in their transmit queue.

The question we address in this section is how much
of SRPT’s performance gain can be attributed to solving
each of the above three problems.

We begin by looking at how much of the performance
improvements under SRPT stem from alleviating the
SYN drop problem. In workload W1, used through-
out the paper, no incoming SYNs were dropped. Hence
SRPT’s improvement was not due to alleviating SYN
drops. Workload W4 did exhibit SYN drops (1% in the
baseline case and 20% in the realistic case). We elimi-
nate the SYN drop advantage by increasing the length of

the SYN-queue to the point where SYN drops are elim-
inated. This only improves FAIR by under 5% for the
baseline case and 30% for the realistic case – not enough
to account for SRPT’s big improvement over FAIR.

The remaining question is how much of SRPT’s ben-
efits are due to reducing problem 1 (queueing delays)
versus problem 3 (packet drops inside the kernel). Ob-
serve that problem 3 is mainly a problem because of the
high initial RTO. We can mitigate the effect of problem
3 by dropping the initial RTO to, say, 500 ms. The result
is shown in Figure 6(F). Observe that even when prob-
lem 3 is removed, the improvement of SRPT over FAIR
is still a factor of 7. We therefore conclude that problem
1 is the main reason why SRPT improves upon FAIR.

Problem 3 may seem to be a design flaw in Linux,
that could be solved by either adding a feedback mech-
anism when writing to the transmit queue or by increas-
ing the length of the transmit queue. However, this will
increase the queueing delays that a packet might expe-
rience. We observed experimentally that increasing the
transmit queue up to a point slightly decreases response
time, but beyond that actually hurts response time.

5.2 Why are long requests not hurt?

In this section we give some intuition for why, in the
case of web workloads, SRPT does not unfairly penalize
large requests.

To understand what happens under transient overload,
first consider the overload period. Under FAIR all jobs
suffer during the overload period. Under SRPT all jobs
of size � � complete and all other jobs receive no ser-
vice, where � is defined such that the load comprised
of jobs of size � � equals 1. While it is true that jobs
of size � � receive no service under SRPT during the
overload period, they also receive negligibly-little ser-
vice under FAIR during the overload period because the
number of connections with which they must share un-
der FAIR increases so quickly (see Figure 5). Next con-
sider the low load period. At start of low load, there are
many more jobs present under FAIR; only large jobs are

12

present under SRPT. These large jobs have received zero
service under SRPT and negligibly-little service under
FAIR until now. Thus the large jobs actually finish at
about the same time under SRPT and FAIR.

The above effects are accentuated under heavy-tailed
request sizes for two reasons: (1) Under heavy-tailed
workloads, a very small fraction of requests make up
half the load, and therefore, the fraction of large jobs
(� �) receiving no service during overload under SRPT
is very small. (2) The little service that the large jobs
receive during overload under FAIR is even less signifi-
cant because the large jobs are so large that proportion-
ately the service appears small.

The intuition given above is formalized using
queueing-theoretic analysis in Appendix A.

6 Related Work

There is a large body of work on systems to support high
traffic web sites. Most of this work focuses on improv-
ing performance by reducing the load on the overloaded
devices in the system. This is typically done in one of
four ways: increasing the capacity of the system for ex-
ample by using server farms or multiprocessor machines
[20, 22]; using caches either on the client or on the
server side [26, 15, 13]; designing more efficient soft-
ware both at the OS level [34, 7, 23, 29] and the appli-
cation level [37], and admission control [17, 44]. Other
means of avoiding overload are content adaptation [1]
and offloading work to the client [3].

Our work differs significantly from all these ap-
proaches in that we do not attempt to reduce the load
on the overloaded device. Rather, our goal is to improve
the performance of the system while it is overloaded.
To accomplish this goal, we employ SRPT scheduling.
While there has been some work done on scheduling in
web servers, e.g. [21, 16], no prior work focuses on size-
based scheduling to improve overload performance.

