
Game Strategies in Network Security

Kong-wei Lye1 Jeannette Wing2

May 2002

CMU-CS-02-136

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

An extended abstract based on this report was submitted to the Foundations of Computer Security

2002, Copenhagen, Denmark.

Abstract

This paper presents a game-theoretic method for analyzing the security of computer networks. We

view the interactions between an attacker and the administrator as a two-player stochastic game

and construct a model for the game. Using a non-linear program, we compute the Nash equilibrium

or best-response strategies for the players (attacker and administrator). We then explain why the

strategies are realistic and how administrators can use these results to enhance the security of their

network.

1Department of Electrical and Computer Engineering.
2Computer Science Department.

This research is sponsored in part by the Defense Advanced Research Projects Agency and the Army Research
O�ce (ARO) under contract no. DAAD19-01-1-0485. The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily representing the o�cial policies or endorsements, either expressed

or implied, of the DOD, ARO, or the U.S. Government.

Keywords: stochastic games, non-linear programming, network security

1

1 Introduction

Government agencies, schools, retailers, banks and a growing number of goods and service providers

today all use the Internet as their integral way of conducting daily business. Individuals, good or bad,

can also easily connect to the Internet. Due to the ubiquity of the Internet, computer security has

now become more important than ever to organizations such as governments, banks, and businesses.

Security specialists have long been interested in knowing what an intruder can do to a computer

network, and what can be done to prevent or counteract attacks. In this paper, we describe how

game theory can be used to �nd strategies for both an attacker and the administrator. We illustrate

our approach with an example (Figure 1) of a local network connected to the Internet and consider

the interactions between them as a general-sum stochastic game.

In Section 2, we introduce the formal model for stochastic games and relate the elements of this

model to those in our network example. In Section 3, we explain the concept of a Nash equilibrium

for stochastic games and explain what it means to the attacker and administrator. Then, in Section

4, we describe three possible attack scenarios for our network example. In these scenarios, an

attacker on the Internet attempts to deface the homepage on the public web server on the network,

launch an internal denial-of-service attack, and capture some important data from a workstation

on the network. We compute the Nash equilibrium strategies (best responses) for the attacker and

administrator using a non-linear program; we explain this solution for our example in Section 5. We

discuss the implications of our approach in Section 6 and compare our work with previous work in

the literature in Section 7. Finally, we summarize our results and point to directions for future work

in Section 8.

Public
web server

Private
file server

Private
workstation

Border routerAttacker

Firewall

Internet

Figure 1: A Network Example

2 Networks as Stochastic Games

In this section, we �rst introduce the formal model of a stochastic game. We then use this model for

our network attack example and explain how the state set, actions sets, cost/reward functions and

transition probabilities can be de�ned or derived.

Formally, a two-player stochastic game is a tuple (S;A1; A2; Q;R1; R2; �) where S = f�1; � � � ; �Ng

is the state set and Ak = f�k1 ; � � � ; �
k
Mkg, k = 1; 2,Mk = jAkj, is the action set of player k. The action

set for player k at state s is a subset of Ak , i.e., Ak
s � Ak and

SN
i=1A

k
�i
= Ak. Q : S�A1�A2�S !

1

[0; 1] is the state transition function. Rk : S � A1 � A2 ! <, k = 1; 2 is the reward1 function of

player k. 0 < � � 1 is a discount factor for discounting future rewards, i.e., at the current state, a

state transition has a reward worth its full value, but the reward for the transition from the next

state is worth � times its value at the current state.

The game is played as follows: at a discrete time instant t, the game is in state st 2 S. Player 1

chooses an action a1t from A1 and player 2 chooses an action a2t from A2. Player 1 then receives a

reward r1t = R1(st; a
1
t ; a

2
t) and player 2 receives a reward r2t = R2(st; a

1
t ; a

2
t). The game then moves to

a new state st+1 with conditional probability Prob(st+1jst; a
1
t ; a

2
t) equal to Q(st; a

1
t ; a

2
t ; st+1). In our

example, we provide two views of the game: the attacker's view (Figure 3) and the administrator's

view (Figure 4). These �gures will be described in detail later in Section 4.

2.1 Network state

In general, the state of the network can contain various kinds of information or features such as type

of hardware, software, connectivity, user privileges, etc. Using more features in the state allows us

to represent the network better, but often makes the analysis more complex and di�cult. We can

view the network example as a graph (Figure 2). A node in the graph is a physical entity such as

a workstation or router. We model the external world as a single computer (node E) and represent

the web server, �le server and workstation by nodes W, F and N, respectively. An edge in the graph

represents a direct communication path (physical or virtual). For example, the external computer

(node E) has direct access to only the public web server (node W).

Instantiating our game model, we let a superstate < nW ; nF ; nN ; t >2 S be the state of the

network. nW , nF and nN are the node states for the web server, �le server and workstation respec-

tively, and t is a tra�c state for the whole network. Each node X (where X 2 fE;W; F;Ng) has a

node state nX =< P; a; d > to represent information about hardware and software con�gurations.

