
Automatic Generation of Staged Geometric Predicates

Aleksandar Nanevski Guy Blelloch Robert Harper

June 2001
CMU-CS-01-141

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A Shorter version of this report will appear in the Proceedings of the International Conference on Func-

tional Programming, September 3-5, 2001 Florence, Italy.

This research was conducted within PSciCo project at Carnegie Mellon University. The PSciCo project is sup-
ported by National Science Foundation (NSF) under the title ”Advanced Languages for Scientific Computation
Environments” as part of the Experimental Software Systems program within CISE. The grant number is 9706572.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the National Science Foundation.

Abstract

Algorithms in Computational Geometry and Computer Aid-ed Design are often developed for the Real
RAM model of computation, which assumes exactness of all the input arguments and operations. In practice,
however, the exactness imposes tremendous limitations on the algorithms – even the basic operations become
uncomputable, or prohibitively slow. When the computations of interest are limited to determining the sign
of polynomial expressions over floating point numbers, faster approaches are available. One can evaluate the
polynomial in floating point first, together with some estimate of the rounding error, and fall back to exact
arithmetic only if this error is too big to determine the sign reliably. A particularly efficient variation on
this approach has been used by Shewchuk in his robust implementations of Orient and InSphere geometric
predicates.
We extend Shewchuk’s method to arbitrary polynomial expressions. The expressions are given as programs
in a suitable source language featuring basic arithmetic operations of addition, subtraction, multiplication
and squaring, which are to be perceived by the programmer as exact. The source language also allows
for anonymous functions, and thus enables the common functional programming technique of staging. The
method is presented formally through several judgments that govern the compilation of the source expression
into target code, which is then easily transformed into SML or, in case of single-stage expressions, into C.

Keywords: robust predicates, floating-point filters, exact arithmetic, program transformation, compu-
tational geometry, PSciCo project

1 Introduction

Algorithms in Computational Geometry and Computer Aided Design are often created for the Real RAM
model of computation. Real RAM model assumes exactness of all the arguments and operations involved
in the calculations, thus making it easy to carry out the mathematical arguments behind the algorithm.
Unfortunately, this very fact implies that the computations have to be done with unbounded or infinite
precision, which can render the basic operations and predicates prohibitively slow or even uncomputable.

A practical and very useful compromise, when applicable, is to assume that the input arguments are of
floating-point type. It is also very common that the required functionality involves computation of only the
sign of a given polynomial expression. Such calculations are, for example, used in the geometric predicates
for determining whether a point is in/out/on a given line, circle, plane, sphere... These predicates are, in
turn, fundamental building blocks of algorithms for some basic geometric structures such as convex hulls
and Delaunay triangulations.

However, floating-point alone is not sufficient to guarantee that the evaluation of a polynomial expression
will correctly obtain its sign. The rounding error accumulated during the computation, if sufficiently large,
can perturb and change the final result. If this computation is part of a geometric algorithm, it can present
the program with an inconsistent view of the data set, and cause it to produce incoherent results, diverge,
or even crash. On the other hand, under the stated assumptions, the exact sign can always be computed,
albeit slowly, by first converting the floating-point arguments into rational numbers, and then carrying out
the prescribed operations in rational arithmetic.

One method that has been proposed as an efficiency improvement to the exact rational arithmetic involves
the use of floating-point filters. A floating-point filter carries out the given computation in floating-point
first, together with some sort of estimate of the rounding error, and falls back to exact arithmetic only if
the estimated error is too big to reliably determine the sign [1, 2, 6, 3, 8]. Thus, it “filters out” the easy
computations whose sign can be quickly determined and only leaves the hard ones for the exact arithmetic.
A particularly efficient variation of this approach has been described by Jonathan Shewchuk in his PhD
thesis [10]. Aside from performing the floating-point part of the computation as the first phase of the filter,
it introduces additional filtration phases of ever-increasing precision. The phases are attempted in order,
each phase building on the result from the previous one, until the correct sign is obtained.

There are two difficulties related to Shewchuk’s method that this work addresses:

1. Developing robust geometric predicates in this style can be very cumbersome and error prone. For
example, the basic InSphere predicate which tests whether a point is in/out/on the sphere determined
by three other points is represented by a simple 4× 4 matrix. However, Shewchuk’s implementation of
InSphere takes about 580 lines of C code. In addition, one needs to perform the error analysis of the
given polynomial expression, which is also a tedious procedure. A solution is to automate this process
by using an expression compiler [2, 5]. However, to the best of our knowledge, none of the existing
expression compilers is capable of performing the analysis required by the multi-phase floating-point
filters.

2. We are also interested in designing predicates for functional languages and exploiting common func-
tional programming techniques such as staging and partial evaluation to speed up the computation.
For example, consider filtering a set of points to see on what side of a plane defined by three points
they lie. The test can be staged by first forming the plane and then checking the position of each point
from the set. This obviates the need to repeat the part of the computation pertinent to the plane
whenever a new point is tested, and can potentially save a lot of work. Such staging of programs is
naturally exploited in functional programming languages, but unfortunately, the expression compilers
available to date work only with C.

This work reports on an expression compiler that handles these shortcomings. The input to the compiler
is a function written in an appropriate source language offering the basic arithmetic operations of addition,
subtraction, multiplication and squaring, and allowing for nested anonymous functional expressions (stages).
All the operations in the source language are perceived as exact. The output of the compiler is a program in
the target language designed to be easily converted into Standard ML (SML) or, in the case of single-stage
programs, to C. The resulting SML or C program will determine the sign of the source function at the given

1

floating-point arguments, using a floating-point filter with several phases, when exact computation needs to
be performed. In particular, in the case of Shewchuk’s basic geometric predicates, the expression compiler
will generate code that, to a considerable extent, reproduces that of Shewchuk.

The rest of the text is organized as follows. Section 2 summarizes the main ideas behind floating-point
filters and arbitrary precision floating-point arithmetic. The source and target languages are presented in
Section 3, and the program transformation process is described in Section 4. Performance comparison with
Shewchuk’s predicates is given in Section 5 and a complete definition of judgments governing the compilation
follows in the Appendix.

2 Background

From here on we assume floating-point arithmetic as prescribed by the IEEE standard and the to-nearest
rounding mode with the round-to-even tie-breaking rule [4]. We also assume that no overflows or underflows
occur.

One of the most important properties of a floating-point arithmetic is the correct rounding of the basic
arithmetic operations. It requires that the computed result always look as if it were first computed exactly,
and then rounded to the number of bits determined by the precision of the arithmetic. If x and y are
floating-point numbers, ~ is the “rounded” floating-point version of the operation ∗ ∈ {+,−,×}, and x~ y
is a floating-point number with a normalized mantissa (i.e. is not a denormalized number), a consequence of
the correct rounding is that

|x ∗ y − x~ y| ≤ ε|x~ y| and |x ∗ y − x~ y| ≤ ε|x ∗ y|

The quantity ε in the above inequality is called “machine epsilon”. If m is the precision of the arithmetic, i.e.
the number of bits reserved for the normalized mantissa (without the hidden leading bit), then ε = 2−(m+1).
In the IEEE standard for double precision, for example, ε = 2−53. By abuse of notation, the above inequalities
are often stated respectively as

x ∗ y = (1± ε)(x~ y) = x~ y ± ε|x~ y| (1)

and
x ∗ y = x~ y ± ε|x ∗ y|

The equation (1) provides a bound on absolute error of the expression when the expression consists of
only a single floating point operation. Notice that the error is composed of two multiples, ε and |x ∗ y|, the
first of which does not depend on the arguments x and y. The rounding error for a composite expression can
also be split into two multiples, one of which does not depend on the arguments of the expression. This part
of the error need not be computed in run-time when all the arguments of the expression are supplied, but
can rather be completely obtained while preprocessing the expression. To this end, assume that the exact
values Xi are approximated in floating-point as xi with absolute error δipi, i.e. that for i = 1, 2 we have

Xi = xi ± δipi
Assume in addition that the quantities δi do not depend on any run-time arguments and that the invariant

|xi| ≤ pi holds. This is clearly true in the base case when xi is obtained from a single operation on exact
arguments, as can be seen from (1) where δi = ε and pi = |xi|. The quantities δi are rational numbers,
and the values pi are floating-point. Diverging slightly from the customary nomenclature, we call these two
multiples respectively the “relative error” and the “permanent” of the approximation xi.

