
Adaptive Functional Programming∗

Umut A. Acar Guy E. Blelloch Robert Harper

16 January 2002
CMU-CS-01-161

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

An adaptive computation maintains the relationship between its input and output as the
input changes. Although various techniques for adaptive computing have been proposed,
they remain limited in their scope of applicability. We propose a general mechanism for
adaptive computing that enables one to make any purely-functional program adaptive.

We show that the mechanism is practical by giving an efficient implementation as a
small ML library. The library consists of three operations for making a program adaptive,
plus two operations for making changes to the input and adapting the output to these
changes. We give a general bound on the time it takes to adapt the output, and based on
this, show that an adaptive Quicksort adapts its output in logarithmic time when its input
is extended by one key.

To show the safety and correctness of the mechanism we give a formal definition of
AFL, a call-by-value functional language extended with adaptivity primitives. The modal
type system of AFL enforces correct usage of the adaptivity mechanism, which can only be
checked at run time in the ML library. Based on the AFL dynamic semantics, we formalize
the change-propagation algorithm and prove its correctness.

∗This research was supported in part by NSF grants CCR-9706572, CCR-0085982, and CCR-0122581. This
report is a complete version of [1].

1

Keywords: Incremental Computing, Functional Languages, Dynamic Algorithms

2

1 Introduction

An adaptive program responds to input changes by updating its output while only re-evaluating
those portions of the program affected by the change. Adaptive programming is useful in
situations where input changes lead to relatively small changes in the output. In limiting cases
one cannot avoid a complete re-computation of the output, but in many cases the results of
the previous computation may be re-used to obtain the updated output more quickly than a
complete re-evaluation. For example, as we shall see below, an adaptive version of Quicksort
takes expected logarithmic time to adapt its output when its input list is extended by one key.
This is an improvement by a linear factor over simply re-evaluating the sort for the changed
inputs.

In this paper we propose a general mechanism for adaptive programming. Our proposed
mechanism extends call-by-value functional languages with a small set of primitives to support
adaptive programming. Apart from requiring that the host language be purely functional, we
make no other restriction on its expressive power. In particular our mechanism is compatible
with the full range of effect-free constructs found in ML. Our proposed mechanism has these
strengths:

• Generality: It applies to any purely functional program. The programmer can build
adaptivity into an application in a natural and modular way.

• Flexibility: It enables the programmer to control the amount of adaptivity. For exam-
ple, a programmer can choose to make only one portion or aspect of a system adaptive,
leaving the others to be implemented conventionally.

• Simplicity: It requires small changes to existing code. For example, the adaptive version
of Quicksort presented in the next section requires only minor changes to the standard
implementation.

• Efficiency: The mechanism admits a simple implementation and yields efficient adap-
tivity. For example, the adaptive version of Quicksort updates the output in expected
O(log n) time upon extension to the input.

Our adaptivity mechanism is based on the idea of a modifiable reference (or modifiable, for
short) and three operations for creating (mod), reading (read), and writing (write) modifiables.
A modifiable allows us to record the dependence of one computation on the value of another.
A modifiable reference is essentially a write-once reference cell that records the value of an
expression whose value may change as a (direct or indirect) result of changes to the inputs.
Any expression whose value can change must store its value in a modifiable reference; such an
expression is said to be changeable. Expressions that are not changeable are said to be stable;
stable expressions are not associated with modifiables.

Any expression that depends on the value of a changeable expression must express this
dependence by explicitly reading the contents of the modifiable storing the value of that
changeable expression. This establishes a data dependency between the expression reading
that modifiable, called the reader, and the expression that determines the value of that modi-
fiable, the writer. Since the value of the modifiable may change as a result of changes to the
input, the reader must itself be deemed a changeable expression. This means that a reader
cannot be considered stable, but may only appear as part of a changeable expression whose
value is stored in some other modifiable.

3

By choosing the extent to which modifiables are used in a program, the programmer can
control the extent to which it is able to adapt to change. For example, a programmer may
wish to make a list manipulation program adaptive to insertions into and deletions from the
list, but not under changes to the individual elements of the list. This can be represented
in our framework by making only the “tail” elements of a list adaptive, leaving the “head”
elements stable. However, once certain aspects are made changeable, all parts of the program
that depend on those aspects are, by implication, also changeable.

The key to adapting the output to change of input is to record the dependencies between
readers and writers that arise during the initial evaluation. These dependencies may be main-
tained as a graph in which each node represents a modifiable, and each edge represents a read
whose source is the modifiable being read and whose target is the modifiable being written.
Also, each edge is tagged with the corresponding reader. Whenever the source modifiable
changes, the new value of the target is determined by re-evaluating the associated reader.

It is not enough, however, to maintain only this dependency graph connecting readers to
writers. It is also essential to maintain an ordering on the edges and keep track of which edges
(reads) are within the dynamic scope of which other edges. We call this second relationship the
containment hierarchy. The ordering among the edges enables us to re-evaluate readers in the
same order as they were evaluated in the initial evaluation. The containment hierarchy enables
us to identify and remove edges that become obsolete. This occurs, for example, when the
result of a conditional inside a reader takes a different branch than the initial evaluation. The
difficulty is maintaining the ordering and containment information during re-evaluation. We
show how to maintain this information efficiently using time-stamps and an order-maintenance
algorithm of Dietz and Sleator [4].

2 Related Work

Several researchers have studied approaches that are similar to what we call adaptive pro-
gramming. The idea of using dependency graphs for incremental updates was introduced by
Demers, Reps and Teitelbaum [3] in the context of attribute grammars. Reps then showed an
algorithm to propagate a change optimally [16], and Hoover generalized the approach outside
the domain of attribute grammars [9]. A crucial difference between this previous work and
ours is that the previous work is based on static dependency graphs. Although they allow the
graph to be changed by the modify step, the propagate step (i.e., the propagation algorithm)
can only pass values through a static graph. This severely limits the types of adaptive compu-
tations that the technique handles [14]. Another difference is that they don’t have the notion
of forming the initial graph/trace by running a computation, but rather assume that it is given
as input (often it naturally arises from the application). Yellin and Strom use the dependency
graph ideas within the INC language [18], and extend it by having incremental computations
within each of its array primitives. Since INC does not have recursion or looping, however, the
dependency graphs remain static.

Another approach to incremental/adaptive computations is function caching [14, 13]. In
function caching, a computation reuses cached results from earlier evaluations whenever ap-
propriate. Thus, one must run the computation from scratch to identify the part of the
computation that does not change. In contrast, in our approach, an input change pinpoints
the parts of the computation that need to be re-evaluated. Function caching therefore is bad
at handling “deep” modifications. We conjecture, for example, that with function caching no

4

algorithm can update a sorted linked-list in less than linear expected time. This is because the
inserted element is expected to end up half way down the list, and function caching will always
recreate the part of the list ahead of the inserted element. There are two other problems with
function caching. First it can be hard to effectively check for equality of arguments for the
purpose of matching elements in the cache. This is particularly true if the inputs are functions
themselves, possibly with captured environments. Second, for efficiency it is critical to evict
elements from the cache. The suggested methods we have seen to decide when and what to
evict seem ad-hoc, although Liu and Teitelbaum have made some progress using automatic
program transformation techniques to decide what to cache [11, 10]. In spite of these problems,
function caching might have some advantages over our method for “shallow” modifications.
We expect that these techniques can be integrated to further improve performance in certain
situations.

Other approaches are based on various forms of partial evaluation [8, 17]. These approaches
are arguably cleaner than the function caching approach (they don’t have the issues with
equality of inputs or deciding when to evict from the cache), but are even more limited in
the type of adaptivity they allow. Ramalingam and Reps wrote an excellent bibliography
summarizing other work on incremental computation [15].

3 Overview of the Paper

In Section 4 we illustrate the main ideas of adaptive functional programming in an algorithmic
setting. We first describe how to implement an adaptive form of Quicksort in Standard ML
based on the interface of a module implementing the basic adaptivity mechanisms. We then
describe the change-propagation algorithm that lies at the heart of the mechanism and establish
an upper bound for its running time. Using this bound, we then prove the expected O(log n)
time bound for adaptive Quicksort to accommodate an extension to its input. We finish by
briefly describing the implementation of the mechanism in terms of an abstract ordered list
data structure. This implementation requires less than 100 lines of Standard ML code.

In Section 5 we define an adaptive functional programming language, called AFL, which
is an extension of a simple call-by-value functional language with adaptivity primitives. The
static semantics of AFL enforces properties that can only be enforced by run-time checks in our
ML library. The dynamic semantics of AFL is given by an evaluation relation that maintains a
record of the adaptive aspects of the computation, called a trace, which is used by the change
propagation algorithm.

In Section 7 we present the change propagation algorithm in the framework of the dy-
namic semantics of AFL. The change propagation algorithm interprets a trace to determine
the correct order in which to propagate changes, and to determine which expressions need to
be re-executed. The trace also records the containment structure of the computation, which is
updated during change propagation. Using this presentation we give a proof of correctness of
the change propagation algorithm stating that change propagation yields essentially the same
result as a complete re-execution on the changed inputs.

We note that we had originally thought that incorporating an adaptivity mechanism in ML
would require the involvement of a compiler. Working out the semantics of AFL led to the
particular mechanism we describe and its simple implementation as an ML library.

5

signature ADAPTIVE =
sig

type ’a mod
type ’a dest
type changeable

val mod: (’a * ’a -> bool) ->
(’a dest -> changeable) -> ’a mod

val read: ’a mod * (’a -> changeable) -> changeable
val write: ’a dest * ’a -> changeable

val init: unit -> unit
val change: ’a mod * ’a -> unit
val propagate: unit -> unit

end

Figure 1: Signature of the adaptive library.

4 A Framework for Adaptive Computing

We give an overview of our adaptive framework based on our ML library and an adaptive
version of Quicksort.

4.1 The ML library

The signature of our adaptive library for ML is given in Figure 1. The library provides functions
to create (mod), to read from (read), and to write to (write) modifiables, as well as meta-
functions to initialize the library (init), change input values (change) and propagate changes
to the output (propagate). The meta-functions are described later in this section. The library
distinguishes between two “handles” to each modifiable: a source of type ’a mod for reading
from, and a destination of type ’a dest for writing to. When a modifiable is created, correct
usage requires that it only be accessed as a destination until it is written, and then only be
accessed as a source.1 All changeable expressions have type changeable, and are used in a
“destination passing” style—they do not return a value, but rather take a destination to which
they write a value. Correct usage requires that a changeable expression ends with a write—we
define “ends with” more precisely when we discuss time stamps. The destination written will
be referred to as the target destination. The type changeable has no interpretable value.

The mod takes two parameters, a conservative comparison function and an initializer. A
conservative comparison function returns false when the values are different but may return
true or false when the values are the same. This function is used by the change-propagation
algorithm to avoid unnecessary propagation. The mod function creates a modifiable and applies
the initializer to the new modifiable’s destination. The initializer is responsible for writing the
modifiable. Its body is therefore a changeable expression, and correct usage requires that the
body’s target match the initializer’s argument. When the initializer completes, mod returns
the source handle of the modifiable it created.

The read takes the source of a modifiable and a reader, a function whose body is changeable.
The read accesses the contents of the modifiable and applies the reader to it. Any application
of read is itself a changeable expression since the value being read could change. If a call Ra to
read is within the dynamic scope of another call Rb to read, we say that Ra is contained within

1The library does not enforce this restriction statically, but can enforce it with run-time checks. In the
following discussion we will use the term “correct usage” to describe similar restrictions in which run-time
checks are needed to check correctness. The language described in Section 5 enforces all these restrictions
statically using a modal type system.

6

Rb. This relation defines a hierarchy on the reads, which we will refer to as the containment
hierarchy (of reads).

1 datatype ’a list =
2 NIL
3 | CONS of (’a * ’a list)

4
5

6 fun filter f l =
7 let
8 fun filt(l) =
9 case l of
10 NIL => NIL
11 | CONS(h,r) =>
12 if f(h) then
13 CONS(h, filt(r))
14 else
15 filt(r)
16 in
17 filt(l)
18 end

19 fun qsort(l) =
20 let
21 fun qs(l,rest) =
22 case l of
23 NIL => rest
24 | CONS(h,r) =>
25 let
26 val l = filter (fn x => x < h) r
27 val g = filter (fn x => x >= h) r
28 val gs = qs(g,rest)
29 in
30 qs(l,CONS(h,gs))
31 end
32 in
33 qs(l,NIL)
34 end

1 datatype ’a list’ =
2 NIL
3 | CONS of (’a * ’a list’ mod)

4 fun modl f = mod (fn (NIL,NIL) => true
5 | => false) f

6 fun filter’ f l =
7 let
8 fun filt(l,d) = read(l, fn l’ =>
9 case l’ of
10 NIL => write(d, NIL)
11 | CONS(h,r) =>
12 if f(h) then write(d,
13 CONS(h, modl(fn d => filt(r,d))))
14 else
15 filt(r, d))
16 in
17 modl(fn d => filt(l, d))
18 end

19 fun qsort’(l) =
20 let
21 fun qs(l,rest,d) = read(l, fn l’ =>
22 case l’ of
23 NIL => write(d, rest)
24 | CONS(h,r) =>
25 let
26 val l = filter’ (fn x => x < h) r
27 val g = filter’ (fn x => x >= h) r
28 val gs = modl(fn d => qs(g,rest,d))
29 in
30 qs(l,CONS(h,gs),d)
31 end)
32 in
33 modl(fn d => qs(l,NIL,d))
34 end

Figure 2: The complete code for non-adaptive (left) and adaptive (right) versions of Quicksort.