P � ff; h; n; p; s; vg is a list of software applications running on the node. We let f , h, n, and a

denote ftpd, httpd, nfsd and some user process respectively; for malicious codes, s and v represent

sni�er programs and viruses respectively. a 2 fu; cg is a variable used to represent the state of the

user accounts. u represents normal user accounts and c means some user account has been compro-

mised. We use the variable d 2 fc; ig to represent the state of the data on the node. c and i mean the

data has and has not been corrupted or stolen respectively. For example, if nW =< (f; h; s); c; i >,

it means the web server is running an ftpd and an httpd; a sni�er program has been implanted; and

a user account has been compromised but no data has been corrupted or stolen yet. The tra�c

information for the whole network is captured in a tra�c state t =< flXY g > where X and Y are

nodes and lXY 2 f0;
1
3
; 2
3
; 1g indicates the load carried on this link. A value of 1 indicates maximum

capacity. For example, in a 10Base-T connection, the values 0, 1
3
, 2
3
and 1 represent 0Mbps, 3.3Mbps,

6.7Mbps and 10Mbps respectively. In our example, the tra�c state is t =< lEW ; lWF ; lFN ; lNW >.

We let t =< 1
3
; 1
3
; 1
3
; 1
3
> for normal tra�c conditions.

The potential state space for our network example is very large but we shall discuss how to handle

this problem in Section 6. The full state space in our example has a size of jnW j� jnF j� jnN j� jtj =

(63�2�2)3�44 � 4 billion states but there are only 18 states (�fteen in Figure 3 and three additional

ones in Figure 4) relevant to our illustration here. In these �gures, each state is represented using

a box with a symbolic state name and the values of the state variables. For convenience, we shall

mostly refer to the states using their symbolic state names.

1We use the term \reward" in general here; in later sections, positive values are rewards and negative values are

costs.

2

E W

F N

lEW

lWF

lFN

lNW

Figure 2: Network State

2.2 Actions

An action pair (one from the attacker and one from the administrator) causes the system to move

from one state to another in a probabilistic manner. A single action for the attacker can be any part

of his attack strategy, such as ooding a server with SYN packets or downloading the password �le.

When a player does nothing, we denote this inaction as �. The action set for the attacker AAttacker

consists of all the actions he can take in all the states, AAttacker = f Attack httpd, Attack ftpd, Con-

tinue hacking, Deface website leave, Install sni�er, Run DOS virus, Crack �le server root password,

Crack workstation root password, Capture data, Shutdown network, �g. His actions in each state is

a subset of AAttacker . For example, in the state Normal operation (see Figure 3, topmost state),

the attacker has an action set AAttacker
Normal operation = f Attack httpd, Attack ftpd, �g.

Actions for the administrator are mainly taking preventive or restorative measures. In our exam-

ple, the administrator has an action setAAdministrator = fRemove compromised account restart httpd,

Restore website remove compromised account, Remove virus compromised account, Install sni�er de-

tector, Remove sni�er detector, Remove compromised account restart ftpd, Remove compromised ac-

count sni�er, �g. In state Ftpd attacked (see Figure 4), the administrator has an action set

AAdminstrator
Ftpd attacked = f install sni�er detector, �g.

A node with a compromised account may or may not be observable by the administrator. When

it is not observable, we model the situation as the administrator having an empty action set in

the state. We assume that the administrator does not know whether there is an attacker or not.

Also, the attacker may have several objectives and strategies that the administrator does not know.

Furthermore, not all of the attacker's actions can be observed.

2.3 State transition probabilities

In this example, we assign state transition probabilities based on intuition. In real life, case studies,

statistics, simulations, and knowledge engineering can provide the required probabilities. In Figures 3

and 4, state transitions are represented by arrows. Each arrow is labeled with an action, a transition

probability and a cost/reward. In the formal game model, a state transition probability is a function

of both players' actions. Such probabilities are used in the non-linear program (Section 3) for

computing a solution to the game. However, in order to separate the game into two views, we

show the transitions as simply due to a single player's actions. For example, in Figure 3 (second

dashed arrow from top), we show the derived probability Prob(Ftpd hacked j Ftpd attacked,

Continue attacking) = 0.5 as due to only the attacker's action Continue attacking. When the

network is in stateNormal operation and neither the attacker nor administrator takes any action,

it will tend to stay in the same state. We model this situation as having a near-identity stochastic

3

matrix, i.e., we let Prob(Normal operation j Normal operation, �, �)=1-� for some small � <

0:5 and where � denotes inaction. Then Prob(s j Normal operation, �, �)= �
N�1

for all s 6=

Normal operation where N is the number of states. There are also state transitions that are

infeasible. For example, it may not be possible for the network to move from a normal operation

state to a completely shutdown state without going through some intermediate states. Infeasible

state transitions are assigned transition probabilities of 0.

2.4 Costs and Rewards

There are costs (negative values) and rewards (positive values) associated with the actions of the

attacker and administrator. The attacker's actions have mostly rewards and such rewards are in terms

of the amount of damage he does to the network. Some costs are, however, di�cult to quantify. For

example, the loss of marketing strategy information to a competitor can cause large monetary losses.

A defaced corporate website may cause the company to lose its reputation and its customers to lose

con�dence.

