

A Programming System for Children

that is Designed for Usability (Appendices)

John F. Pane

CMU-CS-02-127A
May 3, 2002

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:

Brad A. Myers (co-chair)
David Garlan (co-chair)

Albert Corbett
James Morris

Clayton Lewis, University of Colorado

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Also appears as: CMU-HCII-02-101A

Copyright © 2002 John F. Pane

This research was sponsored in part by the National Science Foundation under Grant No. IRI-9900452. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily
reflect those of the National Science Foundation.

Keywords:

 Natural Programming, HANDS, End-User Programming, Psychology of Pro-

gramming, Empirical Studies of Programmers, Educational Software, Children, User Inter-

face Design, Programming Environments, Programming Language Design, Usability,

Human-Computer Interaction.

A Programming System for Children that is Designed for Usability 193

APPENDIX A

Language Syntax Chart

The HANDS language is defined by this JavaCC/JJTree grammar.

/***/
/* GENERAL PURPOSE TOKENS USED IN MORE THAN ONE PRODUCTION */
TOKEN :
{
 < END: "end" >
| < LPAREN: "(" >
| < RPAREN: ")" >
| < IN: "in" >
| < OF: "of" >
| < TO: "to" >
| < FROM: "from" >
| < INTO: "into" >
| < EACH: "each" >
| < COMMA: "," >
| < NOT: "not" >
}

/***/
/* THROW-AWAY TOKENS: CAN APPEAR ANYWHERE AND ARE IGNORED*/
SPECIAL_TOKEN :
{
 < THE: "the" >
| < IS: "is" >
}

194 A Programming System for Children that is Designed for Usability

Language Syntax Chart

/***/
/* Event */

TOKEN :
{
 < PROGRAM: "program" >
| < STARTS: "starts" >
| < STOPS: "stops" >
| < RUNNING: "running" >
| < APPEARS: "appears" >
| < DISAPPEARS: "disappears" >
| < CHANGES: "changes" >
| < COLLIDES: "collides" >
| < CLICKED : "clicked" >
| < TYPED : "typed" >
| < ANYTHING : "anything" | "something" >
| < NOTHING : "nothing" >
| < HAPPENS : "happens" >
| < ANY : "any" >
| < KEY : "key" >
}

void Event() : {}
{
 <PROGRAM> (<STARTS>
 | <STOPS>
) [<RUNNING>]

| LOOKAHEAD(2)
 ((StringOrIdentifier() <TYPED>)
 | (<ANY> <KEY> <TYPED>)
)

| [<ANY>] <IDENTIFIER> (<APPEARS>
 | <DISAPPEARS>
 | <CHANGES>
 | (<COLLIDES> [<INTO> [<ANY>]
<IDENTIFIER>])
 | <CLICKED>)

| (<ANYTHING> | <NOTHING>) <HAPPENS>

}

A Programming System for Children that is Designed for Usability 195

Language Syntax Chart

/***/
/* When */
TOKEN :
{
 < WHEN: "when" >
}

SimpleNode When() : {}
{
 <WHEN> Event() (Action())* <END> <WHEN>
 { return jjtThis; }
}

/***/
/* Action */
SimpleNode Action() : {}
{
 (If()
 | With()
 | Set()
 | Math()
 | ListStatement()
 | TellUser()
 | Make()
 | Beep()
 | PickUp()
 | PutDown()
 | Flip()
)
 { return jjtThis; }
}

196 A Programming System for Children that is Designed for Usability

Language Syntax Chart

/***/
/* CardField */
TOKEN :
{
 < POSSESSIVE: "'s" >
}

void CardField() : {}
{
 LOOKAHEAD (Field() <OF>)
 Field() <OF> Expression()
| Value() <POSSESSIVE> Field()
}

/***/
/* Card */
TOKEN :
{
 < CARD: "card" >
}

void Card() : {}
{
 <IDENTIFIER>
| CardFactory()
| <LPAREN> CardField() <RPAREN>
}

/***/
/* Field */
void Field() : {}
{
 <IDENTIFIER>
}

/***/
/* CardFactory */
TOKEN :
{
 < NEW: "new" >
| < DUPLICATE: "duplicate" >
}

void CardFactory() : {}
{
 <NEW> <CARD> [LOOKAHEAD (Expression()) Expression()]
| <DUPLICATE> [<OF>] Expression()
}

A Programming System for Children that is Designed for Usability 197

Language Syntax Chart

/***/
/* If */

TOKEN :
{
 < IF: "if" >
| < THEN: "then" >
| < OTHERWISE: "otherwise" >
| < ELIPSIS: "..." >
}

void If() : {}
{
 <IF> ConditionAction() [OtherwiseAction()] <END> <IF>
}

/* ConditionAction */

void ConditionAction() : {}
{
LOOKAHEAD(HalfBooleanExp() <ELIPSIS>)
 SplitConditionAction()
| WholeConditionAction()
}

/* SplitConditionAction */

void SplitConditionAction() : {}
{
 HalfBooleanExp() <ELIPSIS> (Expression() <THEN> (Action())*)+
}

/* WholeConditionAction */

void WholeConditionAction() : {}
{
 (BooleanExpression() <THEN> (Action())*)+
}

/* OtherwiseAction */

void OtherwiseAction() : {}
{
 <OTHERWISE> [<THEN>] (Action())*
}

198 A Programming System for Children that is Designed for Usability

Language Syntax Chart

/***/
/* Operators */

TOKEN :
{
 < EQUALS: "equals" | "equal" | "=" >
| < EXISTS: "exists" | "exist" >
| < GT: "greater than" | ">" >
| < LT: "less than" | "<" >
| < GE: "greater than or equal" | ">=" >
| < LE: "less than or equal" | "<=" >
| < NE: "<>" >
| < AND: "and" >
| < OR: "or" >
| < PLUS: "plus" | "+" >
| < MINUS: "minus" | "-" >
| < STAR: "times" | "*" >
| < SLASH: "divided by" | "/" >
| < MODULO: "modulo" | "%" >
}

void AnyOp() : {}
{
 BooleanOp()
| MathOp()
}

void RelOp() : {}
{
 <EQUALS>
| <GT>
| <LT>
| <GE>
| <LE>
| <NE>
}

void BooleanOp() : {}
{
 [<NOT>]

 (RelOp()
 | <AND>
 | <OR>
)
}

A Programming System for Children that is Designed for Usability 199

Language Syntax Chart

void Exists(): {}
{
 Card() <EXISTS> [LOOKAHEAD(Location()) Location()]
}

void MathOp() : {}
{
 <PLUS>
| <MINUS>
| <STAR>
| <SLASH>
| <MODULO>
}

/***/
/* BooleanExpression */

void BooleanExpression() : {}
{
 LOOKAHEAD(UnaryBooleanExpression())
 UnaryBooleanExpression()
 | Operand() [
 LOOKAHEAD(BooleanOp() Operand())
 BooleanOp() Operand()
]
}

void UnaryBooleanExpression() : {}
{
 <NOT> BooleanExpression()
 | Exists()
}

void HalfBooleanExp() : {}
{
 Operand() BooleanOp()
}

200 A Programming System for Children that is Designed for Usability

Language Syntax Chart

/***/
/* Expression */

SimpleNode Expression() : {}
{
 (
 LOOKAHEAD(UnaryBooleanExpression())
 UnaryBooleanExpression()
 | Operand() [LOOKAHEAD(AnyOp() | <COMMA>)
 (
 AnyOp() Operand()
 | (LOOKAHEAD(2) <COMMA> Operand())+
)
]
)
 { return jjtThis; }
}

/***/
/* Operand */

void Operand() : {}
{
 LOOKAHEAD(<LPAREN> Expression())
 <LPAREN> Expression() <RPAREN>
| LOOKAHEAD (CardField())
 CardField()
| Value()
}

A Programming System for Children that is Designed for Usability 201

Language Syntax Chart

/***/
/* Value */
TOKEN :
{
 < EMPTY: "empty" >
}

SimpleNode Value() : {}
{
 (
 Card()
 | ListOp()
 | MatchForm()
 | Literal()
 | NumericFunction()
 | AskUserForValue()
 | <EMPTY>
)
 { return jjtThis; }
}
/***/
/* CardSlotValue */
/* Restricted version of Value for stuff that can be */
/* put into a card slot without evaluation */

void SingleCardSlotValue() : {}
{
 <IDENTIFIER>
| <EMPTY>
| Literal()
| <LPAREN> CardSlotValue() <RPAREN>
}

void CardSlotValue() : {}
{
 SingleCardSlotValue() (<COMMA> SingleCardSlotValue())*
}

202 A Programming System for Children that is Designed for Usability

Language Syntax Chart

/***/
/* With */
TOKEN :
{
 < WITH: "with" >
}

void With() : {}
{
 <WITH> Expression() [CallingIt()]
 (Action())*
 <END> <WITH>
}

/***/
/* CallingIt */
TOKEN :
{
 < CALLING: "calling" >
| < IT: "it" >
}

void CallingIt() : {}
{
 <CALLING> (<IT> | <EACH>) <IDENTIFIER>
}

/***/
/* MatchForm */
TOKEN :
{
 < CARDS: "cards" >
| < THAT: "that" >
| < MATCH: "match" | "matching" >
| < ALL: "all" >
}

SimpleNode MatchForm() : {}
{

 (LOOKAHEAD(3)
 [<ALL>] <CARDS> [<THAT>] <MATCH>
 | [<MATCH>] <ALL> [<OF>])

 (<LPAREN> MatchDisjunction() <RPAREN>
 | (<IDENTIFIER> | Literal() | <CARDS>)
)

 { return jjtThis; }
}

A Programming System for Children that is Designed for Usability 203

Language Syntax Chart

/***/
/* MatchDisjunction */

void MatchDisjunction() : {}
{
 MatchConjunction() (<OR> MatchConjunction())*
}

/***/
/* MatchConjunction */

void MatchConjunction() : {}
{
 MatchTerm() (<AND> MatchTerm())*
}

/***/
/* MatchTerm */

void MatchTerm() : {}
{
 LOOKAHEAD(<LPAREN> MatchTerm() <RPAREN>)
 <LPAREN> MatchTerm() <RPAREN>
| LOOKAHEAD(<IDENTIFIER> RelOp())
 <IDENTIFIER> RelOp() Operand()
| Operand()
}

204 A Programming System for Children that is Designed for Usability

Language Syntax Chart

/***/
/* PickUp */

TOKEN :
{
 < PICKUP: "pickup" >
}

void PickUp() : {}
{
 <PICKUP> Value()
}

/***/
/* PutDown */

TOKEN :
{
 < PUTDOWN: "putdown" >
}

void PutDown() : {}
{
 <PUTDOWN> Value() [Location()]
}

/***/
/* Flip */

TOKEN :
{
 < FLIP: "flip" >
}

void Flip() : {}
{
 <FLIP> Value()
}

A Programming System for Children that is Designed for Usability 205

Language Syntax Chart

/***/
/* Location */

TOKEN :
{
 < ON: "on" >
| < ONTO: "onto" >
| < HAND: "hand" >
| < TABLE: "table" >
| < BOARD: "board" >
| < DISCARD: "discard" >
| < PILE: "pile" >
}

void Location() : {}
{
 [<IN> | <INTO> | <ON> | <ONTO>]
 (
 <HAND>
 | <TABLE>
 | <BOARD>
 | <DISCARD> <PILE>
)
}

/***/
/* Set */

TOKEN :
{
 < SET: "set" >
}

void Set() : {}
{
 <SET> CardField() [<TO>] Expression()
}

206 A Programming System for Children that is Designed for Usability

Language Syntax Chart

/***/
/* Math */

TOKEN :
{
 < ADD: "add" >
| < SUBTRACT: "subtract" >
| < MULTIPLY: "multiply" >
| < DIVIDE: "divide" >
| < BY: "by" >
}

void Math() : {}
{
 Add()
| Subtract()
| Multiply()
| Divide()
}

void Add() : {}
{
 <ADD> Expression() [<TO>] CardField()
}

void Subtract() : {}
{
 <SUBTRACT> Expression() [<FROM>] CardField()
}

void Multiply() : {}
{
 <MULTIPLY> CardField() [<BY>] Expression()
}

void Divide() : {}
{
 <DIVIDE> CardField() [<BY>] Expression()
}

A Programming System for Children that is Designed for Usability 207

Language Syntax Chart

/***/
/* List Operators */

TOKEN :
{
 < FIRSTITEM: "FirstItem" >
| < ALLBUTFIRSTITEM: "AllButFirstItem" >
| < LASTITEM: "LastItem" >
| < ALLBUTLASTITEM: "AllButLastItem" >
| < NUMBEROFITEMS: "NumberOfItems" >
| < ALLYES: "AllYes" >
| < ALLNO: "AllNo" >
| < GREATESTITEM: "GreatestItem" >
| < LEASTITEM: "LeastItem" >
| < CONCATENATEITEMS: "ConcatenateItems" >
| < SUM: "Sum" >
| < ROUND: "Round" >
| < SORTEDCOPY: "SortedCopy" >
| < SHUFFLEDCOPY: "ShuffledCopy" >
| < REVERSEDCOPY: "ReversedCopy" >
| < ANYITEMIS: "AnyItemIs" >
| < ITEMATPOSITION: "ItemAtPosition" >
| < CONNECTEDCOPY: "ConnectedCopy" >
| < CARDWITHGREATEST: "CardWithGreatest" >
| < CARDWITHLEAST: "CardWithLeast" >
| < CARDSSORTEDBY: "CardsSortedBy" >
}

208 A Programming System for Children that is Designed for Usability

Language Syntax Chart

void ListOp() : {}
{
 FirstItem()
| AllButFirstItem()
| LastItem()
| AllButLastItem()
| NumberOfItems()
| AllYes()
| AllNo()
| GreatestItem()
| LeastItem()
| ConcatenateItems()
| Sum()
| Round()
| SortedCopy()
| ShuffledCopy()
| ReversedCopy()
| AnyItemIs()
| ItemAtPosition()
| ConnectedCopy()
| CardWithGreatest()
| CardWithLeast()
| CardsSortedBy()
}

void FirstItem() : {}
{
 <FIRSTITEM> [<IN> | <OF> | <TO>] Expression()
}

void AllButFirstItem() : {}
{
 <ALLBUTFIRSTITEM> [<IN> | <OF> | <TO>] Expression()
}

void LastItem() : {}
{
 <LASTITEM> [<IN> | <OF> | <TO>] Expression()
}

void AllButLastItem() : {}
{
 <ALLBUTLASTITEM> [<IN> | <OF> | <TO>] Expression()
}

void NumberOfItems() : {}
{
 <NUMBEROFITEMS> [<IN> | <OF> | <TO>] Expression()
}

A Programming System for Children that is Designed for Usability 209

Language Syntax Chart

void AllYes() : {}
{
 <ALLYES> [<IN> | <OF> | <TO>] Expression()
}

void AllNo() : {}
{
 <ALLNO> [<IN> | <OF> | <TO>] Expression()
}

void GreatestItem() : {}
{
 <GREATESTITEM> [<IN> | <OF> | <TO>] Expression()

}

void LeastItem() : {}
{
 <LEASTITEM> [<IN> | <OF> | <TO>] Expression()
}

void ConcatenateItems() : {}
{
 <CONCATENATEITEMS> [<IN> | <OF> | <TO>] Expression()
}

void Sum() : {}
{
 <SUM> [<IN> | <OF> | <TO>] Expression()
}

void Round() : {}
{
 <ROUND> [<IN> | <OF> | <TO>] Expression()
}

void SortedCopy() : {}
{
 <SORTEDCOPY> [<IN> | <OF> | <TO>] Expression()
}

void ShuffledCopy() : {}
{
 <SHUFFLEDCOPY> [<IN> | <OF> | <TO>] Expression()
}

void ReversedCopy() : {}
{
 <REVERSEDCOPY> [<IN> | <OF> | <TO>] Expression()
}

210 A Programming System for Children that is Designed for Usability

Language Syntax Chart

void AnyItemIs() : {}
{
 <ANYITEMIS> Expression() [<IN> | <OF> | <TO>] Expression()
}

void ItemAtPosition() : {}
{
 <ITEMATPOSITION> Expression() [<IN> | <OF> | <TO>] Expres-
sion()
}

void ConnectedCopy() : {}
{
 <CONNECTEDCOPY> Expression() [<IN> | <OF> | <TO>] Expression()
}

void CardWithGreatest() : {}
{
 <CARDWITHGREATEST> Field() [<IN> | <OF> | <TO>] Value()
}

void CardWithLeast() : {}
{
 <CARDWITHLEAST> Field() [<IN> | <OF> | <TO>] Value()
}

void CardsSortedBy() : {}
{
 <CARDSSORTEDBY> Field() [<IN> | <OF> | <TO>] Value()
}

/***/
/* ListStatement */

TOKEN :
{
 < APPEND: "append" >
}

void ListStatement() : {}
{
 Append()
}

void Append() : {}
{
 <APPEND> Expression() [<TO>] CardField()
}

A Programming System for Children that is Designed for Usability 211

Language Syntax Chart

/***/
/* Numeric Functions */

TOKEN :
{
 < RANDOM: "Random" >
}

void NumericFunction() : {}
{
 Random()
}

void Random() : {}
{
 <RANDOM> [<FROM>] Expression() [<TO>] Expression()
}

/***/
/* Ask User */

TOKEN :
{
 < ASK: "Ask" >
}

void AskUserForValue() : {}
{
 <ASK> StringOrIdentifier()
}

/***/
/* Tell User */

TOKEN :
{
 < TELL: "tell" >
}

void TellUser() : {}
{
 <TELL> Expression()
}

212 A Programming System for Children that is Designed for Usability

Language Syntax Chart

/***/
/* Make */

TOKEN :
{
 < MAKE: "make" >
}

void Make() : {}
{
 <MAKE> CardFactory()
}

/***/
/* Beep */

TOKEN :
{
 < BEEP: "beep" >
}

void Beep() : {}
{
 <BEEP>
}

A Programming System for Children that is Designed for Usability 213

Language Syntax Chart

/***/
/* Literal */

TOKEN :
{
 < INTEGER_LITERAL: ("-")? (["0"-"9"])+ >
|
 < FLOATING_POINT_LITERAL:
 ("-")? (["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)?
 | ("-")? "." (["0"-"9"])+ (<EXPONENT>)?
 | ("-")? (["0"-"9"])+ (<EXPONENT>)?
 >
|
 < #EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+ >
|
 < STRING_LITERAL:
 "\"" (~["\"","\\","\n","\r"])* "\"" // "string"
| "`" (~["`","\\","\n","\r"])* "`" // `string`
| "“" (~["“","”","\\","\n","\r"])* "”" // “string”
| "‘" (~["‘","’","\\","\n","\r"])* "’" // ‘string’
 >
| < TRUE: "yes" >
| < FALSE: "no" >
}

void Literal() : {}
{
 <INTEGER_LITERAL>
| <FLOATING_POINT_LITERAL>
| <STRING_LITERAL>
| <TRUE>
| <FALSE>
}

SimpleNode StringOrIdentifier() : {}
{
 (<STRING_LITERAL>
 | <IDENTIFIER>
)
 { return jjtThis; }
}

214 A Programming System for Children that is Designed for Usability

Language Syntax Chart

/***/
/* IDENTIFIERS */

TOKEN :
{
 < IDENTIFIER: <SIMPLE_IDENTIFIER> | <DELIMITED_IDENTIFIER> >
|
 < #SIMPLE_IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>|"-"|"_"|"/
"|".")* >
|
 < #DELIMITED_IDENTIFIER: "|" (~["|","\\","\n","\r"])* "|" >
|
 < #LETTER: ["a"-"z","A"-"Z"] >
|
 < #DIGIT: ["0"-"9"] >
}

/***/
/* COMMENTS */
MORE :
{
 "//" : IN_SINGLE_LINE_COMMENT
| <"/**" ~["/"]> { input_stream.backup(1); } : IN_FORMAL_COMMENT
| "/*" : IN_MULTI_LINE_COMMENT
}

<IN_SINGLE_LINE_COMMENT>
SPECIAL_TOKEN :
{
 <SINGLE_LINE_COMMENT: "\n" | "\r" | "\r\n" > : DEFAULT
}

<IN_FORMAL_COMMENT>
SPECIAL_TOKEN :
{
 <FORMAL_COMMENT: "*/" > : DEFAULT
}

<IN_MULTI_LINE_COMMENT>
SPECIAL_TOKEN :
{
 <MULTI_LINE_COMMENT: "*/" > : DEFAULT
}

<IN_SINGLE_LINE_COMMENT,IN_FORMAL_COMMENT,IN_MULTI_LINE_COMMENT>
MORE :
{
 < ~[] >
}

A Programming System for Children that is Designed for Usability 215

APPENDIX B

Example Programs

This appendix contains the full source code for several HANDS programs.

216 A Programming System for Children that is Designed for Usability

Example Programs

2.1 Breakout

This implementation of Breakout was developed by an undergraduate student who worked

on the project for a semester. It is pictured in Figure 2-1.

b1 x:225 y:63 hits:-1 back:gamegfx/blueblock.gif group:block;
b13 x:225 y:94 hits:-1 back:gamegfx/blueblock.gif group:block;
b14 x:225 y:126 hits:-1 back:gamegfx/blueblock.gif group:block;
b15 x:308 y:63 hits:-1 back:gamegfx/blueblock.gif group:block;
b16 x:308 y:94 hits:-1 back:gamegfx/blueblock.gif group:block;
b17 x:308 y:126 hits:-1 back:gamegfx/blueblock.gif group:block;
b18 x:391 y:63 hits:-1 back:gamegfx/blueblock.gif group:block;
b19 x:391 y:94 hits:-1 back:gamegfx/blueblock.gif group:block;
b2 x:391 y:126 hits:-1 back:gamegfx/blueblock.gif group:block;
b20 x:474 y:63 hits:-1 back:gamegfx/blueblock.gif group:block;
b21 x:474 y:94 hits:-1 back:gamegfx/blueblock.gif group:block;
b22 x:474 y:126 hits:-1 back:gamegfx/blueblock.gif group:block;
b23 x:557 y:63 hits:-1 back:gamegfx/blueblock.gif group:block;
b24 x:557 y:94 hits:-1 back:gamegfx/blueblock.gif group:block;
b3 x:557 y:126 hits:-1 back:gamegfx/blueblock.gif group:block;
b4 x:641 y:63 hits:-1 back:gamegfx/blueblock.gif group:block;
b5 x:641 y:94 hits:-1 back:gamegfx/blueblock.gif group:block;
b6 x:641 y:126 hits:-1 back:gamegfx/blueblock.gif group:block;
b7 x:725 y:63 hits:-1 back:gamegfx/blueblock.gif group:block;
b8 x:725 y:94 hits:-1 back:gamegfx/blueblock.gif group:block;

Figure 2-1. A version of the game Breakout, implemented in HANDS.

A Programming System for Children that is Designed for Usability 217

Example Programs

b9 x:725 y:126 hits:-1 back:gamegfx/blueblock.gif group:block;
ball x:473.0 y:70.0 back:gamegfx/bullet.gif group:pellet direction:90 speed:10
stopped:0;
dirdisplay x:768 y:423 back:90;
l2b1 x:732 y:53 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy10 x:665 y:53 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy11 x:598 y:53 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy12 x:531 y:53 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy13 x:464 y:53 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy14 x:397 y:53 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy15 x:330 y:53 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy16 x:263 y:53 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy17 x:216 y:137 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy18 x:283 y:137 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy19 x:350 y:137 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy2 x:10 y:800 hits:-1 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy20 x:484 y:137 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy21 x:685 y:137 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy22 x:618 y:137 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy23 x:551 y:137 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy24 x:330 y:221 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy25 x:263 y:221 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy26 x:732 y:221 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy27 x:665 y:221 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy28 x:598 y:221 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy29 x:531 y:221 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy3 x:10 y:800 hits:-1 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy30 x:397 y:221 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy31 x:283 y:305 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy4 x:350 y:305 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy5 x:10 y:800 hits:-1 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy6 x:484 y:305 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy7 x:551 y:305 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy8 x:618 y:305 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b1-copy9 x:685 y:305 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
l2b2 x:216 y:305 hits:2 back:gamegfx/greyblock.gif group:l2block hitpoints:2;
leftwall x:196 y:10 back:gamegfx/sidewall.gif group:lwall;
level1 x:97 y:441 xlist:225, 225, 225, 308, 308, 308, 391, 391, 391, 474, 474, 474, 557,
557, 557, 641, 641, 641, 725, 725, 725 ylist:63, 94, 126, 63, 94, 126, 63, 94, 126, 63,
94, 126, 63, 94, 126, 63, 94, 126, 63, 94, 126 numblocks:21;
level2 x:832 y:328 xlist:732, 665, 598, 531, 464, 397, 330, 263, 216, 283, 350, 417,
484, 685, 618, 551, 330, 263, 732, 665, 598, 531, 464, 397, 283, 350, 417, 484, 551,
618, 685, 216 ylist:53, 53, 53, 53, 53, 53, 53, 53, 137, 137, 137, 137, 137, 137, 137,
137, 221, 221, 221, 221, 221, 221, 221, 221, 305, 305, 305, 305, 305, 305, 305, 305
numblocks:32;
paddle x:418.0 y:446 back:gamegfx/bar.gif speed:0 direction:180 group:striker;
rightwall x:796 y:8 back:gamegfx/sidewall.gif group:rwall;
topwall x:193 y:5 back:gamegfx/topwall.gif group:twall;
vars x:833 y:185 speed:10 startx:478 starty:430 bstartx:533 tmp:31 tmp2:0.5 calc:64
dir:90 currlevel:2 blocksgone:0;
when " " is typed

 if ball's stopped then

 set ball's direction to 90

 set ball's speed to vars's speed

 set ball's stopped to 0

218 A Programming System for Children that is Designed for Usability

Example Programs

 end if

end when
when anything happens
 if paddle's x < (leftwall's x + 20) then
 set paddle's speed to 0
 set paddle's x to leftwall's x + 20

 if ball's stopped then
 set ball's speed to 0
 set ball's x to paddle's x + 56
 end if
 end if
 if (paddle's x + 128) > rightwall's x then
 set paddle's speed to 0
 set paddle's x to rightwall's x - 128
 if ball's stopped then
 set ball's speed to 0

set ball's x to paddle's x + 56
 end if
 end if

 if ball's y > 460 then
 set ball's speed to 0
 set paddle's speed to 0
 set ball's direction to paddle's direction
 set ball's x to paddle's x
 set ball's y to paddle's y
 set ball's stopped to yes
 add 55 to ball's x
 subtract 10 from ball's y
 end if

 if vars's currlevel equals 1 then
 if vars's blocksgone = level1's numblocks then
 set vars's currlevel to 2

 set vars's blocksgone to 0
 set x of all l2blocks to level2's xlist
 set y of all l2blocks to level2's ylist

 set hits of all l2blocks to 2
 putdown all l2blocks

 set paddle's speed to 0
 set paddle's direction to 0
 set paddle's x to vars's startx
 set ball's x to vars's bstartx
 set ball's y to vars's starty
 set ball's stopped to yes
 set ball's speed to 0
 set ball's direction to 90
 end if

 end if

end when
when ball collides into any block
 //set ball's direction to (0 - ball's direction)

if ball's direction < 0 then
add 360 to ball's direction

A Programming System for Children that is Designed for Usability 219

Example Programs

ball's direction > 360 then
subtract 360 from ball's direction

end if
if ball's y > block's y then

 if ball's direction < 180 then //ball is moving up
 set ball's direction to (0 - ball's direction)
 ball's direction > 180 then
 set ball's direction to (0 - ball's direction)

 end if

 ball's y < block's y then
 if ball's direction > 180 then //ball is moving down

 set ball's direction to (0 - ball's direction)
 ball's direction < 180 then
 set ball's direction to (0 - ball's direction)
 end if
end if

subtract 1 from block's hits
if block's hits < 0 then

 //set block's x to 10
 //set block's y to 800
 pickup block
 add 1 to vars's blocksgone
end if

end when
when ball collides into any l2block

if ball's direction < 0 then
add 360 to ball's direction

ball's direction > 360 then
subtract 360 from ball's direction

end if
//set ball's direction to (0 - ball's direction)

if ball's y > l2block's y then
 if ball's direction < 180 then //ball is moving up

 set ball's direction to (0 - ball's direction)
 ball's direction > 180 then
 set ball's direction to (0 - ball's direction)

 end if

 ball's y < l2block's y then
 if ball's direction > 180 then //ball is moving down

 set ball's direction to (0 - ball's direction)
 ball's direction < 180 then
 set ball's direction to (0 - ball's direction)
 end if
end if

subtract 1 from l2block's hits
if l2block's hits < 0 then

set l2block's x to 10
set l2block's y to 800

end if
beep

end when
when ball collides into any lwall

if ball's direction < 0 then

220 A Programming System for Children that is Designed for Usability

Example Programs

add 360 to ball's direction
ball's direction > 360 then

subtract 360 from ball's direction
end if

 set ball's direction to (180 - ball's direction)

end when
when ball collides into any rwall

if ball's direction < 0 then
add 360 to ball's direction

ball's direction > 360 then
subtract 360 from ball's direction

end if
 set ball's direction to (180 - ball's direction)

end when
when ball collides into any striker

if ball's direction < 0 then
add 360 to ball's direction

ball's direction > 360 then
subtract 360 from ball's direction

end if
 set vars's calc to ((ball's x+8) - paddle's x) + 1
 set vars's tmp2 to (vars's calc / 128)
 set ball's direction to 150 - (vars's tmp2 * 120)
 set vars's dir to (vars's tmp2 * 180)

end when
when ball collides into any twall

if ball's direction < 0 then
add 360 to ball's direction

ball's direction > 360 then
subtract 360 from ball's direction

end if
 set ball's direction to (0 - ball's direction)

end when
when j is typed
 set paddle's speed to vars's speed
 set paddle's direction to 180
 if ball's stopped then
 set ball's direction to 180
 set ball's speed to vars's speed
 end if
end when
when k is typed
 set paddle's speed to 0
 if ball's stopped then
 set ball's speed to 0
 end if
end when
when l is typed
 set paddle's direction to 0
 set paddle's speed to vars's speed
 if ball's stopped then
 set ball's direction to 0
 set ball's speed to vars's speed
 end if
end when

A Programming System for Children that is Designed for Usability 221

Example Programs

when program starts running
 set paddle's speed to 0
 set paddle's direction to 0
 set paddle's x to vars's startx
 set ball's x to vars's bstartx
 set ball's y to vars's starty
 set ball's stopped to yes
 set ball's speed to 0

set ball's direction to 90
set x of all blocks to level1's xlist
set y of all blocks to level1's ylist
set x of all l2blocks to level2's xlist

set y of all l2blocks to level2's ylist
pickup all l2blocks

set hits of all blocks to 0
set vars's currlevel to 1
set vars's blocksgone to 0
putdown all blocks

end when

222 A Programming System for Children that is Designed for Usability

Example Programs

2.2 Ideal Gas Law Simulation

This simulation of the ideal gas law (PV=nRT) was developed also by the undergraduate

student who worked on the project. It is pictured in Figure 2-2.

mup x:539 y:37 back:rarrow.gif;
startsim x:654 y:39 back:startsim.gif started:yes;
stopsim x:655 y:72 back:stopsim.gif;
plunger x:281 y:145 back:topbar.gif kind:twall;
pressure x:437 y:43 back:25 value:25;
varlabel x:460 y:128 back:"Solving For:";
temperature x:278 y:42 value:250 back:2500;
templabel x:224 y:10 back:"Temperature(Kelvin)";
rightbar x:641 y:145 back:sidebar.gif kind:rwall;
pressurelabel x:384 y:11 back:"Pressure(ATM)";
mdown x:519 y:37 back:larrow.gif;
plungedown x:202 y:179 back:downarrow.gif;
plungeup x:202 y:148 back:uparrow.gif;
pdown x:378 y:38 back:larrow.gif;
checktemp x:238 y:77 back:checked.gif value:Temperature;
spdup x:242 y:38 back:rarrow.gif;
ball9 x:629.2444436971679 y:217.17885848290894 back:atom.gif kind:atom direction:-15
speed:2.5;
ball8 x:507.8705096681376 y:238.09711653795102 back:atom.gif kind:atom direction:-281
speed:2.5;
Volume x:17 y:288 value:100 clicks:9;

Figure 2-2. Simulation of the ideal gas law, as implemented in HANDS.

A Programming System for Children that is Designed for Usability 223

Example Programs

pup x:398 y:38 back:rarrow.gif;
ball7 x:409.2927629895068 y:286.03758763614337 back:atom.gif kind:atom direction:-145
speed:2.5;
ball6 x:433.87130342154995 y:321.648639764889 back:atom.gif kind:atom direction:-166
speed:2.5;
ball5 x:554.6022135871442 y:227.35969321380009 back:atom.gif kind:atom direction:-311
speed:2.5;
ball4 x:530.2741598317327 y:363.26249490033297 back:atom.gif kind:atom direction:-266
speed:2.5;
ball3 x:388.61072229560267 y:222.15690535994378 back:atom.gif kind:atom direction:-278
speed:2.5;
variable x:544 y:127 back:Temperature;
bottombar x:281 y:385 back:bottombar.gif kind:bwall;
checkpressure x:394 y:77 back:unchecked.gif value:Pressure;
molecules x:561 y:42 value:10 back:10;
vars x:819 y:271 miny:145 maxy:300 initialspeed:3 x1:341 x2:630 y1:205 y2:375 total-
startspeed:30 numballs:10 totalspeed:7.5 entropy:0;
leftbar x:281 y:145 back:sidebar.gif kind:lwall;
spddown x:222 y:38 back:larrow.gif;
ball26 x:463.7398089978607 y:240.84388539871472 back:atom.gif kind:atom direction:45
speed:2.5;
ball25 x:548.8096781445022 y:215.80798793768787 back:atom.gif kind:atom direction:33
speed:2.5;
numlabel x:526 y:11 back:Molecules;
ball24 x:349.5534615327548 y:289.05100908957604 back:atom.gif kind:atom direction:-112
speed:2.5;
when any atom collides into any bwall

if atom's direction < 0 then
add 360 to atom's direction

atom's direction > 360 then
subtract 360 from atom's direction

end if
set atom's direction to (0 - atom's direction)

end when
when any atom collides into any lwall

if atom's direction < 0 then
add 360 to atom's direction

atom's direction > 360 then
subtract 360 from atom's direction

end if

set atom's direction to (180 - atom's direction)
end when
when any atom collides into any plunger

if atom's direction < 0 then
add 360 to atom's direction

atom's direction > 360 then
subtract 360 from atom's direction

end if
if (atom's direction < 180) and (atom's direction > 0) then

set atom's direction to (0 - atom's direction)
end if

end when
when any atom collides into any rwall

if atom's direction < 0 then
add 360 to atom's direction

atom's direction > 360 then
subtract 360 from atom's direction

end if

224 A Programming System for Children that is Designed for Usability

Example Programs

set atom's direction to (180 - atom's direction)

end when
when anything happens
/* Luis Cota - lcota@andrew.cmu.edu
 Fall 2001
 bap bap I wrote this

 General Program Notes

 Whenever a variable gets changed, the entire system is stopped
 and the equation pv=nrt is re-evaluated. Only one variable can

 be unknown at any given time otherwise a solution cannot be
 found. In order to force this, a selection must be made by the
 user (otherwise a default is chosen). This selection determines

 which variable this code solves for. The variables the code will
 solve for are Pressure and Temperature ONLY.

 The reason for this is that this equation assumes knowledge of
 N , R, and V. Then, a Pressure OR a Temperature are chosen
 and the unknown variable can be solved for through simple

 algebra. This is why the system must be re-evaluated each
 time a variable changes.

*/

end when
when checkpressure clicked
 set checkpressure's back to checked.gif
 set checktemp's back to unchecked.gif

 set back of variable to Pressure

end when
when checktemp clicked

 set checktemp's back to checked.gif
 set checkpressure's back to unchecked.gif
 set back of variable to Temperature

end when
when mdown is clicked

if(molecules's value > 0) then
putdown FirstItem all atoms on discard pile
subtract 1 from molecules's value

end if
set molecules's back to molecules's value
set speed of all atoms to (temperature's value / (10*molecules's value))
end when
when mup clicked

add 1 to molecules's value
set molecules's back to molecules's value
with duplicate of (FirstItem all atoms) calling each b

set b's direction to random from 0 to 359
set b's x to random from vars's x1 to vars's x2
set b's y to random from (plunger's y+61) to vars's y2
set b's cardname to ("ball" + molecules's value)

end with
set speed of all atoms to (temperature's value / (10*molecules's value))

A Programming System for Children that is Designed for Usability 225

Example Programs

end when
when pdown clicked

if pressure's value > 1 then
subtract 1 from pressure's value

pressure's value = 1 then
set pressure's value to 1

end if
set pressure's back to pressure's value

end when
when plungedown clicked

if volume's clicks > 0 then
 add 10 to plunger's y
 subtract 10 from volume's value
 subtract 1 from volume's clicks
end if

if startsim's started then
putdown all atoms
/*with all atoms calling each a
 set direction of a to random from 0 to 360
end with
*/
if /* begin case statement */
 checktemp's back = checked.gif then

 set temperature's value to (pressure's value * volume's value)
 set temperature's value to (temperature's value / molecules's value)

set temperature's value to temperature's value
 set temperature's back to (temperature's value * 10)
 set speed of all atoms to (temperature's value / (molecules's value * 10))

 checktemp's back = unchecked.gif then
 if
 temperature's value <= 0 then
 set speed of all atoms to 0

 temperature's value > 0 then
 set pressure's value to (molecules's value * temperature's value)
 set pressure's value to (pressure's value / volume's value)
 set pressure's back to pressure's value
 set speed of all atoms to (temperature's value / (molecules's value * 10))
 end if

end if
end if
end when
when plungeup clicked

if volume's clicks < 9 then
 subtract 10 from plunger's y
 add 10 to volume's value
 add 1 to volume's clicks
end if

if startsim's started then
putdown all atoms
/*with all atoms calling each a
 set direction of a to random from 0 to 360
end with
*/

226 A Programming System for Children that is Designed for Usability

Example Programs

if /* begin case statement */
 checktemp's back = checked.gif then

 set temperature's value to (pressure's value * volume's value)
 set temperature's value to (temperature's value / molecules's value)
set temperature's value to temperature's value
 set temperature's back to (temperature's value * 10)
 set speed of all atoms to (temperature's value / (molecules's value * 10))

 checktemp's back = unchecked.gif then
 if
 temperature's value <= 0 then
 set speed of all atoms to 0

 temperature's value > 0 then
 set pressure's value to (molecules's value * temperature's value)
 set pressure's value to (pressure's value / volume's value)
 set pressure's back to pressure's value
 set speed of all atoms to (temperature's value / (molecules's value * 10))
 end if

end if
end if
end when
when program starts
 pickup all atoms
 set molecules's value to NumberOfItems all atoms
 set molecules's back to molecules's value
 set startsim's started to no
end when
/*

when pressure is changed...the other values are taken and held as constant
and the system will be reevaluated

*/
when pup clicked

add 1 to pressure's value
set pressure's back to pressure's value

end when
/*

when speed is modified, all the other values are held constant
and the system is recalculated ...