Using the inequalities for rounded floating-point arithmetic from above, we can derive

|(X1 +X2)− (x1 ⊕ x2)| =
= |(X1 +X2)− (x1 + x2) + (x1 + x2)− (x1 ⊕ x2)|
≤ |(X1 +X2)− (x1 + x2)|+ |(x1 + x2)− (x1 ⊕ x2)|
≤ (δ1p1 + δ2p2) + ε|x1 ⊕ x2|

2

≤ max(δ1, δ2)(p1 + p2) + ε(p1 ⊕ p2)
≤ max(δ1, δ2)(1 + ε)(p1 ⊕ p2) + ε(p1 ⊕ p2)

=
(
ε+ max(δ1, δ2)(1 + ε)

)
(p1 ⊕ p2)

The above inequality is, by abuse of notation, customarily written as

X1 +X2 = x1 ⊕ x2 ±
(
ε+ max(δ1, δ2)(1 + ε)

)
(p1 ⊕ p2)

The relative error of the composite expression X1 + X2 is then ε + max(δ1, δ2)(1 + ε) and its permanent
is p1 ⊕ p2. Notice that the relative error again does not depend on the run-time arguments, and that the
invariant |x1 ⊕ x2| ≤ p1 ⊕ p2 is preserved. Similar derivations produce

X1 −X2 = x1 	 x2 ±
(
ε+ max(δ1, δ2)(1 + ε)

)
(p1 ⊕ p2)

X1X2 = x1 ⊗ x2

±
(
ε+ (δ1 + δ2 + δ1δ2)(1 + ε)

)
(p1 ⊗ p2) (2)

X2
1 = x1 ⊗ x1 ±

(
ε+ (2δ1 + δ2

1)(1 + ε)
)

(p1 ⊗ p1)

The above formulas provide a quick test for the sign of Xi. Obviously, xi and Xi have the same sign
if |xi| > δipi. However, this test is not completely satisfactory since it contains exact multiplication of a
rational number δi and a floating-point number pi. A simpler, although less tight test is

|xi| > d(1 + ε)δiefp ⊗ pi (3)

where dQefp denotes the smallest floating-point value above the rational number Q. This is indeed the
inequality we use in our expression compiler to test the sign of an evaluated expression.

Another important feature of round-to-nearest arithmetic complying with the IEEE standard is that the
roundoff error of the basic operations is always representable as a floating-point number and can be recovered
from the result and the arguments of the operation.

Theorem 1 (Knuth) In floating-point arithmetic with precision m ≥ 3, if x = a ⊕ b and c = x 	 a then
a+ b = x+ ((a	 (x	 c))⊕ (b	 c)).

Knuth’s theorem is significant since it provides a way to quickly perform exact addition of two floating-
point numbers. First the addition x = a ⊕ b is performed approximately, and then the roundoff error
e = (a	 (x	 c))⊕ (b	 c) is recovered. This takes only 6 floating-point operations, which is generally much
faster than first converting a and b into rational numbers, and then adding them in rational arithmetic.
The two values (x, e) put together represent the exact sum of a and b. One can view this pair as a sparse
representation of the sum in a digit system with a radix 2m+1. Closing up the set of sparse representations
under addition leads to a very efficient data structure for exact computation. The values of this data type
are lists of floating-point numbers sorted by magnitude and satisfying certain technical conditions about
the alignment of their mantissas. These lists are called expansions, and each expansion represents the exact
sum of its elements. For the sake of illustration, here we only picture the process of adding a floating-point
number to an expansion (Figure 1) and of summing up two expansions (Figure 2). Quick algorithms for
other basic arithmetic operations on this data type have been devised as well [7, 10].

Another consequence of Knuth’s theorem is a convenient ordering of operations that makes it possible
to separate the computation into a sequence of filtering phases. Each phase is attempted after the previous
one had failed to determine the sign reliably, and each computes with increasing precision, building on the
result of the previous one.

The following example, although admittedly a bit contrived, is illustrative. Consider the expression
X = (ax − bx)2 + (ay − by)2 where ax, ay, bx and by are floating-point values. To find the sign of X, let
vx = ax 	 bx and vy = ay 	 by, and let ex and ey be the roundoffs from the two subtractions. Then

X = (vx + ex)2 + (vy + ey)2

= (v2
x + v2

y) + (2vxey + 2vyex) + (e2
x + e2

y)

3

roundoff roundoff roundoff roundoff

e e e e2 3 41

sum b

h h h h h54321

sum sum sum

Figure 1: Adding a floating-point number to an expansion. The float b is added to the expansion e1 + e2 +
e3 + e4, to produce a new expansion h1 + · · ·+ h5.

sum

h h h h h54321

sum sum sum

roundoff

g g g2 3 41

roundoff roundoff roundoff

g5g

Figure 2: Summing two expansions. The components of e1+e2+e3 and f1+f2 are first merged by decreasing
magnitude into the list [g1, . . . , g5], which is then “normalized” into an expansion h1 + · · ·+ h5.

In this sum, the summand v2
x + v2

y is dominant, since |ex| ≤ ε|vx| and |ey| ≤ ε|vy| by (1). It is then a good
heuristic to first compute v2

x + v2
y and test it for sign before proceeding, because it is likely that v2

x + v2
y will

already have the same sign as X. The process can be sped up even more if this expression is first computed
approximately to obtain XA = (vx ⊗ vx) ⊕ (vy ⊗ vy). Then only if XA has too big an error bound, as
determined by the test (3), the computation of XB = v2

x + v2
y is undertaken exactly using the data type of

expansions. If XB is also too crude an approximation of X, we can correct it by adding up the smaller terms
(2vxey + 2vyex), first approximately, and then correctly. Finally, if all of these approximations fail to give an
answer, we can compute the exact result by adding the last summand e2

x + e2
y to the expansion computed in

the previous phase. Using this approach, we will compute the exact value only if absolutely necessary, and
even then, the efforts spent on previous phases will not be wasted, but will rather be reused to obtain the
exact result in an efficient way.

This idea to generalize floating-point filters into a hierarchy of adaptive precision filtering phases is
due to Shewchuk. While the number and type of adaptive phases, strictly speaking, can vary with the
expression, his experiments pointed to a scheme with four phases as the optimal in practice for the basic
geometric predicates that he considered. We adopt this scheme and present its formalization in Section 4.
The arbitrary precision floating-point arithmetic and the data type of expansions is invented by Priest, and
further optimized by Shewchuk. Detailed description and analysis of adaptive precision arithmetic and of
the algorithms for basic operations can be found in their respective PhD theses ([7] and [10]).

The whole method described above relies on the fact that the required floating-point operations will
execute without any exceptions, i.e. that neither overflow nor underflow will occur during the computation.
If exceptions do happen, the expansions holding the exact intermediate values may lose bits of precision and
produce a distorted answer. A possible solution in such cases is to rerun the computation in some other,
slower, form of exact arithmetic (for example in infinite precision rational numbers).

3 Source and target languages

The source language of the compiler is shown in Figure 3. Its syntax supports the basic arithmetic operations
(including squaring), assignments and staged functional expressions. The arguments of the functions should
be perceived as floating-point values, while the intermediate results are assumed to be computed exactly.
Squaring is included among the arithmetic operations because it can often be executed quicker than the
multiplication of two equal exact values, and has a better error bound. In addition, it provides the compiler
with the knowledge that its result is non-negative, which can be used in some cases to optimize the code.

4

phrases φ ::= x | c | e
expressions e ::= φ1 + φ2 | φ1 - φ2 | φ1 × φ2

| ~φ | sq φ
assignment lists α ::= val x = e | val x = e α
programs π ::= fn [x1, . . . , xn] => let α end

| fn [x1, . . . , xn] => let α π end

Figure 3: Source language

orient2(A,B,C) = sgn
∣∣∣∣ ax − cx bx − cx
ay − cy by − cy

∣∣∣∣
fn [ax, ay, cx, cy] =>
let val acx = ax - cx

val acy = ay - cy

fn [bx, by] =>
let val d = acx × (by - cy) -

acy × (bx - cx)
end

end

Figure 4: Orient2D predicate: definition and implementation in the source language.

In order to simplify the compilation process, the source language requires that all the assignments are non-
trivial, i.e. it disallows assignments of variables or constants. A function defined in the source language is
designed to compute the sign of the last expression in the assignment list of the function’s last stage. Of
course, a staged source function can be partially instantiated with an appropriate subset of the arguments in
order to return a new function that encodes the rest of the computation. The source language does not have
any syntactic constructs for the sgn function, but this function is always assumed at the last assignment of
the last stage of the program.

