
The Wizard of TILT:
Efficient?, Convenient, and Abstract Type

Representations

Tom Murphy

March 2002
CMU-CS-02-120

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Senior Thesis Advisors
Bob Harper (rwh@cs.cmu.edu)
Karl Crary (crary@cs.cmu.edu)

Abstract

The TILT compiler for Standard ML is type-directed and type-preserving, that is, it makes use of and
translates type information during the phases of compilation. Unfortunately, such use of type data incurs
a significant overhead. This paper explores methods for abstractly, conveniently, and efficiently storing and
manipulating type information in TILT. In the end, we discover that doing more work to reduce overhead
is a bad strategy for this situation.

This material is based on work supported in part by ARPA grant F-19628-95-C-0050 and NSF grant CCR-
9984812. Any opinions, findings, and conclusions or recommendations in this publication are those of the authors
and do not reflect the views of these agencies.



Keywords: types, typed intermediate languages, type representations, Standard ML, hash consing, de
Bruijn indices, views



1 The Wizard of TILT

TILT is a certifying compiler for Standard ML [1]. Its major distinguishing feature is the use
of Typed Intermediate Languages throughout the phases of compilation. Because each of the
code transformations that the compiler performs also transforms the types, we preserve type
information that is normally discarded after typechecking the source language in traditional
compilers. This allows us to typecheck the results of these transformations (catching compiler
bugs), perform data representation optimizations, and do nearly tag-free garbage collection.
We eventually intend for TILT to generate proof-carrying code [2].

Unfortunately, storing and processing types at compile-time imposes a performance penalty
on the compiler. With type-checking enabled after each transformation and optimization,
TILT is slow.

This paper recounts our experience in attempting to implement a more efficient type
representation strategy into the substantial existing code base. Though the abstraction and
optimizations are successful, in the end we are overwhelmed by the overhead necessary to
implement them.

2 The Curtain

2.1 Ease of Access vs. Abstraction

Much of the type information which the compiler deals with is not composed of types proper
(int, bool → bool), rather, it’s in the form of “type constructors”. Constructors create a
language for computing types. These constructors are represented as an ML datatype in the
compiler source code.

Datatypes very conveniently allow us to describe and operate on recursive structures (like
type constructors). Unfortunately, by using a datatype to implement a data structure we
are committing to a representation. We are not allowed to make the implementation choices
we would be afforded when writing an abstract data type.

If we decide to implement type constructors as an ADT [3], then we are able to make
representation choices but lose the ability to pattern match. Code interfacing with the ADT
is stylistically less appealing and we lose some compile-time checking (such as checks for
redundant or nonexhaustive matches).

Wadler [4] proposes a language mechanism, called views, for pattern matching against
abstract data types. This feature allows the programmer to present an isomorphism between
an arbitrary, abstract type and datatype-like constructors and destructors. With views, we
have nearly the best of both worlds: pattern matching and flexibility in implementation.
Unfortunately, views are not in Standard ML!

1



A compromise is available, though. We can present an interface to an abstract data type
which gives us shallow pattern matching with minimal overhead. This interface is called the
curtain, as in, “pay no attention to the code behind the curtain.”

2.2 A Simple Curtain

The type constructor language in TILT has more than 10 different constructors, making
it unwieldly for examples. Instead, I present the concepts in this paper using the lambda
calculus. This is reasonably faithful to our constructor language, since it is a recursive
datatype with a binding construct.

A typical implementation of the lambda calculus would be:

datatype exp =

Var of string

| App of exp * exp

| Lambda of string * exp

As an abstract data type instead, the signature might look like this:

signature LAMBDA ADT =

sig

type exp

val mkvar : string -> exp

val mkapp : exp * exp -> exp

val mklam : string * exp -> exp

val isvar : exp -> bool

val isapp : exp -> bool

val islam : exp -> bool

exception Wrong

val getvar : exp -> string

val getapp : exp -> exp * exp

val getlam : exp -> string * exp

end

It is easy to see why this is unsavory. Constructing exps is easy, but to manipulate them,
we must use a series of nested if expressions. We also run the risk of an exception at
run-time if we call the wrong get function.