*/
when spddown clicked

if (temperature's value - 5) <= 0 then
set temperature's value to 0

 (temperature's value) >= 5 then
subtract 5 from temperature's value

end if

set back of temperature to (temperature's value *10)
end when
/*

when speed is modified, all the other values are held constant
and the system is recalculated ...

*/
when spdup clicked

add 5 to temperature's value
set temperature's back to (temperature's value * 10)

end when
when startsim clicked

A Programming System for Children that is Designed for Usability 227

Example Programs

putdown all atoms
set startsim's started to yes
with all atoms calling each a
 set direction of a to random from 0 to 360

 set a's x to random from vars's x1 to vars's x2
 set a's y to random from (plunger's y + 61) to vars's y2

end with

if /* begin case statement */
 checktemp's back = checked.gif then

 set temperature's value to (pressure's value * volume's value)
 set temperature's value to (temperature's value / molecules's value)

set temperature's value to temperature's value

 set temperature's back to (temperature's value *10)
 set speed of all atoms to (temperature's value / (molecules's value * 10))

 checktemp's back = unchecked.gif then
 if
 temperature's value <= 0 then
 set speed of all atoms to 0

 temperature's value > 0 then
 set pressure's value to (molecules's value * temperature's value)
 set pressure's value to (pressure's value / volume's value)
 set pressure's back to pressure's value
 set speed of all atoms to (temperature's value / (molecules's value * 10))
 end if

end if
end when
when stopsim clicked
 set speed of all atoms to 0

end when

228 A Programming System for Children that is Designed for Usability

Example Programs

2.3 Towers of Hanoi

I implemented this solution to Towers of Hanoi, pictured in Figure 2-3.

bottom x:199 y:269 kind:hwall back:invisible-boundary-horiz.gif;
dropper x:583 y:125 back:invisible-dot.gif;
goal x:212 y:528 sequence:(small-ring, medium-ring, large-ring), h-tower1, h-tower2, h-
tower3 ring:empty destination:empty spare:empty source:empty;
h-tower1 x:360 y:192 back:tower.jpg kind:tower;
h-tower2 x:460 y:192 back:tower.jpg kind:tower;
h-tower3 x:560 y:192 back:tower.jpg kind:tower;
large-ring x:327.0 y:259.0 back:bigdisk.jpg kind:ring direction:270 speed:0 dropEast:43
dropWest:-33;
medium-ring x:337.0 y:249 back:meddisk.jpg kind:ring direction:270 speed:0 dropEast:33
dropWest:-23;
small-ring x:347.0 y:239 back:smdisk.jpg kind:ring direction:270 speed:0 dropEast:23
dropWest:-13;
top x:199 y:120 kind:hwall back:invisible-boundary-horiz.gif;
when any ring collides into any ring

set the first-ring's speed to 0
set goal's ring to empty

end when
when any ring collides into bottom

set the ring's speed to 0
set goal's ring to empty

end when
when any ring collides into dropper

set direction of the ring to 270
end when
when any ring collides into top

if (x of ring) < (x of goal's destination) then
set ring's direction to 0
set dropper's x to (x of goal's destination) + (ring's dropEast)

otherwise
set ring's direction to 180
set dropper's x to (x of goal's destination) + (ring's dropWest)

end if
end when
when goal changes

if (goal's ring = empty) then
set goal's ring to FirstItem goal's sequence
set goal's sequence to AllButFirstItem goal's sequence

Figure 2-3. A solution to the Towers of Hanoi problem, as implemented in HANDS.

A Programming System for Children that is Designed for Usability 229

Example Programs

set goal's source to FirstItem goal's sequence
set goal's sequence to AllButFirstItem goal's sequence
set goal's spare to FirstItem goal's sequence
set goal's sequence to AllButFirstItem goal's sequence
set goal's destination to FirstItem goal's sequence
set goal's sequence to AllButFirstItem goal's sequence

end if
if (NumberOfItems in goal's ring) > 1 then

set goal's sequence to
(AllButLastItem in goal's ring), goal's source, goal's destina-

tion, goal's spare,
(LastItem in goal's ring), goal's source, goal's spare, goal's des-

tination,
(AllButLastItem in goal's ring), goal's spare, goal's source,

goal's destination,
goal's sequence

set goal's ring to empty
 (NumberOfItems in goal's ring) = 1 then

set direction of (goal's ring) to 90
set speed of (goal's ring) to 2

end if
end when
when program starts

// touch goal, to fire a "goal changes" event
set goal's ring to goal's ring

end when

2.3.1 Extension to Towers of Hanoi

The following program can be imported into the above program, to change it to a four-disk

problem.

goal x:212 y:528 sequence:(mini-ring, small-ring, medium-ring, large-ring), h-tower1,
h-tower2, h-tower3 ring:empty destination:empty spare:empty source:empty;
mini-ring x:357.0 y:229 back:minidisk.jpg kind:ring direction:270 speed:0 dropEast:13
dropWest:-3;

230 A Programming System for Children that is Designed for Usability

Example Programs

2.4 Primes Sieve

I wrote this program to compute prime numbers using a sieve technique. Figure 2-4 shows

the state of the program after it has run for a while, while the code below shows its initial

state.

count x:321 y:110 back:1;
count-label x:212 y:110 back:"# primes found:";
current x:321 y:70 back:3;
current-label x:260 y:70 back:"current:";
prime x:321 y:90 back:2 list:2;
primes-label x:204 y:90 back:"last prime found:";
when nothing happens

if not AnyItemIs 0 in (current's back % prime's list) then
append current's back to prime's list
set prime's back to current's back
add 1 to count's back

end if
add 2 to current's back

end when

2.5 Compass

This compass card can be imported into any program, to give the user symbolic access to

some common directions, such as

compass’s north

.

compass x:873 y:589 back:compass.gif north:90 south:270 east:0 west:180 up:90 down:270
left:180 right:0 northeast:45 northwest:135 southeast:315 southwest:225;

Figure 2-4. The top of this figure shows the screen of a program that computes prime numbers using a sieve
technique, as implemented in HANDS. The bottom of this figure shows the primes that have been computed
so far, which are stored in the list property of the card prime.

A Programming System for Children that is Designed for Usability 231

Example Programs

2.6 Boundaries

This boundaries program can be imported into any program, to cause all objects to bounce

when they reach the edge of the board. Without this program, the objects would continue

moving off the board.

bottom x:199 y:473 kind:hwall back:invisible-boundary-horiz.gif;
left x:198 y:16 kind:vwall back:invisible-boundary-vert.gif;
right x:815 y:16 kind:vwall back:invisible-boundary-vert.gif;
top x:199 y:17 kind:hwall back:invisible-boundary-horiz.gif;
when any hwall collides

// hwall never moves, so "firstitem in event's value" is always the other card
with firstitem in event's value calling each the object

set direction of the object to (360 - direction of the object)
end with

end when
when any vwall collides

// vwall never moves, so "firstitem in event's value" is always the other card
with firstitem in event's value calling each the object

set direction of the object to (180 - direction of the object)
end with

end when

Figure 2-5. This compass card contains properties for various directions, such as compass’s north.

232 A Programming System for Children that is Designed for Usability

Example Programs

2.7 Trap Door

This trap door program can be imported into any program. When an object collides into the

invisible trap door, it is moved to a new location, specified in the

destination-x

 and

destination-y

 coordinates.

trapdoor x:734 y:423 kind:trapdoor destination-x:250 destination-y:100 back:invisible-
dot.gif;
when any trapdoor collides

// trapdoor never moves,
// so "firstitem in event's value"
// is always the other card
with firstitem in event's value calling each the object

set x of the object to destination-x of trapdoor
set y of the object to destination-y of trapdoor

end with
end when

A Programming System for Children that is Designed for Usability 233

APPENDIX C

Background Research

This appendix contains the full text of my technical report surveying usability issues in the

design of programming systems for beginners [Pane, 1996 #295].

234 A Programming System for Children that is Designed for Usability

Background Research

1. Introduction

This report summarizes research about novice programming. Over the past twenty years
many research studies have discovered useful information about novice programmers, and

identified good and bad aspects of today’s programming systems

1

, both visual and textual.
However, this body of research is widely distributed throughout the literature and is not
well organized, making it difficult to use in guiding the design of new systems. The result
is that these research results generally have not been systematically fed back into the
design of new programming systems. Instead, the design of new languages and environ-
ments has most often been driven by technical objectives, such as ease of parsing, ease of
generating fast code, closeness to the machine, ease of proving correctness, etc. Even sys-
tems that were designed for novice users or for teaching have not attempted to broadly sur-
vey this body of research before making critical decisions about the metaphor or model
that the language is based on, the notation that is used in the language, and the environ-
ment. For example, the Turing language [Cordy 1992] was designed, in part, as a teaching
language for children, with attempts to resolve perceived difficulties with Pascal. How-
ever, the list of perceived difficulties is focused primarily on missing features: lack of
string handling facilities, type-safe variant records, modularity, concurrency, and type-safe
compilation.

The focus of this report is research about the novice programmer. Research that compares
novices and experts is included, but research that focuses exclusively on experts is not
included here unless it offers general insight into all programmers. Of course, many of the
issues mentioned here are applicable to experts as well.

Inspired by the Smith & Mosier user interface guidelines [Smith 1986b], we have gathered
and organized this information so that it can be used in the design of new programming
systems. The information is organized into topics that span the issues that researchers have
explored. While the topics are interrelated in many ways, we have organized them using a
subset of the usability principles called

 heuristics

 defined by the

Heuristic Evaluation

usability engineering method [Nielsen 1994]:

2

• Visibility of system status.
• Match between system and the real world.
• User control and freedom.
• Consistency and standards.
• Recognition rather than recall.
• Aesthetic and minimalist design.
• Help users recognize, diagnose, and recover from errors.
• Help and documentation.

Each of these heuristics is represented by a section of this document. The introduction to
each section contains Nielsen’s definition of the heuristic, followed by our interpretation

1. In this report,

system will be used to mean the programming language as well as the program-
ming environment (set of tools) in which programs are developed.

2. Note that, although this report adopts a subset of the usability principles defined in [Nielsen
1994], it does not make use of the usability engineering method that is described there.

A Programming System for Children that is Designed for Usability 235

Background Research

of the heuristic in the domain of novice programming. Following each introductory sec-
tion are topics summarizing the novice programming issues that fall into the heuristic.

236 A Programming System for Children that is Designed for Usability

Background Research

2. Definitions

Beacon A common code fragment that serves to indicate the probable pres-
ence of a certain high-level operation.

Environment The collection of tools used in viewing, constructing, running, and
debugging programs.

Expressiveness A measure of the ease in translating a plan into a program. A high-
level language is more expressive than assembly language.

Guiding Knowledge A description of everything a naive user needs to know about the
system. This can be the contents of a manual, tutorial, or verbal
instructions.

Heuristics A set of recognized usability principles from [Nielsen 1994].

Inner World The details of programming that are not directly related to the high
level task, such as variable declarations.

Locality A measure of the proximity of related items, e.g. the declaration
and use sites of a variable.

Match-mismatch A phenomenon where different notations are better depending on
the task. Performance is best when the structure of the information
sought matches the structure of the notation. Mismatch leads to
poor performance.

Metaphor An real world system that the programmer can use as a reference
for how the programming system will work. For example, a stack of
dishes is a metaphor for the stack data structure; a variable is often
described as a box.

Natural Language A language that originated in human spoken form, e.g. English.

Notation The symbols of a programming language and the syntactic rules for
combining them into a program.

Plan A high-level mental strategy for accomplishing a particular pro-
gramming goal. In order for the plan to be implemented, it must be
elaborated and translated into the programming language.

A Programming System for Children that is Designed for Usability 237

Background Research

Secondary Notation Information that is embedded in the program text that is not part of
the syntactic structure that is meaningful to the system. For exam-
ple, comments and indentation are forms of secondary notation in
most systems.

Signalling A secondary notation that uses color and typographic styles to
emphasize certain ideas or to clarify the organization of the pro-
gram. For example, keywords are often shown in boldface or a dif-
ferent color than surrounding text.

Superlativism An expectation that a particular kind of programming system is
superior to another for all programming tasks. Some people expect
superlativism of functional languages over imperative languages.

Viscosity A measure of how much effort is required to make a small change
to the program, e.g. how difficult it is to change a conditional into a
loop.

Visibility A measure of how much effort is required to expose desired infor-
mation.

238 A Programming System for Children that is Designed for Usability

Background Research

3. Organization of this Document
Each novice programming usability topic is formatted like this page into a number of
parts. The first line contains the item number and title of the issue described. It is followed
by a prose description of the issue, definition of terminology, implications or guidelines,
and motivations.

Context of Use: This area indicates where the issue applies, such as notation, meta-
phor, environment, education, etc.

Justified by: This area lists how these findings were determined, such as through
formal human-factors empirical studies, observation of individual
users, or the opinion of experts.

Examples: This area contains positive and/or negative examples of this issue.

Exceptions: This area lists exceptions to any guidelines suggested above.

Cross References: This area lists any other related issues with their section numbers.

References: This area contains the full list of references for this section; they are
also embedded above where appropriate.

A Programming System for Children that is Designed for Usability 239

Background Research

4. Visibility of System Status
“The system should always keep users informed about what is going on, through appropri-
ate feedback within reasonable time [Nielsen 1994].”

The research in this section identifies information that is important to the programming
process, and suggests ways that the language and the programming environment can help
make this information visible, such as by keeping related items close together, by reveal-
ing or highlighting important items, by avoiding potentially confusing appearances, and
by providing immediate feedback.

240 A Programming System for Children that is Designed for Usability

Background Research

4-1. Use Signalling to Highlight Important Information
Typographic signalling is a secondary notation that uses color or typographic styles to
emphasize certain ideas or to clarify the organization of the program. Signalling improves
comprehension of the signalled material, at the expense of non-signalled material. [Fitter
1979] cites the principles of redundant recoding and relevance in good notational
schemes: in addition to symbolic information there are perceptual cues, thus both percep-
tual and symbolic characteristics highlight important information; but only information
that is actually useful to the user is highlighted.

Many environments automatically signal keywords of the language, even though this may
not be the most important information that the reader needs [Baecker 1986]. Instead, the
environment should signal semantically important information, or facilitate the signalling
of those items that the user feels are important [Gellenbeck 1991a]. Secondary notation
should be used to improve access to information that is needed but obscured [Green
1990b]. The user should be informed in advance about the meaning of the signals. Of
course, these signals should be correct and not misleading.

Context of Use: Environment, notation

Justified by: Empirical studies, expert opinion

Examples: Many environments highlight syntactic structures of the language,
such as keywords.

An intelligent environment could use color to highlight semantic
information about the program that is less obvious in the syntactic
structure, such as the bindings of identifiers.

In visual languages, all visible symbols are interpreted by the user
as relevant, even if they are incidental [Green 1991].

[Baecker 1986] and [Baecker 1990] describe an elaborate auto-
mated system that uses graphic design principles to enhance text in
C program printouts, in an attempt to make them more readable,
understandable, appealing, memorable and maintainable. This sys-
tem highlights information that the authors judged to be fundamen-
tal, such as: the relationships between comments and the code they
discuss; certain tokens such as identifiers; the correct parsing of
complex expressions and statements; use of global variables, which
are a frequent source of errors; and unusual flow of control. This
system improved readability as measured by performance on a
comprehension test.

Cross References: 4-2. “Beacons”
4-4. “Beware of Misleading Appearances”
6-3. “Support Secondary Notation”

A Programming System for Children that is Designed for Usability 241

Background Research

References: [Baecker 1986, Baecker 1990, Fitter 1979, Gellenbeck 1991a,
Green 1990b, Green 1991]

242 A Programming System for Children that is Designed for Usability

Background Research

4-2. Beacons
Beacons are common code fragments that serve to indicate the probable presence of cer-
tain high-level operations [Brooks 1983]. Although few have been identified, they are typ-
ically patterns that are not extremely common, and it is their infrequent appearance that
makes them useful in confirming or suggesting a hypothesis about what the code does
[Gellenbeck 1991b]. Thus they are useful for high-level understanding, but are less useful
for detailed tasks like debugging [Wiedenbeck 1986b]. They have been shown to help
experts in program comprehension [Boehm-Davis 1996]. These beacons are so strong that
misleading ones can induce false comprehension in experts [Wiedenbeck 1989]. However,
there is evidence that novices do not make effective use of beacons, probably because they
have not learned the patterns yet [Gellenbeck 1991b, Wiedenbeck 1986a, Wiedenbeck
1986b]. This is supported in an analysis of eye movements of programmers, which found
that experts spend more time viewing meaningful areas of the program while novices do
not [Crosby 1990]. Even so, using colored cues to mark meaningful sections of code helps
experts to find bugs in those sections [Gilmore 1988]. Perhaps the environment should
highlight meaningful areas such as beacons with color or other cues, to draw novices’
attention to them. This may also be instructional, because the beacons mark schemata that
novices must learn anyway [Perkins 1986, Samurçay 1989].

Context of Use: Environment

Justified by: Empirical studies

Examples: A beacon for sorting is the swapping operation, which exchanges
the values of two variables:
 temp := a;
 a := b;

 b := temp;

Cross References: 4-1. “Use Signalling to Highlight Important Information”

References: [Boehm-Davis 1996, Brooks 1983, Crosby 1990, Gellenbeck
1991b, Gilmore 1988, Perkins 1986, Samurçay 1989, Wiedenbeck
1986a, Wiedenbeck 1986b, Wiedenbeck 1989]

A Programming System for Children that is Designed for Usability 243

Background Research

4-3. Locality and Hidden Dependencies
Many researchers argue that locality is important in programming: physical proximity
should be encouraged and remote references should be avoided [Cordy 1992]; strongly-
related subcomponents should be kept together, not dispersed [Bonar 1990]; delocalized
plans cause difficulty [Soloway 1988]; and hidden dependencies and poor visibility reduce
understanding [Green 1996]. To the extent that information is visible on the screen, work-
ing memory limitations are reduced, allowing novices to perform better [Anderson 1985,
Green 1987]. These observations are to some extent opposed to modularity and abstrac-
tion, which tend to hide details and make related pieces of code more distant from one
another [Green 1996]. Part of this problem can be relieved by intelligent use of secondary
notation [Green 1990b], or with modern environments that use powerful navigation fea-
tures to make the remote code easily accessible [Goldenson 1991, Miller 1994].

[Lewis 1987] proposes replacing programming by synthesis with programming by modifi-
cation, where a library of examples is provided, from which the programmer chooses an
appropriate one for a starting point, identifies needed modifications, then modifies it to suit
the current need. This elevates locality because it is an important factor in understanding
the examples.

Context of Use: Environment

Justified by: Empirical studies, expert opinion

Examples: The Turing language attempts to group things physically close to
one another and avoid remote references where possible. Declara-
tions are not distinct from statements or runtime constants. For
example,
const temp := x; x := y; y := temp

is a valid swap operation at any point in the program, regardless of
context or the type of values being swapped [Cordy 1992].

In Turing, control structures implicitly create a scope, encouraging
locality [Cordy 1992].

Pascal programmers frequently forget initialization preconditions
while coding, requiring them to go back later to insert them [Green
1987]. In contrast, this almost never happens in Prolog, where the
preconditions are located adjacent to the focal line. FPL, a graphi-
cal language that is equivalent to Pascal, also seems to eliminate
this problem, perhaps because the graphical layout prompts the pro-
grammer to remember the initialization [Cunniff 1989].

Hypercard seriously reduces the visibility of the program text. It
takes too many steps to make a desired item visible [Green 1990a,
Green 1996].

Textual languages have hidden dependencies in variables and

244 A Programming System for Children that is Designed for Usability

Background Research

parameters, as well as in side effects of functions. Visual languages
such as LabView and Prograph do well at avoiding hidden depen-
dencies at a local level, but not so well at a global level. Textual lan-
guages usually have better visibility than visual languages [Green
1996].

Cross References: 5-5. “Support for Planning”
5-7. “Visual vs. Textual”
5-13. “Modularity and Abstraction”
6-3. “Support Secondary Notation”
8-1. “Minimize Working Memory Load”

References: [Anderson 1985, Bonar 1990, Cordy 1992, Cunniff 1989,
Goldenson 1991, Green 1990a, Green 1990b, Green 1987, Green
1996, Lewis 1987, Miller 1994, Soloway 1988]

A Programming System for Children that is Designed for Usability 245

Background Research

4-4. Beware of Misleading Appearances
[Fitter 1979] cites a principle of restriction in good notational schemes: the syntax prohib-
its the creation of code that could easily be confused with other closely-related forms. A
typographical error or cognitive slip should result in an invalid program, so that the system
can detect the error for the user [Green 1996]. If the error results in a valid but incorrect
program, the error will not be detected until it causes the program to behave in a notice-
ably incorrect manner.

One common mistake among novices and experts is misunderstanding the program
because its formatting invites an incorrect interpretation. For example, if objects look
alike, kids expect them to behave alike [Smith 1995]. There are two obvious ways to deal
with this: 1) the system can impose a formatting that is consistent with the true meaning of
the code; or 2) the system can try to interpret the formatting of the code the same way that
the user would. The first solution may interfere with allowing secondary notation.

Context of Use: Notation

Justified by: Empirical analysis of frequent novice errors

Examples: Incorrect indentation may lead the user to believe that code is part
of a control structure when it is really outside the control structure
[du Boulay 1989a].

Stray wires in graphical program cause confusion [Green 1991].

Some students expect that all statements in a program, including
those inside procedures, are executed in the order they appear in a
program; others think the procedures are executed when they are
called in addition to executing in a top-to-bottom scan [Sleeman
1988]. Some students think that all statements in the program must
be executed at least once, even those that may have been skipped
due to branching: that any statements which have not yet been exe-
cuted are executed before the program terminates [Putnam 1989].

Exceptions: Early versions of Fortran are notorious for their rigid column-based
notation, where restriction was extreme. Some apparently harmless
errors in alignment were flagged as errors, while others resulted in
unexpected results.

Cross References: 4-1. “Use Signalling to Highlight Important Information”
4-5. “Avoid Subtle Distinctions in Syntax”
6-3. “Support Secondary Notation”

References: [du Boulay 1989a, Fitter 1979, Green 1996, Green 1991, Putnam
1989, Sleeman 1988, Smith 1995]

246 A Programming System for Children that is Designed for Usability

Background Research

4-5. Avoid Subtle Distinctions in Syntax
Notation should avoid subtle distinctions in syntax which might be overlooked or con-
fused by novices. As described above (see “Beware of Misleading Appearances” on
page 245), the principle of restriction advises against the use of syntax that is so similar to
other forms that it is easily confused [Fitter 1979]. Novices get confused when there are
two different syntaxes to accomplish the same effect [Eisenberg 1987]. More planning is
required when there are many different legal solutions to a goal, which leads to frequent
code changes [Gray 1987].

Context of Use: Notation

Justified by: Empirical studies, observation of individual users

Examples: The difference between the quoted string “123” and the numeric
value 123 is a problem [du Boulay 1989a].

Novices have difficulty because Pascal does not permit a comma to
be used as punctuation in a number. For example: 32,000 is illegal
while 32000 is legal [Pane 1996].

A common problem in C is the distinction between the assignment
operator =, and the equality operator ==. For example, sometimes
the programmer will writes if (a = 0) instead of if (a == 0),
which results in an assignment where comparison was desired. Pas-
cal has a similar distinction between := for assignment and = for
equality, but this is not so serious due to restriction: syntax prohibits
one of them to be used where the other is legal. Some systems use a
special symbol for assignment to avoid the confusion with equality
[Baecker 1986]. As mentioned in “Beware of Misleading Appear-
ances” on page 245, a typographical error or cognitive slip should
result in an invalid program, so that the system will detect the error
for the user [Green 1996].

In C, indexing of arrays is done with square brackets, but initializa-
tion is done with curly braces:
int a[] = {1,2,3};

In C, it is very easy to accidentally comment out a large block of
code. It is not an error to have a missing close-comment delimiter.
Instead, the comment continues to the next occurrence of the close-
comment delimiter. Modern environments use color signalling to
make this error visible.

Cross References: 4-4. “Beware of Misleading Appearances”
5-3. “Consistency with External Knowledge”
5-14. “Cognitive Issues”

References: [Baecker 1986, du Boulay 1989a, Eisenberg 1987, Fitter 1979,
Gray 1987, Green 1996, Pane 1996]

A Programming System for Children that is Designed for Usability 247

Background Research

4-6. Support Incremental Running and Testing with Immediate
Feedback

Immediate feedback aids problem solving [Lewis 1987]. The ability to test partial solu-
tions is an important feature for novices and experts alike. Running the program should be
encouraged because it is a useful debugging strategy [Gugerty 1986b]. When novices
adopt a practice of testing their code incrementally, they perform better [Goldenson 1991,
Green 1996, Perkins 1986]. This has a bigger impact on performance than good error mes-
sages in a batch-compiled delayed-feedback environment [Davis 1993]. These observa-
tions can be interpreted as a call for lisp-like dynamic languages [Smith 1992], but in fact
the environment can provide this feature in traditional compiled languages such as Pascal
[Goldenson 1991].

The computational machine should reveal its internal workings, and should do it in terms
of the language itself [du Boulay 1989b]. A powerful graphical debugger will be used by
novices not only for debugging, but also as an aid to program comprehension even in the
absence of bugs [Goldenson 1991]. However, novices must be trained to use these tools
effectively [Miller 1994]. [Brusilovsky 1997] points out that an important feature of mini-
languages for novices is that they be capable of operating in dialog mode, where individ-
ual commands can be issued by the user and are executed immediately with visible feed-
back. [Clements 1995] lists this as a design principle for novice programming
environments.

In traditional compiled languages, beginners are also confused by the need to recompile
after making a change, and the need for their program to be complete before it can be run
[du Boulay 1989a]. The Geo-Logo environment addresses this problem by updating the
program’s output as soon as code is changed [Clements 1995].

Context of Use: Environment, programming paradigm

Justified by: Empirical studies

Examples: Spreadsheets provide immediate feedback, in contrast to other envi-
ronments where the programmer must recompile, re-execute, and
re-enter data in order to test a change. This is an important factor in
the success of spreadsheets [Lewis 1987, Nardi 1993].

A powerful graphical debugger such as the one in the MacGnome
environments shows live graphical views of the data structures
which are continuously updated while the program is running. The
debugger attempts to display the data in a semantically meaningful
way, such as displaying records, linked lists, binary trees, and mul-
tidimensional arrays in the same way they are pictured in textbooks
and in the classroom. Recursive procedure calls are also easier to
understand because the call stack graphically represented in the
debugger. These displays facilitate understanding of the data struc-
tures and the program that manipulates them [Miller 1994, Myers
1988].

248 A Programming System for Children that is Designed for Usability

Background Research

Cross References: 5-12. “Choosing a Paradigm”
10-1. “Support for Testing and Debugging”

References: [Brusilovsky 1997, Clements 1995, Davis 1993, du Boulay 1989a,
du Boulay 1989b, Goldenson 1991, Green 1996, Gugerty 1986b,
Lewis 1987, Miller 1994, Myers 1988, Nardi 1993, Perkins 1986,
Smith 1992]

A Programming System for Children that is Designed for Usability 249

Background Research

5. Match Between System and the Real World
“The system should speak the user’s language, with words, phrases, and concepts familiar
to the user, rather than system-oriented terms. Follow real-world conventions, making
information appear in a natural and logical order [Nielsen 1994].”

The research in this section investigates the expectations and behaviors that a novice
brings to programming, such as natural language and knowledge of the real world. It dis-
cusses ways that the programming system can effectively exploit the expectations and sup-
port the behaviors, in order to maximize the net positive transfer to programming. Several
points are made about common programming constructs that do not match well with the
way users tend to express concepts in natural language. In addition, the task-dependent
nature of the effectiveness of the programming system is examined. While this section
covers consistency between the programming system and the outside world, “Consistency
and Standards” on page 286 covers internal consistency. [Payne 1986] describes a formal
method for assessing both of these forms of consistency.

250 A Programming System for Children that is Designed for Usability

Background Research

5-1. Choose an Appropriate Metaphor
A metaphor is a familiar analogy for how the programming system works. When the met-
aphor is good, users can infer how the programming system works by referring to their
existing knowledge and expectations about how the modeled system works; otherwise
they might be required to learn a collection of rules that seem arbitrary. In order to maxi-
mize this transfer of knowledge, the metaphor should be based on, and conceptually close
to, a concrete real-world system that is widely known by the user audience [Smith 1994].
This familiarity requirement is violated by Prolog, where misconceptions abound in users’
models of searching, matching, and backtracking [Fung 1990, Fung 1987, Mendelsohn
1990]. An appropriate concrete model can have a strong positive effect on the usability of
a programming language [Mayer 1989].

Context of Use: Computational metaphor of the language

Justified by: Empirical studies, expert opinion

Examples: Traditional programming languages use a computational model of
the von Neumann machine, which has no physical world counter-
part. Learning this computational model is an important stumbling
block for novices [du Boulay 1989a, du Boulay 1989b].

The spreadsheet is widely viewed as a successful instance of a pro-
gramming language that is useful to non-programmers. An impor-
tant advantage of the spreadsheet is that it is based on a metaphor
that fits very well with the tasks of its audience: page-oriented
numerical computation for financial or other purposes [Nardi
1993]. Use of spreadsheets requires mastery of only two concepts:
cells as variables and functions as relations between variables. Typ-
ically users use fewer than ten functions, including basic arithmetic
and rounding. It is not necessary to string together low-level primi-
tives, allocate memory, name variables, include files, etc. It is a
familiar, concrete, visible representation that allows users to feel as
though they are working directly on the task [Lewis 1987]. Unfortu-
nately, this metaphor does not seem to extend well to general-pur-
pose computation.

Logo uses the metaphor of a turtle in a two-dimensional world.
Even this concrete model has its difficulties. For example, when the
turtle is facing south, the user’s left is the turtle’s right, and vice
versa [Mendelsohn 1990]. [Resnick 1994] describes the extension
of the Logo metaphor to parallel computing.

Boxer uses a two-dimensional spatial metaphor for the organization
of programs, but is not constrained to a single-level hierarchy of
cells as spreadsheets are. All computational objects are represented
in terms of a hierarchy of boxes, which can contain data such as text
or graphics, or can contain behaviors in the form of Logo-like pro-

A Programming System for Children that is Designed for Usability 251

Background Research

grams. It uses the metaphor of a port for accessing the contents of a
box from a distant place in space [diSessa 1989].

[Brusilovsky 1997] surveys a collection of mini-languages for nov-
ices that are based on the metaphor of a robot, and claims that they
are intrisically engaging and visually appealing. One such language
that achieved widespread usage is Karel the Robot [Pattis 1995].

[Finzer 1993] describes “Programming by Rehearsal”, where the
programming process consists of moving “performers” around on
“stages” and teaching them how to interact by sending “cues” to
one another.

Pursuit is a visual shell that uses a comic-strip metaphor to repre-
sent programs [Modugno 1996].

Exceptions: Several systems are cited by [Mendelsohn 1990] as moving from
the abstract toward the concrete: ARK [Smith 1986a]; Boxer
[diSessa 1989]; ThingLab [Borning 1985]. He concludes that in
these concrete systems, semantic complexities are not banished,
users can not see the plans, and the systems have poor visibility and
viscosity.

Cross References: 5-2. “Consistency with Metaphor”
5-11. “Support Direct Manipulation and Definition by Example”

References: [Borning 1985, Brusilovsky 1997, diSessa 1989, du Boulay 1989a,
du Boulay 1989b, Finzer 1993, Fung 1990, Fung 1987, Lewis 1987,
Mayer 1989, Mendelsohn 1990, Modugno 1996, Nardi 1993, Pattis
1995, Resnick 1994, Smith 1994, Smith 1986a]

252 A Programming System for Children that is Designed for Usability

Background Research

5-2. Consistency with Metaphor
The language should be consistent with its metaphorical model. It should abide by any
suggestions that can be derived from the metaphor. [Halasz 1982] lists three classic prob-
lems with metaphors: the target domain has features not in the source domain, the source
domain has features not in the target domain, and some features exist in both domains but
work very differently. Novices frequently encounter difficulty with the limits of the meta-
phor or analogy: mistakes arise out of attempting to extract too much from it.

Context of Use: Metaphor and notation

Justified by: Empirical analysis of frequent novice errors

Examples: Novices expect the computer to understand the meaning of a vari-
able based on its name. For example, students expect the read state-
ment to select values based on the names of the variables. With
READLN(odd, even) and the input “2 3”, they expect the computer
to read 3 into odd and 2 into even [Putnam 1989, Sleeman 1988].

When a variable is described as a box or a slate, users assume that it
can hold more than one value at a time like the real-world counter-
parts. For example, students will expect a read statement to accept
multiple values into the variables being read into. In READLN(odd,
even) with the input “2 3 5 10”, students expect the computer to
read 3 and 5 into odd and 2 and 10 into even. When they encounter
these multiple-value variables in a subsequent conditional state-
ment, students variously think that:
• only the first value is used,
• the comparison cannot be made, or
• the program implicitly loops until the values in the variables have
been consumed [Putnam 1989, Sleeman 1988].

When a variable is described as a box, users sometimes think that a
sequence such as a=2 followed by b=a means that a no longer holds
the value 2.

When computers are anthropomorphized, novices tend to expect
computers to be non-rigid like humans, and thus are not precise in
describing a task [du Boulay 1989a].

When a program is described as a recipe, novices expect that it is ok
to leave out certain details, the way “remove egg from its shell” is
left out of most recipes that use eggs [du Boulay 1989a].

Cross References: 5-1. “Choose an Appropriate Metaphor”
5-3. “Consistency with External Knowledge”

References: [du Boulay 1989a, Halasz 1982, Putnam 1989, Sleeman 1988]

A Programming System for Children that is Designed for Usability 253

Background Research

5-3. Consistency with External Knowledge
Users bring to the programming task external knowledge that might interfere with correct
understanding of the language. Most beginner programming errors can be interpreted as
incorrect transfers from other representation/processing systems to the computer device
[Bonar 1989, Mayer 1987]. Where their knowledge is lacking, it is common for novices to
guess incorrect language syntax or semantics; these errors are indicators of transfers from
other knowledge domains that are not compatible with the programming language [Hoc
1990].

Languages often use keywords that are loaded with meaning from natural language, and
notation that is like math. While the mnemonic value of keywords is useful, it is important
to beware of what is called the human interpreter problem, where reading the program in a
natural language manner leads to an interpretation that is inconsistent with the correct
meaning of the program [Bonar 1988b, Spohrer 1989a, Spohrer 1986b, Taylor 1990]. Stu-
dents attribute to the machine the reasoning power of an average human [Sleeman 1988].
A large portion of bugs arise from inconsistency within the programming language or
inconsistency between the programming language and the user’s outside knowledge of the
world or natural language. [Pea 1986] discusses language-independent conceptual bugs
which affect the ways in which novices perceive the computing domain.

Context of Use: Notation, metaphor

Justified by: Empirical studies, analysis of frequent novice errors, expert opinion

Examples: There is a litany of inconsistencies between mathematical knowl-
edge and the use of similar notation in programming languages like
Basic, Pascal and C. Some examples lie in the use of variables [du
Boulay 1989a, Putnam 1989]:
• a=2 and 2=a are not symmetric in assignment as they are in math;
• math does not use the concept of previous and next values of a
variable, such as in the assignment statement a=a+1;
• math treats the identity of two symbols as permanent for the dura-
tion of the problem, while it is transient in programming, such as in
the assignment statement a=b;
• math offers no hint about the direction of assignment – whether
the value of b goes into a or vice versa – in the assignment state-
ment a=b;
• initialization of variables is a concept that is foreign to math or
counting.

In math, the symbol “+” can be used as a summation operator with
an arbitrary number of arguments. In many programming lan-
guages, “+” is only a binary operator [Hoc 1990]. Notably, spread-
sheets do not restrict the addition to be a binary operator [Lewis
1987].

As mentioned in “Avoid Subtle Distinctions in Syntax” on

254 A Programming System for Children that is Designed for Usability

Background Research

page 246, Pascal does not permit a comma to be used as punctua-
tion in a number [Pane 1996].

In natural language, then and and are often used in the sense of
“what next”, unlike their use in Pascal or C: “I went to the shop and
then I bought a paper”; “wash your hands and set the table” [Bonar
1989, du Boulay 1989a].

In Pascal, Repeat is used before the item(s) being repeated, but in
natural language the opposite is usually true [Bonar 1988b, du Bou-
lay 1989a].

In Logo, STOP causes the flow of control to return from the current
procedure to the caller, but kids misinterpret this to mean that exe-
cution is halted completely [Kurland 1989].

One example of how programming does not support the natural
way of expressing a task is sorting. When users are asked to sort a
series of real boxes, inserting a box pushes the other boxes to make
room. When dealing with arrays, this operation must be carried out
explicitly by the programmer [Hoc 1990].

[Spohrer 1986b] found that many novice bugs occur when the user
generates code in an order that is different than the built-in operator
precedence in the language. The user expects that the program will
execute in the order of generation, rather than according to the
operator precedence rules of the language. This suggests that all
operator precedence should be explicit rather than implicit. For
example, expressions could be automatically parenthesized to show
their evaluation order.

Cross References: 4-5. “Avoid Subtle Distinctions in Syntax”
5-1. “Choose an Appropriate Metaphor”
5-2. “Consistency with Metaphor”
5-6. “Naturalness of the Programming Language”

References: [Bonar 1989, Bonar 1988b, du Boulay 1989a, Hoc 1990, Kurland
1989, Lewis 1987, Mayer 1987, Pane 1996, Pea 1986, Putnam
1989, Sleeman 1988, Spohrer 1989a, Spohrer 1986b, Taylor 1990]

A Programming System for Children that is Designed for Usability 255

Background Research

5-4. Closeness of Mapping
[Hoc 1990] describes programming as adaption of a plan from a familiar strategy to one
that is compatible with the computer. This adaption is a refinement process that can lead to
the detection of incompatibilities between the real-world plan and the computer’s capabil-
ities, or to a program solution that is not optimal. Similarly, [Green 1996] describes pro-
gramming as mapping of operations in the problem domain into corresponding operations
in the program domain. Thus it should be helpful to have a closeness of mapping between
the task domain and program entities. [Merrill 1993] proposes as a design principle for all
learning environments that the translation process from the student’s internal plans to the
solution’s external representation be minimized. The extent to which the language facili-
tates this is called the expressiveness of the language [Bell 1991].