In our model, we restrict ourselves to the amount of recovery e�ort (time) required by the ad-

ministrator. The reward for an attacker's action is mostly de�ned in terms of the amount of e�ort

the administrator has to make to bring the network from one state to another. For example, when

a particular service crashes, it may take the administrator 10 or 15 minutes of time to determine

the cause and restart the service 2. In Figure 4, it costs the administrator 10 minutes to remove

a compromised user account and to restart the httpd (from state Httpd hacked to state Nor-

mal operation). For the attacker, this amount of time would be his reward. To reect the severity

of the loss of the important �nancial data in our network example, we assign a very high reward for

the attacker's action that leads to the state where the attacker gains this data. For example, from

state Workstation hacked to state Workstation data stolen 1 in Figure 3, the reward is 999.

There are also some transitions in which the cost to the administrator is not the same magnitude as

the reward to the attacker. It is such transitions that make the game a general-sum game instead of

a zero-sum game.

3 Nash Equilibrium

We now return to the formal model for stochastic games. Let
n = fp 2 <n j
Pn

i=1 pi = 1; pi � 0g be

the set of probability vectors of length n. �k : S !
Mk

is a stationary strategy for player k. �k(s)

is the vector [�k(s; �1) � � � �k(s; �Mk)]T where �k(s; �) is the probability that player k should use

to take action � in state s. A stationary strategy �k is a strategy that is independent of time and

history. A mixed or randomized stationary strategy is one where �k(s; �) � 0 8s 2 S and 8� 2 Ak

and a pure strategy is one where �k(s; �i) = 1 for some �i 2 Ak.

The objective of each player is to maximize some expected return. Let st be the state at time t

and rkt be the reward received by player k at time t. We de�ne an expected return to be the column

vector vk
�1;�2

= [vk
�1;�2

(�1) � � � vk
�1;�2

(�N)]
T where

vk�1;�2(s) = E�1;�2fr
k
t + �rkt+1 + (�)2rkt+2 + � � �(�)Nrkt+N j st = sg

= E�1;�2f

NX
n=0

(�)nrkt+n j st = sg

2These numbers were given by the ECE Department's network manager.

4

The expectation operator E�1;�2f�g is used to mean that player k plays �k, i.e., player k chooses

an action using the probability distribution �k(st+n) at st+n and receives an immediate reward

rkt+n = �1(st+n)
TRk(st+n)�

2(st+n) for n � 0. Rk(s) = [Rk(s; a1; a2)]a12A1;a22A2
3, k = 1; 2 is player

k's reward matrix in state s.

For an in�nite-horizon game, we let T = 1 and use a discount factor � < 1 to discount future

rewards. vk(s) is then the expected total discounted rewards that player k will receive when starting

at state s. For a �nite-horizon game, 0 < T < 1 and � = 1. vk is also called the value vector of

player k.

A Nash equilibrium in stationary strategies (�1�; �
2
�
) is one which satis�es:

v1(�1
�
; �2

�
) � v1(�1; �2

�
) 8�1 2
M1

v2(�1
�
; �2

�
) � v2(�1

�
; �2) 8�2 2
M2

component-wise. Here, vk(�1; �2) is the value vector of the game for player k when both players play

their stationary strategies �1 and �2 respectively and � is used to mean the left-hand-side vector is

component-wise, greater than or equal to the right-hand-side vector. At this equilibrium, there is

no mutual incentive for either one of the players to deviate from their equilibrium strategies �1
�
and

�2�. A deviation will mean that one or both of them will have lower expected returns, i.e., v1(�1; �2)

and/or v2(�1; �2). A pair of Nash equilibrium strategies is also known as best responses, i.e., if player

1 plays �1� , player 2's best response is �
2
� and vice versa.

In our network example, �1 and �2 corresponds to the attacker's and administrator's strategies

respectively. v1(�1; �2) corresponds to the expected return for the attacker and v2(�1; �2) corre-

sponds to the expected return for the administrator when they use the strategies �1 and �2. In a

Nash equilibrium, when the attacker and administrator use their best-response strategies �1� and �2�
respectively, neither will gain a higher expected return from using a di�erent strategy if the other

continues using his Nash strategy.

For in�nite-horizon stochastic games, a non-linear program found in [FV96] can be used to

�nd the stationary equilibrium strategies for both players and for �nite-horizon games, a dynamic

programming procedure, e.g., found in [FT91] can be used. For a thorough treatment on stochastic

games, the reader is referred to [FV96].

A Nash equilibrium for a general-sum stochastic game can be found using the following non-linear

program ([FV96]):

min
u1;u2;�1;�2

n
1
T
h
uk �Rk(�1; �2)� �P (�1; �2)uk

io
; k = 1; 2

subject to:

R1(�i)�
2(�i) + �T (�i; u

1)�2(�i) � u1(�i)1; i = 1; � � � ; N

�1(�i)
TR2(�i) + ��1(�i)T (�i; u

2) � u2(�i)1
T; i = 1; � � � ; N

where uk 2 <N are variables for value vectors and �k 2
Mk

are variables for strategies. 1 is a unit

vector of appropriate dimensions.