4.2 Making an Application Adaptive

The transformation of a non-adaptive program to an adaptive program involves two steps.
First, the data structures are made “modifiable” by placing desired elements in modifiables.
Second, the original program is updated by making the reads of modifiables explicit and placing
the results of each expression that depends on a modifiable into another modifiable. This means
that all values that directly or indirectly depend on modifiable inputs are placed in modifiables.

As an example, consider the code for a standard Quicksort, qsort, and an adaptive Quick-
sort, qsort’, as shown in Figure 2. To avoid linear-time concatenations, qsort uses an ac-
cumulator to store the sorted tail of the input list. The transformation is done in two steps.
First, we make the lists “modifiable” by placing the tail of each list element into a modifiable
as shown in lines 1,2,3 in Figure 2. The resulting structure, a modifiable list, allows the user to
insert and delete items to and from the list. Second, we change the program so that the values
placed in modifiables are accessed explicitly via a read. The adaptive Quicksort uses a read
(line 21) to determine whether the input list l is empty and writes the result to a destination d
(line 23). This destination belongs to the modifiable that is created by a call to mod (through
modl) in line 28 or 33. These modifiables form the output list, which now is a modifiable list.
The function filter is similarly transformed into an adaptive one, filter’ (lines 6-18). The
modl is defined to take an initializer and pass it to the mod with a constant-time, conservative

7

comparison function for lists. The comparison function returns true, if and only if both lists
are NIL and returns false otherwise. This comparison function is sufficiently powerful to prove
the O(log n) bound for adaptive Quicksort.

1 fun newElt(v) = modl(fn d => write(d,v))

2 fun fromList(nil) =
3 let val m = newElt(NIL)
4 in (m,m)
5 end
6 | fromList(h::r) =
7 let val (l,last) = fromList(r)
8 in (newElt(CONS(h,l)),last)
9 end

10 fun test(lst,v) =
11 let
12 val = init()
13 val (l,last) = fromList(lst)
14 val r = qsort’(l)
15 in
16 (change(last,CONS(v,newElt(NIL)));
17 propagate();
18 r)
19 end

Figure 3: Example of changing input and change propagation for Quicksort.

4.3 Adaptivity

An adaptive computation allows the programmer to change input values and update the result.
This process can be repeated as desired. The library provides the meta-function change to
change the value of a modifiable and the meta-function propagate to propagate these changes
to the output. Figure 3 illustrates an example. The fromList function converts a list to a
modifiable list, returning both the modifiable list and its last element. The test function first
performs an initial evaluation of the adaptive Quicksort by converting the input list lst to a
modifiable list l and sorting it into r. It then changes the input by adding a new key v to
the end of l. To update the output r, test calls propagate. The update will result in a list
identical to what would have been returned if v was added to the end of l before the call to
qsort. In general, any number of inputs could be changed before running propagate.

4.4 Augmented Dependency Graphs

The crucial issue is to support change propagation efficiently. To do this, an adaptive program,
as it evaluates, creates a record of the adaptive activity. It is helpful to visualize this record
as a dependency graph augmented with additional information regarding the containment
hierarchy and the evaluation order of reads. In such a dependency graph, each node represents
a modifiable and each edge represents a read. An evaluation of mod adds a node, and an
evaluation of read adds an edge to the graph. In a read, the node being read becomes the
source, and the target of the read (the modifiable that the reader finished by writing to)
becomes the target. We also tag the edges with the reader function.

To operate correctly, the change-propagation algorithm needs to know the containment
hierarchy of reads. To maintain this information, we tag each edge and node with a time
stamp, which are generated by the mod and read. All expressions are evaluated in a time
range (ts, te) and time-stamps generated by the expression are allocated sequentially within

8

= modifiable

= value

NIL

NIL

2 3

3

 = time stamp
= read

= CONS cell

Legend

l0

〈0.1〉 〈0.2〉

l1 l2

l4

〈0.3〉

〈∗〉 〈∗〉 〈∗〉

〈0.5〉 〈0.4〉

l3

li

〈. . .〉
li

Figure 4: The adg for an application of filter’ to the function fn x => x>2 and the input
modifiable list 2::3::nil. The output is the modifiable list 3::nil.

that range, i.e., each generated time stamp is greater than the previous one, but less than the
end of the time range. The time stamp of an edge is generated by the corresponding read,
before the reader is evaluated, and the time stamp of a node is generated by the mod after the
initializer is evaluated (the time stamp of a node corresponds to the time it was initialized).
Correct usage of the library requires that the order of time stamps is independent of whether
the write or mod generate the time stamp for the corresponding node. This is what we mean
by saying that a changeable expression must end with a write to its target.

The time stamp of an edge is called its start time and the time stamp of the target of the
edge is called the edge’s stop time. The start and the stop time of the edge define the time span
of the edge. We note that the time span can be used to identify the containment relationship of
reads. In particular, a read Ra is contained in a read Rb if and only if the start time of the edge
associated with Ra is within the time span of the edge associated with Rb. For now, we will
represent time stamps with real numbers, and assume that top-level expressions are evaluated
in the range (0.0, 1.0). Subsequently, we will show how the Dietz-Sleator Order-Maintenance
Algorithm can be used to maintain time stamps efficiently [4].

We define an augmented dependency graph (adg) as a DAG in which each edge has an
associated reader and time stamp, and each node has an associated value and time stamp.2

We say that a node (and corresponding modifiable) is an input if it has no incoming edges.
An example should help make the ideas clear. Consider the adaptive filter function filter’

shown in Figure 2. The function takes another function f and a modifiable list l as parameters
and outputs a modifiable list that contains the items of l satisfying f. Figure 4 shows the
dependency graph for an evaluation of filter’ with the function (fn x => x > 2) and a
modifiable input list of 2::3::nil. The output is the modifiable list 3::nil. Although not
shown in the figure, each edge is also tagged with a reader. In this example, all edges have an
instance of reader (fn l’ => case l’ of ...) (lines 8-15 of qsort’ in Figure 2). The time
stamps for input nodes are not relevant, and are marked with an asterisk in Figure 4.

4.5 Change Propagation.

Given an augmented dependency graph and a set of changed input modifiables, the change-
propagation algorithm updates the adg and the output by propagating changes in the adg.
We say that an edge, or corresponding read, is invalidated if the source of the edge changes
value. We say that an edge is obsolete if it is contained within an invalidated edge.

2We do not formalize adgs more precisely here since we view them as an implementation of a cleaner notion
of traces, which we formalize in Section 5.

9

Propagate Changes

I is the set of changed inputs
(V, E) = G is an adg

1 Q =
⋃

v∈I outEdges(v)

2 while Q is not empty
3 e = deleteMin(Q)

4 (Ts, Te) = timeSpan(e)

5 V = V − {v ∈ V |Ts < T (v) < Te}
6 E′ = {e′ ∈ E|Ts < T (e′) < Te}
7 E = E − E′

8 Q = Q − E′

9 v′ = apply(reader(e), val(src(e))) in time (Ts, Te)

10 if v′ 6= val(target(e)) then
11 val(target(e)) = v′

12 Q = Q + outEdges(target(e))

Figure 5: The change-propagation algorithm.

Figure 5 defines the change-propagation algorithm. The algorithm maintains a Priority
Queue of invalidated edges. The queue is prioritized on the time stamp of each edge, and is
initialized with the out-edges of the changed input values. Each iteration of the while loop
processes one invalidated edge, and we call the iteration an edge update. The update re-
evaluates the associated reader. This makes any code that was within the reader’s dynamic
scope obsolete. A key aspect of the algorithm is that when an edge is updated, all nodes and
edges that are contained within that edge are deleted from both the graph and queue. This
prevents the reader of an obsolete edge from being re-evaluated. Evaluating such a reader on
a changed input may incorrectly update a modifiable, incorrectly raise an exception, or even
not terminate. After the reader is re-evaluated we check if the value of the target has changed
(line 10) by using the conservative comparison function passed to mod. If it has changed, we
add the out-edges of the target to the queue to propagate that change.

As an example, consider an initial evaluation of filter whose dependency graph is shown in
Figure 4. Now, suppose we change the modifiable input list from 2::3::nil to 2::4::7::nil
by creating the modifiable list 4::7::nil and changing the value of modifiable l1 to this list.
The top left frame in Figure 6 shows the input change. Now, we run the change-propagation
algorithm to update the output. First, we insert the sole outgoing edge of l1, namely (l1,l3),
into the queue. Since this is the only (hence, the earliest) edge in the queue, we remove it
from the queue and establish the current time-span as 〈0.2〉-〈0.5〉. Next, we delete all the
nodes and edges contained in this edge from the adg and from the queue (which is empty) as
shown by the top right frame in Figure 6. Then we redo the read by re-evaluating the reader
(fn l’ => case l’ of ...) (8-15 in Figure 2) in the current time span 〈0.2〉-〈0.5〉. The
reader walks through the modifiable list 4::7::nil as it filters the items and writes the head
of the result list to l3, as shown in the bottom frame in Figure 6. This creates two new edges,
which are given the time stamps, 〈0.3〉, and 〈0.4〉. The targets of these edges, l7 and l8, are
assigned the time stamps, 〈0.475〉, and 〈0.45〉, matching the order that they were initialized
(these time stamps are otherwise chosen arbitrarily to fit in the range 〈0.4〉-〈0.5〉).

10

NIL

NIL

NIL

7

32

4

3

l0

〈0.1〉 〈0.2〉

l4

〈0.3〉

〈∗〉

〈0.5〉 〈0.4〉

l1 l2

〈∗〉 〈∗〉

l1

〈∗〉 〈∗〉

l3

l2

NIL

NIL

NIL

7

32

4

3

x
x

l0

l4

〈∗〉

〈0.5〉 〈0.4〉

〈∗〉 〈∗〉

l1

〈∗〉 〈∗〉

l5 l6

〈0.1〉 〈0.2〉 〈0.3〉

l3

l2

NIL

742

NIL

4 7

〈∗〉 〈∗〉
l5 l6l0

〈0.1〉

〈∗〉

〈0.5〉

l1

〈∗〉

l7

〈0.4〉

l8l3

〈0.2〉 〈0.3〉

〈0.45〉〈0.475〉

Figure 6: Snapshots of the adg during change propagation.

4.6 Implementing Change Propagation Efficiently

The change-propagation algorithm described above can be implemented efficiently using a stan-
dard representation of graphs, a standard priority-queue algorithm, and an Order-Maintenance
Algorithm for time stamps. The implementation of the adg needs to support deleting an edge,
a node, and finding the outgoing edges of a node. An adjacency list representation in which the
edges of a node are maintained in a doubly-linked list implements these operations in constant
time. The algorithm also needs to identify all the edges between two time stamps so they
can be deleted. This can be implemented with a time-ordered, doubly-linked list of all edges.
Inserting, deleting, and find-next all take constant time per edge. The priority queue should
support addition, deletion, and delete-minimum operations efficiently. Standard balanced-tree
based priority-queue algorithms perform these operations in logarithmic time. This is sufficient
for our purposes and any of these algorithms can be used to implement priority queues.

A more interesting question is how to implement time stamps efficiently. To do this, we
require efficient support for four operations: compare two time stamps, insert a new time
stamp after a given time stamp, delete a time stamp, and retrieve the next time stamp (used
in deleting the time-span of an edge). Using real numbers is not an efficient solution, because,
in change propagation, an arbitrary number of new time stamps could be inserted between
two fixed time stamps. This requires arbitrary precision real numbers, which are costly. A
simple alternative to real numbers is to have all the time stamps ordered in a list. To insert or
delete a time stamp, we simply insert it into the list or delete it from the list. To compare two
time stamps, we compare their positions in the list—the time stamp closer to the beginning
of the list is smaller. This comparison operation, however, can take linear time in the length
of the list. A more efficient approach is to assign an integer rank to each time stamp in
the list such that nodes closer to the beginning of the list have smaller ranks. This enables

11

constant time comparisons by comparing the ranks. The insertion algorithm then may have to
do some re-ranking to find space to insert an integer between two adjacent integers. Dietz and
Sleator give two efficient algorithms for this problem, which is known as the Order-Maintenance
Problem [4]. The first algorithm is a simple algorithm that performs all operations in amortized
constant time, the second more sophisticated algorithm achieves worst case constant time.

4.7 Performance of Change Propagation.

We show an upper bound on the running time of change propagation. As discussed above,
we assume an adjacency list representation for augmented dependency graphs together with a
time-ordered list of edges, a priority queue that can support insertions, deletions, and remove-
minimum operations in logarithmic time, and an order-maintenance structure that supports
insert, delete, compare, and find-next operations in constant time.