Users have difficulty understanding low-level primitives and how to compose them to
form high-level components of a plan [Hoc 1990, Nardi 1993]. This is one of the great
cognitive barriers to programming [Lewis 1987]. From a psychological point of view, the
composition of these primitives into high-level operations is difficult for the following rea-
sons [Lewis 1987]:

• synthesis is inherently hard, because a large number of possible combinations
must be explored;
• since primitives are unrelated to the task, they are difficult to understand;
• for the same reason it is hard to see what combination of primitives will produce
the correct task-related behavior;
• synthesis must be carried out with little immediate feedback; when feedback
becomes available it is informative only about the behavior of the big assembly
rather than about the many little choices that had to be made in putting it together;
• since the fundamental maneuver is replacement of “what is wanted” by “what to
do”, information about intent is not expressed directly and must be maintained sep-
arately, mentally or physically; and,
• it requires plan merging: constructions must be formed that carry out multiple
purposes simultaneously.

In addition, in traditional programming languages [Lewis 1987]:
• synthesis results in high viscosity because primitives and rules of combination
are complex;
• commonly used primitives enforce the inner world / outer world distinction in
which data manipulable by the system cannot be manipulated by the user;
• reliance on sequence as the fundamental mode of combination of primitives
requires users to specify much irrelevant information; and,
• it takes great care and discipline to make sure the code is comprehensible.

Instead, users should be permitted to formulate the problem using the objects, relation-
ships, and processes of the problem domain [Lewis 1987]. [Fitter 1979] cites a principle of
revelation in good notational schemes: the notation perceptually mimics the solution
structure.

Educators often address these problems by choosing to begin teaching with a small subset
of the language, and to incrementally expand the subset until the entire language is finally
exposed [Brusilovsky 1994]. Sometimes, special programming environments are built

256 A Programming System for Children that is Designed for Usability

Background Research

around a starting subset of the full language. Another approach is to invent a special mini-
language for teaching which is not a proper subset of any full language. Usually these pro-
vide only the minimal set of primitives that are necessary to embody the desired program-
ming concepts, and make all operations visible as concrete actions on the screen.
[Brusilovsky 1997] surveys a collection of mini-languages that are used as an introduction
to programming (e.g. Karel the Robot [Pattis 1995]).

A related requirement is to have built-in types and abstractions that are appropriate for the
domain [Cordy 1992]. [Nardi 1993] points out that successful end-user systems are task-
specific and empower the user. They lack the power of general purpose programming lan-
guages, but also lack the steep learning curve. This suggests the creation of a task-specific
programming language for every task domain, which is incompatible with the desire to
make a general-purpose language and environment. One approach to this dilemma is to
provide high-level, task-specific, user-extensible libraries for the desired domains, and to
try to eliminate the need for novices to learn a lot of low-level primitives [Green 1996,
Green 1991, Guzdial 1992, Mendelsohn 1990].

Context of Use: Notation and environment

Justified by: Observation of individual users.

Examples: Here are two examples of the refinement that is required to adapt a
familiar strategy or plan to a programming solution:
• Making room in an array for insertion. The programmer must sat-
isfy preconditions that do not exist in the original situation.
• using “+” as a binary operator, with initialization of an accumula-
tor variable, instead of simply requesting summation. The user must
decompose elementary actions into even more elementary ones
[Hoc 1990, Lewis 1987].

The spreadsheet has a close mapping to the domain of numerical
tables in accounting, and the common operations that are performed
in that domain.

There is a great distance in mapping the built-in operations of a lan-
guage like Pascal to tasks such as manipulating strings.

[Green 1996] uses cognitive dimensions to identify the following
examples of closeness of mapping:
• poor: adding a vector in C or Basic; looping in LabView; success/
failure in Prograph.
• good: electronics instrumentation in LabView; persistent variables
in Prograph; locality of program plans in Prograph and LabView.

[Nardi 1993] claims that Hypercard’s language, HyperTalk, is too
much like a conventional programming language and not close
enough to the end-user’s needs.

A Programming System for Children that is Designed for Usability 257

Background Research

High-level languages are more expressive than assembly languages.
For example, it takes fewer statements to implement a loop in a
high-level language.

Exceptions: Even with high-level task-specific components, there is evidence
that novices have difficulty assembling them into programs [Spo-
hrer 1989a].

Cross References: 4-1. “Use Signalling to Highlight Important Information”
4-6. “Support Incremental Running and Testing with Immediate
Feedback”
5-1. “Choose an Appropriate Metaphor”
5-3. “Consistency with External Knowledge”
5-14. “Cognitive Issues”
6-2. “Viscosity”
9-1. “Principle of Conciseness”

References: [Bell 1991, Brusilovsky 1997, Brusilovsky 1994, Cordy 1992,
Fitter 1979, Green 1996, Green 1991, Guzdial 1992, Hoc 1990,
Lewis 1987, Mendelsohn 1990, Merrill 1993, Nardi 1993, Pattis
1995, Spohrer 1989a]

258 A Programming System for Children that is Designed for Usability

Background Research

5-5. Support for Planning
Some researchers describe expert programming as an opportunistic activity [Green 1990b,
Green 1996]. However, [Ball 1995] claims that experts actually are using sophisticated
strategies to schedule and prioritize their activities. [Soloway 1984] and [Rist 1995]
describe programming as the composition of plans or schemas. Plan usage is pervasive
among novice programmers, and when they lack an appropriate plan they use pre-pro-
gramming knowledge to fabricate one which may be buggy [Bonar 1989]. An additional
source of many novice bugs is difficulty with plan composition, where the programmer is
unable to anticipate all of the interdependencies when combining programming plans
[Spohrer 1986a, Spohrer 1989a, Spohrer 1989b, Spohrer 1986b]. This interleaving of
plans should be minimized [Green 1987].

The programming environment should allow programmers to work directly in plan terms
[Mendelsohn 1990, Parker 1987]. Many aspects of program planning are difficult for nov-
ices: they do not know how to choose key components, they are stumped by a blank
screen, and they need a process to guide their programming. An environment that assists in
this planning process yielded improvements in novice program generation [Guzdial 1992].
Universe [Parker 1987], TEd [Ormerod 1996], and Bridge [Bonar 1987, Bonar 1990,
Bonar 1988a] are similar systems. Bridge provides an intermediate representation for
plans that avoids dispersing them: icons that fit together like jigsaw puzzles, with smaller
icons for values and constants. [Corbett 1995] describes a tutoring environment where stu-
dents are required to explicitly state subgoals, which most environments leave implicit. An
empirical study showed that students reached mastery more quickly in this environment.
Similarly, the GIL Lisp tutoring environment encourages users to make explicit explana-
tions and predictions of ordinarily implicit behaviors and states, allows access to internal
states that would otherwise be invisible, and has an on-screen representation of the struc-
ture of partial solutions to help students track their solution process [Merrill 1993, Merrill
1992, Reiser 1992]. These features lead to superior performance in both textual and dia-
grammatic programming environments [Merrill 1994].

Developing a suite of idioms, or plans, for solving small-scale goals are one of the impor-
tant difficulties for novice programmers [du Boulay 1989a]. Selection of an appropriate
plan from the suite is difficult [Scholtz 1993]. These skills should be taught explicitly
[Perkins 1989], and required parts of a plan should be prompted by the syntax (e.g. initial-
ization) [Green 1987].

The Prolog community introduced the concept of programming techniques, which are a
small set of meta-plans that are language-dependent but domain-independent [Brna 1991].
[Bowles 1994] and [Ormerod 1996] describe systems that use techniques as a framework
to support program editing, analyzing novice errors, in tracing and debugging, and in
teaching programming skills.

Context of Use: Environment

Justified by: Empirical studies, expert opinion

A Programming System for Children that is Designed for Usability 259

Background Research

Cross References: 5-3. “Consistency with External Knowledge”
5-4. “Closeness of Mapping”

References: [Ball 1995, Bonar 1987, Bonar 1990, Bonar 1989, Bonar 1988a,
Bowles 1994, Brna 1991, Corbett 1995, du Boulay 1989a, Green
1990b, Green 1987, Green 1996, Guzdial 1992, Mendelsohn 1990,
Merrill 1993, Merrill 1994, Merrill 1992, Ormerod 1996, Parker
1987, Perkins 1989, Reiser 1992, Rist 1995, Scholtz 1993, Soloway
1984, Spohrer 1986a, Spohrer 1989a, Spohrer 1989b, Spohrer
1986b]

260 A Programming System for Children that is Designed for Usability

Background Research

5-6. Naturalness of the Programming Language
[Ledgard 1980] observed that natural language is better than a notational editing language
for text editing, but [Curtis 1988] found that a textual pseudocode and graphical flowcharts
were both better than natural language in program comprehension. When novices get
stuck in their programming task, they rely on natural-language plans that they acquired
before exposure to programming [Bonar 1989]. When the natural language plan is not
compatible with the programming language, a bug will result. Several studies have found
that when non-programmers are asked to write step-by-step informal natural language
procedures, many different people use the same phrases to indicate looping structures and
other standard programming tasks [Biermann 1983, Bonar 1986, Miller 1981]. Further-
more, students confuse phrases in natural language with the English keywords of a lan-
guage like Pascal, and thus write their code as if it has the semantics of natural language
[Bonar 1988b].

[Miller 1981] finds that nonprogrammers omit many actions from natural language prob-
lem solutions, thus relying on a human-like interpreter to fill in the missing details. For
example, they use fewer control structures in written instructions than are required in
actual program solutions. However, [Galotti 1985] was able to elicit nonprogrammers to
use more control instructions by describing the instructee as a naive alien. One possible
explanation is that novices use rules of cooperative conversation (see [Grice 1975]),
expecting the computer to possess a modicum of common sense, and thus don't state the
obvious. However, even when control structures are present, [Galotti 1985] found that
instructions about iteration, or about what to do if a test condition is not met, are often
vague or unspecified.

[Nardi 1993] points out serious problems with attempts to model programming languages
after natural languages: the computer and programmer do not have the shared context that
is present in human-human conversation, and it is not obvious where the limits of the com-
puter’s understanding are. Indeed there will be such limits as long as artificial intelligence
has not been achieved.

However, novices are capable of learning and using programming languages that are not
based on natural language, as long as they are task-specific and high-level [Nardi 1993].
Even these should support the ways that people naturally express problem solutions [Hoc
1983, Miller 1981]. When given a choice of programming methods to accomplish a task
(e.g. sorting), novices tend to use the method they would use by hand, even if it is more
complicated than another method [Hoc 1990, Nyuyen-Xuan 1987].

Context of Use: Notation

Justified by: Empirical studies and observations of individual users

Examples: Many novice bugs are caused by a confusion of the correct choice
of AND or OR in combining boolean tests. An example of this prob-
lem is when the programmer is checking for valid input from a
menu of choices. Often novices will code if (ch <> 'a') OR (ch
<> 'b') OR (ch <> 'c'), when the correct logical connector is

A Programming System for Children that is Designed for Usability 261

Background Research

AND. This problem appears to result from users’ lack of an opera-
tional understanding of DeMorgan’s Laws of logical identity, which
describe the way the negation interacts with AND and OR in propo-
sitions. Since the english language treats this situation informally
(“if the choice is not a, b, or c”), the confusion is not unexpected
[Spohrer 1986a, Spohrer 1986b].

One way to avoid the above problem in Pascal is to use a set, where
if (ch <> 'a') AND (ch <> 'b') AND (ch <> 'c') becomes
if NOT (ch IN ['a', 'b', 'c']). But there are two things to
note about this syntax. First, the most natural way to express this in
English (“if the character is not in the set...”) leads novices to mis-
place the NOT, coding the expression illegally as if (ch NOT IN
['a', 'b', 'c']). Second, even when the NOT is positioned cor-
rectly in the expression, parenthesis are required for it to be evalu-
ated correctly; such issues of operator precedence rarely surface in
natural language.

Another confusion is that programming languages often use OR for
inclusive-or, while natural languages use the word for exclusive-or.

Cross References: 5-3. “Consistency with External Knowledge”
5-4. “Closeness of Mapping”
5-5. “Support for Planning”

References: [Biermann 1983, Bonar 1986, Bonar 1989, Bonar 1988b, Curtis
1988, Galotti 1985, Grice 1975, Hoc 1983, Hoc 1990, Ledgard
1980, Miller 1981, Nardi 1993, Nyuyen-Xuan 1987, Spohrer
1986a, Spohrer 1986b]

262 A Programming System for Children that is Designed for Usability

Background Research

5-7. Visual vs. Textual
[Myers 1990] presents a taxonomy of visual programming languages. There is a wide-
spread tendency to expect visual languages to be superior to text for novice programming.
[Green 1991] calls this graphical superlativism, and cites the following claims in favor of
visual languages over textual languages: two-dimensional visual perception is more natu-
ral and efficient than reading text; it is easier to get an overview of program structure in
visual systems; it is easier to read a visual program because purely syntactic devices are
reduced; the number of variable names is reduced in visual programs; in visual systems,
relationships between components are expressed by lines rather than symbols, making it
easier to follow the routes; iconic representation of components may be easier to discrimi-
nate and recognize than textual names and symbolically-expressed relationships; extra
information is conveyed by the spatial layout of the visual program (secondary notation).
[Blackwell 1996] is a comprehensive survey of these claims from the visual programming
literature. If the claims are true, the benefits may be particularly strong for novices. In a
comparison of text-based and visual rapid-prototyping tools on a simple programming
task, novice performance was closer to that of experts with the visual tools [Hasan 1996].
In Pursuit, a visual language based on a comic-strip metaphor was shown to be more effec-
tive than an equivalent textual language for novice generation of shell script programs
[Modugno 1996].

Graphical superlativism was supported in [Cunniff 1987], where novices were able to rec-
ognize certain simple structures and to hand-execute short program segments more
quickly and more accurately in a graphical language than in an equivalent textual lan-
guage. However, there is a considerable amount of research indicating that graphical
superlativism does not hold in larger more complex programs or for “deprogramming”
tasks, where the novice must derive high-level goals and plans from the program text in
order to fully understand and extend the program.

Diagrammatic notations are good only for certain purposes [Gilmore 1984]. [Green 1991]
claims that formalisms based on control flow are linear with exceptions, so they are easily
represented in a textual language; while formalisms based on data flow may be more
appropriately represented in a visual language. However, [Curtis 1988] found that a flow-
chart representation was superior to textual pseudocode when the task involved tracing
flow of control, but not for discerning high-level relationships. If there is any advantage of
flowcharts over text it is at the detailed level, rather than at the overview level [Green
1992]. This may be because flowcharts are poor for modularity [Green 1990a]. There is
little advantage in using flowcharts for supplementary documentation, although they are
useful when they display knowledge that is difficult to extract from the program text
[Shneiderman 1986, Shneiderman 1977]. [Atwood 1978] found that a textual program
design language was better than a flowchart. Overall, graphical programs take longer to
understand than textual ones [Green 1992, Green 1991]. [Moher 1993] compared program
comprehension in graphical vs. textual representations and found that graphics were no
better than text and sometimes considerably worse.

Flowcharts are of little help in debugging. They help to trace execution flow and localize
the area where the bug is located, but are insufficient to identify the actual bug [Brooke

A Programming System for Children that is Designed for Usability 263

Background Research

1980a, Brooke 1980b].

Visual languages are not more natural than text [Nardi 1993]. Most visual languages have
high viscosity – they require a lot of effort in layout rearrangement when making changes;
and they impose an extra burden on the user to guess ahead so that they format the pro-
gram nicely and avoid future rearrangement [Green 1996]. Another problem with visual
languages is their inefficient use of screen space [Nardi 1993].

[Nardi 1993] points out that spreadsheets are based on a textual language, and yet are very
successful. However, spreadsheet programmers make use of visual imagery in planning
manipulations, implying that mental images of program layout are an important resource
[Saariluoma 1994].

Context of Use: Notation, environment

Justified by: Empirical studies, observations of individual users, expert opinion

Examples: KidSim is a programming environment that attempts to be com-
pletely visual [Smith 1994]. It allows the user to construct “simula-
tions” of agents in a two-dimensional grid. This was motivated by
results in an earlier system named Playground [Fenton 1989],
where children had great difficulty with a scripting language, even
though a structure editor was provided to assist with syntactic cor-
rectness. However, in empirical tests of KidSim, the authors found
that text was helpful in some situations. For example, adding the
text “and if” at the beginning of each conditional expression made
rules easier to understand [Cypher 1995]. While KidSim’s mostly-
visual approach appears to be productive in this limited domain, it
is not at all clear that a useful general purpose programming envi-
ronment could be completely visual.

In visual languages, the graphics must be well-designed and recog-
nizable [Green 1991].

Flow of data is very difficult to perceive in standard textual lan-
guages, but data flow languages make this information easily acces-
sible [Green 1990a].

Cross References: 5-8. “Effectiveness of Notation is Task Dependent”
6-1. “Avoid Requiring Premature Commitment”
6-2. “Viscosity”
6-3. “Support Secondary Notation”

References: [Atwood 1978, Blackwell 1996, Brooke 1980a, Brooke 1980b,
Cunniff 1987, Curtis 1988, Cypher 1995, Fenton 1989, Gilmore
1984, Green 1990a, Green 1992, Green 1996, Green 1991, Hasan

264 A Programming System for Children that is Designed for Usability

Background Research

1996, Modugno 1996, Moher 1993, Myers 1990, Nardi 1993,
Saariluoma 1994, Shneiderman 1986, Shneiderman 1977, Smith
1994]

A Programming System for Children that is Designed for Usability 265

Background Research

5-8. Effectiveness of Notation is Task Dependent
[Green 1992] describes the match-mismatch phenomenon, where different notations are
better depending on the task. Performance is best when the structure of information sought
matches the structure of the notation, and mismatch leads to poor performance. There are
several examples of this in “Visual vs. Textual” on page 262. However, this effect may be
diminished by other factors such as prior experience and the programmer’s dominant men-
tal representation of the program [Good 1996]. While these analyses are based on program
understanding, rather than program generation, there is a substantial amount of parsing
and understanding during the coding process. For example, [Green 1987] proposes a
model of programming where, due to working memory limitations, the programmer for-
gets some parts of the program that are already written, and is forced to parse them in
order to recover their details. That research found that the parsing problem is more severe
in Basic and Prolog than in Pascal. The task-dependent effectiveness of notation suggests
that a programming environment that supports multiple (e.g. visual and textual) represen-
tations of the program might be a fruitful endeavor.

Context of Use: Notation, environment

Justified by: Empirical studies

Examples: Traditional structured languages with nested conditionals support
forward analysis of sequence information, e.g. “given these inputs,
what is the result”. Declarative languages support backward analy-
sis of circumstantial information, e.g. “given this output, what must
the inputs have been” [Green 1992].

Features that facilitate the parsing task may work contrary to the
code generation task. For example, the features that make Pascal
easier to parse into plan structures may be the very features that
inhibit linear generation of code. In many other notations it seems
easier to develop code than to recover its meaning [Green 1990b].

Examples: 5-4. “Closeness of Mapping”
5-5. “Support for Planning”
5-7. “Visual vs. Textual”
8-1. “Minimize Working Memory Load”

References: [Good 1996, Green 1990b, Green 1987, Green 1992]

266 A Programming System for Children that is Designed for Usability

Background Research

5-9. Control Structures
One area difference between spreadsheets and many other programming languages is con-
trol structures. The lack of control structures in spreadsheets is an advantage [Nardi 1993].
[Lewis 1987] also points this out, and claims that spreadsheets are the model of the future
because they allow the learner to suppress the inner world of programming, the world of
variable declarations, loops, and I/O. Relationships among variables can be set up declara-
tively, and the system will maintain consistency. [Wandke 1988] cites a dramatic increase
in cognitive effort when using control structures, leading to a reluctance to define macros
for repetitive tasks even if it would dramatically reduce the number of keystrokes required
to perform a task.

[Rogalski 1990] found that:
• high-level control structures are more difficult to express than the “goto” or
“jump” style of control, but the latter is more difficult for managing complex con-
trol flow correctly;
• control structures that use positive alternatives present fewer difficulties than neg-
ative ones (e.g. repeat until X is easier to understand than while not X, espe-
cially if X is a compound expression);
• difficulty increases with depth of nesting; and
• students with a better background in math learn new control structures faster.

[Sime 1977a] and [Sime 1977b] confirm that high-level control structures help the novice
to manage flow of control, and also found that a structure editor assisted novices in gener-
ating correct nested control structures.

Many novice errors with control structures can actually be attributed to misconception of
variables. Describing a variable as a name or an address is the first step toward fixing this,
although a more complex model is required when variables occur in iterative or recursive
programs in imperative languages: the variable is no longer an address with a value, but
needs to be seen as a function of execution, or a sequence of values [Samurçay 1989].

Indeed, most introductory programming textbooks focus a great deal of attention on the
use and understanding of control structures, suggesting that details about how control
structures work is an area of great difficulty for novices. However, in a study of high-fre-
quency bugs, [Spohrer 1986a, Spohrer 1989a, Spohrer 1986b] found that only about one-
third of bugs arise from novice misunderstandings of control structures. [Arblaster 1979]
found that any type of structure is better than no structure at all, and that hierarchical struc-
turing is not better than other types of structuring.

Context of Use: Notation

Justified by: Empirical studies, observations of individual users

Examples: With IF statements, students make the following errors [Putnam
1989, Sleeman 1988]:
• expect the program to halt with an error if the condition on the IF
statement is false and there is no ELSE clause;
• expect both the THEN and ELSE clauses to be executed;

A Programming System for Children that is Designed for Usability 267

Background Research

• expect the THEN clause to execute whether or not the condition is
true;
• treat a statement after an ELSE-less IF statement as though it is
the ELSE clause.

Exceptions: Prolog is an attempt at suppressing the inner world of program-
ming, and is notoriously difficult for novices.

Cross References: 5-3. “Consistency with External Knowledge”
5-4. “Closeness of Mapping”
5-6. “Naturalness of the Programming Language”
5-10. “Loop and Recursion Control Structures”

References: [Arblaster 1979, Lewis 1987, Nardi 1993, Putnam 1989, Rogalski
1990, Samurçay 1989, Sime 1977a, Sime 1977b, Sleeman 1988,
Spohrer 1986a, Spohrer 1989a, Spohrer 1986b, Wandke 1988]

268 A Programming System for Children that is Designed for Usability

Background Research

5-10. Loop and Recursion Control Structures
A common area of difficulty for novices is looping. Part of this can be attributed to an
inability to generalize, which is evidenced by a tendency for novices to make a list of
repeated instructions instead of coding a loop [Hoc 1989, Onorato 1986], or to an inability
to develop an adequate mental model of the looping structure [Kessler 1989, Pirolli 1985].
Sometimes the bugs in novices’ mental models are subtle and difficult to detect [Kahney
1989]. However, a large part of the difficulty of loops may be overcome by designing the
looping control structure(s) carefully.

Pascal provides a while loop, where the looping condition is checked at the top of the
loop (top-exit); and a repeat loop, where the looping condition is checked at the bottom
(bottom-exit). Other possibilities are: a loop that can exit from a check in the middle of the
loop (middle-exit); or a loop that exits from anywhere as soon as the condition fails (dae-
mon-exit). In describing a plan, novices use a bottom-exit strategy when it seems easier,
but then revert to a middle-exit strategy for all other situations [Wu 1991]. [Rogalski 1990]
reinforces this with the finding that the top-exit strategy is more difficult than the bottom-
exit strategy, hypothesizing that novices have difficulty representing and expressing a con-
dition about an object that they have not yet operated on. Pascal does not provide a mid-
dle-exit loop control structure, so novices are forced to adapt their middle-exit plan to a
while or repeat loop when they write the code; causing performance to suffer. [Soloway
1989] found that providing a middle-exit control structure would increase accuracy and
would not interfere with program readability.

Construction and expression of the loop invariant is an important component of an itera-
tive plan. But, in spontaneous verbal plans novices tend to base their models of loops on
representing a succession of actions, rather than on representing the invariant relationships
among variables. Even when asked explicitly, novices have difficulty specifying a loop
invariant. Also, novices tend to use different names at each step of the iteration to label the
same functional variable, and they do not spontaneously elaborate an exit condition
[Rogalski 1990].

Beginners tend to use an iterative model for recursion. This model is compatible with tail-
recursion, but fails in the more general case [Kurland 1989, Rogalski 1990]. For this rea-
son, [Rogalski 1990] recommends that recursion be taught before iteration.

However, in a more detailed scrutiny of novice models of recursion, [Kahney 1989] found
that while a large number of novices (> 50%) appear to have a iterative model, in fact most
of them actually have no consistent model at all. [Kessler 1989] analyzed transfer between
iteration and recursion, and found positive transfer from iteration to recursion, but no
transfer from recursion to iteration. They conclude by recommending that iteration be
taught before recursion.

Context of Use: Notation

Justified by: Empirical studies, observations of individual users

A Programming System for Children that is Designed for Usability 269

Background Research

Examples: Many students expect a while loop to terminate as soon as its condi-
tion fails (daemon-exit) rather than waiting until the condition is
tested at the “top of the loop” [Bonar 1989, Sleeman 1988].

Students often make the following errors related to loops [Putnam
1989, Sleeman 1988]:
• interpret a statement that is adjacent to (after) a loop as though it is
contained within it;
• execute only the last statement inside a loop multiple times;
• attribute looping behavior to a begin-end block;
• believe that a variable holds more than one value and thus treat a
conditional statement as a loop;
• believe that the for-loop control variable does not have a value
inside the loop, or that it is acceptable to change its value inside the
loop; and,
• interpreted the range of values on the for-loop control variable as a
constraint on the values of a different variable inside the loop.

Cross References: 5-3. “Consistency with External Knowledge”
5-4. “Closeness of Mapping”
5-5. “Support for Planning”
5-6. “Naturalness of the Programming Language”
5-8. “Effectiveness of Notation is Task Dependent”
5-9. “Control Structures”

References: [Bonar 1989, Hoc 1989, Kahney 1989, Kessler 1989, Kurland
1989, Onorato 1986, Pirolli 1985, Putnam 1989, Rogalski 1990,
Sleeman 1988, Soloway 1989, Wu 1991]

270 A Programming System for Children that is Designed for Usability

Background Research

5-11. Support Direct Manipulation and Definition by Example
Some languages, such as cT [Sherwood 1988], and Turing [Cordy 1992] permit the user to
interactively define the objects that will be manipulated by the program, and then to
embed them directly in the program. In textual languages, this saves a lot of effort because
writing a program to define these objects would be tedious [Lewis 1987]. Hypercard and
Visual Basic invert the process, by having the programmer sketch the graphics and then
attach programs to the graphics [Green 1990a]. However, when these methods are used,
there is often a serious problem with the distinction between use and mention of the object
(see examples below) [Smith 1992]. This distinction should be avoided [Lewis 1987,
Smith 1992]. One way to achieve this is by modeling the system after the physical world,
with the following implications: “a) [the system] must have object-oriented semantics, so
that objects can directly present their own state and behavior, b) it must be dynamic,
allowing incremental changes from the interface, c) it must be visual, so that all capabili-
ties of the language are present in the interface, and d) it must avoid enforcing any kind of
[distinction between use and mention of the object] [Smith 1992].”

Context of Use: Notation, environment and metaphor

Justified by: Expert opinion

Examples: The distinction between use and mention can be seen by consider-
ing a button in a direct-manipulation interface. Pressing the button
is a use – it causes the button to perform its action. However, when
moving or resizing the button, clicking on it should not perform the
action – this is mention. Often handles are provided for mention
tasks, but this provides only one level – you can use the handles but
you can not mention them [Smith 1992].

In BASIC, the distinction between use and mention comes up in
PRINT “Q:”; Q, where first the name of the variable is printed,
then its value. Students misinterpret “Q:” as [Putnam 1989]:
• a comment that is not executed;
• the same as the unquoted use of the variable; or,
• referring to the very first value that was ever stored in the variable.

Cross References: 5-12. “Choosing a Paradigm”

References: [Cordy 1992, Green 1990a, Lewis 1987, Putnam 1989, Sherwood
1988, Smith 1992]

A Programming System for Children that is Designed for Usability 271

Background Research

5-12. Choosing a Paradigm
Most of the research in this report studies the classical imperative paradigm of computing
where the user is in control of a single thread of execution. There are many other program-
ming paradigms, including object-oriented, event-based, functional, programming by
demonstration, graphical rewrite rules, autonomous agents, data flow, production system
or rule-based programming, logic programming, parallel programming, etc. Some of these
paradigms have achieved widespread use in research and professional software develop-
ment communities. In other cases, only experimental systems have been developed to test
a paradigm or a mixture of several paradigms. From a usability point of view, there is
much room for investigation of this area, to determine the strengths and weaknesses of the
various paradigms, and how the best features of multiple paradigms might be mixed into
an effective novice programming system. Also, when introducing a new paradigm to peo-
ple with some programming experience, there is a risk of negative transfer from the prior
paradigm [Mendelsohn 1990, Siddiqi 1996, Wiedenbeck 1996].

Object oriented programming is widely advocated as a paradigm for quickly building pro-
grams from reusable components. However, this idea, when carried too far, has been found
to have a detrimental impact on performance. Object oriented programming may have
benefits for up to three levels of class hierarchy, but deeper hierarchies have been found to
be difficult to work with [Daly 1996]. A cognitive phenomena called conceptual entropy
may be the root cause of this problem [Dvorak 1994]. Object-oriented design is not neces-
sarily a “natural” design method. Programmers have difficulty deciding which logical enti-
ties should be represented as objects and which as attributes of the objects [Détienne
1990]. Perhaps careful construction of the programming environment could assist users
with these problems and limit the use of object-oriented programming to situations where
it will be helpful.

Multiple inheritance may have additional advantages over single-inheritance object-ori-
ented programming, but surveys of experienced programmers reveal mixed opinions.
Some argue that it produces a more complex design, is more difficult to test, is more diffi-
cult to reuse, and is easy to abuse; while others argue that it produces a more appropriate
design, and facilitates reuse and maintenance. There is little doubt that it adds complexity.
An additional concern is that multiple inheritance is often implemented where it is inap-
propriate, resulting in object-oriented software that is more complex than is necessary.
This leads to a recommendation to use multiple inheritance only where there is a strong
case for using it [Daly 1995a, Daly 1995b].

Viewing procedures as “object-like entities” offers semantic power and syntactic elegance,
but novice programmers view them with few “object-like” properties [Eisenberg 1987].
The authors suggest ways to improve instruction and the environment to overcome this.
Note that this object-oriented view of procedures in a functional language is different than
pure objects in object-oriented programming languages. [Rist 1996] describes the proce-
dures in a functional language as encapsulations of goals with their plans; and points out
that this encapsulation is orthogonal to the encapsulation of data with operations in an
object-oriented language. Further, he states that goals and plans are not well captured in an
object-oriented language.

272 A Programming System for Children that is Designed for Usability

Background Research

Context of Use: Environment

Justified by: Empirical studies, informal observation of users, expert opinion.

Examples: KidSim [Cypher 1995, Smith 1995] uses graphical rewrite rules
and programming by demonstration to provide an end-user pro-
gramming system for symbolic simulations of agents in a two-
dimensional grid. In KidSim, user testing revealed that arbitrarily
deep hierarchies caused difficulties for children, so a one-level sim-
ple inheritance scheme was adopted [Smith 1994].

AgentSheets is a paradigm that consists of a large number of auton-
omous communicating agents organized in a grid [Repenning
1993]. This spatial metaphor supports the problem solving process,
which includes creating and changing external representations of
the problem as well as exploring problem spaces [Repenning 1994].

ToonTalk uses video-game animation in a city populated by robots
as the means of creating and viewing programs [Kahn 1996]. It uses
programming by example, but instead of automatic induction or
learning, requires the user to introduce generality by removing
details from the example.

LiveWorld is a programming environment based on rule-like agents
that are responsive to their environment [Travers 1994]. It uses a
novel object system that makes computational objects, such as
behavioral rules, concrete and accessible like graphical objects.

ShopTalk enhances direct manipulation with natural language text,
in order to overcome some of the limitations of direct manipulation
in specifying objects and actions [Cohen 1989].

Cross References: 5-1. “Choose an Appropriate Metaphor”
5-3. “Consistency with External Knowledge”
5-5. “Support for Planning”
5-7. “Visual vs. Textual”
5-11. “Support Direct Manipulation and Definition by Example”
8-1. “Minimize Working Memory Load”

References: [Cohen 1989, Cypher 1995, Daly 1996, Daly 1995a, Daly 1995b,
Détienne 1990, Dvorak 1994, Eisenberg 1987, Kahn 1996,
Mendelsohn 1990, Repenning 1993, Repenning 1994, Rist 1996,
Siddiqi 1996, Smith 1995, Smith 1994, Travers 1994, Wiedenbeck
1996]

A Programming System for Children that is Designed for Usability 273

Background Research

5-13. Modularity and Abstraction
Abstraction of functionality into modules is a powerful programming concept. It can pro-
mote information hiding, reduce the amount of code that must be understood in detail, and
provide a suite of primitives that can be composed to implement new functionality. When
programmers understand code at an abstract level they are more likely to reuse that code in
other appropriate places, and that reuse is more likely to be by invoking the code (making
a procedure call), which is a more efficient form of reuse than making a copy of the code
in the new context [Hoadley 1996]. But novices are not ready to use the abstraction tools
which are emphasized by modern languages [Mendelsohn 1990].

Modular programming is often taught through a discipline known as top-down design,
where the program is first described at an abstract, high level, then refined into a modular
hierarchy [Wirth 1983]. However, hierarchically designed programs are not always easy to
develop and comprehend [Curtis 1989, Perkins 1989]. Top-down strategies are difficult for
novices because their spontaneous strategies or plans are based on concrete mental execu-
tion; action-oriented rather than object-oriented [Rogalski 1990]. And, taking modularity
and abstraction to the extreme can interfere with locality and visibility (see “Locality and
Hidden Dependencies” on page 243) [Green 1996]. One problem with comprehension of
modular programs is that novices do not yet have the expert strategy of reading a program
in a top-down, order-of-execution manner – instead they read the program like a book
[Gellenbeck 1991b, Jeffries 1982, Wiedenbeck 1986b]. Novices focus on the very literal
and concrete, rather than the abstract, hierarchical, general view used by experts [Onorato
1986]. An environment that helps the novice to read and understand the program in a mod-
ular fashion and to identify meaningful sections may alleviate this problem. Novices using
such an environment make very effective use of modularity [Miller 1994].

A modular program can be modified faster than an equivalent non-modular program when
at least one of the following conditions hold [Korson 1986]:

• modularity has been used to promote information hiding, which localizes
changes;
• existing modules provide a suite of useful generic functions that can be com-
posed to implement new functionality; or,
• the modification requires an extensive understanding and modification of the
existing code.

However, modularity did not help in other cases, such as adding a new feature to a pro-
gram.

Another kind of abstract thinking that is difficult for novices is writing a general solution
to a problem rather than a solution that is specific to the situation (e.g. a program that sorts
a list). This requires students to make a shift from value processing to variable processing;
and to elaborate some of the control decisions that are not consciously made in solving a
specific problem [Hoc 1990]. Also, a lack of abstraction is evident in the tendency of nov-
ices to code loops as sequential actions, unrolled [Hoc 1989]. Examples and analogies
play an important role in learning and understanding, and explanations help learners to
generalize the examples [Lewis 1987].

274 A Programming System for Children that is Designed for Usability

Background Research

Context of Use: Environment, notation, and instruction

Justified by: Empirical studies, observations of users, expert opinion.

Examples: The programming environment can support modularity and reduce
its negative attributes by providing multiple views, such as call
graph, outline, and class hierarchy views [Miller 1994, Roberts
1988].

Spreadsheets do not support modularity and abstraction very well.
Abstraction is presented at a fixed level and hierarchical representa-
tions are not supported [Lewis 1987].

KidSim uses programming by demonstration to address the con-
crete vs. general abstraction problem. It allows users to create an
abstract rule by demonstrating what that rule should do in a specific
(concrete) situation. The system then automatically generalizes the
specific rule into a more abstract one [Cypher 1995].

Cross References: 4-3. “Locality and Hidden Dependencies”
5-3. “Consistency with External Knowledge”
5-5. “Support for Planning”
5-6. “Naturalness of the Programming Language”

References: [Curtis 1989, Cypher 1995, Gellenbeck 1991b, Green 1996,
Hoadley 1996, Hoc 1989, Hoc 1990, Jeffries 1982, Korson 1986,
Lewis 1987, Mendelsohn 1990, Miller 1994, Onorato 1986, Perkins
1989, Roberts 1988, Rogalski 1990, Wiedenbeck 1986b, Wirth
1983]

A Programming System for Children that is Designed for Usability 275

Background Research

5-14. Cognitive Issues
There are several findings about cognitive aspects of programming which should be kept
in mind.

Context of Use: Environment, notation and instruction

Justified by: Empirical studies, observations of individual users, expert opinion.

Examples: Meta-cognitive strategies are used to select an operation when sev-
eral different ones could be applied. They play an important role in
effective programming. Users may benefit if the system either sug-
gests a particular strategy or plan, or minimizes the number of situ-
ations where an operation must be selected from among multiple
choices [Bell 1991]. However, the latter suggestion may conflict,
for example, with a desire to support multiple looping strategies. As
mentioned above (see “Avoid Subtle Distinctions in Syntax” on
page 246), more planning is required when there are many different
legal solutions to a problem [Gray 1987]. When more planning is
required, it is more likely to cause backtracking, where the pro-
grammer is taken away from the progressive activity of coding. The
programming environment could use an expert system to guide the
novice in this decision making [Návrat 1993, Návrat 1996].

Experts are more likely than novices to develop complex high-level
representations of the program. This happens a top-down fashion
when looking at large units and fitting large pieces together, and in
a bottom-up fashion when identifying chunks of code and deducing
how they fit into the goal hierarchy [Boehm-Davis 1996]. Anything
that the environment can do to assist novices in forming high-level
representations may be helpful.

As mentioned above (see “Closeness of Mapping” on page 255), an
abundance of low-level primitives is one of the great cognitive bar-
riers to programming [Lewis 1987].

Another great difficulty of programming is that it is much more pre-
cision-intensive than other subjects [Perkins 1988].