3We use [m(i; j)]i2I;j2J to refer to an jIj � jJ j matrix with elements m(i; j).

5

Rk(�1; �2) is the vector [�1(�1)
TRk(�1)�

2(�1) � � � �1(�N)
TRk(�N)�

2(�N)]
T and P (�1; �2) is

the state transition probability matrix [�1(s)T [p(s0 j s; a1; a2)]a12A1;a22A2 �2(s)]s;s02S induced by the

strategy pair (�1; �2). T (s; v) = [[p(�1 j s; a
1; a2) � � �p(�N j s; a1; a2)]T v]a12A1;a22A2 where v is an

arbitrary value vector.

The two sets of constraints (2�N inequalities) represent the optimality conditions required for

the players and the global minimum to this non-linear program (u1�; u
2
�
; �1�; �

2
�
) corresponds to a Nash

solution (v1�; v
2
�
; �1�; �

2
�
) of the game. Every general-sum discounted stochastic game has at least one

Nash equilibrium in stationary strategies (see [FV96]) (not necessarily unique) and �nding these

equilibria is non-trivial.

In our network example, �nding multiple Nash equilibria means �nding multiple pairs of Nash

strategies. In each pair, a strategy for one player is a best-response to the strategy for the other

player and vice versa. We shall refer to the non-linear program described in this section as NLP-1

and use it to �nd the Nash equilibrium for our network example later in Section 5.

4 Attack and Response Scenarios

In this section, we describe three di�erent attack and response scenarios. We show in Figure 3

how the attacker sees the state of the network change as a result of his actions. Figure 4 shows the

administrator's viewpoint. In both �gures, a state is represented using a box containing the symbolic

name and the values of the state variables for that state. Each transition is labeled with an action,

the probability of the transition, and the gain or cost in minutes of restorative e�ort incurred on the

administrator. The three scenarios are indicated using bold, dotted and dashed arrows in Figure 3.

Due to space constraints, not all state transitions for every action are shown. From one state to the

next, state variable changes are highlighted using bold font.

4.1 Scenario 1 (Bold)

A common target for use as a launching base in an attack is the public web server. The web server

typically runs an httpd and an ftpd and a common technique for the attacker to gain a root shell

is bu�er overow. Once the attacker gets a root shell, he can deface the website and leave. This

scenario is shown by the state transitions indicated by bold arrows in Figure 3.

From stateNormal operation, the attacker takes action Attack httpd. With a probability of 1:0

and a reward of 10, he moves the system to state Httpd attacked. This state indicates increased

tra�c between the external computer and the web server as a result of his attack action. Taking

action Continue attacking, he has a 0:5 probability of success of gaining a user or root access through

bringing down the httpd, and the system moves to state Httpd hacked. Once he has root access in

the web server, he can deface the website, restart the httpd and leaves, moving the network to state

Website defaced.

4.2 Scenario 2 (Dotted)

The other thing that the attacker can do after he has hacked into the web server is to launch a

denial-of-service (DOS) from inside the network. This is shown by the state transitions drawn using

dotted arrows (starts from the middle of Figure 3), with each state having more internal tra�c

than the previous. From stateWebserver sni�er, the attacker takes action Run DOS virus. With

probability 1 and a reward of 30, the network moves into state Webserver DOS 1. In this state,

the tra�c load on all internal links has increased from 1
3
to 2

3
. From this state, the network degrades

6

to state Webserver DOS 2 with probability 0:8 even when the attacker does nothing. The tra�c

load is now at full capacity of 1 in all the links. We assume that there is a 0:2 probability that the

administrator notices this and takes action to recover the system. In the very last state, the network

grinds to a halt and nothing productive can take place.

4.3 Scenario 3 (Dashed)

Once the attacker has hacked into the web server, he can install a sni�er and a backdoor program.

The sni�er will sni� out passwords from the users in the workstation when they access the �le server

or web server. Using the backdoor program, the attacker then comes back to collect his password

list from the sni�er program, cracks the root password and logs on to the workstation and search

the local hard disk. This scenario is shown by the state transitions indicated by dashed arrows in

Figure 3. From state Normal operation, the attacker takes action Attack ftpd. With a probability

of 1:0 and a reward of 10, he moves the system to state Ftpd attacked. There is increased tra�c

between the external computer and the web server as well as between the web server and the �le

server in this state, both from 1
3
to 2

3
. If he continues to attack the ftpd, he has a 0:5 probability

of success of gaining a user or root access through bringing down the ftpd, and the system moves

to state Ftpd hacked. From here, he can install a sni�er program and with probability 0:5 and

a reward of 10, move the system to state Webserver sni�er. In this state, he has also restarted

the ftpd to avoid causing suspicion from normal users and the administrator. The attacker then

collects the password list and cracks the root password on the workstation. We assume he has a 0:9

chance of success and when he succeeds, he gains a reward of 50 and moves the network to state

Workstation hacked. To cause more damage to the network, he can even shut it down using the

privileges of root user in this workstation.