As an example, consider the Orient2D geometric predicate and its implementation in Figure 4. Orient2D
determines the position (in/out/on) of point B = (bx, by) with respect to the line from A = (ax, ay) to
C = (cx, cy). The implementation in Figure 2 is staged in the coordinates of A and C. Once the predicate
is applied to these two points, its result is a new function specialized to compute relative to the line AC,
without recomputing the intermediate results acx and acy.

The target language of the compilation is presented in Figure 5. It is designed to be easily converted to
SML, so its semantics is best explained by referring to SML. In the syntactic category of reals, the symbol
∗ varies over the operations {+,−,×}. The values of the syntactic category of reals are translated either
into floating-point numbers, or expansions. Each of the operations in the target language has a very definite
notion of which of the two types it expects (and floats are considered subtypes of expansions). However, we
chose not to make this distinction explicit and did not introduce separate types for floats and expansions in
the target language. The reason is that we do not plan to do any programming in this language directly,
but rather just use it for intermediate representation of programs before they are converted into SML or C.

The target language operations ⊕, 	 and ⊗ are interpreted as corresponding floating-point operations.
They expect floating-point input, and produce floating-point output. The exact operations +, − and ×
are translated into the appropriate exact operations on the data type of expansions. Constants are always
floating-point values. The tail constructs compute the roundoffs from their corresponding floating-point
operation. For example, tail+(a, b, a⊕b) will compute the roundoff from the addition a⊕b following Knuth’s
theorem. The construct double is multiplication by 2 on expansions, and approx returns a floating-point
number approximating the passed expansion with a relative error of 2ε.

5

reals r ::= x | c | r1 ∗ r2 | r1 ~ r2 | sq r
| ~r | abs r | double r | approx r
| tail∗(r1, r2, r3) | tailsq(r1, r2)

assignment lists λ ::= val (x1, . . . , xn) = lforce x λ
| val (x1, . . . , xn) = rforce x λ
| val x = susp λ in

((x1, . . . , xn),
(x1, . . . , xm))

end λ
| val x = r λ | empty

sign tests σ ::= sign r | signtest (r1 ± r2)
with λ in σ end

functions ϕ ::= fn (x1, . . . , xn) =>
let λ in σ end

| fn (x1, . . . , xn) =>
let λ in ϕ end

Figure 5: Target language.

To describe the role of susp, lforce and rforce constructs, we need to make a clear distinction between
stages and phases of computation in the target language. The source program contains nested functional
expression which we refer to as stages. Once it is compiled into the target language, every stage gets
transformed into a stage of the target language, which consists of four computational phases of increased
precision. The first phase carries out the computation in floating-point, and the other phases mix in elements
of exact computation as hinted in the previous section. The computation of these other phases have to be
suspended, since their results are needed only when the floating-point calculations carried out by the first
phase of the final stage failed to determine the sign. Thus, the notion of stages refers to partial evaluation
of code, while the notion of phases refers to lazy evaluation of code.

Going back to the target language, susp creates a piece of code, a suspension, to be evaluated when
requested by rforce or lforce. It gives a mechanism to pass intermediate results between different stages,
and between different phases of the same stage. The output from a suspension contains two tuples of
intermediate values. The first tuple consists of intermediate values to be passed to some later phase of the
current stage, and the second tuple consists of intermediate values intended for the following stage. The first
tuple can be recovered by lforce-ing the suspension, and the second tuple by rforce-ing it (see Figure 6).

The sign function returns a sign of an expansion. The construct signtest first checks whether the
magnitude |r1| of the tested value is bigger than the magnitude |r2| of the roundoff error. If so, it returns the
sign of r1. Otherwise, it cannot determine the sign of r1 with certainty, so it undertakes the computation of
the next phase λ, followed by sign test σ. Values r1 and r2 are assumed to be floating-point.

4 Compilation

To describe the compilation process, first notice that the source program, according to the grammar of the
source language (Figure 3), can be viewed as a nonempty sequence of assignment lists, each representing a
single stage of computation. Each of these stages is separately compiled into four target phases which are
meant to perform the computation of the stage with increasing precision, as described in Section 2. At the
end, these pieces of target code are pasted together in a target program, according to specific templates,
so that sign checks are performed between subsequent phases, while respecting the staging specified in the
source program.

The whole process is formalized using five judgments – four for compiling source stages into their target
counterparts, and one judgment to compose all the obtained target stages and phases together into a target
program. This section describes the compilation process in more detail, explains some decisions in designing
the compilation judgments and illustrates representative rules of the judgments through several examples.

6

X

X

X

previous
phases

Phase C

Phase D (exact phase)

Phase C

previous
phases

STAGE 0

STAGE 1

V = rforce X

V = rforce X

Phase D (exact phase)

C

X = susp(C . . .
in (W , V) end)D C

C

X = susp(D
let val W = lforce XD C. . .
in (0, V) end)D

D

C C. . .

D D. . .

Figure 6: Passing intermediate results between phases and stages using susp, lforce and rforce.

Complete definition of the judgments can be found in the Appendix.
Before proceeding further, there is one technicality to notice. Namely, it can be assumed, without loss of

generality, that the source program to be compiled is in a very specific format. First, we require that all of its
assignments consist of a single binary operation acting on two other variables (rather then on two arbitrary
source expressions), or of a single unary operation acting on another variable. The second requirement is that
the source program does not contain any floating-point constants – all the constants are replaced by fresh
variables for error analysis purposes, and then put back into the target code at the end of the compilation.

It is trivial to transform the source program so that it complies with these two prerequisites, so we do
not present the formalization of this procedure. In our implementation it is carried out in parallel with the
parsing of the source program.

In the following section, we illustrate the various phases of the process with the compilation of the source
expression

F = fn [a, b] =>
let val ab = a - b

val ab2 = sq ab

fn [c] =>
let val d = c × ab2
end

end

4.1 Compiling the stages

The first phase, phase A, of the predicate performs all the source operations approximately in floating-
point. The expression compiler determines the appropriate error bounds for the generated code following
the equations (2). As can be noticed from these formulas, the relative error is a rational quantity that
depends solely on the structure of the source program, while its permanent depends on the input arguments
as well, and hence must be computed at run-time. The job of the expression compiler is to determine the
relative error of the expression, and insert code into the target program that will compute the permanent
and perform checks to see whether the obtained results correctly determine the sign of the source expression.

The rest of this section presents a formalization of the error analysis and program transformation men-
tioned above. In order to describe the compilation for the phase A, we rely on the judgment

E1 `A α ; λ; r1, r2

/
E2

7

source code target code context
phase A
val ab = a− b val abA = aA 	 bA abA : OA(ε)

abP � abs(abA)
val ab2 = sq ab val ab2A = abA ⊗ abA ab2A : OA(3ε+ 3ε2 + ε3)
phase B
val ab = a− b – abB : OB(ε)

abB � abA

val ab2 = sq ab val ab2B = sq abA ab2B : OB(2ε+ 3ε2 + ε3)
phase C
val ab = a− b val abC = tail−(aA, bA, abA) abC : OC(0, ε, 0)
val ab2 = sq ab val ab2C = double(abA ⊗ abC) ab2C : OC(3ε2 + 3ε3, 2ε 1+ε

1−ε , ε)
phase D
val ab = a− b – abD � abC

val ab2 = sq ab val ab2D = double(abA × abC) + sq(abC) –

Table 1: Compilation of the first stage of F .

target code testing value error estimate context
phase A
val dA = cA ⊗ ab2A dA d (1+ε)2(3ε+3ε2+ε3)

1−ε efp ⊗ abs(dA) dA : OA(4ε+ 6ε2 +
4ε3 + ε4)

dP � abs(dA)
phase B
val dB = cA × ab2B approx(dB) d (1+ε)2(2ε+3ε2+ε3)

1−2ε efp ⊗ abs(dA) dB = OB(2ε+ 5ε2+
4ε3 + ε4)

phase C
val dC = cA ⊗ ab2C dC d 5ε2+12ε3+6ε4−4ε5−3ε6

(1−ε)2 efp ⊗ abs(dA) dC : OC(5ε2+2ε3−3ε4

1−ε ,

2ε(1+ε
1−ε)

2, 2ε+ ε2)
phase D
val dD = cA × ab2D dB + dD –

Table 2: Compilation of the second stage of F . The source code for this stage consists of the single assignment
val d = c× ab2.

This judgment relates a list α of source assignments to the list λ of corresponding phase A target assignments.
Expressions r1 and r2 are from the syntactic category of reals in the target language (Figure 5). The
expression r1 is to be tested for sign at the end of the phase, and the expression r2 is an upper bound on the
roundoff error. The assignments in λ will perform the phase A calculations and compute the appropriate
permanent.