Finally, here is a curtain interface for the same structure:

2



signature LAMBDA CURTAIN =

sig

type exp

datatype exp =

Var of string

| App of exp * exp

| Lambda of string * exp

val expose : exp -> exp

val hide : exp -> exp

end

The abstract type exp is the real representation of expressions “behind the curtain”.
Constructing exps is easy:

val w = hide (Lambda("x", hide (App(hide (Var "x", Var "x")))))

Note that we always hide after applying a constructor. In a full-featured curtain in-
terface we include functions corresponding to each constructor which also hide (ie., hide o

Lambda). This means that constructing exps is exactly as it would be with standard datatype
constructors.

Manipulating exps is almost as simple. Here’s a function which converts lambda expres-
sions to strings, using the curtain:

(* tostr : exp -> string *)

fun tostr exp =

case expose exp of

Var v => v

| App (e1, e2) => "App(" ^ tostr e1 ^ ", " ^ tostr e2 ^ ")"

| Lambda (v, e) => "\" ^ v ^ "." ^ tostr e

Aside from two important differences, this code is written the same way as it would be
if we were using the datatype version. First, we must expose exp, because it is abstract
(so we must write our functions using a case expression rather than the equivalent clausal
function declaration syntax). Second, the exp type is only exposed to one level, so we are
constrained to patterns that are only one level deep. Deeper patterns need to be expanded:

3



(* traditional datatype implementation *)

fun eta exp =

case exp of

Lambda(v, App(e, Var v’)) => if v = v’ andalso

not (free v e)

then e

else exp

| other => other

Becomes:

(* curtain implementation *)

fun eta exp =

case expose exp of

Lambda(v, e) =>

(case expose e of

App(e, e’) =>

(case expose e’ of

Var v’ => if v = v’ andalso

not (free v e)

then e

else exp

| => exp)

| => exp)

| other => exp

Note that we needed to repeat the expression in the default several times. It is possible to
construct patterns where not just the expression is repeated, but the result of a non-trivial
transformation:

(* traditional datatype implementation *)

fun f exp =

case exp of

App (x, Lambda(v, Var v’)) => 1

| App (Var v, y) => 2

| App (x, y) => 3

4



(* curtain implementation *)

fun f exp =

case expose exp of

App (x, y) =>

(case expose y of

Lambda (v, y’) =>

(case expose y’ of

Var v’ => 1

| => (case expose a of

Var v => 2

| => 3))

| => (case expose a of

Var v => 2

| => 3))

This second one requires pattern duplication because its clauses are not disjoint, and
therefore the order in which they appear matters. This requires duplicating both code and
the result of translating smaller patterns. This can translation can be tedious for a human
to perform, and can be difficult to maintain. However, both would be easily implemented
as mechanical program transformations, since they mirror the well-understood problem of
pattern compilation [5].

Fortunately, empirical and anecdotal evidence both suggest that this kind of deep pattern
matching is rare. For instance, when converting approximately the 10,000 lines typechecker
and support code in TILT, we only needed about 10 non-trivially reworked patterns because
of the curtain’s limited depth. Qualitatively, patching an existing system to use the curtain
interface is a tedious but not difficult job. Writing new code which uses the interface is
generally no more difficult or tedious than writing standard pattern-matching code.

The most important feature of the curtain is that the exp type is abstract, and that we
are now able to do arbitrary operations in the expose and hide functions. Some operations
germane to TILT are given in the next section on wizards. One can imagine other uses for
the curtain as well, such as creating lazy or infinite data structures which still allow pattern-
matching. For instance, it’s very easy to provide the ability to make lazy exps which work
transparently with the rest of the code; they are computed by the expose function when
needed.

2.3 Alternate Curtain Interfaces

One possible problem with the curtain is that our hide and expose functions work on only
a single level at a time. This somewhat constrains the range of operations we can perform.