4.4 Recovery

We now turn our attention to the administrator's view (see Figure 4). The administrator in

our example does mainly restorative work and his actions can be restarting the ftpd, removing

a virus, etc. He also takes preventive measures and such actions can be installing a sni�er de-

tector, re-con�guring a �rewall, deactivating a user account, and so on. In the �rst attack sce-

nario in which the attacker defaces the website, the administrator can only take the action Re-

store website remove compromised account to bring the network from state Website defaced to

Normal operation. In the second attack scenario, the states Webserver DOS 1 and Web-

server DOS 2 (indicated by double boxes) show the network su�ering from the e�ects of the inter-

nal DOS attack. All the administrator can do is take the action Remove virus compromised account

to bring the network back to Normal operation. In the third attack scenario, there is nothing

he can do to restore the network back to its original operating state. The important data has been

stolen and there is no way he can undo this. The network can only move from state Worksta-

tion data stolen 1 to Workstation data stolen 2 (indicated by dotted box on bottom right in

Figure 4).

The state Ftpd attacked (dashed box) is an interesting state because here, the attacker and

administrator can engage in real-time game play. In this state, when the administrator notices

an unusual increase in tra�c between the external network and the web server and also between

the web server and the �le server, he may suspect an attack is going on and takes action In-

stall sni�er detector. Taking this action, however, incurs a cost of 10. If the attacker is still at-

tacking, the system moves into state Ftpd attacked detector. If he has already hacked into the

7

web server, then the system moves to state Webserver sni�er detector. Detecting the sni�er

program, the administrator can now remove the a�ected user account and the sni�er program to

prevent the attacker from further attack actions.

5 Results

We coded NLP-1 in MATLAB (a mathematical computation software package by The MathWorks,

Inc.) and use it a Nash equilibrium solution for our example described in Section 4. There could be

several equilibria in the game but we shall discuss the only one we found. To run 3, the cost/reward

and state transition functions de�ned in Section 2 are required. In our formal game model, the state

of the game evolves only at discrete time instants. This requirement is not relevant in our example

and is ignored. The game model also requires actions to be taken simultaneously by both players.

There are some states in which a player has only one or two non-trivial actions and for consistency

and easier computation using 3, we add an inaction � to the action set for the state so that the action

sets are all of the same cardinality. Overall, our game model has 18 states and 3 actions per state

and the corresponding non-linear program takes approximately 45 minutes to run on a computer

equipped with a 600Mhz Pentium-III and 128Mb of RAM.

The result of NLP-1 is a Nash equilibrium. It consists of a pair of strategies (�Attacker� and

�Administrator
�

) and a pair of value vectors (vAttacker
�

and vAdministrator
�

) the attacker and administra-

tor. The strategy for a player consists of a probability distribution over the action set for each state.

The Nash equilibrium strategies and value vectors are shown in Table 1 and Table 2 respectively.

State Attacker's Strategy Administrator's Strategy

1 Normal operation [1.00 0.00 0.00] [0.33 0.33 0.33]

2 Httpd attacked [1.00 0.00 0.00] [0.33 0.33 0.33]

3 Ftpd attacked [0.65 0.00 0.35] [1.00 0.00 0.00]

4 Ftpd attacked detector [0.40 0.12 0.48] [0.93 0.07 0.00]

5 Httpd hacked [0.33 0.10 0.57] [0.67 0.19 0.14]

6 Ftpd hacked [0.12 0.00 0.88] [0.96 0.00 0.04]

7 Website defaced [0.33 0.33 0.33] [0.33 0.33 0.33]

8 Webserver sni�er [0.00 0.50 0.50] [0.33 0.33 0.34]

9 Webserver sni�er detector [0.34 0.33 0.33] [1.00 0.00 0.00]

10 Webserver DOS 1 [0.33 0.33 0.33] [1.00 0.00 0.00]

11 Webserver DOS 2 [0.34 0.33 0.33] [1.00 0.00 0.00]

12 Network shut down [0.33 0.33 0.33] [0.33 0.33 0.33]

13 Fileserver hacked [1.00 0.00 0.00] [0.35 0.34 0.31]

14 Fileserver data stolen 1 [1.00 0.00 0.00] [1.00 0.00 0.00]

15 Workstation hacked [1.00 0.00 0.00] [0.31 0.32 0.37]

16 Workstation data stolen 1 [1.00 0.00 0.00] [1.00 0.00 0.00]

17 Fileserver data stolen 2 [0.33 0.33 0.33] [0.33 0.33 0.33]

18 Workstation data stolen 2 [0.33 0.33 0.33] [0.33 0.33 0.33]

Table 1: Nash equilibrium strategies for attacker and administrator

We explain the strategies for some of the more interesting states here. For example, in the