The contexts E1 and E2 deserve special attention. They are sets relating target language variables with
their error estimates. The grammar for their generation is presented below.

contexts E ::= · | x : τ, E | x� r, E
errors τ ::= OA(δ) | OB(δ) | OC(δ, ι, ρ) | OD | P

Each variable in a context is bound in one of the four phases of the computation (A, B, C or D), and will
have error estimates that are appropriate for that phase of the computation (OA(δ), OB(δ), OC(δ, ι, ρ) and
OD), where δ, ι and ρ are rational numbers (Figure 7). For example, if the error relation x : OA(δ) ∈ E, that
means that the variable x which is bound in phase A, has been estimated by the compiler to have a relative
error bounded from above by the rational number δ. Similar meaning can be ascribed to the error assignments
x : OB(δ) for phase B. Phase C, on the other hand, is a mix of approximate and exact computations, and
there are three rational values δ, ι and ρ that govern phase C error estimations. We do not describe their

8

meaning in this report, but the formulas for their derivation can be found in the Appendix. Phase D is the
exact phase, so there are no error estimates to associate with phase D variables. Finally, the temporary
variables introduced to hold parts of the permanent are not analyzed for error. We still place them into the
error contexts, just for clarity, but with the error tag P. To reduce clutter, the error estimate of a variable
x in a context E will be denoted simply as E(x), as it will always be clear from the rule in which phase
the variable is bound. In addition to the error estimates, the contexts contain substitutions of variables by
target language real expressions (x� r). If some compilation rule needs to emit into target code a variable
for which there is a substitution in the context, the substituting expression will be emitted instead. This
serves two purposes. First, we can use it to express that certain variables in the code are just placeholders
for floating-point constants – a situation occurring, as explained before, because of an assumed stricter form
of the source programs. Second, it lets us optimize, in a single pass of the compiler, the code for computing
the permanent of the expression - a process that will be illustrated below.

Now that we have laid out the structure of the contexts E1 and E2 in the judgment we are defining, we
can describe their purpose. Simply, the compilation with the judgment starts with the context E1, and ends
with E2. So, E2 is in fact E1 enlarged with the new variables, error estimates and substitutions introduced
during the compilation. The context E2 is returned so that it can be threaded into other rules.

Going back to the analysis for the expression F , given on the previous page, we illustrate how its phase A
can be compiled using the above judgment. First of all, the expression F is specified as two stages: the one
executing val ab = a− b and val ab2 = sq ab, and the other one executing the assignment val d = c× ab2.
Each of the stages will be compiled into four phases of assignments. The compilation for phase A starts by
breaking down each stage of the source program into individual assignments. The rule is the following.

E1 `A val x = e ; λH ; s1, s2

/
E′

E′ `A α ; λT ; r1, r2

/
E2

E1 `A val x = e α ; λHλT ; r1, r2

/
E2

The rule “folds” the functionality of the compiler across the list of source assignments, carrying the
context from one assignment to the next. Notice that the expressions s1 and s2 are never used – only the
last expression in the assignment list is ever tested for sign. Now, to compile the assignment val ab = a− b,
we need a rule applicable to subtraction of input arguments. Input arguments are assumed to be error-less,
so the following rule applies.

E(xA1) = E(xA2) = 0
E `A val y = x1 - x2 ; val yA = xA1 	 xA2 ;

yA, 0
/
E, yA : OA(ε), yP : P, yP � abs(yA)

When applied to the assignment val ab = a− b, the meta variables y, x1 and x2 are instantiated to ab,
a and b respectively. The rule then emits the target code for the assignment to abA (the superscripts A
indicate that the target variable is bound in the phase A of the predicate). For the purpose of bookkeeping,
the rule must also extend the context with information about the relative error and the permanent of abA.
The relative error of abA is ε, so the rule generates the error estimate abA : OA(ε). Finally, the permanent
abP of abA is equal to |abA|, and the substitution context is extended with abP � abs(abA).

Next in the assignment list from our example is the assignment val ab2 = sq ab. The squaring operation
is handled by the rule

xP1 � xA1 or xP1 � abs(xA1) ∈ E
E `A val y = sq(x1) ; val yA = xA1 ⊗ xA1 ;

yA, d (1+ε)2(2δ1+δ2
1)

1−ε efp ⊗ yA
/

E, yA : OA(ε+ (1 + ε)(2δ1 + δ2
1)),

yP : P, yP � yA

In the assignment to ab2, the meta variables x1 and y of this rule are instantiated to ab and ab2 respectively.
Then the meta variable xP1 becomes abP . But abP has already been introduced into the context with a
substitution abP � abs(abA). Thus, the premises of this rule are satisfied, and it can be applied. The
meta variable δ1 from the rule refers to the relative error of the variable xA1 as read from the context, i.e.
OA(δ1) = E(xA1). In our example of assignment to ab2, the variable xA1 is instantiated to abA and δ1 is

9

instantiated to ε. The produced permanent for ab2A is ab2A itself, explaining why we avoided emitting
any code for permanent computation so far. Any separate computation of the permanent for ab2 would
have been just a waste of effort, since it is already computed by the main thread of the filter. For future
use, however, this rule stores the substitution ab2P � ab2A into the context. The relative error for ab2 is
computed as ε+ (1 + ε)(2δ1 + δ2

1) = (3ε+ 3ε2 + ε3) and is stored into the context.
That finishes the compilation of phase A of the first stage. The second stage contains only the assignment

val d = c× ab2, and its phase A target code is obtained by the rule

E(xA1) = 0 xP2 � xA2 or xP2 � abs(xA2) ∈ E
E `A val y = x1 × x2 ; val yA = xA1 ⊗ xA2 ;

yA, d (1+ε)2δ2
1−ε efp ⊗ abs(yA)

/
E, yA : OA(ε+ (1 + ε)δ2), yP : P,
yP � abs(yA)

The rule compiles the source assignment into val dA= cA⊗ ab2A and expands the current context with the
error estimate dA : OA(4ε+ 6ε2 + 4ε3 + ε4) and the substitution dP � abs(dA).

The remaining phases for F are obtained in a similar way. The reader is refered to the Appendix for their
complete definition. The steps in the derivation for the two stages, including the changes in the judgment
contexts, are presented in Table 1 and Table 2 respectively. In addition to the target code and the contexts,
Table 2 also shows, for each of the phases, the testing value and error estimate (recall that only the testing
value and the error estimate of the last stage are actually emitted into the target code). As can be seen from
Table 2, the testing values for the four phases of the second stage are dA, approx(dB), dC and dB + dD,
respectively. In the first three phases, these will be checked against the rounding errors to determine if they
have the correct sign. In phase D, the testing value is actually the exact value of the expression. The error
estimates for the second stage are obtained from the corresponding rounding errors using (3), producing
a quick floating-point test for the sign of the testing value. The error estimates are represented in the
table in a symbolic form. It is important to notice that all of them are known in compile time, and are
emitted into target code as floating-point constants1. So, for example, d (1+ε)2(3ε3ε

2+ε3)
1−ε efp = 3.33067e−16

and d (1+ε)2(2ε+3ε2+ε3)
1−2ε efp = 2.22045e−16.

4.2 Compiling the program

Once all the stages of the source program have been compiled, they need to be pasted together into a target
program, but in such a way that the phases can “communicate” their intermediate results. For illustration,
the target code resulting from the compilation of the expression F is presented in Figure 7. The translation
is done through a new judgment

E1 `P π;xB , xC , xD ; ϕ
/
VB , VC , VD

which takes a source program π and compiles it into a target program ϕ. This judgment works in a bottom-
up manner – the later stages are pasted in first (recall that a source program is a “list” of stages; the
judgment first processes the tail of the list, and then pastes in the head stages). Thus, it is possible that
the target program ϕ will not have all of its variables bound – some of them might have been introduced
in one of the previous stages, and thus will be compiled and bound by the judgment only later. The meta
variables xB , xC and xD hold object-code variables, freshly allocated in the previous stage to hold that
stage’s suspensions, and then passed to the current stage to be rforce’d if needed. The variables VB , VC
and VD hold the object-code variables that the mentioned suspensions should populate with intermediate
values. They are passed back to the previous stage so that the stage can be correctly constructed.

To determine which object-code variables will be passed via suspensions to a particular phase, we use
the following function.

fv(λ, S) = (S ∪ free variables of λ) \ bound variables of λ
1In the actual SML and C implementations, these values are calculated in an initialization routine, rather than placed in

the code as decimal constants, in order to avoid rounding errors in the decimal-to-binary conversion.