Peter Lee suggests an interesting variant on the curtain proposed in the previous section.
We can generalize the “carrier” datatype by making it polymorphic:

5



signature LAMBDA CARRIER =

sig

type exp

datatype ’a carrier =

Var of string

| App of ’a * ’a

| Lambda of string * ’a

val expose : exp -> exp carrier

val hide : exp carrier -> exp

end

This has equivalent functionality to the curtain interface proposed above. However, if we
have a special optimization which we can do with two levels available, we can add a new
hiding function:

val hide2 : exp carrier carrier -> exp

Or perhaps we want to allow arbitrarily many carrier levels:

datatype multi exp =

More of multi exp carrier

| Done of exp carrier

val hide deep : multi exp -> exp

This all works out, though in our particular case there didn’t seem to be any compelling
use for this increased granularity. In other situations, this interface may be preferable to the
less general one from the previous section.

3 The Wizards

The primary goal of the curtain is to allow us to use a clever implementation strategy, and
moreover, to allow us to interchange clever implementations without affecting the client code.
Therefore, we are mostly concerned with what goes behind the curtain, which we call the
Wizard.

This section covers a few wizards; some we tried and some we did not. In order to measure
the performance of these (and to gauge the difficulty of converting existing code to use the
curtain), we instrumented a copy of the Intermediate Language’s typechecker to use the
curtain interface. The instrumented type checker coexisted with the old type checker, so
that we could compare performance between them.

6



3.1 Null Wizard

A natural experiment to try is the Null Wizard, where the exposed and hidden types are the
same:

structure NullWizard :> LAMBDA CURTAIN =

struct

datatype exp =

Var of string

| App of exp * exp

| Lambda of string * exp

withtype exp = exp

fun expose x = x

fun hide x = x

end

In other words, this implementation is equivalent to the standard datatype approach,
except that we make some extra calls to the functions expose and hide, which do nothing.

Disappointingly, code using the Null Wizard is 20% slower than plain datatype code. This
is true both of code generated by SML/NJ and TILT itself. It is somewhat surprising that
SML/NJ apparently chose not to inline (and then partially evaluate-away) calls to expose

and hide. We expect that real wizards will not have inlinable expose/hide functions, so
this is a fair estimate of the function call overhead.

The implication here is that it costs us 20% up front, just to use the curtain interface
at all. This is not great, but it is not disaster. We suppose that by using the Wizard to
reduce the heap size, we can reduce the number of swaps that TILT has to make, which
could dramatically speed up compilation. . .

3.2 Exploiting Sharing

Reducing the heap size seemed to be the most promising optimization, since TILT uses a
lot of memory and often needs to resort to swap space on disk, which is very slow. One
straightforward way of reducing the heap size is by sharing memory more efficiently.

Since our type data structures are immutable, it’s acceptable (and desirable) for types to
share memory. For instance,

App(Var "x", Lambda ("y", Var "y"))

and

7



App(Lambda ("y", Var "y"), App (Var "z", Var "u"))

can share exactly the same memory for the λy.y part. All of the Var "y" expressions
(and the strings "y") can share memory as well. Thus the same data can be stored with
less memory and fewer garbage collections. Sharing also improves performance by increasing
memory locality and thus cache efficiency.

Some amount of deliberate sharing can be created through careful programming; TILT
does this now. I refer to this as “static” sharing. In highly-redundant structures like types,
though, lots of sharing is possible in ways unanticipated by the programmer because of the
way the program behaves at run-time. Static sharing is also often difficult to maintain; op-
erations like substitution can unnecessarily break apart shared nodes if not written carefully.

3.2.1 Hash Consing

Hash consing [6] is a technique for exploiting sharing at runtime. Allocating a datatype
constructor in SML is often called consing, after the related activity in lisp implementations.
The idea of hash consing is that instead of always allocating a new constructor (or “cons
cell”), we first consult a hash table to see if we’ve already allocated an identical constructor.
If so, we reuse the existing memory. I call this kind of sharing “dynamic” sharing.

There are lots of issues complicating hash consing, including garbage collection (our table
must eventually disconnect unused data so that their memory can be reclaimed). We’ve also
experimented using alternate lambda encodings [7] to share some terms which are seman-
tically (but not structurally) equivalent. See the section on de Bruijn indices for why this
turned out to be a bad idea.