Students do not spontaneously develop general problem-solving
skills from programming experiences (transfer effect) [Olson
1987]. There is only weak evidence that programming is a medium
that creates new ways of dealing with existing knowledge, and no
evidence that through programming practice, children develop cog-
nitive skills that are identifiable and transferable to other situations
such as: analogical and temporal reasoning, mathematical opera-
tions, planning of action, error correction, and development of logi-
cal and spatial operations [Mendelsohn 1990]. Many studies of

276 A Programming System for Children that is Designed for Usability

Background Research

children using LOGO confirm this absence of transfer [Dalby 1985,
Nickerson 1985, Pea 1984, Perkins 1985]. However, when a skill is
explicitly taught in the framework of programming with an empha-
sis on transfer, transfer to other domains (e.g. debugging skills,
expository writing, spatial cognition skills, planning) can occur
[Carver 1988, Carver 1987, Goldenson 1996, Lee 1993, Lehrer
1988, Mayer 1987]. In addition to acquiring the programming skill,
the student must also recognize the relevance of the acquired
knowledge to the new domain [Fay 1988]. Successful demonstra-
tions of transfer result from effective teacher mediation rather than
simply exposure to programming [Clements 1993, Mayer 1988].

Users who are averse to risk are more successful in structure editor
based programming environments, where syntax errors are not pos-
sible [Neal 1987].

Acquiring the syntax of a language is difficult for children. The
cognitive demands of getting the syntax right thus interfere with the
task of getting the semantics right. This phenomenon has been
observed in other domains such as writing. Systems that attempt to
relieve the syntactic burden on the student, such as a flexible lan-
guage syntax or a structure editor, should permit the student to
devote more resources to the semantics of the programming task
[Fay 1988].

Although computer programming is often characterized as a set of
non-interacting subtasks (e.g. specification, design, planning, cod-
ing, testing, debugging, documenting, etc.), in practice there are
substantial interactions among them. “This is a fundamental feature
of programming [that arises] from the cognitive characteristics of
the subtasks [and] the high uncertainty in programming environ-
ments... [Pennington 1990].”

Knowledge and problem-solving strategies work together in pro-
gramming. Fragile knowledge (partial, hard to access, or misused)
can be compensated by effective strategies. Exploratory use of the
language and other elementary problem solving strategies should be
explicitly taught [Perkins 1986]. In a course that helped students to
form a clear mental model of the computer, provided them with
heuristics to helm the conceptualize and organize the elements of
the programming language, and equipped them with problem solv-
ing tools and strategies, students performed better that a control
group that did not use these techniques [Perkins 1988].

A Programming System for Children that is Designed for Usability 277

Background Research

Cross References: 4-5. “Avoid Subtle Distinctions in Syntax”
4-6. “Support Incremental Running and Testing with Immediate
Feedback”
5-4. “Closeness of Mapping”
5-5. “Support for Planning”
5-9. “Control Structures”
5-10. “Loop and Recursion Control Structures”
5-13. “Modularity and Abstraction”
8-1. “Minimize Working Memory Load”

References: [Bell 1991, Boehm-Davis 1996, Carver 1988, Carver 1987,
Clements 1993, Dalby 1985, Fay 1988, Goldenson 1996, Gray
1987, Lee 1993, Lehrer 1988, Lewis 1987, Mayer 1988, Mayer
1987, Mendelsohn 1990, Návrat 1993, Návrat 1996, Neal 1987,
Nickerson 1985, Olson 1987, Pea 1984, Pennington 1990, Perkins
1985, Perkins 1986, Perkins 1988]

278 A Programming System for Children that is Designed for Usability

Background Research

5-15. Instructional Design
Here are some educational observations that can be used to guide the design of the envi-
ronment.

Context of Use: Instruction

Justified by: Empirical studies, observations of individual users, expert opinion

References: [Davis 1993] presents a model of learning to program where
students develop a system of rules (some incorrect) about
programming, and apply them either consistently or intermittently.
An effective intervention may be to encourage students to reflect on
their rules and relate them to feedback received from the computer.
The environment could be built to support this reflective phase of
knowledge acquisition.

One of the areas of difficulty for novices is orientation to
programming: finding out what programming is for, what problems
can be tackled, and what the advantages are. Another is coming to
terms with the duality of the computer as the manager of program
creation vs. the machine executing the program. The latter problem
is exacerbated by early examples that print text to the screen, where
the output of the program looks almost exactly like the program
itself [du Boulay 1989a]. Perhaps better examples could be chosen.

[du Boulay 1989a] also points out that another crucial concept that
is confusing for novices is the computer’s rigidity, which can be
confused by the way the computer is described (see “Consistency
with Metaphor” on page 252 for more details).

Teachers should [Hoc 1990]:
• design situations that require learners to solve programs in a
general way, rather than specific to a particular situation;
• be aware of the kinds of real-world solutions that students may
attempt to transfer to the programming task, so that they may be
reinforced or suppressed as appropriate; and,
• provide direct, immediate feedback about the way that the learner
adapts the real-world plan to the programming situation.

[Papert 1980] uses computing as a medium, a support for
elaborating environments in which the child constructs his/her own
knowledge. Discovery and exploration are emphasized over a
structured curriculum. [Heller 1986] investigated the difference
between a structured Logo curriculum and a experiential Logo
learning environment, and found that the structured environment is
better for obtaining thorough knowledge in a limited time, while the
experiential environment is better for a broadly framed “growth

A Programming System for Children that is Designed for Usability 279

Background Research

experience”. [Littlefield 1988] confirmed that a structured approach
was better than an unstructured approach for language mastery, and
also found that a mediated-teaching approach produced mastery
levels equivalent to the structured approached. However, the
mediated approach resulted in superior performance on near-
transfer tasks than the structure approach, which in turn was
superior to the unstructured approach.

Cross References: 4-6. “Support Incremental Running and Testing with Immediate
Feedback”
5-2. “Consistency with Metaphor”
5-3. “Consistency with External Knowledge”
5-5. “Support for Planning”
5-14. “Cognitive Issues”

References: [Davis 1993, du Boulay 1989a, Heller 1986, Hoc 1990, Littlefield
1988, Papert 1980]

280 A Programming System for Children that is Designed for Usability

Background Research

6. User Control and Freedom
“Users often choose system functions by mistake and will need a clearly marked “emer-
gency exit” to leave the unwanted state without having to go through an extended dialog.
Support undo and redo [Nielsen 1994].”

The research in this section extends the above interpretation of “user control and freedom”
to include issues of flexibility in the programming system. Giving control and freedom to
users will make it easier for them to accomplish the programming task in their own ways.

A Programming System for Children that is Designed for Usability 281

Background Research

6-1. Avoid Requiring Premature Commitment
A modern view of programming, where programs are developed in an exploratory, oppor-
tunistic, incremental fashion, requires that the programming system allow programmers to
postpone decisions until they are ready for them. The system should avoid situations
where correct generation of a piece of code requires subsequent pieces to be known. For
example, tidy layout in some graphical programming languages requires the user to antic-
ipate the space requirements of parts of the program that are not yet written [Green 1990b,
Green 1987, Green 1996].

Context of Use: Environment, notation

Justified by: Informal observation of users, expert opinion

Examples: Early in the code generation task, structure editors are good at
reducing the problem of premature commitment, because they
allow the programmer to leave holes where details can be filled in
later [Green 1996]. However, later in the programming task, when
modification is more prevalent than generation of new code, struc-
ture editors can make it difficult to back out of an earlier choice,
thus exhibiting premature commitment [Green 1990b]. Structure
editors that permit editing the program textually as well as structur-
ally can avoid the latter problem (e.g. electric-C mode in Emacs, or
the MacGnome structure editors [Miller 1994]).

[Green 1996] uses cognitive dimensions to identify the following
examples of premature commitment:
• Text based languages require premature commitment at the struc-
tural level – they encourage development of the program in a linear
order by adding text at the growing tip, rather than leaving holes to
be filled in later.
• Visual languages are less demanding about development order, but
as mentioned above they require guess-ahead at the layout level –
without careful lookahead, layout will become messy and is diffi-
cult to correct.

Cross References: 4-6. “Support Incremental Running and Testing with Immediate
Feedback”
5-5. “Support for Planning”
5-7. “Visual vs. Textual”

References: [Green 1990b, Green 1987, Green 1996, Miller 1994]

282 A Programming System for Children that is Designed for Usability

Background Research

6-2. Viscosity
Viscosity is a measure of how much effort is required to make a small change to the pro-
gram [Green 1996]. The final text of a program rarely corresponds to the order it was gen-
erated; therefore revision is intrinsic in programming [Davies 1996]. [Fitter 1979] cites a
principle of revisability in good notational schemes: a system should make it easy to revise
existing code in a program. Independent of other factors, it is desirable to minimize vis-
cosity. As mentioned above (see “Avoid Requiring Premature Commitment” on page 281),
a modern view of programming, where programs are developed in an exploratory, oppor-
tunistic, incremental fashion, requires that the programming system allow easy additions
or changes to existing code [Green 1990b, Green 1996].

As mentioned above (see “Locality and Hidden Dependencies” on page 243), [Lewis
1987] proposes replacing programming by synthesis with programming by modification,
where a library of examples is provided from which the programmer chooses an appropri-
ate one for a starting point, identifies needed modifications, then modifies it to suit the cur-
rent need. This emphasis on modification of existing code elevates viscosity as an
important factor. However, [Nardi 1993] claims that programming by modification is not
any more natural than other approaches to programming.

Context of Use: Notation

Justified by: Empirical studies, observation of individual users

Examples: Visual programming languages have a high viscosity. [Green 1996]
measured an order of magnitude increase in time to make a small
change in the LabView visual programming language than in a tex-
tual language. In order for the programmer to preserve readability,
LabView required many “enabling” steps before the goal could be
addressed.

Adding a line of code to a Basic program may require many lines to
be renumbered, resulting in high viscosity.

Sometimes a small change to a program has a domino effect,
requiring many additional non-local changes. In object-oriented
programming there is less of this cascading of changes, resulting in
reduced viscosity [Green 1990b].

Spreadsheets have low viscosity: changes to a part are not con-
strained by other parts [Lewis 1987]. However, they are difficult to
redesign when attempting to adapt another user’s spreadsheet to
one’s own task.

Cross References: 4-3. “Locality and Hidden Dependencies”
4-6. “Support Incremental Running and Testing with Immediate
Feedback”
5-7. “Visual vs. Textual”

A Programming System for Children that is Designed for Usability 283

Background Research

5-12. “Choosing a Paradigm”
6-1. “Avoid Requiring Premature Commitment”
6-3. “Support Secondary Notation”

References: [Davies 1996, Fitter 1979, Green 1990b, Green 1987, Green 1996,
Lewis 1987, Nardi 1993]

284 A Programming System for Children that is Designed for Usability

Background Research

6-3. Support Secondary Notation
Secondary notation is information that is embedded in the program text that is not part of
the syntactic structure that is meaningful to the system [Petre 1992]. There is a huge
amount of important information that is not actually part of the program [Berlin 1993,
Green 1995]. Experts use comments, white space, and typography to carry semantic
domain knowledge about the program, and at least some of these benefit novices too
[Gilmore 1986, Payne 1984, Riecken 1991]. The most common kind of secondary nota-
tion in textual languages is spatial layout through indentation and alignment [Gellenbeck
1991a]. However, the effect of spatial layout is less important than a good choice of nota-
tion [Curtis 1988]. Spreadsheet users make use of visual imagery in planning manipula-
tions, implying that mental images of layout is important [Saariluoma 1994].

Indentation is the principle means of spatial representation in Pascal and other textual lan-
guages [Cunniff 1987]. When used consistently, indentation has been shown to improve
comprehension [Cunniff 1989, Kesler 1984, Miara 1983, Vessey 1984]. Note that when
indentation is used correctly and consistently, it is redundant with curly braces in C
[Baecker 1986]. However, indentation can interfere with locality by breaking up semantic
units in favor of syntactic units [Shneiderman 1986]. Color can supplement indentation in
assisting the user to understand control flow [Van Laar 1989].

Textual languages allow a substantial amount of secondary notation, while visual lan-
guages obscure attempts to use grouping as a secondary notation [Green 1996]. As men-
tioned above (see “Use Signalling to Highlight Important Information” on page 240),
secondary notation should be used to improve access to information that is needed but
obscured [Green 1990b]. The value of secondary notation implies that the environment
must facilitate it, by allowing the user flexibility on these details, and perhaps by explicitly
supporting the recommendations in [Gellenbeck 1991a]: modules should be preceded by
1-3 lines of preview statements; and module names should be short, mnemonic, derived
from the preview statement, and begin with a verb.

Context of Use: Notation and environment

Justified by: Empirical studies, expert opinion

Examples: Comments, white space, and typography are examples of secondary
notation that should be supported in the programming system.

Meaningful variable names aid comprehension [Gellenbeck
1991b].

In a study using graphical programs, novices were not able to
extract the information in secondary notation that would have
assisted their comprehension [Green 1991]. Training is required in
order for them to exploit secondary notation.

Python uses indentation for lexical scoping, eliminating the redun-
dant use of braces or begin-blocks [Watters 1995].

A Programming System for Children that is Designed for Usability 285

Background Research

Cross References: 4-1. “Use Signalling to Highlight Important Information”
4-3. “Locality and Hidden Dependencies”
5-5. “Support for Planning”
5-7. “Visual vs. Textual”
5-9. “Control Structures”
5-10. “Loop and Recursion Control Structures”
5-15. “Instructional Design”
6-1. “Avoid Requiring Premature Commitment”

May conflict with objectives of 4-4. “Beware of Misleading
Appearances”

References: [Baecker 1986, Berlin 1993, Cunniff 1987, Cunniff 1989, Curtis
1988, Gellenbeck 1991a, Gellenbeck 1991b, Gilmore 1986, Green
1990b, Green 1995, Green 1996, Green 1991, Kesler 1984, Miara
1983, Payne 1984, Petre 1992, Riecken 1991, Saariluoma 1994,
Shneiderman 1986, Van Laar 1989, Vessey 1984, Watters 1995]

286 A Programming System for Children that is Designed for Usability

Background Research

7. Consistency and Standards
“Users should not have to wonder whether different words, situations, or actions mean the
same thing. Follow platform conventions [Nielsen 1994].”

The research in this section investigates internal consistency of the programming lan-
guage. Consistency with the outside world is discussed in the section “Match Between
System and the Real World” beginning on page 249. As mentioned there, [Payne 1986]
describes a formal method for assessing both kinds of consistency.

A Programming System for Children that is Designed for Usability 287

Background Research

7-1. Consistency in Notation
The language should be self-consistent, and its rules should be uniform [du Boulay
1989b]. It should abide by any suggestions that can be derived from other places in the
language, so that learners can infer one part of the language from another part [Green
1996]. It should minimize exceptions so that generalization of rules results in correct nota-
tion [du Boulay 1989a]. Conditionals with extra cues help both novices and experts [Sime
1977c]. As mentioned above (see “Avoid Subtle Distinctions in Syntax” on page 246),
novices get confused when there are two different syntaxes to accomplish the same effect
[Eisenberg 1987].

The meanings of keywords should be context independent. Novices are less likely than
experts to organize language keywords in a meaningful way. Instead, they tend to focus on
surface features [McKeithen 1981]. This argues against gratuitous re-use of the same key-
word for different concepts.

Context of Use: Notation

Justified by: Empirical studies, analysis of frequent novice errors, expert opinion

Examples: Syntactic consistency can be enforced by having all control struc-
ture take the form X ... end X [Cordy 1992].

The following are some examples of violations of consistency in
notation:

In the Pascal language, all procedures end with semi-colon except
the very last one which ends with a period, all statements end with a
semicolon unless preceding an else or until statement, and lists
of parameters are separated by semicolons in the declaration of a
procedure and by commas in the call to the procedure.

In C, there are three different kinds of braces used in various situa-
tions: {}, (), and []. They are not interchangeable, and sometimes
they are mixed in an inconsistent way (see “Avoid Subtle Distinc-
tions in Syntax” on page 246).

Pascal is not syntactically consistent in its control structures. Most
of them terminate with end, but the repeat statement does not.

Many novice bugs arise out of inconsistency in the way the lan-
guage treats different data types [Spohrer 1986b]. For example,
white space is treated differently when reading into a numeric vari-
able than it is when reading into a character variable [Spohrer
1986a].

The keyword static in C++ has many different meanings depend-
ing on context.

288 A Programming System for Children that is Designed for Usability

Background Research

Exceptions: Even when a language embraces consistency, students may not
appreciate it. For example, in LISP the rules for evaluation are con-
sistent, yet students adopt a series of special-case rules for certain
control structures such as cond.

Cross References: 4-4. “Beware of Misleading Appearances”
4-5. “Avoid Subtle Distinctions in Syntax”
5-2. “Consistency with Metaphor”
5-3. “Consistency with External Knowledge”

References: [Cordy 1992, du Boulay 1989a, du Boulay 1989b, Eisenberg 1987,
Green 1996, McKeithen 1981, Sime 1977c, Spohrer 1986a, Spohrer
1986b]

A Programming System for Children that is Designed for Usability 289

Background Research

8. Recognition Rather Than Recall
“Make objects, actions, and options visible. The user should not have to remember infor-
mation from one part of the dialogue to another. Instructions for use of the system should
be visible or easily retrievable whenever appropriate [Nielsen 1994].”

This section addresses the memory demands of programming.

290 A Programming System for Children that is Designed for Usability

Background Research

8-1. Minimize Working Memory Load
Working memory limitations account for a large part of the inferior performance of novice
programmers [Anderson 1985]. While experts are good at utilizing external memory to
relieve their memory load, novices rely extensively on working memory. This indicates
that for novices it is important that the environment minimize memory load, since they do
not have the fallback of externalization [Davies 1993, Davies 1996]. TEd addresses this
problem by maintaining a visual record of all edits [Ormerod 1996]. It is claimed that this
supports display-based problem solving because it acts as an external repository of impor-
tant programming knowledge, and it cues the programmer to focus on unsatisfied goals.

Context of Use: General

Justified by: Empirical studies

Examples: Neither visual programming languages nor textual languages are
good at supporting “display-based” problem solving, where the sys-
tem’s display is used as a memory aid, reducing demands on work-
ing memory [Green 1996].

Cross References: 5-7. “Visual vs. Textual”
6-1. “Avoid Requiring Premature Commitment”

References: [Anderson 1985, Davies 1993, Davies 1996, Green 1996, Ormerod
1996]

A Programming System for Children that is Designed for Usability 291

Background Research

9. Aesthetic and Minimalist Design
“Dialogues should not contain information which is irrelevant or rarely needed. Every
extra unit of information in a dialogue competes with the relevant units of information and
diminishes their relative visibility [Nielsen 1994].”

The research in this section investigates conciseness.

292 A Programming System for Children that is Designed for Usability

Background Research

9-1. Principle of Conciseness
[Cordy 1992] describes a principle of conciseness, which argues against redundant sym-
bols such as program preambles, punctuation, and explicit declaration of variables and
their types. Elimination of punctuation addresses a problem with the misplaced use of syn-
tax which is described above (see “Avoid Subtle Distinctions in Syntax” on page 246). But
if, for example, punctuation is replaced with line breaks as a statement separator, the prob-
lem of wrapping long lines must be handled sensibly.

Another aspect of conciseness is to allow optional information, with intelligent defaults
[Cordy 1992]. Programming system should be flexible in allowing the user to elide undes-
ired details and just fill in the obvious details, to stop requiring exact truth and instead
allow an executable “cognitive approximation” to the solution [Lewis 1987].

However, conciseness can be subverted by a desire for elegance or parsimony of primi-
tives. This can lead to absurdities. For example, early versions of Prolog did subtraction by
inverse addition [Green 1990a]. [Mendelsohn 1990] cautions not to take economy and ele-
gance as virtues in their own right: these are misplaced in designing languages for nov-
ices. “In looking for ever more abstracted ways to express behavior, modern languages
have excised most clues to goal and purpose that are essential to novice understanding
[Bonar 1990].” Novice programmers are more verbose than expert programmers in
describing tasks to computers or to humans [Onorato 1986]. Thus experts have the edge in
conciseness and preciseness.

Context of Use: Notation

Justified by: Empirical studies, expert opinion

Examples: The type of a variable could be inferred from its initialization, elim-
inating the necessity to declare its type.

Pascal has a large program preamble that only contributes one
meaningful piece of information, the name of the program, “p”:
Program p (input,output);

APL takes conciseness to the extreme, at the expense of an exces-
sive number of cryptic primitives. But, as mentioned above (see
“Closeness of Mapping” on page 255), an abundance of primitives
is problematic [Lewis 1987].

HyperTalk is a compromise, because optional syntax allows the
same expression to be expressed concisely or verbosely, depending
on the programmer’s preference. However, as mentioned above (see
“Avoid Subtle Distinctions in Syntax” on page 246), more planning
is required when there are many different legal solutions to a prob-
lem [Gray 1987].

A Programming System for Children that is Designed for Usability 293

Background Research

Exceptions: Conciseness should be balanced with the findings of [Sime 1977c]
that more verbose control structures help both beginners and nov-
ices to manage flow of control.

Cross References: “Use Signalling to Highlight Important Information” on page 240
4-5. “Avoid Subtle Distinctions in Syntax”
5-3. “Consistency with External Knowledge”
5-4. “Closeness of Mapping”

References: [Bonar 1990, Cordy 1992, Gray 1987, Green 1990a, Lewis 1987,
Mendelsohn 1990, Onorato 1986, Sime 1977c]

294 A Programming System for Children that is Designed for Usability

Background Research

10. Help Users Recognize, Diagnose, and Recover from Errors
“Error messages should be expressed in plain language (no codes), precisely indicate the
problem, and constructively suggest a solution [Nielsen 1994].”

The research in this section investigates some common kinds of bugs and ways that the
system can help the user identify and fix them.

A Programming System for Children that is Designed for Usability 295

Background Research

10-1. Support for Testing and Debugging
Testing and debugging are areas of difficulty for novices [du Boulay 1989a]. As mentioned
above (see “Support Incremental Running and Testing with Immediate Feedback” on
page 247), [du Boulay 1989b] claims that the computational machine should reveal its
internal workings in terms of the language itself. This can be interpreted as a call for a
source-level debugger and tracer with data visualization. [Mendelsohn 1990], and [Eisen-
stadt 1989] describe such systems for Prolog, and [Miller 1994] describes one for Pascal.

Research by [Gugerty 1986a, Gugerty 1986b, Kessler 1986, Nanja 1987] observed that
novices tend to add new bugs to the program while debugging. This suggests that the envi-
ronment should provide a checkpointing feature, or a selective undo feature, to help the
user recover from these errors.

A survey of experienced programmers found that the most common root cause of bugs
was memory getting clobbered or used up [Eisenstadt 1993]. Anything the environment
can do to prevent or detect these problems would be helpful, especially since this kind of
bug is more difficult to detect because often there is chasm – a distance in time and code
proximity – between the cause and the effect of the bug. That survey also found that using
a debugger and instrumenting the code with print statements were much more common
than code-reading in expert debugging, suggesting that a good debugger is essential.

However, novices who are able to program do not automatically gain debugging skills in
the process of learning to program, suggesting that it would be useful for debugging strat-
egies to be taught or for the environment to be proactive in suggesting strategies.

Context of Use: Environment

Justified by: Empirical studies, observations of individual users, expert opinion

Examples: Spreadsheets do not support debugging very well. The underlying
formulas are not revealed unless explicitly made visible, so only
one cell can be examined at a time; and variables are usually
labelled with their cell location rather than a meaningful or mne-
monic name.

Many novice bugs are caused by boundary or fence-post problems,
such as:
• off-by-one bugs;
• not permitting the value zero where it should be permitted, or per-
mitting it where it should not be permitted;
• the decision whether a boundary value should be handled as a spe-
cial case or by one of the conditions that it divides;
• confusion between the number of values in a range and the highest
value in a range:
• drawing incorrect parallels between constructs that have different
boundary values, such as hours ranging from 1..12, but minutes
ranging from 0..59 rather than 1..60.

296 A Programming System for Children that is Designed for Usability

Background Research

To the extent that the environment can help to clarify these confu-
sions, novice productivity should be enhanced [Spohrer 1986a,
Spohrer 1986b].

A major source of bugs is failure to guard against illegal or missing
data [Cunniff 1989].

Students sometimes interpret the assignment statement A:=B as a
swap operation, a print statement, a no-op, or a boolean comparison
operation [Sleeman 1988].

Cross References: 4-3. “Locality and Hidden Dependencies”
4-6. “Support Incremental Running and Testing with Immediate
Feedback”
5-15. “Instructional Design”

References: [Cunniff 1989, du Boulay 1989a, du Boulay 1989b, Eisenstadt
1993, Eisenstadt 1989, Gugerty 1986a, Gugerty 1986b, Kessler
1986, Mendelsohn 1990, Miller 1994, Nanja 1987, Sleeman 1988,
Spohrer 1986a, Spohrer 1986b]

A Programming System for Children that is Designed for Usability 297

Background Research

11. Help and Documentation
“Even though it is better if the system can be used without documentation, it may be nec-
essary to provide help and documentation. Any such information should be easy to search,
focused on the user’s task, list concrete steps to be carried out, and not be too large
[Nielsen 1994].”

The research in this section investigates a kind of documentation called guiding knowl-
edge.

298 A Programming System for Children that is Designed for Usability

Background Research

11-1. Provide Guiding Knowledge
Guiding knowledge is a brief document that describes everything a naive user needs to
know about the system [Bell 1994]. It describes the metaphor, explains general concepts
of the system and its use, and contains advice about how to go about solving problems.
Examples and analogies play an important role in understanding [Lewis 1987]. Users will
have difficulty if there are hidden assumptions, if there is any necessary information miss-
ing from the guiding knowledge, if the guiding knowledge is not consistent with itself or
the system’s metaphorical model, or if the guiding knowledge does not convince the user
that the recommended plans will work. However, it is desirable for the guiding knowledge
to be brief, because it is the initial hurdle to using the system. This argues for a good met-
aphor, because it will be easily explained and consistent, so that the guiding knowledge
can be brief.

Context of Use: Documentation and metaphor

Justified by: Based on the programming walkthrough method for assessing the
programming language designs [Bell 1994], which in turn was
based on the cognitive walkthrough method for evaluating user
interfaces [Lewis 1990, Polson 1992].

Examples: The Macintosh introduced the mouse, menus, icons, and windows
in a direct-manipulation graphical user interface. Despite the fact
that most new users were learning a radically new system, the guid-
ing knowledge was remarkably small: a thin manual and a short
online guided tour.

When the guiding knowledge suggests a plan for solving a particu-
lar problem, but does not convince the user that this plan will work,
users apparently believe that they do not understand the guiding
knowledge, and begin searching for alternative plans that are “bet-
ter”. This may be related to meta-cognitive strategies (see “Cogni-
tive Issues” on page 275).

Examples: 5-1. “Choose an Appropriate Metaphor”
5-5. “Support for Planning”
5-14. “Cognitive Issues”

References: [Bell 1994, Lewis 1987, Lewis 1990, Polson 1992]

A Programming System for Children that is Designed for Usability 299

Background Research

12. Conclusions
This report attempts to organize the existing research about novice programmers in a way
that will facilitate its use in guiding the design of new programming systems. The authors
welcome comments and additions to this material.

There are a number of questions that are not addressed by the research we were able to
find. For example:

• How does verbosity affect novice programming effectiveness? Are languages like
HyperTalk, with optional extra words that enhance natural-language readability,
more effective than terse languages, and what new problems do they exhibit?
• What are the relative strengths and weaknesses of the various paradigms of pro-
gramming, such as the event-driven model?
• To what extent can careful design of the programming environment solve many
of the problems that have been identified in this report?

We hope that future research will address these questions.

In addition to the results summarized here, there are general Human-Computer Interaction
(HCI) principles that apply to all computer systems, including programming systems (e.g.,
[Macaulay 1995, Nielsen 1994, Tognazzini 1992]). Designers of programming systems
should consider these general HCI principles as well as the issues that are directly related
to programming.

13. Acknowledgments
The authors acknowledge Diana Bental, Alan Blackwell, Albert Corbett, Igor Curcio,
David Gilmore, Rachelle Heller, Mark Ireland, Bonnie John, Pavol Návrat, Tom Ormerod,
and Robert Rist for their comments and suggestions.

300 A Programming System for Children that is Designed for Usability

Background Research

14. Bibliography

[Anderson 1985] Anderson, J.R. and R. Jeffries (1985). “Novice LISP Errors: Unde-
tected Losses of Information from Working Memory.” Human-
Computer Interaction 1: 107-131.

[Arblaster 1979] Arblaster, A.T., M.E. Sime and T.R.G. Green (1979). “Jumping to
Some Purpose.” The Computer Journal 22: 105-109.

[Atwood 1978] Atwood, M.E. and H.R. Ramsay (1978). Cognitive Structures in the
Comprehension and Memory of Computer Programs: An Investiga-
tion of Computer Debugging. Alexandria, VA, U.S. Army Research
Institute.

[Baecker 1986] Baecker, R. (1986). Design Principles for the Enhanced Presenta-
tion of Computer Program Source Text. Proceedings of CHI'86
Conference on Human Factors in Computing Systems. M. Mantei
and P. Orbeton. Boston, ACM: 51-58.

[Baecker 1990] Baecker, R.M. and A. Marcus (1990). Human Factors and Typogra-
phy for More Readable Programs. Reading, MA, Addison-Wesley
Publishing Co. (ACM Press).

[Ball 1995] Ball, L.J. and T.C. Ormerod (1995). “Structured and Opportunistic
Processing in Design: A Critical Discussion.” International Journal
of Human-Computer Studies 43: 131-151.

[Bell 1994] Bell, B., W. Citrin, C. Lewis, J. Rieman, R. Weaver, N. Wilde and
B. Zorn (1994). “Using the Programming Walkthrough to Aid in
Programming Language Design.” Software–Practice and Experi-
ence 24(1): 1-25.

[Bell 1991] Bell, B., J. Rieman and C. Lewis (1991). Usability Testing of a
Graphical Programming System: Things We Missed in a Program-
ming Walkthrough. Proceedings of ACM CHI'91 Conference on
Human Factors in Computing Systems. S. P. Robertson, G. M.
Olson and J. S. Olson. New Orleans, ACM Press: 7-12.

[Berlin 1993] Berlin, L.M. (1993). Beyond Program Understanding: A Look at
Programming Expertise in Industry. Empirical Studies of Program-
mers: Fifth Workshop. C. R. Cook, J. C. Scholtz and J. C. Spohrer.
Palo Alto, CA, Ablex Publishing Corporation: 6-25.

A Programming System for Children that is Designed for Usability 301

Background Research

[Biermann 1983] Biermann, A.W., B.W. Ballard and A.H. Sigmon (1983). “An
Experimental Study of Natural Language Programming.” Interna-
tional Journal of Man-Machine Studies 18(1): 71-87.

[Blackwell 1996] Blackwell, A.F. (1996). Metacognitive Theories of Visual Program-
ming: What Do We Think We Are Doing? Proceedings of the VL'96
IEEE Workshop on Visual Languages. Boulder, CO: in press.

[Boehm-Davis 1996] Boehm-Davis, D.A., J.E. Fox and B.H. Philips (1996). Techniques
for Exploring Program Comprehension. Empirical Studies of Pro-
grammers: Sixth Workshop. W. D. Gray and D. A. Boehm-Davis.
Norwood, NJ, Ablex Publishing Corporation: 3-37.

[Bonar 1986] Bonar, J. (1986). Mental Models of Programming Loops. Pitts-
burgh, Learning Research and Development Center, University of
Pittsburgh.

[Bonar 1987] Bonar, J., R. Cunningham, P. Beatty and P. Riggs (1987). Bridge:
Intelligent Tutoring with Intermediate Representations. Pittsburgh,
University of Pittsburgh.

[Bonar 1990] Bonar, J. and B.W. Liffick (1990). A Visual Programming Lan-
guage for Novices. Principles of Visual Systems. S.-K. Chang.
Englewood, CA, Prentice-Hall.

[Bonar 1989] Bonar, J. and E. Soloway (1989). Preprogramming Knowledge: A
Major Source of Misconceptions in Novice Programmers. Studying
the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale,
NJ, Lawrence Erlbaum Associates: 325-353.

[Bonar 1988a] Bonar, J.G. and R. Cunningham (1988a). Bridge: An Intelligent
Tutor for Thinking About Programming. Artificial Intelligence and
Human Learning: Intelligent Computer-Aided Instruction. J. Self.
London, Chapman and Hall: 432.

[Bonar 1988b] Bonar, J.G. and R. Cunningham (1988b). Bridge: Tutoring the Pro-
gramming Process. Intelligent Tutoring Systems: Lessons Learned.
J. Psotka, L. D. Massey and S. A. Mutter. Hillsdale, NJ, Lawrence
Erlbaum Associates: 409-434.

[Borning 1985] Borning, A. (1985). “A Prototype Electronic Encyclopedia.” EACM
Transactions on Office Information Systems 3: 63-88.

[Bowles 1994] Bowles, A., D. Robertson, W. Vasconcelos, M. Vargas-Vera and D.
Bental (1994). “Applying Prolog Programming Techniques.” Inter-
national Journal of Human-Computer Studies 41: 329-350.

302 A Programming System for Children that is Designed for Usability

Background Research

[Brna 1991] Brna, P., A. Bundy, T. Dodd, M. Eisenstadt, C.K. Looi, H. Pain, D.
Robertson, B. Smith and M. van Someren (1991). “Prolog Pro-
gramming Techniques.” Instructional Science 20: 111-133.

[Brooke 1980a] Brooke, J.B. and K.D. Duncan (1980a). “Experimental Studies of
Flowchart Use at Different Stages of Program Debugging.” Ergo-
nomics 23: 1057-1091.

[Brooke 1980b] Brooke, J.B. and K.D. Duncan (1980b). “An Experimental Study of
Flowcharts as an Aid to Identification of Procedural Faults.” Ergo-
nomics 23: 387-399.

[Brooks 1983] Brooks, R. (1983). “Towards a Theory of the Comprehension of
Computer Programs.” International Journal of Man-Machine Stud-
ies 18: 543-554.

[Brusilovsky 1997] Brusilovsky, P., E. Calabrese, J. Hvorecky, A. Kouchnirenko and P.
Miller (1997). “Mini-languages: A Way to Learn Programming
Principles.” Education and Information Technologies 2(1): 65-83.

[Brusilovsky 1994] Brusilovsky, P., A. Kouchnirenko, P. Miller and I. Tomek (1994).
Teaching Programming to Novices: A Review of Approaches and
Tools. Educational Multimedia and Hypermedia: Proceedings of
ED-MEDIA 94. T. Ottmann and I. Tomek. Vancouver, BC Canada,
Association for the Advancement of Computing in Education: 103-
110.

[Carver 1988] Carver, S.M. (1988). Learning and Transfer of Debugging Skills:
Applying Task Analysis to Curriculum Design and Assessment.
Teaching and Learning Computer Programming: Multiple Research
Perspectives. R. E. Mayer. Hillsdale, NJ, Lawrence Erlbaum Asso-
ciates: 259-297.

[Carver 1987] Carver, S.M. and S.C. Risinger (1987). Improving Children's
Debugging Skills. Empirical Studies of Programmers: Second
Workshop. G. M. Olson, S. Shepard and E. Soloway. Norwood, NJ,
Ablex: 147-171.

[Clements 1993] Clements, D.H. and J.S. Meredith (1993). “Research on Logo:
Effects and Efficacy.” Journal of Computing in Childhood Educa-
tion 4(4): 263-290.

[Clements 1995] Clements, D.H. and J. Sarama (1995). “Design of a Logo Environ-
ment for Elementary Geometry.” Journal of Mathematical Behavior
14: 381-398.

A Programming System for Children that is Designed for Usability 303

Background Research

[Cohen 1989] Cohen, P.R., M. Dalrymple, D.B. Moran, F.C.N. Pereira, J.W. Sulli-
van, J. Robert A. Gargan, J.L. Schlossberg and S.W. Tyler (1989).
Synergistic Use of Direct Manipulation and Natural Language. Pro-
ceedings of ACM CHI'89 Conference on Human Factors in Com-
puting Systems: 227-233.

[Corbett 1995] Corbett, A.T. and J.R. Anderson (1995). Knowledge Decomposition
and Subgoal Reification in the ACT Programming Tutor. Artificial
Intelligence in Education, 1995: Proceedings of the 7th World Con-
ference on Artificial Intelligence in Education. J. Greer. Charlottes-
ville, VA, AACE: 469-476.

[Cordy 1992] Cordy, J.R. (1992). Hints on the Design of User Interface Language
Features – Lessons from the Design of Turing. Languages for
Developing User Interfaces. B. A. Myers. Boston, Jones and Bar-
tlett: 329-340.

[Crosby 1990] Crosby, M.E. and J. Stelovsky (1990). “How Do We Read Algo-
rithms? A Case Study.” Computer 23(1): 24-35.

[Cunniff 1987] Cunniff, N. and R.P. Taylor (1987). Graphical Versus Textual Rep-
resentation: An Empirical Study of Novices' Program Comprehen-
sion. Empirical Studies of Programmers: Second Workshop. G. M.
Olson, S. Sheppard and E. Soloway. Norwood, NJ, Ablex. 114-131.

[Cunniff 1989] Cunniff, N., R.P. Taylor and J.B. Black (1989). Does Programming
Language Affect the Type of Conceptual Bugs in Beginners' Pro-
grams? A Comparison of FPL and Pascal. Studying the Novice
Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ,
Lawrence Erlbaum Associates: 419-429.

[Curtis 1989] Curtis, B. (1989). Five Paradigms in the Psychology of Program-
ming. Handbook of Human-Computer Interaction. M. Helander.
North-Holland, Elsevier.

[Curtis 1988] Curtis, B., S. Sheppard, E. Kruesi-Bailey, J. Bailey and D. Boehm-
Davis (1988). “Experimental Evaluation of Software Documenta-
tion Formats.” Journal of Systems and Software 9: 1-41.

[Cypher 1995] Cypher, A. and D.C. Smith (1995). KidSim: End User Program-
ming of Simulations. Proceedings of CHI'95 Conference on Human
Factors in Computing Systems. Denver, ACM: 27-34.

[Dalby 1985] Dalby, J. and M.C. Linn (1985). “The Demands and Requirements
of Computer Programming: A Literature Review.” Journal of Edu-
cational Computing Research 1: 253-274.

304 A Programming System for Children that is Designed for Usability

Background Research

[Daly 1996] Daly, J., A. Brooks, J. Miller, M. Roper and M. Wood (1996). Eval-
uating the Effect of Inheritance on the Maintainability of Object-
Oriented Software. Empirical Studies of Programmers: Sixth Work-
shop. W. D. Gray and D. A. Boehm-Davis. Norwood, NJ, Ablex
Publishing Corporation: 39-57.