10

fn [aA, bA] =>
let val abA = aA 	 bA

val ab2A = abA ⊗ abA

val yB = susp
val ab2B = sq abA

in ((), ab2) end
val yC = susp

val abC = tail−(aA, bA, abA)
val ab2C = double(abA ⊗ abC)

in ((abC), (ab2C)) end
val yD = susp

val (abC) = lforce yC
val ab2D = double(abA × abC)

+ sq abC

in ((), ab2D) end
in

fn [cA] =>
let val dA = cA ⊗ ab2A

in
signtest (dA ± (3.33067e−16⊗ abs(dA)))
with

val (ab2B) = rforce yB
val dB = cA × ab2B

val yBX = approx(dB)
in signtest

(yBX ± (2.22045e−16⊗ abs(dA)))
with

val (ab2C) = rforce (yC)
val dC = cA ⊗ ab2C

in signtest
(dC ± (2.22045e−16⊗ yBX ⊕

6.16298e−32⊗ abs(dA)))
with

val (ab2D) = rforce yD
val dD = cA × ab2D

in sign(dB + dD) end
end

end
end

end

Figure 7: Target code for the example expression F .

For example, if λD is the assignment list for the exact phase (phase D) of the last stage in a program π, its
free variables will be VD = fv(λD, ∅). Some of these free variables will be bound in the λA, λB or λC list
of the same stage, but some will have to be passed by a suspension from the exact phase of the previous
stage (see Figure 6). The variables to be placed in this suspension are therefore all characterized by the fact
that they are introduced in the exact phase of some previous stage. Thus, their set is VD ∩ domD E, where
domD E is the set of variables from the context E that have phase D error estimates.

We can similarly determine the suspensions for the phase C of the last stage. Since phase C needs to bind
some of the variables from λD, we don’t just consider the free variables of λC , but rather set VC = fv(λC , VD).
As before, some of these variables will be bound in λA and λB , but those that are not will need to be passed
via suspension from the phase C of the preceding stage. These variables are in the set VC ∩ domC E, where

11

domC E is, analogously to the phase D case, the set of object-code variables from context E bound in some
of the previous C phases.

In a similar way, the phase B will request the set VB ∩ domB E where VB = fv(λB , VC) passed as a
suspension from phase B of the preceding stage. Finally, phase A doesn’t require any variable passing, since
the computations of this phase are always carried out immediately in each stage, and are never suspended.

The above discussion motivates the following rule of the `P judgment. The rule applies only if π is a
single-stage program, and since the judgment is recursively applied, it serves to compile the last stage of the
source program.

E, xAi : OA(0) `A α ; λA; rA1 , r
A
2

/
E1

E1 `B α ; λB ; rB1 , r
B
2

/
E2

E2 `C α ; λC ; rC1 , r
C
2

/
E3

E3 `D α ; λD; rD1
/
E4

E `P fn [x1, . . . , xn] => let α end; xB , xC , xD
; Φ

/
VB ∩ domB E, VC ∩ domC E, VD ∩ domD E

where Φ is defined as

fn [x1,...,xn] =>
let λA
in signtest (rA1 ± rA2) with

val (VB ∩ domB E) = rforce(xB)
λB
val yBX = rB1

in signtest (yBX ± rB2) with
val (VC ∩ domC E) = rforce(xC)
λC

in signtest (rC1 ±
⌈

2ε(1+ε)2

1−ε

⌉
fp
⊗ yBX ⊕ rC2)

with
val (VD ∩ domD E) = rforce(xD)
λD

in sign (rD1) end
end

end
end

Similar analysis of variable passing can be performed if the stage considered is not the last one. Then
one only needs to take into account that some object-code variables might be requested from the subsequent
stage, and factor them in when creating the suspensions. The rule that handles this case is

E, xAi : O(0) `A α ; λA; rA1 , r
A
2

/
E1

E1 `B α ; λB ; rB1 , r
B
2

/
E2

E2 `C α ; λC ; rC1 , r
C
2

/
E3

E3 `D α ; λD; rD1
/
E4

E4 `P π; yB , yC , yD ; ϕ
/
UB , UC , UD

E `P fn [x1, . . . , xn] => let α π end; xB , xC , xD
; Φ

/
VB ∩ domB E, VC ∩ domC E, VD ∩ domD E

where VD = fv(λD, UD), VC = fv(λC , UC ∪ VD), VB = fv(λB , UB ∪ VC), and the program Φ is defined as

12

follows.
fn [x1, . . . , xn] =>
let λA

val yB = susp
val (VB ∩ domB E) = rforce xB
λB

in (VD ∩ domB E, UB) end
val yC = susp

val (VC ∩ domC E) = rforce xC
λC

in (VD ∩ domC E, UC) end
val yD = susp

val (VD ∩ domD E) = rforce xD
val (VD ∩ domB E) = lforce yB
val (VD ∩ domC E) = lforce yC
λD

in ((), UD) end
in

ϕ
end

Finally, if π is a source program, then as described before, it can be assumed that all its assignment
expressions consist of a single operation acting only on variables, and that its constants ci are replaced by
free variables yi. The target program ϕ for π is obtained through the judgment after all these new variables
are placed into context with relative error 0 together with their substitutions with constants.

E, yAi : OA(0), yAi � ci `P π;xB , xC , xD ; ϕ
/
VB , VC , VD

Notice how the pieces of target code shown in Tables 1 and 2, which represent various stages and phases of
computation, are pasted together into the target program from Figure 7. For clarity, the empty suspensions
and forcings have been deleted from this target program.

5 Performance

We have already mentioned that our automatically generated code for 2- and 3-dimensional Orient, InCircle
and InSphere predicates to a large extent resembles that of Shew-chuk [10]. Of course, this similarity is
hard to quantify, if for no other reason than because our predicates are generated in our target language,
while Shewchuk’s predicates are in C. Nevertheless, we wanted to measure the extent to which the logical and
mathematical differences in the code influence the efficiency of our predicates. For that purpose we translated
(automatically) the generated predicates from target language into C and compared the translations against
Shewchuk’s C implementations. The first test consisted of running the compared predicates on a common
set of input entries. Each set had 1000 entries, and each entry was a list of point coordinates, in cardinality
and dimension appropriate for the particular predicate. The coordinates of the points were drawn with a
uniform random distribution from the set of floating-point numbers with exponents between −63 and 63.
The summary of the results is represented in Table 3. As can be seen, our C predicates are of comparable
speed with Shewchuk’s, except in the case of InSphere where Shewchuk’s hand-tuned version is about 2.4
times faster. The InSphere predicate is the most complex of all and it is only natural that it can benefit the
most from optimizations.

In particular, one of the most visible differences between our InSphere predicate and Shewchuk’s is the
number of variables declared in the program. Our version of InSphere declares a new double array (which
can be of considerable size) for every local variable in the target code intended to hold an exact value of
an expansion type. However, a lot of this memory can actually be reused, because only a minor portion
of the exact values needs to be accessible throughout the run of the program. This will improve the cache
management of the automatically generated programs and certainly increase their time efficiency. However,

13

Shewchuk’s Automatically Ratio
version generated version

Orient2D 0.208 ms 0.249 ms 1.197
Orient3D 0.707 ms 0.772 ms 1.092

InCircle 6.440 ms 5.600 ms 0.870
InSphere 16.430 ms 39.220 ms 2.387

Table 3: Performance comparison with Shewchuk’s predicates. The presented results are times for an average
run of a predicate on random inputs.

Shewchuk’s Automatically Ratio
version generated version

uniform random 1187.1 ms 1410.3 ms 1.19
tilted grid 2060.4 ms 3677.5 ms 1.78
co-circular 1190.2 ms 1578.3 ms 1.33

Table 4: Performance comparison with Shewchuk’s predicates for 2d divide-and-conquer Delaunay triangu-
lation.

it is important to notice that this problem is not inherent to the automatically generated predicates, but is
due to the naive translation from our target language into C. A better translator could probably decrease
these differences considerably.

For the second test we modified Triangle, Shewchuk’s 2d Delaunay triangulator [9] to use automatically
generated predicates. The testing included triangulations of three different sets of 50,000 sample points:
uniformly random in a unit square, tilted grid and uniformly random on a unit circle. The summary of the
results is represented in Table 4. As can be seen, our predicates are a bit slower in the degenerate cases of
tilted grid and co-circular points. Triangulation of such point-distributions often requires the higher phases
of the filter, which are better optimized in Shewchuk’s hand-tuned versions.

All the results are obtained on a Pentium II on 266 MHz and 96 Mb of RAM.