3.2.2 Implementing Hash Consing

In order to efficiently perform hash consing, we need to add some overhead to our represen-
tation.

structure HashWiz :> LAMBDA CURTAIN =

struct

datatype exp =

Var of string

| App of exp * exp

| Lambda of string * exp

withtype exp = { e : exp , hashcode : word, stamp : stamp }
fun expose { e, ... } = e

fun hide x = . . .
end

8



Now our abstract exp type has three components: e, which is the term, hashcode, which
is the cached hash code for the term, and stamp, which is a unique stamp for expression.

Our hide function (not shown) has the following steps. First, calculate the hash code for
the new cons cell. Because we cache the hash code of all its child nodes, this can be done in
constant time.1 We then check through our hash table, looking for nodes that are equivalent
to the target. If we find any, we return that old node. Otherwise, we insert the new node
into the table along with a unique stamp.

This search requires a fast check for equality between constructors. Fortunately, caching
the hash code give us a quick way to decide: First, check the stamps. If the stamps are the
same, then the types are certainly the same. Next, check the hash code. If the hash codes
are different, the types are certainly different (though our type equality rules might later
conclude that the types are equivalent). If the hash codes are the same, we recursively check
subterms of the types using the same method.

It is worth being explicit about the overhead here: Each constructor node has an extra
2-3 words (depending on the compiler’s representation) stored with it. It is also important to
note that we do not reduce the number of allocations performed (we need to create the thing
that we want, so that we know what to look for); we only potentially reduce the working set.
In fact, hash consing requires significantly more allocations, though the idea is that most of
them are very short-lived. As mentioned earlier, however, reducing the working set might
reasonably be expected to improve performance (because of memory locality and reduced
swaps) despite these costs. Unfortunately, we will see that the gains are rather modest
compared to the overhead.

3.2.3 Hash Table Collection Scheme

As we insert nodes into the hash table, the table fills up. Since a typical compilation session
might involve the creation of hundreds of thousands of types, we need some way to remove
unneeded types from the table. In order to approximate evicting the least desirable types
(ones that we think we’re least likely to reuse), we use a Least Recently Used scheme. When
a node is first inserted, or when it is shared, it is moved to the front of a queue. When our
hash table is filled to its limit, we remove types from the end of the queue. Therefore, types
that were seldom shared and that were created long ago are removed first.

The results for the LRU scheme are very encouraging. Figure 1 is a graph of table size
(number of elements allowed in the hash table) versus the percent of shared nodes. Note that
this is a logarithmic graph, and that hash consing still gets dramatic sharing even with a
modest table size (211 = 2048 elements)! These figures indicate very high (temporal) locality
in the types we create in the TILT IL. One interesting result here is that we 11% of the time
we create a type constructor, we can share with the last constructor created (LRU cache size
of 1)! This may just be an artifact of the somewhat peculiar behavior of a typechecker (the

1In the actual TILT type constructor language, many constructors have lists of arbitrary length. The time to compute the
hash code is linear in the length of these lists, but independent of the depth of the subtrees.

9



0

20

40

60

80

100

0 2 4 6 8 10 12

pe
rc

en
t o

f n
od

es
 s

ha
re

d

LRU size (lg nodes)

sharing with varying LRU cache size

Figure 1: Logarithmic comparison of LRU size to percent sharing

common case is to be checking equality between two equal types), but is still surprising.

3.2.4 de Bruijn Indices

One wizard we implemented used de Bruijn-encoded lambda constructors internally in an
attempt to increase the likelihood of sharing when hash consing.

The de Bruijn encoding [4] uses integers (“de Bruijn indices”) instead of named variables
to mark the correspondence between a bound variable and its binding site. For instance,
the terms λx.x and λy.y are both represented as λ.#0 (both x and y are bound at 0 levels
deep). λx.λy.xy would be λ.λ.#1#0 with de Bruijn indexing.