We define several performance measures for change propagation. Consider running the
change-propagation algorithm, and let I denote the set of all invalidated edges. Of these
edges, some of them participate in an edge update, whereas some become obsolete and are
deleted before participating. We refer to the set of updated edges as Iu. For an updated
edge e ∈ Iu, let |e| denote the re-evaluation time (complexity) of the reader associated with e
assuming that mod, read, write, take constant time, and let ||e|| denote the number of time
stamps created during the initial evaluation of e. Let q be the maximum size of the priority
queue at any time during the algorithm. Theorem 1 bounds the time of a propagate step.

Theorem 1 (Propagate)
Change propagation takes time

O

(∑
e∈Iu

(|e|+ ||e||) + |I| log q

)
.

Proof: The time for propagate can be partitioned into 4 items: (1) re-evaluation of readers,
(2) creation of time stamps, (3) deletion of time stamps and contained edges, and (4) insertion
to and deletions from the priority queue. Re-evaluation of the readers takes

∑
e∈Iu
|e| time.

The number of time stamps created during the re-evaluation of a reader is no greater than
the time it takes to re-evaluate the reader. Since creating one time stamp takes constant
time, creating time stamps takes O(

∑
e∈Iu
|e|) time. Determining each time stamp to delete,

deleting the time stamp and the corresponding node or edge from the adg and the time-ordered
doubly-linked edge list takes constant time. Thus total time for these deletions is (

∑
e∈Iu
||e||).

Finally, each edge is added to the priority queue once and deleted from the queue once,
thus the time for maintaining the priority queue is O(|I| log q). The total time is the sum of
these terms. �

4.8 Performance of Adaptive Quicksort

We now analyze the propagate time for Quicksort when the input list is modified by adding a
new key at the end. The analysis is based on the bound given in Theorem 1.

Theorem 2
Change propagation updates the output of adaptive Quicksort in O(log n) time after the input
list of length n is extended with a new key at the end.

12

Proof: The proof is by induction on the height h of a call tree representing just the calls
to qs. When the input is extended, the value of the last element ln of the list is changed
from NIL to CONS(v,ln+1), where the value of ln+1 is NIL and v is the new key. The induction
hypothesis is that in change propagation on an input tree of height h, the number of invalidated
reads is at most 2h (|I| ≤ 2h and Iu = I), each reader takes constant time to re-evaluate
(∀e ∈ I, |e| = O(1)), the time span of a reader contains no other time stamps (∀e ∈ I, ||e|| = 0),
and the maximum size of the priority queue is 4 (q ≤ 4).

In the base case, we have h = 1, and the call tree corresponds to an evaluation of qs with
an empty input list. The only read of ln is the outer read in qs. The change propagation
algorithm will add the corresponding edge to the priority queue, and then update it. Now that
the list has one element, the reader will make two calls to filter and two calls to qs’ both
with empty input lists. This takes constant time and does not add any edges to the priority
queue. There are no time stamps in the time span of the re-evaluated edge and the above
bounds hold.

For the inductive case assume that the hypothesis holds for trees up to height h − 1, and
consider a tree with height h > 1. Now, consider the change propagation starting with the
root call to qs. The list has at least one element in it, therefore the initial read does not read
the tail ln. The only two functions that use the list are the two calls to filter’, and these will
both read the tail in their last recursive call. Therefore, during change propagation these two
reads (edges) are invalidated, will be added to the queue, and then updated. Any other edges
that these updates add to the queue will have start times after the start times of these edges.
Re-evaluating the reader of one of the two edges will rewrite NIL and therefore not change its
target. Re-evaluating the other will change its target from NIL to the value CONS(v,ln+1), and
therefore extend the corresponding list. Re-evaluating both readers takes constant time and
the update deletes no time stamps. Only one of the two recursive calls to qs has any changed
data, and that one has its input extended with one element. Since the call tree of the qs has
depth at most d − 1, the induction hypothesis applies. Thus, |e| = O(1) and ||e|| = 0 for all
invalidated edges. Furthermore, the total number of invalidated edges is |I| ≤ 2(d−1)+2 = 2d
and all edges are re-evaluated (Iu = I). To see that q ≤ 4, note that the queue contains edges
from at most 2 different qs calls and there are at most 2 edges invalidated from each call.

It is known that the expected height of the call tree is O(log n) (expectation is over all
inputs). Thus we have: E [|I|] = O(log n), I = Iu, q = 4, and ∀e ∈ I, |e| = O(1), ||e|| = 0. Thus
by taking the expectation of the formula given in Theorem 1 and plugging in these values gives
expected O(log n) time for propagate. �

4.9 The ML Implementation

We present an implementation of our adaptive mechanism in ML. It uses a library for ordered
lists, which is an instance of the Order-Maintenance Problem, and a standard priority queue.
In the ordered-list interface (shown in Figure 7), spliceOut deletes all time stamps between
two given time stamps and isSplicedOut returns true if the time stamp has been deleted
and false otherwise.

Figure 8 shows the code for the ML implementation. The implementation differs somewhat
from the algorithm described earlier, but the asymptotic performance remains the same. The
edge and node types correspond to edges and nodes in the adg. The reader and time-span
are represented explicitly in the edge type, but the source and destination are implicit in

13

signature ORDERED LIST = sig
type t

val init : unit -> t (* Initialize *)
val compare: t*t -> order (* Compare two nodes *)
val insert : t ref -> t (* Insert a new node *)
val spliceOut: t*t -> unit (* Splice interval out *)
val isSplicedOut: t -> bool (* Is the node spliced? *)

end

Figure 7: The signature of an ordered list.

the reader. In particular the reader starts by reading the source, and ends by writing to the
destination. The node consists of the corresponding modifiable’s value (value), its out-edges
(outEdges), and a write function (wrt) that implements writes or changes to the modifiable.
A time stamp is not needed since edges keep both start and stop times. The currentTime is
used to help generate the sequential time stamps, which are generated for the edge on line 37
and for the node on line 29 by the write operation.

Some of the tasks assigned to the change-propagate loop in Figure 5 are performed by the
write operation in the ML code. This includes the functionality of lines 10–12 in Figure 5,
which are executed by lines 20–25 in the ML code. Another important difference is that the
deletion of contained edges is done lazily. Instead of deleting edges from the Queue and from
the graph immediately, the time stamp of the edge is marked as invalid (by being removed
from the ordered-list data structure), and is deleted when it is next encountered. This can be
seen in line 55.

We note that the implementation given does not include sufficient run-time checks to verify
“correct usage”. For example, the code does not verify that an initializer writes its intended
destination. The code, however, does check for a read before write.

14

1 structure Adaptive :> ADAPTIVE = struct
2 type changeable = unit
3 exception unsetMod

4 type edge = {reader: (unit -> unit),
5 timeSpan: (Time.t * Time.t)}

6 type ’a node = {value : (unit -> ’a) red,
7 wrt : (’a -> unit) ref,
8 outEdges : edge list ref}
9 type ’a mod = ’a node
10 type ’a dest = ’a node

11 val currentTime = ref(Time.init())
12 val PQ = ref(Q.empty) (* Priority queue *)

13 fun init() = (currentTime := Time.init(); PQ := Q.empty)

14 fun mod cmp f = let
15 val value = ref(fn() => raise unsetMod)
16 val wrt = ref(fn(v) => raise unsetMod)
17 val outEdges = ref(nil)
18 val m = {value=value, wrt=wrt, outEdges=outEdges}
19 fun change t v =
20 (if cmp(v,(!value)()) then ()
21 else
22 (value := (fn() => v);
23 List.app (fn x => PQ := Q.insert(x,!PQ))
24 (!outEdges);
25 outEdges := nil);
26 currentTime := t)
27 fun write(v) =
28 (value := (fn() => v);
29 Time.insert(currentTime);
30 wrt:= change(!currentTime))
31 val = wrt := write
32 in
33 f(m); m
34 end

35 fun write({wrt, ...} : ’a dest, v) = (!wrt)(v)

36 fun read({value, outEdges, ...} : ’a mod, f) = let
37 val start = Time.insert(currentTime)
38 fun run() =
39 (f((!value)());
40 outEdges := {reader=run,
41 timeSpan=(start,(!currentTime))}
42 ::(!outEdges))
43 in
44 run()
45 end

46 fun change(l: ’a mod, v) = write(l, v)

47 fun propagate’() =
48 if (Q.isEmpty(!PQ)) then
49 ()
50 else let
51 val (edge, pq) = Q.deleteMin(!PQ)
52 val = PQ := pq
53 val {reader=f,timeSpan=(start,stop)} = edge
54 in
55 if (Time.isSplicedOut start) then
56 propagate’() (* Obsolete read, discard.*)
57 else
58 (Time.spliceOut(start,stop); (* Splice out *)
59 currentTime := start;
60 f(); (* Rerun the read *)
61 propagate’())
62 end

63 fun propagate() = let
64 val ctime = !currentTime
65 in
66 (propagate’();
67 currentTime := ctime)
68 end
69 end

Figure 8: The implementation of the adaptive library.

15

5 An Adaptive Functional Language

In the first part of the paper, we described an adaptivity mechanism in an informal setting. The
purpose was to introduce the basic concepts of adaptivity and show that the mechanism can be
implemented efficiently. We now turn to the question of whether the proposed mechanism is
sound. To this end, we present a small, purely functional language with primitives for adaptive
computation, called AFL. AFL ensures correct usage of the adaptivity mechanism statically by
using a modal type system and employing implicit “destination passing.”

The adaptivity mechanisms of AFL are similar to those of the adaptive library presented
in Section 4. The chief difference is that the target of a changeable expression is implicit in
AFL. Because of this, AFL also includes two forms of function type, one for functions whose
body is stable, and one for functions whose body is changeable. The former corresponds to the
standard function type found in any functional language. The latter is included to improve
efficiency by allowing such functions to share their (implicit) target with the caller. This avoids
the need to allocate a modifiable for the result of a procedure call, and is crucial to supporting
the tail recursion optimization in changeable mode.

AFL does not include analogues of the meta-operations for making and propagating changes
found in the ML library. Instead, we give a direct presentation of the change-propagation
algorithm in Section 7, which is defined in terms of the dynamic semantics of AFL given
here. Just as with the ML implementation, the dynamic semantics must keep a record of the
adaptive aspects of the computation. However, rather than use adg’s, the semantics maintains
this information in the form of a trace, which guides the change propagation algorithm. By
doing so we are able to give a relatively straightforward proof of correctness of the change
propagation algorithm in Section 7.

5.1 Abstract Syntax.

The abstract syntax of AFL is given in Figure 9. We use the meta-variables x, y, and z (and
variants) to range over an unspecified set of variables, and the meta-variable l (and variants) to
range over a separate, unspecified set of locations. The syntax of AFL is restricted to “2/3-cps”,
or “named form”, to streamline the presentation of the dynamic semantics.

The types of AFL include the base types int and bool; the stable function type, τ1
s→ τ2;

the changeable function type, τ1
c→ τ2; and the type τ mod of modifiable references of type τ .

Extending AFL with product, sum, recursive, or polymorphic types presents no fundamental
difficulties, but they are omitted here for the sake of brevity.

Expressions are classified into two categories, the stable and the changeable. The value
of a stable expression is not sensitive to modifications to the inputs, whereas the value of a
changeable expression may, directly or indirectly, be affected by them. The familiar mecha-
nisms of functional programming are embedded in AFL as stable expressions. These include
basic types such as integers and booleans, and a sequential let construct for ordering eval-
uation. Ordinary functions arise in AFL as stable functions. The body of a stable function
must be a stable expression; the application of a stable function is correspondingly stable. The
stable expression modτ ec allocates a new modifiable reference whose value is determined by
the changeable expression ec. Note that the modifiable itself is stable, even though its contents
is subject to change.

Changeable expressions are written in destination-passing style, with an implicit target.
The changeable expression write(v) writes the value v into the target. The changeable ex-

16

Types τ : : = int | bool | τ mod | τ1
s→ τ2 | τ1

c→ τ2

Values v : : = c | x | l | funs f(x : τ1) : τ2 is es end |
func f(x : τ1) : τ2 is ec end

Op’s o : : = not | + | - | = | < | . . .

Const’s c : : = n | true | false

Exp’s e : : = es | ec

St Exp’s es : : = v | o(v1, . . . , vn) | applys(v1, v2) |
let x be es in e′

s end | modτ ec |
if v then es else e′

s

Ch Exp’s ec : : = write(v) | applyc(v1, v2) |
let x be es in ec end

read v as x in ec end |
if v then ec else e′

c

Figure 9: The abstract syntax of AFL.

pression read v as x in ec end binds the contents of the modifiable v to the variable x, then
continues evaluation of ec. A read is considered changeable because the contents of the modi-
fiable on which it depends is subject to change. A changeable function itself is stable, but its
body is changeable; correspondingly, the application of a changeable function is a changeable
expression. The sequential let construct allows for the inclusion of stable sub-computations in
changeable mode. Finally, conditionals with changeable branches are themselves changeable.

We defined the set of location of an expression as follows.

Definition 3 (Locations of an expression)
The locations of an expression e, denoted locs(e), is defined as follows.

