
BoB: An Improvisational Music

Companion

Belinda Thom

May 2001

CMU-CS-01-138

School of Computer Science

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Manuela Veloso, Chair

Roger Dannenberg

Tom Mitchell

David Wessel, University of California, Berkeley

Copyright c 2001 Belinda Thom

This research was sponsored by the United States Air Force (USAF) Air Force Research Laboratory

(AFRL) under agreement no. F30602-98-2-0135 and no. F30602-97-2-0250, the Defense Advanced

Projects Research Agency (DARPA) under contract no. N66001-94-C-6037, and generous fellowships

from Bell Labs and the National Science Foundation. The views and conclusions contained in this

document are those of the author and should not be interpreted as representing the oÆcial policies,

either expressed or implied, of the USAF, AFRL, DARPA, NSF, U.S. government or any other

entity.

Keywords: Unsupervised Learning, Interactive Computer Music Systems, Music

Improvisation, Real-time, Stochastic Processes

Without them, my personal life would be lived in black-and-white | thanks to

Robbie Warner, Jazz, Kiwi, and my friends | who paint in the vibrant Technicolor.

Early on, Bill and Carol Thom instilled in me an insatiable love of music; this has

brought me great pleasure. Enjoying research and succeeding at CMU was a blast

under the guidance of my advisor, Manuela Veloso. Each member of my committee

also generously o�ered their invaluable expertise, which shaped numerous aspects of

this interdisciplinary endeavor. Thanks everyone!

Extreme Secret Agent

Kosak: \Government

Denies Knowledge."

Abstract

In this thesis, I introduce a new melody representation scheme and a

machine learning framework that enables customized interaction between

a live, improvising musician and the computer. The ultimate intent of

these technologies is to provide the infrastructure needed to intimately

couple the computer with a musician's all-too-transient improvisations;

potential applications range from improvisational exploration to education

and musical analysis. I introduce Band-OUT-of-a-Box (BoB) | a fully

realized agent that trades personalized solos with a simulated user in real-

time.

Musical improvisation is an ill-de�ned situation- and user-speci�c prac-

tice whose inherent non-literal basis makes the authoring techniques ex-

ploited in other AI/entertainment systems (e.g., interactive characters or

stories) less helpful when building an improvisational music companion. A

major contribution is BoB's computational melodic improvisation model,

which con�gures itself to its users' unlabeled examples, alleviating some

of the burden associated with de�ning an appropriate musical aesthetic.

I �rst describe an abstract perception algorithm that maps short strings

of notes onto a mixture model. The components of this model correspond

to the various playing modes | e.g., tonal, intervallic, and directional

trends | that the user employed during various parts of a warmup ses-

sion. I next describe a crucial technology that closes the perception loop

by integrating the learned model's parameters into a stochastic process

that, when sampled, can produce sequences that exhibit speci�c abstract

goals (or playing modes) while seamlessly integrating into the constraints

set up by the local environment. These algorithms' musical performances

are evaluated by qualitatively exploring their behavior using two di�er-

ent simulations: both the transcriptions of Bebop saxophonist Charlie

Parker and jazz violinist Stephane Grappelli. These algorithm's quantita-

tive performance are also assessed using more traditional machine learning

techniques.

Contents

1 Introduction 23

1.1 Motivation . 24

1.1.1 Improvisational Music Companions 24

1.1.2 Interactive Music Systems . 24

1.1.3 A New Agenda For Musical Intelligence 25

1.2 Band-OUT-of-a-Box . 27

1.2.1 Band-in-a-Box . 27

1.2.2 User-Speci�c Playing Modes 27

1.2.3 Musical Input, Time, and Synchronization 28

1.2.4 Interactive Solo Trading . 29

1.2.5 High-Level Architecture . 30

1.2.6 Learning a Model of the User 31

1.3 Contributions . 32

1.3.1 The Improvisational Music Companion 32

1.3.2 A Hierarchical Set of Melodic Views 32

1.3.3 An IMC Solo-Trading Agent Architecture 33

1.3.4 An Algorithm for User-Speci�c Perception 33

1.3.5 An Algorithm for \In Kind" Response 34

1.4 A Reader's Guide to the Thesis . 34

1.4.1 Outline . 34

9

1.4.2 Notation . 35

2 Improvisational Music Companions 39

2.1 Jazz and Blues Improvisation . 39

2.2 Modeling Melodic Improvisation . 40

2.3 Believable Agents . 41

2.3.1 Useful Methodologies . 42

2.3.2 Points of Departure . 43

2.4 Machine Learning & Intelligent Music Systems 46

2.4.1 Predictive Learning . 46

2.4.2 Large Training Sets . 47

2.4.3 Higher-Level Harmonic Knowledge 48

3 The BoB Solo-Trading Architecture 51

3.1 User Input . 51

3.1.1 Raw Solo Input . 52

3.1.2 Melodic Content . 53

3.1.3 Encodable Solo Input . 54

3.1.4 Simulated Live Input . 54

3.2 O�-line Learned Knowledge . 55

3.2.1 Data Collection . 55

3.2.2 Training Data . 56

3.2.3 Training Data and Harmonic Structure 57

3.2.4 O�-line Learning . 59

3.3 On-line Interaction . 60

3.3.1 Perception . 60

3.3.2 Local History . 61

3.3.3 Generation . 61

4 Basic Representation 65

4.1 Overview . 65

4.2 Segmentation Window Size . 66

4.3 Variable Length Trees . 67

4.3.1 Internal Structure . 67

4.3.2 Uniqueness . 69

4.3.3 Leaves . 70

4.3.4 Ties . 70

4.4 The Conglomerative Feature Set . 71

4.4.1 Pitch Sequences . 71

4.4.2 Variable Sample Size . 71

4.4.3 Pitch-Class Histogram . 72

4.4.4 Interval Histogram . 73

4.4.5 Melodic Direction . 73

4.4.6 Melodic Direction Histogram 74

4.4.7 Conglomerative Histogram . 76

4.4.8 Syncopation and Repeated Tones 76

4.5 The Complete Basic Representation Algorithm 77

4.6 Discussion . 77

4.6.1 Transcribed Melodic Segments and the VLT 77

4.6.2 The Conglomerative Feature Set 79

5 Learning Musician-Speci�c Perception 81

5.1 Overview . 82

5.2 Training Data and Sparsity . 82

5.2.1 Training Set Sparsity . 83

5.2.2 Sample Size Sparsity . 83

5.3 Clustering Background . 84

5.4 Clustering With Mixture Models . 85

5.4.1 Sampling . 86

5.4.2 Clustering and Posteriors . 86

5.4.3 Learning a Mixture Model from Training Data 87

5.5 Conglomerative Clustering . 89

5.6 Variable-Sized Histogram Clustering Example 89

5.7 Variable-Sized Mixtures of Multinomials 91

5.7.1 The Multinomial Distribution 92

5.7.2 The Variable-size Multinomial Mixture Distribution 93

5.7.3 The Sample Size A�ect . 94

5.7.4 Learning a vMn Model from Data 94

5.7.5 Assessing A Solution's Quality 99

5.7.6 Choosing the Number of Components 102

5.8 The Complete vMn Learning Algorithm 107

5.8.1 The Number of Components For Parker and Grappelli 107

5.8.2 Caveats . 108

5.9 Performance . 110

5.9.1 With Respect Sparsity . 110

5.9.2 With Respect To Parker And Grappelli 112

5.10 Discussion . 113

5.10.1 Probabilistic Models . 113

5.10.2 Markov Chain Clustering . 114

5.10.3 Sparsity . 114

5.10.4 Generality . 115

5.10.5 Musical Surprise . 117

5.10.6 Musical Modeling Assumptions 117

6 Generating Musician-Speci�c Response 121

6.1 Overview . 122

6.2 Rhythmic Transformation . 122

6.2.1 Node-Speci�c Data Types . 122

6.2.2 Rhythmic Embellishment and Simpli�cation 123

6.2.3 Maintaining the Properties of a VLT 123

6.2.4 Node-Speci�c Tweak Methods 125

6.2.5 Stochastic Rhythm Parameters 128

6.2.6 An int3 Node Modi�cation Example 129

6.3 Goal-Driven Pitch-Sequence Generation 130

6.3.1 Conglomerative-Driven Generation 131

6.3.2 Why the Obvious Approach Does Not Work 132

6.3.3 Stochastic Processes . 133

6.3.4 An Exact Solution . 134

6.3.5 External Constraints . 138

6.3.6 The Practical Solution . 141

6.3.7 Forward-Backward Pitch Sequence Generation 143

6.3.8 Searching for a Good Pitch Sequence 145

6.4 Complete vMn-Based Generation Algorithm 147

6.4.1 Simulated Music Datasets . 149

6.4.2 Solo Trading . 149

6.4.3 Other Interaction Scenarios 150

6.5 Performance . 150

6.5.1 Compared to Random Guessing 151

6.5.2 Compared to the Original Training Data 153

6.5.3 With Respect to the Underlying Model's Structure 153

6.6 Discussion . 156

6.6.1 Rhythm and Pitch . 156

6.6.2 Coupling Learning and Generation 157

6.6.3 Conglomerative Goals and Constraints 157

6.6.4 Convergence and Sparsity . 159

7 Musical Evaluation 161

7.1 Overview . 161

7.2 Customized Perception: Charlie Parker 162

7.2.1 Learned Tonality . 163

7.2.2 Learned Melodic Continuity and Contour 167

7.2.3 Conglomerative Perception Examples 172

7.2.4 Quantifying Per Row Trends 173

7.2.5 Parker CGL Examples: yC = h2; 2; 2i 173

7.2.6 Parker CGL Examples: yC = h4; 1; 1i 174

7.2.7 Parker CGL Examples: yC = h1; 4; 3i 174

7.2.8 Example Bar 65 Revisited . 175

7.3 Customized Perception: Stephane Grappelli 175

7.4 Grappelli CGL Examples: yC = h3; 1; 4i 177

7.5 Grappelli CGL Examples: yC = h1; 1; 2i 178

7.6 Grappelli CGL Examples: yC = h3; 1; 1i 178

7.7 Listening Experiments . 178

7.7.1 Generating Pairs of Solos . 179

7.7.2 Experimental Setup . 179

7.7.3 On the Subject of Listening to Music 182

7.7.4 Experimental Results . 182

7.7.5 With Respect to Solo Trading 186

8 Related & Future Work / Limitations 189

8.1 Real-time Interaction . 189

8.2 Musical Expression . 190

8.3 Melodic Representation . 191

8.4 Interactive Computer Music Systems 192

8.4.1 Roger Dannenberg . 193

8.4.2 Robert Rowe . 193

8.4.3 David Wessel . 194

8.4.4 George Lewis . 195

8.4.5 Other Related Interactive Systems 196

8.5 Machine Learning . 197

8.5.1 Clustering . 197

8.5.2 Sequence Learning . 198

9 Conclusion 201

9.1 The Vision . 201

9.2 Contributions . 202

9.2.1 The Improvisational Music Companion 202

9.2.2 The Hierarchical Set of Melodic Views 202

9.2.3 Learning a User's Playing Modes 203

9.2.4 Transforming a Solo Call into an Appropriate Response 203

9.2.5 The BoB Solo-Trading Architecture 204

9.3 Closing Remarks . 205

A Interpreting Pseudo-code 207

B Interpreting Music Scores 209

C VLT Construction 211

D Learning Appendix 215

D.1 Multinomial Sampling . 215

D.2 Multinomial Versus Gaussian Components 215

D.2.1 The Guassian Multinomial Approximation 216

D.2.2 Considering Counts . 216

D.3 Quality Assessment . 218

D.3.1 Comparing Solution Partitions 218

D.3.2 estHardness . 218

D.3.3 estCost . 219

D.3.4 estLearn . 219

D.3.5 obsInstabilities . 219

D.3.6 obsFitnesses . 220

D.4 Musician-Speci�c Hardness And Instabilities Curves 221

D.4.1 Charlie Parker . 221

D.4.2 Stephan Grappelli . 222

E The Charlie Parker Model 223

E.1 Training Data . 223

E.2 Segregated Views . 226

E.2.1 PC Component 1 . 227

E.2.2 PC Component 2 . 227

E.2.3 PC Component 3 . 228

E.2.4 PC Component 4 . 228

E.2.5 PC Component 5 . 229

E.2.6 INT Component 1 . 229

E.2.7 INT Component 2 . 230

E.2.8 INT Component 3 . 231

E.2.9 INT Component 4 . 231

E.2.10 DIR Component 1 . 232

E.2.11 DIR Component 2 . 232

E.2.12 DIR Component 3 . 233

E.3 Melodic Continuity in Time . 234

E.4 Melodic Contour and Harmony . 234

F Learned Grappelli Model 237

F.1 Training Data . 237

F.2 Learned Tonality . 240

F.3 Learned Melodic Continuity . 240

F.4 Learned Melodic Contour . 242

F.5 Segregated Views . 242

F.5.1 PC Component 1 . 243

F.5.2 PC Component 2 . 243

F.5.3 PC Component 3 . 244

F.5.4 PC Component 4 . 244

F.5.5 INT Component 1 . 245

F.5.6 INT Component 2 . 246

F.5.7 INT Component 3 . 246

F.5.8 INT Component 4 . 246

F.5.9 INT Component 5 . 247

F.5.10 DIR Component 1 . 248

F.5.11 DIR Component 2 . 248

F.5.12 DIR Component 3 . 249

F.5.13 DIR Component 4 . 250

F.6 Tonality in Time . 250

F.7 Melodic Continuity in Time . 251

F.8 Melodic Contour in Time . 251

G Listener Tests 253

G.1 Parker Mode Variation Pairs . 253

G.2 Learn Variation Pairs . 256

G.2.1 Grappelli Based . 257

G.2.2 Parker Based . 260

H Trading Solos 265

List of Figures

1.1 BoB and the Musician Trade Fours 30

1.2 The Band-OUT-of-a-Box Architecture 30

3.1 Parker's Training Data: Bars Structured in Time 58

3.2 Perception . 61

3.3 Generation: Call and Response . 63

4.1 Converting a Bar of Solo Into Its Basic Representation 66

4.2 Node Durations (Per-bar; 4/4 Meter) 69

4.3 A Rhythm With Two Realizations . 69

4.4 Conglomerative Feature Set Example 72

4.5 Relevant Directional History Markov Chain 74

5.1 User-Speci�c Playing Mode Classi�cation 82

5.2 A Mixture of Histograms Dataset . 90

5.3 Multinomial Dispersion versus Sample Size Example 95

5.4 Complexity Versus �ts Examples . 103

5.5 Variability in Local Optima Versus Complexity Example 104

5.6 Learning Setup and its A�ect on Solution Quality Example 105

5.7 A Conglomerative Clustering Example 116

6.1 Rhythmic Embellishment (left) and Simpli�cation (right) 123

6.2 A Degenerate Tree Branch and its Corresponding VLT 124

19

6.3 Avoiding Degeneracy: Constraining where Unison Intervals Occur . . 125

6.4 int3 :: fringeTweak Decision Points 129

6.5 Rest Degeneracy Example . 130

6.6 A Pair of Histograms That Do Not Produce a Pitch Sequence 133

6.7 One Step in Part of an Exact Markov Chain 137

6.8 On-Beat Examples . 140

6.9 Ease in Generation for Scenario I (left) and II (right) 152

6.10 Distribution of Counts in Parker's Training and Simulated Data . . . 154

7.1 Parker's PC Modes and the 12-bar Blues 166

D.1 The Multinomial and Its Gaussian Approximation 217

E.1 Parker's INT Modes and the 12-bar Blues 234

E.2 Parker's DIR Modes and the 12-bar Blues 235

F.1 Grappelli's PC Modes and the 32-bar AABA Form 250

F.2 Grappelli's INT Modes and the 32-bar AABA Form 251

F.3 Grappelli's DIR Modes and the 32-bar AABA Form 251

H.1 Parker and BoB Trained on Parker 266

H.2 Parker and BoB Trained on Grappelli 268

H.3 Grappelli and BoB Trained on Grappelli 270

H.4 Grappelli and BoB Trained on Parker 271

List of Tables

3.1 Musician Training Data . 56

4.1 A Recursive Relevant History Procedure 75

4.2 The featuresCGL Pitch Sequence to CGL Algorithm 76

4.3 The Basic Representation Algorithm 77

5.1 Representative Sample Sizes . 84

5.2 Conglomerative User-Speci�c Learning and Classi�cation Algorithms 89

5.3 The classifyVmn Algorithm . 94

5.4 The learnVmn
 Optimizing
 Algorithm 96

5.5 Simulation Quality Estimates . 100

5.6 Repeated Learning Quality Estimates 100

5.7 The Complete learnVmn Learning Algorithm 107

5.8 Parker and Grappelli Number of Components Results 108

5.9 Simulated Dataset Performance . 110

5.10 Musician Clustering Performance . 112

6.1 recursiveTweak Methods . 126

6.2 fringeTweak Methods . 127

6.3 Fringe Modi�cation Parameters . 128

6.4 The generatePS Pitch Sequence Generator 144

6.5 The searchPS Pitch Sequence Generator 146

21

6.6 The Complete vMnGenerate Generation Algorithm 148

6.7 Simulated Music Data . 151

6.8 SearchPS Performance . 152

6.9 Relearn Generation Experiments . 156

7.1 Parker's Learned PC Components . 164

7.2 Parker's Learned INT Components 169

7.3 Parker's Learned DIR Components 170

7.4 Parker Conglomerative Class Examples 172

7.5 Parker INT Classi�cation Example 176

7.6 Grappelli Conglomerative Class Examples 177

7.7 Listener Results . 183

7.8 Listening Experiment Results . 184

C.1 The makeVLT Encoable Sequence to VLT Converter 212

F.1 Grappelli's Learned PC Components 240

F.2 Grappelli's Learned INT Components 241

F.3 Grappelli's Learned DIR Components 242

22

Chapter 1

Introduction

This thesis investigates a novel domain for intelligent agents | agents as speci�c users'

improvisational music companions | and introduces Band-OUT-of-a-Box (BoB),

an agent designed to trade live, customized solos with a speci�c improvising mu-

sician/user. An unsupervised machine learning algorithm is presented that addresses

a primary technical challenge in this domain | to computationally specify the agent's

musical intelligence, a highly personalized and context dependent concept | by learn-

ing to model a user's improvised behavior. This learned model abstracts bars of solos

into user-speci�c playing modes, providing a technology for perceiving what the user

plays in a musically powerful, musician-speci�c manner. In isolation, this model does

not provide the agent with the ability to interactively respond to what the user plays.

Another crucial technology that this thesis presents is a mechanism for closing the

learning loop by reversing the user-speci�c playing mode abstraction. In particular,

the learned model's parameters are incorporated into a stochastic process that, when

sampled, produces solos that realize speci�c user playing modes. With these two

technologies, the agent can intelligently respond to the musician's solos in real-time.

These ideas are fully implemented in BoB, which is used to simulate and evaluate

real-time solo-trading in two contexts: both the improvisations of saxophonist Char-

lie Parker and jazz violinist Stephane Grappelli.

23

1.1 Motivation

The vision of my research is to interactively improvise with the computer, using it

as a tool when practicing alone to capture and experiment with my all-too-transient

spontaneous musical ideas.

1.1.1 Improvisational Music Companions

I want the computer to serve as my own personal improvisational music companion

(IMC), playing music with me, improvising with me, and getting to know my own

unique musical personality in such a way that it could:

... answer me halfway through my phrase, bringing me to the point where I can

actually sing what its going to play next, and then, instead of playing that, it'll

play something against it which compliments what I'm singing in my head.

This quote, which inspires my research, paraphrases drummer Keith Copeland's mus-

ings about improvising with jazz pianist Ahmad Jamal.1 Towards this end, I am

creating BoB, an agent that employs novel machine learning techniques to trade solos

with its user in a musician- and context-speci�c manner.

1.1.2 Interactive Music Systems

Most interactive music systems rely on an author-the-aesthetics paradigm, meaning

that ultimately, the artist, programmer, and/or user is expected to con�gure the

system's inner workings, hand-customizing until interesting musical aesthetics result,

e.g., (Dannenberg 1993; Rowe 1993; Pennycook and Stammen 1993).

For example, in many of Dannenberg's interactive performances, the computer

is programmed to be an extension of his compositions, capable of responding to

the real-time performance decisions and nuances of the human performer. In this

setting, music recognition is either hand-coded and/or trained using human supervised

learning data, e.g., (Dannenberg, Thom, and Watson 1997), and music generation is

generally designed to carry out the composer's, rather than the performer's, goals.

1As compiled in (Berliner 1994).

24

While more open-ended improvisational experiences are sought inWessel's computer-

assisted performance settings, the primary focus is again on human-authored aesthet-

ics. Towards this end, much of his work has revolved around creating technologies

for organizing and controlling the access to musical material so that human computer

musicians can author meaningful musical experiences on-the-y (Wessel, Wright, and

Kahn 1998; Wessel and Wright 2000).

Situated somewhere between these two approaches is Lewis' interactive Voyager

system (Casserly 1997; Roads 1985). Improvisationally, Voyager is quite open-ended

and Lewis points out that the emergent properties that arise \when playing with the

thing" are of primary interest to him. This interest coincides more closely with Wes-

sel's agenda than Dannenberg's, which relies more heavily on compositional intent.

At the same time, both Dannenberg and Lewis are practicing improvisers that have

spent many years hand-crafting their respective interactive software environments.

Some interactive systems have embodied a more autonomous sense of musical

aesthetics using machine learning (ML) techniques to reduce some of the authoring

burden, e.g., (Biles 1998; Franklin 2001). Although learning provides an additional

layer of exibility, because these systems are based on carefully constructed musi-

cal representations (in Biles, specialized chord-to-scale based mappings; in Franklin,

hand-coded �tness functions), they are not as exible as they could be. It is also

unclear how much of these systems' aesthetically pleasing behavior comes from these

carefully constructed representations.

1.1.3 A New Agenda For Musical Intelligence

Improvised companionship in the soloing practice tool context motivates a di�erent

research agenda (Thom 2000a). By de�nition, an IMC is a speci�cmusician's personal

companion; this directly a�ects how one thinks about the agent and speci�es what

is important in simulating its musical intelligence. Using machine learning to replace

explicit authoring is a primary concern and this technology must be developed to

con�gure a computational improvisation model for a particular arbitrary musician

playing at a particular arbitrary time and in a particular arbitrary context. An IMC

25

must provide an extremely exible and adaptive model of improvised melody that

can:

� leverage o� of the spontaneous creativity of its user;

� transform what the user plays in interesting new ways;

� reect the user's performance back to them, that such co-mingling might result in

making the user's spontaneity less transient, more tangible and explorable.

Providing an adaptive and robust basis for reasonably competent musical behavior is

key. This approach is in direct contrast to a more knowledge-intensive one in which

a set of speci�c rules are �ne-tuned for a particular user and setting.

It is simply more important to handle a wide variety of improvisational settings

reasonably well than it is to expertly handle a speci�c improvisational genre. For

example, I want to be able to use an IMC when improvising on top of:

� the rhythmic, modal types of playing one �nds in Ali Farque Toure's guitar or Dr.Dig's

didgeridoo music;

� well delineated chord progressions (e.g., blues, bluegrass, folk);

� unaccompanied settings where melodies are completely unconstrained.

To address this need, BoB's architecture is purposefully designed at its most basic

level to function in the absence of speci�c codi�ed jazz or blues theories. Instead,

the focus is to develop a computational model of improvisation that tightly

couples with, and fully functions from within the sole context of, the user's

improvisations. With respect to computer music, one of BoB's primary distinctions

is this unique agenda.

If machine learning is to be relied on, training data collection must be as natu-

ral and non-obtrusive as possible to easily accommodate amateur improvisers with

varying levels of skill. An IMC cannot require that an expert \twiddle the settings"

or expect a user to directly supervise its musical behavior. Furthermore, a machine

learning algorithm must be able to learn in the presence of little data because this

allows the IMC to learn about the musician's playing style \right now", i.e., in the

current solo-trading context. I propose handling smaller datasets by simplifying the

underlying mathematical model that is to be learned, the assumption being that a

26

less accurate model trained on more immediately relevant data will provide a more

intimate and appropriate interaction with the user than a more complex model that

is trained on a larger hodge-podge of the musician's behavior would.

1.2 Band-OUT-of-a-Box

Band-OUT-of-the-Box (BoB) is the IMC contributed by this thesis. BoB's task is to

trade live, improvised solos with its user in real time. The BoB experiment explores

the idea that a solo-trading companion can be operationalized | i.e., algorithmically

speci�ed | using a probabilistic melody improvisation model that learns to auto-

matically con�gure itself to the user's various playing modes after listening to them

improvise.