Since the names of bound variables disappear, the expectation is that constructors are
more frequently represented in the same way (and so they can share memory more often).
Unfortunately, de Bruijn-indexed terms are clumsy to manipulate. For instance, substituting
into a de Bruijn term requires that free indices in the substituted term be renumbered,
because they’re now at a different depth. de Bruijn indices are also much more difficult to
program with. Because of this, if we were going to use de Bruijn encoding, we wanted to do
so only in the wizard internals.

Here’s how it worked: When a node with a binding site (like λ) is pushed behind the
curtain with the hide function, it translates all references to that bound variable (within
its subterms) into de Bruijn indices. We call this operation “binding”. When a binding site
is exposed to the client, the wizard generates a brand new variable name and renames all
the corresponding indices. This operation is “dubbing”. Client code is expected to respect
alpha-equivalence, so changing the names of bound variables is legal. For example (datatypes
starting with W are abstract and not visible to the client):

10



Client code Real value
val t1 = hide (Var "x") WVar "x"

val t2 = hide (Var "y") WVar "y"

val t3 = hide (App (t2, t1)) WApp(WVar "y", WVar "x")

val t4 = hide (Lambda ("x", t3)) WLambda(WApp(WVar "y", WIVar 0))

val o1 = expose t4 Lambda ("newvar_100", WApp(WVar "y", WVar "newvar_100"))

It’s important to take note of the sequence in which terms are created. Though we may
read λx.x from left to right and think of the λ part “happening first”, datatypes are created
from the inside out. x is a free variable until it is bound by enclosing it in a λ.

The “bind” and “dub” operations used to maintain the illusion of named variables outside
the curtain are somewhat expensive. We hoped to make up for this expense with increased
sharing, as de Bruijn terms seemed like they would be more prone to dynamic sharing than
named ones. We also intended to defray the cost of doing these operations with tricks like
laziness and memoization.

One of the optimizations we implemented associated a cost with each free variable that
corresponded to its depth and frequency within the term. We also allowed the possibility of
using either named variables or de Bruijn indices for each binding site. When the variable
is finally bound, we can decide whether to use de Bruijn indices (if the cost of binding is
acceptable), or retain named variables (if the cost is too high).

To decide an appropriate threshold, we compiled the Standard ML Basis Library with
TILT at settings ranging from 0 (only use de Bruijn indices if the cost is less than 0; that
is, never) to infinity (always use de Bruijn indices). The cost was never more than about
50, so a threshold of 50 is a suitable “infinity” for this experiment. For each run, we record
the number of shared constructors (found in the hash table) and new constructors created
(entries added to the hash table). The ratio of shared constructors to the total (shared +
new) is the percentage reuse. We also estimate the size of these nodes in machine words,
and provide weighted measurements of shared memory and new memory. The results are
surprising (Figures 2, 3).

In Figure 2 we graph the percentage of total constructors shared (and a separate line
weighted by the size of the constructor nodes) versus the bind threshold. At 0 (never
binding), approximately 75% of nodes created were found in the hash table and shared.
Weighted by the size of the nodes, we use approximately 65% of the memory we would
normally use without hash consing. These numbers shoot up to almost 90% and 82%,
respectively, for a bind threshold of 1. A threshold of 1 corresponds to using de Bruijn
indices only when they cost nothing: when the bound variable isn’t ever used in the term.
This is a dramatic improvement. Unfortunately, once we start actually doing bind and dub
operations at (thresholds 2 and higher), the sharing percentages dip disappointingly and
even out around 60% and 50%. The reduced effectiveness is an unfortunate (and subtle)
side effect of the internal work done renaming variables and creating new terms with de
Bruijn indices. The cost of internal work is shown better in Figure 3, which shows the
approximate number of words allocated and shared for each binding threshold. Never using

11



0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

pe
rc

en
t

bind threshold

percentage reuse

con conses
con words

Figure 2: Percentage reuse (counting internal operations)

0

100000

200000

300000

400000

500000

0 5 10 15 20 25 30 35 40 45 50

w
or

ds
 a

llo
ca

te
d 

(a
pp

ro
x.