• Values
locs(c) = ∅
locs(x) = ∅
locs(l) = {l}

locs(funs f(x : τ) : τ ′ is es end) = locs(es)
locs(func f(x : τ) : τ ′ is ec end) = locs(ec)

• Stable Expressions

locs(o(v1, . . . , vn)) = locs(v1) ∪ . . . ∪ locs(vn)
locs(applys(v1, v2)) = locs(v1) ∪ locs(v2)

locs(let x be es in e′s end) = locs(es) ∪ locs(e′s)
locs(if v then es else e′s) = locs(v) ∪ locs(es) ∪ locs(e′s)

locs(modτ ec) = locs(ec)

17

• Changeable Expressions

locs(applyc(v1, v2)) = locs(v1) ∪ locs(v2)
locs(let x be es in ec end) = locs(es) ∪ locs(ec)

locs(if v then es else ec) = locs(v) ∪ locs(es) ∪ locs(ec)
locs(read v as x in ec end) = locs(v) ∪ locs(ec)

locs(write(v)) = locs(v)

Constants Λ; Γ `s n : int

Λ; Γ `s true : bool Λ; Γ `s false : bool

Locs, Vars
(Λ(l) = τ)

Λ; Γ `s l : τ mod

(Γ(x) = τ)
Λ; Γ `s x : τ

Fun
Λ; Γ, f : τ1

s→ τ2, x : τ1 `s e : τ2

Λ; Γ `s funs f(x : τ1) : τ2 is e end : (τ1
s→ τ2)

Λ; Γ, f : τ1
c→ τ2, x : τ1 `c e : τ2

Λ; Γ `s func f(x : τ1) : τ2 is e end : (τ1
c→ τ2)

Prim Λ; Γ `s vi : τi (1 ≤ i ≤ n) `o o : (τ1, . . . , τn) τ

Λ; Γ `s o(v1, . . . , vn) : τ

If Λ; Γ `s x : bool Λ; Γ `s e1 : τ Λ; Γ `s e2 : τ

Λ; Γ `s ifx then e1 else e2 : τ

Apply Λ; Γ `s v1 : (τ1
s→ τ2) Λ; Γ `s v2 : τ1

Λ; Γ `s applys(v1, v2) : τ2

Let Λ; Γ `s e1 : τ1 Λ; Γ, x : τ1 `s e2 : τ2

Λ; Γ `s let x be e1 in e2 end : τ2

Mod Λ; Γ `c e : τ

Λ; Γ `s modτ e : τ mod

Figure 10: Typing of stable expressions.

5.2 Static Semantics

The AFL type system is inspired by the type theory of modal logic given by Pfenning and
Davies’ [12]. We distinguish two modes, the stable and the changeable, corresponding to
the distinction between terms and expressions, respectively, in Pfenning and Davies’ work.

18

However, they have no analogue of our changeable function type, and do not give an operational
interpretation of their type system.

Write Λ; Γ `s v : τ

Λ; Γ `c write(v) : τ

If Λ; Γ `s x : bool Λ; Γ `c e1 : τ Λ; Γ `c e2 : τ

Λ; Γ `c ifx then e1 else e2 : τ

Apply Λ; Γ `s v1 : (τ1
c→ τ2) Λ; Γ `s v2 : τ1

Λ; Γ `c applyc(v1, v2) : τ2

Let Λ; Γ `s e1 : τ1 Λ; Γ, x : τ1 `c e2 : τ2

Λ; Γ `c let x be e1 in e2 end : τ2

Read Λ; Γ `s v1 : τ1 mod Λ; Γ, x : τ1 `c e : τ2

Λ; Γ `c read v1 as x in e end : τ2

Figure 11: Typing of changeable expressions.

The judgement Λ; Γ `s e : τ states that e is a well-formed stable expression of type τ ,
relative to Λ and Γ. The judgement Λ; Γ `c e : τ states that e is a well-formed changeable
expression of type τ , relative to Λ and Γ. Here Λ is a location typing and Γ is a variable typing ;
these are finite functions assigning types to locations and variables, respectively. (In Section 6
we will impose additional structure on location typings that will not affect the definition of
the static semantics.) The rules for deriving these judgements are given in Figures 10 and 11.

5.3 Dynamic Semantics

The evaluation judgements of AFL have one of two forms. The judgement σ, es ⇓s v, σ′, Ts

states that evaluation of the stable expression es, relative to the input store σ, yields the value
v, the trace Ts, and the updated store σ′. The judgement σ, l ← ec ⇓c σ′, Tc states that
evaluation of the changeable expression ec, relative to the input store σ, writes its value to the
target l, and yields the trace Tc and the updated store σ′.

In the dynamic semantics, a store, σ, is a finite function mapping each location in its
domain, dom(σ), to either a value v or a “hole” �. The defined domain, def(σ), of σ consists
of those locations in dom(σ) not mapped to � by σ. When a location is created, it is assigned
the value � to reserve that location while its value is being determined. With a store σ, we
associate a location typing Λ and write σ : Λ, if the store satisfies the typing Λ. This is defined
formally in Section 6.

A trace is a finite data structure recording the adaptive aspects of evaluation. The abstract
syntax of traces is given by the following grammar:

Trace T : : = Ts | Tc

Stable Ts : : = ε | 〈Tc〉l:τ | Ts ; Ts

Changeable Tc : : = Wτ | Rx.e
l (Tc) | Ts ; Tc

19

Value σ, v ⇓s v, σ, ε

Op’s
(v′ = app(o, (v1, . . . , vn)))
σ, o(v1, . . . , vn) ⇓s v′, σ, ε

If σ, e1 ⇓s v, σ′, Ts

σ, if true then e1 else e2 ⇓s v, σ′, Ts

σ, e2 ⇓s v, σ′, Ts

σ, if false then e1 else e2 ⇓s v, σ′, Ts

Apply

(v1 = funs f(x : τ2) : τ is e end)
σ, [v1/f, v2/x] e ⇓s v′, σ′, Ts

σ, applys(v1, v2) ⇓s v′, σ′, Ts

Let

σ, e1 ⇓s v1, σ
′, Ts

σ′, [v1/x]e2 ⇓s v1, σ
′′, T′

s

σ, let x be e1 in e2 end ⇓s v2, σ
′′, (Ts ; T′

s)

Mod
σ[l→ �], l← e ⇓c σ′, Tc (l 6∈ dom(σ))

σ, modτ e ⇓s l, σ′, 〈Tc〉l:τ

Figure 12: Evaluation of stable expressions.

When writing traces, we adopt the convention that “;” is right-associative.
A stable trace records the sequence of allocations of modifiables that arise during the

evaluation of a stable expression. The trace 〈Tc〉l:τ records the allocation of the modifiable, l,
its type, τ , and the trace of the initialization code for l. The trace Ts ; T′s results from evaluation
of a let expression in stable mode, the first trace resulting from the bound expression, the
second from its body.

A changeable trace has one of three forms. A write, Wτ , records the storage of a value of
type τ in the target. A sequence Ts ; Tc records the evaluation of a let expression in changeable
mode, with Ts corresponding to the bound stable expression, and Tc corresponding to its body.
A read Rx.e

l (Tc) trace specifies the location read, l, the context of use of its value, x.e, and
the trace, Tc, of the remainder of evaluation with the scope of that read. This records the
dependency of the target on the value of the location read.

The augmented dependency graphs described in Section 4 may be seen as an efficient
representation of traces. Time stamps may be assigned to each read and write operation in the
trace in left-to-right order. These correspond to the time stamps in the adg representation.
The containment hierarchy is directly represented by the structure of the trace. Specifically,
the trace Tc (and any read in Tc) is contained within the read trace Rx.e

l (Tc).

Stable Evaluation. The evaluation rules for stable expressions are given in Figure 12. Most
of the rules are standard for a store-passing semantics. For example, the let rule sequences

20

Write σ, l← write(v) ⇓c σ[l← v], Wτ

If σ, l← e1 ⇓c σ′, Tc

σ, l← if true then e1 else e2 ⇓c σ′, Tc

σ, l← e2 ⇓c σ′, Tc

σ, l← if false then e1 else e2 ⇓c σ′, Tc

Apply

(v1 = func f(x : τ1) : τ2 is e end)
σ, l← [v1/f, v2/x] e ⇓c σ′, Tc

σ, l← applyc(v1, v2) ⇓c σ′, Tc

Let

σ, e1 ⇓s v1, σ
′, Ts

σ′, l← [v1/x]e2 ⇓c σ′′, Tc

σ, l← let x be e1 in e2 end ⇓c σ′′, (Ts ; Tc)

Read
σ, l′ ← [σ(l)/x] e ⇓c σ′, Tc

σ, l′ ← read l as x in e end ⇓c σ′, Rx.e
l (Tc)

Figure 13: Evaluation of changeable expressions.

evaluation of its two expressions, and performs binding by substitution. Less conventionally,
it yields a trace consisting of the sequential composition of the traces of its sub-expressions.

The most interesting rule is the evaluation of modτ e. Given a store σ, a fresh location l
is allocated and initialized to � prior to evaluation of e. The sub-expression e is evaluated
in changeable mode, with l as the target. Pre-allocating l ensures that the target of e is
not accidentally re-used during evaluation; the static semantics ensures that l cannot be read
before its contents is set to some value v.

Changeable Evaluation. The evaluation rules for changeable expressions are given in Fig-
ure 13. The let rule is similar to the corresponding rule in stable mode, except that the bound
expression, e1, is evaluated in stable mode, whereas the body, e2, is evaluated in changeable
mode. The read expression substitutes the binding of location l in the store σ for the variable
x in e, and continues evaluation in changeable mode. The read is recorded in the trace, along
with the expression that employs the value read. The write rule simply assigns its argument
to the target. Finally, application of a changeable function passes the target of the caller to
the callee, avoiding the need to allocate a fresh target for the callee and a corresponding read
to return its value to the caller.

6 Type Safety of AFL

The static semantics of AFL ensures these four properties of its dynamic semantics: (1) each
modifiable is written exactly once; (2) no modifiable is read before it is written; (3) depen-
dencies are not lost, i.e. if a value depends on a modifiable, then its value is also placed in a

21

modifiable; (4) the store is acyclic.
The proof of type safety for AFL hinges on a type preservation theorem for the dynamic

semantics. As may be expected, the preservation theorem ensures that the value of a well-
typed stable expression is also well-typed (indeed, has the same type). In addition preservation
ensures that evaluation of a changeable expression preserves the type of the store. The typing
relation for stores ensures not only that the contents of locations are consistent with their
type, but also that there are no cyclic dependencies among them. Thus preservation for AFL
ensures that no cycles can arise during evaluation, which is consistent with pure functional
programming.

Since the dynamic semantics of AFL is given by an evaluation relation, rather than a
transition system, the proof of type safety is indirect. First, we prove a type preservation
theorem stating that the outcome of evaluation is type consistent, provided that the inputs
are. Second, we prove a canonical forms lemma characterizing the “shapes” of closed values of
each type. Third, we augment the dynamic semantics with rules stating that evaluation “goes
wrong” in the case that the principal argument of an elimination form is non-canonical. Finally,
we argue that, by the first two results, these rules can never apply to a well-typed program.
Since the last two steps are routine, given the first two, we concentrate on preservation and
canonical forms.

6.1 Location Typings

For the safety proof we will enrich location typings with a total ordering on their domains. A
location typing, Λ, consists of three parts:

1. A finite set, dom(Λ), of locations, called the domain of the store typing.

2. A finite function, also written Λ, assigning types to the locations in dom(Λ).

3. A linear ordering ≤Λ of dom(Λ).

The restriction, ≤Λ � L, of ≤Λ to a subset L ⊆ dom(Λ) is the intersection ≤Λ ∩(L × L). The
relation l <Λ l′ holds if and only if l ≤Λ l′ and l 6= l′.

Location typings may be partially ordered by defining Λ v Λ′ if and only if

1. dom(Λ) ⊆ dom(Λ′);

2. if l ∈ dom(Λ), then Λ′(l) = Λ(l);

3. ≤Λ′ � dom(Λ) =≤Λ.

It is easy to check that this is a partial ordering.
The ordered extension, Λ[l′:τ ′<l], of a location typing Λ by assigning the type τ ′ to the

location l′ /∈ dom(Λ) immediately before l ∈ dom(Λ) is the location typing Λ′ such that

1. dom(Λ′) = dom(Λ) ∪ { l′ };

2. Λ′(l′′) =
{

τ ′ if l′′ = l′

Λ(l′′) otherwise
;

3. (a) l′ ≤Λ′ l;

22

(b) if l′′ ≤Λ l, then l′′ ≤Λ′ l′;

(c) if l′′ ≤Λ l′′′, then l′′ ≤Λ′ l′′′.

If l ∈ dom(Λ) and l′ /∈ dom(Λ), then Λ v Λ[l′:τ ′<l].
The restriction, Λ � l, of a location typing Λ to a location l ∈ dom(Λ), is the location typing

Λ′ such that

1. dom(Λ′) = { l′ ∈ dom(Λ) | l′ <Λ l };

2. if l′ <Λ l, then Λ′(l′) = Λ(l′);

3. ≤Λ′= ≤Λ � dom(Λ′).