1.2.1 Band-in-a-Box

The name `BoB' pays tribute to Band-in-a-Box (BiB) (PGMusic 1999), a commercial

software product that provides �xed accompaniment to musicians while they impro-

vise. While BiB has enhanced many improvisers' at-home practice e�orts, it neither

listens to nor responds to what the user plays.2 BiB's success has much to do with

the fact that it comes with a huge library of expertly crafted styles, o�ering a wide

range of choice over the type of accompaniment that is provided (like funk, disco, or

jazz). Should a user care to build a customized accompaniment style, speci�c licks3

can be recorded and various parameters can be modi�ed to control how these licks are

combined and applied. This product is another example of the author-the-aesthetics

paradigm, requiring the user to explicitly con�gure the system when non-prepackaged

musical behaviors are desired.

1.2.2 User-Speci�c Playing Modes

The ultimate key to success is providing an intimate connection between the musician

and BoB | at all times the user must feel listened to and responded to. The

2Although the new version can improvise by creating solos for a speci�c harmony and/or making

up a new harmony, this \creativity" is non-interactive.
3Musicians use the term lick, ri�, or motive to refer to a melodic fragment.

27

most basic hypothesis in this thesis is that such intimate coupling can

be simulated provided the agent is powerful and exible enough to detect

and respond to the various modes of playing that the musician employs

during di�erent parts of their improvisations. For example, a user's playing

mode might amount to their preference for certain tones in a musical scale arranged

so that a particular melodic shape and set of intervals is used.

BoB will explore playing modes in terms of how various solo segments utilize

di�erent tonal, intervallic, and directional trends. In particular, three di�erent feature

vectors for encoding a pitch sequence are considered:

� a pitch-class4 (PC) based view;

� an intervallic (INT) based view;

� a directional (DIR) based view.

PC usage can be inuenced by an underlying tonality and/or musical scale, so these

terms will also be used to refer to various PC-based qualities. Similarly, INT usage,

which quanti�es the absolute semitone distance between adjacent pitches, will also

be referred to in terms of melodic continuity or discontinuity, which are a�ected by

ones preference for certain arpeggios, triads, or runs of notes within a scale. Finally,

DIR usage, which quanti�es how a melody's pitches ascend, descend, and/or do not

change in pitch over time, will also be referred to in terms of a melody's contour or

shape. Together, these trends are referred to as a conglomerative (CGL) view.

1.2.3 Musical Input, Time, and Synchronization

General-purpose music systems that interact with human performers present a num-

ber of diÆcult engineering problems that are the subject of much research e.g., (Win-

kler 1998; Rowe 1993; Cemgil and Kappen 2001b; Raphael 1999). This thesis ignores

three important issues, namely pitch-tracking, tempo-tracking, and rhythmic quantiza-

tion. Since playing modes are de�ned in terms of pitch sequence content, a discrete,

perceptual notion of pitch is used (based on the equal tempered scale) and simple

MIDI controllers can be used to input melodic data into the computer.

4This use of the word `class' originates in psychoacoustics and should not be confused with the

classes that are inferred by BoB's learning algorithm.

28

Important terms need to be de�ned to quantify the passage of time in music,

a concept that is crucial if improvisors are to synchronize their playing with one

another. Music often has a pulse and its unit of pulse is called a beat. Beats are

rarely undi�erentiated but rather occur in repetitive groups, called bars, and these in

turn de�ne the music's meter. For example, when one taps their foot to a rock-n-roll

tune, odds are that they are tapping their foot in `4/4' meter, which amounts to

hitting the oor four times per-bar, and probably emphasizing beats one and three.

Tempo quanti�es how quickly the beats pass and is typically measured in terms of

beats-per-minute.

With regards to tempo tracking, it is assumed that the user will be able to \keep

up" with BoB's notion of the beat, synchronizing themselves to a non-interactive

computer accompaniment that BoB provides (a similar scheme was successfully em-

ployed in BiB). Rhythmic quantization will be the �rst thing addressed in future work

because, without it, live interaction with a user is not possible. Currently, \live"

interaction is simulated in real-time using human transcribed improvisa-

tions.

1.2.4 Interactive Solo Trading

In BoB, interactivity is staged in terms of call and response, mediated by a lead

sheet. The lead sheet speci�es high-level aspects of the interaction | what tempo

and harmony or rhythm background to use, in what bars each player is expected to

solo, and so on. This information is speci�ed by the user before interaction begins.

Consider trading fours, a solo trading interaction in which the following is repeated

over and over:

1. Soloist A plays a call, improvising for four bars while soloist B listens.

2. Soloist B improvises a response to this call while soloist A listens.

In reality, the distinction between call and response is blurred because soloist B's

response can be viewed as a call for soloist A.

Figure 1.1 provides one example, displaying a di�erent sta� for each soloist. The

musician has just played their �rst four bars of solo (top sta�). BoB is replying

(bottom sta�), having just performed its �rst two bars of response, now scheduling

29

its third, and creating its fourth. The accompanist's part is listed underneath the

bottom sta� in standard chord notation. This part is played non-interactively.

B 7 E 7 E 7F7F7B 7E 7E 7

3 3

Musician:

IMC:

Figure 1.1: BoB and the Musician Trade Fours

1.2.5 High-Level Architecture

BoB is designed to handle two soloists: itself and the user, only one of whom may

improvise at a given time. In addition, each soloist must play a monophonic melody,

meaning that they only play one pitch at a time. In Figure 1.2, BoB's architecture is

outlined.

Note Sequence

Most Recent
Transcribed Fixed Tempo

& Structure
Note Sequence

to Play

Next

GenerationPerception History

Musician Soloist

Agent
Soloist

Audio Out

Knowledge (OLK)
Offline Learned

Audio In

MIDI OutMIDI In

Lead
Sheet

Figure 1.2: The Band-OUT-of-a-Box Architecture

The environment consists of everything that lies outside of BoB (the double-lined

box) and includes the musician, the lead sheet, and o�-the-shelf MIDI and audio

interfaces. Inside of BoB, real-time MIDI and event processing are handled by the

dashed-box components. This thesis addresses the bold components, which include:

30

1. perception;

2. generation;

3. history;

4. o�-line learned knowledge;

and are entirely responsible for BoB's interactive, musically intelligent behavior.

The perception component perceives the musician's solo call on a per-bar basis,

abstracting each bar into an appropriate user playing mode. As the musician's call

progresses, a sequence of these abstractions is stored by the history component. His-

tory is in turn used by the generation component to guide BoB's search for a user-

and context-speci�c response. The dotted-line connecting the musician to the o�-

line learned knowledge component (OLK) indicates that user knowledge was learned

before interactive solo-trading began.

OLK is con�gured as follows. First, BoB collects training data by transforming

each bar that the user improvises into a conglomerative view. This data collection

is referred to as the warmup session. Next, this data is taken o�-line and a model

is learned for mapping conglomerative views into distinct user playing modes. When

BoB goes back online, interactively trading solos with the user in real-time, this

model is used to operationalize both user- and context-speci�c solo perception and

generation.

1.2.6 Learning a Model of the User

A user-speci�c training set is created by breaking the warmup data into local seg-

ments, one for each bar of solo. Each segment is transformed into a conglomerative

view. Learning involves probabilistically clustering or partitioning these views into a

speci�c number of components or classes so that they appear to be maximally likely.

This clustering is done to capture the di�erent playing modes that the musician uses

when spontaneously constructing solos. Since it is not known which bars belong to

what classes, to learn this clustering function is an unsupervised learning (UL) prob-

lem. The goal is not to best predict a target function, but rather to \best" explain

the features contained within the training data.

A mixture-model based approach is used, providing both a mechanism for percep-

tion (estimate what class is most likely to have generated a given view) and generation

31

(derive a new solo from a speci�c class by sampling from an appropriate distribution).

This probabilistic model also comprehends likelihood, which can be used to interpret

how surprising a particular perception appears. An important distinction of this ap-

proach is that the user's warmup data itself determines how di�erent CGL views will

be perceived as \similar." In addition, similarity is derived from the data in a very

open-ended, exible, and context-sensitive way.

1.3 Contributions

As highlighted below, this thesis makes �ve contributions to the �elds of machine

learning, intelligent agents, and interactive music systems.

1.3.1 The Improvisational Music Companion

This thesis formally introduces agents as spontaneous musical companions. The

focus is on a tight, intimate coupling between the improviser and his or her ma-

chine/companion, forcing user-customization, adaptation, and musical sensibility into

the limelight. Just as believable agents presented a new paradigm for arti�cial intel-

ligence (AI), IMCs present a new paradigm for intelligent music systems. The goal

shifts from engineering an agent with speci�c musical expertise to providing a exible,

adaptive, common-sense modicum of musical behavior.

1.3.2 A Hierarchical Set of Melodic Views

This thesis develops a methodology for automatically decomposing a monophonic

solo into a temporal sequence of local segments. The term `segment' instead of `bar'

highlights that, although in this thesis, segmentation is per-bar, the technology can

handle arbitrary segmentation schemes.

Each segment is encoded in multiple ways, including:

1. a transcribed string-of-notes;

2. a hierarchal rhythm tree;

3. a pitch sequence;

32

4. a conglomerative viewpoint;

5. a user-speci�c playing mode.

This list is ordered because it is hierarchical. Each successive encoding produces a

more abstract view of the melody than its predecessors.

1.3.3 An IMC Solo-Trading Agent Architecture

The BoB architecture contributes the following technologies:

� a real-time, probabilistic human/computer solo-trading model whose feature space

and abstraction mechanisms are simple and musically meaningful, making the model

easy to understand, reason about, and extend.

� a learning mechanism that con�gures the model to the musician's playing modes after

merely listening to him or her improvise.

� an integrated procedure for generating new solos that maintain a particular set of user-

speci�c abstractions and seamlessly integrate into the evolving musical environment,

domain knowledge, etc.

1.3.4 An Algorithm for User-Speci�c Perception

A mixture model composed of Multinomial probability distribution components is

introduced for clustering histograms that contain an arbitrary number of counts.

This model is derived and implemented so that:

� The total number of counts in a histogram is a random variable.

� All of the counts within a histogram are modeled as belonging to the same component.

� The learning algorithm can infer a useful model even when histogram data is relatively

sparse, i.e., few counts are distributed among a histogram's many bins and training

data consists of a limited number of histograms.

This technology is used to customize BoB's solo-trading model to the user, parti-

tioning the CGL feature space into distinct playing modes. This model is tested on

a variety of datasets, both simulated and musician-speci�c, including some Charlie

Parker and Stephane Grappelli transcriptions.

33

1.3.5 An Algorithm for \In Kind" Response

An \in kind" response to a solo call is obtained in two stages. First, a stochastic

algorithm is introduced to modify the fringe of a call rhythm's tree while maintaining

important invariants in the tree's internal structure. A pitch-sequence generation

algorithm that closes the learning loop is derived to �ll in the pitch content of the

tree's leaves. This algorithm is goal driven in that it can produce sequences that map

back into speci�c user playing modes. This algorithm also maintains a fairly arbitrary

set of constraints and can be used, for example, to generate a pitch sequence that:

1) starts and ends on speci�c tones, and 2) \�lls in the blanks along the way" in such

a way that the goal's tonal, intervallic, and directional trends emerge. This algorithm

relies on a heuristic that eÆciently integrates what was learned in the user-model

into a Markov chain sampling scheme. This model is tested by simulating a variety

of real-time solo trading interactions using Charlie Parker's and Stephane Grappelli's

transcriptions.

1.4 A Reader's Guide to the Thesis

What follows is a general description of this thesis' contents, including a brief sum-

mary of each chapter and some guidelines for interpreting mathematical notation.

1.4.1 Outline

� Chapter 2 situates the IMC task within the jazz and blues tradition. The foun-

dational aspirations of a computational improvisation model are described. Various

aspects of the IMC domain are eshed out and situated within AI.

� Chapter 3 expands upon the Band-OUT-of-a-Box architecture presented in Sec-

tion 1.2. Handling real-time melodic input is addressed in both current (simulated

live) and future (live musician) paradigms. How BoB's intelligent music components

operate upon and transform this input and interact with one another and the musician

are also presented.

� Chapter 4 introduces the two most basic data structures that encode melodic

segments. A tree-based structure delineates rhythm and is used to produce the

histogram-based structures that encode a segment's conglomerative pitch-sequence

trends.

34

� Chapter 5 introduces the algorithm that learns to map conglomerative histograms

into abstract, user-speci�c playing modes. So as not to detract from its usefulness

in other discrete, temporal domains, this algorithm's derivation is general. Speci�c

issues concerning the model's application to BoB are only presented when necessary.

� Chapter 6 introduces the two inter-related stochastic algorithms that are used to

generate an \in kind" response to a solo call. Rhythmic transformation is tree-based,

capable of permuting a call's rhythm in musically reasonable ways. Goal-driven pitch

sequence generation, which is tightly coupled to the learned user-model, assigns new

pitches to this rhythm.

� Chapter 7 assesses the performance of BoB's customized perception and goal-driven

generation from a musical point of view. The former is assessed qualitatively and the

latter in terms of listening experiments. This chapter is crucial because it validates

that: 1) the ML approach in Chapter 5 infers salient musical structure, and 2) the

heuristic approach in Chapter 6 generates solos that exhibit this musical structure.

� Chapter 8 describes related work, limitations of BoB's current implementation, and

promising directions for future research.

� Chapter 9 concludes, summarizing the long-term vision that motivates this thesis

and the contributions that it makes to the �elds of machine learning, intelligent agents,

and interactive music systems.

The appendices that accompany the representation (Appendix C), learning (Ap-

pendix D), and music evaluation (Appendices E through H) chapters are referred

to as needed in the main text.

1.4.2 Notation

In addition to the mathematical nomenclature presented below, readers should fa-

miliarize themselves with the appendices that outline pseudo-code (Appendix A) and

musical score (Appendix B) syntax.

Italicized Variables

Most variables are italicized, e.g. x; y; and z. The following names are reserved for

speci�c contexts:

35

1. s is a transcribed segment, and v and x are its corresponding rhythm tree and his-

togram.

2. Histogram x contains a total of sz counts.

3. Data-point x belongs to dataset X.

4. y is the classi�cation of x, z and are its corresponding indicator and posterior vectors

(de�ned in Sections 5.4.1 and 5.4.2), and l and u are its corresponding labeled and

unlabeled likelihoods (de�ned in Section 5.4.1). Y and Z contain the corresponding

values for each data-point in X. L and U are entire dataset likelihoods.

5. Probability distribution G is parameterized by
, which might contain probability

vectors �; �, and/or �. When sampling a single data-point from this distribution,

notation x � G(
) is used. When independently sampling an entire dataset, notation

X
N
� G(
) is used.

Rather than using longer variable names, whenever possible, descriptive subscripts

provide additional information, e.g., xmax or x
min

. Descriptive subscripts appear in

italicized font.

Variables With Special Fonts

Non-italicized variables are used in the following situations:

� Pseudo-code functions are identi�ed by the Terminal type font.

� Probabilistic functions, e.g., Pr(x), and musical pitches, e.g., B or D[, are identi�ed

by the Roman type font.

� Except for the italicized sets already mentioned, sets are identi�ed by calligraphic

letters, e.g., S. The number of items a set contains is correspondingly notated, e.g.

n
S
. Operator # returns the number of items in a set.

Indexing Variables

When variables appear in San Serif type font, they refer to a particular index within

a set, sequence, or vector. A variable's name implies its meaning:

� n refers to a particular data-point in a �xed-size dataset. When iterating over index n, the

range is 1 � n � N.

36

� m refers to a speci�c dimension in a �xed-size vector. The corresponding range is 1 � m � M.

� k refers to a speci�c class within a set of components. The corresponding range is 1 � k � K.

� Since s refers to a speci�c item in set S, its range is 1 � s � n
S
.

� r refers to an arbitrary real-time segment.

� t refers to a particular element in an arbitrary-length sequence. For example, supposing the

sequence corresponds to bar r, then the range would be 1 � t � T
r
.5

Special Superscripts

When a variable is superscripted by one (or both) of the following fonts, certain

information is implied. The �rst font type indicates what training set a variable is

based on. For example:

� XP refers to the Charlie Parker training set, and so
P refers to the model learned using this

data, Y P contains the results of using this model to classify the training set, etc.

� XG ,
G , Y G , etc., are similarly de�ned for Stephane Grappelli's data.

The second font type indicates what part of the conglomerative feature set is being

used. For example:

� XP is a training set's PC data.

� XI is a training set's INT data.

� XD is a training set's DIR data.

� XC is the the training set composed out of all of the above.

5This distinction is needed so that sequence lengths can vary from segment to segment.

37

38

Chapter 2

Improvisational Music Companions

This chapter introduces the improvisational music companion (IMC) domain in more

detail. To begin, the solo-trading task is situated within the jazz and blues tradition.

From within this context, the foundational aspirations of my computational melodic

improvisation model are described. With these foundations in place, various aspects

of the IMC domain are eshed out and situated within the AI community. I �rst

consider how believable-agent methodologies contribute to IMC agents and identify

ways in which the IMC domain forces one to extend and modify this methodology.

Next, I examine how machine learning is typically used to aid in operationalizing

musically intelligent behavior and identify how IMCs force one to signi�cantly alter

this paradigm.

2.1 Jazz and Blues Improvisation

The jazz or blues jam session, where during which musicians trade solos and play

o� of one other over a �xed harmonic background, is a useful context in which to

think about BoB. Because jazz and blues are long-standing cultural traditions, when

evaluating BoB's performance from within these contexts, care must be taken not to

let ones expectations about genre get in the way of objectively appreciating all that

BoB can do.

For example, in the jazz context, a listener who is asked to compare a speci�c mu-

sician's solo with a BoB-generated solo response might observe that \BoB's response

does not complement the musician's solo as a jazz soloist would." When asked to de-

39

�ne the notion of complement, an answer like \there should be some sort of contrast

or shift in emotion" might come up.

While complementing is an important musical skill, it is a fairly abstract and

intentional notion. I believe that this type of behavior is better served later on,

after BoB's more instantaneous and immediate musical perception and generation

mechanisms are �rmly in place. Similar arguments can be made for other abstract

intentional notions, e.g., emotionally coloring a performance's realization (Bresin and

Friberg 2000) or communicating high-level notions like \lyrical" or \bluesy" (Dan-

nenberg, Thom, and Watson 1997).

2.2 Modeling Melodic Improvisation

BoB's most powerful technologies include its:

1. open-endedness and exibility;

2. automated user- and context-speci�c model;

3. constrained stochasticity.

My current focus is to provide a highly constrained, self-con�guring, stochas-

tic mechanism by which the computer can spontaneously interact with the

musician on a very basic level. Rather than relying on rule-based, symbolic rea-

soning, this basic, more primitive technology generates short segments of notes using

a self-con�guring, distributed mechanism that, when sampled, can produce note se-

quences that exhibit speci�c abstract goals and integrate into the context of the

evolving musical exchange. I consciously chose this approach because I believe that

it captures the essence of improvisation:

The ability to improvise [...] seems to come out of the end of ones �ngertips

[...] its main components are profoundly unconscious. (Sudnow 1978)

My approach whole-heartedly embraces the psychological theory of Johnson-Laird

(1991), which opposes the view that jazz improvisation can be adequately modeled

by rearrangement and simple transformation of pre-acquired licks so as to meet the

exigencies of the current harmony. Johnson-Laird (1991) also makes a convincing

40

argument concerning the computational plausibility of a stochastic model that is

based on a greedy search through a highly constrained \what to play next" space.

This argument leads to the important question of from where such constraints would

come. In my experience improvising on the violin, the more I practice, the more things

just start to \come out of the ends of my �ngertips." As these physical motions sink

in, my ability to generalize them to di�erent settings comes naturally. My constraints

have somehow emerged from a lengthy period of committed practice, genre immersion,

and so on. BoB will derive its constraints from the user via the learning algorithm

and the environment.

2.3 Believable Agents

Just as believable agents (BA) presented a new paradigm to the AI community (Mateas

1999), IMCs present a new paradigm for intelligent music systems. Important paral-

lels can be drawn between BAs and IMCs and such comparison is valuable because

it:

1. provides deeper insight into the nature of the IMC domain;

2. identi�es BA-centric perspectives that naturally simplify the task of building an IMC;

3. identi�es important di�erences between traditional BAs and IMCs, forcing existing

paradigms to be extended and/or reinvented.

In both domains the primary concern is resolving the inherent conict that arises when

an intelligent system and an artist interact, the key issue of the conict being to �nd

the right balance between artistic control (authoring) and autonomous intelligence.

For an IMC, this amounts to automating musically-appropriate behavior.

The concept of a believable agent, originally developed by the Oz Project at

Carnegie Mellon University (Bates 1992), explores building interactive virtual worlds

whose characters and story lines are believable. While the nature of believable agents

is debated, a central theme is creating interactive, autonomous agents that exhibit rich

and compelling personalities (Elliot and Brzezinski 1998; Frank, Stern, and Resner

1997; Mateas 1999). A fundamental reason why believable agents stimulate an appro-

priate way of thinking about IMCs is their audience- and artist-centered philosophy,

whereby:

41

[...] building a new kind of cultural experience: engaging, compelling, and

hopefully beautiful and profound [...] (Mateas 1999)

is embraced. Of enormous bene�t here is the belief that artistic goals are at

least as valuable as purely technical ones, that good art (transformed into

a computational setting) breeds good science, but that the converse is not

necessarily true (Mateas 2001a).

2.3.1 Useful Methodologies

In creating autonomous interactive characters with the same rich personalities as

those created by artists, BA researchers have attempted to understand the reections

of practicing character artists and to integrate these insights into their methodology.

Not surprisingly, the reections of practicing improvisers have proven similarly useful

in my research, e.g., (Bailey 1992; Berliner 1994; Sudnow 1978; Johnson-Laird 1991).

How inherently artistic pursuits inuence BA methodology is instructive. Because

there is an emphasis on building interactive characters, an important goal is to provide

character artists with the same level of artistic control that, for example, animators

have. In BoB, a similar goal is pursued: to tightly couple the agent and improviser

so that an intimate musical exchange can take place while providing the agent with

enough freedom to generate novel material.

Useful believable agent methodologies include:

1. Stress speci�city. While traditional AI systems seek to capture the general

theory of some domain, an IMC must capture the notable aspects of its user's

improvisations. Bailey (1992) highlights this point:

There is no general widely held theory of improvisation and I would have

thought it self-evident that improvisation has no existence outside of its

practice.

Typically, computational jazz systems have been rule-based, instantiating some

combination of textbook theories about jazz, (Pennycook and Stammen 1993;

Levitt 1981; Russell 1959; Coker 1970), making this methodology a signi�cant

point of departure.

42

2. Measure success in terms of audience perception. Classical AI systems

seek to optimize some form of objective measure. An IMC must �rst be built

and then evaluated in terms of how engaging its interactions with the user are.

3. Have strong aÆnities with behavioral AI. In particular, an IMC should

prefer the broad, shallow capture of musical capabilities. Fortunately, this in-

sight makes the task of building an IMC more doable. While a more traditional

AI-based music approach would focus on realizing a musical expert, an IMC

merely needs to be able to provide a modicum of customized musical appropri-

ateness in a variety of improvisational settings.

4. Assume the audience is willing to suspend their disbelief. This insight is

perhaps the most important one because it directly a�ects how to think about

the user (Sengers 1998). With BoB, it is safe to assume that the musician

wants to use it to share an engaging musical exchange. As such, the user will be

more likely to overlook BoB's shortcomings (such as performing an otherwise

interesting solo mechanically). A measure of BiB's success is owed to this fact

| many of its accompaniment styles are somewhat canned, yet the experience

of playing with a \cheesy" band versus playing with no band at all is a powerful

one.

2.3.2 Points of Departure

Believable agents research focuses on character, personality, and story | expressive

mediums that heavily rely on language-based, literal reasoning. As a result, many BA

technologies do not provide viable solutions for controlling the spontaneous generation

of musician- and context-speci�c melodic response.

In an interview with Bailey (1992), jazz saxophonist Steve Lacy noted that:

The di�erence between composition and improvisation is that in composition

you have all the time you want to decide what to say in �fteen seconds, while

in improvisation you have exactly �fteen seconds.