While there exist relatively few studies on servers
running under overload, there are many studies of web
server performance in general (not overloaded). These
studies typically concentrate on the effect that network
protocols/conditions have on web server performance.
We list just a few below:

In [4] and [14] the authors find that the TCP RTO
value has a large impact on server performance under
FreeBSD. This agrees with our study.

In [35] the authors study the effect of WAN condi-
tions, and find that losses and delays can affect response
times. They use a different workload from ours (Surge
workload) but have similar findings.

The benefits of persistent connections are evaluated
by [32] and [10] in a LAN environment.

There are also several papers which study real web
servers in action, rather than a controlled lab setting,
e.g., [33] and [41].

7 Conclusion

This paper provides a detailed performance study of the
effect of overload on an Apache web server running over
Linux and servicing static content. We start with a base-
line setup consisting of a simple LAN and find that un-
der even slight overload, the number of connections at
the server grows rapidly, resulting in response times on
the order of seconds after only a couple seconds.

We next evaluate the server under nine types of tran-
sient overload, where load oscillates between overload
and low load, however the mean load is well under 1.
We find that performance is dependent on the length of
the overload period and also on whether the transient
overload is of the alternating or intermittent type. We
see that under alternating overload, mean response times
are quite high – typically a second or two.

We next consider the effect of external factors such
as WAN conditions (losses and delays), packet lengths,
RTO timer values, SYN cookies, persistent connections,
and user aborts, first in isolation and then in combina-
tion. Some factors like persistent connections improve
performance, while others, like loss, greatly hurt per-
formance. When taken in combination, under realistic
settings for each of these factors, we find that mean re-
sponse times are still very high.

These results motivate us to consider how scheduling
of connections at the web server might be used to im-
prove performance. In particular we consider replacing
the traditional FAIR scheduling used in web servers to-
day by SRPT-based scheduling.

We discover a basic principle: Scheduling to favor
short requests can have a big impact on mean response
time without causing starvation of long requests and
without reducing throughput. We demonstrate this basic
principle both experimentally and analytically.

For the baseline scenario (assuming only a simple
LAN environment with no persistent connections and no
user aborts) we find that SRPT improves mean response
times by 200 – 800 % over the traditional FAIR schedul-
ing, across nine transient overload workloads. We fur-
ther find that for the largest 1% of requests, the response
time under SRPT is no more than

� � � higher than that
under FAIR, for any workload.

We next consider whether the external factors men-
tioned above might overturn the basic principle. We
find that while most of these factors (particularly WAN
conditions and persistent connections) diminish the im-
provement factor of SRPT over FAIR, the basic princi-

13

ple still stands. Specifically, under a realistic scenario
which combines all of the above factors, the improve-
ment of SRPT over FAIR with respect to mean response
time is still significant: ranging from

� � � � to
� � � �

across nine workloads, while the largest
� � of all jobs

perform only � � worse under SRPT than under FAIR.
We conclude by mentioning that although in this pa-

per the resource scheduled was the bandwidth on the
uplink, we believe that the basic principle will extend to
scenarios where the bottleneck resource is the CPU or
the disk-to-memory bandwidth. Furthermore, although
this paper has focused on web servers, these ideas may
be applicable to other server systems as well.

8 Acknowledgements

Thanks to Mukesh Agrawal for helping us with initial
overload experiments and to Nikhil Bansal for work on
Appendix A. Thanks to Christos Gkantsidis for provid-
ing detailed information on libwww. Thanks to Srini
Seshan for help with porting dummynet to Linux. Fi-
nally, thanks to Jennifer Rexford, John Wilkes, Erich
Nahum for proofreading the paper.

References
[1] T. F. Abdelzaher and N. T. Bhatti. Web content adaptation to im-

prove server overload behavior. WWW8 / Computer Networks, 31(11-
16):1563–1577, 1999.