[Daly 1995a] Daly, J., J. Miller, A. Brooks, M. Roper and M. Wood (1995a).
Issues on the Object-Oriented Paradigm: A Questionnaire Survey.
Glasgow, University of Strathclyde Department of Computer Sci-
ence: 44.

[Daly 1995b] Daly, J., M. Wood, A. Brooks, J. Miller and M. Roper (1995b).
Structured Interviews on the Object-Oriented Paradigm. Glasgow,
University of Strathclyde Department of Computer Science: 34.

[Davies 1993] Davies, S.P. (1993). Externalising Information During Coding
Activities: Effects of Expertise, Environment and Task. Empirical
Studies of Programmers: Fifth Workshop. C. R. Cook, J. C. Scholtz
and J. C. Spohrer. Palo Alto, CA, Ablex Publishing Corporation:
42-61.

[Davies 1996] Davies, S.P. (1996). Display-Based Problelm Solving Strategies in
Computer Programming. Empirical Studies of Programmers: Sixth
Workshop. W. D. Gray and D. A. Boehm-Davis. Norwood, NJ,
Ablex Publishing Corporation: 59-76.

[Davis 1993] Davis, E.A., M.C. Linn, L.M. Mann and M.J. Clancy (1993). Mind
Your Ps and Qs: Using Parentheses and Quotes in LISP. Empirical
Studies of Programmers: Fifth Workshop. C. R. Cook, J. C. Scholtz
and J. C. Spohrer. Palo Alto, CA, Ablex Publishing Corporation:
62-85.

[Détienne 1990] Détienne, F. (1990). Difficulties in Designing with an Object-Ori-
ented Programming Language: An Empirical Study. Proceedings of
INTERACT '90 Conference on Computer-Human Factors. Cam-
bridge, England: 971-976.

[diSessa 1989] diSessa, A.A. and H. Abelson (1989). Boxer: A Reconstructible
Computational Medium. Studying the Novice Programmer. E.
Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Asso-
ciates: 467-481.

[du Boulay 1989a] du Boulay, B. (1989a). Some Difficulties of Learning to Program.
Studying the Novice Programmer. E. Soloway and J. C. Spohrer.
Hillsdale, NJ, Lawrence Erlbaum Associates: 283-299.

A Programming System for Children that is Designed for Usability 305

Background Research

[du Boulay 1989b] du Boulay, B., T. O'Shea and J. Monk (1989b). The Black Box
Inside the Glass Box: Presenting Computing Concepts to Novices.
Studying the Novice Programmer. E. Soloway and J. C. Spohrer.
Hillsdale, NJ, Lawrence Erlbaum Associates: 431-446.

[Dvorak 1994] Dvorak, J. (1994). “Conceptual Entropy and its Effect on Class
Hierarchies.” IEEE Computer 27(6): 59-63.

[Eisenberg 1987] Eisenberg, M., M. Resnick and F. Turbak (1987). Understanding
Procedures as Objects. Empirical Studies of Programmers: Second
Workshop. G. M. Olson, S. Shepard and E. Soloway. Norwood, NJ,
Ablex: 14-32.

[Eisenstadt 1993] Eisenstadt, M. (1993). Tales of Debugging from the Front Lines.
Empirical Studies of Programmers: Fifth Workshop. C. R. Cook, J.
C. Scholtz and J. C. Spohrer. Palo Alto, CA, Ablex Publishing Cor-
poration: 86-112.

[Eisenstadt 1989] Eisenstadt, M. and M. Brayshaw (1989). An Integrated Textbook,
Video, and Software Environment for Novice and Expert Prolog
Programmers. Studying the Novice Programmer. E. Soloway and J.
C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 447-466.

[Fay 1988] Fay, A.L. and R.E. Mayer (1988). Learning LOGO: A Cognitive
Analysis. Teaching and Learning Computer Programming: Multi-
ple Research Perspectives. R. E. Mayer. Hillsdale, NJ, Lawrence
Erlbaum Asociates: 55-74.

[Fenton 1989] Fenton, J. and K. Beck (1989). An Object-Oriented Simulation Sys-
tem with Agent Rules for Children of All Ages. Proceedings of
OOPSLA'89. New York, ACM: 123-137.

[Finzer 1993] Finzer, W.F. and L. Gould (1993). Rehearsal World: Programming
by Rehearsal. Watch What I Do: Programming by Demonstration.
A. Cypher, MIT Press.

[Fitter 1979] Fitter, M.J. and T.R.G. Green (1979). “When Do Diagrams Make
Good Computer Languages?” International Journal of Man-
Machine Studies 11: 235-261.

[Fung 1990] Fung, P., M. Brayshaw, B. du Boulay and M. Elsom-Cook (1990).
“Towards a Taxonomy of Novices' Misconceptions of the Prolog
Interpreter.” Instructional Science 19: 311-336.

306 A Programming System for Children that is Designed for Usability

Background Research

[Fung 1987] Fung, P., B. du Boulay and M. Elsom-Cook (1987). An Initial Tax-
onomy of Novices' Misconceptions of the Prolog Interpreter, Insti-
tute for Educational Technology, The Open University.

[Galotti 1985] Galotti, K.M. and W.F. Ganong, III (1985). “What Non-Program-
mers Know About Programming: Natural Language Procedure
Specification.” International Journal of Man-Machine Studies 22:
1-10.

[Gellenbeck 1991a] Gellenbeck, E.M. and C.R. Cook (1991a). Does Signalling Help
Professional Programmers Read and Understand Computer Pro-
grams? Empirical Studies of Programming: Fourth Workshop. J.
Koenemann-Belliveau, T. G. Moher and S. P. Robertson. New
Brunswick, NJ, Ablex Publishing Corporation: 82-98.

[Gellenbeck 1991b] Gellenbeck, E.M. and C.R. Cook (1991b). An Investigation of Pro-
cedure and Variable Names as Beacons During Program Compre-
hension. Empirical Studies of Programming: Fourth Workshop. J.
Koenemann-Belliveau, T. G. Moher and S. P. Robertson. New
Brunswick, NJ, Ablex Publishing Corporation: 65-81.

[Gilmore 1986] Gilmore, D.J. (1986). Structural Visibility and Program Compre-
hension. People and Computers: Designing for Usability. M. D.
Harrison and A. F. Monk. Cambridge, Cambridge University Press.

[Gilmore 1988] Gilmore, D.J. and T.R.G. Green (1988). “Programming Plans and
Programming Expertise.” Quarterly Journal of Experimental Psy-
chology 40a: 423-442.

[Gilmore 1984] Gilmore, D.J. and H.T. Smith (1984). “An Investigation of the Util-
ity of Flowhcarts During Computer Program Debugging.” Interna-
tional Journal of Man-Machine Studies 20: 331-372.

[Goldenson 1996] Goldenson, D.R. (1996). Why Teach Computer Programming?
Some Evidence about Generalization and Transfer. Proceedings of
NECC'96 National Educcational Computing Conference.

[Goldenson 1991] Goldenson, D.R. and B.J. Wang (1991). Use of Structure Editing
Tools by Novice Programmers. Empirical Studies of Programming:
Fourth Workshop. J. Koenemann-Belliveau, T. G. Moher and S. P.
Robertson. New Brunswick, NJ, Ablex Publishing Corporation: 99-
120.

A Programming System for Children that is Designed for Usability 307

Background Research

[Good 1996] Good, J. (1996). The 'Right' Tool for the Task: An Investigation of
External Representations, Program Abstractions and Task Require-
ments. Empirical Studies of Programmers: Sixth Workshop. W. D.
Gray and D. A. Boehm-Davis. Norwood, NJ, Ablex Publishing
Corporation: 77-98.

[Gray 1987] Gray, W. and J.R. Anderson (1987). Change-Episodes in Coding:
When and How Do Programmers Change Their Code. Empirical
Studies of Programmers: Second Workshop. G. M. Olson, S. Shep-
pard and E. Soloway. Norwood, NJ, Ablex: 185-197.

[Green 1990a] Green, T.R.G. (1990a). The Nature of Programming. Psychology of
Programming. J.-M. Hoc, T. R. G. Green, R. Samurçay and D. J.
Gilmore. London, Academic Press: 21-44.

[Green 1990b] Green, T.R.G. (1990b). Programming Languages as Information
Structures. Psychology of Programming. J.-M. Hoc, T. R. G. Green,
R. Samurçay and D. J. Gilmore. London, Academic Press: 118-137.

[Green 1987] Green, T.R.G., R.K.E. Bellamy and J.M. Parker (1987). Parsing and
Gnisrap: A Model of Device Use. Empirical Studies of Program-
mers: Second Workshop. G. M. Olson, S. Sheppard and E. Solo-
way. Norwood, NJ, Ablex.

[Green 1995] Green, T.R.G. and R. Navarro (1995). Programming Plans, Imag-
ery, and Visual Programming. Proceedings of INTERACT-95. K.
Nordby, D. J. Gilmore and S. Arnesen. London, Chapman and Hall.

[Green 1992] Green, T.R.G. and M. Petre (1992). When Visual Programs are
Harder to Read than Textual Programs. Human-Computer Interac-
tion: Tasks and Organisation, Proceedings of ECCE-6 (6th Euro-
pean Conference on Cognitive Ergonomics). G. C. van der Veer, M.
J. Tauber, S. Bagnarola and M. Antavolits. Rome, CUD.

[Green 1996] Green, T.R.G. and M. Petre (1996). “Usability Analysis of Visual
Programming Environments: A 'Cognitive Dimensions' Frame-
work.” Journal of Visual Languages and Computing 7(2): 131-174.

[Green 1991] Green, T.R.G., M. Petre and R.K.E. Bellamy (1991). Comprehensi-
bility of Visual and Textual Programs: A Test of Superlativism
Against the 'Match-Mismatch' Conjecture. Empirical Studies of
Programming: Fourth Workshop. J. Koenemann-Belliveau, T. G.
Moher and S. P. Robertson. New Brunswick, NJ, Ablex Publishing
Corporation: 121-146.

308 A Programming System for Children that is Designed for Usability

Background Research

[Grice 1975] Grice, H.P. (1975). Logic and Conversation. Syntax and Semantics
III: Speech Acts. P. Cole and J. Morgan. New York, Academic
Press.

[Gugerty 1986a] Gugerty, L. and G.M. Olson (1986a). Comprehension Differences
in Debugging by Skilled and Novice Programmers. Empirical Stud-
ies of Programmers. E. Soloway and S. Iyengar. Washington, DC,
Ablex Publishing Corporation: 13-27.

[Gugerty 1986b] Gugerty, L. and G.M. Olson (1986b). Debugging by Skilled and
Novice Programmers. Proceedings of ACM CHI'86 Conference on
Human Factors in Computing Systems: 171-174.

[Guzdial 1992] Guzdial, M., P. Weingrad, R. Boyle and E. Soloway (1992). Design
Support Environments for End Users. Languages for Developing
User Interfaces. B. A. Myers. Boston, Jones and Bartlett Publishers:
57-78.

[Halasz 1982] Halasz, F. and T.P. Moran (1982). Analogy Considered Harmful.
Proceedings of Human Factors in Computer Systems: 383-386.

[Hasan 1996] Hasan, H., C. Jones and E. Gould (1996). Prototyping Tools for
Expert and Novice Application Development. Empirical Studies of
Programmers: Sixth Workshop. W. D. Gray and D. A. Boehm-
Davis. Norwood, NJ, Ablex Publishing Corporation: 99-107.

[Heller 1986] Heller, R.S. (1986). Different Logo Teaching Styles: Do They
Really Matter. Empirical Studies of Programmers. E. Soloway and
S. Iyengar. Washington, DC, Ablex Publishing Corporation: 117-
127.

[Hoadley 1996] Hoadley, C.M., M.C. Linn, L.M. Mann and M.J. Clancy (1996).
When, Why and How Do Novice Programmers Reuse Code?
Empirical Studies of Programmers: Sixth Workshop. W. D. Gray
and D. A. Boehm-Davis. Norwood, NJ, Ablex Publishing Corpora-
tion: 109-129.

[Hoc 1983] Hoc, J.-M. (1983). Analysis of Beginner's Problem-solving Strate-
gies in Programming. The Psychology of Computer Use. T. R. G.
Green, S. J. Payne and G. van der Veer. London, Academic Press:
143-158.

[Hoc 1989] Hoc, J.-M. (1989). Do We Really Have Conditional Statements in
Our Brains? Studying the Novice Programmer. E. Soloway and J.
C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 179-90.

A Programming System for Children that is Designed for Usability 309

Background Research

[Hoc 1990] Hoc, J.-M. and A. Nguyen-Xuan (1990). Language Semantics,
Mental Models and Analogy. Psychology of Programming. J.-M.
Hoc, T. R. G. Green, R. Samurçay and D. J. Gilmore. London, Aca-
demic Press: 139-156.

[Jeffries 1982] Jeffries, R.A. (1982). Comparison of Debugging Behavior of Nov-
ice and Expert Programmers. Pittsburgh, PA, Department of Psy-
chology, Carnegie Mellon University.

[Kahn 1996] Kahn, K. (1996). “Drawings on Napkins, Video-Game Animation,
and Other Ways to Program Computers.” Communications of the
ACM 39(8): 49-59.

[Kahney 1989] Kahney, H. (1989). What Do Novice Programmers Know About
Recursion. Studying the Novice Programmer. E. Soloway and J. C.
Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 209-228.

[Kesler 1984] Kesler, T.E., R.B. Uram, F. Magareh-Abed, A. Fritzsche, C. Amport
and H.E. Dunsmore (1984). “The Effect of Indentation on Program
Comprehension.” International Journal of Man-Machine Studies
21: 415-428.

[Kessler 1986] Kessler, C.M. and J.R. Anderson (1986). A Model of Novice
Debugging in LISP. Empirical Studies of Programmers. E. Soloway
and S. Iyengar. Washington, DC, Ablex Publishing Corporation:
198-212.

[Kessler 1989] Kessler, C.M. and J.R. Anderson (1989). Learning Flow of Control:
Recursive and Iterative Procedures. Studying the Novice Program-
mer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence
Erlbaum Associates: 229-260.

[Korson 1986] Korson, T.D. and V.K. Vaishnavi (1986). An Empirical Study of the
Effects of Modularity on Program Modifiability. Empirical Studies
of Programmers. E. Soloway and S. Iyengar. Washington, DC,
Ablex Publishing Corporation: 168-186.

[Kurland 1989] Kurland, D.M. and R.D. Pea (1989). Children's Mental Models of
Recursive Logo Programs. Studying the Novice Programmer. E.
Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Asso-
ciates: 315-323.

[Ledgard 1980] Ledgard, H.F., J. Whiteside, A. Singer and W. Seymour (1980).
“The Natural Language of Interactive Systems.” Communications
of the ACM 23(10): 556-563.

310 A Programming System for Children that is Designed for Usability

Background Research

[Lee 1993] Lee, A.Y. and N. Pennington (1993). Learning Computer Program-
ming: A Route to General Reasoning Skills. Empirical Studies of
Programmers: Fifth Workshop. C. R. Cook, J. C. Scholtz and J. C.
Spohrer. Palo Alto, CA, Ablex Publishing Corporation: 113-1136.

[Lehrer 1988] Lehrer, R., T. Guckenberg and L. Sancilio (1988). Influences of
LOGO on Children's Intellectual Development. Teaching and
Learning Computer Programming: Multiple Research Perspectives.
R. E. Mayer. Hillsdale, NJ, Lawrence Erlbaum Asociates: 75-110.

[Lewis 1987] Lewis, C. and G.M. Olson (1987). Can Principles of Cognition
Lower the Barriers to Programming? Empirical Studies of Pro-
grammers: Second Workshop. G. M. Olson, S. Sheppard and E.
Soloway. Norwood, NJ, Ablex: 248-263.

[Lewis 1990] Lewis, C., P. Polson, C. Wharton and J. Rieman (1990). Testing a
Walkthrough Methodology for Theory-Based Design of Walk-Up-
and-Use Interfaces. Proceedings of ACM CHI'90 Conference on
Human Factors in Computing Systems: 235-242.

[Littlefield 1988] Littlefield, J., V.R. Delclos, S. Lever, K.N. Clayton, J.D. Bransford
and J.J. Franks (1988). Learning LOGO: Method of Teaching,
Transfer of General Skills, and Attitudes Toward School and Com-
puters. Teaching and Learning Computer Programming: Multiple
Research Perspectives. R. E. Mayer. Hillsdale, NJ, Lawrence
Erlbaum Asociates: 111-135.

[Macaulay 1995] Macaulay, L. (1995). Human-Computer Interaction for Software
Designers, Thompson Computer Press.

[Mayer 1988] Mayer, R.E. (1988). Introduction to Research on Teaching and
Learning Computer Programming. Teaching and Learning Com-
puter Programming: Multiple Research Perspectives. R. E. Mayer.
Hillsdale, NJ, Lawrence Erlbaum Asociates: 1-12.

[Mayer 1989] Mayer, R.E. (1989). The Psychology of How Novices Learn Com-
puter Programming. Studying the Novice Programmer. E. Soloway
and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates:
129-159.

[Mayer 1987] Mayer, R.E. and A.L. Fay (1987). “A Chain of Cognitive Changes
with Learning to Program in LOGO.” Journal of Educational Psy-
chology 79: 269-279.

A Programming System for Children that is Designed for Usability 311

Background Research

[McKeithen 1981] McKeithen, K.B. (1981). “Knowledge Organization and Skill Dif-
ferences in Computer Programmers.” Cognitive Psychology 13:
307-325.

[Mendelsohn 1990] Mendelsohn, P., T.R.G. Green and P. Brna (1990). Programming
Languages in Education: The Search for an Easy Start. Psychology
of Programming. J.-M. Hoc, T. R. G. Green, R. Samurçay and D. J.
Gilmore. London, Academic Press: 175-200.

[Merrill 1993] Merrill, D.C. and B.J. Reiser (1993). Scaffolding the Acquisition of
Complex Skills with Reasoning-Congruent Learning Environ-
ments. Proceedings of the Workshop in Graphical Representations,
Reasoning, and Communication from the World Conference on
Artificial Intelligence in Education (AI-ED '93). Edinburgh, Scot-
land, The University of Edinburgh: 9-15.

[Merrill 1994] Merrill, D.C. and B.J. Reiser (1994). Scaffolding Effective Problem
Solving Strategies in Interactive Learning Environments. Proceed-
ings of the Sixteenth Annual Conference of the Cognitive Science
Society. Atlanta, GA, Lawrence Erlbaum Associates.

[Merrill 1992] Merrill, D.C., B.J. Reiser, R. Beekelaar and A. Hamid (1992). Mak-
ing Processes Visible: Scaffolding Learning with Reasoning-Con-
gruent Representations. Proceedings of the Intelligent Tutoring
System Conference. C. Frasson, G. Gauthier and G. I. McCalla.
New York, Springer-Verlag: 103-110.

[Miara 1983] Miara, R.J., J.A. Musselman, J.A. Navarro and B. Schneiderman
(1983). “Program Indentation and Comprehensibility.” Communi-
cations of the ACM 26(11): 861-867.

[Miller 1981] Miller, L.A. (1981). “Natural Language Programming: Styles,
Strategies, and Contrasts.” IBM Systems Journal 20(2): 184-215.

[Miller 1994] Miller, P., J. Pane, G. Meter and S. Vorthmann (1994). “Evolution
of Novice Programming Environments: The Structure Editors of
Carnegie Mellon University.” Interactive Learning Environments
4(2): 140-158.

[Modugno 1996] Modugno, F., A.T. Corbett and B.A. Myers (1996). Evaluating Pro-
gram Representation in a Visual Shell. Empirical Studies of Pro-
grammers: Sixth Workshop. W. D. Gray and D. A. Boehm-Davis.
Norwood, NJ, Ablex Publishing Corporation: 131-146.

312 A Programming System for Children that is Designed for Usability

Background Research

[Moher 1993] Moher, T.G., D.C. Mak, B. Blumenthal and L.M. Leventhal (1993).
Comparing the Comprehensibility of Textual and Graphical Pro-
grams: The Case of Petri Nets. Empirical Studies of Programmers:
Fifth Workshop. C. R. Cook, J. C. Scholtz and J. C. Spohrer. Palo
Alto, CA, Ablex Publishing Corporation: 137-161.

[Myers 1990] Myers, B.A. (1990). “Taxonomies of Visual Programming and Pro-
gram Visualization.” Journal of Visual Languages and Computing
1(1): 97-123.

[Myers 1988] Myers, B.A., R. Chandhok and A. Sareen (1988). Automatic Data
Visualizations for Novice Pascal Programmers. Proceedings of the
IEEE 1988 Workshop on Visual Languages. Pittsburgh, PA: 192-
198.

[Nanja 1987] Nanja, M. and C.R. Cook (1987). An Analysis of the On-Line
Debugging Process. Empirical Studies of Programmers: Second
Workshop. G. M. Olson, S. Shepard and E. Soloway. Norwood, NJ,
Ablex: 172-184.

[Nardi 1993] Nardi, B.A. (1993). A Small Matter of Programming: Perspectives
on End User Computing. Cambridge, MA, The MIT Press.

[Návrat 1993] Návrat, P. and V. Rozinajová (1993). “Making Programming
Knowledge Explicit.” Computers in Education 21(4): 281-299.

[Návrat 1996] Návrat, P. and V. Rozinajová (1996). “Knowledge Based Program-
ming: An Experiment in Selecting a Data Type.” Arab Gulf J. Sci-
ence. Res. 14(1): 79-100.

[Neal 1987] Neal, L.R. (1987). User Modelling for Syntax-Directed Editors.
Human-Computer Interaction - INTERACT '87. H. J. Bullinger and
B. Shackel. New York, Elesevier.

[Nickerson 1985] Nickerson, R.S., D.N. Perkins and E.E. Smith (1985). The Teaching
of Thinking. Hillsdale, NJ, Lawrence Erlbaum Associates.

[Nielsen 1994] Nielsen, J. (1994). Heuristic Evaluation. Usability Inspection Meth-
ods. J. Nielsen and R. L. Mack. New York, John Wiley & Sons: 25-
62.

[Nyuyen-Xuan 1987] Nyuyen-Xuan, A. and J.-M. Hock (1987). “Learning to Use a Com-
mand Device.” European Bulletin of Cognitive Psychology 7: 5-31.

A Programming System for Children that is Designed for Usability 313

Background Research

[Olson 1987] Olson, G.M., R. Catrambone and E. Soloway (1987). Programming
and Algebra Word Problems: A Failure to Transfer. Empirical Stud-
ies of Programmers: Second Workshop. G. M. Olson, S. Shepard
and E. Soloway. Norwood, NJ, Ablex: 1-13.

[Onorato 1986] Onorato, L.A. and R.W. Schvaneveldt (1986). Programmer/Non-
programmer Differences in Specifying Procedures to People and
Computers. Empirical Studies of Programmers. E. Soloway and S.
Iyengar. Washington, DC, Ablex Publishing Corporation: 128-137.

[Ormerod 1996] Ormerod, T.C. and L.J. Ball (1996). An Empirical Evaluation of
TEd, A Techniques Editor for Prolog Programming. Empirical
Studies of Programmers: Sixth Workshop. W. D. Gray and D. A.
Boehm-Davis. Norwood, NJ, Ablex Publishing Corporation: 147-
161.

[Pane 1996] Pane, J.F., A.T. Corbett and B.E. John (1996). Assessing Dynamics
in Computer-Based Instruction. Proceedings of ACM CHI 96 Con-
ference on Human Factors in Computing Systems. Vancouver, BC,
Canada: 197-204.

[Papert 1980] Papert, S. (1980). Mindstorms: Children, Computers, and Powerful
Ideas. New York, Basic Books.

[Parker 1987] Parker, J. and B. Hendley (1987). The Universe Program Develop-
ment Environment. Proceedings of INTERACT'87.

[Pattis 1995] Pattis, R.E., J. Roberts and M. Stehlik (1995). Karel the Robot: A
Gentle Introduction to the Art of Programming. New York, John
Wiley & Sons.

[Payne 1986] Payne, S.J. and T.R.G. Green (1986). “Task-Action Grammars: A
Model of the Mental Representation of Task Languages.” Human-
Computer Interaction 2(2): 93-133.

[Payne 1984] Payne, S.J., M.E. Sime and T.R.G. Green (1984). “Perceptual
Structure Cueing in a Simple Command Language.” International
Journal of Man-Machine Studies 21: 19-29.

[Pea 1986] Pea, R. (1986). “Language-Independent Conceptual “Bugs” in
Novice Programming.” Journal of Educational Computing
Research 2(1).

[Pea 1984] Pea, R.D. and D.M. Kurland (1984). “On the Cognitive Effects of
Learning Computer Programming.” New Ideas in Psychology 2:
137-168.

314 A Programming System for Children that is Designed for Usability

Background Research

[Pennington 1990] Pennington, N. and B. Grabowski (1990). The Tasks of Program-
ming. The Psychology of Programming. J.-M. Hoc, T. R. G. Green,
R. Samurçay and D. J. Gilmore. London, Academic Press: 45-62.

[Perkins 1985] Perkins, D.N. (1985). “The Fingertip Effect: How Information-Pro-
cessing Technology Shapes Thinking.” Educational Researcher 14:
11-17.

[Perkins 1989] Perkins, D.N., C. Hancock, R. Hobbs, F. Martin and R. Simmons
(1989). Conditions of Learning in Novice Programmers. Studying
the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale,
NJ, Lawrence Erlbaum Associates: 261-279.

[Perkins 1986] Perkins, D.N. and F. Martin (1986). Fragile Knowledge and
Neglected Strategies in Novice Programmers. Empirical Studies of
Programmers. E. Soloway and S. Iyengar. Washington, DC, Ablex
Publishing Corporation: 213-229.

[Perkins 1988] Perkins, D.N., S. Schwartz and R. Simmons (1988). Instructional
Strategies for the Problems of Novice Programmers. Teaching and
Learning Computer Programming: Multiple Research Perspectives.
R. E. Mayer. Hillsdale, NJ, Lawrence Erlbaum Asociates: 153-178.

[Petre 1992] Petre, M. and T.R.G. Green (1992). “Requirements of Graphical
Notations for Professional Users: Electronics CAD Systems as a
Case Study.” La Travail Humain 55(1): 47-70.

[Pirolli 1985] Pirolli, P. and J.R. Anderson (1985). “The Role of Learning from
Examples in the Acquisition of Recursive Programming Skills.”
Canadian Journal of Psychology 39: 40-272.

[Polson 1992] Polson, P.G., C. Lewis, J. Rieman and C. Wharton (1992). “Cogni-
tive Walkthroughs: A Method for Theory-Based Evaluation of User
Interfaces.” International Journal of Man-Machine Studies 36(5):
741-773.

[Putnam 1989] Putnam, R.T., D. Sleeman, J.A. Baxter and L.K. Kuspa (1989). A
Summary of Misconceptions of High School Basic Programmers.
Studying the Novice Programmer. E. Soloway and J. C. Spohrer.
Hillsdale, NJ, Lawrence Erlbaum Associates: 301-314.

A Programming System for Children that is Designed for Usability 315

Background Research

[Reiser 1992] Reiser, B.J., D.Y. Kimberg, M.C. Lovett and M. Ranny (1992).
Knowledge Representation and Explanation in GIL, An Intelligent
Tutor for Programming. Computer-Assisted Instruction and Intelli-
gent Tutoring Systems: Shared Goals and Complimentary
Approaches. J. H. Larkin and R. W. Chabay. Hillsdale, NJ,
Lawrence Erlbaum Associates: 111-149.

[Repenning 1993] Repenning, A. (1993). Agentsheets: A Tool for Building Domain-
Oriented Dynamic, Visual Environments. Dept. of Computer Sci-
ence. Boulder, University of Colorado at Boulder: 171.

[Repenning 1994] Repenning, A. and T. Sumner (1994). Programming as Problem
Solving: A Participatory Theater Approach. Workshop on Advanced
Visual Interfaces. New York, ACM Press: 182-191.

[Resnick 1994] Resnick, M. (1994). Turtles, Termites, and Traffic Jams: Explora-
tions in Massively Parallel Microworlds. Boston, The MIT Press.

[Riecken 1991] Riecken, R.D. (1991). What Do Expert Programmers Communicate
by Means of Descriptive Commenting? Empirical Studies of Pro-
gramming: Fourth Workshop. J. Koenemann-Belliveau, T. G.
Moher and S. P. Robertson. New Brunswick, NJ, Ablex Publishing
Corporation: 177-195.

[Rist 1995] Rist, R.S. (1995). “Program Structure and Design.” Cognitive Sci-
ence 19: 507-562.

[Rist 1996] Rist, R.S. (1996). System Structure and Design. Empirical Studies
of Programmers: Sixth Workshop. W. D. Gray and D. A. Boehm-
Davis. Norwood, NJ, Ablex Publishing Corporation: 163-194.

[Roberts 1988] Roberts, J., J. Pane, M. Stehlik and J. Carrasquel (1988). The
Design View: A Design Oriented, High-Level Visual Programming
Environment. Proceedings of the 1988 IEEE Workshop on Visual
Languages. Pittsburgh, PA: 213-220.

[Rogalski 1990] Rogalski, J. and R. Samurçay (1990). Acquisition of Programming
Knowledge and Skills. Psychology of Programming. J.-M. Hoc, T.
R. G. Green, R. Samurçay and D. J. Gilmore. London, Academic
Press: 157-174.

[Saariluoma 1994] Saariluoma, P. and J. Sanjaniemi (1994). “Transforming Verbal
Descriptions into Mathematical Formulas in Spreadsheet Calcula-
tion.” International Journal of Human-Computer Studies 41(6):
915-948.

316 A Programming System for Children that is Designed for Usability

Background Research

[Samurçay 1989] Samurçay, R. (1989). The Concept of Variable in Programming: Its
Meaning and Use in Problem-Solving by Novice Programmers.
Studying the Novice Programmer. E. Soloway and J. C. Spohrer.
Hillsdale, NJ, Lawrence Erlbaum Associates: 161-178.

[Scholtz 1993] Scholtz, J. and S. Wiedenbeck (1993). An Analysis of Novice Pro-
grammers Learning a Second Language. Empirical Studies of Pro-
grammers: Fifth Workshop. C. R. Cook, J. C. Scholtz and J. C.
Spohrer. Palo Alto, CA, Ablex Publishing Corporation: 187-205.

[Sherwood 1988] Sherwood, B.A. (1988). The cT Language. Champaigne, IL, Stipes
Publishing Company.

[Shneiderman 1986] Shneiderman, B. (1986). Empirical Studies of Programmers: The
Territory, Paths and Destinations. Empirical Studies of Program-
mers. E. Soloway and S. Iyengar. Washington, DC, Ablex Publish-
ing Corporation: 1-12.

[Shneiderman 1977] Shneiderman, B., R.E. Mayer, D. McKay and P. Heller (1977).
“Experimental Investigations of the Utility of Detailed Flowcharts
in Programming.” Communications of the ACM 20: 373-381.

[Siddiqi 1996] Siddiqi, J., R. Osborn, C. Roast and B. Khazaei (1996). The Pitfalls
of Changing Programming Paradigms. Empirical Studies of Pro-
grammers: Sixth Workshop. W. D. Gray and D. A. Boehm-Davis.
Norwood, NJ, Ablex Publishing Corporation: 219-231.

[Sime 1977a] Sime, M.E., A.T. Arblaster and T.R.G. Green (1977a). “Reducing
Programming Errors in Nested Conditionals by Prescribing a Writ-
ing Procedure.” International Journal of Man-Machine Studies 9:
119-1226.

[Sime 1977b] Sime, M.E., T.R.G. Green and D.J. Guest (1977b). “Psychological
Evaluation of Two Conditional Constructions Used in Computer
Languages.” International Journal of Man-Machine Studies 5: 105-
113.

[Sime 1977c] Sime, M.E., T.R.G. Green and D.J. Guest (1977c). “Scope Marking
in Computer Conditionals: A Psychological Evaluation.” Interna-
tional Journal of Man-Machine Studies 9: 107-118.

[Sleeman 1988] Sleeman, D., R.T. Putnam, J. Baxter and L. Kuspa (1988). An Intro-
ductory Pascal Class: A Case Study of Students' Errors. Teaching
and Learning Computer Programming: Multiple Research Perspec-
tives. R. E. Mayer. Hillsdale, NJ, Lawrence Erlbaum Asociates:
237-257.

A Programming System for Children that is Designed for Usability 317

Background Research

[Smith 1995] Smith, D.C. and A. Cypher (1995). KidSim: Child Constructible
Simulations. Proceedings of the Imagina '95 Conference. Monte-
Carlo: 87-99.

[Smith 1994] Smith, D.C., A. Cypher and J. Spohrer (1994). “KidSim: Program-
ming Agents Without a Programming Language.” Communications
of the ACM 37(7): 54-67.

[Smith 1986a] Smith, R. (1986a). The Alternate Reality Kit: An Animated Envi-
ronment for Creating Interactive Simulations. Proceedings of the
1986 IEEE Computer Society Workshop on Visual Languages. Dal-
las, IEEE.

[Smith 1992] Smith, R.B., D. Ungar and B.-W. Chang (1992). The Use-Mention
Perspective on Programming for the Interface. Languages for
Developing User Interfaces. B. A. Myers. Boston, Jones and Bar-
tlett Publishers: 79-89.

[Smith 1986b] Smith, S.L. and J.N. Mosier (1986b). Guidelines for Designing
User Interface Software. Bedford, MA, MITRE: 478.

[Soloway 1989] Soloway, E., J. Bonar and K. Ehrlich (1989). Cognitive Strategies
and Looping Constructs: An Empirical Study. Studying the Novice
Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ,
Lawrence Erlbaum Associates: 191-207.

[Soloway 1984] Soloway, E. and K. Ehrlich (1984). “Empirical Studies of Program-
ming Knowledge.” IEEE Transactions on Software Engineering
SE-10: 595-609.

[Soloway 1988] Soloway, E., J. Pinto, S. Letovsky, D. Littman and R. Lampert
(1988). “Designing Documentation to Compensate for Delocalized
Plans.” Communications of the ACM 31(11): 1259-1267.

[Spohrer 1986a] Spohrer, J.C. and E. Soloway (1986a). Alternatives to Construct-
Based Programming Misconceptions. Proceedings of ACM CHI'86
Conference on Human Factors in Computing Systems: 183-191.

[Spohrer 1989a] Spohrer, J.C. and E. Soloway (1989a). Novice Mistakes: Are the
Folk Wisdoms Correct? Studying the Novice Programmer. E. Solo-
way and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associ-
ates: 401-416.

318 A Programming System for Children that is Designed for Usability

Background Research

[Spohrer 1989b] Spohrer, J.C., E. Soloway and E. Pope (1989b). A Goal/Plan Analy-
sis of Buggy Pascal Programs. Studying the Novice Programmer. E.
Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Asso-
ciates: 355-399.

[Spohrer 1986b] Spohrer, J.G. and E. Soloway (1986b). Analyzing the High Fre-
quency Bugs in Novice Programs. Empirical Studies of Program-
mers. E. Soloway and S. Iyengar. Washington, DC, Ablex
Publishing Corporation: 230-251.

[Taylor 1990] Taylor, J. (1990). “Analysing Novices Analysing Prolog: What Sto-
ries Do Novices Tell Themselves About Prolog?” Instructional Sci-
ence 19: 283-309.

[Tognazzini 1992] Tognazzini, B. (1992). Tog on Interface. Reading, MA, Addison-
Wesley Publishing Co.

[Travers 1994] Travers, M. (1994). Recursive Interfaces for Reactive Objects. Pro-
ceedings of ACM CHI'94 Conference on Human Factors in Com-
puting Systems. Boston.

[Van Laar 1989] Van Laar, D. (1989). Evaluating a Colour Coding Programming
Support Tool. People and Computers V. A. Sutcliffe and L.
Macaulay. Cambridge, Cambridge University Press.

[Vessey 1984] Vessey, I. and R. Weber (1984). “Conditional Statements and Pro-
gram Coding: An Experimental Evaluation.” International Journal
of Man-Machine Studies 31: 47-60.

[Wandke 1988] Wandke, H. (1988). User-Defined Macros in HCI: When Are They
Applied? Berlin, Sektion Psychologie der Humboldt-Universität zu
Berlin.

[Watters 1995] Watters, A.R. (1995). Tutorial Article No. 005: The What, Why,
Who, and Where of Python. UnixWorld Online.

[Wiedenbeck 1986a] Wiedenbeck, S. (1986a). “Beacons in Computer Program Compre-
hension.” International Journal of Man-Machine Studies 25: 697-
709.

[Wiedenbeck 1986b] Wiedenbeck, S. (1986b). Processes in Computer Program Compre-
hension. Empirical Studies of Programmers. E. Soloway and S.
Iyengar. Washington, DC, Ablex Publishing Corporation: 48-57.

[Wiedenbeck 1989] Wiedenbeck, S. (1989). The Initial Stage of Program Comprehen-
sion, University of Nebraska.

A Programming System for Children that is Designed for Usability 319

Background Research

[Wiedenbeck 1996] Wiedenbeck, S. and J. Scholtz (1996). Adaptation of Programming
Plans in Transfer Between Programming Languages: A Develop-
mental Approach. Empirical Studies of Programmers: Sixth Work-
shop. W. D. Gray and D. A. Boehm-Davis. Norwood, NJ, Ablex
Publishing Corporation: 233-253.

[Wirth 1983] Wirth, N. (1983). “Program Development by Stepwise Refine-
ment.” Communications of the ACM 26(1): 70-74.

[Wu 1991] Wu, Q. and J.R. Anderson (1991). Strategy Selection and Change in
Pascal Programming. Empirical Studies of Programming: Fourth
Workshop. J. Koenemann-Belliveau, T. G. Moher and S. P. Robert-
son. New Brunswick, NJ, Ablex Publishing Corporation: 227-238.

320 A Programming System for Children that is Designed for Usability

Background Research

A Programming System for Children that is Designed for Usability 321

APPENDIX D Materials from Study 1

The following pages contain the materials presented to the participants in Study One, fol-

lowed by the rating form and instructions given to the analysts.

322 A Programming System for Children that is Designed for Usability

Materials from Study 1

A Programming System for Children that is Designed for Usability 323

Materials from Study 1

324 A Programming System for Children that is Designed for Usability

Materials from Study 1

A Programming System for Children that is Designed for Usability 325

Materials from Study 1

326 A Programming System for Children that is Designed for Usability

Materials from Study 1

A Programming System for Children that is Designed for Usability 327

Materials from Study 1

328 A Programming System for Children that is Designed for Usability

Materials from Study 1

A Programming System for Children that is Designed for Usability 329

Materials from Study 1

Instructions to Raters

You are helping us to analyze data from a study of children's solutions to a programming

task. The children were shown nine scenarios, and asked to write instructions for the com-

puter, using their own words and pictures. We are investigating the natural ways that non-

programmers express these instructions.