This observation prompts me to question the usefulness of authoring in IMC do-

mains. With BAs, the speci�c details of an interactive story or character may be

decided in the last �fteen seconds, however the ease in which they can be literally

43

expressed and concretely reasoned about provides an opportunity for in-depth spec-

i�cation. As such, the focus on authorship | e.g., providing artists with a set of

abstractions, tools, and programming language constructs that allow them to cre-

ate the interactive, artistic experience they envision | is a key part of BA-related

research, e.g., (Mateas 2001b; Loyall 1997; Sengers 1998).

BA researchers could technically address improvised story telling (Weyrauch 1997;

Hayes-Roth and van Gent 1997; Mateas 2001b) because signi�cant amounts of infor-

mation can be reasoned about and authored within a reactive programming language

like Hap (Loyall 1997). For example, in Oz a character artist could specify that the

shyWoggle always quivers when frightened, except when their fear is larger than some

internally speci�ed amount; in that case they become paralyzed. Operationally useful

aspects of these behaviors can also be written down: shake a certain number of cycles

per minute, enlarge the eyes by a certain percentage when paralyzed, etc.

In improvised musical expression, these more tangible aspects of character and

personality break down. Although musicians do speak of personality, they usually

do so in frustratingly vague terms. Imagine trying to operationalize jazzist Ronnie

Scott's notion of such a concept:

\I would like ideally to express my, I don't know, personality or whatever,

musically, to the limits of my ability [.... to ...] play in such a way that it would

be recognizable as me, and it would express something to people about the way

I feel about things." (Bailey 1992)

In an IMC, it makes sense to author those things that can be easily speci�ed

in advance (like tempo) via the lead sheet abstraction. The crucial challenge is to

provide a mechanism that can operationalize the construction of spontaneous context-

and musician-speci�c melody. It is simply unreasonable to expect a musician to

operationalize details concerning what note sequence to play next. Bailey (1992),

who interviewed an extensive range of a practicing improvisers in his book (Bailey

1992), sums it up best:

[...] The improvisers I spoke to, in almost all cases, did not �nd any sort of tech-

nical description adequate. It wasn't that they weren't interested in technical

matters. They just did not �nd them suitable for illuminating improvisation.

They �nally chose to describe it in so-called `abstract' terms. And it became

clear that, whatever its de�ciencies, this is the best method available.

44

Whether or not a usable ontology for IMC authoring could exist, we certainly do

not have the ability to specify such behaviors in operational terms at the moment.

However, it is imperative that BoB understand the musical abstractions in which its

user speaks, develop an operational musical vocabulary that allows it to abstractly

perceive what the musician is doing, and respond accordingly. My strategy for dealing

with this is to rely more heavily on machine learning (ML) than is traditionally

done when dealing with character and story-based mediums to reduce the authoring

burden. This contrasts with the philosophy adopted by some BA researchers who

discount ML as undesirable because it might hinder, or automate away aspects of,

character and plot that the author explicitly wishes to control.

Another distinction between IMCs and BAs is that a BA is typically authored by a

team of experts (character artists, graphic artists) and the audience that experiences

their world is a completely separate entity. With IMCs, the improviser is both the

audience and the author of the experience. In this context `author' does not imply one

who uses some authoring tools for an IMC's con�guration. Rather the word reects

the fact that the musician's own improvisations contain within them the essence of

what constitutes musically appropriate behavior.

Another di�erence is how BAs and IMCs can be evaluated. It is not clear that

an improvisational musical experience can be critiqued outside of the physical con-

text within which it was played (Bailey 1992; Sudnow 1978). For example, while it

makes sense to focus on a user's engagement with a personality post-facto | much

in the same way that it makes sense to ask a viewer to summarize a movie's plot

after experiencing it | it is not clear that anything but an improvisor's transitory,

immediate musical experience is worthy of attention. On this point, organist Stephen

Hicks notes that, with respect to the evaluation of his improvisations:

\It's either good or bad but if you listen to an improvisation over and over

again, it just gets worse. [...] It's something that should be heard, enjoyed or

otherwise, and then completely forgotten." (Bailey 1992)

One way in which I might address this issue in the future is to monitor a musician's

feedback on-the-y. For instance, for this purpose, Franklin (2001) proposes using

real-time facial expression detectors.

45

2.4 Machine Learning & Intelligent Music Systems

As we transcribe and analyze music in symbolic terms, it may seem natural to apply

knowledge-based methods to an IMCs development. However, spontaneously creating

melody, as simple an act as improvised humming, is fundamentally as much about

ingenious use of exceptions as it is about adherence to a set of rules (Loy 1991;

Papadopoulos and Wiggins 1999). For this reason, in BoB, a primitive technology

that generates short segments of notes using a probabilistic learning model whose

structure is distributed among various components and feature vectors is pursued. At

the same time, the user model that is built was carefully designed to make

it easy to understand and reason about musically; this will allow higher-

level musical knowledge and/or user desires to be incorporated later.

Because of the diÆculties involved in hand-coding musical behavior, ML tech-

niques are commonly used when engineering an intelligent music system. Typically,

one or more of the following tenets are embraced when applying ML to music:

� Tenet I: Use supervised learning to predict the next note (chord, musical event, etc.)

in a composed and/or performed musical sequence, e.g., (Hild, Feulner, and Menzel

1991; Feulner and H�ornel 1994; Thom 1995; Widmer 1996; Reis 1999; Weigend and

Gershenfeld 1993);

� Tenet II: Base learning on a large musical corpus, for example, sets of jazz tunes,

J.S. Bach chorales, etc., e.g., (Hild, Feulner, and Menzel 1991; Feulner and H�ornel

1994; Thom 1995; Widmer 1996; Reis 1999; Cope 1992; Weigend and Gershenfeld

1993; Bellgard 1993);

� Tenet III: Explicitly incorporate higher-level features into the representation, for

example (Feulner and H�ornel 1994; H�ornel and Menzel 1998; Rolland and Ganascia

1996; Cope 1992) all employ features that rely on human-derived harmonic function-

ality.

I will now argue why, for an IMC, these tenets are not necessarily appropriate.

2.4.1 Predictive Learning

In (Thom 1995), I tried to learn a mapping from a recent sequence of chords into

the next chord in a harmonic jazz sequence. A key issue in this type of learning

46

scenario is what cost to use when penalizing a prediction that does not match its

target value in the training set. I (as well as many others) had used zero-one cost,

meaning that, in (Thom 1995), all chord values except the target were penalized

equally. Improvisers, however, sensibly report that the appropriateness of a speci�c

chord is not all-or-nothing, but depends on many things, including: harmonic and

melodic context, evolving trends in tension and relaxation, etc.

Although a probabilistic model and cross-entropy cost function addresses the all-

or-nothing problem (Bishop 1995; H�ornel and Menzel 1998), it does not address the

fact that each chord does not exist in isolation but rather is situated within, and in-

spired by, a surrounding local chunk of chords. This argument also applies to melody,

where musical thoughts are composed of licks, phrases, motives, etc. Ultimately, this

line of thinking leads me to question the suitability of using a string-of-events based

prediction scheme to simulate the creative behavior required of an IMC.

With interactive improvisation, the goal is to \listen to me, but not to play my

stu� back at me"1 | to do something a little bit di�erent, which can range from

transforming a situation into something unexpected to bringing it back to the norm.

Novelty, outliers, and average behaviors are equally important, yet prediction-based

paradigms will explicitly attempt to memorize their training sequences and, fail-

ing that, estimate sequences that best describe the data's average sequential behav-

ior. While all learning schemes attempt to balance generalization and memorization

needs, I fear that \predicting-the-next-thing" contains a more myopic, anti-

creative bias than a less rigid approach.

2.4.2 Large Training Sets

The main reason to train with a larger corpus is to minimize the chance of over-�tting,

which results when there is not enough data upon which to base inference. While

this approach has been useful in learning to predict if something is in the style of,

for example, J.S. Bach (H�ornel and Menzel 1998), with an IMC this notion of style

breaks down. For example, seasoned improvisors have told me that a musician might

play very di�erently at di�erent times. Furthermore, the causes of this variation are

no doubt diverse and �ckle (what did they eat for dinner that night? who are they

are listening to these days? etc.).

1Jazzist John McNeil, as quoted in Berliner (1994).

47

Interestingly, recent research has reected upon the bene�ts of per-song based

training, e.g., (Thom 1995; Widmer 1996; Cunha and Romalho 2000). An important

issue seems to be that, although there are underlying trends to identify particular

genres, players, and composers, much of what makes a song cohesive is the structure

found within itself.

By collecting data in a preliminary warmup session, as was done in (Dannenberg,

Thom, and Watson 1997), I hope to capture the musician's most recent state-of-

mind. The primary disadvantage of this approach is that a training set's size is now

inherently limited. This issue will be addressed by learning a simpler model. The

assumption is that inference with a smaller, more relevant set of data will

compensate for the model's simplifying assumptions. Ultimately, an IMC's

learning task shifts from one of learning a broad-based, stylistic notion of its user to

a much �ner one | to in essence learn their playing style \right now."

2.4.3 Higher-Level Harmonic Knowledge

Clearly, a system's ability to generalize will be improved when pertinent higher-level

features are included because the system no longer needs to learn them from a more

basic set of features. However, when the musical common sense contained within

these features are obtained from a human expert, these features cannot necessarily

be used in an IMC.

Consider the signi�cant amount of musical common sense that is automatically in-

cluded when an improvisational melody learning system is told what chords were tran-

scribed to accompany a soloist's improvisation. In improvised settings, this knowledge

is especially important because chord substitutions abound, roots are often missing,

color-tones are common, etc. With IMCs it is not even clear when a quintessential

transcription of an accompaniment exists. With respect to the chords in Parker's Om-

nibook, a seasoned improviser once told me \...oh, we always used to change those."

It can be safely argued that BoB would exhibit more musical aptitude if, for

example, when a 12-bar blues progression in the key of B[was being used as the basis

of accompaniment, the learning algorithm was made explicitly aware of this fact

(for more discussion, see Section 3.2.3). With a lead-sheet that contains harmonic

information and a computer-provided tempo, such knowledge would not even require

real-time chord transcription because BoB could simply look up the chords. Why

48

then do I explicitly avoid providing such knowledge to BoB's learning algorithm?

One reason is my primitive melodic focus. I want BoB to spontaneously generate

solos in arbitrary settings, including situations where harmonic structure does not

exist or is not so important (e.g., when improvisations are more vertical or modally

based, when melodic improvisation takes place on top of a tabla drum or other rhyth-

mic backdrop, etc.). I also believe that there is great value in relying �rst

and foremost on the content within the musician's improvisations when

inferring salient tonal features about them. Certainly, such an approach can

only be more exible, adaptive, and self contained. On the other hand, because har-

monic knowledge is such an important part of much improvised music-making, care

is taken to ensure that BoB's model lends itself naturally to being extended so that

harmonic knowledge can be incorporated, when appropriate, at a more abstract level

(Section 6.3.5).

49

50

Chapter 3

The BoB Solo-Trading

Architecture

A high-level view of BoB's musically intelligent components was presented in Chap-

ter 1 (Figure 1.2). This chapter begins by discussing the transformation of a musi-

cian's live audio into an input that BoB can use. An important assumption is that

BoB receives transcribed input, and since the automation of this task is beyond this

thesis' scope, \live" interaction is simulated in real-time using human-transcribed im-

provisations. How BoB's intelligent music components operate upon and transform

this input and interact with one another and the musician are also presented.

3.1 User Input

Live improvisers produce audio signals that the computer needs to understand. This

is a very diÆcult problem and a subject of active research, e.g., (Winkler 1998; Rowe

1993; Cemgil and Kappen 2001b; Raphael 1999). At the least, BoB needs to convert

audio into a sequence of pitches that can be aligned on top of the music's underlying

beat in a meaningful way.

It is assumed that o�-the-shelf MIDI devices and/or software can acceptably per-

form the audio to pitch sequence conversion. Rhythmic alignment involves both

tempo tracking and rhythm quantization, and this topic is a Ph.D. thesis in and of

itself.1 Tempo-tracking can be avoided by requiring that the musician synchronize

1This subject is the topic of A.T. Cemgil's current thesis work.

51

themselves to the agent's notion of beat. Rhythmic quantization is the serious re-

maining issue, and this will be the �rst thing addressed in future work. Without

this functionality, BoB is cannot parse a live musician's solos, which is a necessary

precursor to live interaction. Currently, interaction is simulated in real-time using

human transcriptions of improvisations whose rhythms are known to parse in ad-

vance. This simulated real-time scheme, and the ways in which it will be extended to

accommodate live performance, are now described.

3.1.1 Raw Solo Input

BoB can already bu�er a stream of MIDI (Association 1989) solo data in real-time,

but it cannot yet convert this data into a format that is guaranteed to parse into the

tree structure required of the perception component.

Although transforming audio into MIDI can be diÆcult and error-prone, especially

for an instrument like the violin, e.g., (Yoo and Fujinaga 1999), reasonable success

has been reported for acoustic instruments like voice and ute using the Sound2Midi

software (AudioWorks 1999; Franklin 2001). I assume that such a technology can

provide BoB with a live stream of MIDI note-on and note-off events and that this

technology will be able to handle a reasonable range of performance situations.

When BoB bu�ers MIDI, it time-stamps events using a low-latency multimedia

timer thread whose resolution is on the order of 2 [ms].2 This functionality provides

BoB with raw solo input data, a real-time stream comprised of the following pair of

�elds:

1. a discrete pitch value (note� on) or silence (note� off);

2. an onset, or equivalently, a duration time.

Since the agent sets tempo, time is immediately expressible in terms of the music's

underlying beat; per-bar segmentation is trivial.

2On the NT operating system, a resolution within 2 to 4 [ms] can usually be maintained, although

every hour or so, an occasional half-second glitch might occur.

52

3.1.2 Melodic Content

BoB's concern is handling melodic content in an intelligent manner. Melodic content

is de�ned as the \musically appropriate" solo transcription that one would obtain if

a reasonably competent improviser had been asked to write out their improvised solo

using commonly employed musical notation. For example, the staves in Figure 1.1

were obtained by recording myself trading solos with myself and then transcribing

what I heard.

For BoB to handle live performance, it must be able to clean up the raw solo input

data, converting it into a format whose melodic content BoB can parse. Tasks that

this cleaning process must perform are now described.

Monophonicity and Rests

First, the data stream must be monophonic. For example, on a MIDI keyboard, even

when a monophonic melody is performed, the next note� on might arrive a fraction

of a second earlier than the last note � off. Another related issue is determining

when a note�off is long enough to be interpreted as a rest versus ignored. Using an

approach similar to the one introduced by Longuet-Higgens (1987), I plan to handle

both of these issues using simple threshold functions.

Rhythm Quantization

The serious challenge is to convert a monophonic stream of performed durations into

their \musically sensible" temporal hierarchy. The problem is that rhythms are hi-

erarchical, so events should align with various integer subdivisions of the music's

beat. However, musicians rarely perform rhythms mechanically, which in the the

non-interactive case, would refer to playing exactly what was written in a score. For

example, a pair of eighth note durations might be \swung," the �rst duration held

about twice as long as the second, even though altogether they occupy on the order of

a quarter note worth of time. In contrast to playing from a score, with improvisation,

one can expect rhythmic deviations to be all the more likely, for the musician is even

less constrained.

53

3.1.3 Encodable Solo Input

A rhythmic quantizer performs a many-to-one mapping | transforming multiple

performed duration sequences into the same hierarchical abstraction | so BoB only

needs to be able to parse the limited set that the quantization module produces.

Or, conversely, the set of encodable rhythms de�ned in Section 4.3.1 speci�es those

rhythms that BoB can parse, so the rhythmic quantizer will need to map inputs onto

this range of outputs. Given the way encodable rhythms are de�ned, in 4/4 meter,

quantization is a 1-in-32 classi�cation task.

The more diÆcult part of the problem is to perform this mapping in a \musically

sensible" manner. This task is diÆcult because rhythmic performance deviates from

mechanical for a variety of reasons, be it expressive, aesthetics, or stylistic in nature, or

the result of human error. As a result, performed duration deviations are not random

(Desain, Aarts, Cemgil, Kappen, and van Thienen 1999), and so the traditional grid-

based quantizer approaches used in many commercial sequencers can produce non-

sensical results (Trilsbeek and Thienen 1999; Cemgil, Desain, and Kappen 2000).

The notation for encodable input segment n is:

s
n
=
D
s
n;1
; � � � ; s

n;t
; � � � ; s

n;T00
n

E
:

The n that subscripts T00 indicates that di�erent segments can contain di�erent num-

bers of events. The t-th event, s
n;t
, contains two �elds: a discrete pitch or rest, and

a duration value. When constructing the input features for bar r, the most recently

performed previous pitch (MRP) is needed. Because of the way MRP is de�ned, the

value for segment n, mrp
n
, can be queried before the data for s

n
arrives. Similar

notation is used for both training data (bar n) and real-time interaction (bar r).

3.1.4 Simulated Live Input

For the time being, a musician's spontaneous input | during both warmup and

interactive solo trading| is simulated by using data obtained from a transcription

�le that contains an encodable transcription of a particular musician's improvisation.

For listening purposes, BoB provides an extra track of MIDI in addition to its own

solo track so it can play back the musician's solo as well as its own.

With respect to timing and data ow, this simulation of a live musician behaves

just as a live interaction would | a musician's bar of solo is only provided as input

54

to the musically-intelligent components when it is played back. On the one hand, one

might expect these simulations to produce behavior that looks better than it really

should because the musician's calls and the training data are obtained from the same

�le. However, the \intimacy" that emerges from this \live" simulation will never be

as good as with live musical exchange | for the musician does not \respond" to what

BoB plays.

3.2 O�-line Learned Knowledge

O�-line Learned Knowledge (OLK) infers the parameters for a probabilistic mixture

model from a set of warmup data collected from the musician prior to on-line inter-

action.

3.2.1 Data Collection

A typical warmup might last on the order of 5 to 10 minutes. Data collection involves

the following steps:

1. The user speci�es a restricted set of lead sheet information | e.g., tempo, rhythm,

and (optional) harmonic information | that the computer will use to provide accom-

paniment.

2. The musician improvises freely on top of this accompaniment, the only restriction

being that they synchronize to the accompanist's beat.

3. In real-time, BoB records what the musician plays, in total obtaining N encodable

transcriptions:

S =
D
s
1
; � � � ; s

n
; � � � ; s

N

E
:

4. Using the procedure described in Chapter 4, BoB converts S into training set

X =
D
x
1
; � � � ; x

n
; � � � ; x

N

E
:

With simulated input, steps 1 through 3 are replaced by a parse of the appropriate

transcription �le.

55

3.2.2 Training Data

To justify the added complexity that musician-speci�c learning brings, BoB will be

separately trained and evaluated on two musicians: Charlie Parker and Stephan Grap-

pelli (Table 3.1). Parker, already studied in other machine learning contexts (H�ornel,

Langnickel, Sandberger, and Sieling 1999; Rolland and Ganascia 1996), was a natu-

ral choice. Grappelli was chosen because I play the violin; he is one of my favorite

improvisers on that instrument, and I would like to be able to \play with Grappelli

through BoB" someday.

Table 3.1 also summarizes important properties of the transcription �les compiled

for both musicians. Each warmup was created from their improvisations over a single

tune in order to increase the odds that the content would be relevant, i.e., that it would

provide a cohesive set of behaviors from which the musician could be simulated \right

now." For Parker, two independent improvisations over Mohawk were concatenated

together3 to form training set XP . For Grappelli, training set XG was obtained

from a single improvisation. A score of each source improvisation is presented in the

appendix.

Musicians:

Charlie Parker Stephane Grappelli

Instrument: saxophone violin

Genre: Bebop Swing

Transcription Files:

Tune: Mohawk I've Found a New Baby

Harmonic Progression: 12-bar blues 32-bar AABA form

Key: B[F

Appendix: E.1 F.1

Source: Mohawk I; Mohawk II I've Found a New Baby I

(Goldsen 1978) (Glaser and Grappelli 1981)

Table 3.1: Musician Training Data

3Repeats were ignored.

56

3.2.3 Training Data and Harmonic Structure

In Section 2.4.3 I argued against presently giving BoB explicit harmonic knowledge.

As a result, the current learning system knows nothing about the harmonic context

in which a warmup session was collected. However, in both Parker's and Grappelli's

improvisations, it is quite likely that the underlying harmonic context does inuence

how their underlying tonality unfolds in time | some bars' pitch content are more

likely to be correlated with one another than others.4

In what follows, highlights of the harmonic structure found in Mohawk and I've

Found a New Baby are presented. The point of this discussion is three-fold. My

�rst intention is to shed light on the improvised contexts that take place in harmonic

settings (as opposed to what Derek Bailey calls \free improvisation" (Bailey 1992)).

Second, this structure is important because it is later used to musically assess the

quality of learned tonal model (Section 7.2.1). Finally, at a high level, this structure

can be used to modify a musician's call so that, when it is used to drive the system's

search for a response, the response is more likely to �t into the underlying harmonic

context.

Mohawk

Figure 3.1 illustrates how Charlie Parker played his improvisation in time. After an

introductory pick-up note (not shown, bar 1), Parker sequentially played from bar 2

(top-most left box) to bar 121 (lower-most right box). The crucial point is that the

solo is aligned in chunks, 12 bars per row. Each of these rows is another chorus of

solo, and each chorus is structured in time with respect to the the tune's underlying

harmonic progression (in the case of Mohawk, a 12-bar blues).

Parker's training data contains ten choruses. 1-5 were obtained from the �rst

transcription and 6-10 were obtained from the second. During each transcription's

initial chorus (1 and 6), the tune's main melody, i.e., its head, was played, following

which Parker would improvise, each improvised solo di�ering signi�cantly from the

others. In contrast, aside from the fact that the second head was transcribed down

an octave, choruses 1 and 6 were identically transcribed.

4This observation is part of what led me to consider the mixture model in the �rst place.

57

Figure 3.1: Parker's Training Data: Bars Structured in Time

The 12-Bar Blues

At a most basic level, the 12-bar blues progression can be divided into �ve key regions

(Gridley 1988), each serving one of the following harmonic functions:

� tonic, I;

� sub-dominant, IV;

� dominant, V.

These regions, identi�ed by the Roman numerals at the top of Figure 3.1, should

be interpreted in the context of the tune's underlying key. For Mohawk, these func-

tions correspond to the chords: B[7, E[7, and F7. These chords in turn contain the

following pitch-classes: fB[;D;F;A[g, fE[;G;B[;D[g, and fF;A;C;E[g. Because

these functions are aligned with the training data on a per-column basis, one expects

harmonic context to inuence how Parker's tonality unfolds in time.

Generally, the blues progression begins and ends on the tonic chord. The dominant

and the sub-dominant chords, sharing only one common pitch class with the tonic,

indicate regions of harmonic tension, setting up a context in which the tonic \cries

58

out" to be returned to. Although each bar in column 12 is labeled as a tonic, in

reality, resolution to the tonic only occurs when the improvisation �nally comes to a

close (chorus 5 and 10). The rest of the time, the accompaniment performs a turn-

back | a special, short chord sequence that further sets the stage for returning to the

tonic in bar 1 of the next chorus.

If this simple harmonic explanation was the end of the blues story, it might make

sense to engineer this knowledge directly into BoB. To do so, however, would limit

its generality somewhat (making the agent more of a blues expert). In reality, how-

ever, the series of chords transcribed for Parker's accompaniment changed much more

quickly than these harmonic functions indicate.5 As is the case with melodic impro-

visation, blues accompaniment has an in�nite variety of realizations, chord substitu-

tions, extensions, transformations, etc. While the simple harmonic view presented

here is musically salient in the context of Mohawk, in general, to transform chords

transcribed at the surface of a tune into this higher-level blues abstraction is diÆcult

(Pachet 2000).

I've Found a New Baby

Grappelli's improvisation was played on top of another temporal structure commonly

found in jazz: the 32-bar AABA form. Each chorus, comprises 32 bars, is broken into

four equal parts, the third comprised of a harmonic progression that is signi�cantly

di�erent than the other three, which are, roughly speaking, identical. Grappelli's

training data contains four choruses. Although one can interpret his �rst chorus as

the tune's head (as is typical in many of Grappelli transcriptions) this introductory

chorus is a signi�cantly embellished version of the tune's main melody.

3.2.4 O�-line Learning

O�-line, using the the procedure described in Chapter 5, BoB customizes itself to the

user by �tting the parameters,
, of a mixture model to X. After learning, BoB uses

this model to perceive and generate new solos on-line.

This approach assumes that the probability distribution over the user's behavior

during warmup and solo trading does not change. However, because of the model's

5In Bebop, chords typically change twice per bar.