[2] W. Almesberger. Linux network traffic control — implementation
overview. Available at http://lrcwww.epfl.ch/linux-diffserv/.

[3] D. Andresen and T. Yang. Multiprocessor scheduling with client re-
sources to improve the response time of WWW applications. In Inter-
national Conference on Supercomputing, pages 92–99, 1997.

[4] M. Aron and P. Druschel. TCP implementation enhancements for im-
proving webserver performance. Technical Report TR99-335, Rice
University, 6, 1999.

[5] Akamai Technologies B. Maggs, Vice President of Research. Personal
communication., 2001.

[6] G. Banga and P. Druschel. Measuring the capacity of a web server
under realistic loads. World Wide Web, 2(1-2):69–83, 1999.

[7] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new
facility for resource management in server systems. In Proceedings of
OSDI ’99, pages 45–58, 1999.

[8] N. Bansal and M. Harchol-Balter. Scheduling solutions for coping
with transient overload. Technical Report CMU-CS-01-134, Carnegie
Mellon University, May 2001.

[9] P. Barford and M. E. Crovella. Generating representative Web work-
loads for network and server performance evaluation. In Proceedings
of SIGMETRICS ’98, pages 151–160, July 1998.

[10] P. Barford and M. E. Crovella. A performance evaluation of hyper text
transfer protocols. In Proceedings of ACM SIGMETRICS ’99, pages
188–179, May 1999.

[11] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch
metrics for scheduling continuous job streams. In Proceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998.

[12] D. J. Bernstein. Syn cookies. http://cr.yp.to/syncookies.html, 1997.

[13] A. Bestavros, R. L. Carter, M. E. Crovella, C. R. Cunha, A. Heddaya,
and S. A. Mirdad. Application-level document caching in the internet.
In Proceedings of the Second International Workshop on Services in
Distributed and Networked Environments (SDNE’95), June 1995.

[14] L. Brakmo and L. Peterson. Performance problems in 4.4 BSD TCP.
ACM Computer Communications Review, 25(5), 1995.

[15] H. Braun and K. Claffy. Web traffic characterization: an assessment
of the impact of caching documents from NCSA’s Web server. In Pro-
ceedings of the Second International WWW Conference, 1994.

[16] H. Chen and P. Mohapatra. Session-based overload control in qos-
aware web servers. In Proceeedings of IEEE Infocomm ’02, 2002.

[17] L. Cherkasova and P. Phaal. Session based admission control: A mech-
anism for improving the performance of an overloaded web server.
Available at http://www.hpl.hp.com/techreports/98/HPL-98-119.html.,
1998.

[18] A. Cockcroft. Watching your web server. The Unix Insider at
http://www.unixinsider.com, April 1996.

[19] E.G. Coffman and L. Kleinrock. Computer scheduling methods and
their countermeasures. In AFIPS conference proceedings, volume 32,
pages 11–21, 1968.

[20] M. Colajanni, P. S. Yu, and D. M. Dias. Analysis of task assignment
policies in scalable distributed Web-server systems. IEEE Transactions
on Parallel and Distributed Systems, 9(6):585–699, 1998.

[21] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection
scheduling in web servers. In USENIX Symposium on Internet Tech-
nologies and Systems, October 1999.

[22] D. M. Dias, William Kish, Rajat Mukherjee, and Renu Tewari. A scal-
able and highly available web server. In COMPCON, pages 85–92,
1996.

[23] P. Druschel and G. Banga. Lazy receiver processing (LRP): A network
subsystem architecture for server systems. In Proceedings of OSDI
’96, pages 261–275, October 1996.

[24] A. Feldmann. Web performance characteristics. IETF plenary Nov.’99.
http://www.research.att.com/ anja/feldmann/papers.html.

[25] Cooperative Association for Internet Data Analysis (CAIDA). Packet
length distributions. http://www.caida.org/analysis/AIX/plen hist,
1999.