8

State Attacker's State Value Administrator's State Value

1 Normal operation 210.2 -206.8

2 Httpd attacked 202.2 -191.1

3 Ftpd attacked 176.9 -189.3

4 Ftpd attacked detector 165.8 -173.8

5 Httpd hacked 197.4 -206.4

6 Ftpd hacked 204.8 -203.5

7 Website defaced 80.4 -80.0

8 Webserver sni�er 716.3 -715.1

9 Webserver sni�er detector 148.2 -185.4

10 Webserver DOS 1 106.7 -106.1

11 Webserver DOS 2 96.5 -96.0

12 Network shut down 80.4 -80.0

13 Fileserver hacked 1065.5 -1049.2

14 Fileserver data stolen 1 94.4 -74.0

15 Workstation hacked 1065.5 -1049.2

16 Workstation data stolen 1 94.4 -74.0

17 Fileserver data stolen 2 80.4 -80.0

18 Workstation data stolen 2 80.4 -80.0

Table 2: Nash equilibrium state values for attacker and administrator

state Httpd hacked (5th row in Table 1), the attacker has action set f Deface website leave, In-

stall sni�er, � g. His strategy for this state says that he should use Deface website leave with

probability 0:33 and Install sni�er with probability 0:10. Ignoring the last action �, and after

normalizing, these probabilities become 0:77 and 0:23 respectively for Deface website leave and In-

stall sni�er. Even though installing a sni�er may allow him to crack a root password and eventually

capture the data he wants, there is also the possibility that the system administrator detects his

presence and takes preventive measures. He is thus able to do more damage (probabilistically speak-

ing) if he simple defaces the website and leaves. In this same state, the administrator can either

take action Remove compromised account restart httpd or Install sni�er detector. His strategy says

that he should take the former with probability 0:67 and the latter with probability 0:19. Ignoring

the third action � and after normalizing, these probabilities become 0:88 and 0:22 respectively. This

tells him that he should immediately remove the compromised account and restart the httpd rather

than continue to \play" with the attacker. It is not shown here in our model but installing the sni�er

detector could be a step towards apprehending the attacker, which means greater reward for the

administrator. In the state Webserver sni�er (8th row in Table 1), the attacker should take the

actions Crack �le server root password and Crack workstation root password with equal probability

(0:5) because either action will let him do the same amount of damage eventually. Finally, in the

state Webserver DOS 1 (10th row in Table 1), the system administrator should remove the DOS

virus and compromised account, this being his only action in this state (the other two being �).

In Table 2, we note that the value vector for the administrator is not exactly the negative of

that for the attacker because in our example, not all state transitions have costs and rewards that

are of the same magnitude. In a zero-sum game, the value vector for one player is the negative of

the other's. In this table, the negative state values for the administrator correspond to his expected

9

costs or expected amount of recovery time (in minutes) required to bring the network back to normal

operation. Positive state values for the attacker correspond to his expected reward or the expected

amount of damage he causes to the administrator (again, in minutes of recovery time). Both the

attacker and administrator would want to maximize the state values for all the states. In state

Fileserver hacked (13th row in Table 2), the attacker has gained access into the �le server and has

full control over the data in it. In state Workstation hacked (15th row in Table 2), the attacker

has gained root access to the workstation. These two states have the same value of 1065.5, the

highest among all states, because these are the two states that will lead him to the greatest damage

to the network. When at these states, the attacker is just one state away from capturing the desired

data from either the �le server or the workstation. For the administrator, these two states have the

most negative values (-1049.2), meaning most damage can be done to his network when it is in either

of these states. In state Webserver sni�er (8th row in Table 2), the attacker has a state value

of 716.3, which is relatively high compared to those for other states. This is the state in which he

has gained access to the public web server and installed a sni�er, i.e., a state that will potentially

lead him to stealing the data that he wants. At this state, the value is -715.1 (second most negative

value) for the administrator. This is the second least desirable state for him.

6 Discussion

We could have modeled the interaction between the attacker and administrator as a purely com-

petitive (zero-sum) stochastic game, in which case we would always �nd only a single unique Nash

equilibrium. Modeling it as a general-sum stochastic game however, allows us to �nd potentially,

multiple Nash equilibria. A Nash equilibrium gives the administrator an idea of the attacker's strat-

egy and a plan for what to do in each state in the event of an attack. Finding more Nash equilibria

thus allows him to know more about the attacker's best attack strategies. By using a stochastic

game model, we are also able to capture the probabilistic nature of the state transitions, which is

more realistic. Solutions for stochastic models are however, hard to compute.

A disadvantage of our model is that the full state space can be extremely large. We are however,

interested in only a small subset of states that are in attack scenarios. One way of generating

these states is the attack scenario generation method developed by Sheyner et al [SJW02]. The

set of scenario states can then be augmented with state transition probabilities and costs/rewards

as functions of both players' actions so that our game-theoretic analysis can be applied. Another

di�culty in our analysis is in building the game model. In reality, it may be di�cult to quantify the

costs for some actions and transition probabilities may not be easily available.

We note that the administrator's view of the game in our example is simplistic and uninteresting.

This is because he only needs to act when he suspects the network is under attack. It is reasonable to

assume the attacker and administrator both know what the other can do. Such common knowledge

a�ects their decisions on what to do in each state and thus justi�es a game formulation of the

problem.

One may argue why not put in place all security measures. In practice, trade-o�s have to be

made between security and usability and a network may have to remain in operation despite known

vulnerabilities (e.g., see [Cru00]). Knowing that a network system is not perfectly secure, our game

theoretic formulation of the security problem allows the administrator to discover the potential attack

strategies of an attacker as well as best defense strategies against them.

10

7 Related Work

The use of game theory in modeling good and evil has also appeared in several other areas of research.