59

natural Bayesian interpretation, this assumption could easily be relaxed. A procedure

for modifying
 on-line, incorporating new bars of evidence into a parameter updating

procedure as they arrive, is straightforward.6

3.3 On-line Interaction

During on-line interaction with the user, BoB's classi�cation and generation tech-

niques (Chapters 5 and 6) rely on using
 to operationalize how it listens to what

the musician plays and how it responds to what it hears \in kind."

3.3.1 Perception

The perception component converts each segment of a musician's solo into a more

abstract representation. This process receives two inputs:

1. the parameters of the user model,
 (from OLK);

2. an encodable sequence, s, and corresponding mrp (from the environment).

Two stages of output are produced:

1. a basic representation (chapter 4), which is comprised of a tree-based encoding, v,

and related set of histograms, x.

2. a user-customized representation (chapter 5), which includes:

(a) an estimate of which playing mode, y, is most likely to have generated x;

(b) given this mode, the corresponding degree of musical surprise (Section 5.10.5), l, con-

tained in x.

The left plot in Figure 3.2 shows how BoB might perceive a musician's fours. The

discrete symbols emphasize each mode's discrete, nominal character. The right plot

illustrates where most of the perception component's generalization takes place. In

particular, many di�erent transcriptions may map into the same user-speci�c playing

mode (when a �ner level of distinction is desired, musical surprise is available).

6What is more diÆcult is to on-line modify the number of components in the model.

60

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Musician:

BoB:

.92 .77 .9.85

VLT v:

Playing Mode y:

Surprise l:

Playing
Modes

Transcribed
Sequences

A Musician's Call A Many-to-One Mapping

Figure 3.2: Perception

3.3.2 Local History

The history component is responsible for storing the current musical environment |

the call | into a local, temporally ordered memory. For each bar r in a call, the

following information is retained:

� a tree, v
r
; and its related set of histograms, x

r
, and mrp

r
;

� an estimated playing mode, y
r
, and surprise, l

r
.

With this information, the history component has the potential to compile more

abstract sequences, e.g. hy
r
; y

r+1
; � � � i, hmrp

r
;mrp

r+1
; � � � i, etc.

3.3.3 Generation

The generator component creates a musically-appropriate, novel, and stimulating solo

response to the musician's most recent call. BoB's generator produces a response a

segment at a time.

Generation for bar r receives the following inputs:

� the very most recent context to link into, mrp
r
;

� a context that includes some perception, v, y, and l;

� the parameters of the user model,
;

� high-level search parameters (how long to search, etc.);

� a fairly general set of optional constraints (Section 6.3.5).

61

Generation produces two outputs:

1. transcription s
r
, which is played back in real time during bar r;

2. the internal representation, v
r
, y

r
, l

r
, and the new mrp

r+1
.

Abstract Cut-and-Paste

Figure 3.3 displays a very simple interaction scenario for how BoB might generate

a response to a musician's call in the context of trading fours. In this scenario,

length, the number of segments in both the call and the response, is four. Generation

proceeds from left to right. In this �gure, the second bar of response (r + 5) has just

been determined and is awaiting playback in the real-time bu�er. The third bar of

response (r + 6) is currently being calculated.

This type of high-level interaction, referred to as abstract cut-and-paste, is per-

haps naively simple because it assumes that an adequate response can be obtained

by merely reusing a musician's call context in bar r as the input to the generator's

response in bar r + length. . However, there is nothing inherent in BoB's archi-

tecture that keeps it from accommodating more sophisticated interaction schemes

(Section 6.4.3). Besides, one of the most exciting things about this scheme is that it

o�ers a viable compromise to the conict that arises when the user, who needs some

degree of artistic control, and BoB, who needs an operational method for responding

autonomously, interact. This compromise is only possible because the generator syn-

thesizes two types of information: that which the musician directly controls via their

call, and that which they indirectly a�ect through their warmup data.

Real-time Issues

With abstract cut-and-paste scenarios, each call/response pair must occupy an iden-

tical number of bars. In addition, each call must occupy at least two bars. This latter

requirement arises because, during the musician's �rst call bar, BoB must wait to

receive the entire segment before parsing and perceiving it. In subsequent call bars,

multi-threaded techniques are used to simultaneously:

1. Bu�er the currently performed call bar.

2. Perceive the previously played call bar.

62

Figure 3.3: Generation: Call and Response

3. Use this perception to compute an appropriate response for that bar.

Harmonic Structure

When an external harmonic structure drives an interaction, the abstract cut-and-

paste scheme described above is modi�ed so as to consider this underlying context.

Speci�cally, that part of the call's playing mode that relates to a segment's tonality

is overridden by an appropriate abstraction from the training set.

For example, when BoB generates a response to a call that Parker played in the

�rst four bars of the Mohawk progression, the tonal aspect that drives this response is

taken from a "corresponding column" of training data (Figure 3.1). As before, melodic

continuity and contour abstractions are copied directly from the musician's call. This

modi�cation illustrates one reason why a conglomerative modeling approach, i.e., an

approach that individually considers tonal, intervallic, and contour-based aspects, is

bene�cial to the agent, o�ering an additional degree of power and exibility. This

modi�cation is described further in Section 6.4.2.

63

64

Chapter 4

Basic Representation

This chapter introduces BoB's basic representation, those aspects of a solo's encod-

ing that occur prior to learning. This chapter presents two data structures. The

�rst is a tree that explicitly encodes a melodic segment's rhythmic hierarchy. The

second is a conglomeration of histogram-based views that encodes deeper aspects

of a melody's structure than are present when its melodic surface is presented as a

string- or sequence-of-pitches. The primary purpose of these histograms is to provide

an adequately rich set of features to the learning algorithm (Chapter 5), so that it

can transform them into a more abstract, user-speci�c encoding that di�erentiates

between salient aspects of their playing modes.

4.1 Overview

Figure 4.1 displays a segment of solo and its transformation into BoB's basic repre-

sentation. This transformation is hierarchical in that each successive step produces a

more abstract view of the melody than its predecessors:

1. obtain an encodable segment of solo, s, and transform it into variable length tree

(VLT) v;

2. convert this tree into a conglomerative (CGL) set of features, xC, which consists of:

(a) a pitch-class (PC) histogram, xP;

(b) an intervallic (INT) histogram, xI;

(c) and a directional (DIR) histogram, xD.

65

Figure 4.1: Converting a Bar of Solo Into Its Basic Representation

v is a hierarchical tree whose internal nodes encode a segment's rhythm and whose

in-order walk of its leaves speci�es the melody's pitch/rest sequence. By itself, this

walk is nothing but a pitch/rest string, providing no generalization. xC, however,

maps this variable number of leaves into three �xed-size vectors so that deeper struc-

tural aspects of the melody might be operated upon. In particular,xP provides a

generalized tonal view of the sequence. xI and xD do the same for melodic continuity

and contour.

In this thesis, segmentation is per-bar, but this basic representation can handle

arbitrary segmentation schemes, an important issue in many temporal domains. As

per-bar segments are relatively short, this scheme provides a highly-localized view of

a solo. This representation was �rst introduced in (Thom 1999).

4.2 Segmentation Window Size

While smaller segmentation windows produce more local views, and thus can provide

lower latency (which in turn enables the system to be more responsive), smaller

windows necessarily contain less information because any averages inferred from them

are based upon less data.1 Clearly, window length can directly impact how a temporal

model performs. In BoB's computational model, care is taken to treat window size

as an arbitrary variable so that in future work the relationship between window size

and performance can be easily investigated.

Computationally, arbitrary window sizes allow di�erent solo segments to occupy

1A similar phenomenon occurs with Fourier Transforms, where the trade-o� between time versus

frequency resolution is a function of window length.

66

di�erent time spans and/or circumscribe di�erent numbers of events. This function-

ality is musically powerful because it allows more salient segmentation schemes to be

considered (e.g., segment per-phrase or per-motive).

Because of BoB's real-time scheduler, which must know how long it has to think

about each segment before responding, BoB's segmentation scheme is per bar. The

disadvantage of this scheme is that, in jazz, motivic ideas often cross bar lines. How-

ever, since bars do correspond to predominant metrical patterns, this scheme has

some musical merit. Per-bar segmentation has also been successfully used by other

researchers, e.g., (Biles 1998; Franklin 2001; H�ornel, Langnickel, Sandberger, and

Sieling 1999).

4.3 Variable Length Trees

A VLT provides the system's lowest-level view of a segment's melody. VLT v is

obtained by parsing encodable input s with the makeVLT procedure (Appendix C). A

VLT stores information using two di�erent constructs:

1. Leaf nodes encode pitch information.

2. Internal nodes encode durational information.

A VLT is shown in Figure 4.1. Each internal node, �, is connected to its children.

Leaves are drawn at the bottom, and the root node is drawn at the top.

4.3.1 Internal Structure

A key aspect of VLTs is that their rhythms are entirely determined by the structure

of their internal nodes. A speci�c node's duration is encoded by its location in a

tree. In particular, at each split, the current node's duration becomes an appropriate

subdivision of its parent's duration.

In detailing VLT rhythmic concepts, a 4/4 meter and per-bar segmentation scheme

is assumed. Trees contain exactly four beats worth of solo, which simpli�es various

aspects of the tree's construction. Although it would be straightforward to extend

these concepts to handle other meters and segmentation schemes, to do so will require

67

some thought.2

Deciding how to limit rhythmic structure was based on my experience playing

published improvised transcriptions (ranging from the blues, folk, jazz, bluegrass,

swing, Cajun, and gypsy violinists covered by Fiddler magazine to artist-speci�c

compendiums, e.g., Charlie Parker, Je� Beck, Stephan Grappelli, Vassar Clements,

Jimmy Page, Carlos Santana). A VLT's internal structure is restricted as follows:

� Restriction I: Each internal node must have 2 or 3 children.

� Restriction II: A leaf node can occupy no less than 1
6 or 1

8 of a beat.

These restrictions limit the number of duration nodes that can be used to construct

a tree.

Those node durations that a VLT can represent are shown in Figure 4.2. These

nodes are referred to as valid durations. In this �gure, each duration is shown as

both its fraction of a beat and its musical notation. Durations that descend to the

left (long dashed lines) correspond to division by two, and those that descend to the

right (short dashed lines) correspond to division by three. The top-most duration at

tree-depth zero corresponds to a VLT's root node (occupying four beats). A tree's

bottom-most leaf can never be smaller than either a thirty-second of a beat (1
8
), or a

sextuplet (1
6
). When building and modifying trees, the values in this �gure need to

be accessible. Function:

isValid(num; den; dur)

is used for this purpose, only returning true when duration dur multiplied by num

and divided by den is valid.

The trees that can be built using restrictions I and II de�ne the set of tran-

scribed rhythms that is encodable. Because individual nodes can be combined to

form compound durations (Section 4.3.4), this set is rich enough to encode almost all

of the transcriptions that I have encountered. A notable exception is Parker's and

Grappelli's occasional use of the pentuplet.3 To encode pentuplets, I modi�ed their

transcription, representing them as rhythms composed of two and three equal parts.

2For example, perhaps the rightmost tree in Figure 4.2 would be more appropriate in certain 3/4

meter contexts.
3The pentuplet divides a beat into �ve equal parts.

68

Figure 4.2: Node Durations (Per-bar; 4/4 Meter)

4.3.2 Uniqueness

Because there are multiple paths from the root to certain durations in Figure 4.2, an

additional restriction on a VLT's internal structure is imposed:

� Restriction III: a VLT must be constructed from the smallest possible number of

nodes.

This restriction ensures that a rhythm mapped into a VLT is unique or canonical.4

For example, without this restriction, it would be ambiguous which tree should be

used to encode the rhythm in Figure 4.3.

composed of 11 nodes composed of 12 nodes

Figure 4.3: A Rhythm With Two Realizations

4To prove that this additional de�nition provides a canonical encoding, one needs to show that

for any encodable rhythm, one cannot produce two di�erent trees using Restrictions I and II that,

on the one hand, contain an identical number of nodes and, on the other hand, have unique internal

structures.

69

4.3.3 Leaves

Leaf nodes store one of the following leaf values: a pitch, or a rest.

When a leaf stores pitch, it encodes it using the following �elds:

� pitch class, a value from the set: fC;D[;D;E[;E;F;G[;G;A[;A;B[;Bg. This scheme

does not make pitch-spelling distinctions (e.g., F# is encoded as G[).

� octave, an integer value in the range [0; 7]. This range is aligned so that the value 4

corresponds to the pitches between and including middle C up to the B above it.

In Figure 4.1, pitch class and octave �elds are separated by a colon.

VLTs can only encode monophonic solos because each leaf is de�ned to contain at

most one pitch value. With the exception of musical passages comprised of double-

stops or chords, this encoding accommodates the transcriptions mentioned earlier.

However, any additional expressive information that might be transcribed is lost. For

example, dynamics and articulation | e.g., slurs, staccato, accents | are ignored.5

Similarly ignored are pitch altering transcription devices, e.g., ghost, blue, or bent

pitches are encoded as a discrete pitch alone.

4.3.4 Ties

Notice that there are two A[:3 leaves in Figure 4.1. Both leaves are needed to represent

the dotted-quarter note because this duration does not exist by itself in Figure 4.2.

This example motivates why pitch values have an additional tie �eld.

When a pitched leaf is followed by another leaf whose pitch and octave are iden-

tical, a boolean tie variable indicates whether or not the two durations are treated

as:

� compound, in which case the two leaves are played back as one longer tone;

� composite, in which case the two leaves are played back with a brief silence between

them.

5A slur, which indicates that two distinct pitches should be played back smoothly, with no space

separating them, should not be confused with the tie, which will be introduced to create compound

durations.

70

With compound durations, the rhythms that a VLT can encode signi�cantly increases.

When transcribing segment s into v, adjacent identical notes are assumed to be

tied unless the �rst of the two is explicitly identi�ed as composite. This default

behavior provides an important semantic bene�t when computing new solo segments

in real time. In particular, when the last pitch in the most recently generated response

bar is turned o� solely depends on what BoB decides to do in the next response bar.

4.4 The Conglomerative Feature Set

The CGL feature set, xC, converts a sequence that contains an arbitrary number

of pitches into three �xed-size histogram vectors. The purpose of this abstraction

is to transform the string-of-pitches in v into a set of local averages that captures

deeper levels of structure than is available on the melody's immediate surface. This

representation's primary function is capturing various aspects of the pitches' ordering

in v. As a result, rhythm only indirectly a�ects xC (inuencing how many leaves

there are and introducing syncopation); rests are ignored.

4.4.1 Pitch Sequences

Given an in-order walk, �
r
, of the VLT in segment r:

�
r
=
D
�
r;1
; � � � ; �

r;t; � � � ; �r;T0r
E
:

Pitch sequence �
r
is de�ned to be the sequence that results when all the rest leaves

are ignored:

�
r
=
D
�
r;1
; � � � ; �

r;t; � � � ; �r;Tr
E
:

When computing intervallic and directional histograms, the MRP will also be needed.

For convenience, this value is referred to by index t = 0, e.g., �
r;t=0

.

4.4.2 Variable Sample Size

The number of counts distributed among a histogram's bins is its sample size,6 sz :

sz =
X
m

x
m
:

6Do not confuse a histogram's sample size, sz , with the number of histograms in a dataset, N.

71

Variable sample size indicates that di�erent histograms may contain di�erent numbers

of counts.

4.4.3 Pitch-Class Histogram

The PC histogram records the distribution of pitch classes in �
r
:

xP
r;m

= #
n
1 � t � Trjpc(�r;t) == m

o
:

pc converts a pitch into an index that identi�es its PC value (octave is ignored). xP
r

captures essential aspects of the tonality in segment r. This abstraction is 0-order

Markovian because it entirely ignores the ordering of pitches in the sequence. This

histogram hasMP = 12 bins, one for each element in the pitch class set (Section 4.3.3).

Sample size is determined by the number of events in segment r, szP
r
= Tr. A segment

taken from Parker's training data and its corresponding VLT and PC histogram are

shown in Figure 4.4.

xP
n=52

xI
52

xD
52

Figure 4.4: Conglomerative Feature Set Example

72

4.4.4 Interval Histogram

The INT histogram records the distribution of absolute intervals between adjacent

pairs of pitches in �
r
:

xI
r;m

= #
n
1 � t � Trjabs(�r;t; �r;t�1

) == m

o
:

abs returns an index that identi�es its absolute di�erence in semi-tones. xI
r
captures

essential aspects of the melodic continuity in segment r. This abstraction is 1st-order

Markovian, concerned with pairs of adjacent pitches. Because �
r;t=0 is included in this

calculation, sz I
r
= szP

r
.

This histogram has MI = 13 bins, one for each of the following intervals:

fu;m2;M2;m3;M3;P4; tt;P5;m6;M6;m7;M7; og:
All but `u', `tt', and `o' are typical music notation. `u', the unison interval, indicates

that two adjacent pitches are identical. `o' includes any internal greater than or equal

to an octave. `tt' refers to the tritone.

An INT example is also shown in Figure 4.4. The intervals for each pair of pitches

are also identi�ed by the jagged, dotted line that links the leaves in v. The intervals

associated with this histogram's bins increase from left to right.

4.4.5 Melodic Direction

Each interval between a successive pair of pitches has a corresponding sign. Interval

signs are recorded using an alphabet comprised of set:

D = f+; o;�g:
Function sym(�

t�1
; �

t
) assigns symbols to intervals as follows:

� `+' indicates intervals with upwards motion (�
t�1

< �
t
);

� `o' indicates the unison interval, i.e., zero motion (�
t�1

== �
t
);

� `�' indicates intervals with downwards motion (�
t�1

> �
t
).

sym is used to create direction sequence:

d
r
=
D
d
r;1
; � � � ; d

r;t; � � � ; dr;Tr

E
(4.1)

from pitch sequence �
r
.

73

4.4.6 Melodic Direction Histogram

The DIR histogram records essential aspects of the melodic contour in segment r. In

particular, xD
r
records the transitions that d

r
produces when parsed by the Markov

Chain of Figure 4.5. This abstraction provides a variable sized Markovian view of

sequence �
r
, considering anywhere from two to four of the most recent pitch values

depending on context. xD has MD = 27 bins, one for each transition in Figure 4.5.

Figure 4.5: Relevant Directional History Markov Chain

The relevant directional histories that this chain observes come from the set:

H = f+;++;+++; o; oo; ooo;�;��;���g:

In total, n
H

= 9 states. This Markov chain is highly constrained. Rather than

being fully connected, there are only three transitions out of each state, one for each

symbol in D. (In contrast, a fully connected chain would have 81 transitions.) These

constraints reduce the dimension of xD, which makes learning its structure more

feasible and sampling from its distribution more eÆcient.

The dotted arcs in this �gure correspond to downwards motion transitions (solid

arcs to upwards motion; dot-dashed arcs to zero motion). It would clutter up the

graph to connect every transition to its appropriate input state. Rather, all dotted

arcs that do not terminate end in state `�'. (Solid arcs end in state `+', and dot-

dashed arcs end in state `o'.) From this �gure, it is easy to see what aspects of melodic

74

contour DIR bins capture | they count repeated directions of up to length three,

resetting back to length one anytime a change in direction occurs.

Each bin in DIR records a di�erent tuple, hi; ji; where i 2 H and j 2 D. A

one-to-one mapping between index m and this tuple is obtained via m = dInd(i; j).

Function hs is used to recursively generate the sequence of states, h
r
, that are obtained

when d
r
is parsed by the Markov chain:

h
r
=
D
h

r;1
; � � � ; h

r;t
; � � � ; h

r;Tr�1

E
:

With this sequence in hand, xD is calculated:

xD
r;m=dInd(i;j)

= #
n
2 � t � Trjhr;t�1

== i and d
r;t == j

o
:

This equation's indices range from 2 to Tr; sz
D

r
= szP

r
� 1.

hs(h
t�1
; d

t
)

if t == 0

len = 1

sym = d
t

else

len = number of repeated symbols in state h
t�1

sym = direction symbol associated with state h
t�1

if sym == d
t

len = min(len + 1; 3)

else

len = 1

sym = d
t

end

end

hist = that h 2 H that contains sym repeated len times in a row

return hist

Table 4.1: A Recursive Relevant History Procedure

A DIR example is also shown in Figure 4.4. Bin labels in this �gure are abbrevi-

ated. The `=' in each label separates a relevant history (left of slash) from its melodic

direction transition (right of slash). For example, bin `+=�' is the downwards transi-
tion out of state `+'. The next two bins to the right, `2=�' and `3=�', correspond to

longer upwards relevant histories, i.e., `++' and `+++' respectively. The transitions

recorded by these bins are also downwards.

75

4.4.7 Conglomerative Histogram

The CGL tuple comprises the three preceeding histograms. xC is obtained for segment

r using function featuresCGL (Table 4.2).

featuresCGL

�
mrp

r
; �

r

�
calculate xP from �

r

� 0 = �
r
, with mrp

r
inserted onto the front

calculate xI from � 0

calculate xD from � 0

xC =

xP; xI; xD

�
return xC

Table 4.2: The featuresCGL Pitch Sequence to CGL Algorithm

In total, xC has:

M
C = 52 = M

P +M
I +M

D = 52

bins and contains:

szC
r
= szP

r
+ sz I

r
+ szD

r
= 3 � T

r
� 1

counts.

4.4.8 Syncopation and Repeated Tones

Syncopated rhythms must be encoded as compound rhythms, and so the pitch class

histograms built from these rhythms necessarily contain more counts than their non-

syncopated counterparts would (e.g., rather than having one A[:3 count in Figure 4.1,

there are two). The increased PC weighting for syncopation makes sense because the

syncopation tends to draw more attention to these pitches. Compound rhythms also

produce unison interval counts and relevant histories that contain zero motions.

Currently, no distinction between compound and composite durations are made:

both produce additional PC counts, unison intervals, and zero motion trends. How-

ever, note repetition, e.g., composite durations, plays an important part in music

perception (Cross 1999; Narmour 1990). At some point, syncopation and repetition

induced counts will need to be distinguished.

76

4.5 The Complete Basic Representation Algorithm

BoB's real-time basic perception algorithm, basicRepr, is outlined in Table 4.3. Ini-

tially, tree v is empty. makeVLT constructs this tree from s
r
. From the resulting tree,

leaf and pitch sequences are constructed. xC is constructed from this pitch sequence

and the MRP. This table provides insight into the reasoning behind the various primed

sequence lengths. Assuming that s
r
is in its smallest possible form: T 00r � T 0r � Tr.

basicRepr

�
mrp

r
; s

r
=

s
r;1
; � � � ; s

r;t
; � � � ; s

r;T00
r

��
v is empty

remove the �rst element from s
r
and store it in curr

make d the total duration of a single bar

makeVLT(curr ; s
r
; v; d)

obtain �
r
=

�
r;1
; � � � ; �

r;t
; � � � ; �

r;T0
r

�
from v

obtain �
r
=

�
r;1
; � � � ; �

r;t
; � � � ; �

r;Tr

�
from �

r

xC = featuresCGL(mrp
r
; �

r
)

return

v; xC

�
Table 4.3: The Basic Representation Algorithm

4.6 Discussion

4.6.1 Transcribed Melodic Segments and the VLT

A VLT's highly restricted internal structure provides important real-time bene�ts,

reducing the computation associated with:

� transcription, because fewer encodable rhythms mean that fewer transcpriptions need

to be considered;

� tree building, because a tree's maximum size is bounded;

� generation, because the search space over possible solos is signi�cantly restricted.

The cost paid for these bene�ts is that BoB can only function when it receives en-

codable transcriptions as inputs. Another downside is that expressive aspects of a

performance, e.g., accent, articulation, dynamics, timbre | important parts of the

77

improvised music making experience | are ignored. This lack of expressive power

is a primary reason why BoB's current audio demos sound so mechanical.7 While

these are signi�cant drawbacks, I believe there are compelling reasons to investigate

computer improvisation on top of such a restricted bases. Initially, it was my own

improvisational experiences that motivated this line of thinking. For example, when

I perform a transcription of Parker or Grappelli, my realization of it is much more

expressive than what is printed on the page. Somehow, other aspects of my musical

being are able to combine with this abstraction to produce a powerful result. Simi-

larly, when I look at these transcriptions, using them as a guide when improvising,

their content has a strong impact on the types of notes, rhythms, and motivs that I

play, even though I am spontaneously making up my solo. In short, the transcription

abstraction is a very powerful one, even in improvised contexts.