[26] J. Gwertzman and M. Seltzer. The case for geographical push-caching.
In Proceedings of HotOS ’94, May 1994.

[27] Internet Town Hall. The internet traffic archives. Available at http:-
//town.hall.org/Archives/pub/ITA/.

[28] Microsoft TechNet Insights and Answers for IT Professionals. The arts
and science of web server tuning with internet information services 5.0.
http://www.microsoft.com/technet/, 2001.

[29] M. Kaashoek, D. Engler, D. Wallach, and G. Ganger. Server operating
systems. In SIGOPS European Workshop ’96, pages 141–148, 1996.

[30] B. Krishnamurthy and J. Rexford. Web Protocols and Practice:
HTTP/1.1, Networking Protocols, Caching, and Traffic Measurement.
Addison-Wesley, 2001.

[31] S. Manley and M. Seltzer. Web facts and fantasy. In Proceedings of
the 1997 USITS, 1997.

[32] J. C. Mogul. The case for persistent-connection HTTP. In Proceedings
of ACM SIGCOMM ’95, pages 299–313, October 1995.

[33] J. C. Mogul. Network behavior of a busy Web server and its clients.
Technical Report 95/5, Digital Western Research Laboratory, October
1995.

[34] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in
an interrupt-driven kernel. In Proc. USENIX 1996 Technical Confer-
ence, pages 99–111, 1996.

[35] E. Nahum, M. Rosu, S. Seshan, and J. Almeida. The effects of wide-
area conditions on www server performance. In Proceedings of ACM
SIGMETRICS ’01, pages 257–267, 2001.

[36] National Institute of Standards and Technology. Nistnet.
http://snad.ncsl.nist.gov/itg/nistnet/.

[37] Vivek S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and
portable web server. In Proceedings of USENIX 1999, June 1999.

[38] V. Paxson and M. Allman. Computing TCP’s retransmission timer.
RFC 2988, http://www.faqs.org/rfcs/rfc2988.html,
November 2000.

[39] L. Rizzo. Dummynet: a simple approach to the evaluation of network
protocols. ACM Computer Communication Review, 27(1), 1997.

14

[40] L. E. Schrage. A proof of the optimality of the shortest remaining
processing time discipline. Operations Research, 16:678–690, 1968.

[41] S. Seshan, Hari Balakrishnan, V.N. Padmanabhan, M. Stemm, and
R. Katz. TCP behavior of a busy internet server: Analysis and improve-
ments. In Proceedings of Conference on Computer Communications
(IEEE Infocom), pages 252–262, 1998.

[42] A. Silberschatz and P. Galvin. Operating System Concepts, 5th Edition.
John Wiley & Sons, 1998.

[43] Freshwater Software. Web server monitoring. Available at
http://www.freshtech.com/white paper/bookchapter/chapter.htm.

[44] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel mechanisms
for service differentiation in overloaded web servers. In Proceedings
of the USENIX Annual Technical Conference, Boston, MA, June 2001.

[45] The World Wide Web Consortium (W3C). Libwww - the W3C proto-
col library. http://www.w3.org.

9 Appendix A: Theoretical Results

As a final step in understanding the performance of
FAIR vs. SRPT, we consider an M/G/1 queue with al-
ternating periods of overload and low load and derive
the expected response time as a function of request size
for this model under FAIR and SRPT.

To the best of our knowledge no prior results exist
for FAIR or SRPT under alternating overload/low load.
The M/G/1 queue is at best a rough approximation to our
implementation setup, and furthermore our theorems re-
quire some simplifying assumptions. Nevertheless, we
will see that the queueing theoretical results which we
obtain below are predictive of the implementation re-
sults we obtained.

The job sizes are assumed to be independent and
identically distributed with c.d.f.

��� ��� and p.d.f. � � ��� .
During the high load period (of duration �	�), jobs arrive
with mean rate
�� and create a load of
�� � �

. Dur-
ing the low load period (of duration �), jobs arrive with
mean rate
� and create a load of
� � �

. We denote
the distribution of the remaining service requirement of
requests at the start of the LOW period by

���
.