Your task is to recognize various patterns or concepts that might be present in the children's

solutions, and to count them on the attached rating form. Please fill out one rating form for

each of the 14 students.

The rating form asks a series of questions, and for each question lists some of the patterns

or concepts that you might see in the student's solution. Each time you find one, please put

a tick-mark on the line for that pattern, in the slot corresponding to the problem number that

the student was working on when he/she generated it.

For example, if you see five occurrences of explicit loops in a student's answer to problem

9, you would put five ticks in slot 9 of line 4a.

Please do this counting at the level of sentences or statements. To make your analysis eas-

ier, you may wish to first make a pass through each student's answers, marking the bound-

aries between sentences. After you have identified the individual sentences, it will be easier

to decide which category, if any, each one will fall into.

Note: For questions #1 and #2 on the rating form, please count every statement/sen-

tence in the student’s solution. For the rest of the rating form, it is sufficient to count only

those sentences that are relevant to the question we’re asking you.

Please read through the questionnaire before beginning, to familiarize yourself with what

we are asking. For each question we ask you, there is also an "other" line, where you can

mark other patterns or concepts that aren't listed. Also, if you see something interesting that

is not covered by any question on the form, please describe it in the space at the end of the

rating form.

You should feel free to write and make notes on the student solutions.

330 A Programming System for Children that is Designed for Usability

Materials from Study 1

There are 14 students, and each one has a unique id number. But the id numbers are not

contiguous.

Some students skipped some of the problems, or answered one question in the process of

answering a prior question. Please rate the responses according to the problem that the stu-

dent was actually working on at the time the response was generated.

If you have any questions, please contact:

John Pane 268-8078 pane@cs.cmu.edu

Brad Myers 268-5150 bam@cs.cmu.edu

A Programming System for Children that is Designed for Usability 331

Materials from Study 1

RATER’S NAME __________ STUDENT # _________

1. Please count the number of times you see these various styles of programming. For this question,

please count every statement/sentence in the student’s solution.

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Production Rules (or event-based): where operations are preceded by “when”, “if”, or

“after”(used as to mean ‘when’, not as to mean ‘a long time after’)

Example:When it begins to get dark, turn your headlights on.

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Constraint Style: where operations are expressed as relations that should always

hold.

Example:Car must always be above the road.

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Imperative Style: where a sequence of operations is specified.

Example:Look to the left; Look to the right; Take one more look to the left;

Pull out to enter the intersection.

d) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

2. Please count the number of times you see these various perspectives. For this question, please

count every statement/sentence in the student’s solution.

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Player’s perspective: (including playing strategies)

Example:To get bonus points, I/you need to win the game within 2 minutes.

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Programmer’s perspective:

Example:If the game is won within 2 minutes, give bonus points to the player.

332 A Programming System for Children that is Designed for Usability

Materials from Study 1

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

 3. Please count the number of times the student uses these various methods to express concepts about

multiple objects.

(The situation when an operation affects some or all of the objects, or when different objects are

affected differently.)

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Think of them as a set or subsets of entities and operate on those, or specify them as plu-

rals.

Example:Buy all the books that are red.

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Use iteration (i.e. loop) to operate them explicitly.

Example:For each book, if it is red, buy it.

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

4. Please count the number of iteration or looping constructs in the student’s solution.

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Explicit. (Repeat, while, and so on, for, etc.)

Example:He repeated saying those words several times.

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Implicit. (only terminating condition is specified)

Example:I will wait until you start.

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

A Programming System for Children that is Designed for Usability 333

Materials from Study 1

 5. In programming languages, a common form is “IF ... THEN ... ELSE”, do you see any examples

of having an ELSE (or equivalent) clause in the student’s solution?

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Yes, using the word ____________________

6. Please count the number of times the student uses these various methods to handle

conditions with various options.

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

By specifying the general case first and then modifying it with exceptions (using “unless”, “but if”, “except”,

etc.)

Example:When it snows you should drive slowly. But if you have snow tires you can drive a little

faster.

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

By specifying a more complex boolean expressions (and, or, not).

Example:When it snows AND you have snow tires, you can drive a little faster OR when

it snows AND you do NOT have snow tires, you should drive slowly.

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

By specifying mutually exclusive conditions.

Example:If you have snow tires, you can drive a little faster.

If you do NOT have snow tires, you should drive slowly.

d) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

 7. Please count he number of times the student uses these various methods to affect the motion

of objects (animation).

334 A Programming System for Children that is Designed for Usability

Materials from Study 1

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Expect entities to move continuously and just specify the changes in motion.

Example:If there is something in the way, stop.

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Continuously update the positions of entities.

Example:For each time around, if there is nothing in the way, move forward a little bit.

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

8. Please count the number of times you see these various methods of expressing changes to an entity.

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Having behaviors built-into the entities. (object-oriented)

Example:Tell the robot to become happy.

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Directly modify the properties of entities.

Example:Set the robot’s emotion to ‘happy’.

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

 9. Please count the number of times the student uses these mathematical operations.

Consider when he/she is asked to increase/decrease a variable “count” by some units.

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

A more natural language style, but either the amount or variable is implicit (not men-

tioned)

Example:get points

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

A more natural language style, with both explicit variable and amount.

Example:ADD 20 units to count

count increases by 20 units

A Programming System for Children that is Designed for Usability 335

Materials from Study 1

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Programming language style

Example:count = count + 20

d) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Mathematical style

Example:count + 20

e) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

10. Please count the number of times the student uses these various methods to track progression a

long task (suppose the student was assigned five books to read over the summer).

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Counting

Example:I will be happy when I have read 5 books

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

All or nothing

Example:I will be happy when I

..... have read the last book.

..... have read all of the books.

..... have no more books to read.

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

 11. Please count the number of times the student uses these various methods to express events that

happen at an uncertain time or duration. (Problem #1 and #7)

a) 1______ 7______

He/she uses the word “random.”

Example:A flock of bird flies over the tree at random times.

b) 1______ 7______

336 A Programming System for Children that is Designed for Usability

Materials from Study 1

He/she uses some other words to express a randomness concept.

Example:A flock of birds flies over the tree once in a while, occasionally, etc.

c) 1______ 7______

He/she specifies these things with exactness.

Example:A flock of birds flies over the tree every 3 hours.

c) 1______ 7______

He/she tries to specify the amount of duration, but NOT very exact.

Example:A flock of birds files over the tree about every 3 hours.

d) 1______ 7______

Other (please specify) ____________________

12. Please count the number of times the student uses the word “AND” in these various

ways.

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Used as a sequencing word. (meaning “next”, “afterwards”)

Example:He knocked on the door and went in.

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Used to mean “as well as.” (boolean conjunction)

Example:We were cold and hungry.

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

 13. Please count the number of times the student uses the word “OR” in these various

 ways.

 a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

 Used as a boolean disjunction, or used in a set of possibilities.

 Example:If it rains or it snows, I will wear my boots.

 Would you prefer coffee, cocoa, or tea?

A Programming System for Children that is Designed for Usability 337

Materials from Study 1

 b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

 Used to mean “otherwise”.

 Example:Wear your coat or (else) you’ll be cold.

 c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

 Used when giving a second name or clarification for something.

 Example:He was born in Saigon, or Ho Chi Minh City as it is now called.

 d) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

 Other (please specify) ____________________

14. Please count the number of times the student uses the word “THEN” in these various

ways.

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Used as a sequencing word. (meaning “next”, “afterwards”)

Example: Dinner was followed by coffee, then came the speeches.

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Used to mean “in that case” or “consequently”

Example:If you want to go home, then finish this work and go.

If x=5 and y=3, then x+y = 8.

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Used to mean “besides” or “also”

Example:You must ask Jill to the party, and then there’s Jane -- don’t forget her.

d) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

 15. Please count the number of times the student uses these various methods when inserting an ele-

ment into the middle of an existing sequence of elements. (Problem #1 and #9)

a) 1______ 9______

Make room and then insert the element.

b) 1______ 9______

338 A Programming System for Children that is Designed for Usability

Materials from Study 1

Insert the element and then push elements out of the way to make room.

c) 1______ 9______

Do not mention anything about making room for the new element.

d) 1______ 9______

Other (please specify) ____________________

16. Please count the number of times the student used any of these various methods to determine the

right place for insertion. (Problem #1 and #9)

a) 1______ 9______

A correct general method that would work for any data (checks the items above and below).

b) 1______ 9______

A correct method that would only work for the example data (checks the items above

and below).

c) 1______ 9______

Incorrect method, with missing or incorrect details.

d) 1______ 9______

Other (please specify) ____________________

 17. Please count the number of times you see these various methods when a previous action in the past

is supposed to affect a later action, how the previous state is remembered.

a) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Used the word “AFTER”.

Example:After installing snow tires, if it snows, you can drive more safely.

b) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Used the past tense mentioning the first event.

Example:If snow tires were installed, and it snows, you can drive more safely.

A Programming System for Children that is Designed for Usability 339

Materials from Study 1

c) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Used the present tense mentioning the first event.

Example:If snow tires are installed, and it snows, you can drive more safely.

d) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Used something else that remembers the state, that is still true when the second event happens.

Example:If tires on your wheels are snow tires, and it snows, you can drive more safely.

e) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Used the future tense on the first event.

Example:If snow tires are installed, then next time it snows, you can drive more safely.

f) 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______

Other (please specify) ____________________

Is there any other observations you would like to make that were not covered by any

of the questions? Please write them in the space below.

340 A Programming System for Children that is Designed for Usability

Materials from Study 1

A Programming System for Children that is Designed for Usability 341

APPENDIX E Materials from Study 2

The following pages contain the materials presented to the participants in Study Two.

There are two versions of these materials, containing the identical set of questions pre-

sented in two different orders. This is followed by the rating form given to the analysts. The

three raters for this study also were raters in Study 1. They did not get a new instruction

sheet for this study, since they were already familiar with the rating task.

342 A Programming System for Children that is Designed for Usability

Materials from Study 2

nnnn
ID # ____________

• We are trying to design a new programming language, a new way to program computers,

and we want to find out how people would like to tell computer what to do.

• You are one of the best ‘PlayStation’ producer team. Now, you are launching the brand

new “Mumbo Jumbo” game. So, your team decided to host a summer camp conducting a

user testing with several groups of subjects.

• Your group consists of 10 quite-famous people, such as Bill Gates, Michael Jordan, etc.

• After you explain and demonstrate how the game works, you let them try. You, the

expert, will give them advice and tricks.

• The score for each round of game playing is to be recorded. Your task is to tell the

computer how to keep track of all the scores for each person to see how well they do.

• Now…Getting start with your task…

A Programming System for Children that is Designed for Usability 343

Materials from Study 2

• Supposed you start off with this table, with all the names of members in your group:

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 0 0 0

 2 Bill Clinton 0 0 0

 3 Cindy Crawford 0 0 0

 4 Tom Cruise 0 0 0

 5 Bill Gates 0 0 0

 6 Whitney Houston 0 0 0

 7 Michael Jordan 0 0 0

 8 Jay Leno 0 0 0

 9 David Letterman 0 0 0

 1 0 Will Smith 0 0 0

• Each person will report their 3 sets of score to you at different times.

• Whitney Houston comes in with the scores of 90,000 60,000 and 40,000:

• You do this:

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 0 0 0

 2 Bill Clinton 0 0 0

 3 Cindy Crawford 0 0 0

 4 Tom Cruise 0 0 0

 5 Bill Gates 0 0 0

 6 Whitney Houston 90,000 60,000 40,000

 7 Michael Jordan 0 0 0

 8 Jay Leno 0 0 0

 9 David Letterman 0 0 0

 1 0 Will Smith 0 0 0

• Bill Clinton comes in with the scores of 40,000 60,000 and 60,000:

• You do this:

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 0 0 0

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 0 0 0

 4 Tom Cruise 0 0 0

 5 Bill Gates 0 0 0

 6 Whitney Houston 90,000 60,000 40,000

 7 Michael Jordan 0 0 0

 8 Jay Leno 0 0 0

 9 David Letterman 0 0 0

 1 0 Will Smith 0 0 0

 Continue on the next page...

344 A Programming System for Children that is Designed for Usability

Materials from Study 2

• David Letterman comes in with the scores of 70,000 30,000 and 80,000:

• You do this:

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 0 0 0

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 0 0 0

 4 Tom Cruise 0 0 0

 5 Bill Gates 0 0 0

 6 Whitney Houston 90,000 60,000 40,000

 7 Michael Jordan 0 0 0

 8 Jay Leno 0 0 0

 9 David Letterman 70,000 30,000 80,000

 1 0 Will Smith 0 0 0

• And so on….

• And finally at the end, you have this display.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 20,000

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 30,000 40,000 70,000

 4 Tom Cruise 30,000 50,000 70,000

 5 Bill Gates 40,000 90,000 60,000

 6 Whitney Houston 90,000 60,000 40,000

 7 Michael Jordan 90,000 10,000 40,000

 8 Jay Leno 80,000 20,000 40,000

 9 David Letterman 70,000 30,000 80,000

 1 0 Will Smith 20,000 40,000 80,000

 Question 1:

• Describe in detail what you would tell the computer to do to handle the situation above,

so that each person’s scores are put in at the right place and at the right time.

A Programming System for Children that is Designed for Usability 345

Materials from Study 2

• Here is the recorded scores after 3 rounds of game playing, according to the alphabetical

order of last name.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 20,000

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 30,000 40,000 70,000

 4 Tom Cruise 30,000 50,000 70,000

 5 Bill Gates 40,000 90,000 60,000

 6 Whitney Houston 90,000 60,000 40,000

 7 Michael Jordan 90,000 10,000 40,000

 8 Jay Leno 80,000 20,000 40,000

 9 David Letterman 70,000 30,000 80,000

 10 Will Smith 20,000 40,000 80,000

 Question 2A

• Describe in detail what you would tell the computer to do to get to these displays.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 20,000 80,000

 2 Bill Clinton 40,000 60,000 60,000 160,000

 3 Cindy Crawford 30,000 40,000 70,000 140,000

 4 Tom Cruise 30,000 50,000 70,000 150,000

 5 Bill Gates 40,000 90,000 60,000 190,000

 6 Whitney Houston 30,000 60,000 40,000 130,000

 7 Michael Jordan 10,000 10,000 40,000 60,000

 8 Jay Leno 80,000 20,000 40,000 140,000

 9 David Letterman 70,000 30,000 80,000 180,000

 10 Will Smith 20,000 80,000 10,000 110,000

 Question 2B

• Does your answer also work in this table below? If not, could you come up with another

answer that really works for both tables?

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 Round 4

 Round 5

 1 Leonardo DiCaprio 10,000 50,000 20,000 20,000 10,000 110,000

 2 Helen Hunt 40,000 60,000 60,000 10,000 30,000 200,000

 3 Jack Nicholson 30,000 40,000 70,000 40,000 10,000 190,000

 4 Brad Pitt 70,000 30,000 80,000 20,000 10,000 210,000

 5 Kate Winslet 20,000 80,000 10,000 40,000 30,000 180,000

346 A Programming System for Children that is Designed for Usability

Materials from Study 2

 No.

 First name

 Last name

 Round 4

 Round 5

 Round 6

 1 Sandra Bullock 40,000 300 20,000

 2 Bill Clinton 400 60,000 60,000

 3 Cindy Crawford 30,000 400 70,000

 4 Tom Cruise 30,000 3,000 70,000

 5 Bill Gates 40,000 90,000 600

 6 Whitney Houston 30,000 60,000 200

 7 Michael Jordan 10,000 10,000 1,200

 8 Jay Leno 80,000 20,000 4,000

 9 David Letterman 70,000 300 80,000

 10 Will Smith 20,000 800 10,000

 Question 3

• Describe in detail what you would tell the computer to do to obtain these results.

 No.

 First name

 Last name

 Round 4

 Round 5

 Round 6

 1 Sandra Bullock 40,000 300 20,000 60,000

 2 Bill Clinton 400 60,000 60,000 120,000

 3 Cindy Crawford 30,000 400 70,000 100,000

 4 Tom Cruise 30,000 3,000 50,000 80,000

 5 Bill Gates 40,000 100,000 600 140,000

 6 Whitney Houston 30,000 10,000 200 40,000

 7 Michael Jordan 10,000 10,000 1,200 20,000

 8 Jay Leno 80,000 20,000 4,000 100,000

 9 David Letterman 70,000 300 90,000 160,000

 10 Will Smith 100,000 800 80,000 180,000

A Programming System for Children that is Designed for Usability 347

Materials from Study 2

 No.

 First name

 Last name

 Group

 1 Sandra Bullock

 2 Bill Clinton

 3 Cindy Crawford

 4 Tom Cruise

 5 Bill Gates

 6 Whitney Houston

 7 Michael Jordan

 8 Jay Leno

 9 David Letterman

 10 Will Smith

 Question 4

• Describe in detail what the computer should do to fill in the last column.

 No.

 First name

 Last name

 Group

 1 Sandra Bullock Gold

 2 Bill Clinton Gold

 3 Cindy Crawford Gold

 4 Tom Cruise Gold

 5 Bill Gates Black

 6 Whitney Houston Gold

 7 Michael Jordan Gold

 8 Jay Leno Black

 9 David Letterman Black

 10 Will Smith Gold

348 A Programming System for Children that is Designed for Usability

Materials from Study 2

 No.

 First name

 Last name

 Average
Score

 Performance

 1 Sandra Bullock 3,000

 2 Bill Clinton 60,000

 3 Cindy Crawford 500

 4 Tom Cruise 5,000

 5 Bill Gates 6,000

 6 Whitney Houston 4,000

 7 Michael Jordan 20,000

 8 Jay Leno 50,000

 9 David Letterman 700

 10 Will Smith 9,000

 Question 5A

• Describe in detail what the computer should do to obtain these results.

 No.

 First name

 Last name

 Average
Score

 Performance

 1 Sandra Bullock 3,000 Fine

 2 Bill Clinton 60,000 Extraordinary

 3 Cindy Crawford 500 Poor

 4 Tom Cruise 5,000 Fine

 5 Bill Gates 6,000 Fine

 6 Whitney Houston 4,000 Fine

 7 Michael Jordan 20,000 Extraordinary

 8 Jay Leno 50,000 Extraordinary

 9 David Letterman 700 Poor

 10 Will Smith 9,000 Fine

A Programming System for Children that is Designed for Usability 349

Materials from Study 2

 Question 5B

• Please fill in the table below with the appropriate performance, based on your answer

given for Question 5A. If your answer does not work for these scores, could you come up

with the new answer for 5A that works for these scores and all others?

 No.

 First name

 Last name

 Average
Score

 Performance

 1 Leonardo DiCaprio 999

 2 Helen Hunt 3,000,000

 3 Jack Nicholson 1,000

 4 Brad Pitt 10,000

 5 Jerry Seinfeld 0

 6 Kate Winslet 1,001

350 A Programming System for Children that is Designed for Usability

Materials from Study 2

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 Total Score

 1 Sandra Bullock 10,000 50,000 20,000 80,000

 2 Bill Clinton 40,000 60,000 60,000 160,000

 3 Cindy Crawford 30,000 40,000 70,000 140,000

 4 Tom Cruise 30,000 50,000 70,000 150,000

 5 Bill Gates 40,000 90,000 60,000 190,000

 6 Whitney Houston 30,000 60,000 40,000 130,000

 7 Michael Jordan 10,000 10,000 40,000 60,000

 8 Jay Leno 80,000 20,000 40,000 140,000

 9 David Letterman 70,000 30,000 80,000 180,000

 10 Will Smith 20,000 80,000 10,000 110,000

 Question 6

• Describe in detail what the computer should do to obtain these results. Also note the

changes in the ordering.

 No.

 First name

 Last name

 Total
Score

 1 Bill Gates 190,000

 2 David Letterman 180,000

 3 Bill Clinton 160,000

 4 Tom Cruise 150,000

A Programming System for Children that is Designed for Usability 351

Materials from Study 2

 Question 7

• There are mistakes in the recorded scores, i.e. scores from round 1 and round 3 were

supposed to be 10,000 points higher.

• Describe in detail what needs to be done to correct the scores and obtain the new display.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 30,000

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 30,000 40,000 70,000

 4 Tom Cruise 30,000 50,000 70,000

 5 Bill Gates 40,000 90,000 60,000

 6 Whitney Houston 30,000 60,000 40,000

 7 Michael Jordan 10,000 10,000 40,000

 8 Jay Leno 80,000 20,000 40,000

 9 David Letterman 70,000 30,000 80,000

 10 Will Smith 40,000 80,000 20,000

 10,000 10,000

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 20,000 50,000 40,000

 2 Bill Clinton 50,000 60,000 70,000

 3 Cindy Crawford 40,000 40,000 80,000

 4 Tom Cruise 40,000 50,000 80,000

 5 Bill Gates 50,000 90,000 70,000

 6 Whitney Houston 40,000 60,000 50,000

 7 Michael Jordan 20,000 10,000 50,000

 8 Jay Leno 90,000 20,000 50,000

 9 David Letterman 80,000 30,000 90,000

 10 Will Smith 50,000 80,000 30,000

352 A Programming System for Children that is Designed for Usability

Materials from Study 2

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 Total

 1 Sandra Bullock 10,000 50,000 20,000 80,000

 2 Bill Clinton 40,000 60,000 60,000 160,000

 3 Cindy Crawford 30,000 40,000 70,000 140,000

 4 Tom Cruise 30,000 50,000 70,000 150,000

 5 Bill Gates 40,000 90,000 60,000 190,000

 6 Whitney Houston 30,000 60,000 40,000 130,000

 7 Michael Jordan 10,000 10,000 40,000 60,000

 8 Jay Leno 80,000 20,000 40,000 140,000

 9 David Letterman 70,000 30,000 80,000 180,000

 10 Will Smith 20,000 80,000 10,000 110,000

 Question 8

• “Bill Clinton” and “Jay Leno” need to leave the camp, but Elton John, instead, would

like to join the camp.

• Describe in detail what the computer should do to obtain the new chart below.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 20,000 80,000

 2 Cindy Crawford 30,000 40,000 70,000 140,000

 3 Tom Cruise 30,000 50,000 70,000 150,000

 4 Bill Gates 40,000 90,000 60,000 190,000

 5 Whitney Houston 30,000 60,000 40,000 130,000

 6 Elton John 0 0 0 0

 7 Michael Jordan 10,000 10,000 40,000 60,000

 8 David Letterman 70,000 30,000 80,000 180,000

 9 Will Smith 20,000 80,000 10,000 110,000

A Programming System for Children that is Designed for Usability 353

Materials from Study 2

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 Round 4

 Round 5

 Round 6

 1 Sandra Bullock 5,000 8,000 2,000 4,000 1,000 100,000

 2 Bill Clinton 1,000 900,000 4,000 6,000 4,000 6,000

 3 Cindy Crawford 300,000 2,000 4,000 3,000 3,000 7,000

 4 Tom Cruise 5,000 7,000 1,000,000 3,000 3,000 2,000

 5 Bill Gates 400 1,000 3,000 4,000 900,000 600

 6 Whitney Houston 5,000 5,000 3,000 200,000 2,000 1,000

 7 Michael Jordan 2,000 7,000 350,000 2,000 1,000 3,000

 8 Jay Leno 2,000 3,000 3,000 800,000 2,000 4,000

 9 David Letterman 5,000 6,000 1,000 7,000 1,000 150,000

 10 Will Smith 4,000 2,000 3,000,000 2,000 9,000 1,000

 Question 9

• Describe in detail what you would tell the computer to do to obtain these results.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 Round 4

 Round 5

 Round 6

 1 Sandra Bullock 5,000 8,000 2,000 4,000 1,000 100,000 20,000

 2 Bill Clinton 1,000 900,000 4,000 6,000 4,000 6,000 21,000

 3 Cindy Crawford 300,000 2,000 4,000 3,000 3,000 7,000 19,000

 4 Tom Cruise 5,000 7,000 1,000,000 3,000 3,000 2,000 20,000

 5 Bill Gates 400 1,000 3,000 4,000 900,000 600 9,000

 6 Whitney Houston 5,000 5,000 3,000 200,000 2,000 1,000 16,000

 7 Michael Jordan 2,000 7,000 350,000 2,000 1,000 3,000 15,000

 8 Jay Leno 2,000 3,000 3,000 800,000 2,000 4,000 14,000

 9 David Letterman 5,000 6,000 1,000 7,000 1,000 150,000 20,000

 10 Will Smith 4,000 2,000 3,000,000 2,000 9,000 1,000 18,000

354 A Programming System for Children that is Designed for Usability

Materials from Study 2

 Question 10

• There is one more mistake in the recorded scores, i.e. scores from round 2 were supposed

to be 20,000 points lower.

• Describe in detail what needs to be done to correct the scores and obtain the new display.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 30,000

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 30,000 40,000 70,000

 4 Tom Cruise 30,000 50,000 70,000

 5 Bill Gates 40,000 90,000 60,000

 6 Whitney Houston 30,000 60,000 40,000

 7 Michael Jordan 10,000 30,000 40,000

 8 Jay Leno 80,000 70,000 40,000

 9 David Letterman 70,000 30,000 80,000

 10 Will Smith 40,000 80,000 20,000

 20,000

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 30,000 30,000

 2 Bill Clinton 40,000 40,000 60,000

 3 Cindy Crawford 30,000 20,000 70,000

 4 Tom Cruise 30,000 30,000 70,000

 5 Bill Gates 40,000 70,000 60,000

 6 Whitney Houston 30,000 40,000 40,000

 7 Michael Jordan 10,000 10,000 40,000

 8 Jay Leno 80,000 50,000 40,000

 9 David Letterman 70,000 10,000 80,000

 10 Will Smith 40,000 60,000 20,000

A Programming System for Children that is Designed for Usability 355

Materials from Study 2

 No.

 First name

 Last name

 Average Score

 1 Sandra Bullock 3,000

 2 Bill Clinton 60,000

 3 Cindy Crawford 500

 4 Tom Cruise 5,000

 5 Bill Gates 6,000

 6 Whitney Houston 4,000

 7 Michael Jordan 20,000

 8 Jay Leno 50,000

 9 David Letterman 700

 10 Will Smith 9,000

 Question 11

• Describe in detail what the computer should do to obtain these results.

No. First name Last name Average Score

1 Sandra Bullock 0

2 Bill Clinton 0

3 Cindy Crawford 0

4 Tom Cruise 0

5 Bill Gates 0

6 Whitney Houston 0

7 Michael Jordan 0

8 Jay Leno 0

9 David Letterman 0

10 Will Smith 0

356 A Programming System for Children that is Designed for Usability

Materials from Study 2

oooo

ID # ____________

• We are trying to design a new programming language, a new way to program computers,

and we want to find out how people would like to tell computer what to do.

• You are one of the best ‘PlayStation’ producer team. Now, you are launching the brand

new “Mumbo Jumbo” game. So, your team decided to host a summer camp conducting a

user testing with several groups of subjects.

• Your group consists of 10 quite-famous people, such as Bill Gates, Michael Jordan, etc.

• After you explain and demonstrate how the game works, you let them try. You, the

expert, will give them advice and tricks.

• The score for each round of game playing is to be recorded. Your task is to tell the

computer how to keep track of all the scores for each person to see how well they do.

• Now…Getting start with your task…

A Programming System for Children that is Designed for Usability 357

Materials from Study 2

• Supposed you start off with this table, with all the names of members in your group:

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 0 0 0

 2 Bill Clinton 0 0 0

 3 Cindy Crawford 0 0 0

 4 Tom Cruise 0 0 0

 5 Bill Gates 0 0 0

 6 Whitney Houston 0 0 0

 7 Michael Jordan 0 0 0

 8 Jay Leno 0 0 0

 9 David Letterman 0 0 0

 1 0 Will Smith 0 0 0

• Each person will report their 3 sets of score to you at different times.

• Whitney Houston comes in with the scores of 90,000 60,000 and 40,000:

• You do this:

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 0 0 0

 2 Bill Clinton 0 0 0

 3 Cindy Crawford 0 0 0

 4 Tom Cruise 0 0 0

 5 Bill Gates 0 0 0

 6 Whitney Houston 90,000 60,000 40,000

 7 Michael Jordan 0 0 0

 8 Jay Leno 0 0 0

 9 David Letterman 0 0 0

 1 0 Will Smith 0 0 0

• Bill Clinton comes in with the scores of 40,000 60,000 and 60,000:

• You do this:

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 0 0 0

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 0 0 0

 4 Tom Cruise 0 0 0

 5 Bill Gates 0 0 0

 6 Whitney Houston 90,000 60,000 40,000

 7 Michael Jordan 0 0 0

 8 Jay Leno 0 0 0

 9 David Letterman 0 0 0

 1 0 Will Smith 0 0 0

 Continue on the next page...

358 A Programming System for Children that is Designed for Usability

Materials from Study 2

• David Letterman comes in with the scores of 70,000 30,000 and 80,000:

• You do this:

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 0 0 0

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 0 0 0

 4 Tom Cruise 0 0 0

 5 Bill Gates 0 0 0

 6 Whitney Houston 90,000 60,000 40,000

 7 Michael Jordan 0 0 0

 8 Jay Leno 0 0 0

 9 David Letterman 70,000 30,000 80,000

 1 0 Will Smith 0 0 0

• And so on….

• And finally at the end, you have this display.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 20,000

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 30,000 40,000 70,000

 4 Tom Cruise 30,000 50,000 70,000

 5 Bill Gates 40,000 90,000 60,000

 6 Whitney Houston 90,000 60,000 40,000

 7 Michael Jordan 90,000 10,000 40,000

 8 Jay Leno 80,000 20,000 40,000

 9 David Letterman 70,000 30,000 80,000

 1 0 Will Smith 20,000 40,000 80,000

 Question 1:

• Describe in detail what you would tell the computer to do to handle the situation above,

so that each person’s scores are put in at the right place and at the right time.

A Programming System for Children that is Designed for Usability 359

Materials from Study 2

• Here is the recorded scores after 3 rounds of game playing, according to the alphabetical

order of last name.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 20,000

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 30,000 40,000 70,000

 4 Tom Cruise 30,000 50,000 70,000

 5 Bill Gates 40,000 90,000 60,000

 6 Whitney Houston 90,000 60,000 40,000

 7 Michael Jordan 90,000 10,000 40,000

 8 Jay Leno 80,000 20,000 40,000

 9 David Letterman 70,000 30,000 80,000

 10 Will Smith 20,000 40,000 80,000

 Question 2A

• Describe in detail what you would tell the computer to do to get to these displays.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 20,000 80,000

 2 Bill Clinton 40,000 60,000 60,000 160,000

 3 Cindy Crawford 30,000 40,000 70,000 140,000

 4 Tom Cruise 30,000 50,000 70,000 150,000

 5 Bill Gates 40,000 90,000 60,000 190,000

 6 Whitney Houston 30,000 60,000 40,000 130,000

 7 Michael Jordan 10,000 10,000 40,000 60,000

 8 Jay Leno 80,000 20,000 40,000 140,000

 9 David Letterman 70,000 30,000 80,000 180,000

 10 Will Smith 20,000 80,000 10,000 110,000

 Question 2B

• Does your answer also work in this table below? If not, could you come up with another

answer that really works for both tables?

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 Round 4

 Round 5

 1 Leonardo DiCaprio 10,000 50,000 20,000 20,000 10,000 110,000

 2 Helen Hunt 40,000 60,000 60,000 10,000 30,000 200,000

 3 Jack Nicholson 30,000 40,000 70,000 40,000 10,000 190,000

 4 Brad Pitt 70,000 30,000 80,000 20,000 10,000 210,000

 5 Kate Winslet 20,000 80,000 10,000 40,000 30,000 180,000

360 A Programming System for Children that is Designed for Usability

Materials from Study 2

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 Round 4

 Round 5

 Round 6

 1 Sandra Bullock 5,000 8,000 2,000 4,000 1,000 100,000

 2 Bill Clinton 1,000 900,000 4,000 6,000 4,000 6,000

 3 Cindy Crawford 300,000 2,000 4,000 3,000 3,000 7,000

 4 Tom Cruise 5,000 7,000 1,000,000 3,000 3,000 2,000

 5 Bill Gates 400 1,000 3,000 4,000 900,000 600

 6 Whitney Houston 5,000 5,000 3,000 200,000 2,000 1,000

 7 Michael Jordan 2,000 7,000 350,000 2,000 1,000 3,000

 8 Jay Leno 2,000 3,000 3,000 800,000 2,000 4,000

 9 David Letterman 5,000 6,000 1,000 7,000 1,000 150,000

 10 Will Smith 4,000 2,000 3,000,000 2,000 9,000 1,000

 Question 3

• Describe in detail what you would tell the computer to do to obtain these results.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 Round 4

 Round 5

 Round 6

 1 Sandra Bullock 5,000 8,000 2,000 4,000 1,000 100,000 20,000

 2 Bill Clinton 1,000 900,000 4,000 6,000 4,000 6,000 21,000

 3 Cindy Crawford 300,000 2,000 4,000 3,000 3,000 7,000 19,000

 4 Tom Cruise 5,000 7,000 1,000,000 3,000 3,000 2,000 20,000

 5 Bill Gates 400 1,000 3,000 4,000 900,000 600 9,000

 6 Whitney Houston 5,000 5,000 3,000 200,000 2,000 1,000 16,000

 7 Michael Jordan 2,000 7,000 350,000 2,000 1,000 3,000 15,000

 8 Jay Leno 2,000 3,000 3,000 800,000 2,000 4,000 14,000

 9 David Letterman 5,000 6,000 1,000 7,000 1,000 150,000 20,000

 10 Will Smith 4,000 2,000 3,000,000 2,000 9,000 1,000 18,000

A Programming System for Children that is Designed for Usability 361

Materials from Study 2

 No.

 First name

 Last name

 Group

 1 Sandra Bullock

 2 Bill Clinton

 3 Cindy Crawford

 4 Tom Cruise

 5 Bill Gates

 6 Whitney Houston

 7 Michael Jordan

 8 Jay Leno

 9 David Letterman

 10 Will Smith

 Question 4

• Describe in detail what the computer should do to fill in the last column.

 No.

 First name

 Last name

 Group

 1 Sandra Bullock Gold

 2 Bill Clinton Gold

 3 Cindy Crawford Gold

 4 Tom Cruise Gold

 5 Bill Gates Black

 6 Whitney Houston Gold

 7 Michael Jordan Gold

 8 Jay Leno Black

 9 David Letterman Black

 10 Will Smith Gold

362 A Programming System for Children that is Designed for Usability

Materials from Study 2

 No.

 First name

 Last name

 Average
Score

 Performance

 1 Sandra Bullock 3,000

 2 Bill Clinton 60,000

 3 Cindy Crawford 500

 4 Tom Cruise 5,000

 5 Bill Gates 6,000

 6 Whitney Houston 4,000

 7 Michael Jordan 20,000

 8 Jay Leno 50,000

 9 David Letterman 700

 10 Will Smith 9,000

 Question 5A

• Describe in detail what the computer should do to obtain these results.

 No.

 First name

 Last name

 Average
Score

 Performance

 1 Sandra Bullock 3,000 Fine

 2 Bill Clinton 60,000 Extraordinary

 3 Cindy Crawford 500 Poor

 4 Tom Cruise 5,000 Fine

 5 Bill Gates 6,000 Fine

 6 Whitney Houston 4,000 Fine

 7 Michael Jordan 20,000 Extraordinary

 8 Jay Leno 50,000 Extraordinary

 9 David Letterman 700 Poor

 10 Will Smith 9,000 Fine

A Programming System for Children that is Designed for Usability 363

Materials from Study 2

 Question 5B

• Please fill in the table below with the appropriate performances, based on your answer

given for Question 5A. If your answer does not work for these scores, could you come up

with the new answer for 5A that works for these scores and all others?

 No.

 First name

 Last name

 Average
Score

 Performance

 1 Leonardo DiCaprio 999

 2 Helen Hunt 3,000,000

 3 Jack Nicholson 1,000

 4 Brad Pitt 10,000

 5 Jerry Seinfeld 0

 6 Kate Winslet 1,001

364 A Programming System for Children that is Designed for Usability

Materials from Study 2

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 Total Score

 1 Sandra Bullock 10,000 50,000 20,000 80,000

 2 Bill Clinton 40,000 60,000 60,000 160,000

 3 Cindy Crawford 30,000 40,000 70,000 140,000

 4 Tom Cruise 30,000 50,000 70,000 150,000

 5 Bill Gates 40,000 90,000 60,000 190,000

 6 Whitney Houston 30,000 60,000 40,000 130,000

 7 Michael Jordan 10,000 10,000 40,000 60,000

 8 Jay Leno 80,000 20,000 40,000 140,000

 9 David Letterman 70,000 30,000 80,000 180,000

 10 Will Smith 20,000 80,000 10,000 110,000

 Question 6

• Describe in detail what the computer should do to obtain these results. Also note the

changes in the ordering.

 No.

 First name

 Last name

 Total
Score

 1 Bill Gates 190,000

 2 David Letterman 180,000

 3 Bill Clinton 160,000

 4 Tom Cruise 150,000

A Programming System for Children that is Designed for Usability 365

Materials from Study 2

 Question 7

• There are some mistakes in the recorded scores, i.e. scores from round 2 were supposed

to be 20,000 points lower.

• Describe in detail what needs to be done to correct the scores and obtain the new display.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 30,000

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 30,000 40,000 70,000

 4 Tom Cruise 30,000 50,000 70,000

 5 Bill Gates 40,000 90,000 60,000

 6 Whitney Houston 30,000 60,000 40,000

 7 Michael Jordan 10,000 30,000 40,000

 8 Jay Leno 80,000 70,000 40,000

 9 David Letterman 70,000 30,000 80,000

 10 Will Smith 40,000 80,000 20,000

 20,000

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 30,000 30,000

 2 Bill Clinton 40,000 40,000 60,000

 3 Cindy Crawford 30,000 20,000 70,000

 4 Tom Cruise 30,000 30,000 70,000

 5 Bill Gates 40,000 70,000 60,000

 6 Whitney Houston 30,000 40,000 40,000

 7 Michael Jordan 10,000 10,000 40,000

 8 Jay Leno 80,000 50,000 40,000

 9 David Letterman 70,000 10,000 80,000

 10 Will Smith 40,000 60,000 20,000

366 A Programming System for Children that is Designed for Usability

Materials from Study 2

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 Total

 1 Sandra Bullock 10,000 50,000 20,000 80,000

 2 Bill Clinton 40,000 60,000 60,000 160,000

 3 Cindy Crawford 30,000 40,000 70,000 140,000

 4 Tom Cruise 30,000 50,000 70,000 150,000

 5 Bill Gates 40,000 90,000 60,000 190,000

 6 Whitney Houston 30,000 60,000 40,000 130,000

 7 Michael Jordan 10,000 10,000 40,000 60,000

 8 Jay Leno 80,000 20,000 40,000 140,000

 9 David Letterman 70,000 30,000 80,000 180,000

 10 Will Smith 20,000 80,000 10,000 110,000

 Question 8

• “Bill Clinton” and “Jay Leno” need to leave the camp, but Elton John, instead, would

like to join the camp.