Another motivation for this agenda is the observation that in music research,

performance has only recently started to receive much attention, and people are �-

nally beginning to recognize the value in doing so. Performance investigations often

compare performed timings to scores (Heijink, Desain, Honing, and Windsor 2000;

Widmer 2000). Although an e�ective argument can be made that an obsessive pre-

occupation with written scores | for example, to the extent that audio content is

ingored | might hamper computer music research, it is the presence of scored no-

tation that allows expressive deviations to be quanti�ed in the �rst place. While in

improvised music it is more diÆcult to justify why a spontaneous melody should be

viewed in a scored notation, I believe that developing this abstraction is a crucial

next step to extending what is rigorously researched in music.

Another important bene�t of VLTs is that they present rhythmic structure in an

explicit, hierarchical manner. In contrast, many computer systems require that each

musical pitch occupy a �xed duration (Franklin 2001; H�ornel, Langnickel, Sandberger,

and Sieling 1999), and if a system is to generate a long note, it must know how to

generate a long sequence of identical, tied pitches. BoB's explicit hierarchy provides

a much more succinct rhythmic view.

With this encoding, it is also much more natural to think about rhythmic modi�-

cation | merely grow or collapse some part of a tree's fringe (Section 6.1). Marsden

7While people have commented that much better playback could have been easily achieved |

swinging eighth-notes, improving the accompaniment, using better MIDI patches (or, better yet,

having a real musician perform BoB's solos) | I have resisted the temptation to make these modi-

�cations because it is in this state that listeners hear the same abstraction that the computer does.

78

(1999) pointed out the value of thinking about melodies in terms of these types of

embellishments, but has yet to build an algorithm that can automatically infer how

such embellishments could be used to relate various segments of music (he could eas-

ily generate examples by hand). The VLT framework provides one mechanism for

exploring the operationalization of such ideas.

4.6.2 The Conglomerative Feature Set

CGL transforms a VLT's string-of-pitches into a set of averages that provides a more

general view of local tonal, intervallic, and contour-based behavior. Initially, the ap-

propriateness of this scheme was motivated by my sense that, when improvising with

others or when transcribing improvised solos from CDs, I often remembered a more

localized, general essence of the solo's content than an exact memory of individual

notes themselves.

Others have recognized the importance of providing multiple views of a pitch

sequence. For example, Cambouropoulos, Crawford, and Iliopoulos (1999) exam-

ined the pros and cons of various pitch-, intervallic-, and contour-based encodings.

Sophisticated encodings that combine pitch-class, intervallic, and directional based

views have also been used in real systems, e.g., (H�ornel and Menzel 1998). Since each

view is readily perceived by humans (Deutsch 1999; Krumhansl 1990; Bartlett 1993),

to ignore any one of them might violate a user's musical common sense, making it

more diÆcult for them to \suspend their disbelief." In addition, by explicitly includ-

ing each of these multiple, musically meaningful viewpoints into the same encoding

scheme, the system becomes easier to understand and extend.

The histogram generalization mechanism ignores a segment's exact, pitch-by-pitch

temporal behavior, focusing instead on more locally general ideas about the segment's

scalar, intervallic, and directional properties. Thus, it is not surprising that di�erent

notions of similarity emerge when using string-of-pitches and CGL-based features.

String-of-pitches based comparisons naturally lead to an edit-based distance metric,

e.g., count how many insertions and deletions are needed to transform one sequence

into another (Rolland and Ganascia 1996; Rolland and Ganascia 2000; Mongeau and

Sanko� 1990). Although to some extent CGL-based comparisons can be interpreted

in an edit-based framework, for insertions and deletions add, remove and/or rearrange

histogram counts, an important distinction is that it is straightforward to probabilis-

tically model histograms. As demonstrated in Chapter 7, when real music data is

79

modeled in this way, a coarser, less "brittle" view of melodic likeness emerges.

The fact that histograms transform variable-sized sequences into �xed-dimensional

feature vectors also impacts the types of machine learning algorithms that can be

used. Typically, variable-sized inputs require some kind of decomposable, recursive

learning technique, e.g., (Elman 1991), and such technologies are notoriously hard to

train. Many in the computer music community have avoided this issue by restricting

themselves to �xed-size inputs, either continuously adjusting the window size to au-

tomatically contain a �xed number of events, e.g., (Rowe 1993), or limiting oneself to

a speci�c duration and resolution of inputs, e.g., (Franklin 2001; H�ornel, Langnickel,

Sandberger, and Sieling 1999). The VLT/CGL combination provides a more exible

and powerful way to learn structure from a highly structured, temporal, contextual

medium.

On the other hand, this �xed-size transformation is, by de�nition, ignorant of cer-

tain aspects of a segment's temporal ordering | this is the very reason it generalizes.

As a result, it can be diÆcult or impossible to construct a viable pitch sequence from

a CGL feature vector (Section 6.3.2). Together, fortunately, the trio of histograms

provides a fair amount of temporal information (ranging from 0- to 3rd-order Marko-

vian), and this is why BoB can generate pitch sequences that sound as good as they

do.

80

Chapter 5

Learning Musician-Speci�c

Perception

This chapter introduces the mechanism by which BoB transforms its basic represen-

tation of a solo segment into a user-speci�c representation. A probabilistic mixture

model composed of Multinomial probability distribution components is introduced

for clustering histograms that contain an arbitrary, variable numbers of counts. An

Expectation-Maximization (EM) based method is derived to infer the parameters of

this model, enabling a user-speci�c clustering function to be learned from the user's

warmup data.

From a ML point of view, this model's primary distinction is that it treats all

counts within a given histogram as correlated. Because of this distinction, the model

provides more information to the learner than a method like Autoclass would because

all counts are explicitly modeled as coming from the same underlying distribution.

This fact is especially important because of the inherent sparsity of the training data

that BoB is expected to collect. Such sparsity-related issues are investigated by �rst

introducing simulation-based methods for quantifying a learning solution's quality,

and then using these methods to quantify learning performance in the context of the

transcriptions of Charlie Parker and Stephane Grappelli.

This model is important to computational musical intelligence because it provides

a mechanism for clustering based upon the content of an entire segment. This tech-

nology is used to customize BoB's solo-trading model to its user, partitioning the

space of conglomerative histograms into distinct playing modes that capture impor-

81

tant distinctions in tonal, intervallic, and directional usage.

5.1 Overview

Figure 5.1 displays a many-to-one mapping of conglomerative features into discrete

clusters. This mapping is customized to a particular user by �tting a mixture of

Multinomial components to the PC, INT, and DIR histograms collected for them

during a warmup session. Since these histograms' class memberships are unknown,

learning is unsupervised| estimation amounts to partitioning their tonal, intervallic,

and directional trends so that the training data is \well explained." This clustering

scheme was �rst presented in detail in (Thom 2000b) and (Thom 2000a).

Figure 5.1: User-Speci�c Playing Mode Classi�cation

The purpose of this mapping is to capture the various playing modes that the

musician uses during di�erent parts of their improvisations to make their solos in-

teresting. For example, a user's playing mode might amount to their preference for

certain tones in a musical scale, arranged in such a way that a particular melodic

shape and set of intervals is used. The terms cluster, class, component, and playing

mode are used interchangeably.

5.2 Training Data and Sparsity

BoB is independently trained and evaluated on Parker and Grappelli using the datasets

described in Section 3.2.2, XP and XG respectively. Both datasets are relatively

82

sparse in terms of their dimensionality (the number of PC, INT, and DIR bins). Train-

ing set sparsity concerns how many histograms that the dataset contains, and sample

size sparsity concerns how many counts are distributed among each histogram's bins.

Sparsity has an important impact on learning performance, so each of these aspects

is further quanti�ed to formalize what kind of \representative data" BoB should be

able to learn from.

5.2.1 Training Set Sparsity

Those bars that produce VLTs with less than two pitch leaves are not included in

the training data because their DIR histograms contain no counts. A transcription's

initial pick-up bar was also not used. The remaining bars are used to construct PC,

INT, and DIR datasets, producing a total of NP = 119 histograms for Parker, and

NG = 126 for Grappelli.

5.2.2 Sample Size Sparsity

The distribution over sample size for PC histograms are summarized in Table 5.1 for

both Parker and Grappelli.1. To get a feel for how sparse these histograms are, see

Figure 4.4.

Sample size sparsity is caused by BoB's per-bar segmentation window, which in-

volves the adaptation versus averaging trade-o� discussed in Section 4.2. In the

context of histogram clustering, this trade-o� becomes even more important because

the degree to which histograms can be segregated into distinct clusters will depend on

their underlying segments coinciding with unique and distinctive trends. Although

larger windows provide more data upon which to estimate a histogram's underlying

generative component, they increase the odds that several competing trends will con-

tribute to the same histogram's counts, muddling up the very structure that is to be

inferred.

1The PC distribution completely speci�es how the INT and DIR distributions behave.

83

PC sz Statistics

Parker Grappelli

dim Ave Std Min Max Ave Std Min Max

PC 12 7.3 3.0 2 17 6.9 1.8 2 12

INT 13 7.3 3.0 2 17 6.9 1.8 2 12

DIR 27 6.3 3.0 1 16 5.9 1.8 1 11

Parker PC Distribution Grappelli PC Distribution

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

PC sample size

Pr
ob

ab
ilit

y

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

PC sample size
Pr

ob
ab

ilit
y

Table 5.1: Representative Sample Sizes

5.3 Clustering Background

In the last thirty years, the quantity of literature on cluster analysis has exploded,

with contributions coming from a wide range of di�erent �elds e.g., (Dubes and Jain

1980; Kaufman and Rousseeuw 1990; Duda and Hart 1973). McLachlan and Basford

(1988) presents a good overview of the mixture model based clustering approach.

A de�nition of cluster analysis is as varied as the �eld's interdisciplinary nature.

I employ (McLachlan and Basford 1988)'s de�nition:

In cluster analysis, multivariate techniques are used to create groups amongst

the entities, where there is no prior information regarding the underlying group

structure, or at least where there is no available data from each of the groups

if their existence is known. (page 6)

In machine learning terms, this means that no data-points are labeled. The algorithm

that operates upon the data infers these labels, an unsupervised learning scenario.

Clustering algorithms can be categorized as either hierarchical (tree based) or

non-hierarchical (�xed partition). In the tree-based scheme, an algorithm attempts

to grow some sort of tree to \explain" the data, each level in the tree merging or

84

splitting a particular cluster into a sub- or super-set. From root to leaves, this tree

provides a monotonically increasing strength of clustering as more and more clusters

are formed. This type of strategy will always optimize a route between the root and

leaf extremes (McLachlan and Basford 1988) (page 7).

In the �xed partition scheme, the number of clusters, K, is �xed up front. Learning

amounts to searching for an optimal clustering of the data into this many partitions.

The sole optimization focus is �nding structure for K individual groups in the data:

concentrat[ing] on the role of clustering where the partitioning of the data into

relatively homogeneous groups is a data reduction exercise in its own right,

or part of an attempt to shed light on the phenomena of interest through a

particular grouping. (McLachlan and Basford 1988) (page 6)

Regardless of which scheme is used, the open question of how to \best" pick the

number of clusters in dataset X remains. However, once K is chosen, either clustering

strategy provides a mechanism for mapping dataset X into labeling Y .

5.4 Clustering With Mixture Models

Mixture models provide a �xed-partition based approach to clustering. This approach

is model-based in that a di�erent component probability distribution is estimated

for each cluster. In addition to the standard probabilistic bene�ts, e.g., knowledge

about uncertainty, mixture models are also generative, meaning that new data can

be sampled from the model.

Mixture model G is composed out of some �xed number of underlying component

distributions K:

G =
D
g
1
; � � � ; g

k
; � � � ; g

K

E
:

A speci�c model is de�ned by parameter
, composed out of:

� mixture weights: � =
D
�
1
; � � � ; �

k
; � � � ; �

K

E
. �

k
speci�es how likely component g

k
is

to be chosen as a data-point's generator;

� component parameters: �
1
; � � � ; �

k
; � � � ; �

K
. �

k
speci�es the parameterization for the

g
k
-th component.

85

5.4.1 Sampling

Mixture models assume that data is generated according to a two stage sampling

process. First, a component is chosen:

y � Mnom(1; �): (5.1)

Next, this component is used to produce feature vector x:

x � g
k=y

(�
k
): (5.2)

The Mnom function is fully described later (Section 5.7.1). For now, suÆce it to say

that equation 5.1 selects from one of the following outcomes:

y 2 f1; 2; � � � ; k; � � � ;Kg:

It will sometimes be convenient to present y in its equivalent indicator vector form:

z =
D
z
1
; � � � ; z

k
; � � � ; z

K

E
;

where z is de�ned so that all dimensions have value zero except for z
k=y

= 1. Notation

y and z will be used interchangeably. Thus, whenever y appears, indicator vector z

is implied and vice versa.

Under this sampling scheme, the mixture model's joint probability is:

Pr(x; yj
) = �
k=y

� Pr
�
xjg

k
(�

k
)
�
:

Marginalizing produces the unlabeled likelihood:

u(xj
) =X
k

Pr(x; y = kj
): (5.3)

When a labeled estimate is available, one can also specify the labeled likelihood:

l(xjy;
) = Pr(xjy = k;
) = Pr
�
xjg

k=y
(�

k
)
�
: (5.4)

5.4.2 Clustering and Posteriors

Since the joint de�nes a probability distribution over hx; yi, it provides the knowledge
needed to cluster a dataset. In particular, for a given x, Bayes rule is applied to

produce posterior distribution vector:

 =
D

1
; � � � ;

k
; � � � ;

K

E
;

86

where:

k
= Pr(y = kjx;
) = Pr(x; y = kj
)

u(xj
): (5.5)

The posterior is used to obtain cluster estimate y:

y = Argmax
1�k�K

(
k
): (5.6)

Since y is an estimate, it does not necessarily correspond to the component that

actually generated x.

When, however, data is simulated, as will be the case when a particular learned

parameter's quality is assessed (Section 5.7.5), both the data's generative components

and the model's parameters are known. To identify this situation, variables are un-

derlined (indicating that they are based upon the ground truth). Thus, with hx; yi it
is known that g

k=y
(�

k
) generated x. Similarly,
 indicates that x was sampled from

G(
).

When equation 5.6 is based on
, it is an optimal Bayes classi�er| the number of

misclassi�cations it makes will, on average, be minimal (DeGroot 1970). An optimal

classi�cation is additionally identi�ed by a hat, ŷ (indicating that it is an estimate

based upon ground truth).

5.4.3 Learning a Mixture Model from Training Data

When learning a mixture model from training set XTr , the following are hidden:

� clustering Y Tr ;

� parameters
;

� various structural assumptions, e.g., do all g
K
come from the same family, and if so,

from which family? what is K? etc.

Roughly speaking, once some structural assumptions are settled upon, learning boils

down to estimating each �
k
and �

k
using those data-points that are most likely to

have been generated by the same component, g
k
.

As a result, when the underlying components really are quite di�erent from one

another, the data is easier to separate and the model should be easier to learn. Ul-

timately, learning will be cast as an optimization problem, adjusting
 to make a

dataset likelihood function as large | as �t | as possible.

87

It is assumed that all data-points are independently sampled from G(
), so labeled

and unlabeled dataset likelihoods are multiplicative:

U(Xj
) =Y
n

u(x
n
j
) (5.7)

L(XjY ;
) =Y
n

l(x
n
jy;
)

By supporting an additional \fake" labeled dataset, hX; Y iFk , the learning algorithm
can automatically incorporate prior knowledge, which allows one to easily introduce

bias. In total, the �tness function to optimize is:

F(XTr ;XFk jY Fk ;
) = U(XTr j
) � L(XFk jY Fk ;
):

These variable names were chosen to be easy to remember, i.e., Unlabeled and Labeled

likelihoods, and the training-plus-fake-dataset Fitness function.2

Learning
 amounts to optimizing:

Argmax

�
F(XTr ;XFk jY Fk ;
)

�
: (5.8)

This estimate is only guaranteed to locally approach optimal because, with unlabeled

likelihood, a closed-form optimal solution does not exist (the cause of diÆculty is the

sum over k in equation 5.3). A randomized, Expectation-Minimization (EM) based

algorithm (Dempster, Laird, and Rubin 1977) will be developed to iteratively search

for local optima.

In general, equation 5.8 is only well de�ned when K is �xed. As such, BoB learns

its user-speci�c model in two stages:

� Learn Stage I: Solve for
 using a �xed K; repeat for each solution in Stage II.

� Learn Stage II: Pick the solution from set T :

T =
n
K

min
� � �
(K) � � �Kmax

o

that looks \best" according to some other �tness measure.

(K) indicates that K is treated as a variable; alone,
 implies that K is �xed.

2When reporting one of these quantities for an entire dataset, it is �rst normalized. Dependence

on the number of data-points is eliminated by taking the geometric mean.

88

5.5 Conglomerative Clustering

Conglomerative learning is de�ned to be the independent modeling of PC, INT, and

DIR histograms. With methods vmnLearn and vmnClassify (de�ned in Sections 5.7.2

and 5.8), the user's playing modes are learned and perceived as shown in Table 5.2.

learnCGL(XC)

P = learnVmn(XP)

I = learnVmn(XI)

D = learnVmn(XD)

return
C

classifyCGL(xC;
C)D
xP; lP

E
= classifyVmn(xP;
P)

xI; lI
�
= classifyVmn(xI;
I)

xD; lD
�
= classifyVmn(xD;
D)

lC = lP � lI � lD

return

xC; lC

�
Table 5.2: Conglomerative User-Speci�c Learning and Classi�cation Algorithms

Independence assumes that:

Pr(xC) = Pr(xP) � Pr(xI) � Pr(xD);
which is why musical surprise, namely labeled likelihood lC, is multiplicative. (The

impact of this independence assumption is discussed further in Section 8.5.1.)

5.6 Variable-Sized Histogram Clustering Example

In this section, a representative set of histograms is presented that make BoB's clus-

tering task more concrete. This example demonstrates why clustering histograms

with relatively small sample sizes can be non-trivial and why it is bene�cial to base

inference upon a well-understood probabilistic model.

Twenty-one histograms (M = 12 bins) are displayed in Figure 5.2.3 Each his-

togram is a di�erent data-point, generated by the same mixture. What varies between

histograms are: how many counts are present and which component in the mixture

generated the counts. Given this data, BoB's task is: to determine which value of K to

use; and given K, to estimate the model's parameters,
, and data-points' clustering,

Y .

The �rst thing to note is that each data-point's sz is known (simply add up the to-

tal number of counts), so estimating a distribution for sample size is straight-forward.

3This data's generation scheme is described in Section 5.9.1.

89

x
n=1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

x
16

x
17

x
18

x
19

x
20

x
n=21

Figure 5.2: A Mixture of Histograms Dataset

Guessing which component generated which histograms is much more diÆcult. For

example, consider trying to cluster this set into K = 7 distinct partitions. The dif-

�culty of this task is exacerbated by the fact that none of the histograms look very

much alike, and there are two reasons for this. First, histograms are relatively sparse.

Second, the di�erent components' bins \interfere" with one another a \fair bit."

The gray bars in the background identify which bins are most probable given

a histogram's underlying component generator. (This knowledge is only available

because the data is simulated.) Gray-coincident bins are all equally probable, and

all others are equally improbable. Thus, a discerning viewer might notice that the

same component was used to generate each column of histograms, e.g., x
n=1
, x

8
, and

x
15
belong to some cluster y = 1; x

2
, x

9
, and x

16
belong to some other cluster y = 2;

90

etc. The gray bars demonstrate what is meant by a \fair bit of interference" among

bins. For example, with clusters y = 1 and 2, only the 2nd gray bar to the right of

the y-axis di�ers between components. Thus, counts, or a lack thereof, on any other

bins do not help discriminate between these two components. In other words, all the

other bins interfere with one another and are thus non-discriminatory.

Knowing what component each of these histograms belongs to allows several subtle

points to be made:

� Often, larger sample sizes contain more useful information. For example, consider

x
15
, where all the counts lie on most probable bins.

� Sometimes larger samples contain a fair bit of misleading information. Consider x
10
,

which has the largest sample size (15 counts), yet 1
3 of the counts are distributed

among improbable bins.

� Smaller samples often contain less reliable information, e.g., consider n 2 f2; 3; 5; 6; 9g.

Each of these data-points is marked with an `X' because a Bayesian optimal classi�er

would misclassify them.

� Sometimes smaller samples contain completely pertinent information, e.g., x
18
.

It is for reasons such as these that a rigorous probabilistic learning procedure is needed

| one that weighs larger sample sizes more heavily, especially when they collaborate

with other data-points' features.

5.7 Variable-Sized Mixtures of Multinomials

A probabilistic model for clustering histograms that contain an arbitrary number

of counts | the variable-sized mixture of Multinomials (vMn) | is now derived.

Although this derivation was initially motivated by BoB's application, it is completely

general and can be applied in any domain where streams of discrete events of arbitrary

length need to be structured.

The Multinomial distribution, its incorporation into the vMn model, and the rel-

evant probabilistic quantities are �rst described, resulting in a complete speci�cation

of classifyVmn. Next, learnVmn
, an EM-based learning algorithm for inferring

from histogram training set X is presented, resulting in a complete speci�cation of

91

learning Stage I. Numeric quantities for objectively evaluating the quality of learned

solution
 are then derived and used by Stage II to determine how many components

to use. These stages will be combined together, producing the complete learning

algorithm, learnVmn, in Section 5.8.

5.7.1 The Multinomial Distribution

The Multinomial distribution:

Mnom(sz ; �)

extends the Binomial probability distribution to handle more than two discrete, nom-

inal outcomes. Sampling from this distribution is described in Appendix D.1.

The distribution's parameters are interpreted as:

� � is an M-dimensional probability vector that weights the sides of an M-sided die.

� sz is the �xed number of times that this die is tossed and its value is recorded.

Each of the die's faces are explicitly modeled as independent of one another. Each

face is also explicitly treated as nominal | a priori, no two di�erent outcomes are

treated as \closer" to one another than any of the other outcomes. For these reasons,

the Multinomial is the natural choice for representing a probability distribution over

an M-dimensional histogram. However, to handle histograms with a variable number

of counts, Mnom must be extended so that sz is a random variable.

With this model, the likelihood of seeing histogram x is simply:

Pr(xjsz ; �) = sz !
MY
m=1

1

x
m
!
(�

m
)xm : (5.9)

The suÆcient statistic is the mean:

Ex

h
x
m

i
= sz � �

m
;

and with this, variance/covariance are completely speci�ed:

Ex

h
x
m
� x

m

i
= sz � �

m
� (1� �

m
);

Ex

h
x
m
� x

m0

i
= sz � �

m
� �

m0
:

For a discussion of why it is inappropriate to use these statistics to derive a Gaussian

approximation of the Multinomial, see Appendix D.2.

92

5.7.2 The Variable-size Multinomial Mixture Distribution

The variable-sized Multinomial mixture model:

vMn(�; �; �
1
; � � � ; �

k
; � � � ; �

K
)

comprises K �nite Multinomial components, each component using the same random

sz variable to control its sample size. From now on,
 refers to the entire set of vMn

parameters.

There are two di�erences between this mixture model and the general one de-

scribed earlier:

1. In addition to sampling y (equation 5.1), sz is also sampled from:

sz � Mnom(1; �):

� is a set of size weights operating over the integer range sz
min

� sz � szmax , indexable

via �
m=sz ;

2. Feature vector x (equation 5.2) is replaced with:

x � Mnom(sz ; �
k=y

):

Under this sampling scheme, the joint probability is:

Pr(x; yj
) = �
sz
� �

k=y
� Pr(xjsz ; �

k
);

and the last term is de�ned by equation 5.9. Unlabeled and labeled likelihood become:

u(xj
) =X
k

�
sz
� �

k=y
� Pr(xjsz ; �

k
); (5.10)

l(xjy;
) = �
sz
� Pr(xjsz ; �

k=y
):

These equations allow a data-point's posteriors and its classi�er (Table 5.3) to

be constructed. When classi�cation is based on
, classifyVmn is a Naive Bayes

optimal classi�er (Mitchell 1997) with the Multinomial treating each feature in x

independently.

93

classifyVmn(x;
)

y = Argmax
1�k�K

�
Pr(x;y=kj
)

u(xj
)

�
l = l(xjy;
)

return

y; l
�

Table 5.3: The classifyVmn Algorithm

5.7.3 The Sample Size A�ect

This section provides insight into how and why sample size inuences clustering per-

formance. In Figure 5.3, twenty-�ve di�erent Mnom distributions over a 2-dimensional

feature vector are shown. Each distribution is drawn as a di�erent south-east facing

thin line. While each distribution uses the same probability vector, � = h0:75; 0:25i,
they each have a di�erent sz , ranging from 1 (the line nearest to the origin) to 25 (the

line farthest away). The `o' marks on each line de�ne the input values covered by that

distribution. The intersection with the thick black line corresponds to a distribution's

mean.