Note that if Λ v Λ′ and l ∈ dom(Λ), then Λ � l v Λ′ � l, and that if l′ ≤Λ l, then Λ � l′ v Λ � l.
A store σ may be assigned a location typing Λ, written σ : Λ, if and only if the following

two conditions are satisfied.

1. dom(σ) = dom(Λ).

2. for each l ∈ def(σ), Λ � l `s σ(l) : Λ(l).

The location typing, Λ, imposes a linear ordering on the locations in the store, σ, such that the
values in σ store have the types assigned to them by Λ, relative to the types of its preceding
locations in the ordering. In particular this ensures that the dependency relation among
locations in the store is acyclic.

6.2 Trace Typing

The formulation of the type safety theorem requires a notion of typing for traces. The judge-
ment Λ, l0 `s Ts ; Λ′ states that the stable trace Ts is well-formed relative to the input
location typing Λ and the “cursor” l0 ∈ dom(Λ′). The output location typing Λ′ is an exten-
sion of Λ with typings for the locations allocated by the trace; these will all be ordered prior to
the cursor. When Λ′ is not important, we simply write Λ `s Ts ok to mean that Λ `s Ts ; Λ′

for some Λ′.
Similarly, the judgement Λ, l0 `c Tc : τ ; Λ′ states that the changeable trace Tc is well-

formed relative to Λ and l0 ∈ dom(Λ). As with static traces, Λ′ is an extension of Λ with the
newly-allocated locations of the trace. When Λ′ is not important, we write Λ `c Tc : τ for
Λ `c Tc : τ ; Λ′ for some Λ′.

The rules for deriving these judgements are given in Figure 14. The input location typing
specifies the active locations, of which only those prior to the cursor are eligible as subjects of
a read. The cursor changes when processing an allocation trace to make the allocated location
active, but unreadable, thereby ensuring that no location is read before it is allocated. The
ouput location typing determines the ordering of locations allocated by the trace relative to
the ordering of the input locations. Specifically, the ordering of the newly allocated locations is
determined by the trace, and is such that they are all ordered to occur immediately prior to the
cursor. The ordering so determined is essentially the same as that used in the implementation
described in Section 4.

23

Λ, l0 `s ε ; Λ
Λ, l0 `s Ts ; Λ′ Λ′, l0 `s T′

s ; Λ′′

Λ, l0 `s Ts ; T′
s ; Λ′′

Λ[l:τ<l0], l `c Tc : τ ; Λ′ (l /∈ dom(Λ))
Λ, l0 `s 〈Tc〉l:τ ; Λ′

Λ, l0 `c Wτ : τ ; Λ
Λ, l0 `s Ts ; Λ′ Λ′, l0 `s Tc : τ ; Λ′′

Λ, l0 `c Ts ; Tc : τ ; Λ′′

Λ � l0;x:τ `c e : τ ′ Λ, l0 `c Tc : τ ′ ; Λ′ (l <Λ l0, Λ(l) = τ)
Λ, l0 `c Rx.e

l (Tc) : τ ′ ; Λ′

Figure 14: Typing of Traces.

6.3 Type Preservation

For the proof of type safety we shall make use of a few technical lemmas. First, typing is
preserved by addition of typings of “irrelevant” locations and variables.

Lemma 4 (Weakening)
If Λ v Λ′ and Γ ⊆ Γ′, then

1. if Λ; Γ `s e : τ , then Λ′; Γ′ `s e : τ ;

2. if Λ; Γ `c e : τ , then Λ′; Γ′ `c e : τ ;

3. if Λ `s Ts ok, then Λ′ `s Ts ok;

4. if Λ `c Tc : τ , then Λ′ `c Tc : τ .

Second, typing is preserved by substitution of a value for a free variable of the same type as
the value.

Lemma 5 (Value Substitution)
Suppose that Λ; Γ `s v : τ .

1. If Λ; Γ, x:τ `s e′ : τ ′, then Λ; Γ `s [v/x]e′ : τ ′.

2. If Λ; Γ, x:τ `c e′ : τ ′, then Λ; Γ `c [v/x]e′ : τ ′.

The type preservation theorem for AFL states that the result of evaluation of a well-typed
expression is itself well-typed. The location l0, called the “cursor”, is the current allocation
point. All new locations are allocated prior to l0 in the ordering. The theorem requires that
the input expression be well-typed relative to those locations preceding the cursor so as to
preclude forward references to locations that have been allocated, but not yet initialized. In
exchange the result is assured to be sensible relative to those locations prior to the cursor, all
of which are allocated and initialized. This ensures that no location is read before it has been
allocated and initialized.

24

Theorem 6 (Type Preservation)
1. If

(a) σ, e ⇓s v, σ′, Ts,

(b) σ : Λ,

(c) l0 ∈ dom(Λ),

(d) l <Λ l0 implies l ∈ def(σ),

(e) Λ � l0 `s e : τ ,

then there exists Λ′ w Λ such that

(f) Λ′ � l0 `s v : τ ,

(g) σ′ : Λ′, and

(h) Λ, l0 `s Ts ; Λ′.

2. If

(a) σ, l0 ← e ⇓c σ′, Tc,

(b) σ : Λ,

(c) Λ(l0) = τ0,

(d) l <Λ l0 implies l ∈ def(σ),

(e) Λ � l0 `c e : τ0,

then

(f) l0 ∈ def(σ′),

and there exists Λ′ w Λ such that

(g) σ′ : Λ′, and

(h) Λ, l0 `c Tc : τ0 ; Λ′.

Proof: Simultaneously, by induction on evaluation. We will consider several illustrative cases.

• Suppose that

(1a) σ, modτ e ⇓s l, σ′′, 〈Tc〉l:τ ;
(1b) σ : Λ;

(1c) l0 ∈ dom(Λ);

(1d) l <Λ l0 implies l ∈ def(σ);

(1e) Λ � l0 `s modτ e : τ mod.

Since the typing and evaluation rules are syntax-directed, it follows that

(1a(i)) σ[l→ �], l← e ⇓c σ′′, Tc, where l /∈ dom(σ), and

(1e(i)) Λ � l0 `c e : τ .

25

Note that l /∈ dom(Λ), by (1b). Let σ′ = σ[l → �] and let Λ′ = Λ[l:τ<l0]. Note that
Λ v Λ′ and that Λ′(l) = τ .

Then we have

(2a′) σ′, l← e ⇓c σ′′, Tc, by (1a(i));

(2b′) σ′ : Λ′. Since σ : Λ by (1b), we have Λ � l′ `s σ(l′) : Λ(l′) for every l′ ∈ def(σ).
Now def(σ′) = def(σ), so for every l′ ∈ def(σ′), σ′(l′) = σ(l′) and Λ′(l′) = Λ(l′).
Therefore, by Lemma 4, we have Λ′ � l′ `s σ′(l′) : Λ′(l′), as required.

(2c′) Λ′(l) = τ , by definition;

(2d′) l′ <Λ′ l implies l′ ∈ def(σ′), since l′ <Λ′ l implies l′ <Λ l0 and (1d);

(2e′) Λ′ � l `c e : τ since Λ′ � l = Λ � l0 and (1e(i)).

Therefore, by induction,

(2f′) l ∈ def(σ′′);

and there exists Λ′′ w Λ′ such that

(2g′) σ′′ : Λ′′;

(2h′) Λ′, l `c Tc : τ ; Λ′′.

Hence we have

(1f) Λ′′ � l0 `s l : τ , since (Λ′′ � l0)(l) = Λ′(l) = τ ;

(1g) σ′′ : Λ′′ by (2g′);

(1h) Λ, l0 `s 〈Tc〉l:τ : τ ; Λ′′, by (2h′).

• Suppose that

(2a) σ, l0 ← write(v) ⇓c σ[l0 ← v], Wτ ;

(2b) σ : Λ;

(2c) Λ(l0) = τ ;

(2d) l <Λ l0 implies l ∈ def(σ);

(2e) Λ � l0 `c write(v) : τ .

By the syntax-directed nature of the typing rules it follows that

(2e(i)) Λ � l0 `s v : τ .

Let Λ′ = Λ and σ′ = σ[l0 ← v]. Then we have:

(2f) l0 ∈ def(σ′), by definition of σ′;

(2g) σ′ : Λ′, since σ : Λ by (2b), Λ � l0 `s v : τ by (2e(i)), and Λ(l0) = τ by (2c).

(2h) Λ′, l0 `c Wτ : τ ; Λ′ by definition.

• Suppose that

(2a) σ, l0 ← read l as x in e end ⇓c σ′, Rx.e
l (Tc);

26

(2b) σ : Λ;

(2c) Λ(l0) = τ0;

(2d) l′ <Λ l0 implies l′ ∈ def(σ);

(2e) Λ � l0 `c read l as x in e end : τ0.

By the syntax-directed nature of the evaluation and typing rules, it follows that

(2a(i)) σ, l0 ← [σ(l)/x] e ⇓c σ′, Tc;

(2e(i)) Λ � l0 `s l : τ mod, hence (Λ � l0)(l) = Λ(l) = τ , and so l <Λ l0 and Λ(l) = τ ;

(2e(ii)) Λ � l0;x:τ `c e : τ0.

Since l <Λ l0, it follows that Λ � l v Λ � l0.

Therefore,

(2a′) σ, l0 ← [σ(l)/x] e ⇓c σ′, Tc by (2a(i));

(2b′) σ : Λ by (2b);

(2c′) Λ(l0) = τ0 by (2c);

(2d′) l′ <Λ l0 implies l′ ∈ def(σ) by (2d).

Furthermore, by (2b′), we have Λ � l `s σ(l) : Λ(l), hence Λ � l0 `s σ(l) : Λ(l) and so by
Lemma 5 and 2e(ii),

(2e′) Λ � l0 `c [σ(l)/x]e : τ0.

It follows by induction that

(2f′) l0 ∈ def(σ′)

and there exists Λ′ w Λ such that

(2g′) σ′ : Λ′;

(2h′) Λ, l0 `c Tc : τ ; Λ′.

Therefore we have

(2f) l0 ∈ def(σ′) by (2f′);

(2g) σ′ : Λ′ by (2g′);

(2h) Λ, l0 `c Rx.e
l (Tc) : τ0 ; Λ′, since

(a) Λ � l0, x:Λ(l) `c e : τ0 by (2e(ii));
(b) Λ, l0 `c Tc : τ0 ; Λ′ by (2h′);
(c) l ≤Λ l0 by (2e(i)).

�

27

6.4 Type Safety for AFL

Type safety follows from the canonical forms lemma, which characterizes the shapes of closed
values of each type.

Lemma 7 (Canonical Forms)
Suppose that Λ `s v : τ . Then

• If τ = int, then v is a numeric constant.

• If τ = bool, then v is either true or false.

• If τ = τ1
c→ τ2, then v = func f(x : τ1) : τ2 is e end with Λ; f :τ1

c→ τ2, x:τ1 `c e : τ2.

• If τ = τ1
s→ τ2, then v = funs f(x : τ1) : τ2 is e end with Λ; f :τ1

s→ τ2, x:τ1 `s e : τ2.

• If τ = τ ′ mod, then v = l for some l ∈ dom(Λ) such that Λ(l) = τ ′.

Theorem 8 (Type Safety)
Well-typed programs do not “go wrong”.

Proof (sketch): Instrument the dynamic semantics with rules that “go wrong” in the case of
a non-canonical principal argument to an elimination form. Then show that no such rule ap-
plies to a well-typed program, by appeal to type preservation and the canonical forms lemma.

�

7 Change Propagation is Sound

We formalize the notion of an input change and present a formal version of the change-
propagation algorithm. Using this formal framework, we prove the type safety and the cor-
rectness of the change-propagation algorithm.

Changing the Input. We represent an input change with a difference store. A difference
store is a finite mapping assigning values to locations. Unlike a store, a difference store may
contain “dangling” locations that are not defined within the store. The process of modifying
a store with a difference store is defined as follows.

Definition 9 (Store Modification)
Let σ : Λ be a store and let δ be a difference store. The modification of σ by δ, denoted by
σ ⊕ δ, is a well-typed store σ′ : Λ′, σ′ = σ ⊕ δ, where

σ ⊕ δ = δ ∪ { (l, σ(l)) | l 6∈ dom(δ) and l ∈ dom(σ) }.

Note that the definition requires the result store to be well typed. The store modification
yields an input change when it is applied to an input store.

28

σ, ε, C ⇓ps σ, ε, C

Mod
σ, l← Tc, C ⇓

p
c σ′, T′

c, C
′

σ, 〈Tc〉l:τ , C ⇓ps σ′, 〈T′
c〉l:τ , C′

Let

σ, Ts, C ⇓ps σ′, T′′
s , C′

σ′, T′
s, C

′ ⇓ps σ′′, T′′′
s , C′′

σ, (Ts ; T′
s), C ⇓

p
s σ′′, (T′′

s ; T′′′
s), C′′

Write σ, l← Wτ , C ⇓ps σ, Wτ , C

Read
σ, l′ ← Tc, C ⇓

p
c σ′, T′

c, C
′

σ, l′ ← Rx.e
l (Tc), C ⇓

p
c σ′, Rx.e

l (T′
c), C

′
(l 6∈ C)

σ, l′ ← [σ(l)/x]e ⇓c σ′, T′
c

σ, l′ ← Rx.e
l (Tc), C ⇓

p
c σ′, Rx.e

l (T′
c), C ∪ {l′}

(l ∈ C)

Let

σ, Ts, C ⇓ps σ′, T′
s, C

′

σ′, l′ ← Tc, C′ ⇓pc σ′′, T′
c, C

′′

σ, l′ ← (Ts ; Tc), C ⇓
p
c σ′′, (T′

s ; T′
c), C

′′

Figure 15: Change propagation rules (stable and changeable).