6 Future Work

The most immediate extensions of the compiler should focus on exploiting the paradigm of staging even
better. Staging of expressions prevents recomputing already obtained intermediate results. However, each
stage in the source program translates into four phases of the target program, with four approximations of
different precision to the given intermediate result. If a computation ever carries out its phase D it will
obtain the exact value of this intermediate result, and could potentially use it to increase the accuracy of the
approximations from the inexact phases. It would be interesting and useful to devise a scheme that would
exploit both the adaptive precision arithmetic and the staging in this broader manner.

A longer term goal could be to exploit the structure of the computation to obtain better error bounds.
Priest has derived sufficient conditions which guarantee that the result from a certain floating-point operation
will actually be computed exactly, i.e. will not incur any roundoff error [7]. While putting this idea in practice
will likely require a non-trivial amount of theorem proving, it might still be feasible, since geometric predicates
are typically short expressions, and that the time for their compilation is not really crucial.

Finally, one may wonder how to extend the source language with the standard programming constructs
such as products, coproducts and functions. Adding functions for the sake of structuring the code will most
likely require that every single intermediate variable in the program be replaced with a tuple containing that
variable phase A value and a suspension for the other three phases. This is required since now functions
in the language can test signs of arbitrary values, even those produced by other functions, so the values
have to be equipped with means to compute themselves exactly. But this is likely to be too slow, defeating
the whole purpose of the expression compiler. On the other hand, adding recursive functions is even less
realistic. Performing error analysis for recursive functions is hard – it is one of the main goals of the whole
mathematical field of numerical analysis. Therefore, it seems to be more useful to just add coproducts, since

14

products lose much of their purpose if functions are not around.

7 Conclusion

This report has presented an expression compiler for automatic generation of functions for testing the sign of
a given arithmetic expression over floating-point constants and variables. In addition to the basic operations
of addition, subtraction, multiplication, squaring and negation, our expressions can contain anonymous func-
tions and thus exploit the optimization technique of staging, that is well-known in functional programming.
The output of the compiler is a target program in a suitably designed intermediate language, which can be
easily converted to SML or, in case of single-stage programs, to C.

Our method is an extension to arbitrary expressions of the idea of Shewchuk [10], which he employed
to develop quick robust predicates for the Orient and InSphere geometric test. In particular, when applied
to source expressions for these geometric predicates, our compiler generates code that, to a large extent,
resembles that of Shewchuk. The idea behind the approach is to split the computation into several phases
of increasing precision (but decreasing speed), each of which builds upon the result of the previous phase,
while using forward error analysis to achieve reliable sign tests.

There remain, however, two caveats when generating predicates with this general approach – the produced
code works correctly (1) only if no overflow or underflow happen, and (2) only in round-to-nearest, tie-to-even
floating-point arithmetic complying with the IEEE standard.

If overflow or underflow happens in the course of the run of some predicate, the expansions holding
exact intermediate results may lose bits of information and distort the final outcome. Thus, we need to
recognize such situations and, in those supposedly rare cases, rerun the computation in another form of
exact arithmetic (say in infinite precision rational numbers). Unfortunately, even though the IEEE standard
prescribes flags that can be read to check for overflow and underflow, the Standard Basis Library of ML does
not provide any functions for their testing.

As concerning the second requirement, the IEEE standard is implemented on most modern processors.
Unfortunately, on the Intel x86 family this is not a default setup. This family uses internal floating-point
registers that are larger than 64-bits reserved for values of floating-point type. This property can occasionally
make them round incorrectly in the to-nearest mode (for an example, see [7] page 103) and thus destroys
the soundness of the language semantics. This default can be changed by setting a processor flag, but again,
the Standard Basis Library does not provide any means for it.

We believe that these two described insufficiencies can easily be remedied, and should be if SML is to
become a language with serious applications in numerical analysis and scientific computing.

References

[1] M. O. Benouamer, P. Jaillon, D. Michelucci, and J. M. Moreau. A lazy exact arithmetic. In E. E.
Swartzlander, M. J. Irwin, and J. Jullien, editors, Proceedings of the 11th IEEE Symposium on Computer
Arithmetic, pages 242–249, Windsor, Canada, June 1993. IEEE Computer Society Press, Los Alamitos,
CA.

[2] S. Fortune and C. J. V. Wyk. Efficient exact arithmetic for computational geometry. In Ninth Annual
Symposium on Computational Geometry, pages 163–172. Association for Computing Machinery, May
1993.

[3] S. Funke and K. Mehlhorn. LOOK – a lazy object-oriented kernel for geometric computation. In
Proceedings of the 16th Symposium on Computational Geometry, pages 156–165. ACM, June 2000.

[4] IEEE. IEEE standard for binary floating-point arithmetic. ACM SIGPLAN Notices, 22(2):9–25, Feb.
1985.

[5] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge
University Press, 1999.

15

[6] D. Michelucci and J. M. Moreau. Lazy arithmetic. IEEE Transactions on Computers, 46(9), September
1997.

[7] D. M. Priest. On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate
Computations. PhD thesis, University of California at Berkeley, Berkeley, California, November 1992.

[8] S. A. Seshia, G. E. Blelloch, and R. W. Harper. A performance comparison of interval arithmetic and
error analysis in geometric predicates. Technical Report CMU-CS-00-172, School of Computer Science,
Carnegie Mellon University, December 2000.

[9] J. R. Shewchuk. http://www.cs.cmu.edu/~quake/triangle.html.

[10] J. R. Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis, Carnegie Mellon University, 1997.

A Compilation Rules

The expression compiling is governed by five judgments. Four of them correspond to the four phases of
adaptive computation. They take lists of source language assignment in context and produce lists of target
language assignment. They also return a target floating point expression (an expression in the syntactic
category of reals) to be tested for sign and a target floating point expression representing the upper bound
on the relative error (or a part of it in the case of phase C). The fifth judgment compiles the whole program
by putting together all the pieces of target code obtained by the other judgments. It takes a source program
and three variables naming suspensions for B, C and D phases, and returns a target program plus lists of
variables to be bound in those suspensions, as described Section 4.

In the following text, concatenation of lists of assignments is represented by their juxtaposition. The
relative error of a variable x in context is E is refered to as E(x).

A.1 First phase

Phase A of the compilation is handled by the judgment E1 `A α ; λ; r1, r2

/
E2. We abbreviate δ1 = E(xA1)

and δ2 = E(xA2) when the quantities on the right are defined. The rules for the judgment follow below.

E1 `A val x = e ; λH ; s1, s2

/
E′

E′ `A α ; λT ; r1, r2

/
E2

E1 `A val x = e α ; λHλT ; r1, r2

/
E2

Addition Denote errA+(δ1, δ2) = ε+ (1 + ε) max(δ1, δ2).

E(xA1) = E(xA2) = 0
E `A val y = x1 + x2 ; val yA = xA1 ⊕ xA2 ;

yA, 0
/
E, yA : OA(ε), yP : P, yP � abs(yA)

E(xA1) = 0
E `A val y = x1 + x2 ;

val yA = xA1 ⊕ xA2
val yP = abs(xA1) ⊕ xP2 ;
yA, d 1+ε

1−εδ2efp ⊗ y
P
/
E, yA : OA(ε+ δ2), yP : P

Symmetrically if E(xA2) = 0.

xP1 � xA1 ∈ E xP2 � xA2 ∈ E
E `A val y = x1 + x2 ; val yA = xA1 ⊕ xA2 ;

yA, d (1+ε)2

1−ε max(δ1, δ2)efp ⊗ yA
/

E, yA : OA(errA+(δ1, δ2)), yP : P, yP � yA

16

E `A val y = x1 + x2 ;

val yA = xA1 ⊕ xA2 val yP = xP1 ⊕ xP2 ;
yA, d (1+ε)2

1−ε max(δ1, δ2)efp ⊗ yP
/

E, yA : OA(errA+(δ1, δ2)), yP : P

Subtraction

E(xA1) = E(xA2) = 0
E `A val y = x1 - x2 ; val yA = xA1 	 xA2 ;

yA, 0
/
E, yA : OA(ε), yP : P, yP � abs(yA)

E(xA1) = 0
E `A val y = x1 - x2 ;

val yA = xA1 	 xA2
val yP = abs(xA1) ⊕ xP2 ;
yA, d 1+ε

1−εδ2efp ⊗ y
P
/
E, yA : OA(ε+ δ2), yP : P

Symmetrically if E(xA2) = 0.