Three di�erent gray regions are drawn on this graph, each enclosing those input

values which lie within the central 30%, 70%, and 90% probability mass. Per sample

size, the widths of these regions expand via O
�p

sz
�
. At the same time, the total

number of possible inputs increases linearly. In other words, as sz increases, there is

more and more room for di�erent Mnom components probable regions to not interfere

with another. On the other hand, as sz ! 0; interference necessarily increases.

5.7.4 Learning a vMn Model from Data

This section considers how to optimize equation 5.8, assuming that a vMn(
) model

was used to generate the data. Optimizing
 requires iterative search, and �nding a

\relatively global" optima requires random restarts. learnVmn
 (Table 5.4) handles

both of these issues, using an EM strategy to �t both the training and fake data to

an underlying vMn model.

The outer loop (starting at line 1) deals with jumping out of local optima by

randomly restarting the search n
seeds

times. Only that solution,
�, with the lowest

unlabelled likelihood, f
�
, is returned. (This logic is handled by lines 0a and 8.) Ran-

dom starts are chosen from the parameter space and are generated by randomize. The

94

0 5 10 15 20 25
0

5

10

15

20

25

x
1

x 2

Figure 5.3: Multinomial Dispersion versus Sample Size Example

inner loop (starting at line 2) performs EM, iteratively improving the model's parame-

ter estimate at each time step, t. Each of EM's improved solutions and corresponding

likelihood �tnesses are indexed via t. Variable 	 holds the training set's posterior

vectors, one for each datapoint. vMn speci�c EM logic is provided in vMn E Step and

vMn M Step. Finally, lines 6 and 7 introduce early termination conditions.

Randomization

Often, a preliminary clustering algorithm like k-means (Duda and Hart 1973) is used

to �nd a good starting point, or seed, in which to begin EM (McLachlan and Basford

1988; Smyth 1997). In preliminary tests, no strong correlation between a seed's initial

�tness and its �nal optimized �tness was observed. For this reason, learnVmn
 does

not preprocess seeds.

95

learnVmn
(XTr ;K)

0:

X;Y

�Fk
= createPrior(K)

0a: f
�
= �1

1: for n = 1; n � n
seeds

; n++

t=1

= randomize(XTr ;K)

2: for t =1; t � n
EM
; t++

f
t
= F(XTr ;XFk jY Fk ;

t
)

3: 	
t
= vMn E Step(XTr ;

X;Y

�Fk
;

t
)

4:

t+1

= vMn M Step(XTr ;

X;Y

�Fk
;	

t
)

f
t+1

= F(XTr ;XFk jY Fk ;

t+1
)

5: if f
t+1

== f
t

break

6: elseif f
t+1

< f
t

f
t+1

= f
t

t+1

=

t

break

7: elseif f
t+1
� f

t
< f

t=1
� �

break

end

end

8: if f
t+1

> f
�

�
=

t+1

f
�
= f

t+1

end

end

return

�
; f

�

�
Table 5.4: The learnVmn
 Optimizing
 Algorithm

randomize stochastically chooses seed

t=1 as follows:

1. Randomly select K unique datapoints from XTr .

2. Add a small Lagrangian prior to each of these datapoints, normalize them, and use

the results to obtain an initial estimate for the Multinomial component parameters.

3. To obtain an estimate for the initial mixture weights, calculate a weighted sum using

the distance between each datapoint and the initial component parameters. Distance

is Euclidean (datapoints are �rst normalized).

96

Expectation

EM performs two analyses per iteration. The �rst step, vMn E Step (line 3), calculates

how expected the joint likelihood is at time t:

E
h
Pr(XTr ;ZTr j

t
) � Pr(XFk ;ZFk ;

t
)
i
:

The training dataset indicator vectors, ZTr =
D
zTr
1
; � � � ; zTr

n
; � � � ; zTr

N

E
, are the only

random variables. This expectation amounts to simply calculating the posteriors for

XTr at time t:

E
h
zTr
n;k

i
= Tr

n;k;t
= Pr(y

n
= kjxTr

n
;

t
):

This entire solution is packaged in 	
t
.

Maximization

The second step, vMn M Step (line 4), uses the training data posteriors at time t to

maximize the model's parameter estimate at time t + 1:

t+1

= Argmax

�
Pr(XTr ; 	Tr

t
j
) � Pr(XFk jY Fk ;
)

�
: (5.11)

Solving Equation 5.11 yields:

�
k;t+1

=
1
K
+
P

n

n;k;t

1 + N
; (5.12)

�
k;m;t+1

=
1
M
+
P

n

n;k;t
� xTr

n;m

1 +
P

n

P
m

n;k;t
� xTr

n;m

: (5.13)

Interpreting Fake Data as Priors

Equations 5.12 and 5.13 are MAP-based estimates. Parameter estimation is optimal

and assumes a Laplacian prior on both � and � (Vapnick 1982). These priors can be in-

terpreted as introducing fake labeled data. For notational convenience, createPrior

(line 0) serves as a place holder for simulated fake data.

The prior on � produces the 1
M
term (Equation 5.13). Essentially, this prior assigns

one count to each component, distributing it evenly among all bins. In other words,

for each component, a fractional labeled data point is placed in hX; Y iFk . Given

sample size sparsity, the � priors are especially important because they guarantee that

97

no component's bins ever have a zero probability of occurring. Although this prior

makes the learning problem more diÆcult because the absence of counts on speci�c

bins never completely rules out the probability of a component having generated data,

from an improvisational music standpoint, it makes a good deal of sense. Ultimately,

this prior guarantees that no speci�c playing mode is completely unexplorative |

unexpected pitch class, interval, and/or directional motion events may always occur.

The prior on � is what produces the 1
K
term in Equation 5.12, distributing one

extra count evenly among all K components. Once again, this can be interpreted in

terms of fractional labeled data, further contributing to hX; Y iFk . Since the prior on
� encodes the belief that there is always some probability that the user utilizes each

playing mode, its musical appropriateness assumes that the musician can generate

solos comprised of K di�erent distinctions in real time. Given the small values of K

learned for Parker and Grappelli, this assumption is plausible.

Convergence and Termination Conditions

The proof that learnVmn
 converges relies on the fact that the inner iterative loop

(line 2) implements EM for vMn(
). With each subsequent iteration at time t, EM

guarantees that:

F(XTr ;XFk jY Fk ;

t
) � F(XTr ;XFk jY Fk ;

t+1
):

In theory, �nding a local maximum is equivalent to �nding a �xed-point, so that:

F(XTr ;XFk jY Fk ;

t
) = F(XTr ;XFk jY Fk ;

t+1
):

This ideal �xed point termination condition (line 5) is usually not reached because,

in practice, other termination methods are required.

At some point, convergence guarantees are no longer feasible because the computer

does not have an unlimited amount of precision (line 6 handles this). Another problem

is that EM can take a long time to converge, and how close the current estimate,

t
,

is to a local maxima can not be predicted in advance.4 learnVmn
 limits search time

explicitly, terminating whenever:

4John La�erty, personal communication, May 2001.

98

� n
EM

search steps have occurred.

� Per-step improvement has signi�cantly decreased so that the additional change in

likelihood has dropped below a small fraction (�, line 7) of the dataset's initial value.

In my experiments, n
EM

was usually the limiting factor.5 Since n
EM
, �, and n

seeds
directly

a�ect how much time is spent searching for a solution, there is a subtle trade-o� be-

tween how many times to restart, how long to optimize along a particular path, and

how good a solution's �tness is. For this reason, learning results are intimately tied

to the learning setup, i.e., the speci�c n
EM
, �, and n

seeds
values, that is used.

5.7.5 Assessing A Solution's Quality

When clustering takes place with

... no prior information regarding the underlying group structure, or at least

where there is no available data from each of the groups if their existence is

known... (McLachlan and Basford 1988)

then mechanisms which attempt to understand and quantify a solution's structure

and performance become especially useful. Since vMn is model based, one way to

quantify
's performance is through simulation. Another approach involves repeated

re-learning to quantify aspects of the underlying optimization space. The quanti�ca-

tion measures presented here are not intended to replace the qualitative analysis of a

solution's quality from within the context of its domain (Chapter7).

The measures summarized in Table 5.5 quantify
 using simulation techniques.

Each row outlines a di�erent way of summarizing the quality of
. For detailed

pseudo-code, see Appendix D.3. Simulation-based procedures rely on the random

variable:

hX; Y i n
sim� vMn(
):

When reporting a simulation-based quantity, the average value obtained over n
expt

independent runs is reported. Thus, all of these measures are a�ected by the values

of n
sim

and n
expt

that are used. In all but the hardness case, simulated data is input

to learnVmn
, so learning setup is also a factor.

5This will depend on what value of � was used.

99

Variable Quantity Procedure

hardness estimates the fraction of inputs that an optimal naive

Bayes classi�er would misclassify

estHardness

cost estimates the additional fraction of inputs misclassi�ed us-

ing a learned (versus optimal) Bayes classi�er

estCost

overLearn estimates the amount which learning over-�ts the training

set's likelihood
estLearn

underGeneralize estimates the amount which learning under-�ts the test

set's likelihood

Table 5.5: Simulation Quality Estimates

In a similar fashion, Table 5.6 quanti�es
 by repeating a learning experiment

multiple times. Because these procedures do not rely on simulation (instead they

use the original training set over and over), their measurements do not rely on n
sim
.

However, because these procedures are stochastic insofar as learning is stochastic,

their values are still reported by observing their behavior over n
expt

independent runs.

These distributional results are displayed graphically, either using a histogram or an

x-y plot (where averages are connected by a line, and error bars indicate minimum

and maximum values). Again, these measures are a�ected by the value of n
expt

and

the learning setup.

Variable Quantity Procedure

instabilities observes fractions of inputs whose partitions vary between

learnVmn
 runs

obsInstabilities

�ts observes �tness likelihoods over multiple learnVmn
 runs

obsFitnesses�tDi�s observes di�erences between �tness likelihoods that vary

between learnVmn
 runs

Table 5.6: Repeated Learning Quality Estimates

Consistency Relabeling

Since cost and instabilities compare di�erent inferred clusterings, there is no guaran-

tee that their labelings are consistent, i.e., that their labels rely on the same indexing

scheme. This problem arises because, numerically, all possible orderings of K com-

ponents are identical distributions. By transforming two labelings into a Maximal

Bipartite Matching problem (Kozen 1991), Linear Programming techniques (Chvatal

1983) can be used to reorder one cluster's labels so that they map a maximal amount

100

of the training set into the partitions used by another clustering. This remapping is

only performed when one or both clusterings are learned.

Hardness

hardness estimates what fraction of the input space is inherently misclassi�ed as

a result of vMn's component overlap. In particular, each estHardness execution

provides an estimate of how many times the optimal Bayesian classi�er is expected

to be incorrect:

hardness � Ex

h
y 6= ŷ

i
:

This value is approximate because the behavior over the entire input space is approx-

imated by the behavior of n
sim

data-points.

Learning Cost

cost estimates the additional fraction of inputs that are expected to be incorrect

when clustering is inferred using a learned (versus known) set of vMn parameters.

The model's inherent hardness is subtracted o� from the error rate that results when

learnVmn
 provides the clustering:

cost � EX

h
y 6= y

i
� Ex

h
y 6= ŷ

i
:

This measure is unbiased.
 is infered from a training set and learning cost is mea-

sured using an independent test set. This value is approximate because it is based

on n
sim

data-points. The domain of the �rst expectation, i.e., X, indicates that this

cost is also measured with respect to a speci�c training set size.

Quantifying Over-Fitting

Simulation can also be used to measure how well | and over-well | Equation 5.8

is optimized during learning. Comparing the training set's true likelihood with its

estimated likelihood (overLearn) provides a measure of how e�ective the search for

an optimal solution was. At the same time, comparing an independent test set's

true likelihood to its estimated value using the learned model (underGeneralize) pro-

vides a measure of how over-e�ective the search was. estLearn subtracts o� the

learned estimate from the true likelihood, so the more negative (positive) the overFit

101

(underGeneralize) value is, the more learning over-�t (under-�t) the training (test)

data.

Instability

instabilities records the fractions of inputs that do not map into the same dataset

partitions when these partitions are re-learned n
expt

times. In particular, each pair of

solutions6 is compared to determine how di�erent their partitions are. These values

imply a distribution over how repeatable a particular learning task is likely to be,

providing some assurance that a speci�c inferred model is grounded more on actual

training set structure than on happenstance.

Observing Likelihood Fitness Variations

�ts observes the �tness value obtained each time the training set is re-learned, shed-

ding light on how variable the optimization space's local optima are for a given learn-

ing task and setup. �tDi�s further analyzes this data, comparing the di�erence in

�tness observed between all pairs of solutions.

5.7.6 Choosing the Number of Components

To fully specify learnVmn, an algorithm for Learn Stage II is needed. Recall (Sec-

tion 5.4.3) that learnVmn
 is repeatedly used to �nd a set of solutions:

T =
n
K

min
� � �
(K) � � �K

max

o
;

and that Stage II must pick a \best" solution from this set. In the machine learning

and statistics literature, this task is typically referred to as model selection. This

section �rst discusses some general issues related to model selection, and then the

speci�c approach that BoB will use is described.

Model Selection and Complexity

For vMn(
(K)), there are O(K � M) free parameters to estimate. A particular so-

lution also has !K equivalent ways of being expressed (simply permute the original

6i.e. n
expt

choose-two pairs in total.

102

components' ordering). These observations motivate why solution vMn(
(K)) has

complexity K.

When a vMn model does not have Lagrangian priors, it can be shown to be

part of a general class of learning problems in which the goodness-of-�t function

| for the prior-less model, U(XTr j
) | is convex within �rst-order as a function

of model complexity (Cadez and Smyth 2001). This result justi�es why a well-posed

optimization, i.e., one that contains a bounded maximum, necessitates �xing K before

 is �t to the training set.

Usually, the curves obtained for a Lagrangian prior-based model coincide with

this result. Figure 5.4 (left) is typical. In this �gure, goodness-of-�t values | for the

prior-based model, F(XTr ;XFk jY Fk ;
Fk) | are displayed for K ranging from 1 to

10.7 Occasionally, however, BoB would produce a non-concave curve, e.g., Figure 5.4

(right), because this prior-based model does not ful�ll all of the conditions used in the

Cadez and Smyth (2001) proof. Additional experimentation seems to indicate that

concavity violations become more pronounced when the distribution over sz becomes

smaller.

training: XP;P; setup: n
EM

=60, �=0, n
seeds

=10, n
expt

=5 training: XG;I; setup: n
EM

=100, �=0, n
seeds

=20, n
expt

=10

−2 0 2 4 6 8 10 12

1.4

1.6

1.8

2

2.2

2.4

x 10
−5

fit
s

0 5 10 15

1

1.2

1.4

1.6

1.8

x 10
−4

K

fits

Figure 5.4: Complexity Versus �ts Examples

Typically, however, �tness tends to increase monotonically. Thus, the shape of

BoB's goodness-of-�t function is considered irrelevant when picking K. Rather, an

independent heuristic for selecting a \best" solution from set T is used.

7For those values of K in which an error bar is not visible, �tness di�ered very little between

multiple runs.

103

Complexity and Computation Time

A solution's quality is not only a�ected by the learning setup, but also by a model's

complexity. A more complex model can often achieve a better �tness, but this is

usually accompanied by a more variable optimization surface.

One example of this phenomena is presented in Figure 5.5. Each of the nine plots

displayed there corresponds to a di�erent complexity, ranging from K=2 (upper left)

to K=10 (lower right). Each plot presents a histogram of the �tDi�s ddistribution

that was observed when learning that particular model (the x-axis scale is 10�6). As

complexity increases, the range in variability becomes wider and atter. What this

observation implies is that for a more complex model, one should expect more seeds

will be necessary to \adequately" search for a solution.

training: XP;P; setup: n
EM

=500, �=0, n
seeds

=1, n
expt

=50

0 1 2
0

5

10

15

20
k:2

0 1 2
0

5

10

15

20
k:3

0 1 2
0

5

10

15

20
k:4

0 1 2
0

5

10

15

20
k:5

0 1 2
0

2

4

6

8
k:6

0 1 2
0

2

4

6

8
k:7

0 1 2
0

2

4

6

8

10
k:8

0 1 2
0

1

2

3

4

5

6
k:9

0 1 2
0

2

4

6

8

10
k:10

Figure 5.5: Variability in Local Optima Versus Complexity Example

BoB must learn
(K) in a reasonable, �xed period of time. For simplicity, each

104

(K) search receives the same learning setup. In other words, regardless of complexity,

the same amount of time is allocated for estimating each solution .8

Search time can seriously impact learning. For example, the sole cause of the

di�erences between the two �ts and instabilities curves presented in Figure 5.6 is the

learning setup (n
EM
= 60 versus 100, n

seeds
= 20 versus 10, and n

expt
= 10 versus 5).

training: XG;I; setup: n
EM

=60, �=0, n
seeds

=10, n
expt

=5 training: XG;I; setup: n
EM

=100, �=0, n
seeds

=20, n
expt

=10

Complexity versus �ts

0 5 10 15

1

1.2

1.4

1.6

1.8

x 10
−4

K

fits

0 5 10 15

1

1.2

1.4

1.6

1.8

x 10
−4

K
fits

Complexity versus instabilities

0 5 10 15

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K

ins
ta

bil
itie

s

0 5 10 15

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K

sta
bil

itie
s

Figure 5.6: Learning Setup and its A�ect on Solution Quality Example

A Heuristic For Picking K

One standard technique used in model selection is to add an additional constraint to

the goodness-of-�t function, usually incorporating some form of Bayesian or minimum

description length penalty term (Mitchell 1997). These penalties are usually on the

order of O(!K). Another common technique employs cross validation, where picking

8This statement glosses over that the running time for each iteration of EM is linear with respect

to K.

105

the best component is decoupled from learning
. In this case, the goodness-of-�t is

based upon an independent test set. Model selection is a very active research area.

Rather than concentrating on this very diÆcult problem, BoB uses a heuristic that

is motivated by what is practical for an IMC.

In BoB, three factors contribute to the selection of a \best"
(K):

1. The user's playing modes need to be \real," and realness depends upon how many

clusters a particular sparse dataset can support, and how many clusters a particular

learning setup can support.

2. Model components should not overlap \too much." From an interactive, adaptive,

improvisational point of view, this requirement makes sense | �rst worry about

recognizing and responding to the most prominent shifts in the user's local behavior.

3. It is assumed that, because data is extremely limited, it is better to rely on simulation

than cross validation.

These issues are addressed in the following model selection heuristic. Pick the largest

K for which:

� Model Selection Condition I: Instability is no more than 10%;

� Model Selection Condition II: Hardness is, on average, no more than 25%.

The �rst condition deals with \realness," its value inherently linked to the amount

of time that was spent learning and the degree to which the training data lends

itself to a speci�c K-partition. This condition is especially conservative, bounding

the maximum di�erence that may be witnessed among any pair of learned partitions,

e.g., min(instabilities) < 10%. While the 25% rate in Condition II may seem high,

BoB is less concerned with guessing every cluster correctly than it is with being

able to recognize when a musician switches from one really distinct playing mode to

another. In this sense, hardness is overly pessimistic, treating all misclassi�cations

as equally bad even though most of these \errors" will have been claimed by very

nearby competing partitions.

106

5.8 The Complete vMn Learning Algorithm

BoB's learnVmn is de�ned in Table 5.7. Ideally, the heuristic just described provides

what is needed to specify what pickBest does.

learnVmn(X)

for k = K
min

; k � K
max

; k++

(k)= learnVmn
(X; k)

instabilities
k
= obsInstabilities(
(k); X)

hardness
k
= estHarndess(
(k))

end

�
K
�

�
= pickBest(hardness ; instabilities)

return

�
K
�

�
Table 5.7: The Complete learnVmn Learning Algorithm

5.8.1 The Number of Components For Parker and Grappelli

The number of components that were learned for Parker and Grappelli are summa-

rized in Table 5.8. Since learning is conglomerative, each model was learned sepa-

rately. The values observed for each condition are also reported for these solutions.

By themselves, these condition values do not indicate why a particular number of

components was chosen; one really needs to look at the corresponding hardness and

stability curves (Appendix D.4.1 and D.4.2). Parker's PC curves are also shown in

Table 5.8 because they are exemplar, a clear \best" model being KP = 5.

Parker's PC curves were the �rst that I carefully studied, and their content primed

my thinking about what an automated procedure for selecting K should look like. The

shape of the instabilities curve justi�es why learnVmn needs to search over a range

of Kas opposed to adding one component each time and stopping at the �rst model

for which the conditions fail. In addition, roughly speaking, the hardness curve tends

to increase as K increases.9 In light of this tendency, the wording of the heuristic |

9I witnessed this trend in all of my vMn modeling experiments. Given the (Cadez and Smyth

2001) proof, which justi�es why, for many models, more components provide a better �t to the

training data, this trend might seem counter-intuitive. However, when classifying individual data-

points, component overlap can only decrease as K increases provided the component's variance can

become suÆciently small. The vMn mixture model is constrained by the Lagrangian priors, so their

individual component variances will never equal zero. In addition, unlike the Gaussian distribution,

107

setup: n
EM

=60, �=0, n
seeds

=10, n
expt

=5

Dataset Number of Components Condition II Condition I

XP;P 5 0.21 0.01

XP;I 4 0.18 0.00

XP;D 3 0.06 0.00

XG;P 4 0.14 0.01

XG;I 5 0.15 0.00

XG;D 4 0.05 0.09

Parker's PC hardness curve Parker's PC instabilities curve

0 5 10 15

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

k

ha
rdn

es
s

0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

k

ins
tab

iliti
es

Table 5.8: Parker and Grappelli Number of Components Results

`pick the largest K' | can be interpreted with respect to picking the largest number

of clusters for which the clustering is still \distinct enough" to be useful.

For all the models that were chosen, only a relatively small number of components

were stable enough to pass Condition I, and in all cases, this was the limiting factor.

Intuitively, it makes sense that a musician would only employ a small number of modes

when spontaneously generating melodic material. Excluding XG;D, these models are

also extremely stable, almost all pairs of solutions identically partitioning the training

set.

5.8.2 Caveats

Unfortunately, the learnvMn algorithm is not the end of the clustering story. Ques-

tions remain:

the Multinomial's variance is completely speci�ed by its mean, �, and its sample size, sz . It is with

respect to labeled likelihood that �tness improves with increased K, because more components allow

data-points to lie closer to their estimated means. The relationship between component overlap, sz ,

K, and training set size warrants further study.

108

� What values, K
min

and Kmax , should be used to bound the search?

� Should the search only increment k by one each time (rather than performing, for

example, some form of binary search)?

� What learning setup and nexpt values should be used to produce \good enough"

hardness and instabilities measures?

About one year ago, after performing numerous simulations, relearning parameters

several times, and investigating their quality from a musical standpoint, I settled

upon the number of components reported in Table 5.8. It was not until recently, after

rescrutinizing the curves presented in Appendix D, that I realized that this model

selection heuristic would have chosen di�erent solutions for the Grappelli PC and

INT models, (choosing K
G;P = 10 versus 4, and K

G;I = 7 versus 5).

At this point, I decided to relearn the Grappelli INT model again, to see if, with

a more exhaustive search regime, the curves that result would eliminate this discrep-

ancy. During this investigation I became intimately familiar with the dependence

of a solution's quality assessment on computation time (this investigation led to the

curves in Figure 5.6). Although with Condition I, the more exhaustive search would

still have chosen K= 7 (Figure 5.6, right), it is easy to see why the jaggedness in the

original curve (left) distracted me from selecting the \best" heuristic solution.

With Grappelli's PC model, it seems unlikely that Grappelli, a much less chro-

matic player than Parker, would use twice as many PC modes to drive his improvi-

sations than Parker did. The shape of his PC instabilities curve also supports the

notion that the K= 10 model is suspect. In particular, this curve seems to imply that

at some point K becomes \large enough" for the partitioning to again become reliably

reproducible.10 This leads me to wonder what other results might change had I, for

example, used Kmax = 20 versus 10 in my experiments.