• Describe in detail what the computer should do to obtain the new chart below.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 20,000 80,000

 2 Cindy Crawford 30,000 40,000 70,000 140,000

 3 Tom Cruise 30,000 50,000 70,000 150,000

 4 Bill Gates 40,000 90,000 60,000 190,000

 5 Whitney Houston 30,000 60,000 40,000 130,000

 6 Elton John 0 0 0 0

 7 Michael Jordan 10,000 10,000 40,000 60,000

 8 David Letterman 70,000 30,000 80,000 180,000

 9 Will Smith 20,000 80,000 10,000 110,000

A Programming System for Children that is Designed for Usability 367

Materials from Study 2

 No.

 First name

 Last name

 Round 4

 Round 5

 Round 6

 1 Sandra Bullock 40,000 300 20,000

 2 Bill Clinton 400 60,000 60,000

 3 Cindy Crawford 30,000 400 70,000

 4 Tom Cruise 30,000 3,000 70,000

 5 Bill Gates 40,000 90,000 600

 6 Whitney Houston 30,000 60,000 200

 7 Michael Jordan 10,000 10,000 1,200

 8 Jay Leno 80,000 20,000 4,000

 9 David Letterman 70,000 300 80,000

 10 Will Smith 20,000 800 10,000

 Question 9

• Describe in detail what you would tell the computer to do to obtain these results.

 No.

 First name

 Last name

 Round 4

 Round 5

 Round 6

 1 Sandra Bullock 40,000 300 20,000 60,000

 2 Bill Clinton 400 60,000 60,000 120,000

 3 Cindy Crawford 30,000 400 70,000 100,000

 4 Tom Cruise 30,000 3,000 50,000 80,000

 5 Bill Gates 40,000 100,000 600 140,000

 6 Whitney Houston 30,000 10,000 200 40,000

 7 Michael Jordan 10,000 10,000 1,200 20,000

 8 Jay Leno 80,000 20,000 4,000 100,000

 9 David Letterman 70,000 300 90,000 160,000

 10 Will Smith 100,000 800 80,000 180,000

368 A Programming System for Children that is Designed for Usability

Materials from Study 2

 Question 10

• There are two more mistakes in the recorded scores, i.e. scores from round 1 and round 3

were supposed to be 10,000 points higher.

• Describe in detail what needs to be done to correct the scores and obtain the new display.

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 10,000 50,000 30,000

 2 Bill Clinton 40,000 60,000 60,000

 3 Cindy Crawford 30,000 40,000 70,000

 4 Tom Cruise 30,000 50,000 70,000

 5 Bill Gates 40,000 90,000 60,000

 6 Whitney Houston 30,000 60,000 40,000

 7 Michael Jordan 10,000 10,000 40,000

 8 Jay Leno 80,000 20,000 40,000

 9 David Letterman 70,000 30,000 80,000

 10 Will Smith 40,000 80,000 20,000

 10,000 10,000

 No.

 First name

 Last name

 Round 1

 Round 2

 Round 3

 1 Sandra Bullock 20,000 50,000 40,000

 2 Bill Clinton 50,000 60,000 70,000

 3 Cindy Crawford 40,000 40,000 80,000

 4 Tom Cruise 40,000 50,000 80,000

 5 Bill Gates 50,000 90,000 70,000

 6 Whitney Houston 40,000 60,000 50,000

 7 Michael Jordan 20,000 10,000 50,000

 8 Jay Leno 90,000 20,000 50,000

 9 David Letterman 80,000 30,000 90,000

 10 Will Smith 50,000 80,000 30,000

A Programming System for Children that is Designed for Usability 369

Materials from Study 2

 No.

 First name

 Last name

 Average Score

 1 Sandra Bullock 3,000

 2 Bill Clinton 60,000

 3 Cindy Crawford 500

 4 Tom Cruise 5,000

 5 Bill Gates 6,000

 6 Whitney Houston 4,000

 7 Michael Jordan 20,000

 8 Jay Leno 50,000

 9 David Letterman 700

 10 Will Smith 9,000

 Question 11

• Describe in detail what the computer should do to obtain these results.

No. First name Last name Average Score

1 Sandra Bullock 0

2 Bill Clinton 0

3 Cindy Crawford 0

4 Tom Cruise 0

5 Bill Gates 0

6 Whitney Houston 0

7 Michael Jordan 0

8 Jay Leno 0

9 David Letterman 0

10 Will Smith 0

370 A Programming System for Children that is Designed for Usability

Materials from Study 2

RATER’S NAME __________PARTICIPANT # _________FORM # ______

1. Please count the number of times the participant uses these various methods to express concepts about multi-

ple objects.

a) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Think of them as a set or subsets of entities and operate on those, specify them as plurals, or enu-

merating the members of the set. (please also answer the next question for each tick-mark.)

Example: Buy the books that are red.

Buy each of the books that is red.

For book1, book2, book3, ..., book15, if it is red, buy it.

b) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Use an explicit for loop or other programming language form of iteration.

Example: For book1 to 15, if it is red, buy it.

If the book is red, buy it. Repeat 14 more times/Repeat until done.

c) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Other (please specify) ____________________

2. When you found the use of Sets in Question 1-a (above), how did the participant construct those sets or sub-

sets?

a) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Using the word “ALL” or “for all”

Example: Buy all the books that are red.

b) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Using the word “EACH” or “EVERY”

Example: For each book, if it is red, buy it.

Every book I bought today was red.

c) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

By enumerating the members of the set

Example: For book1, book2, book3, ..., book15, if it is red, buy it.

d) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Using just plurals

Example: Buy the books that are red.

A Programming System for Children that is Designed for Usability 371

Materials from Study 2

e) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

By naming the column of the database.

Example: Add 2,000 to ‘Round 1.’

f) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Other (please specify) ____________________

3. In Questions 3, 4, and 9, please count the number of times the participant uses these various methods onsets

or subsets after they have been created to handle conditions with various options.

a) 3_____ 4_____ 9_____

By using set difference.

Example: Throw away all those boxes except/but not the red one.

Throw away all those boxes. But if the box is red, keep it.

Add up all the numbers, except the highest.

b) 3_____ 4_____ 9_____

By specifying a subset, then make an inverse of that subset.

Example: Keep the red box, and throw away the rest/all others.

Delete the highest number, and add up all the rest.

c) 3_____ 4_____ 9_____

By specifying disjoint or mutually exclusive sets/subsets.

Example: Keep the red box. Throw away the boxes that are not red.

d) 3_____ 4_____ 9_____

Other (please specify) ____________________

4. Please count the number of times the participant uses an “IF” clause to handle conditions with various

options.

a) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

By specifying mutually exclusive conditions.

Example: If the box is red, keep it. If the box is not red, throw it away.

372 A Programming System for Children that is Designed for Usability

Materials from Study 2

b) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

By using nested conditions (the 2nd clause can stand alone but will give the wrong value.)

Example: If you score 90 or higher, you get an ‘A’. If you score 70 or higher, you get a ‘B’ (assum-

ing that the score is also less than 90.)

c) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

By using an if clause with another dependent clause (the 2nd clause cannot stand alone.)

Example: If the box is red, keep it. Otherwise/Else/If not, throw it away.

If the box is red, keep it. If it is any other color, throw it away.

d) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Other (please specify) ____________________

5. In Questions 5A and 5B (if any), did the answer cover every integer (were there any holes or overlaps)?

a) 5A_____ 5B_____

All numbers were covered, no holes and no overlaps.

b) 5A_____ 5B_____

Some numbers were NOT covered, or some overlaps occurred.

6. In Questions 5A and 5B (if any), how are the ranges specified to handle open intervals, typically for the ‘poor’ and

‘extraordinary’ performances?

a) 5A_____ 5B_____

Used a Mathematical Notation instead of words.

Example: “> 200”

“<= 100”

b) 5A_____ 5B_____

Used a word like “above”, “below”, “greater than”, “less than” to be EXCLUSIVE.

Example: “Above 200” means strictly greater than 200.

“200 or greater” so that the implied meaning is exclusive.

c) 5A_____ 5B_____

Used a word like “above”, “below”, “greater than”, “less than” to be INCLUSIVE.

A Programming System for Children that is Designed for Usability 373

Materials from Study 2

Example: “Above 200” means greater than or equal to 200

d) 5A_____ 5B_____

Used power of ten to specify the range.

Example: “In the hundreds”

e) 5A_____ 5B_____

Other (please specify) ____________________

7. In Questions 5A and 5B (if any), how are the ranges specified to handle closed interval, typically for the

‘fine’ performance?

a) 5A_____ 5B_____

Used a Mathematical Notation instead of words.

Example: “100 < x < 200”

b) 5A_____ 5B_____

Used the word “between” to be EXCLUSIVE.

Example: “between 100 and 200” means 100 < x < 200

c) 5A_____ 5B_____

Used the word “between” to be INCLUSIVE.

Example: “between 100 and 200” means 100 <= x <= 200

d) 5A_____ 5B_____

Used the word “between”, with inconsistent meaning on each end of interval

Example: “between 100 and 200” means 100 <= x < 200 or 100 < x <= 200

e) 5A_____ 5B_____

Used the word “from...to”, a symbol “-“, or something similar to be EXCLUSIVE.

Example: “from 100 to 200” or “100 - 200” means 100 < x < 200

f) 5A_____ 5B_____

Used the word “from...to”, a symbol “-“, or something similar to be INCLUSIVE.

Example: “from 100 to 200” or “100 - 200” means 100 <= x <= 200

g) 5A_____ 5B_____

Used the word “from...to”, a symbol “-“, or something similar, but had inconsistent meaning on

each end of interval.

Example: “from 100 to 200” or “100 - 200” means 100 <= x < 200 or 100 < x <= 200

374 A Programming System for Children that is Designed for Usability

Materials from Study 2

h) 5A_____ 5B_____

Specify each end of the interval.

Example: “greater than 100 and/but less than 200”

“greater than or equal to 100 and less than or equal to 200”

i) 5A_____ 5B_____

Used power of ten to specify the range

Example: “In the hundreds”

j) 5A_____ 5B_____

Other (please specify) ____________________

8. Please count the number of times the participant uses these mathematical operations.

Consider when he/she is asked to increase/decrease a variable “count” by some units.

a) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

A more natural language style, with explicit variable and amount.

Example: ADD 20 units to “count”

“count” increases by 20 units

b) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Programming language style

Example: count = count + 20

c) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Mathematical style

Example: count + 20

d) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Other (please specify) ____________________

9. Please count the number of times the participant uses the word “BUT” in these various ways.

a) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Used to mean “except”

A Programming System for Children that is Designed for Usability 375

Materials from Study 2

Example: He threw away all those boxes but the red one.

b) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Used to mean “AND”

Example: If the box is empty but is red, do not throw it away.

You will get a ‘B’ if you score above 80 but less than 90.

c) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Other (please specify) ____________________

10. Please count the number of times the participant uses the word “AND” in these various ways.

a) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Used as a sequencing word. (meaning “next”, “afterwards”)

Example: He knocked on the door and went in.

b) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Used to mean “as well as.” (Boolean conjunction)

Example: We were cold and hungry.

c) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Used for range specification.

Example: Select a number between 1 and 10.

d) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Other (please specify) ____________________

11. In question 4 and possibly also in question 5, please count the number of times the participant uses “AND” as

a Boolean expression correctly and incorrectly, in terms of how a programming language would use it.

a) 4_____ 5_____

If used, used it correctly.

Example: Extra credit is given if you turned in all the homework AND attended all the lectures.

b) 4_____ 5_____

Used it in a way that would not work in a programming language.

376 A Programming System for Children that is Designed for Usability

Materials from Study 2

Example: You will get an ‘A’ if you score 90 AND above. (Scores cannot actually be 90 and above

90 at the same time.)

12. In question 4 and possibly also in question 5, please count the number of times the participant uses “OR” as a

Boolean expression correctly and incorrectly, in terms of how a programming language would use it.

a) 4_____ 5_____

Used it correctly. (the implied parenthesis may be needed in case of ‘NOT’)

Example: “You will get an ‘A’ if you score 90 OR above.”

“You will not get an ‘A’ if you do NOT score 90 OR above.”

b) 4_____ 5_____

Used it in a way that would not work in a programming language.

13. In Question 4, if the participant used the word ‘NOT’, please count the number of times the participant

expressed his/her concept about the precedent binding of “NOT” in these various ways.

a) 4_____

Low-precedence: “Not A or B” means Not(A or B)

Example: You will get a ‘B’ or a ‘C’ if you do NOT score 90 or higher.

b) 4_____

High-precedence: “Not A or B” means (Not A) or B

Example: You will get a ‘B’ if you do (NOT score higher than 90) and higher than 80.

c) 4_____

Other (please specify) ____________________

14. Please count the number of times the participant uses the word “THEN” in these various ways.

a) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Used as a sequencing word (meaning “next”, “afterwards”)

Example: Dinner was followed by coffee, then came the speeches.

b) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

A Programming System for Children that is Designed for Usability 377

Materials from Study 2

Used to mean “in that case” or “consequently”

Example: If you want to go home, then finish this work and go.

If x=5 and y=3, then x+y = 8.

c) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Used to mean “besides” or “also”

Example: You must ask Jill to the party, and then there’s Jane -- don’t forget her.

d) 1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 7_____ 8_____ 9_____ 10_____ 11_____

Other (please specify) ____________________

15. In Questions 6 and 8, how did the participant express concepts about Sorting?

a) 6_____ 8_____

Used words such as “ascending” or “descending” order.

b) 6_____ 8_____

Used keywords such as, “alphabetical” or “numerical” order.

c) 6_____ 8_____

Used generic words such as “from A to Z” or “from lowest to highest”

d) 6_____ 8_____

Specified the sort key, such as “according to lastname/score”

e) 6_____ 8_____

Used specific examples such as

“the first one is the highest, the second one is the second highest, and so on”

f) 6_____ 8_____

Other (please specify) ____________________

16. In Question 8 please count the number of times the participant uses these various methods when deleting an

element out of an existing sequence of elements.

a) 8_____

Delete the element assuming there will be no hole after deletion.

378 A Programming System for Children that is Designed for Usability

Materials from Study 2

b) 8_____

Delete the element assuming there will be a hole, then fix up the hole.

c) 8_____

Other (please specify) ____________________

 17. In Question 8, please count the number of times the participant uses these various methods when inserting an

element into an existing sequence of elements.

a) 8_____

Make room and then insert the element.

b) 8_____

Insert the element and then push other elements out of the way to make room.

c) 8_____

Insert the element without mentioning anything about making room.

d) 8_____

Other (please specify) ____________________

18. In Question 8, please count the number of times the participant used any of these various methods to deter-

mine the right place for insertion.

a) 8_____

Insert an element somewhere, and then sort the new sequence of elements.

b) 8_____

Insert an element, with a correct method, to the right place where it belongs, but in a way that only

works with this specific data.

c) 8_____

Insert an element, with a correct method, to the right place where it belongs, that would also work

for any data.

d) 8_____

Incorrect method, with missing or incorrect details.

e) 8_____

Other (please specify) ____________________

A Programming System for Children that is Designed for Usability 379

Materials from Study 2

Are there any other observations you would like to make that were not covered by any

of the questions? Please write them in the space below.

380 A Programming System for Children that is Designed for Usability

Materials from Study 2

A Programming System for Children that is Designed for Usability 381

APPENDIX F Materials from Study 3

This following pages contain the materials from Study 3. Note that these materials appear

in full color at:

http://www.cs.cmu.edu/~pane/PaneThesis.pdf

382 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 383

Materials from Study 3

384 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 385

Materials from Study 3

386 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 387

Materials from Study 3

388 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 389

Materials from Study 3

390 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 391

Materials from Study 3

392 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 393

Materials from Study 3

394 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 395

Materials from Study 3

396 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 397

Materials from Study 3

398 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 399

Materials from Study 3

400 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 401

Materials from Study 3

402 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 403

Materials from Study 3

404 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 405

Materials from Study 3

406 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 407

Materials from Study 3

408 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 409

Materials from Study 3

410 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 411

Materials from Study 3

412 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 413

Materials from Study 3

414 A Programming System for Children that is Designed for Usability

Materials from Study 3

A Programming System for Children that is Designed for Usability 415

APPENDIX G Materials from Study 4

The following pages contain the materials from Study 4. First the materials for the HANDS

condition are presented, followed by the materials for the comparison condition. For each,

the following three items appear: the tutorial, the tasks, and the program the participants

started with when they began the tasks.

416 A Programming System for Children that is Designed for Usability

Materials from Study 4

1

Student Number_________________

The HANDS Tutorial

Welcome to HANDS!

HANDS is a way for kids to create things like games on the computer. This tutorial will teach you
some important things you can do with HANDS. Once you understand them, you will be ready to
make your own games.

First, let's look at what we have to work with:
• The game board is the large white square in the center. This is where all of the action takes

place.
• Handy is the character in the top left corner. He keeps track of the rules of each game and

makes things happen when the game is running. When you want something to happen, you
have to tell Handy how to do it.

• Below the game board are control buttons. We can use these to run our game.
• There is also a stack of cards in the top right. We will keep all of our information on cards.
• Soon you will understand how to use all of these parts.

Let’s create a world where bees fly around and land on flowers to gather nectar. Whenever you
see this: , there is an action step for you to do. When you complete the step, put a check mark
in the box to keep track of your progress. If you follow all of the action steps, and try to learn
along the way, you will be in great shape!

Creating cards

 Please write down what time it is now _________________.

The first things we need in this world are some flowers. To create an object, you will
make a card for it. Then you can use the card to keep track of everything that you want
Handy to know about the object.

Now, let's create a flower.
 Take a new card from the pile on the table. You can do this by clicking with the mouse

on the top of the pile. Do you see how a new card appeared on the table? This will be the
card for our first flower.

Each card has a front and a back. The front of the card shows all of the information about
the object. The back of the card shows what the object looks like. When you first add a
card, it's front is facing up. We can flip the card over to see the other side. When you
want to see the back of a card, you can flip it over by clicking on the “X” on the top right of
the card.

Let's look at the back of this card.
 Flip the card over by clicking on the x on the top right of the card.

There isn’t much to see on the back of the card because we still have to tell Handy what
it should look like.

A Programming System for Children that is Designed for Usability 417

Materials from Study 4

2

Let's take another look at the front of this card. When you want to see the front of a card,
you can flip it over again by clicking on the back of the card.

 Flip the card over by clicking anywhere on the back of the card.
The front of the card has spaces on it; this is where we can add information. Each row on
the card is a property. It has a pair of boxes to hold information: the boxes on the left are
called name boxes; the boxes on the right are called the value boxes. Soon you will see
what these names and values are for.

Handy gives each new card three properties to start with. We can see the names of these
properties by looking at the name boxes. Can you see the names of the three properties
that we are starting with? The properties are named: cardname, x, and y. Now let’s find

out what these properties mean.

Look at this card’s first property, cardname. The value box for the cardname property has
the name of the card, Card-1. Since we haven’t named our flower yet, Handy has given it
this name to start with. Handy also shows the card’s name at the very top of the card. Do
you see it?

We would like to name our flower something different. Lets name it Rose. We can
change the value of a property by double-clicking in the value box, and changing what is
says.

 Double-click in the value box for the cardname property. This is the box that says
Card-1 right now.

 Delete the name Card-1 and type Rose as the new name. Press Enter.
Handy sees when you change the card’s name, and he copies it to the top of the card.
Do you see the new name Rose at the top now?

x and y are properties that describe the card’s position on the table. The way we use x
and y is like this: start at the top left corner of the screen. At this corner, the value for x is
0 and the value for y is 0; this is like a starting point. If we want to move an object’s
position toward the right of the screen, we add more to x. If we want to move an object
down on the screen, we add more to y.

The picture on the next page shows some examples.

418 A Programming System for Children that is Designed for Usability

Materials from Study 4

3

You can move the card around the table by clicking on the blue part at the top of the card
and holding down the button while you move the mouse.

 Watch to the x and y values while you move the card to a new location.
Did you see the values of the x and y properties changing? If you didn’t see it, try again.
Handy sees that when the card moves, its x and y properties are different. So, he puts
the new x and y values on the card.

Handy will also move the card to the location that the property says. So, we can type in a
new value for the x and y properties, and Handy will move the card there for us.

 Change the card’s location by deleting the current value of the x property and typing in
200. Press Enter.

Did you see the card move after you pressed Enter?
 Now delete the current y value and put in 320. Press Enter.

There is a blank line at the bottom of the card so we can add more properties to a card
than the three that it starts with. We can even tell Handy to change how the card looks.
Do you remember that the back of the card shows what the object looks like? Let's look
again at the back of this card.

 Flip the card. Right now we just see the regular design for the back of a card.
It doesn’t look like a flower yet because we haven’t added any properties that tell the
object how to look.

 Flip the card over again to see the front.

A Programming System for Children that is Designed for Usability 419

Materials from Study 4

4

Whenever you type information for Handy to read, you have to be extra careful to spell
everything the right way. This is because Handy is picky, and can only understand words
when they are typed in the exact way that he knows.

Back is a special word that Handy will recognize when it is the name of a property. Lets

make a property named back that will tell Handy what to show on the back of the card.

 In the blank name box on the left side of the card, below y, type back. Press Enter.

Once you create a new property name, Handy will fill in the value of the property with 0.

This is just so that every property that has a name always has a value. You can change
the value of your new property from 0 to whatever you choose.

Now we can decide what the flower will look like. We already have a picture we will use
for the Rose. The name of the picture is rose.gif.

 On the right side of the back property, type rose.gif into the value box. You will

have to delete the starting value of 0 first. Press Enter.

 Flip the card over to look at the back again.
Do you see the picture of the flower now?
When Handy sees the name of a picture in the back property, he puts that picture on the
back of the card. If you do not see a picture on the back of your card, make sure you
typed it exactly how it appears above.

Believe it or not, Handy doesn’t know that the Rose is a flower. We have to help him by
putting that information on the card.

 Flip the Rose card over again so that we can see the front of the card.
 Add a property named kind to the Rose, and set the value of this property to flower.

Press Enter.

We can add any other information that we want to the card by just adding more
properties. What sorts of things would we want Handy to know about this flower? We
could make properties for things like the type of flower it is, the color it is, or the number
of petals it has. Let's make a property for how much nectar this flower has.

 Double click on a blank name box and type nectar as the name. Press Enter.

 Set the value of the nectar property to 25.

We can add any other information that we want to the card by just adding more
properties, but we do not need to add any more right now. Instead lets make two more
flowers and a bee.

One easy way to make a new card is to copy one that is similar. On the front of the Rose
card, you can get a menu by clicking on the > symbol above the properties.

 Make sure you are seeing the front of the Rose card.
 Click the > symbol, and select the command “Duplicate Card”. Handy makes a copy of

the Rose card right on top of it, and names it Rose-copy1. The original Rose card is
underneath. He gives the new card a different name because every card must have a
different name.

 Move the card Rose-copy1 to the side so we can see both cards.
 Change its cardname property to Lily.

 Change its back property to lily.gif.

420 A Programming System for Children that is Designed for Usability

Materials from Study 4

5

 Look at the back of the card to make sure Handy found the picture.

Now, we will make a Sunflower.
 Create a Sunflower in the same way, by using the “Duplicate Card” command to copy

one of the existing cards.
 Move the Sunflower so it is next to the other flowers on the game board.
 Change the copy’s cardname property to Sunflower.

 Change its back to sunflower.gif.

 Look at the back of the card to make sure Handy found the picture.

Let’s make a bee. DO NOT copy another card to make the bee. Make sure you create a
new card.

 Create a new card by clicking on the pile of New Cards.
 Name it Buzzy by setting the cardname property.

 Create a back property and set it to bee.gif.

 Flip the card to make sure Handy found the picture. You can place Buzzy wherever

you would like on the game board.

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

If a Save box comes up, please type your student number into the smaller white box
labeled File name. Then press the Save button.

Running the game
The control buttons are used to run our game.

 Press the play button to make the game run.

Handy flips all the cards face down and starts looking for things to do. But we have not
told Handy what we want him to do yet, so our game doesn't do anything.

 Press the stop button to stop the game. Now we can make changes in the game or
add new things to it.

Making things move on the game board
Handy will move a card for us if it has certain properties. The speed and direction
properties tell Handy how to move an object. If a card has a speed of 0, that means that
the card is not moving at all. If you set the speed to 15, then the card will move very, very
fast. The higher the speed, the faster the movement of the card.
Let's tell Handy how fast we want the bee to fly.

 Click on Buzzy to see the front of the card.
 Create a property named speed for Buzzy. Set the value to 1.

The direction of an object is the way in which it is moving. We describe direction by using
angles. You can look at the direction compass in the bottom right corner of the screen to
help you remember which numbers match each direction. If a card has a direction of 0, it
will move toward the right side of the screen. A direction of 90 will tell the card to move
straight up.

Now let’s tell Handy which direction the bee should fly.
 Create a property named direction for Buzzy. You can leave the value set to 0.

A Programming System for Children that is Designed for Usability 421

Materials from Study 4

6

Let's test how this works.
 Press the play button to run our game. Look at Buzzy go!
 Now press the Stop button before Buzzy gets too far away!

If you want, Handy can put all the cards back where they were when you pushed Play.
This is useful if Buzzy goes off the screen.

 Press the Reset button, and answer yes to the question.

We can make Buzzy fly in other directions as well.
 Set Buzzy’s direction to 90.

 Press play to see which way Buzzy flies now.

 Press stop. Then press reset.
We saw how to make Buzzy go to the right of the board and to the top of the board. Can
you guess how to make Buzzy go to the left and down? What about to the corners of the
game board? Try one!

 Please write down what time it is now _________________.

Events
Let’s learn more about what Handy can do. Handy keeps track of the rules of each game
and makes things happen when the game is running. To see what Handy knows, we can
look at his thought bubble. The thought bubble is where we can look at the rules that
Handy already knows and add more rules for him to keep track of.

Let’s take a look at the thought bubble.
 Click on Handy to open up his thought bubble.

The names of the rules that Handy already knows are in the panel on the left. Handy isn’t
keeping track of any rules because we haven’t told him about any yet. Handy has started
one for you and called it unfinished-1. This name is in red to show that Handy does

not understand it yet. The big panel to the right is where we tell Handy exactly what we
want the rule to do. Handy will only understand rules written a certain way.

Handy accomplishes things by watching for events. A rule tells Handy which events are
important, and what to do when those events happen. Here is an outline for all of Handy’s
thoughts:

when an event happens
 do some things
end when

For each new rule that we make, Handy gives us this to start with:
when

end when

You can see that it is up to us to fill in two main parts of the rule:
1) the event that Handy should be on the lookout for
2) what things Handy should do when that event happens.

Now let's teach Handy a rule about our game. Let's make a rule that whenever you type
“R” on the keyboard, Buzzy will fly to the right. We are already given the outline of the

422 A Programming System for Children that is Designed for Usability

Materials from Study 4

7

rule. We first need to let Handy know which event to lookout for. The event that we care
about is when the R key is typed.

 Find where the rule says when. Change it to say:
when R is typed

Next we need to tell Handy what things should happen when R is typed. We want Buzzy
to fly to the right. Here is how you can tell Handy to do that:

set Buzzy's direction to 0

 Type this instruction into the rule. When you’re done, the rule should look like this:
when R is typed

set Buzzy's direction to 0
end when

It is important that you write the rule in this special way. If you don’t, Handy may not
understand what you want him to do. After you write a rule, you can check to see if
Handy understands what you wrote.

 Click on the Check box above your rule. This will ask Handy to check if he
understands your rule.
Did you see the word OK appear in the bottom panel?

If Handy does not understand your rule, he will let you know what he is confused about.
His message will appear in the panel at the bottom of the thought bubble. If you see a
message in this window, you should go back and see if you made a typing mistake or if
you said something in a different way than Handy would understand.

If Handy does understand your rule, he will change the name of the rule along the left
side, and he will make it green. Did Handy rename the rule and make it green? It should
now be called R is typed. Handy names the rules according to what event he needs to

always watch for.

Let's now add three more rules for Buzzy. We will add a rule for Buzzy to move left, one
for Buzzy to move up and one for him to move down.

First let’s create a rule that makes Buzzy move to the left when you type the letter “L” on
the keyboard.

 Create a new rule by pressing the New button.
 Tell Handy to watch for: when L is typed

 Put this instruction inside the rule:
set Buzzy's direction to 180

 Check to see if Handy understands your new rule by clicking on the check button.
If the rule checks OK and Handy understands it, great! If Handy does not understand it,
look at what you typed to see if there are any mistakes. The message from Handy might
help you figure out what is wrong.

Let's try what we have so far.
 Close Handy’s thought bubble. Now we can see the whole game board.
 Click on Buzzy and move him to the lower left corner of the game board.
 Press the play button.

Can you use the R and L keys to control when Buzzy flies to the right and left?

A Programming System for Children that is Designed for Usability 423

Materials from Study 4

8

 After you have played for a little while press the stop button so that we can add more
to our game. If Buzzy flew off the screen, press Reset to bring him back.

Now is your turn to create the rules for Buzzy to fly in other directions too.
 Create a new rule so that Buzzy will fly up toward the top of the screen when U is

typed. Use the compass to figure out what the direction should be. Use Check to make

sure Handy understands your new rule.

 Create a new rule so that Buzzy will fly down toward the bottom of the screen when D

is typed. Use Check to make sure Handy understands.

Now there should be four green rules listed at the left side of the thought bubble:
D is typed
L is typed
R is typed
U is typed

If you click each of these you can review what your rules do. They should all be very
similar, except they will each set Buzzy’s direction to a different value.

Let's try our new game out.
 Press the play button. Can you use the keyboard to control where Buzzy flies now?

Remember, L is left, R is right, U is up, and D is down. Do all of the directions work?
 After you have played for a little while press the stop button so that we can add more

to our game.
If Buzzy flew off of the screen, press Reset to get him back.

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

 Please write down what time it is now _________________.

Collisions
We can make this game more interesting by making Buzzy do something besides fly
around. He can collect nectar from the flowers. Each flower has a property to keep track
of how much nectar it has left, and Buzzy can have a property to keep track of how much
nectar he has collected.

 Make sure you have clicked the Stop button.
 Add a Nectar property Buzzy's card.

Buzzy has not collected any nectar yet, so leave the value set to 0.

What if we wanted to make something special happen whenever Buzzy flies up to a
flower? We can tell Handy to take some nectar from the flower and give it to Buzzy.

 Start a new rule in Handy’s thought bubble.

When one card touches another card on the game board, the objects have a collision. A
collision is an event that Handy can look out for. If we want to tell Handy to watch for
when Buzzy is in a collision, we tell Handy to do something when Buzzy collides.

 Make the new rule start with: When Buzzy collides into any flower

424 A Programming System for Children that is Designed for Usability

Materials from Study 4

9

What should happen when Buzzy collides with a flower?
 Tell Handy to do these things:

subtract 1 from the flower’s Nectar
add 1 to Buzzy's Nectar
beep

This tells Handy to decrease the flower’s nectar by one, and increase Buzzy’s nectar by
one. It also asks Handy to beep so we will know each time a collision has happened.

Now, let’s test this new rule.
 Press the play button, and make Buzzy fly into some of the flowers a few times. Do

you hear a beep each time Buzzy collides into a flower?
 Press the stop button, but do not press Reset. Look at the front of Buzzy, and see

how much nectar he has collected. He started with zero. Does he have some nectar
now?

 Look at the flowers to see how much he took from them. The all started with 25. The
ones he collided into should have less than 25.

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

 Please write down what time it is now _________________.

Testing Your Ideas
When you put rules into Handy’s thought bubble, Handy remembers them but he does
not perform the actions in the rule right away. He waits until you press the Play button
and then if he see an event that matches the rule he will do the actions.

Sometimes you might like to ask Handy to try something for you immediately, instead of
making a rule and then waiting for him to see the rule’s event. You can use the Testing
Window to ask Handy questions and get his answers right away.

Let's open the Testing Window. Above Handy is a Programming menu.
 Choose Open Testing Window from the Programming menu.

The Testing Window should be familiar because it is similar to Handy’s thought bubble.
But the things you type here are not put into Handy’s thought bubble. Instead, he will do
what you ask one time only when you push the Test It Now button.

 Let’s try it. Let’s ask Handy to do an easy math problem. Type "1+1" into the top right

of the Testing Window and press Test It Now.
Did you see the number 2 appear in the bottom window? That is Handy telling you the
answer. Handy can do harder math problems, and lots of other things.

 Go ahead and ask Handy to do a few things.

Lists
Sometimes we want Handy to keep track of a list of items. The special way he makes a
list of items is to write them with commas between. Here are two examples of lists:

apple, pear, orange, banana
4, 6, 34, -33, 7, 3

A Programming System for Children that is Designed for Usability 425

Materials from Study 4

10

Handy can also tell us information about a list, if we ask using words he understands.
Sometimes these words look funny because they are all squished together without any
spaces.

Let's look at an example.
FirstItem in apple, pear, orange

This asks Handy to tell us the first item in the list. Can you guess what Handy will tell us?
The answer is apple.

 Try it. Type FirstItem in apple, pear, orange in the Testing Window and

press and press Test It Now.
Did Handy say apple in the bottom window?

Handy can make lists of cards for us. If we want a list of all of the flowers, we can just
type all flowers.

 Type all flowers in the Testing Window and press Test It Now. Handy gives us a

list of all of the flowers.

Asking Handy to Look for Information
We can ask Handy to look through the cards and search for information about them. Let’s
make a list of how much nectar each flower has. To do this we have to put together a few
pieces. We will ask Handy to find all flowers and look into the nectar property of

each one.
 Type nectar of all flowers into the Testing Window and see what Handy

replies.
Did you see a list of numbers in the bottom window? Each of these numbers came from
the nectar property of one of the flowers.

Let’s ask Handy to show us which flower has the least amount of nectar left.

Handy understands a way to give us the card with the least value in a certain property.
The outline for this question is:

CardWithLeast property of cards
We have to fill in two pieces, which property Handy should look in, and which cards he
should look at.

In this case, we would like handy to look in the nectar property, and the cards we want

him to look at are all flowers. So we can say:

 CardWithLeast nectar of all flowers.

 Type CardWithLeast nectar of all flowers into the Testing Window to see

what happens.

If there is a tie, Handy will answer with a list of the flowers that have the least amount of
nectar.

Handy also knows how to find the card with the greatest value in a certain property. The
word Handy understands for that is: CardWithGreatest.

426 A Programming System for Children that is Designed for Usability

Materials from Study 4

11

The Build Menu
At the top of the Testing Window there is a Build menu. This menu always changes to
show you the words Handy understands at the spot where you’re typing. If you pick a
word from this menu, it is the same as typing it. This could save you some work. For
example, you can avoid typing long words like CardWithLeast. CardWithLeast is

listed under the category List Operators in the Build menu.

There is also a Build menu in Handy’s Thought Bubble. Using the Build menu is optional.
You can use the keyboard to type the easier words, or all of them if you want to.

 Please write down what time it is now _________________.

Displaying Answers on the Game Board
Now that we can get such great information from Handy, we should find a way to display
it for everyone to see. We can create a card to keep track of which flower currently has
the least nectar.

 Close the Testing Window and create a new card. Give it the name leastFlower.

 Create a back property for the leastFlower card. It’s ok to leave it set to zero.

 Move the leastFlower card onto the game board and flip it over. Right now, you should
see the zero that’s in the back property of the card.

A minute ago, Handy told us which flower has the least nectar in the Testing Window. But
the answer could change while the game is running and Buzzy is taking nectar from the
flowers. We would like Handy to keep us informed as soon as the answer changes. So
we have to put the command into a rule. If we want Handy to check a rule all of the time,
the event we want him to be on the lookout for is when anything happens.

 Open Handy’s Thought Bubble.
 Use the New button to make a new rule.
 Type when anything happens for the event. This way Handy will do the action all

the time when anything happens on the game board.

We know we want Handy to figure out the CardWithLeast nectar of all

flowers. We would like him to put the answer into the back property of the leastFlower

card. To do this, we will ask him to:
 set leastFlower’s back to CardWithLeast nectar of all flowers

 Put that inside your new rule.

The rule should look like this:
when anything happens

set leastFlower’s back to CardWithLeast nectar of all flowers
end when

 Press Check, to make sure the new rule is correct. If it is, close Handy’s Thought
Bubble.

 Press Play to see what happens. Did Handy change the back of leastFlower to tell us
which card or cards have the least nectar?

 Have Buzzy land on a few flowers and watch what happens to the flower with least
value. Did it change at all?

 Press the stop button when you are finished.

A Programming System for Children that is Designed for Usability 427

Materials from Study 4

12

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

 Please write down what time it is now _________________.

Adding up lists of numbers
What if we were going to create more bees to gather honey with Buzzy. We would have
to make sure that there is enough nectar to go around. Handy can help us figure out how
much nectar the flowers have altogether.

If we give Handy a list of numbers, he can add them up for us.
 Open the Testing Window, and type sum 1,2,3

Handy adds up the numbers.

Earlier we used nectar of all flowers to make a list of the nectar in all of the

flowers. If we want Handy to sum up all of these values we can combine this with the sum
command like this:

sum the nectar of all flowers

 Try that in the Testing Window.

When we ask this way, Handy adds up all of the nectar in all of the flowers.

Now let’s make a card for Handy to put the answer in.
 Close the Testing Window and make a card named total.

 Create a back property for the total card. It’s ok to leave it set to zero.

 Move the total card onto the game board and flip it over. Right now, you should see
the zero that’s in the back property.

We want Handy to always update the total card have the correct total nectar. Do you
remember what event we want Handy to watch for if we want him to check a rule all of
the time? It is when anything happens. Since we already have a rule for anything

happens we will add another instruction to it.

 In Handy’s Thought Bubble, add another instruction to the when anything
happens rule. The new instruction is:

set total’s back to sum the nectar of all flowers

Now your anything happens rule should look something like this.
when anything happens
 set leastFlower’s back to CardWithLeast nectar of all flowers
 set total’s back to sum the nectar of all flowers
end when

 Press Check to make sure Handy understands the rule.
 Press Play and watch what happens when Buzzy takes nectar from the flowers.

Handy should update the total card to always show how much nectar the flowers have

altogether.

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

 Please write down what time it is now _________________.