E `A val y = x1 - x2 ;

val yA = xA1 	 xA2 val yP = xP1 ⊕ xP2 ;
yA, d (1+ε)2

1−ε max(δ1, δ2)efp ⊗ yP
/

E, yA : OA(errA+(δ1, δ2)), yP : P

Negation

E(xA1) = 0
E `A val y = ~x1 ; val yA = ~xA1 ; yA, 0

/
E, yA : OA(0)

E `A val y = ~x1 ; val yA = ~xA1 ;
yA, dδ1efp ⊗ xP1

/
E, yA : OA(δ1), yP : P, yP � xP1

Multiplication Denote errA×(δ1, δ2) = ε+ (1 + ε)(δ1 + δ2 + δ1δ2).

E(xA1) = E(xA2) = 0
E `A val y = x1 × x2 ; val yA = xA1 ⊗ xA2 ;

yA, 0
/
E, yA : OA(ε), yP : P, yP � abs(yA)

E(xA1) = 0 xP2 � xA2 or xP2 � abs(xA2) ∈ E
E `A val y = x1 × x2 ; val yA = xA1 ⊗ xA2 ;

yA, d (1+ε)2δ2
1−ε efp ⊗ abs(yA)

/
E, yA : OA(ε+ (1 + ε)δ2), yP : P,
yP � abs(yA)

E(xA1) = 0
E `A val y = x1 × x2 ;

val yA = xA1 ⊗ xA2 val yP = abs(xA1)⊗ xP2 ;
yA, d (1+ε)2δ2

1−ε efp ⊗ y
P
/

E, yA : OA(ε+ (1 + ε)δ2), yP : P

17

Symmetrically if E(xA2) = 0.

xP1 � xA1 ∈ E xP2 � xA2 ∈ E
E `A val y = x1 × x2 ; val yA = xA1 ⊗ xA2 ;

yA, d (1+ε)2(δ1+δ2+δ1δ2)
1−ε efp ⊗ yA

/
E, yA : OA(errA×(δ1, δ2)), yP : P, yP � yA

xP1 � xA1 or xP1 � abs(xA1) ∈ E
xP2 � xA2 or xP2 � abs(xA2) ∈ E

E `A val y = x1 × x2 ; val yA = xA1 ⊗ xA2 ;
yA, d (1+ε)2(δ1+δ2+δ1δ2)

1−ε efp ⊗ yA
/

E, yA : OA(errA×(δ1, δ2)), yP : P, yP � abs(yA)

E `A val y = x1 × x2 ;

val yA = xA1 ⊗ xA2 val yP = xP1 ⊗ xP2 ;
yA, d (1+ε)2(δ1+δ2+δ1δ2)

1−ε efp ⊗ yP
/

E, yA : OA(errA×(δ1, δ2)), yP : P

Squaring

E(xA1) = 0
E `A val y = sq x1 ; val yA = xA1 ⊗ xA1 ;

yA, 0
/
E, yA : OA(ε), yP : P, yP � yA

xP1 � xA1 or xP1 � abs(xA1) ∈ E
E `A val y = sq x1 ; val yA = xA1 ⊗ xA1 ;

yA, d (1+ε)2(2δ1+δ2
1)

1−ε efp ⊗ yA
/

E, yA : OA(errA×(δ1, δ1)), yP : P, yP � yA

E `A val y = sq x1 ;

val yA = xA1 ⊗ xA1 val yP = xP1 ⊗ xP1 ;
yA, d (1+ε)2(2δ1+δ2

1)
1−ε efp ⊗ yP

/
E, yA : OA(errA×(δ1, δ1)), yP : P

A.2 Second phase

The judgment handling phase B is E1 `B α ; λ; r1, r2

/
E2. As before, we denote δ1 = E(xB1) and δ2 =

E(xB2).

E1 `B val x = e ; λH ; s1, s2

/
E′

E′ `B α ; λT ; r1, r2

/
E2

E1 `B val x = e α ; λHλT ; r1, r2

/
E2

Addition Denote errB+(δ1, δ2) = (1 + ε) max(δ1, δ2).

E(xA1) = E(xA2) = 0
E `B val y = x1 + x2 ; empty; 0, 0

/
E, yB : OB(ε), yB � yA

E(xA1) = 0
E `B val y = x1 + x2 ; val yB = xA1 + xB2 ;

approx(yB),
⌈

1+ε
1−2εδ2

⌉
fp
⊗ xP2

/
E, yB : OB(δ2)

18

Similarly if E(xA2) = 0.

E `B val y = x1 + x2 ; val yB = xB1 + xB2 ;
approx(yB),

⌈
1+ε
1−2ε errB+(δ1, δ2)

⌉
fp
⊗ yP

/
E, yB : OB(errB+(δ1, δ2))

Subtraction The rules for subtraction are completely symmetric to the rules for addition.

E(xA1) = E(xA2) = 0
E `B val y = x1 - x2 ; empty; 0, 0

/
E, yB : OB(ε), yB � yA

E(xA1) = 0
E `B val y = x1 - x2 ; val yB = xA1 - xB2 ;

approx(yB),
⌈

1+ε
1−2εδ2

⌉
fp
⊗ xP2

/
E, yB : OB(δ2)

Similarly if E(xA2) = 0.

E `B val y = x1 - x2 ; val yB = xB1 - xB2 ;
approx(yB),

⌈
1+ε
1−2ε errB+(δ1, δ2)

⌉
fp
⊗ yP

/
E, yB : OB(errB+(δ1, δ2))

Negation

E(xA1) = 0
E `B val y = ~x1 ; empty;

0, 0
/
E, yB : OB(0), yB � yA

E `B val y = ~x1 ; val yB = ~xB1 ;
approx(yB),

⌈
1+ε
1−2εδ1

⌉
fp
⊗ yP

/
E, yB : OB(δ1)

Multiplication Denote errB×(δ1, δ2) = (1 + ε)(δ1 + δ2 + δ1δ2).

E(xA1) = E(xA2) = 0
E `B val y = x1 × x2 ; empty; 0, 0

/
E, yB : OB(ε), yB � yA

E(xA1) = 0
E `B val y = x1 × x2 ; val yB = xA1 × xB2 ;

approx(yB),
⌈

(1+ε)2

1−2ε δ2

⌉
fp
⊗ yP

/
E, yB : OB((1 + ε)δ2)

Similarly if E(xA2) = 0.

E `B val y = x1 × x2 ; val yB = xB1 × xB2 ;
approx(yB),

⌈
1+ε
1−2ε errB×(δ1, δ2)

⌉
fp
⊗ yP

/
E, yB : OB(errB×(δ1, δ2))

19

Squaring

E(xA1) = 0
E `B val y = sq x1 ; empty; 0, 0

/
E, yB : OB(ε), yB � yA

E `B val y = sq x1 ; val yB = sq xB1 ;
approx(yB),

⌈
1+ε
1−2ε errB×(δ1, δ1)

⌉
fp
⊗ yP

/
E, yB : OB(errB×(δ1, δ1))

A.3 Third phase

The judgment for phase C is E1 `B α ; λ; r1, r2

/
E2. The expression r2 is now just one summand in

the bound on the absolute error. See the definition of the judgment `P for its use in the target program.
Notational abbreviation for this section are ∆1 = (δ1, ι1, ρ1) = E(xC1) and ∆2 = (δ2, ι2, ρ2) = E(xC2) when
the context E contains variables xC1 and xC2 .

E1 `C val x = e ; λH ; s1, s2

/
E′

E′ `C α ; λT ; r1, r2

/
E2

E1 `C val x = e α ; λHλT ; r1, r2

/
E2

Addition To simplify the presentation, we introduce the following notation.

errC+((δ1, ι1, ρ1), (δ2, ι2, ρ2))

= (δC+ ,
1 + ε

1− ε
max(ι1, ι2), errA+(ρ1, ρ2))

where
δC+ = (1 + ε)(εmax(ι1, ι2) + max(δ1, δ2))

E(xA1) = E(xA2) = 0
E `C val y = x1 + x2 ;

val yC = tail+(xA1 , x
A
2 , y

A); 0, 0
/

E, yC : OC(0, ε, 0)

E(xA1) = 0
E `C val y = x1 + x2 ; empty;

xC2 ,
⌈

(1+ε)2

1−ε δ2

⌉
fp
⊗ xP2

/
E, yC : OC(∆2), yC � xC2

Similarly for E(xA2) = 0.

E `C val y = x1 + x2 ; val yC = xC1 ⊕ xC2 ;
yC ,

⌈
(1+ε)2

1−ε δC+

⌉
fp
⊗ yP

/
E, yC : OC(errC+(∆1,∆2))

20

Subtraction Rules for subtraction are similar to those for addition, except the asymmetry occurring when
only one of E(xA1) or E(xA2) is zero.