The main point I have learned from this experience is that it is unreasonable to

assume that a hard and fast model-selection heuristic will always provide an uncon-

tested \best" result, and there is no reason to believe that several di�erent models

may not be equally acceptable. In addition, while model selection is an important

issue, computationally, it is expensive to investigate. This is especially the case with

Conditions I and II, which require that n
expt

di�erent learning experiments be run for

10The relationship between instability, sz , K, and training set size also warrants further study.

109

all values of K. In a commercially viable system, additional heuristics must be used

to reduce this search space.

As the models in Table 5.8 became the basis for BoB's stable implementation, the

results reported in the rest of this thesis use these models.

5.9 Performance

The performance of the vMn is empirically validated in two ways. First, how well

learnVmn
 handles sparsity is investigated. This investigation uses a higher-level

model from which speci�c vMn parameterizations are obtained. Next, to assess these

solutions' quality, simulations using the parameterizations learned for Parker and

Grappelli are conducted.

5.9.1 With Respect Sparsity

Three di�erent representative sparse datasets were generated to investigate how the

performance of learnvMn is a�ected by sparsity. Because these datasets are simu-

lated, their underlying structure is known, which makes it easy to assess how well

learnvMn can learn them.

As presented in Table 5.9 (lefthand columns), each dataset is controlled by two

high-level meta-parameters, � and �0 (de�ned shortly). Each dataset is referred to

by its scenario index, e.g., X
I
is the simulated dataset generated using �0 = 0:248

and � = :001. Various learning assessments are recorded in the middle and far right

columns.

setup: n
EM

=500, �=10�8, n
seeds

=10, n
sim

=175, n
expt

=25

Simulation Misclassi�cations Fitness

Scenario �0 � hardness cost total error rate overLearn underGeneralize

I 0.248 .001 0.11 0.00 0.11 -0.21 0.18

II 0.21 .020 0.22 0.07 0.29 -0.30 0.38

III 0.188 .031 0.31 0.16 0.47 -0.34 0.40

Table 5.9: Simulated Dataset Performance

For a given scenario, data is sampled from vMn as follows:

110

1. Use seven equally likely components.

2. Create N = 175 data-points (this produces, on average, 25 histograms per cluster).

3. Sample sz from a uniform distribution that spans 3 to 15 counts.

4. The Mnom components are de�ned using meta-parameters � and �0:

�1 = h�; �; �; �; �; �; �; �; �0 ; �0; �0; �0i

�2 = h�0; �; �; �; �; �; �; �; �; �0 ; �0; �0i

�3 = h�0; �0; �; �; �; �; �; �; �; �; �0 ; �0i

�4 = h�0; �0; �0; �; �; �; �; �; �; �; �; �0i

�5 = h�0; �0; �0; �0; �; �; �; �; �; �; �; �i

�6 = h�; �0; �0; �0; �0; �; �; �; �; �; �; �i

�7 = h�; �; �0; �0; �0; �0; �; �; �; �; �; �i.

Each component strongly prefers four bins with probability �0. The rest are fairly

improbable, occurring with probability �. The location of each component's � and

�0 bins where chosen to provide as much intra-component interference as possible, so

that combinations of features are often required to discriminate between components.

Data generation for scenario II was presented in Figure 5.2.

The only di�erence between these datasets is what values of � and �0 are used.

These values control how much individual component probability distributions overlap

with one another. As a result, in Table 5.9, the hardness estimate increases as �0

decreases. In other words, by increasing �0, individual components become more and

more alike, so particular features become less and less useful for discrimination.

The cost column supports the hypothesis that, as inherent hardness increases, so

does the penalty associated with having to learn
. The relation between hardness

and cost is explained in part by the corresponding trends in �tness. As hardness in-

creases, overlap in the training set components provides more chance for over-�tting

(overFit decreases). This over-�tting makes an independent test set look overly un-

likely (underFit increases).

The total error rate expected for a particular learned classi�er is the sum of cost

and hardness. While these rates may look high, keep in mind that a random classi�er

will, on average, misclassify 86%, so learning de�nitely produces useful feedback about

the model's underlying structure. This error rate is also bounded from below in terms

of hardness | no algorithm will, on average, misclassify less than this amount.

111

It is reassuring to see that, with an 11%-hard training set, learning accrued no

additional cost. Similarly, the 22%-hard dataset accrued only 12 additional mis-

matches (7%), for a grand total of 29% incorrect mappings. In part, model selection

Condition II was chosen because learning begins degrading at this hardness value.

These results are based on simulated data that is as sparse as a representative

PC dataset. Thus, it is reasonable to expect similar results when learning from a

musician's PC or INT data. This claim is somewhat optimistic because, in these

simulations, the number of components is known in advance and a vMn mixture

model generated the data. On the other hand, with real musician data, one might

expect a less contrived mixture (in these simulations, components were chosen to

interfere as much as possible).

5.9.2 With Respect To Parker And Grappelli

To further assess quality of the Parker and Grappelli learned models presented in

Section 5.8.1, these parameters were use to generate new simulated datasets.

As presented in Table 5.10 (lefthand columns), each simulation is identi�ed by its

speci�c scenario index, e.g., X
I
is the dataset obtained by independently sampling

119 data-points from vMn
�

P ;P(5)

�
. Various learning assessments are recorded in

the middle and far right columns.

setup: n
EM

=60, �=1; �10�8, n
seeds

=10, n
expt

=25

Simulation Mismatches Over-�tting

Scenario Parameter n
sim

hardness cost total error rate overLearn underGeneralize

I
P;P(5)

119

0.21 0.11 0.32 -0.31 0.30

II
P;I(4) 0.18 0.13 0.31 -0.28 0.19

III
P;D(3) 0.06 0.03 0.09 -0.32 0.25

IV
G;P(4)

126

0.13 0.05 0.18 -0.20 0.17

V
G;I(5) 0.15 0.08 0.23 -0.22 0.20

VI
G;D(4) 0.04 0.03 0.07 -0.35 0.40

Table 5.10: Musician Clustering Performance

In all cases, cost contributes less to total error than hardness does. Cost is most

damaging when learning Parker's INT model, and least damaging with the DIR mod-

els. The main reason why DIR models su�er little is because there is so little overlap

112

among their various components. When compared with a random classi�er, the use-

fulness of learning models for Parker and Grappelli are apparent. For example, while

the Parker PC model can be expected to misclassify 32% of its data, this is signi�-

cantly better than misclassifying 80%.

5.10 Discussion

5.10.1 Probabilistic Models

The probabilistic vMn scheme is model-based, which means that, with a learned

model, one can:

1. map new data-points into their most likely underlying generators;

2. estimate likelihoods;

3. generate new data.

The mathematical, probabilistic underpinnings of this model also mean that its as-

sumptions and underlying basis are completely speci�ed. With this speci�cation, an

immediate wealth of techniques | e.g., EM and its guarantee of convergence, proba-

bilistic reasoning, Bayesian online updating, etc. | are immediately available for the

borrowing. While others in the computer music community have applied more ad-hoc

techniques for music clustering with some success (Rolland and Ganascia 1996; Pen-

nycook and Stammen 1993), others have recently been calling attention to the bene�ts

of using more formal, probabilistic methods in music domains (Raphael 2001; Cemgil

and Kappen 2001a).

My appreciation of this formality was a long time in coming, and as a result

I can attest to to how much easier my current, EM-based approach was to imple-

ment than my previous, less principled approach was. Originally, I tried to use a

k-medians clustering algorithm (Kaufman and Rousseeuw 1990), with a �2 measure

(Press, Teukolsky, Vetterling, and Flannery 1992) as the pairwise similarity between

histograms. This measure was especially attractive because it is probabilistically de-

�ned to, in the limit, measure how likely it is that two histograms come from the same

underlying distribution. One of the problems with this measure, however, is that it is

not a distance metric (i.e., it does not necessarily satisfy the triangle inequality). This

113

is part of why it was unclear what update mechanism should be used to ensure that,

per-iteration, a cluster's means would always improve the clustering result. After

several months, I got a �2 median-based algorithm working, but when I ran it on real

music data, I ran into an additional problem: diÆcult-to-reason about in�nite loops.

In contrast, an EM-based solution is guaranteed to converge (Dempster, Laird, and

Rubin 1977) and minimize the Kullback Leibler distance between the model and the

underlying distribution that generated the data (Kearns, Mansour, and Ng 1997).

In addition, although the �2 measure does have a probabilistic interpretation, it

was not directly obtained from a generative model, which makes it less useful to an

IMC. More generally, in artistic domains, where objectivity is so diÆcult to measure,

a formal probabilistic model provides an additional foundation on which to investigate

performance. In the case of Bob, this is done from both from a machine learning point

of view (Section 5.9) and from a musical one (Chapter 7).

5.10.2 Markov Chain Clustering

Multinomial clustering and its application to the inference of Markov chains provides

a powerful mechanism for inferring structure in sequences, and has received some

recent attention in the AI community (Thom 2000b; Ramoni, Sebastiani, and Cohen

2000b; Ramoni, Sebastiani, and Cohen 2000a; Sebastiani, Ramoni, and Cohen 2000;

Smyth 1999; Cadez, Ga�ney, and Smyth 2000).

From a machine learning point of view, the most exciting aspect of the vMn model

is that, in addition to clustering variable-length data sequences, empirically, it has

produced reasonable results when data is \relatively sparse." The key insight is that

a histogram's generative component can de�ne a Markov chain (as was done with
D

and Figure 4.5). vMn not only clusters sequences, but also infers their underlying

transition matrixes, by which new, similarly distributed sequences can be sampled.

5.10.3 Sparsity

Sample size sparsity and its relation to histogram dimensionality is hard to quantify.

Higher histogram dimensions mean that more probable bins may exist, which provides

more opportunities for bin interference. On the other hand, larger dimensions provide

more possibilities for di�erent components' probable bins to not interfere with one

114

another.

Consider the interplay between dimensionality and sparsity in Figure 5.7. Both the

histograms for the melodic segment shown in Figure 5.1 and the underlying component

parameters belonging to its estimated conglomerative class are displayed. xD is the

most sparse, with 27-dimensions and only �ve counts. Roughly speaking, eight bins

in �D are non-negligible (marked by a `*') so there are a fair number of possibilities

for which this generator could have placed these counts into the bins of xD. Similarly,

there are seven non-negligible bins in �I (marked by a `�') and �P (marked by a `Æ'),
yet each of these histograms contains six counts. In considering this simple example,

one can imagine that the same component could generate a wide variety of di�erent

looking histograms. It is for this reason that the generalization scheme provided by

vMn is so rich.

One way to view sparsity is as a mechanism through which particular histograms

only reveal partial information about which of their underlying generator's features are

probable. In this light, one can consider using sparsity/partial information to facilitate

the simulation of creative participation in live musical exchanges. For example, one

way to interpret \creative" behavior is with respect to how much information about

a generator is revealed in a given context.

5.10.4 Generality

So far the focus of vMn has been on learning structure from relatively short and

sparse pitch-sequence segments. However, the vMn technique is a completely general

methodology for modeling structure in any sequence composed of nominal, discrete

symbols. Provided that an appropriate set of symbols is available in which to build

histogram feature vectors, this same algorithm could be used to �nd structure in other

musical sequences, e.g., rhythms, chords, etc. More general applications also exist.

For example, one promising idea would be to use vMn to automatically analyze log

�les on a computer, so that structure about various failure states might be learned.11

11This possibility was �rst suggested to me by Marko Grobelnik.

115

Figure 5.7: A Conglomerative Clustering Example

116

5.10.5 Musical Surprise

One subtle but important domain-speci�c decision was made when building the

classifyVmn algorithm (Table 5.3). It might seem curious that this function re-

turns an estimate's labeled likelihood versus its posterior, especially given that the

posterior quanti�es how certain the algorithm is about its clustering estimate. I de-

cided on this approach because labeled likelihood only increases when a data-point

lies closer to its estimated component's mean, whereas the posterior increases anytime

a feature vector moves away from its competing clusters' decision boundaries.

I decided that it was more important for BoB to be able to understand when

the musician was realizing one of their playing modes in a very surprising manner

than it was to recognize when it was very certain that a particular playing mode

estimate was correct. In musical terms, I interpret the estimated labeled likelihood

as how surprising the music appears (the smaller the likelihood, the more surprising).

Notions of surprise or expectation has received a fair amount of attention in music

perception and analysis communities, e.g., (Bharucha 1994).

5.10.6 Musical Modeling Assumptions

It is worth considering the underlying assumptions that are made when a vMn model

is used to learn about a solo's structure from its conglomerative feature vectors.

It is easy to interpret PC components as musical scales (e.g., Table 7.1), and from

this context, problematic assumptions become immediately apparent (similar issues

arise with the INT and DIR models). Assumptions that are made when clustering

PC histograms include:

Assumption: Violation/Feature? Cause:

(i)

Within a given bar, one

pitch class does not a�ect

or depend on any other.

Strong Violation: from a

scalar standpoint, pitches,

and their ordering in time,

do inuence one another.

The Multinomial

assumes feature inde-

pendence.

117

(ii)

Per bar, the musi-

cian randomly ips a

weighted die to deter-

mine which scale they

will use.

Medium Violation: scales

in surrounding bars can set

a context that inuences

this choice.

A Multinomial is used

to sample the mixture

weights.

(iii)

Any form of relation-

ship or ordering between

pitch-class bins is explic-

itly not assumed.

Feature: this scenario lets

the data itself determine

which pitch classes should

be viewed as more alike.

Multinomial components

are, by de�nition, nomi-

nal and discrete.

(vi)

Segments that contain

more leaves contain more

information about their

underlying scales.

Feature: it is often eas-

ier to determine the tonal-

ity in a local segment of

melody when it contains a

fast run of notes.

Histograms are not nor-

malized by their sample

size.

The remaining assumptions are discussed within the context of conglomerative

clustering:

Assumption: Violation/Feature? Cause:

(v)

The number of leaves per

segment does not depend

upon playing mode.

If this assumption is vio-

lated, I expect its a�ect is

small.

Sample size and mode

are treated indepen-

dently.

(vi)

The number of leaves in

di�erent bars does not

a�ect or depend on one

another.

Mild Violation: how many

notes are played in sur-

rounding bars could inu-

ence this choice.

The Multinomial is used

to sample �.

(vii)

Pitch class, intervallic,

and directional events do

not inuence each other

within a bar.

Strong Violation: melodi-

cally, pitches, intervals,

and directions, and their

ordering in time, do inu-

ence one another.

First, the conglomer-

ative learning assump-

tion means that PC,

INT, and DIR mod-

els are treated indepen-

dently. Second, see

Cause (i).

The most egregious violations, (i), (ii), and (vii) are all due to unreasonable inde-

118

pendence assumptions. However, these assumptions produce simpler models, which

are less susceptible to over-�tting. It has been recognized by other ML researchers

that Naive Bayes classi�ers, which tend to focus on decision boundaries, are often

fairly robust to independence assumption violations (Nigam, McCallum, Thrun, and

Mitchell 1998). In BoB, my hope is that inference on a smaller, more relevant dataset

will compensate for the model's simplifying assumptions.12

The most egregious melodic violations are assumptions (i) and (vii). Melodies are

temporal phenomena, and what comes before a�ects what comes after. Fortunately,

the conglomerative view does capture a fair amount of temporal structure. One reason

that I am not too concerned about this issue is that the clusters learned for Parker

and Grappelli produce musically reasonable, musician-speci�c results (Chapter 7). In

addition, in the generative model, additional temporal constraints can be introduced

via clamping (Section 6.3.5).

Musically speaking, assumption (iii) is most interesting because it provides a mech-

anism for letting the melodies themselves determine which pitch class (interval or

direction) bins are closest to each other. In particular, within a given mode, those

bins that share identical probabilities are viewed as equivalent, and the closer that

two bins probabilities are, the more similarly their counts will be treated. Given the

higher-level structure of the mixture model, this becomes a very powerful musical

idea because it allows the data itself to drive similarity in a context-sensitive way.

12In this sense, these violations become features.

119

120

Chapter 6

Generating Musician-Speci�c

Response

This chapter introduces two inter-related stochastic mechanisms: rhythmic transfor-

mation and goal-driven pitch sequence generation. Together, these mechanisms are

used by BoB to transform a call into a novel, user- and context-speci�c solo response

in real time.

Rhythmic transformation tweaks a call's rhythm, recursively modifying its VLT

to produce a response's rhythm. Since this approach operates upon a VLT's hierar-

chy, it directly bene�ts from the VLT's musically powerful rhythmic encoding. This

transformation is non-trivial because it must ensure that any tree it produces is also

a VLT.

The values of the pitched leaves in the response rhythm are generated using a

goal-driven pitch-sequence sampling scheme. In particular, a sequence that maps

into a particular goal | i.e., exhibits a speci�c user playing mode | is sought.

The diÆculty in this task is eÆciently integrating what was learned from the user-

model into a coherent sampling scheme. This task must also accommodate a fairly

general set of constraints, so that what is generated can seamlessly integrate into the

environment, with various kinds of domain knowledge and/or user preferences, etc.

This scheme's performance is evaluated with respect to how \well" it simulates new

datasets for Parker and Grappelli.

121

6.1 Overview

As outlined in Figure 3.3, generation takes place in the context of call and response.

In particular, the call's context in bar r is used to drive the generation of a novel,

user-speci�c response in bar r0.

Generation occurs in three stages:

1. Generate Stage I: Tweak the internal structure of call rhythm v
r
, producing re-

sponse rhythm, v
r0
.

2. Generate Stage II: For the pitch-valued leaves in v
r0
, generate a new pitch sequence,

�
r0
, that:

(a) incorporates the very most recent local context, mrp
r0�1

;

(b) mimics the call's user-speci�c perception, yC and lC, mapping back into the same playing

mode with the a similar amount of musical surprise;

(c) can meet a fairly general set of optional constraints.

3. Generate Stage III: Assign sequence �
r0
to the pitched leaves of v

r0
and playback

the result.

With this method, a response is \similar" to its call in that the former's rhythm

is a stochastic transformation of the latter. With respect to conglomerative trends,

similarity relies on the fact that both, at least in principle, are generated by the same

underlying playing mode distribution.

The primary focus in this chapter is Stage II, which, because of sample-size spar-

sity, can provide signi�cant generalizations in the agent's behavior.

6.2 Rhythmic Transformation

In this section, a stochastic algorithm that recursively tweaks a VLT's internal struc-

ture is presented.

6.2.1 Node-Speci�c Data Types

To describe how a VLT is tweaked, some high-level implementation details are needed.

Since various VLT nodes contain di�erent types of information, VLTs are implemented

122

as non-homogeneous data structures. Polymorphic behavior is maintained (across

classes, methods behave in a class-speci�c manner). Three node classes are used:

� leaf class contains either a pitch or a rest value. Method isRest distinguishes

between these two. Only when this method returns true can �elds pitch and

tie be queried.

� int2 class contains two child nodes, a left child, l, and a right child, r.

� int3 class contains three child nodes, a left child, l, a middle child, m, and a

right child, r.

Internal nodes are comprised of classes int2 and int3. When all of the children in

an internal node are leaf nodes, it is an internal terminal node. This condition is

identi�ed by method isTerminal. The fringe of a VLT is de�ned to be all the tree's

leaf and internal terminal nodes.

6.2.2 Rhythmic Embellishment and Simpli�cation

Because of the VLT's hierarchical nature, techniques for embellishing and simplifying

rhythm are straightforward. Consider �rst embellishment, where a part of the VLT's

fringe is expanded (Figure 6.1, left). Simpli�cation, on the other hand, involves

collapsing part of the VLT's fringe (Figure 6.1 right).

Figure 6.1: Rhythmic Embellishment (left) and Simpli�cation (right)

6.2.3 Maintaining the Properties of a VLT

The internal structure of a VLT was carefully restricted to accommodate only encod-

able rhythms. When tweaking a tree's internal structure, care must be taken to ensure

that the result produced is also a VLT (i.e., the rhythmic restrictions in Chapter 4

must remain invariant). Restrictions I and II are easy to maintain: simply disallow

123

subdivisions or mergers that produce a node (or nodes) whose duration(s) are not

valid.

A degenerate tree violates Restriction III, and therefore is not as small as possible.

Avoiding degeneracy is more diÆcult and accounts for most of the complexity asso-

ciating with transforming a rhythm. A degenerate tree branch and its unique VLT

equivalent are shown in Figure 6.2. The dashed line links back into an arbitrary, en-

tire tree, whereas the speci�c branch being discussed is drawn with solid black lines.

The dotted arc that connects the two notes (left) indicates that these leaves form

a compound duration (they would be tied during playback). As such, this branch

has an equivalent, smaller representation (right). The key observation to take away

from this example is that, provided Restriction III is maintained, an entire set of leaf

siblings will never contain identical values, for if they did, a simpler tree would have

been used to construct them.1

Figure 6.2: A Degenerate Tree Branch and its Corresponding VLT

The pitch sequence generator in Stage II handles degeneracy by disallowing unison

intervals at key locations within the sequence. Degeneracy handling is simpli�ed by

maintaining the the following invariants during rhythm tweaking:

� Tweak Invariant I: When all of a node's siblings are leaf values, at least one

of them must not become a rest.

� Tweak Invariant II: Rests can only be modi�ed in the rhythmic transforma-

tion stage.

Part of this degeneracy-handling strategy is outlined in Figure 6.3, where leaves

are drawn as triangles. The white triangle is a rest value, and the black and gray

triangles are arbitrary, non-identical pitch values. In v, pitched leaves are separated

by a rest, so degeneracy will never result, even if both have the same pitch value.

1This statement assumes that the leaves comprising composite durations are not considered

identical.

124

Thus, the interval between these two pitches is irrelevant, i.e., the zig-zag line which

links them is marked with a `T' (true). Locations where the unison interval must be

disallowed are marked with `F' (false).

Now consider trees v0 and v00. Across sibling boundaries, identical pitches are never

degenerate, so unison intervals are allowed. With Invariants I and II, it is suÆcient to

disallow intervals only in those internal terminal nodes whose children are all pitches.

It is for this reason that the `F' is placed on the int3 node of v0 and the int2 node

of v00. The only remaining possibility, which concerns Invariant I, is addressed in

Section 6.2.6.

Figure 6.3: Avoiding Degeneracy: Constraining where Unison Intervals Occur

6.2.4 Node-Speci�c Tweak Methods

The recursiveTweak methods (Table 6.1) are used to transform a VLT, starting at

the root node and proceeding, in order, through its descendents. Only those nodes

in the fringe are possibly modi�ed using the fringeTweak methods (Table 6.2). The

stochastic parameters that control fringe tweaking (the subscripted `a' variables) are

presented in Section 6.2.5.

Internal fringe nodes are possibly modi�ed by the calls in lines 1 through 4 of

recursiveTweak. If modi�cation does occur, it takes place in lines 2 through 4 of

fringeTweak. Fringe nodes are tweaked by �rst sampling a random number gener-

ator (line 1) and then determining what change (if any) this sample corresponds to.

The isValid check (Section 4.3.1) ensures that rhythmic modi�cations produce valid

results. In each of these methods, the last outcome is ignored because it is a no-op

(no change is made). The nonRestChild logic is explained in Section 6.2.6.

For details concerning class-speci�c notation, see Appendix A. In addition, when

this is assigned, it is assumed that a node's type can be changed within its modifying

method and that garbage collection automatically takes care of itself.