For example, in military and information warfare, the enemy is modeled as an evil player and has

actions and strategies to disrupt the defense networks. Browne describes how static games can be

used to analyze attacks involving complicated and heterogeneous military networks [Bro00]. In his

example, a defense team has to defend a network of three hosts against an attacking team's worms.

A defending team member can choose either to run a worm detector or not. Depending on the

combined attack and defense actions, each outcome has di�erent costs. This problem is similar to

ours if we were to view the actions of each team member as separate actions of a single player. The

interactions between the two teams are dynamic, however, and can be better represented using a

stochastic model like we did here. In his Master's thesis, Burke studies the use of repeated games

with incomplete information to model good and evil players in information warfare [Bur99]. As in

our work, the objective is to predict enemy strategies and �nd defenses against them using a game

model. Using static game models, however, requires the problem to be abstracted to a very high

level and only simple analyses are possible. Our use of a stochastic model in this paper allows us to

capture the probabilistic nature of state transitions in real life.

In the study of network reliability, Bell considers a zero-sum game in which the router has to

�nd a least-cost path and a network tester seeks to maximize this cost by failing a link [Bel01]. The

problem is similar to ours in that two players are in some form of control over the network and that

they have opposite objectives. Finding the least-cost path in their problem is analogous to �nding a

best defense strategy in ours. Hespanha and Bohacek discusses routing games in which an adversary

tries to intersect data packets in a computer network [HB01]. The designer of the network has to

�nd routing policies that avoid links that are under the attacker's surveillance. Finding their optimal

routing policy is similar to �nding the least-cost path in Bell's work [Bel01] and the best defense

strategy in our problem in that at every state, each player has to make a decision on what action to

take. Their game model is, again, a zero-sum game. In comparison, our work uses a more general

(general-sum) game model that allows us to �nd more Nash equilibria.

McInerney et al. use a simple one-player game in their FRIARS cyber-defense decision system

capable of reacting autonomously to automated system attacks [MSAH01]. Their problem is similar

to ours in that good is �ghting evil in cyberspace. Instead of �nding complete strategies, their

single-player game model is used to predict the opponent's next move one at a time. Their model is

closer to being just a Markov decision problem because it is a single-player game. Ours, in contrast,

exploits fully what a game (two-player) model can allow us to �nd, namely, equilibrium strategies

for both players.

Finally, Syverson talks about \good" nodes �ghting \evil" nodes in a network and suggested

using stochastic games for reasoning and analysis [Syv97]. We have given precisely such an example

in this paper. In summary, our work and example is di�erent from previous work in that we employ a

general-sum stochastic game model. This allows us to perform a richer analysis for more complicated

problems and also allows us to �nd multiple Nash equilibria (sets of best responses) instead of a single

equilibrium.

8 Conclusion

We have shown how the network security problem can be modeled as a general-sum stochastic game

between the attacker and the administrator. Using the non-linear program NLP-1, we computed

11

the Nash equilibria (strategies and value vectors) for both the players and then explained why these

strategies make sense and are useful for the administrator. Discussions with one of our university's

network managers revealed that these results are indeed useful. With proper modeling, the game-

theoretic analysis we presented here can also be applied to other general heterogeneous networks.

In the future, we wish to develop a systematic method for decomposing large models into smaller

manageable components such that strategies can be found individually for them using conventional

Markov decision process (MDP) and game-theoretic solution methods such as dynamic programming,

policy iteration and value iteration. For example, nearly-isolated clusters of states can be regarded

as subgames and states in which only one player has meaningful actions can be regarded as an MDP.

The overall best-response for each player is then composed from the strategies for the components.

It is believed that the computation time can be signi�cantly reduced by using such a decomposition

method. We also intend to use the method by Sheyner et al [SJW02] for attack scenario generation

to generate states so that we can experiment with network examples that are larger and more

complicated. In our example, we manually enumerated the states for the attack scenario. The

method in [SJW02] allows us to generate automatically the complete set of attack scenario states

and thus allows us to perform a more complete analysis.

References

[Bel01] M.G.H. Bell. The measurement of reliability in stochastic transport networks. Proceed-

ings, 2001 IEEE Intelligent Transportation Systems, pages 1183{1188, 2001.

[Bro00] R. Browne. C4I defensive infrastructure for survivability against multi-mode attacks. In

Proceedings, 21st Century Military Communications. Architectures and Technologies for

Information Superiority, volume 1, pages 417{424, 2000.

[Bur99] David Burke. Towards a game theory model of information warfare. Master's thesis,

Graduate School of Engineering and Management, Airforce Institute of Technology, Air

University, 1999.

[Cru00] Je� Crume. Inside Internet Security. Addison Wesley, 2000.

[FT91] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.

[FV96] Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes. Springer-Verlag,

New York, 1996.

[HB01] J.P Hespanha and S. Bohacek. Preliminary results in routing games. In Proceedings,

2001 American Control Conference, volume 3, pages 1904{1909, 2001.

[MSAH01] J. McInerney, S. Stubberud, S. Anwar, and S. Hamilton. Friars: a feedback control system

for information assurance using a markov decision process. In Proceedings, IEEE 35th

Annual 2001 International Carnahan Conference on Security Technology, pages 223{228,

2001.