)

bind threshold

word count

shared con mem
new con mem

Figure 3: Memory allocated/shared (counting internal operations)

12



de Bruijn indices, we allocate about 75,000 words and share 160,000. At a threshold of 1,
we allocate slightly fewer words and share more than twice as many as before. For higher
thresholds, the amount of shared memory increases significantly, but the number of new
memory words allocated increases as well. Only at a threshold of 1 have de Bruijn indices
actually helped to reduce our working set.

Based on these results we decided not to use de Bruijn indices except in the degenerate
case where the bound variable was never used (the peak of the curve in Figure 2 and lowest
point in Figure 3). This means that λx.y and λz.y are both represented as λ.y, but λx.x and
λy.y remain as they are (and do not share memory). This way we can avoid bind and dub
operations altogether: We need only to erase the variable name from binding sites whose
variable is never used, and generate a new name each time one of these anonymous binding
sites is exposed. de Bruijn indices #0, #1, etc. never appear.

It’s easy to make the mistake of thinking de Bruijn-encoded terms are universally better at
sharing than terms with named variables. Though the de Bruijn encoding has the advantage
of alpha-equivalent terms being represented in the same way, some named terms can have
more sharing possible. For instance, λx.(xx)(λy.(xx)) can share the two applications (xx)
as well as all of the x variables. Represented as a de Bruijn term, however, allows for less
sharing: λ.(#0#0)λ.(#1#1). The two #0 indices can be shared, as can the two #1. But
the applications are of different subterms, and cannot be shared as in the named version.

Sharing in de Bruijn terms versus named terms corresponds to an idea of “shape per-
vasiveness” versus “name pervasiveness”. It’s difficult to gauge which is more effective for
representing types during the phases of a compiler. Our experiment provides evidence, at
least, that mixing the two does not appear to be efficient enough to be effective.

4 Too Much Overhead

From the measurements given in the previous sections, it is clear that there exists a substan-
tial amount of potential dynamic sharing available to a hash-consing Wizard. Unfortunately,
our wizards incur far too much overhead in harnessing this sharing.

In figures 4 and 5, we show the performance of a few wizards compiling the basis library
on two different machines. The results are catastrophic: the type-checker is universally many
times slower than it is without the curtain or wizards.

Basline is the old code, which uses a datatype to represent type constructors. Null
Wizard is as described above; hide and expose are the identity. WFV is the wizard which
keeps track of free variables so that it can drop unused bindings. WFVU is the same, using
unsafe (not bounds-checked) array operations. Hash is the wizard which only hash-conses;
it does not drop unused bindings. Monolith Null and Monolith FV are the same as Null
Wizard and WFV respectively, but are built as one compilation unit to stimulate inlining.

All timings were done using TILT built with SML/NJ, though the results for TILT built

13



with TILT show about the same ratios. Times reflect wall-clock times (CPU times are
similar, but do not reflect savings from fewer swaps).

0

10

20

30

40

50

60

70

80

Figure 4: Wizard Performance, Ram=1536 Mb

One possible explanation is that we are not actually saving memory. Recall that in order
to support hash-consing, we need at a minimum 2-3 extra words per node (for one wizard,
we also store a memoized set of its free variables, which could potentially be very large).
From the results in figures 4 and 5, it seems that we are do have a modestly more compact
working set (the “low memory” machine is about 4.1 times slower, while the “high memory”
machine is about 6.2 times slower). It’s clear that the savings are not dramatic enough to
make up for the overhead, though.

The garbage collector also tends to have difficulty with the hash table. Though garbage
collection times are small in general, they rise rapidly as we increase the size of the hash
table. This is probably explained by the assumptions made by a generational collector. A
generational garbage collector expects that items in old generations are infrequently updated
to point to items in new generations, but this is exactly what the hash-conser does: it makes
the hash table (whose lifetime is the same as the program’s) point to types which were just
created.