Below, we state only our theorems for the case
����
� . We refer to this as the ON/OFF model. Our theorems
for the case
���� � require more notation/definitions
than we have space for, but can be found in [8].

Theorem 1 (Approximation) In an M/G/1 system, under
the above ON/OFF load model, let �������������� "!$#&% (respec-
tively �����������(')#"*�+&%) denote the mean response time for a
request of size � under FAIR (respectively, SRPT). Then

�����������,�� "!$#-%/. ��02143�56�(7�8�9:�����<;(143>=@?A � 748B���C��3EDBF�GIHB�
J�KML F"NPOBQ(R	SA ;(1T3VU ?�=@?AXW HY 7Z���[3]\^�,DBF�G`_6a)\

where b is the solution to the following equation:

5c3 W�dYfe �@�C�,DBF"G`HgaB�h.ibkjglm1 and

7 8 ��nk�o. W dp l 1 e �@\^�I�(5-3]D F�G K _	F p S �,b F L a)\
7q8(9g���C�r.ib���02143�56�`F L W HY 7q8g�@nk�,aBn .

���	���@�C�`% ')#"*�+ .ts2��;(1)�`uwv e �yx��Cz
�{�	���@�C�$% 'B#"*|+ .i; 1 0 1 �@�C�`3 ; 1} uwv e ��~�� z
where ��z is such that the load made up by requests of sizex�� z is exactly 5 , i.e. 0 1 �����&.�l W H��Y � e �@�C�,aB��.V5 .

In Figure 10 we evaluate our analytic expressions un-
der the specific distribution of request sizes from our
trace workload. Below we explain this figure.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Time (seconds)

Nu
mb

er
 jo

bs
 in

 sy
ste

m

FAIR
SRPT

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Re
sp

on
se

 tim
e (

se
c)

Percentile of requested file size

FAIR
SRPT

Figure 10: Analytically-derived: Number of requests as a
function of time under FAIR and SRPT. Parameters used:0 1 .V5g� } u(0)��.i�ku�; 1 . }g�:�y� u(;<�". }g����� , request size distri-
bution is close fit to request distribution in trace.

Figure 10(left) corresponds to one cycle in Figure 6
(implementation). From Figure 10 we see that the num-
ber of requests in the M/G/1/FAIR queue is significantly
higher than in the M/G/1/SRPT queue, which is the
same trend shown in Figure 6. The exact numbers are
lower in the analysis (Figure 10) as compared with the
implementation (Figure 6). This is to be expected be-
cause the analysis assumes smaller service times for
a request (since it does not factor in TCP delays and
processing time of the request outside of transmission
time), as explained above.

Figure 10(right) should correspond to Figure 7(right).
In both the analysis and the implementation, most re-
quests have far lower response times under SRPT as
compared with FAIR scheduling. In both the analysis
and in the implementation, it turns out that the very
largest requests see approximately the same mean re-
sponse time under SRPT as compared with FAIR. In the
analysis we considered requests up through the 99.999
percentile. Even these requests saw slightly lower mean
response time under SRPT as compared with FAIR.

10 Appendix B: Other Traces

In this appendix we consider one more trace and run all
experiments on the new trace. We find that the results

15

are virtually identical to those shown in the body of the
paper.

The log used here was collected from a NASA web
server and is also available through the Internet Traffic
Archive [27]. We use several hours of one busy day of
this log consisting of around 100000 mostly static re-
quests. The minimum file size is 50 bytes, the maxi-
mum lies around 1.9 Mbytes. The largest 2.5% of all re-
quests make up 50% of the total load, exhibiting a strong
heavy-tailed property. The primary statistical difference
between the NASA log and the soccer World Cup log
(used in body of the paper) is the mean request size: the
NASA log shows a mean file size of 19 Kbytes while for
the World Cup log it was only around 5 Kbytes.