Change Propagation Algorithm. We present a formal version of the change-propagation
algorithm, which is informally described in Section 4. In the rest of this section, we will use
the term change-propagation algorithm to refer to this formal algorithm.

The change-propagation algorithm takes a modified store, a trace obtained by evaluating
an AFL program with respect to the original store, and a set of input locations that are changed
by the store modification, called the changed set. The algorithm scans the trace as it seeks
for reads of changed locations. When such a read is found, the associated expression is re-
evaluated with the new value to obtain a revised trace and store. Furthermore, the target of
a re-evaluated read is added to the changed set, because re-evaluation may change its value.
Thus, the order in which the reads are re-evaluated is important. The change-propagation
algorithm scans the trace in the order that it was originally generated. This ensures that the
trace is scanned only once and is done by establishing a correspondence between the change-
propagation rule that handles a trace and the AFL rule that generates that trace.

Formally, the change propagation algorithm is given by these two judgements:

1. Stable propagation: σ, Ts, C ⇓
p
s σ′, T′s, C

′;

2. Changeable propagation: σ, l← Tc, C ⇓
p
c σ′, T′c, C

′;

29

These judgements define the change-propagation for a stable trace, Ts (respectively, change-
able trace, Tc), with respect to a store, σ, and a changed set, C ⊆ dom(s). For changeable
propagation a target location, l, is maintained as in the changeable evaluation mode of AFL.

The rules defining the change-propagation judgements are given in Figure 15. Given a
trace, change propagation mimics the evaluation rule of AFL that originally generated that
trace. To stress this correspondence, each change-propagation rule is marked with the name
of the evaluation rule to which it corresponds. For example, the propagation rule for the trace
Ts ; T′s mimics the let rule of the stable mode that gives rise to this trace.

The most interesting rule is the read rule. This rule mimics a read operation, which
evaluates an expression after binding its specified variable to the value of the location read.
The read rule takes two different actions depending on whether this location is in the changed
set or not. If the location has changed (is in the changed set), then the expression is re-
evaluated with the new value of location. This re-evaluation yields a revised store and a new
trace. The new trace “repairs” the original trace by replacing the trace of the read. Also, the
target location is added to the changed set because it may now have a different value. Finally,
the “repaired” trace, the revised store, and the revised changed set is yielded. If the read
location has not been changed (is not in the changed set), then there is no need to re-evaluate
this read and change-propagation continues by scanning the rest of the trace. This is because
a re-evaluation would generate the same effects to the store and to the trace as done by the
initial evaluation. Since these effects are already present in the store and the trace, this read
could safely be skipped.

Note that the purely functional change-propagation algorithm presented here scans the
whole trace. Therefore, a direct implementation of this algorithm will run in time linear in the
size of the trace. On the other hand, the change-propagation algorithm revises the trace by
only replacing the changeable trace of re-evaluated reads. Thus, if one is content with updating
the trace with side effects, then traces of re-evaluated reads can be replaced in place, while
skipping all the rest of the trace. This is indeed how the ML implementation performs change
propagation using an augmented dependency graph as described in Section 4.

7.1 Type Safety

The change-propagation algorithm also enjoys a type preservation property stating that if
the initial state is well-formed, so is the result state. This ensures that the results of change
propagation can subsequently be used as further inputs. For the preservation theorem to apply,
the store modification must respect the typing of the store being modified.

Theorem 10 (Type Preservation)
Suppose that def(σ) = dom(σ).

1. If

(a) σ, Ts, C ⇓
p
s σ′, T′s, C

′,

(b) σ : Λ,

(c) l0 ∈ dom(Λ),

(d) Λ, l0 `s Ts ok, and

(e) C ⊆ dom(Λ),

then for some Λ′ w Λ,

30

(f) σ′ : Λ′,

(g) Λ, l0 `s T′s ; Λ′,

(h) C′ ⊆ dom(Λ).

2. If

(a) σ, l0 ← Tc, C ⇓
p
c σ′, T′c, C

′,

(b) σ : Λ,

(c) Λ(l0) = τ0,

(d) Λ, l0 `c Tc : τ0, and

(e) C ⊆ dom(Λ),

then there exists Λ′ w Λ such that

(f) σ′ : Λ′,

(g) Λ, l0 `c T′c : τ0 ; Λ′, and

(h) C′ ⊆ dom(Λ).

Proof: By induction on the definition of the change propagation relations, making use of
Theorem 6. We consider the case of a re-evaluation of a read. Suppose that l ∈ C and

(2a) σ, l0 ← Rx.e
l (Tc), C ⇓

p
c σ′, Rx.e

l (T′c), C ∪ {l0};

(2b) σ : Λ;

(2c) Λ(l0) = τ0;

(2d) Λ, l0 `c Rx.e
l (Tc) : τ0;

(2e) C ⊆ dom(Λ).

By the syntax-directed nature of the change propagation and trace typing rules, it follows
that

(2a(i)) σ, l0 ← [σ(l)/x]e ⇓c σ′, T′c;

(2b(i) Λ � l0 `s σ(l) : Λ(l), by (2b);

(2d(i)) l <Λ l0 and Λ(l) = τ for some type τ ;

(2d(ii)) Λ � l0;x:τ `c e : τ0;

(2d(iii)) Λ, l0 `c Tc : τ0.

Therefore

(2a′) σ, l0 ← [σ(l)/x]e ⇓c σ′, T′c by (2a(i));

(2b′) σ : Λ by (2b);

(2c′) Λ(l0) = τ0 by (2c);

31

σi

σ′
i

σm

σ′
m

propagate

σs

σ′
s

σi ⊕ δ

initial eval
σi, e ⇓s vi, σ

′
i, T

i
s

σ′
i ⊕ δ

σm, Ti
s, C ⇓ps σ′

m, Tm
s ,σs, e ⇓s vs, σ

′
s, T

s
s

subsequent eval

⊆

Figure 16: Change propagation simulates a complete re-evaluation.

(2d′) l′ <Λ l0 implies l′ ∈ def(σ) by assumption that def(σ) = dom(σ);

(2e′) Λ � l0 `c [σ(x)/l]e : τ0 by (2d(ii)), (2b(i)), and Lemma 5.

Hence, by Theorem 6,

(2f′) l ∈ def(σ′);

and there exists Λ′ w Λ such that

(2g′) σ′ : Λ′;

(2h′) Λ, l0 `c T′c : τ0 ; Λ′.

Consequently,

(2f) σ′ : Λ′ by (2g′);

(2g) Λ, l0 `c Rx.e
l (T′c) : τ0 by (2d(i) and (ii)), (2h′), and Lemma 4;

(2h) C ∪ { l0 } ⊆ dom(Λ′) since l0 ∈ dom(Λ) and Λ′ w Λ.

�

7.2 Correctness

Change propagation simulates a complete re-evaluation by only re-evaluating the affected sub-
expressions of an AFL program. Here we show that change propagation yields the same output
and the trace as a complete re-evaluation and thus is correct.

Figure 16 illustrates this simulation process. First, we evaluate a program e with respect
to an initial store σi; this is called the initial evaluation. We assume that a program is a stable
expression and the initial store contains no reserved locations. The initial evaluation yields
a value vi, an extended store σ′

i, and a trace T i
s. Then, we modify the initial store with a

difference store δ as σs = σi ⊕ δ and re-evaluate the program with this store in a subsequent
evaluation.

32

To simulate the subsequent evaluation via a change propagation, we first apply the modifi-
cations δ to σ′

i, to obtain a new store σm as σm = σ′
i ⊕ δ. We then perform change propagation

with respect to σm, using the trace of the initial evaluation, and the set of changed locations
C = dom(σ′

i) ∩ dom(δ). As a result, we obtain a revised trace and store σ′
m and a revised

trace Tm
s . For the change-propagation to work properly, we require that δ changes only input

locations, i.e., dom(σ′
i) ∩ dom(δ) ⊆ dom(σi).

To prove correctness, we compare the store and the trace obtained by the subsequent
evaluation, σ′

s and T s
s respectively, to those obtained by the change propagation, σ′

m and Tm
s

respectively. Since these two evaluations are independent, we do not expect the locations
generated in them to match. In fact, the two traces and the stores can contain different
locations. On the other hand, this is not a problem because locations themselves are not
visible to the user. To capture this, we introduce an equivalence relation for stores and traces
that disregards locations (names) via a partial bijection between locations. A partial bijection
is a one-to-one mapping from a set of locations D to a set of locations R that may not map
all the locations in D.

Definition 11 (Partial Bijection)
B is a partial bijection from set D to set R if it satisfies the following:

1. B ⊆ { (a, b) | a ∈ D, b ∈ R },

2. if (a, b) ∈ B and (a, b′) ∈ B then b = b′,

3. if (a, b) ∈ B and (a′, b) ∈ B then a = a′.

The application of a partial bijection, B, to a location, l, is denoted as B(l) and defined as

B(l) =
{

l′ if (l, l′) ∈ B
l otherwise

A partial bijection, B, can be applied to an expression e, to a store σ, or to a trace T, denoted
B[e], B[σ], and B[T], by replacing each location l with B(l). The formal definitions for these
are given below.

Definition 12 (Application of a partial bijection to an expression)
The application of a partial bijection B to an expression e yields an expression e′ which is
obtained from e by substituting each location l with B(l) as shown in Figure 17.

Definition 13 (Application of partial bijection to a store)
The application of a partial bijection B to a store σ, denoted B[σ], yields another store σ′

defined as σ′ = B[σ] = { (B(l), B[σ[l]]) | l ∈ dom(σ) }.

Definition 14 (Application of a partial bijection to a trace)
The application of a partial bijection to a trace is defined as follows.

B[ε] = ε
B[〈Tc〉l:τ] = 〈B[Tc]〉B(l):τ

B[Ts ; Ts] = B[Ts] ; B[Ts]
B[Wτ] = Wτ

B[Rx.e
l (Tc)] = R

B[x].B[e]
B(l) (B[Tc])

B[Ts ; Tc] = B[Ts] ; B[Tc]

33

• Values

B[�] = �
B[c] = c
B[x] = x
B[l] = B(l)

B[funs f(x : τ) : τ ′ is e end] = funs f(x : τ) : τ ′ is B[es] end
B[func f(x : τ) : τ ′ is e end] = func f(x : τ) : τ ′ is B[ec] end

• Stable Expressions

B[o(v1, . . . , vn)] = o(B[v1], . . . , B[vn])
B[applys(v1, v2)] = applys(B[v1], B[v2])

B[let x be es in e′s end] = let x be B[es] in B[e′s] end
B[if v then es else e′s] = ifB[v] thenB[es] elseB[e′s]

B[modτ ec] = modτ B[ec]

• Changeable Expressions

B[applyc(v1, v2)] = applyc(B[v1], B[v2])
B[let x be es in ec end] = let x be B[es] in B[ec] end

B[if v then ec else e′c] = ifB[v] thenB[ec] elseB[e′c]
B[read v as x in ec end] = read B[v] as x in B[ec] end

B[write(v)] = write(B[v])

• Expression with a destination

B[l← e] = B(l)← B[e]

Figure 17: Application of a partial bijection B to an expression.

Before we show the lemma that the correctness theorem relies on, we give a few definitions.
Given a partial bijection B and two stores, we define the set of changed locations in σ with

respect to the store σ′ and B as follows.

Definition 15 (Changed Locations)
Given two stores σ and σ′, and a partial bijection B from dom(σ) to the dom(σ′) the set of
changed locations is

changed(B, σ, σ′) = { l | l ∈ dom(B), B(σ[l]) 6= σ′[B(l)] }.

Definition 16 (Store Containment)
We say that a store,σ, is contained in another σ′ (denoted σ v σ′), if

1. dom(σ) ⊆ dom(σ′), and

2. ∀l, l ∈ def(σ), σ[l] = σ′[l].

34

def(ε) = ∅
def(〈Tc〉l:τ) = def(Tc) ∪ {l}
def(Ts ; T′s) = def(Ts) ∪ def(T′s)
def(Wτ) = ∅
def(Rx.e

l (Tc)) = def(Tc)
def(Ts ; Tc) = def(Ts) ∪ def(Tc)

dom(ε) = ∅
dom(〈Tc〉l:τ) = dom(Tc) ∪ {l}
dom(Ts ; T′s) = dom(Ts) ∪ dom(T′s)
dom(Wτ) = ∅
dom(Rx.e

l (Tc)) = dom(Tc) ∪ {l}
dom(Ts ; Tc) = dom(Ts) ∪ dom(Tc)

Figure 18: The defined domain and the domain of a trace.