E(xA1) = E(xA2) = 0
E `C val y = x1 - x2 ;

val yC = tail−(xA1 , x
A
2 , y

A); 0, 0
/

E, yC : OC(0, ε, 0)

E(xA1) = 0
E `C val y = x1 - x2 ; val yC = ~xC2 ;

yC ,
⌈

(1+ε)2

1−ε δ2

⌉
fp
⊗ xP2

/
E, yC : OC(∆2)

E(xA2) = 0
E `C val y = x1 - x2 ; empty;

xC1 ,
⌈

(1+ε)2

1−ε δ1

⌉
fp
⊗ xP1

/
E, yC : OC(∆1), yC � xC1

E `C val y = x1 - x2 ; val yC = xC1 	 xC2 ;
yC ,

⌈
(1+ε)2

1−ε δC+

⌉
fp
⊗ yP

/
E, yC : OC(errC+(∆1,∆2))

Negation The rules for negation just propagate the errors, much in the style of the previous judgments.

E(xA1) = 0
E `C val y = ~x1 ; empty; 0, 0

/
E, yC : OC(0, ε, 0)

E `C val y = ~x1 ; val yC = ~xC1 ;
yC ,

⌈
(1+ε)2

1−ε δ1

⌉
fp
⊗ yP

/
E, yC : OC(∆1)

Multiplication Here, the error functions are as follows.

errC0
× (δ, ι, ρ) = (ει+ δ,

1 + ε

1− ε
ι, ε+ (1 + ε)ρ)

errC×((δ1, ι1, ρ1), (δ2, ι2, ρ2))

= (δC× ,
1 + ε

1− 2ε− ε2
(ι1 + ι2), errA×(ρ1, ρ2))

where

δC× =
[
(2ε+ ε2)(ι1 + ι2) +

+ (ρ1ι2 + ι1ρ2) + δ1(1 + ι2 + ρ2) +

+ δ2(1 + ι1 + ρ1) + ι1ι2 + δ1δ2

]
(1 + ε)

E(xA1) = E(xA2) = 0
E `C val y = x1 × x2 ;

val yC = tail×(xA1 , x
A
2 , y

A) λ; 0, 0
/

E, yC : OC(0, ε, 0)

21

E(xA1) = 0
E `C val y = x1 × x2 ; val yC = xA1 ⊗ xC2 ;

yC ,
⌈

(1+ε)2

1−ε (ει2 + δ2)
⌉

fp
⊗ yP

/
E, yC : OC(errC0

× (∆2))

Similarly for E(xA2) = 0.

E `C val y = x1 × x2 ;

val yC = (xA1 ⊗ xC2)⊕ (xC1 ⊗ xA2);
yC ,

⌈
(1+ε)2

1−ε δC×

⌉
fp
⊗ yP

/
E, yC : OC(errC×(∆1,∆2))

Squaring The error function for squaring is a bit simpler than the one for multiplication.

errCsq(δ, ι, ρ) = (δCsq, 2ι
1 + ε

1− ε
, errA×(ρ, ρ))

where

δCsq =
[
2(ει+ ρι+ δ(1 + ρ+ ι)) + (ι2 + δ2)

]
(1 + ε)

E(xA1) = 0
E `C val y = sq x1 ;

val yC = tailsq(xA1 , y
A) λ; 0, 0

/
E, yC : OC(0, ε, 0)

E `C val y = sq x1 ;

val yC = double (xA1 ⊗ xC1);
yC ,

⌈
(1+ε)2

1−ε δCsq

⌉
fp
⊗ yP

/
E, yC : OC(errCsq(∆1))

A.4 Fourth phase

The phase D of the filter is exact, so there is no need for error functions or estimates in the judgment. Thus,
the judgment has the form E1 `D α ; λ; r

/
E2, and is defined below.

E1 `D val x = e ; λH ; s
/
E′ E′ `D α ; λT ; r

/
E2

E1 `D val x = e α ; λHλT ; r
/
E2

Addition

E(xA1) = E(xA2) = 0
E `D val y = x1 + x2 α ; empty; 0

/
E, yD : OD, yD � yC

E(xA1) = 0
E `D val y = x1 + x2 ; empty; yB + xD2

/
E, yD : OD, yD � xD2

Similarly if E(xA2) = 0.

E `D val y = x1 + x2 ;

val yD = xD1 + xD2 ; yB + yD
/
E, yD : OD

22

Subtraction

E(xA1) = E(xA2) = 0
E `D val y = x1 - x2 α ; empty; 0

/
E, yD : OD, yD � yC

E(xA1) = 0
E `D val y = x1 - x2 ;

val yD = ~xD2 ; yB + yD
/
E, yD : OD

E(xA2) = 0
E `D val y = x1 - x2 ; empty; yB + xD1

/
E, yD : OD, yD � xD1

E `D val y = x1 - x2 ;

val yD = xD1 - xD2 ; yB + yD
/
E, yD : OD

Negation

E(xA1) = 0
E `D val y = ~x1 α ; empty; 0

/
E, yD : OD, yD � 0

E `D val y = ~x1 ;

val yD = ~xD1 ; yB + yD
/
E, yD : OD

Multiplication

E(xA1) = E(xA2) = 0
E `D val y = x1 × x2 ; empty; 0

/
E, yD : OD, yD � yC

E(xA1) = 0
E `D val y = x1 × x2 ;

val yD = xA1 × xD2 ; yB + yD
/
E, yD : OD

Similarly if E(xA2) = 0.

E `D val y = x1 × x2 ;

val yD = (xB1 × xD2)+(xD1 × xB2)+(xD1 × xD2);
yB + yD

/
E, yD : OD

Squaring

E(xA1) = 0
E `D val y = sq x1 ; empty; 0

/
E, yD : OD, yD � yC

E `D val y = sq x1 ;

val yD = double (xB1 × xD1)+sq (xD1);
yB + yD

/
E, yD : OD

23

A.5 Compiling the program

The judgment for program compilation has the form

E1 `P π;xB , xC , xD ; VB , VC , VD
/
E2

where xB , xC , xD are target variables not bound in E1, and VB , VC , VD are lists of target variables, bound in
E1. The judgment is defined by two rules: one for handling the base case when the source program consists
of only a single stage, and another one for multistage programs.

E, xAi : OA(0) `A α ; λA; rA1 , r
A
2

/
E1

E1 `B α ; λB ; rB1 , r
B
2

/
E2

E2 `C α ; λC ; rC1 , r
C
2

/
E3

E3 `D α ; λD; rD1
/
E4

E `P fn [x1, . . . , xn] => let α end; xB , xC , xD
; Φ

/
VB ∩ domB E, VC ∩ domC E, VD ∩ domD E

where VD = fv(λD), VC = fv(λC , VD), VB = fv(λB , VC) and Φ is defined as follows.

fn [x1,...,xn] =>
let λA
in signtest (rA1 ± rA2) with

val (VB ∩ domB E) = rforce(xB)
λB
val yBX = rB1

in signtest (yBX ± rB2) with
val (VC ∩ domC E) = rforce(xC)
λC

in signtest (rC1 ±
⌈

2ε(1+ε)2

1−ε

⌉
fp
⊗ yBX ⊕ rC2)

with
val (VD ∩ domD E) = rforce(xD)
λD

in sign (rD1) end
end

end
end

E, xAi : O(0) `A α ; λA; rA1 , r
A
2

/
E1

E1 `B α ; λB ; rB1 , r
B
2

/
E2

E2 `C α ; λC ; rC1 , r
C
2

/
E3

E3 `D α ; λD; rD1
/
E4

E4 `P π; yB , yC , yD ; ϕ
/
UB , UC , UD

E `P fn [x1, . . . , xn] => let α π end; xB , xC , xD
; Φ

/
VB ∩ domB E, VC ∩ domC E, VD ∩ domD E

where VD = fv(λD, UD), VC = fv(λC , UC ∪ VD), VB = fv(λB , UB ∪ VC), and the program Φ is defined as

24

follows.
fn [x1, . . . , xn] =>
let λA

val yB = susp
val (VB ∩ domB E) = rforce xB
λB

in (VD ∩ domB E, UB) end
val yC = susp

val (VC ∩ domC E) = rforce xC
λC

in (VD ∩ domC E, UC) end
val yD = susp

val (VD ∩ domD E) = rforce xD
val (VD ∩ domB E) = lforce yB
val (VD ∩ domC E) = lforce yC
λD

in ((), UD) end
in

ϕ
end

25