14



0

50

100

150

200

250

300

350

400

Figure 5: Wizard Performance, Ram=96 Mb

4.1 Where is the time spent?

In addition to the memory overhead, we have a significant cost in maintaining the hash table
and finding nodes with which to share. Here are the results of profiling the Hashing wizard
on a compilation of the basis library:

15



% sec. procedure description
0.7 14.1787 WizhashfnLRU.f Search and maintenance of hash table
0.5 9.7471 HashWiz.cdt equal Test if the outermost level of two construc-

tors is equal
0.5 9.7041 HashWiz.cexpose Expose a constructor
0.5 8.8281 WizhashfnLRU.share Search and mainteance of hash table
0.3 5.8496 HashWiz.c equal Test if two constructors are equal (by com-

paring their stamps and hashcodes, or call-
ing cdt equal)

0.3 5.7881 HashWiz.chide Hide a constructor
0.3 5.3818 DLL.disconnect Maintenance of LRU cache
0.2 4.6377 HashWiz.cmaker Generate stamp, and try to share a new

constructor
0.2 4.3535 HashWiz.hashcode Calculate hash codes
0.2 3.8359 WizhashfnLRU.loop Remove entries when the hash table is full
0.2 3.4268 DLL.move to tail Maintenance of LRU cache
0.2 3.1758 DLL.add tail Maintenance of LRU cache
0.1 2.8193 WizhashfnLRU.f.inner Remove an entry from the hash table
0.1 2.7305 HashWiz.kexpose Expose a kind
0.1 2.1396 DLL.-->.inner LRU utility function

many more at 0.1% and below. . .

The first column lists the percent of total compilation time spent in this function, and the
second the number of seconds spent. These functions are ranked by the time spent within
them, and only functions related to the wizard code are listed.

It’s easy to see that hashing is expensive; WizhashfnLRU.f is the 20th most “popular”
function in the compiler, with over .7% of the total execution time spent in it. However, it’s
not that these functions are particularly inefficient—just that they are called many, many
times. For instance, the highly-ranked HashWiz.c equal function is only one line long: it
compares two pairs of words, then calls cdt equal. Many other functions are similarly brief,
such as most of the LRU maintenance functions.

The key fact is that the IL typechecker spends almost all of its time constructing and
destructing datatypes. Replacing this with functions which do even a small amount of work
is devastating to its performance.

5 Related Work

5.1 SML/NJ

Appel and Gonçalves [8] implemented hash consing as part of the garbage collector for an
early version of SML/NJ. Their hash-conser works by performing the hash operation only
when an object is promoted from the new generation to the old. By doing so, they avoid

16



calculating hash codes for short-lived objects.

They acknowledge that the overhead for doing hash consing may be more than can be
recouped through improving memory locality and shrinking the working set. Indeed, many
of their benchmarks run slower with hash-consing turned on, and the best ones only improve
execution time by 10%.

5.2 FLINT

The FLINT project at Yale uses hash consing, memoization, and de Bruijn indices to improve
the performance of their intermediate language for the SML/NJ compiler. Their results show
that these changes made compilation much faster [3]!

How then, do we account for the drastically differing results between the superficially
similar TILT IL and FLINT implementations?

5.2.1 Asymptotic Complexity

The most fundamental reason why these implementations are incomparable is that the
FLINT language lacks a constructor-level let construct. In ML, it is easy to create types
which are exponentially large with regard to the size of the program. For example, they give
a program similar to the following:

fun I x = x

val y = I I I . . . I I 0

The rightmost I function (with polymorphic type ∀t.t → t) is instantiated at int. The
next I is instantiated at int → int, the next at (int → int) → (int → int), etc. We
get an exponential blow-up in the size of the types very easily, and a small number of I func-
tions can quickly cripple a compiler which is implemented naively. A smart implementation
will somehow share the left- and right-hand sides of each function type, so that the whole
type takes only linear space.

FLINT achieves this asymptotic improvement in space usage with hash-consing. Addi-
tionally, since traversing this DAG would take exponential time even if stored in linear space,
they provide a memoizing fold function which allows them to traverse it efficiently. Efficient
implementation of this memoization also requires that they hash-cons identical nodes.