Note that, the definition of store containment requires only the values of the defined loca-
tions to be preserved. The reserved locations of the contained store, however, can be assigned
to any value by the containing store.

We define the domain and the defined domain of a trace T, written dom(T) and def(T),
respectively, as shown in Figure 18.

Our goal is to prove that an initial evaluation of an expression followed by change propaga-
tion gives the same result (up to a partial bijection) as the corresponding subsequent evaluation
of the same expression. We do this by induction on evaluation. To make the induction work,
we first prove a more generalized lemma. This lemma deals with expression that are equal up
to a partial bijection. The correctness proof, which is only concerned with equal expressions is
a special case of the lemma.

In the proof of the change propagation lemma, we assume for brevity that a changeable
expression evaluates to a different value when re-evaluated, i.e., the value of the destination
location changes. This assumption causes no loss of generality, and can be eliminated by
additional machinery to enable comparison of the old and the new values of the destination
location.

Lemma 17 (Change Propagation)
Let es and ec be stable and changeable expressions respectively, σi and σs be two stores, and
B be a partial bijection from dom(σi) to dom(σs). The following hold:

• If
σi, l← ec ⇓c σ′

i, T
i
c , and

σs, B[l← ec] ⇓c σ′
s, T

s
c ,

then for any store σm satisfying the following

1. dom(σm) ⊇ dom(σ′
i),

2. ∀l, l ∈ (def(σ′
i)− def(σi)), σm[l] = σ′

i[l], and

3. B[σm] w σs,

there exists a partial bijection B′ such that

σm, l← T i
c , changed(B, σi, σs) ⇓

p
c σ′

m, Tm
c , C,where

35

1. B′ ⊇ B

2. dom(B′) = dom(B) ∪ def(Tm
c),

3. B′[σ′
m] w σ′

s,

4. B′[Tm
c] = T s

c , and

5. C = changed(B′, σ′
i, σ

′
s).

• If
σi, es ⇓s vi, σ

′
i, T

i
s, and

σs, B[es] ⇓s v′i, σ
′
s, T

s
s ,

then for any store σm satisfying the following

1. dom(σm) ⊇ dom(σ′
i),

2. ∀l, l ∈ (def(σ′
i)− def(σi)), σm[l] = σ′

i[l], and

3. B[σm] w σs,

there exists a partial bijection B′ such that

σm, T i
s, changed(B, σi, σs) ⇓

p
s σ′

m, Tm
s , C,where

1. B′ ⊇ B,

2. dom(B′) = dom(B) ∪ def(Tm
s),

3. v′i = B′[vi],

4. B′[σ′
m] w σ′

s,

5. B′[Tm
s] = T s

s , and

6. C = changed(B′, σ′
i, σ

′
s).

Proof: The proof is by simultaneous induction on the evaluation. Among the changeable
expressions, the most interesting are write, let, and read. Among the stable expression, the
most interesting are the let and mod.

For ease of reference, we refer to the three conditions that are satisfied by the modified
store σm as the modified-store properties. These properties are:

1. dom(σm) ⊇ dom(σ′
i),

2. ∀l, l ∈ (def(σ′
i)− def(σi)), σm[l] = σ′

i[l], and

3. B[σm] w σs,

• Write: Suppose
σi, l← write(v) ⇓c σi[l→ v], Wτ , and

σs, B[l← write(v)] ⇓c σs[B(l)→ B[v]], Wτ

then for store σm satisfying the modified-store properties we have

σm, l← Wτ , changed(B, σi, σs) ⇓
p
c σm, Wτ , changed(B, σi, σs).

Now we show that the partial bijection B satisfies the following properties.

36

1. B ⊇ B

2. dom(B) = dom(B) ∪ def(Wτ)

3. B[σm] w σs[B(l) → B[v]]: We know that B[σm] w σs and thus we must show that
B(l) is mapped to B(v) in B[σ′

m]. Observe that σm[l] = (σi[l → v])[l] = v by
Modified-Store Property 2, thus B[σm][B(l)] = B[v].

4. B[Wτ] = Wτ

5. changed(B, σi, σs) = changed(B, σi[l→ v], σs[B(l)→ B[v]]), by definition.

Thus we can pick B′ = B.

• Apply (Changeable): Suppose that

(1.1) σi, l← [v/x, func f(x : τ1) : τ2 is e end/f] e ⇓c σ′
i, T

i
c

(1.2) σi, l← applyc(func f(x : τ1) : τ2 is e end, v) ⇓c σ′
i, T

i
c

(2.1) σs, B(l)← [B[v]/x,B[func f(x : τ1) : τ2 is e end]/f] e] ⇓c σ′
s, T

s
c

(2.2) σs, B[l← applyc(func f(x : τ1) : τ2 is e end, v)] ⇓c σ′
s, T

s
c

Consider evaluations (1.1) and (2.1) and a store σm that satisfies the modified-store
properties. By induction we have a partial bijection B0 and

σm, l← T i
c , changed(B, σi, σs) ⇓

p
c σm, Tm

c , C,

where

1. B0 ⊇ B,

2. dom(B0) = dom(B) ∪ def(Tm
c),

3. B0[Tm
c] = T s

c , and

4. B0[σm] w σ′
s.

5. C = changed(B0, σ
′
i, σ

′
s),

Since, (1.2) and (2.2) return the same trace and store as (1.1) and (2.1) respectively, we
pick B′ = B0.

• Let:

(1.1) σi, e ⇓s vi, σ
′
i, T

i
s

(1.2) σ′
i, l← [vi/x]e′ ⇓c σ′′

i , T i
c

(1.3) σi, l← let x be e in e′ end ⇓c σ′′
i , (T i

s ; T i
c)

(2.1) σs, B[e] ⇓s vs, σ
′
s, T

s
s

(2.2) σ′
s, B(l)← [vs/x]B[e′] ⇓c σ′′

s , T s
c

(2.3) σs, B[l← let x be e in e′ end] ⇓c σ′′
s , (T s

s ; T s
c)

37

Consider any store σm that satisfies the modified-store properties. The following judge-
ment shows a change propagation applied with the store σm on the output trace T i

s ; T i
c .

(3.1) σm, T i
s, changed(B, σi, σs) ⇓ps σ′

m, Tm
s , C

(3.2) σ′
m, l← T i

c , C ⇓pc σ′′
m, Tm

c , C′

(3.3) σm, l← (T i
s ; T i

c), changed(B, σi, σs) ⇓
p
c σ′′

m, (Tm
s ; Tm

c), C′

We apply the induction hypothesis on (1.1) (2.1) and (3.1) to obtain a partial bijection
B0 such that

1. B0 ⊇ B,

2. dom(B0) = dom(B) ∪ def(Tm
s),

3. vs = B0[vi],

4. B0[σ′
m] w σ′

s,

5. B0[Tm
s] = T s

s , and

6. C = changed(B0, σ
′
i, σ

′
s).

Using these properties, we now show that we can apply the induction hypothesis on (1.2)
and (2.2) with the partial bijection B0.

– B0[l← [vi/x]e′] = B(l)← [vs/x]B[e′]:
By Properties 1 and 2 it follows that B(l) = B0(l).
By Property 3, B0[vi] = vs.
To show that B[e′] = B0[e′], we observe that dom(B0) = dom(B) ∪ def(Tm

s) and
def(Tm

s) ∩ locs(e) = ∅, because locs(e) ⊆ dom(σi) and locs(e) ⊆ dom(σm).

– C = changed(B0, σ
′
i, σ

′′
i). This is true by Property 6.

– σ′
m satisfies the modified-store properties:

1. dom(σ′
m) ⊇ dom(σ′

i)
This is true because dom(σ′

m) ⊇ dom(σm) ⊇ dom(σ′′
i) ⊇ dom(σ′

i).

2. ∀l, l ∈ (def(σ′′
i)− def(σ′

i)), σ
′
m[l] = σ′′

i [l]
To show that ∀l, l ∈ (def(σ′′

i)− def(σ′
i)), σ

′
m[l] = σ′′

i [l], observe that
(a) ∀l, l ∈ (def(σ′′

i)− def(σi)), σm[l] = σ′′
i [l],

(b) def(σ′′
i)− def(σ′

i) = def(T i
c) ∪ {l},

(c) def(T i
s) ∩ (def(σ′′

i)− def(σ′
i)) = ∅,

and that the evaluation (3.1) changes values of locations only in def(T i
s).

3. B0[σ′
m] w σ′

s, this follows by Property 4.

Now, we can apply the induction hypothesis on (1.2) (2.2) to obtain a partial bijection
B1 such that

1′. B1 ⊇ B0,

2′. dom(B1) = dom(B0) ∪ def(Tm
c),

3′. B1[σ′′
m] w σ′′

s ,

38

4′. B1[Tm
c] = Tc, and

5′. C′ = changed(B1, σ
′′
i , σ′′

s).

Based on these, we have

1′′. B1 ⊇ B.
This holds because B1 ⊇ B0 ⊇ B.

2′′. dom(B1) = dom(B) ∪ def(Tm
s ; Tm

c).
We know that dom(B1) = dom(B0) ∪ def(Tm

c) and dom(B0) = dom(B) ∪ def(Tm
s).

Thus we have dom(B1) = dom(B)∪ def(Tm
s)∪ def(Tm

c) = dom(B)∪ def(Tm
s ; Tm

c).

3′′. B1[σ′′
m] w σ′′

s .
This follows by Property 3′.

4′′. B1[Tm
s ; Tm

c] = T s
s ; T s

c .
This holds if and only if B1[Tm

s] = T s
s and B1[Tm

c] = T s
c .

We know that B0[Tm
s] = T s

s and since dom(B1) = dom(B0)∪def(Tm
c) and def(Tm

s)∩
def(Tm

c) = ∅, we have B1[Tm
s] = T s

s . We also know that B1[Tm
c] = T s

c by Property 4′.

5′′. C′ = changed(B1, σ
′′
i , σ′′

s),
This follows by Property 5′.

Thus we pick B′ = B1.

• Read: Assume that we have:

1.1 σi, l
′ ← [σi[l]/x]e ⇓c σ′

i, T
i
c

1.2σi, l
′ ← read l as x in e end ⇓c σ′

i, R
x.e
l (T i

c)

2.1 σs, B[l′]← [σs[B(l)]/x]B[e] ⇓c σ′
s, T

s
c

2.2σs, B[l′ ← read l as x in e end] ⇓c σ′
s, R

x.B[e]
B(l) (T s

c)

Consider a store σm that satisfies the modified-store properties. Then we have two cases
for the corresponding change-propagation evaluation. In the first case l 6∈ C and we have:

3.1 σm, l′ ← T i
c , changed(B, σi, σs) ⇓

p
c σ′

m, Tm
c , C

3.2σm, l′ ← Rx.e
l (T i

c), changed(B, σi, σs) ⇓
p
c σ′

m, Rx.e
l (Tm

c), C
(l 6∈ C)

In this case, we apply the induction hypothesis on (1.1) (2.1) and (3.1) with the partial
bijection B. By induction, we obtain a partial bijection B0 and

1. B0 ⊇ B,

2. dom(B0) = dom(B) ∪ def(Tm
c),

3. B0[σ′
m] w σ′

s,

4. B0[Tm
c] = T s

c , and

39

5. C = changed(B0, σ
′
i, σ

′
s).

Furthermore, the following hold for B0,

1. dom(B0) = dom(B) ∪ def(Rx.e
l (Tm

c)).
This follows by Property 2 and because def(Rx.e

l (Tm
c)) = dom(B) ∪ def(Tm

c),

2. B0[Rx.e
l (Tm

c)] = R
x.B[e]
B(l) (T s

c).

We have B0[Rx.e
l (Tm

c)] = R
x.B0[e]
B0(l) (B0[Tm

c]) = R
x.B0[e]
B0(l) (T s

c), because of (c). Thus we
need to show that B0(l) = B(l) and B0[e] = B[e]. This is true because,

(a) l 6∈ def(Tm
c) and thus B(l) = B0(l), and

(b) ∀l, l ∈ locs(e) we have l ∈ def(σm) and thus l 6∈ def(Tm
c), which implies that

B(l) = B0(l), and B[e] = B0[e].

Thus we pick B′ = B0.

In the second case, we have l ∈ C and the read Rx.e
l is re-evaluated.

(4.1) σm, l′ ← [σm[l]/x]e ⇓c σ′
m, Tm

c

(4.2) σm, l′ ← Rx.e
l (Tc), changed(B, σi, σs) ⇓

p
c σ′

m, Rx.e
l (Tm

c), changed(B, σi, σs) ∪ {l′}
(l ∈ C)

Since B[σm] w σs, the evaluation in (4.1) is identical to the evaluation in (2.1) and thus,
there is a bijection B1 ⊇ B such that B1[Tm

c] = T s
c and dom(B1) = dom(B) ∪ def(Tm

c).
Thus we have

1. B1 ⊇ B,

2. dom(B1) = dom(B) ∪ def(Tm
c),

3. B1[Tm
c] = T s

c ,

4. changed(B, σi, σs) ∪ {l} = changed(B1, σ
′
i, σ

′
s)

To show this, observe that

(a) dom(σ′
i) ∩ def(Tm

c) = ∅, because dom(σm) ⊇ dom(σ′
i).