Results for the NASA log are shown in Figure 11, 12
and 13. They are extremely similar to the corresponding
Figures 6, 8 and 9 for the World Cup trace.

The only difference is that response times are higher
under the NASA log as compared with the World Cup
log for both FAIR and SRPT. The relative performance
gains of SRPT and FAIR however are similar. The in-
crease in response times under the NASA log may be
attributed to the higher mean file size.

16

(A) FAIR - Baseline (A) SRPT - Baseline

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

(B) FAIR - Delays (B) SRPT - Delays (B) Comparison

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150
0

0.5

1

1.5

2

RTT (msec)

Re
spo

nse
 Ti

me
 (s

ec)

FAIR
SRPT

(C) FAIR - Losses (C) SRPT - Losses (C) Comparison

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 5 10 15
0

2

4

6

8

10

Loss Rate (%)

Re
spo

nse
 Ti

me
 (s

ec)

FAIR
SRPT

(D) FAIR - Delays and Losses (D) SRPT - Delays and Losses (D) Comparison

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
sp

on
se

 Ti
me

 (s
ec

)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
sp

on
se

 Ti
me

 (s
ec

)

Low Load
Overload

0 5 10 15
0

2

4

6

8

10

12

Loss Rate (%)

Re
sp

 Ti
me

 (s
ec

)

RTT 150 ms − FAIR
RTT 50 ms − FAIR
RTT 150 ms − SRPT
RTT 50 ms − SRPT

(E) FAIR - Persistent (E) SRPT - Persistent (E) Comparison

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 2 4 6 8 10

0.5

1

1.5

Re
sp

Tim
e (

sec
)

Reuse of Connection

FAIR
SRPT

(F) FAIR - Initial RTO (F) SRPT - Initial RTO (F) Comparison

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0.5 1 1.5 2 2.5 3

0.5

1

1.5

Initial RTO (sec)

Re
sp

Tim
e (

sec
)

FAIR
SRPT

(H) FAIR - User Abort/Reload (H) SRPT - User Abort/Reload (H) Comparison

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

Re
sp

 Ti
me

 (s
ec

)

6 retries − FAIR
2 retries − FAIR
6 retries − SRPT
2 retries − SRPT

(I) FAIR - Packet length (I) SRPT - Packet length (I) Comparison

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
spo

nse
 Ti

me
 (s

ec)

Low Load
Overload

500 1000 1500
0

0.5

1

1.5

2

2.5

Re
sp

 Ti
me

 (s
ec

)

MTU (bytes)

FAIR
SRPT

Figure 11: Results under NASA trace log. Each row in the figure compares SRPT and FAIR under workload W1 for one
particular setup from Table 2. The left and middle column in the figure show the response times over time for the specific values
given in Table 2, column 3. The right column in the figure compares the performance of SRPT and FAIR for the range of values
given in the column 4 of Table 2.

17

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
sp

on
se

 Ti
me

 (s
ec

)

Low Load
Overload

0 50 100 150 200
0

1

2

3

4

5

6

Time (sec)

Re
sp

on
se

 Ti
me

 (s
ec

)

Low Load
Overload

(J) FAIR - Realistic case (J) SRPT - Realistic case
Figure 12: Comparison of FAIR (left) and SRPT (right) for the Real world setup for workload W1, under NASA trace log.

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

Workload

Re
sp

 Ti
me

 (s
ec

)

FAIR
SRPT

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

Workload

Re
sp

 Ti
me

 (s
ec

)

FAIR
SRPT

Mean Response Time - Baseline Mean Response Time of biggest 1% requests - Baseline

Figure 13: Comparison of FAIR and SRPT in the baseline case for the workloads in Table 1, under the NASA trace log. The
mean response times over all requests are shown left, and the mean response times of only the biggest 1% of all requests are
shown right.

18