The TILT IL, on the other hand, has a constructor-level let construct. We can represent
the sharing explicitly using let:

17



let t = let t’ = let t’’ = . . .
in t’’ -> t’’

end

in t’ -> ’t

end

in t -> t

end

This allows us to represent the type in linear space and traverse it in linear time. There-
fore, TILT already has much of the benefit that FLINT gets through hash consing in its
careful use of the let constructor. Since we already take care of the asymptotic complexity,
hash consing for TILT can only hope to provide a constant factor of improvement.

5.2.2 Abstraction

The FLINT interface (given as LAMBDA ADT in 3.2) has two efficiency advantages over the
curtain interface. First, no extra allocation takes place to present the client with a pattern-
matchable datatype; the client instead must test the abstract type using the predicate func-
tions and then call the appropriate destructor. Second, FLINT exposes de Bruijn indices
to the rest of the compiler, which means that the expensive bind and dub operations are
unnecessary. Of course, there is a tradeoff between efficiency and convenience here.

5.2.3 Other Differences

There are a number of other differences that are worth mentioning.

FLINT guarantees that that equivalent types share the same memory, so that type equal-
ity is just pointer equality. In our implementation, we support a fast “yes” (stamps are
equal) and “no” (hash codes are different), but we do not guarantee that equivalent types
have equivalent stamps. This choice gives us more flexibility in our hash table collection
scheme, among other things.

FLINT memoizes some information about each term, such as its set of free variables, and
its normal form. For our wizard which dropped unused bindings, we also memoized the set
of free variables. However, normalization in our intermediate language is done with respect
to a context [9]; there is no single normalized form for us to memoize!

6 Conclusions

From an engineering perspective, the curtain is successful. Without it, a large amount of code
would have needed to be rewritten in order to attempt these experiments. It is reasonably

18



simple to instrument existing code to use the curtain interface, and then very easy to try
out many different wizards behind the curtain.

The curtain code may still be useful for other kinds of experiments. However, it is unlikely
to be practical for performance-critical code unless the wizard behind it can recoup the 20%
baseline overhead just to use the curtain, as well as its own implementation overhead. This
may be a property of SML/NJ and TILT, or it may be because of the particular behavior of
the IL typechecker. It is likely that other situations could use a curtain interface at a much
smaller cost.

We learned that the performance of our typechecker is closely bound to the efficiency of
datatype construction and destruction. Optimizing compilers for SML are good at optimizing
datatype manipulation, so simulating datatypes through other means is costly. Leaner code
appears to win out over clever code when the program is this datatype-heavy.

Contrary to our belief when starting this project, hash consing does not appear to be an
appropriate way of gaining constant-factor improvements. It seems that it is best used to
create invariants about a program (such as “all equivalent constructors are shared”) or to
make things like memoization more effective or equality more efficient.

Therefore, though significant sharing is definitely available in the TILT IL, it may be
impossible to efficiently capture it dynamically. Perhaps this means that, in order to improve
memory usage, we need to make better use of static sharing and our constructor-level let.

19



References

[1] Robin Milner, Mads Tofte, and Robert W. Harper. The Definition of Standard ML.
MIT Press, Cambridge, Massachusetts, 1990.

[2] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Langauges (POPL ’97),
pages 106–119, Paris, January 1997.

[3] Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed
intermediate languages. In International Conference on Functional Programming, pages
313–323, 1998.

[4] Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In
Steve Munchnik, editor, Proceedings, 14th Symposium on Principles of Programming
Languages, pages 307–312. Association for Computing Machinery, 1987.

[5] P. Wadler. Efficient compilation of pattern matching, 1987.

[6] A. P. Ershov. On programming of arithmetic operations. 1(8):3–6, 1958.

[7] N. de Bruijn. A survey of the project automath, 1980.

[8] Andrew W. Appel and Marcelo J. R. Gonçalves. Hash-consing garbage collection.
Technical Report CS-TR-412-93, Princeton University, 1993.

[9] Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone. Implementing the TILT
internal language. Technical Report CMU-CS-00-180, Carnegie Mellon University, 2000.

20