(b) changed(B1, σ
′
i, σ

′
s) = changed(B, σ′

i, σ
′
s), because dom(B1) = dom(B)∪def(Tm

c).
(c) changed(B, σ′

i, σ
′
s) = changed(B, σi, σs) ∪ {l′}, because dom(B) ⊆ dom(σi).

(Assuming, without loss of generality, that the value of l′ changes because of
the re-evaluation).

5. B1[σ′
m] w σ′

s

We know that B1[σm] w σs. Furthermore B1[σ′
m−σm] = σ′

s−σs and thus, B1[σ′
m] w

σ′
s.

Thus pick B′ = B1.

• Value: Suppose that
σi, v ⇓s v, σi, ε

σs, B[v] ⇓s B[v], σs, ε.

40

Let σm be any store that satisfies the modified-store properties. We have

σm, ε, changed(B, σi, σs) ⇓
p
s σm, ε, changed(B, σi, σs)

where

1. B ⊇ B.

2. dom(B) = dom(B) ∪ def(ε).

3. B[σm] w σs, by Modified-Store Property 3.

4. B[ε] = ε.

5. changed(B, σi, σs) = changed(B, σi, σs).

Thus pick B′ = B.

• Apply (Stable): This is similar to the apply in the changeable mode.

• Mod: Suppose that

(1.1) σi[li → �], li ← e ⇓c σ′
i, T

i
c

(1.2) σi, modτ e ⇓s li, σ
′
i, 〈T i

c〉li:τ
li 6∈ dom(σi)

(2.1) σs[ls → �], ls ← B[e] ⇓c σ′
s, T

s
c

(2.2) σs, B[modτ e] ⇓s ls, σ
′
s, 〈T s

c 〉ls:τ
ls 6∈ dom(σs).

Let σm be a store that satisfies the modified-store properties. Then we have

(3.1) σm, li ← T i
c , changed(B, σi, σs) ⇓

p
c σ′

m, Tm
c , C

(3.2) σm, 〈T i
c〉li:τ , changed(B, σi, σs) ⇓

p
s σ′

m, 〈Tm
c 〉li:τ , C

Consider the partial bijection B0 = B[li 7→ ls]. It satisfies the following:

– B0[li ← e] = ls ← B[e].
Because B0(li) = ls and li 6∈ locs(e).

– B0[σm] w σs[ls 7→ �].
We know that B[σm] w σs by Modified-Store Property 3. Since ls 6∈ dom(σs), we
have B0[σm] w σs.
Furthermore ls = B0(li) and li ∈ dom(σm) because dom(σm) ⊇ dom(σ′

i).
Thus B0[σm] w σs[ls 7→ �]].

– ∀l, l ∈ (def(σ′
i)− def(σi[li → �])), σm[l] = σ′

i[l].
Because ∀l, l ∈ (def(σ′

i)− def(σi)), σm[l] = σ′
i[l] by Modified-Store Property 2.

Thus, we can apply the induction hypothesis on (1.1), (2.1) with the partial bijection
B0 = B[li 7→ ls] to obtain a partial bijection B1 such that the following hold.

1. B1 ⊇ B0,

2. dom(B1) = dom(B0) ∪ def(T i
c),

41

3. B1[σ′
m] w σ′

s,

4. B1[Tm
c] = T s

c , and

5. C = changed(B1, σ
′
s, σ

′
i).

Furthermore, B1 satisfies that

1. dom(B1) = dom(B) ∪ def(〈T i
c〉li:τ).

By Property 2 and because def(T i
c) = def(〈T i

c〉li:τ).

2. B1[〈Tm
c 〉li:τ] = 〈T s

c 〉ls:τ .
Because B1[Tm

c] = T s
c by Property 4 and B1(li) = ls.

Thus we can pick B′ = B1.

• Let (Stable): This is similar to the let rule in changeable mode.

�

We can now prove the correctness theorem for the change-propagation algorithm. In the
theorem, the reason that the store σ′

m is a super set of σ′
s is that σ′

m contains remnant locations
from the initial evaluation, whereas σ′

s does not.

Theorem 18 (Correctness)
Let e be a program, σi be an initial store such that def(σi) = dom(σi), δ be a difference store,
σs = σi ⊕ δ, and σm = σ′

i ⊕ δ as shown in Figure 16. If

1. σi, e ⇓s vi, σ
′
i, T

i
s, (initial evaluation)

2. σs, e ⇓s vs, σ
′
s, T

s
s , (subsequent evaluation)

3. dom(σ′
i) ∩ dom(δ) ⊆ dom(σi)

then the following holds:

1. σm, T i
s, (dom(σ′

i) ∩ dom(δ)) ⇓ps σ′
m, Tm

s , ,

2. there is a partial bijection B such that

(a) B[vi] = vs,

(b) B[Tm
s] = T s

s ,

(c) B[σ′
m] ⊇ σ′

s.

Proof: The proof is by an application of Lemma 17. To apply the lemma we define the
partial bijection B (of the lemma) to be the identity function in the dom(σi). Since dom(σm) ⊇
dom(σi), this is valid. We also show the following for σm

1. dom(σm) ⊇ dom(σ′
i).

This follows by the definition of the store modification.

42

2. ∀l, l ∈ (def(σ′
i)− def(σi)), σm[l] = σ′

i[l].
Since dom(σ′

i) ∩ dom(δ) ⊆ dom(σi), the store modification only changes values of the
locations in dom(σi), which is equal to def(σi).

3. B[σm] w σs

Since B is the identity, all we have to show is that σm w σs. This holds because
σs = σi ⊕ δ, and σm = σ′

i ⊕ δ and σ′
i ⊇ σi.

The theorem follows by taking the partial bijection B required by the theorem equal to the
partial bijection B′ yielded by Lemma 17.

�

8 Discussion

Variants. In the process of developing the mechanisms presented in this paper we considered
several variants. Here we mention a few of them. One variant is to replace the explicit write
operation with an implicit one. In the ML library this requires making the target destination
an argument to the read operation. In AFL it requires adding some implicit type subsumption
rules. We decided to include the explicit write since we believe it is cleaner. We also considered
a variant of our mechanism in which the mod, read, and write are combined into a single
operation. This operation reads a modifiable, evaluates an expression with the value of the
modifiable, and writes the result into a new modifiable. In the ML library the operation can
be defined as follows.

function modrw(x : ’a mod, f : ’a -> ’b) : ’b =
mod(fn d => read x (fn x’ => write(d, f(x’))))

This operation, along with another that does two reads, were sufficient to express many
of the examples we were working with. The operations, however, are not expressive enough
for many other examples, and in particular for Quicksort. In practice it would worthwhile
including these two operations in a comprehensive adaptive library since implementing them
directly would be more efficient than the composition given above.

Side Effects. We require that the underlying language be purely functional. The main
reason for this is that each edge (read) stores a closure (code and environment) which might
be re-evaluated. It is critical that this closure does not change. The key requirement, therefore,
is not that there are no side-effects, but rather that all data is persistent (i.e., the closure’s
environment cannot be modified). It is therefore likely that the adaptive mechanism could be
made to work in an imperative setting as long as relevant data structures are persistent. There
has been significant research on persistent data-structures under an imperative setting [6, 5, 7].

We further note that certain “benign” side effects are not harmful. For example, side effects
to objects that are not examined by the adaptive code itself are harmless. This includes print
statements, or any changes to “meta” data structures that are somehow recording the progress
of the adaptive computation itself. For example, one way to determine which parts of the code
are being re-evaluated is to sprinkle the code with print statements and see which ones print
during the change propagation. In fact, re-evaluations of a function can be counted by simply
inserting a counter at the start of the function. Also, the memoization of the kind done by

43

lazy languages will not affect the correctness of change-propagation, because the value remains
the same whether it has been calculated or not. We therefore expect that our approach can
be applied to lazy languages, but we have not explored this direction.

Function Caching. As mentioned in the related work section, it might be useful to add
function caching to our framework. We believe this is a promising extension, but should note
that it is not trivial to incorporate this feature. The problem is that function caching and
modifiables interact in subtle ways—function caching requires purely functional code, but our
framework involves side-effects in its implementation.

Applications. The work in this paper was motivated by the desire to make it easier to define
kinetic data structures for problems in computational geometry [2]. Consider the problem of
maintaining some property of a set of objects in space as they move, such as the nearest
neighbors or convex hull of a set of points. Kinetic data structures are designed to maintain
such properties by re-evaluating parts of the code when certain conditions become violated
(e.g., a point moves from one side of a line to the other). Currently, however, every problem
requires the design of its own kinetic data structure. We believe that it is possible, instead, to
use adaptive versions of non-kinetic algorithms.

Full Adaptivity. It is not difficult to modify the AFL semantics to interpret standard func-
tional code (e.g. the call-by-value lambda-calculus) in a fully adaptive way (i.e., all values
are stored in modifiables, and all expressions are changeable). It is also not hard to describe
a translator for converting functional code into AFL, such that the result is fully adaptive.
The only slightly tricky aspect is translating recursive functions. We in fact had originally
considered defining a fully adaptive version of AFL but decided against it since we felt it would
be more useful to selectively choose what code is adaptive.

Meta Language. We have not included a “meta” language for AFL that would allow a
program to change input and run change-propagation. There are some subtle issues in defining
such a language such as how to restrict changes to inputs, and how to identify the “safe” parts
of the code in which the program can make changes. We worked on a system that includes an
additional type mode, which we called meta-stable. Changes and change-propagation could
be performed only in this mode, and there was no way to get into this mode other than from
top-level. We felt, however, that this system did not add much to the main concepts covered
in this paper.

9 Conclusion

We have presented a mechanism for adaptive computation based on the idea of a modifiable
reference. We expect that this mechanism can be incorporated into any purely functional
call-by-value language. A key aspect of our mechanism is that it can dynamically create
new computations and delete old computations. The main contributions of the paper are the
particular set of primitives we suggest, the change-propagation algorithm, and the semantics
along with the proofs that it is sound. The simplicity of the primitives is achieved by using
a destination passing style. The efficiency of the change-propagation is achieved by using an
optimal order-maintenance algorithm. The soundness of the semantics is aided by a modal
type system.

44

Acknowledgements We are grateful to Frank Pfenning for his advice on modal type sys-
tems. We also would like to thank Mihai Budiu, Aleks Nanevski, and the anonymous referees
for their comments on the earlier drafts of this paper.

References

[1] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming. In Pro-
ceedings of the Twenty-ninth ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), January 2002.

[2] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile data. Journal
of Algorithms, 31(1):1–28, 1999.

[3] Alan Demers, Thomas Reps, and Tim Teitelbaum. Incremental evaluation of attribute gram-
mars with application to syntax directed editors. In Conference Record of the 8th Annual ACM
Symposium on POPL, pages 105–116, January 1981.

[4] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In Proceedings. 19th
ACM Symposium. Theory of Computing, pages 365–372, 1987.

[5] Paul F. Dietz. Fully persistent arrays. In Workshop on Algorithms and Data Structures, volume
382 of Lecture Notes in Computer Science, pages 67–74. Springer-Verlag, August 1989.

[6] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data structures
persistent. Journal of Computer and System Sciences, 38(1):86–124, February 1989.

[7] James R. Driscoll, Daniel D. Sleator, and Robert E. Tarjan. Fully persistent lists with catenation.
Journal of the ACM, 41(5):943–959, 1994.

[8] J. Field and T. Teitelbaum. Incremental reduction in the lambda calculus. In Proceedings of the
ACM ’90 Conference on LISP and Functional Programming, pages 307–322, June 1990.

[9] Roger Hoover. Incremental Graph Evaluation. PhD thesis, Department of Computer Science,
Cornell University, May 1987.

[10] Yanhong A. Liu, Scott Stoller, and Tim Teitelbaum. Discovering auxiliary information for incre-
mental computation. In Conference Record of the 23rd Annual ACM Symposium on POPL, pages
157–170, January 1996.

[11] Yanhong A. Liu and Tim Teitelbaum. Systematic derivation of incremental programs. Science of
Computer Programming, 24(1):1–30, February 1995.

[12] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11:511–540, 2001. Notes to an invited talk at the Workshop on
Intuitionistic Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

[13] W. Pugh and T. Teitelbaum. Incremental computation via function caching. In Conference Record
of the 16th Annual Symposium on POPL, pages 315–328, January 1989.

[14] William Pugh. Incremental computation via function caching. PhD thesis, Department of Com-
puter Science, Cornell University, August 1987.

[15] G. Ramalingam and Thomas W. Reps. A categorized bibliography on incremental computation. In
Conference Record of the 20th Annual ACM Symposium on POPL, pages 502–510, January 1993.

[16] Thomas Reps. Generating Language-Based Environments. PhD thesis, Department of Computer
Science, Cornell University, August 1982.

[17] R. S. Sundaresh and Paul Hudak. Incremental computation via partial evaluation. In Conference
Record of the 18th Annual ACM Symposium on POPL, pages 1–13, January 1991.

45

[18] D. M. Yellin and R. E. Strom. Inc: A language for incremental computations. ACM Transactions
on Programming Languages and Systems, 13(2):211–236, April 1991.

46