428 A Programming System for Children that is Designed for Usability

Materials from Study 4

13

Making Changes to lots of objects that are the same kind
What if there isn’t enough nectar for a large group of bees? Let’s tell Handy to give ten
more nectar to each of the flowers when we type the “n” key. To do this, we will combine
two things we learned earlier:

1) Remember when we were writing the rule for when Buzzy lands on a flower? We
used subtract 1 from the flower’s nectar to take some nectar from the

flower. Handy can also do addition or subtraction on a whole list of items, such as the
nectar properties of all of the flowers.

2) Remember when we wanted Handy to make a list of the nectar in all of the flowers?
We used nectar of all flowers to do this.

Let’s combine these two ideas to accomplish our goal. We can ask Handy to:
add 10 to the nectar of all flowers

Handy will go to every flower and add 10 to its nectar property.

 In Handy’s Thought Bubble, create a new rule to do this when N is typed:
when N is typed

add 10 to the nectar of all flowers
end when

 Press Check, to make sure Handy understands the rule.
 Press Play, and try it out by pressing the N key.

Did you see the total nectar increase by 30 each time you pressed the N key?
This is because there are 3 flowers, and each one gets 10 added to its nectar.

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

 Please write down what time it is now _________________.

Congratulations! You have completed the HANDS Tutorial. You were able to make a fun world
with bees and flowers, and hopefully, you learned a lot about HANDS along the way.

A Programming System for Children that is Designed for Usability 429

Materials from Study 4 Student Number_________________

Great job! Now that you have learned so much about HANDS, you are ready to try to do some
more things on your own.

Here is a new game similar to the one you created. Buzzy went back to the hive and told all of
the bees about the wonderful flowers he found. Now lots of Buzzy’s friends have come to gather
nectar with him. To help us keep track of Buzzy, he is bigger than all the other bees. You can
still control Buzzy with the U, D, L and R keys.

All of the bees now have a special property so Handy knows they are bees. This is the property
named kind with the value bee. You can see this for yourself on each bee card. Handy knows
some rules to make the bees fly around and collect nectar on their own.

Can you add some things to this new game? You can refer to the tutorial if you need some
hints.

 Please write down what time it is now _________________.

1. Display the name of the bee that collected the greatest amount of nectar.
 A card named bestBee has been created for this problem. Have Handy check which bee has

the greatest amount of nectar, and put the answer into the back property of bestBee. Handy
should always update this information while the game is running. This means he should do it
when anything happens.

Hint: It may be useful to review page 10 of the tutorial, in the section “Asking Handy to Look for
Information”.

 Run your game to check if it works. The first set of question-marks (???) should be replaced
by the name of the bee with the greatest amount of nectar.

 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

2. Make all of the bees stop flying when the S key is typed.
 You will need to set their speed to 0.

Hint: It may be useful to review page 7 of the tutorial.

 Run your game to check if it works. All of the bees should stop when you press the S key.
 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

3. Let all of the bees fly again when the G key is typed.
 They should fly at the speed of 1.

 Run your game to check if it works. All of the bees should go when you press the G key.
 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

430 A Programming System for Children that is Designed for Usability

Materials from Study 44. Display how much nectar all of the bees have collected.
 A card named beeTotal has been created to for this problem. Tell Handy to add up how much

nectar all the bees have, and put the answer into the back property of beeTotal. Handy should
update this as often as possible.

Hint: You may find useful information on page 12 of the tutorial, in the section “Adding up lists of
numbers”.

 Run your game to check if it works. The third set of question-marks (???) should be replaced
by the total amount of nectar collected by all of the bees.

 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

5. Add another bee to the world.
 Copy one of the existing bees and name it with your best friend’s name.

Hint: Look at the bottom of page 4 in the tutorial if you forgot how to copy cards.

 Run your game to check if it works. Your new bee should stop when the S key is hit, and go
again when the G key is hit. If your new bee does not stop and go, try to figure out why and fix it.

 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

That’s all. Thanks for your help!

BONUS PROBLEM:
If you have extra time, you can try this bonus problem.

6. Display how much nectar the best bee has.
 A card named mostNectar has been created for this problem. Tell Handy to figure out how

much nectar the best bee has, and put the answer into the back property of mostNectar. Handy
should update this as often as possible.

Hint: You will need to use your answer to problem 1 as part of your answer here.

 Run your game to check if it works. The second set of question-marks (???) should be
replaced by the amount of nectar collected by the best bee.

 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

A Programming System for Children that is Designed for Usability 431

Materials from Study 4

beeTotal x:406 y:60 back:"???";
beeTotalSign x:200 y:60 back:"All the bees have collected:";
bestBee x:406 y:20 back:"???";
bestBeeSign x:200 y:20 back:"The bee with the most nectar is:";
Bumbles x:530 y:60 kind:bee back:bumbleb.gif nectar:5 speed:1 direction:270;
Bumbles2 x:465 y:35 kind:bee back:bumbleb.gif nectar:5 speed:1 direction:270;
Buzzy x:575 y:152 kind:bee back:bee.gif nectar:0 speed:3 direction:270;
Buzzy2 x:677 y:102 kind:bee back:bumbleb.gif nectar:6 speed:1 direction:270;
Fuzzy x:450 y:120 kind:bee back:bumbleb.gif nectar:3 speed:1 direction:270;
Fuzzy2 x:580 y:290 kind:bee back:bumbleb.gif nectar:7 speed:1 direction:270;
Honey x:280 y:230 kind:bee back:bumbleb.gif nectar:7 speed:1 direction:270;
Honey2 x:490 y:260 kind:bee back:bumbleb.gif nectar:1 speed:1 direction:270;
Killer x:650 y:90 kind:bee back:bumbleb.gif nectar:0 speed:1 direction:270;
Killer2 x:205 y:108 kind:bee back:bumbleb.gif nectar:0 speed:1 direction:270;
Lily x:318 y:329 kind:flower back:lily.gif nectar:100;
Lily2 x:675 y:308 kind:flower back:lily2.gif nectar:100;
mostNectar x:406 y:40 back:"???";
mostNectarSign x:200 y:40 back:"He has this much nectar:";
Rose x:205 y:319 kind:flower back:rose.gif nectar:100;
Rose2 x:465 y:328 kind:flower back:rose2.gif nectar:100;
Stripes x:300 y:150 kind:bee back:bumbleb.gif nectar:8 speed:1 direction:270;
Stripes2 x:403 y:202 kind:bee back:bumbleb.gif nectar:3 speed:1 direction:270;
Sunflower x:555 y:330 kind:flower back:sunflower.gif nectar:100;
when any bee collides into any flower

subtract 1 from flower's nectar
add 1 to bee's nectar
beep

end when
when D is typed

set buzzy's direction to 270
set buzzy's speed to 3

end when
when L is typed

set buzzy's direction to 180
set buzzy's speed to 3

end when
when program starts

with all bees calling each b
set direction of b to random 240 to 300

end with
end when
when R is typed

set buzzy's direction to 0
set buzzy's speed to 3

end when
when U is typed

set buzzy's direction to 90
set buzzy's speed to 3

end when

432 A Programming System for Children that is Designed for Usability

Materials from Study 4

1

Student Number_________________

The HANDS Tutorial

Welcome to HANDS!

HANDS is a way for kids to create things like games on the computer. This tutorial will teach you
some important things you can do with HANDS. Once you understand them, you will be ready to
make your own games.

First, let's look at what we have to work with:
• The game board is the large white square in the center. This is where all of the action takes

place.
• Handy is the character in the top left corner. He keeps track of the rules of each game and

makes things happen when the game is running. When you want something to happen, you
have to tell Handy how to do it.

• Below the game board are control buttons. We can use these to run our game.
• There is also a stack of cards in the top right. We will keep all of our information on cards.
• Soon you will understand how to use all of these parts.

Let’s create a world where bees fly around and land on flowers to gather nectar. Whenever you
see this: , there is an action step for you to do. When you complete the step, put a check mark
in the box to keep track of your progress. If you follow all of the action steps, and try to learn
along the way, you will be in great shape!

Creating cards

 Please write down what time it is now _________________.

The first things we need in this world are some flowers. To create an object, you will
make a card for it. Then you can use the card to keep track of everything that you want
Handy to know about the object.

Now, let's create a flower.
 Take a new card from the pile on the table. You can do this by clicking with the mouse

on the top of the pile. Do you see how a new card appeared on the table? This will be the
card for our first flower.

You can move the card around the table by clicking on the blue part at the top of the card
and holding down the button while you move the mouse.

 Move the card so it is in the middle of the game board (the big white square).

Each card has a front and a back. The front of the card shows all of the information about
the object. The back of the card shows what the object looks like. When you first add a
card, it's front is facing up. We can flip the card over to see the other side. When you
want to see the back of a card, you can flip it over by clicking on the “X” on the top right of
the card.

Let's look at the back of this card.
 Flip the card over by clicking on the x on the top right of the card.

A Programming System for Children that is Designed for Usability 433

Materials from Study 4

2

There isn’t much to see on the back of the card because we still have to tell Handy what
it should look like.

Let's take another look at the front of this card. When you want to see the front of a card,
you can flip it over again by clicking on the back of the card.

 Flip the card over by clicking on the back of the card.
The front of the card has spaces on it; this is where we can add information. Each row on
the card is a property. It has a pair of boxes to hold information: the boxes on the left are
called name boxes; the boxes on the right are called the value boxes. Soon you will see
what these names and values are for.

Handy gives each new card three properties to start with. We can see the names of these
properties by looking at the name boxes. Can you see the names of the three properties
that we are starting with? The properties are named: cardname, x, and y. Now let’s find

out what these properties mean.

Look at this card’s first property, cardname. The value box for the cardname property has
the name of the card, Card-1. Since we haven’t named our flower yet, Handy has given it
this name to start with. Handy also shows the card’s name at the very top of the card. Do
you see it?

We would like to name our flower something different. Lets name it Rose. We can
change the value of a property by double-clicking in the value box, and changing what is
says.

 Double-click in the value box for the cardname property. This is the box that says
Card-1 right now.

 Delete the name Card-1 and type Rose as the new name. Press Enter.
Handy sees when you change the card’s name, and he copies it to the top of the card.
Do you see the new name Rose at the top now?

x and y are properties that describe the card’s position on the table. The way we use x
and y is like this: start at the top left corner of the screen. At this corner, the value for x is
0 and the value for y is 0; this is like a starting point. If we want to move an object’s

434 A Programming System for Children that is Designed for Usability

Materials from Study 4

3

position toward the right of the screen, we add more to x. If we want to move an object
down on the screen, we add more to y.

This picture shows some examples.

 Watch to the x and y values while you move the card to a new location.
Did you see the values of the x and y properties changing? If you didn’t see it, try again.
Handy sees that when the card moves, its x and y properties are different. So, he puts
the new x and y values on the card.

Handy will also move the card to the location that the property says. So, we can type in a
new value for the x and y properties, and Handy will move the card there for us.

 Change the card’s location by deleting the current value of the x property and typing in
200. Press Enter.

Did you see the card move after you pressed Enter?
 Now delete the current y value and put in 320. Press Enter.

There is a blank line at the bottom of the card so we can add more properties to a card
than the three that it starts with. We can even tell Handy to change how the card looks.
Do you remember that the back of the card shows what the object looks like? Let's look
again at the back of this card.

 Flip the card. Right now we just see the regular design for the back of a card.

A Programming System for Children that is Designed for Usability 435

Materials from Study 4

4

It doesn’t look like a flower yet because we haven’t added any properties that tell the
object how to look.

 Flip the card over again to see the front.

Whenever you type information for Handy to read, you have to be extra careful to spell
everything the right way. This is because Handy is picky, and can only understand words
when they are typed in the exact way that he knows.

Back is a special word that Handy will recognize when it is the name of a property. Lets

make a property named back that will tell Handy what to show on the back of the card.

 In the blank name box on the left side of the card, below y, type back. Press Enter.

Once you create a new property name, Handy will fill in the value of the property with 0.

This is just so that every property that has a name always has a value. You can change
the value of your new property from 0 to whatever you choose.

Now we can decide what the flower will look like. We already have a picture we will use
for the Rose. The name of the picture is rose.gif.

 On the right side of the back property, type rose.gif into the value box. You will

have to delete the starting value of 0 first. Press Enter.

 Flip the card over to look at the back again.
Do you see the picture of the flower now?
When Handy sees the name of a picture in the back property, he puts that picture on the
back of the card. If you do not see a picture on the back of your card, make sure you
typed it exactly how it appears above.

Believe it or not, Handy doesn’t know that the Rose is a flower. We have to help him by
putting that information on the card.

 Flip the Rose card over again so that we can see the front of the card.
 Add a property named kind to the Rose, and set the value of this property to flower.

Press Enter.

We can add any other information that we want to the card by just adding more
properties. What sorts of things would we want Handy to know about this flower? We
could make properties for things like the type of flower it is, the color it is, or the number
of petals it has. Let's make a property for how much nectar this flower has.

 Double click on a blank name box and type nectar as the name. Press Enter.

 Set the value of the nectar property to 25.

We can add any other information that we want to the card by just adding more
properties, but we do not need to add any more right now.

We would like to keep a list of all of the flowers. Let’s make another card for this.
 Click the pile of new cards to get another card. Leave it off to the side of the board.
 Set the cardname property to Garden.

The Garden card will contain a property that is a list of all of the flowers we create. Let’s
make a property for this list.

 In the blank name box on the left side of the Garden card, below y, type flowerList.

Press Enter.

436 A Programming System for Children that is Designed for Usability

Materials from Study 4

5

Right now, the only flower we have created is Rose, so let’s put that into the
flowerList property of the Garden card.

 On the right side of the flowerList property, type Rose into the value box. You will have

to delete the starting value of 0 first. Press Enter.

Now lets make two more flowers and a bee.

One easy way to make a new card is to copy one that is similar. On the front of the Rose
card, you can get a menu by clicking on the > symbol above the properties.

 Click on the Rose to flip the Rose card face up.
 Click the > symbol, and select the command “Duplicate Card”. Handy makes a copy of

the Rose card right on top of it, and names it Rose-copy1. The original Rose card is
underneath. He gives the new card a different name because every card must have a
different name.

 Move the card Rose-copy1 to the side so we can see the original Rose.
 Change Rose-copy1’s cardname property to Lily.

 Change its back property to lily.gif.

 Look at the back of the card to make sure Handy found the picture.

Sometimes we want Handy to keep track of more than one item in a single property. The
special way he makes a list of items is to write them with commas between. Here are two
examples of lists:

apple, pear, orange, banana
4, 6, 34, -33, 7, 3

We have to add the new flower to the flowerList property on the Garden card. But, since
Garden is not on the board, how can we flip it over?

 Go to the Programming menu above Handy, and choose the command Show Card
List. This window shows all of the cards in our game.

 Click on Garden in this window to flip the Garden card face up.
 Add Lily to the flowerList property of Garden, separating it from Rose with a comma.

When you’re done, the value of the flowerList property should be: Rose, Lily

Now, we will make a Sunflower.
 Create a Sunflower in the same way, by using the “Duplicate Card” command to copy

one of the existing flowers.
 Move the new card so it is next to the other flowers on the game board.
 Change the new card’s cardname property to Sunflower.

 Change its back to sunflower.gif.

 Look at the back of the card to make sure Handy found the picture.
 Click on Garden in the Cards window to flip it face up.
 Add Sunflower to the flowerList property of Garden, separating it from Lily with a

comma. When you’re done, the value of the flowerList property should be:
Rose, Lily, Sunflower

If you can’t see the whole contents of the flowerList property, you can make the card
larger by clicking one of the edges and holding the mouse button down while you move
the mouse. After you’re done, make sure that the Garden card is off the board so that it
doesn’t show at all when it is flipped face down.

A Programming System for Children that is Designed for Usability 437

Materials from Study 4

6

Let’s make a bee. DO NOT copy another card to make the bee. Make sure you create a
new card.

 Create a new card by clicking on the pile of New Cards.
 Place it wherever you would like on the game board.
 Name it Buzzy by setting the cardname property.

 Create a back property and set it to bee.gif.

 Flip the card to make sure Handy found the picture.

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

You can continue with the next section unless a Save box comes up. If a Save box does
come up, please type your student number into the smaller white box labeled File name.
Then press the Save button.

Running the game
The control buttons are used to run our game.

 Press the play button to make the game run.

Handy makes sure all the cards are flipped face down and starts looking for things to do.
But we have not told Handy what we want him to do yet, so our game doesn't do
anything.

 Press the stop button to stop the game. Now we can make changes in the game or
add new things to it.

Making things move on the game board
Handy will move a card for us if it has certain properties. The speed and direction
properties tell Handy how to move an object. If a card has a speed of 0, that means that
the card is not moving at all. If you set the speed to 15, then the card will move very, very
fast. The higher the speed, the faster the movement of the card.
Let's tell Handy how fast we want the bee to fly.

 Click on Buzzy to see the front of the card.
 Create a property named speed for Buzzy. Set the value to 1.

The direction of an object is the way in which it is moving. We describe direction by using
angles. You can look at the direction compass in the bottom right corner of the screen to
help you remember which numbers match each direction. If a card has a direction of 0, it
will move toward the right side of the screen. A direction of 90 will tell the card to move
straight up.

Now let’s tell Handy which direction the bee should fly.
 Create a property named direction for Buzzy. You can leave the value set to 0.

Let's test how this works.
 Press the play button to run our game. Look at Buzzy go!
 Now press the Stop button before Buzzy gets too far away!

If you want, Handy can put all the cards back where they were when you pushed Play.
This is useful if Buzzy goes off the board.

 Press the Reset button, and answer yes to the question.

438 A Programming System for Children that is Designed for Usability

Materials from Study 4

7

We can make Buzzy fly in other directions as well.
 Set Buzzy’s direction to 90.

 Press play to see which way Buzzy flies now.

 Press stop. Then press reset.
We saw how to make Buzzy go to the right of the board and to the top of the board. Can
you guess how to make Buzzy go to the left and down? What about to the corners of the
game board? Try one!

 Please write down what time it is now _________________.

Events
Let’s learn more about what Handy can do. Handy keeps track of the rules of each game
and makes things happen when the game is running. To see what Handy knows, we can
look at his thought bubble. The thought bubble is where we can look at the rules that
Handy already knows and add more rules for him to keep track of.

Let’s take a look at the thought bubble.
 Click on Handy to open up his thought bubble.

The names of the rules that Handy already knows are in the panel on the left. Handy isn’t
keeping track of any rules because we haven’t told him about any yet. Handy has started
one for you and called it something like unfinished-1. This name is in red to show that

Handy does not understand it yet. The big panel to the right is where we tell Handy
exactly what we want the rule to do. Handy will only understand rules written a
certain way.

Handy accomplishes things by watching for events. A rule tells Handy which events are
important, and what to do when those events happen. Here is an outline for all of Handy’s
thoughts:

when an event happens
 do some things
end when

For each new rule that we make, Handy gives us this to start with:
when

end when

You can see that it is up to us to fill in two main parts of the rule:
1) the event that Handy should be on the lookout for
2) what things Handy should do when that event happens.

Now let's teach Handy a rule about our game. Let's make a rule that whenever you type
“R” on the keyboard, Buzzy will fly to the right. We are already given the outline of the
rule. We first need to let Handy know which event to lookout for. The event that we care
about is when the R key is typed.

 Find where the rule says when. Change it to say:
when R is typed

Next we need to tell Handy what things should happen when R is typed. We want Buzzy
to fly to the right. Here is how you can tell Handy to do that:

set Buzzy's direction to 0

A Programming System for Children that is Designed for Usability 439

Materials from Study 4

8

 Type this instruction into the rule. When you’re done, the rule should look like this:
when R is typed

set Buzzy's direction to 0
end when

It is important that you write the rule in this special way. If you don’t, Handy may not
understand what you want him to do. After you write a rule, you can check to see if
Handy understands what you wrote.

 Click on the Check box above your rule. This will ask Handy to check if he
understands your rule.
Did you see the word OK appear in the bottom panel?

If Handy does not understand your rule, he will let you know what he is confused about.
His message will appear in the panel at the bottom of the thought bubble. If you see a
message in this window, you should go back and see if you made a typing mistake or if
you said something in a different way than Handy would understand.

If Handy does understand your rule, he will change the name of the rule along the left
side, and he will make it green. Did Handy rename the rule and make it green? It should
now be called R is typed. Handy names the rules according to what event he needs to

always watch for.

Let's now add three more rules for Buzzy. We will add a rule for Buzzy to move left, one
for Buzzy to move up and one for him to move down.

First let’s create a rule that makes Buzzy move to the left when you type the letter “L” on
the keyboard.

 Create a new rule by pressing the New button.
 Tell Handy to watch for: when L is typed

 Put this instruction inside the rule:
set Buzzy's direction to 180

 Check to see if Handy understands your new rule by clicking on the check button.
If the rule checks OK and Handy understands it, great! If Handy does not understand it,
look at what you typed to see if there are any mistakes. The message from Handy might
help you figure out what is wrong.

Let's try what we have so far.
 Close Handy’s thought bubble. Now we can see the whole game board.
 Click on Buzzy and move him to the lower left corner of the game board.
 Press the play button.

Can you use the R and L keys to control when Buzzy flies to the right and left?

 After you have played for a little while press the stop button so that we can add more
to our game. If Buzzy flew off the board, press Reset to bring him back.

Now is your turn to create the rules for Buzzy to fly in other directions too.
 Create a new rule so that Buzzy will fly up toward the top of the screen when U is

typed. Use the compass to figure out what the direction should be. Use Check to make
sure Handy understands your new rule.

440 A Programming System for Children that is Designed for Usability

Materials from Study 4

9

 Create a new rule so that Buzzy will fly down toward the bottom of the screen when D

is typed. Use Check to make sure Handy understands.

Now there should be four green rules listed at the left side of the thought bubble:
D is typed
L is typed
R is typed
U is typed

If you click each of these you can review what your rules do. They should all be very
similar, except they will each set Buzzy’s direction to a different value.

Let's try our new game out.
 Press the play button. Can you use the keyboard to control where Buzzy flies now?

Remember, L is left, R is right, U is up, and D is down. Do all of the directions work?
 After you have played for a little while press the stop button so that we can add more

to our game.
If Buzzy flew off of the board, press Reset to get him back.

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

 Please write down what time it is now _________________.

Collisions
We can make this game more interesting by making Buzzy do something besides fly
around. He can collect nectar from the flowers. Each flower has a property to keep track
of how much nectar it has left, and Buzzy can have a property to keep track of how much
nectar he has collected.

 Make sure you have clicked the Stop button.
 Add a Nectar property Buzzy's card.

Buzzy has not collected any nectar yet, so leave the value set to 0.

What if we wanted to make something special happen whenever Buzzy flies up to a
flower? We can tell Handy to take some nectar from the flower and give it to Buzzy.

 Start a new rule in Handy’s thought bubble.

When one card touches another card on the game board, the objects have a collision. A
collision is an event that Handy can look out for. If we want to tell Handy to watch for
when Buzzy is in a collision, we tell Handy to do something when Buzzy collides.

 Make the new rule start with: When Buzzy collides into any flower

What should happen when Buzzy collides with a flower?
 Tell Handy to do these things:

subtract 1 from the flower’s Nectar
add 1 to Buzzy's Nectar
beep

This tells Handy to decrease the flower’s nectar by one, and increase Buzzy’s nectar by
one. It also asks Handy to beep so we will know each time a collision has happened.

Now, let’s test this new rule.

A Programming System for Children that is Designed for Usability 441

Materials from Study 4

10

 Press the play button, and make Buzzy fly into some of the flowers a few times. Do
you hear a beep each time Buzzy collides into a flower?

 Press the stop button, but do not press Reset. Look at the front of Buzzy, and see
how much nectar he has collected. He started with zero. Does he have some nectar
now?

 Look at the flowers to see how much he took from them. The all started with 25. The
ones he collided into should have less than 25.

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

 Please write down what time it is now _________________.

Testing Your Ideas
When you put rules into Handy’s thought bubble, Handy remembers them but he does
not perform the actions in the rule right away. He waits until you press the Play button
and then if he see an event that matches the rule he will do the actions.

Sometimes you might like to ask Handy to try something for you immediately, instead of
making a rule and then waiting for him to see the rule’s event. You can use the Testing
Window to ask Handy questions and get his answers right away.

Let's open the Testing Window. Above Handy is a Programming menu.
 Choose Open Testing Window from the Programming menu.

The Testing Window should be familiar because it is similar to Handy’s thought bubble.
But the things you type here are not put into Handy’s thought bubble. Instead, he will do
what you ask one time only when you push the Test It Now button.

 Let’s try it. Let’s ask Handy to do an easy math problem. Type "1+1" into the top right

of the Testing Window and press Test It Now.
Did you see the number 2 appear in the bottom window? That is Handy telling you the
answer. Handy can do harder math problems, and lots of other things.

 Go ahead and ask Handy to do a few things.

More about Lists
Remember the way lists are written? Here is a list:

apple, pear, orange

Handy can also tell us information about a list, if we ask using words he understands.
Sometimes these words look funny because they are all squished together without any
spaces.

Let's look at an example.
FirstItem in apple, pear, orange

This asks Handy to tell us the first item in the list. Can you guess what Handy will tell us?
The answer is apple.

 Try it. Type FirstItem in apple, pear, orange in the Testing Window and

press and press Test It Now.
Did Handy say apple in the bottom window?

442 A Programming System for Children that is Designed for Usability

Materials from Study 4

11

Handy can work with the lists that are stored in properties of cards. If we want to get the
list of all of the flowers, we can just type Garden’s flowerList.

 Type Garden’s flowerList in the Testing Window and press Test It Now. Handy

gives us what’s in the flowerList property of the card Garden.

Since we have put the names of all of the flowers into this property, it is an easy way to
refer to all of them. Of course, it is up to us to make sure that the flowerList property

of Garden always has the correct information in it. If we add more flowers to our game,

we have to add them to this property too, or Handy won’t have them in the list of flowers.

Asking Handy to Look for Information
We can ask Handy to look through the cards and search for information about them. Let’s
make a list of how much nectar each flower has. To do this we have to put together a few
pieces. We will ask Handy to find all the flowers and look into the nectar property of

each one.
 Type nectar of Garden’s flowerList into the Testing Window and see what

Handy replies.
Did you see a list of numbers in the bottom window? Each of these numbers came from
the nectar property of one of the flowers.

Let’s ask Handy to show us which flower has the least amount of nectar left.

Handy understands a way to give us the card with the least value in a certain property.
The outline for this question is:

CardWithLeast property of cards
We have to fill in two pieces, which property Handy should look in, and which cards he
should look at.

In this case, we would like handy to look in the nectar property, and the cards we want

him to look at are (Garden’s flowerList). So we can say:

 CardWithLeast nectar of (Garden’s flowerList).

The parenthesis around (Garden’s flowerList) are necessary. It is best to be in the habit
of always putting parenthesis around lists like (Garden’s flowerList) to make sure Handy
will understand correctly.

 Type CardWithLeast nectar of (Garden’s flowerList) into the Testing

Window to see what happens.

If there is a tie, Handy will answer with a list of the flowers that have the least amount of
nectar.

Handy also knows how to find the card with the greatest value in a certain property. The
word Handy understands for that is: CardWithGreatest.

The Build Menu
At the top of the Testing Window there is a Build menu. This menu always changes to
show you the words Handy understands at the spot where you’re typing. If you pick a
word from this menu, it is the same as typing it. This could save you some work. For

A Programming System for Children that is Designed for Usability 443

Materials from Study 4

12

example, you can avoid typing long words like CardWithLeast. CardWithLeast is

listed under the category List Operators in the Build menu.

There is also a Build menu in Handy’s Thought Bubble. Using the Build menu is optional.
You can use the keyboard to type the easier words, or all of them if you want to.

 Please write down what time it is now _________________.

Displaying Answers on the Game Board
Now that we can get such great information from Handy, we should find a way to display
it for everyone to see. We can create a card to keep track of which flower currently has
the least nectar.

 Close the Testing Window and create a new card. Give it the name leastFlower.

 Create a back property for the leastFlower card. It’s ok to leave it set to zero.

 Move the leastFlower card onto the game board and flip it over. Right now, you should
see the zero that’s in the back property of the card.

A minute ago, Handy told us which flower has the least nectar in the Testing Window. But
the answer could change while the game is running and Buzzy is taking nectar from the
flowers. We would like Handy to keep us informed as soon as the answer changes. So
we have to put the command into a rule. If we want Handy to check a rule all of the time,
the event we want him to be on the lookout for is when anything happens.

 Open Handy’s Thought Bubble.
 Use the New button to make a new rule.
 Type when anything happens for the event. This way Handy will do the action all

the time when anything happens on the game board.

We know we want Handy to figure out the CardWithLeast nectar of (Garden’s

flowerList). We would like him to put the answer into the back property of the

leastFlower card. To do this, we will ask him to:
 set leastFlower’s back to

CardWithLeast nectar of (Garden’s flowerList)
 Put that inside your new rule.

The rule should look like this:
when anything happens

set leastFlower’s back to
CardWithLeast nectar of (Garden’s flowerList)

end when

 Press Check, to make sure the new rule is correct. If it is, close Handy’s Thought
Bubble.

 Press Play to see what happens. Did Handy change the back of leastFlower to tell us
which card or cards have the least nectar?

 Have Buzzy land on a few flowers and watch what happens to the flower with least
value. Did it change at all?

 Press the stop button when you are finished.

444 A Programming System for Children that is Designed for Usability

Materials from Study 4

13

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

 Please write down what time it is now _________________.

Adding up lists of numbers
What if we were going to create more bees to gather honey with Buzzy. We would have
to make sure that there is enough nectar to go around. Handy can help us figure out how
much nectar the flowers have altogether.

If we give Handy a list of numbers, he can add them up for us.
 Open the Testing Window, and type sum 1,2,3

Handy adds up the numbers.

Earlier we used nectar of (Garden’s flowerList) to make a list of the nectar in

all of the flowers. If we want Handy to sum up all of these values we can combine this
with the sum command like this:

sum the nectar of (Garden’s flowerList)

 Try that in the Testing Window.

When we ask this way, Handy adds up all of the nectar in all of the flowers.

Now let’s make a card for Handy to put the answer in.
 Close the Testing Window and make a card named total.

 Create a back property for the total card. It’s ok to leave it set to zero.

 Move the total card onto the game board and flip it over. Right now, you should see
the zero that’s in the back property.

We want Handy to always update the total card have the correct total nectar. Do you
remember what event we want Handy to watch for if we want him to check a rule all of
the time? It is when anything happens. Since we already have a rule for anything

happens we will add another instruction to it.

 In Handy’s Thought Bubble, add another instruction to the when anything
happens rule. The new instruction is:

set total’s back to sum the nectar of (Garden’s flowerList)

Now your anything happens rule should look something like this.
when anything happens
 set leastFlower’s back to

CardWithLeast nectar of (Garden’s flowerList)
 set total’s back to sum the nectar of (Garden’s flowerList)
end when

 Press Check to make sure Handy understands the rule.
 Press Play and watch what happens when Buzzy takes nectar from the flowers.

Handy should update the total card to always show how much nectar the flowers have

altogether.

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

 Please write down what time it is now _________________.

A Programming System for Children that is Designed for Usability 445

Materials from Study 4

14

Making Changes to lots of objects
What if there isn’t enough nectar for a large group of bees? Let’s tell Handy to give ten
more nectar to each of the flowers when we type the “n” key. To do this, we will use
something we learned earlier:

• Remember when we were writing the rule for when Buzzy lands on a flower? We
used subtract 1 from the flower’s nectar to take some nectar from the

flower. This time we would like to add 10 to the flower’s nectar

One at a time, we will make Handy do this to each of the flowers in (Garden’s flowerList).
The command to do that is with. The outline for the with command is:

with list calling each name
do something to name

end when

1) The list we would like to use is (Garden’s flowerList).
2) We would like to call each of them the flower.
3) The command to do to each one is add 10 to the flower’s nectar.

Let’s put this all together to accomplish our goal. We can ask Handy to:
with (Garden’s flowerList) calling each the flower

add 10 to the flower’s nectar
end with

 In Handy’s Thought Bubble, create a new rule to do this. Handy will go to every flower
and add 10 to its nectar property.

 Press Check, to make sure Handy understands the rule.
 Press Play, and try it out by pressing the N key.

Did you see the total nectar increase by 30 each time you pressed the N key?
This is because there are 3 flowers, and each one gets 10 added to its nectar.

Let’s save our work.
 Go to the Hands menu in the top left corner, and choose Save.

 Please write down what time it is now _________________.

Congratulations! You have completed the HANDS Tutorial. You were able to make a fun world
with bees and flowers, and hopefully, you learned a lot about HANDS along the way.

446 A Programming System for Children that is Designed for Usability

Materials from Study 4Student Number_________________

Great job! Now that you have learned so much about HANDS, you are ready to try to do some
more things on your own.

Here is a new game similar to the one you created. Buzzy went back to the hive and told all of
the bees about the wonderful flowers he found. Now lots of Buzzy’s friends have come to gather
nectar with him. To help us keep track of Buzzy, he is bigger than all the other bees. You can
still control Buzzy with the U, D, L and R keys.

All of the bees now have a special property so Handy knows they are bees. This is the property
named kind with the value bee. You can see this for yourself on each bee card. Handy knows

some rules to make the bees fly around and collect nectar on their own. Also, the Garden card

has a new property named beeList listing all of the bees in the game.

Can you add some things to this new game? You can refer to the tutorial if you need some
hints.

 Please write down what time it is now _________________.

1. Display the name of the bee that collected the greatest amount of nectar.
 A card named bestBee has been created for this problem. Have Handy check which bee has

the greatest amount of nectar, and put the answer into the back property of bestBee. Handy
should always update this information while the game is running. This means he should do it
when anything happens.

Hint: It may be useful to review page 11 of the tutorial, in the section “Asking Handy to Look for
Information”.

 Run your game to check if it works. The first set of question-marks (???) should be replaced
by the name of the bee with the greatest amount of nectar.

 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

2. Make all of the bees stop flying when the S key is typed.
 You will need to set their speed to 0.

Hint: It may be useful to review page 7 of the tutorial, in the section “Events”.

 Run your game to check if it works. All of the bees should stop when you press the S key.
 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

3. Let all of the bees fly again when the G key is typed.
 They should fly at the speed of 1.

 Run your game to check if it works. All of the bees should go when you press the G key.
 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

A Programming System for Children that is Designed for Usability 447

Materials from Study 44. Display how much nectar all of the bees have collected.
 A card named beeTotal has been created for this problem. Tell Handy to add up how much

nectar all the bees have, and put the answer into the back property of beeTotal. Handy should
update this as often as possible.

Hint: You may find useful information on page 13 of the tutorial, in the section “Adding up lists of
numbers”.

 Run your game to check if it works. The third set of question-marks (???) should be replaced
by the total amount of nectar collected by all of the bees.

 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

5. Add another bee to the world.
 Copy one of the existing bees and name it with your best friend’s name.

Hint: Look near the top of page 5 in the tutorial if you forgot how to copy cards.

 Run your game to check if it works. Your new bee should stop when the S key is hit, and go
again when the G key is hit. If your new bee does not stop and go, try to figure out why and fix it.

 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

That’s all. Thanks for your help!

BONUS PROBLEM:
If you have extra time, you can try this bonus problem.

6. Display how much nectar the best bee has.
 A card named mostNectar has been created for this problem. Tell Handy to figure out how

much nectar the best bee has, and put the answer into the back property of mostNectar. Handy
should update this as often as possible.

Hint: You will need to use your answer to problem 1 as part of your answer here.

 Run your game to check if it works. The second set of question-marks (???) should be
replaced by the amount of nectar collected by the best bee.

 Go to the Hands menu in the top left corner, and choose Save.
 Please write down what time it is when you finish this problem _________________.

448 A Programming System for Children that is Designed for Usability

Materials from Study 4

beeTotal x:406 y:60 back:"???";
beeTotalSign x:200 y:60 back:"All the bees have collected:";
bestBee x:406 y:20 back:"???";
bestBeeSign x:200 y:20 back:"The bee with the most nectar is:";
Bumbles x:530 y:60 kind:bee back:bumbleb.gif nectar:5 speed:1 direction:270;
Bumbles2 x:465 y:35 kind:bee back:bumbleb.gif nectar:5 speed:1 direction:270;
Buzzy x:575 y:152 kind:bee back:bee.gif nectar:0 speed:3 direction:270;
Buzzy2 x:677 y:102 kind:bee back:bumbleb.gif nectar:6 speed:1 direction:270;
Fuzzy x:450 y:120 kind:bee back:bumbleb.gif nectar:3 speed:1 direction:270;
Fuzzy2 x:580 y:290 kind:bee back:bumbleb.gif nectar:7 speed:1 direction:270;
Garden x:175 y:576 beeList:Bumbles, Bumbles2, Buzzy, Buzzy2, Fuzzy, Fuzzy2, Honey,
Honey2, Killer, Killer2, Stripes, Stripes2 flowerList:Lily, Lily2, Rose, Rose2, Sunflow-
er;
Honey x:280 y:230 kind:bee back:bumbleb.gif nectar:7 speed:1 direction:270;
Honey2 x:490 y:260 kind:bee back:bumbleb.gif nectar:1 speed:1 direction:270;
Killer x:650 y:90 kind:bee back:bumbleb.gif nectar:0 speed:1 direction:270;
Killer2 x:205 y:108 kind:bee back:bumbleb.gif nectar:0 speed:1 direction:270;
Lily x:318 y:329 kind:flower back:lily.gif nectar:100;
Lily2 x:675 y:308 kind:flower back:lily2.gif nectar:100;
mostNectar x:406 y:40 back:"???";
mostNectarSign x:200 y:40 back:"He has this much nectar:";
Rose x:205 y:319 kind:flower back:rose.gif nectar:100;
Rose2 x:465 y:328 kind:flower back:rose2.gif nectar:100;
Stripes x:300 y:150 kind:bee back:bumbleb.gif nectar:8 speed:1 direction:270;
Stripes2 x:403 y:202 kind:bee back:bumbleb.gif nectar:3 speed:1 direction:270;
Sunflower x:555 y:330 kind:flower back:sunflower.gif nectar:100;
when any bee collides into any flower

subtract 1 from flower's nectar
add 1 to bee's nectar
beep

end when
when D is typed

set buzzy's direction to 270
set buzzy's speed to 3

end when
when L is typed

set buzzy's direction to 180
set buzzy's speed to 3

end when
when program starts

with EveryBee's list calling each b
set direction of b to random 240 to 300

end with
end when
when R is typed

set buzzy's direction to 0
set buzzy's speed to 3

end when
when U is typed

set buzzy's direction to 90
set buzzy's speed to 3

end when