[SJW02] O. Sheyner, S. Jha, and J. Wing. Automated generation and analysis of attack graphs.

In Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, 2002.

[Syv97] Paul F. Syverson. A di�erent look at secure distributed computation. In Proceedings,

10th Computer Security Foundations Workshop, pages 109{115, 1997.

12

Continue_
attacking,
0.5, 0

Attack_ftpd, 1.0, 10
Attack_httpd, 1.0, 10

Deface_website_
leave, 1, 99

Install_sniffer,
0.5, 10

Continue_
attacking,
0.5, 0

Continue_attacking, 0.5, 0

Normal_operation
<<(f,h),u,i>,<(f,n),u,i>,<(p),u,i>,
<1/3,1/3,1/3,1/3>>

Httpd_attacked
< <(f,h),u,i>, <(f,n),u,i>, <(p),u,i>,
<2/3, 1/3, 1/3, 1/3> >

Ftpd_attacked
< <(f,h),u,i>, <(f,n),u,i>, <(p),u,i>,
<2/3, 2/3, 1/3, 1/3> >

Ftpd_hacked
<<(h),c,i>,<(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Website_defaced
< <(f,h),c,c>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Install_sniffer,
0.5, 10

Webserver_sniffer_detector
< <(f,h,s,d),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Install_sniffer,
0.5, 10 Install_sniffer,

0.5, 10
φ, 0.9, 0

Run_DOS_virus, 1,
30

φ, 0.8, 30

φ, 0.8, 30

Crack_file_server_root
password, 0.9, 50

Crack_workstation_root_
password, 0.9, 50

Capture_data,
1, 999

Shutdown_network,
1, 60

Capture_data,
1, 999

Webserver_DOS_1
< <(f,h,s,v),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3,2/3, 2/3, 2/3> >

Webserver_DOS_2
< <(f,h,s,v),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3,1, 1, 1> >

Network_shut_down
< <(s,v),c,i>, <(),u,i>, <(),u,i>,
<0, 0, 0, 0> >

Shutdown_network, 1, 60

Workstation_hacked
< <(f,h,s),c,i>, <(f,n),u,i>, <(p),c,i>,
<1/3, 1/3, 1/3, 1/3> >

Continue_attacking, 0.5, 0

Webserver_sniffer
< <(f,h,s),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Fileserver_hacked
< <(f,h,s),c,i>, <(f,n),c,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Httpd_hacked
< <(f),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Fileserver_data_stolen_1
< <(f,h,s),c,i>, <(f,n),c,c>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Workstation_data_stolen_1
< <(f,h,s),c,i>, <(f,n),u,i>, <(p),c,c>,
<1/3, 1/3, 1/3, 1/3> >

Figure 3: Attacker's view of the game

13

Restore_website_remove_
compromised_account, 1, -99

Normal_operation
< <(f,h),u,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Ftpd_attacked
< <(f,h),u,i>, <(f,n),u,i>, <(p),u,i>,
<2/3, 2/3, 1/3, 1/3> >

Ftpd_hacked
< <(h),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Httpd_hacked
< <(f),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Webserver_sniffer_detector
< <(f,h,s,d),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Install_sniffer_
detector, 0.5, -10

Remove_compromised_
account_restart_httpd, 1, -10

Remove_virus_and_
compromised_account, 1, -30

Remove_sniffer_
compromised_account, 1, -20

Remove_compromised_
account_restart_ftpd, 1, -10

Ftpd_attacked_detector
< <(f,h,d),u,i>, <(f,n),u,i>, <(p),u,i>,
<2/3, 2/3, 1/3, 1/3> >

Install_sniffer_
detector, 0.5, -10

Remove_sniffer_
detector, 0.5, -10

Remove_sniffer_
detector, 0.5, -10

Workstation_data_stolen_1
< <(f,h,s),c,i>, <(f,n),u,i>, <(p),c,c>,
<1/3, 1/3, 1/3, 1/3> >

Workstation_data_stolen_2
< <(f,h),c,i>, <(f,n),u,i>, <(p),c,c>,
<1/3, 1/3, 1/3, 1/3> >

Fileserver_data_stolen_2
< <(f,h),c,i>, <(f,n),c,c>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Remove_sniffer_
compromised_account, 1, -20

Remove_sniffer_
compromised_account, 1, -20

Webserver_DOS_2
< <(f,h,s,v),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3,1, 1, 1> >

Fileserver_data_stolen_1
< <(f,h,s),c,i>, <(f,n),c,c>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Webserver_DOS_1
< <(f,h,s,v),c,i>, <(f,n),u,i>, <(p),u,i>,
<1/3,2/3, 2/3, 2/3> >

Remove_virus_and_
compromised_account, 1, -60

Remove_virus_and_
compromised_account, 1, -90

Website_defaced
< <(f,h),c,c>, <(f,n),u,i>, <(p),u,i>,
<1/3, 1/3, 1/3, 1/3> >

Network_shut_down
< <(s,v),c,i>, <(),u,i>, <(),u,i>,
<0, 0, 0, 0> >

Figure 4: Administrator's view of the game

14