125

leaf :: recursiveTweak()

1: this:fringeTweak()

int2 :: recursiveTweak()

if this:isTerminal()

1: this:fringeTweak()

else

if this:l:isLeaf()

2: this:l:fringeTweak()

else

this:l:recursiveTweak()

end

if this:r:isLeaf()

3: this:r:fringeTweak()

else

this:r:recursiveTweak()

end

end

int2 :: recursiveTweak()

if this:isTerminal()

1: this:fringeTweak()

else

if this:l:isLeaf()

2: this:l:fringeTweak()

else

this:l:recursiveTweak()

end

if this:m:isLeaf()

3: this:m:fringeTweak()

else

this:m:recursiveTweak()

end

if this:r:isLeaf()

4: this:r:fringeTweak()

else

this:r:recursiveTweak()

end

end

Table 6.1: recursiveTweak Methods

126

leaf :: fringeTweak()

-1: if this:isRest()

return

0: end

p = this:pitch; t = this:tie

d = this:duration

! =

a
1!2

; a
1!3

; a
1

�
1: outcome = Mnom(1; !)

if outcome == 1 and isValid(1; 2; d)

2: this = int2�
leaf(p; d2 ; t); leaf(p;

d
2 ; t)

�
elseif outcome == 2 and isValid(1; 3; d)

3: this = int3�
leaf(p; d3 ; t); leaf(p;

d
3 ; t); leaf(p;

d
3 ; t)

�
end

int2 :: fringeTweak()

child = this:nonRestChild()

p = child :pitch; t = child :tie

d = child :duration

! =

a
2!1

; a
2!3

; a
2!x

; a
2

�
1: outcome = Mnom(1; !)

if outcome == 1 and isValid(2; 1; d)

2: this = leaf(p; 2 � d; t)

elseif outcome == 2 and isValid(2; 3; d)

3: this = int3

�
leaf(p; d�23 ; t);

leaf(this.m.pitch; d�23 ;this.m.tie);

leaf(this.r.pitch; d�23 ;this.r.tie)
�

elseif outcome == 3

4: this = int2

�
this:l:fringeTweak();

this:r:fringeTweak()
�

end

int3 :: fringeTweak()

child = this:nonRestChild()

p = child :pitch; t = child :tie

d = child :duration

! =

a
3!1

; a
3!2

; a
3!x

; a
3

�
1: outcome = Mnom(1; !)

if outcome == 1 and isValid(3; 1; d)

2: this = leaf(p; d � 3; t)

elseif outcome == 2 and isValid(3; 2; d)

3: this = int2

�
leaf(p; d�32 ; t);

leaf(this.r.pitch; d�32 ;this.r.tie)
�

elseif outcome == 3

4: this = int3

�
this:l:fringeTweak();

this:m:fringeTweak();

this:r:fringeTweak()
�

end

int2 :: nonRestChild()

if !lthis:l:isRest()

return this:l

else

return this:r

end

int3 :: nonRestChild()

if !lthis:l:isRest()

return this:l

elseif !lthis:m:isRest()

return this:m

else

return this:r

end

Table 6.2: fringeTweak Methods

127

6.2.5 Stochastic Rhythm Parameters

Table 6.3 displays the parameters that control how likely various elaboration and

simpli�cation tweaks are. The parameters in the upper part control leaf node trans-

formations; the middle and bottom parts a�ect int2 and int3 transformations re-

spectively.

The subscripts on the probabilities indicate what transformations these variables

control. The �eld to the left of the `!' refers to the node class upon which the

transformation is performed (1, 2, and 3 corresponding to nodes leaf, int2, and

int3). The �eld to the right of the arrow refers to what class this node becomes

should the transformation take place. When this latter �eld is an `x', the node's

own type doesn't change, but any or all of its children's types may change. The last

subscript (no arrow) corresponds to the no-op.

E�ect Transform Probability Value

growth leaf into 2 children a
1!2

2(+00)

growth leaf into 3 children a
1!3

2(+00)

none no-op a
1

00

(+00)

collapse 2 child leaves into parent leaf a
2!1

0

+0+00

growth 2 child leaves into 3 a
2!3

2(+0+00)

growth transform left and right child leaves a
2!x

2(+0+00)

none no-op a
2

00

(+0+00)

collapse 3 child leaves into parent leaf a
3!1

0

2(+0+00)

collapse 3 child leaves into 2 a
3!2

0

2(+0+00)

growth transform left, middle, and right child leaves a
3!x

(+0+00)

none no-op a
3

00

(+0+00)

Table 6.3: Fringe Modi�cation Parameters

The stochastic modi�cation scheme presented here is simple because no higher-

level reasoning determines how much growth, collapse, and stasis is desirable in a

given context. Rather, the following set of meta-parameters are set before on-line

interaction takes place, and these fully determine how likely various fringe tweaks

will be:

� embellishment factor, ;

� simpli�cation factor, 0;

128

� no-op factor, 00;

6.2.6 An int3 Node Modi�cation Example

Figure 6.4 illustrates all the possible decision points in int3 :: fringeTweak. The

top-most `�' is the original int3 terminal node, upon which int3 :: fringeTweak is

called. Its left, middle, and right-most children are drawn in order underneath as the

black, white, and gray triangles (for the meaning of these triangles, see Section 6.2.3).

Inside int3 :: fringeTweak, one of four decisions will be made, depending upon the

sampled value, outcome. Each decision is drawn as a thick gray arrow, along with its

accompanying likelihood.

Figure 6.4: int3 :: fringeTweak Decision Points

The �rst decision (leftmost gray arrow) considers collapsing int3 into a single

leaf. This action will only take place if: outcome a3!1 is selected, and it is valid to

triple the node's duration. If this node is collapsed, the pitch of its left-most child

(as determined by nonRestChild) is used as a place holder for the new node.

As long as nonRestChild returns a non-rest child, which child it selects is unim-

portant. (This child's content is merely a pitch-valued place-holder whose �nal value

is determined in Stage II.) Thus, the decision to have nonRestChild scan from left

to right, returning the �rst pitched child that is found (in this example, the black

129

triangle) is arbitrary. This place-holder must not be a rest because, as justi�ed in

Figure 6.5, if both int3 and its sibling were allowed to become rests, degeneracy

could result.

Figure 6.5: Rest Degeneracy Example

The second decision (gray arrow a3!2) considers collapsing the int3 terminal node

into an int2 terminal node. Again, only valid transformations are allowed and non-

degeneracy requires that at least one of the placeholder children is not a rest.

Rather than changing int3 directly, the third decision (gray arrow a3!x
) attempts

to transform each of its child leaves. The dotted lines emanating out from these

children indicate what decision points are possible when leaf :: fringeTweak is

called on them. Note that leaf tweaking can only embellish (grow) a rhythm. In-

variant II is the reason why the middle child (a rest) remains untouched (line -1 in

leaf :: fringeTweak). At �rst glance, it may appear that the a3!x
transformation is

not really necessary | after all, int3 :: fringeTweak has already been called. How-

ever, if this decision point were removed, there would be no way for an int3 node

to grow. Furthermore, this mechanism allows complete VLT branches to become

unbalanced, and such trees can be rhythmically desirable.

The last decision (gray arrow a3), is a no-op.

6.3 Goal-Driven Pitch-Sequence Generation

In this section, an algorithm is developed for generating an arbitrary length pitch

sequence that simultaneously:

1. tends to exhibit a speci�c goal, i.e., user playing mode yC;

2. meets a fairly general set of optional constraints.

Goal-driven generation provides the crucial mechanism for closing the loop

between learning to perceive and being able to respond \in kind." The

130

constraints ensure that what is generated can seamlessly integrate into the

local environment, higher-level domain knowledge, user desires, etc.

A key technical issue is to merge the (perhaps conicting) desires of the PC,

INT, and DIR trends implied by yC into a coherent pitch sequence sampling scheme.

This issue is �rst considered in terms of an exact solution | one in which all three

goal trends are simultaneously guaranteed to asymptotically occur | because it sets

the stage for the more practical approach, generatePS, that BoB uses. The practical

approach is simpler than the exact solution because it assumes that PC, INT, and DIR

trends can be treated independently. However, the practical approach also considers

a more diÆcult task because it guarantees that certain external constraints are met.

The practical solution is appropriate for real time because its independence as-

sumption provides an eÆcient sampling scheme, e.g., computation time is polynomial

in terms of the number of inputs. While this assumption produces sequences that

tend to exhibit properties of the desired goal, yC, sequences are not asymptotically

guaranteed to do so. The odds of generating a sequence that exhibits the desired

conglomeration of trends exponentially increases as the generatePS distribution is

randomly re-sampled. Function searchPS performs this higher-level search, �rst re-

sampling and then de�ning a �tness measure that speci�es which item from a set of

sequences is \best."

6.3.1 Conglomerative-Driven Generation

How does one develop a generative algorithm that combines the perhaps conict-

ing trends required of di�erent temporal views, yP; yI and yD, into a coherent pitch

sequence sampling scheme? This task is diÆcult because:

� PC trends entirely ignore pitch ordering.

� INT trends only care about adjacent pitch pairs.

� DIR trends care about varying-length subsequences.

At a high level, it is useful to think of generation in terms of reversing the arrows

in Figure 5.1. However if generation merely reversed the training set's mapping, only

snippets that the musician has already played could be retrieved. What is really

needed is the ability to generalize | to be able to generate new solos that, when

131

perceived using classifyVmn, map back into the same playing mode. Conglomerative

generation is de�ned as this process of generating a new pitch sequence, �, of arbitrary

length T:

� = h�
1
; � � � ; �

t
; � � � ; �

T
i

that maps back into conglomerative goal, yC.

Ideally, the knowledge contained in user-model vMn
�

C
�
could be used to de�ne

a randomized pitch-sequence sampling scheme. Towards this end, the shorthand:

�C =
D
�P; �I; �D

E
;

refers to the goal's relevant components. �P is the yP-th component of
P, �I is the

yI-th component of
I, and so on.

6.3.2 Why the Obvious Approach Does Not Work

It is reasonable to consider using �C directly to generate a new set of histograms:

xP � Mnom(T; �P)

xI � Mnom(T; �I)

xD � Mnom(T; �D)

This sampling scheme, however, is unhelpful because it does not explain how to

arrange some selection of pitches so that all of the sampled PC, INT, and DIR counts

are accounted for.

For example, consider the two histograms in Figure 6.6. There is no way to choose

and order two pitch values such that:

� one of them uses pitch class D[and the other E[;

� the interval between them is either a tritone or a perfect 4th.2

While
C is useful for abstracting higher-level trends from a solo by ig-

noring various aspects of a pitch sequence's temporal order, it is precisely

for this reason that the generative model does not necessarily produce a

viable solution when sampling from it.

2The left over interval would have to connect with the MRP in a previous segment.

132

C Db D Eb E F Gb G Ab A Bb B
0

1

2

u m2 M2 m3 M3 P4 tt P5 m6 M6 m7 M7 o
0

1

2

xP xI

Figure 6.6: A Pair of Histograms That Do Not Produce a Pitch Sequence

6.3.3 Stochastic Processes

Randomness must be introduced to reverse the many-to-one mapping, � �! yC, that

conglomerative generative requires. A stochastic process that operates over pitch

values provides an ideal construct for reversing this mapping because of its explicit:

� randomness;

� handling of temporal order;

� mechanisms for a�ecting how likely various pitch sequences will be.

For more details about stochastic processes, see (Ross 1993). What follows is a brief

synopsis of that reference.

Consider stochastic process: D
q
1
; � � � ; q

t
; � � � ; q

T

E

that runs for a �nite period of time, T, and transitions between a �nite set of states:

8 t; q
t
2 S = f1; 2; � � � ; s; � � � ; Sg:

Furthermore, suppose that whenever this process is in state q = s there is a �xed

probability, �
s;s0
, that it will next transition into state s0 in the next time step. In

particular:

8 t; Pr(q
t+1

= s
0jq

t
= s) = �

s;s0
:

This stochastic process is a Markov Chain because the probability of transitioning

from one state into another is only conditioned on the current state.

A Markov Chain's state transition matrix, �, must adhere to the following con-

straints:

8 s; s0; �
s;s0
� 0; (6.1)

133

8 s
0;
X
s

�
s;s0

= 1: (6.2)

By assuming an ergodic, irreducible Markov Chain, additional equations that summa-

rize its long-term behavior are obtained. In particular, there exists a unique stationary

probability distribution, �, de�ned over states so that:

#
n
1 � t � Tjq

t
== s

o
T

T!1�! �
s
;

or equivalently:

8 s
0;

X
s

�
s
� �

s;s0
= �

s0
; (6.3)

8 s; �
s
� 0; (6.4)X

s

�
s
= 1: (6.5)

Provided � is known, straightforward matrix algebra can be used to solve for �.

6.3.4 An Exact Solution

An exact solution is obtained by deriving a Markov chain that:

� operates over a set of states comprised of pitch and relevant history pairs;

� provides the long-term behavior required of �C.

Provided that a long enough walk was sampled from this exact chain, the resulting

pitch sequence could be transformed into histogram, xC, that, when normalized, would

converge to �C. How long convergence would take depends upon the chain's settling

time, which in turn depends upon how many times matrix � must be multiplied

with itself before it reaches a �xed point. How long a sampled sequence must be

before its histogram has enough counts to map into conglomerative goal yC is, while

related, a di�erent question, whose answer depends to some extent upon how hard

the underlying mixture model is.3 Certainly for BoB's short segmentation windows,

long-term guarantees become less relevant. Nonetheless, the exact Markov Chain

is derived because it provides a good basis for understanding the conglomerative

generation problem.

3Recall that a clustering becomes less distinct as the number of counts decreases.

134

De�nition

An exact solution is parameterized by: �C, p
min

, and p
max

. The latter two parameters

specify a consecutive set of semi-tones:

P =
n
p
min
; p

min
+ 1; � � � ; p

max
� 1; p

max

o
;

from which pitch sequence � is sampled.4 P contains n
P
= p

max
� p

min
+ 1 elements.

The set of relevant histories (Section 4.4.6) is:

H = f+;++;+++; o; oo; ooo;�;��;���g;
and so n

H
= 9. The exact Markov Chain operates over a tuple composed of both

sets:

S =
n
hp; hijp 2 P; h 2 H

o
:

Notation s 2 S and s0 2 S are used interchangeably to refer to tuples hp; hi and
hp0; h0i respectively. Thus, for example, wherever s0 appears, p0 and h0 are implied

(and vice versa).

An exact chain's transition probabilities must satisfy equations 6.1 and 6.2. Fur-

thermore, its stationary distribution must exist, satisfying equations 6.3 through 6.5.

Asymptotic convergence to �C is assured with some additional equations:

1. PC constraints ensure that, with a long enough sequence, the distribution over

pitch classes converges to �P: X
p 2 fi 2 Pjpc(i)==mg ; h 2 H

�
s
= �P

m
: (6.6)

pc was de�ned in Section 4.4.3.

2. INT constraints ensure that, with a long enough sequence, the distribution implied

by adjacent pitches' absolute intervals converges to �I. Speci�cally, when absolute

interval m is larger than the unison interval:X
s 2 S

�
s
� �

s;s0=<p+m;hs(h;+)>
+
X
s 2 S

�
s
� �

s;s0=<p�m;hs(h;�)>
= �I

m
: (6.7)

When m is equal to the unison interval:X
s 2 S

�
s
� �

s;s0=<p;hs(h;o)>
= �I

m
: (6.8)

hs and sym were de�ned in Sections 4.4.5 and 4.4.6.

4In the context of pitch, `+' and `�' represent addition and subtraction by semi-tones.

135

3. DIR constraints ensure that, with a long enough sequence, the transitions out of

relevant history states (Figure 4.5) converge to �D:

X
s 2 S; p0 2 fi 2 Pjsym(p;i)==jg

�
s
� �

s;s0=<p0;hs(h;j)>
= �D

m=dInd(h;j)
: (6.9)

dInd was de�ned in Section 4.4.6.

This exact solution extends the Markov Chain in Figure 4.5 so that, instead of

having states de�ned just over H, it now considers all possible pairs between P andH.
Whereas Figure 4.5 had nine states, this chain has n

S
= n

P
� n

H
. Similarly, instead of

three output transitions per state, there are now n
P
, one for each possible next pitch

value. However, the underlying directional history updating structure is the same,

and reproducing structure in this way provides the same bene�ts (fewer parameters to

�t, a sparser transition matrix). The di�erence is that now, instead of each transition

corresponding only to a direction, it also corresponds to a speci�c pitch. With these

states, it is easy to produce random pitch sequences that asymptotically converge to

speci�c conglomerative trends. Simply take a random walk, strip away the history

part of the tuple, and report the sequence of pitches left over.

An Example

A single step in a Markov Chain operating over the range p
min

= C : 4 to pmax = E : 4

is displayed in Figure 6.7 (octave values are not shown). This chain operates over

n
P
= 5 pitches. Its complete graph, n

S
= 45, has �ve di�erent pitches on which to

transition out of any given state. Even with this small n
P
, the entire graph for one step

is too big to display. Figure 6.7 only contains those states that are necessary for tran-

sitioning out of a state that is currently on pitch D : 4, s 2 fSjp = D : 4; h 2 Hg.
Dotted arcs correspond to downwards motions, solid arcs to upwards motions, and

dot-dashed arcs to unison intervals.

Properties of an Exact Solution

An exact solution requires solving for both � and �, but pairs of these variables appear

as products in some of the equations. If either � or � were known, then solving for

the other would reduce to a set of linear equations with greater-than-zero constraints.

Linear Programming could be used to solve for the unknown variables. With pairwise

136

Figure 6.7: One Step in Part of an Exact Markov Chain

products, however, a general solution requires Quadratic Programming, an NP-hard

task.

To solve for �, n
P
�1 parameters per state must be estimated, resulting in a total

of n
S
� (n

P
� 1) free variables. � introduces an additional n

S
� 1 parameters, six of

which, because of implicit bounds implied by P, are zero. In total, an exact solution

requires 9 � n2

P
� 7 free variables to be estimated. At the same time, Equation 6.3

introduces n
S
linear equalities and �C introduces another 52. When n

P
� 4, there

are more variables to estimate than there are constraints; a solution must exist. The

question that remains is for what values of �C, p
min

, and p
max

does a feasible solution

| i.e., one whose probabilities are all nonnegative | exist?

SimilarMarkov Chains have been considered in Steinsaltz andWessel (in progress),

and their work inspired some of this derivation. Essentially, they considered distri-

butions over pitch and pair-of-interval tuples. The problem was then broken into

two Linear Programming problems, whereby � was �rst estimated by solving those

equations that were decoupled from �, and then its solution was used to solve for

�. While feasible solutions were obtained using this approach, no set of general

conditions under which a feasible solution is guaranteed has been derived.

To provide insight into why a particular set of parameters can produce a set of

equations for which no feasible solution exists, consider again Figure 6.7. With this

137

graph's states, there is no way to sample a pitch whose PC lies outside of the the

C to E range. Thus, an exact solution would need all of the non-obtainable PCs

in �P to have zero probability. Similarly, since P only spans intervals between the

unison and Major 3rd, larger intervals in �I would need zero probability. However,

BoB's musically motivated learning priors (Section 5.7.4) ensure that no bins will

ever have zero probability, so an asymptotic solution for �C cannot exist. In BoB, the

issue of asymptotic convergence becomes less important because short sequences are

generated.

6.3.5 External Constraints

In the exact derivation, aside from p
min

and p
max

, no external constraints were intro-

duced. Nonetheless, such constraints are important because they ensure that what

BoB produces can seamlessly integrate into the local environment, higher-level do-

main knowledge, user desires, and so on.

Prior Context Constraints

When BoB generates a real-time solo a bar at a time, the next bar used in the

generation algorithm, r0, must seamlessly integrate into what was most recently played

in bar r0 � 1. This is accomplished by having the random walk in bar r0 start in state:

q
t=0 = hp

0
= mrp

r0
; h

0
i:

This assures that the �rst interval in the new walk is coupled to the MRP in the

previous bar. Since there is no reason to believe that bar r0 � 1 and r0 are controlled

by the same DIR component, h
0
will not rely on the content in bar r0 � 1. Instead,

this value will be initialized by drawing a sample from the stationary probability

distribution over H that is implied by the goal, �D, in bar r0.

Pitch Range Constraints

One reason to constrain the possible pitch values that may be used during generation

is physical | certain instruments are limited to playing in certain ranges. However,

another reason to formalize range constraints is to provide an additional hook into

local context, supporting, for example, the ability to let the range of activity found

in a call determine the legal range of activity that is possible in a response.

138

Ultimately, limiting the range of possible pitches is accomplished via p
min

and p
max

.

How these values are set for each bar depends on:

� a set of absolute ranges, which speci�es an instrument's physical constraints;

� an incremental relative range, p
incr

, which speci�es how much to extend the range of

pitches found in a call when producing a response.

Absolute ranges are �xed up front, never change, and place a hard limit on the

maximum range of values ever allowed in P. Relative ranges, calculated per segment,
are derived for a given call.

Degeneracy Constraints

If, at a speci�c location within the pitch sequence, a unison interval were to occur,

then its application to the VLT would produce degeneracy. A constraint that sets the

smallest allowed interval, i
min

, to either a unison or a Minor 2nd handles this issue.

The VLT for whom these pitches are generated informs the algorithm what unison

intervals are acceptable (Section 6.2.3). These results are stored in unison vector u:

u =
D
u

1
; � � � ; u

t
; � � � ; u

T

E
:

u
t
= true indicates that the interval between �

t�1
and �

t
may be a unison.

Although degeneracy could have been addressed in Generate Stage III by cleaning

up a degenerate tree after � was applied to it, this approach would run the risk of

eliminating unison intervals that �I encouraged.

Maximum Interval Constraint

The maximum interval that may occur in a response is tied to the call in much

the same way that maximum pitch range was. In particular, the maximum interval

allowed in a response, i
max

, is determined by extending the maximum interval range

found in the call by i
incr

semi-tones.

On- and O�-Beat Constraints

Some early Parker generation attempts left me with the feeling that if on-beat and

o�-beat pitches were handled di�erently, the quality of the solos might signi�cantly

139

improve. However, since I had already been using a stable baseline of learning results

and did not want to change things mid-stream, I investigated this issue using a rather

quick hack, wherein beats were identi�ed and handled post learning. Although this

attempt did not produce noticeable improved or worsened behavior, there are com-

pelling musical reasons to provide a pitch sequence generator with explicit on- and

o�-beat knowledge. This quick hack is derived because it introduces the notation

needed to handle beats. This derivation also demonstrates how easy it is to integrate

musical common-sense knowledge into the generation algorithm.

All leftmost interior fringe children are assumed to be on-the-beat so that the VLT

can calculate on-beat locations. These results are stored in on-beat vector b:

b =
D
b
1
; � � � ; b

t
; � � � ; b

T

E
:

b
t
= true indicates that �

t
is an on-beat. This beat labeling scheme is useful in

situations like v (Figure 6.8, left), which occur when Parker plays a \run of eighths,"

a context in which he de�nitely treats the �rst tone in each eighth note pair di�erently.

In contrast, v0 (Figure 6.8, right) shows where this overly simple beat labeling rule

breaks down. In many contexts, musicians would identify the last half-note as on-

the-beat.

Figure 6.8: On-Beat Examples

At the very least, beat handling requires having di�erent PC parameters for on-

and o�-beat events. I estimated these parameters as follows:

1. Map XP into Y P using learned estimate
P.

2. For each partition of XP, determine the frequency in which on- and o�-beat pitch

classes occur.

3. Estimate a new on- and o�-beat distribution for each partition using both these

frequencies and a Lagrangian prior.5

5Since all data is labeled, this solution has a closed-form.

140

The biggest distinctions between on- and o�-beat distributions occurred with Parker's

data, which makes sense given his tendency to play more chromatically than Grappelli.

Clamping Constraints

Ideally, BoB would provide a general framework for specifying arbitrary aspects of

a solo's content, allowing things like the environment, common-sense musical knowl-

edge, and speci�c desires that the user may wish to articulate in advance to be

accommodated.

For example, there are bene�ts to integrating harmonic knowledge into the system,

although, as I have already argued (Section 2.4.3), there are reasons why an IMC

should not need to rely on such knowledge. One way to include this knowledge

is through a constraint that requires every on-beat tone to be consonant with the

underlying harmony. As another example, rhythm and pitch could be coupled by

insisting that, whenever a triplet is played, the melody pivots around the middle

note, changing direction by a small pair of intervals.6

What is needed is a mechanism for specifying that only certain pitches, intervals,

and/or direction trends are allowed at given locations within a walk. In other words,

at certain points BoB should be able to clamp particular events to one of a speci�c

set values. For simplicity, only pitch-class clamping will be notated and derived. In

particular, I will derive a method for generating a melody whose pitch at step t = c

is guaranteed to come from a particular clamping set, C, i.e., �
t=c 2 C. From this

derivation, more elaborate PC, INT, and DIR extensions are straightforward.

6.3.6 The Practical Solution

Rather than solving for asymptotic convergence, BoB assumes that the individual

components in �C =
D
�P; �I; �D

E
can be independently combined to produce a tran-

sition matrix that generates sequences that exhibit the desired conglomerative be-

havior. In total, four di�erent transition matrices are constructed in order to handle

all possible degeneracy and on-beat combinations. Using these matrices, an eÆcient

forward-backward algorithm is derived for handling the more general clamped con-

straints.

6One listener noted that this rhythmic device, commonly used by Parker, was missing in BoB's

responses.

141

Transition Matrices

The independence assumption allows transition matrices to be calculated in closed

form. In particular:

�
s;s0

=
�P
m=pc(p0)

� �I
abs(p;p0)

� �D
dInd(h;sym(p;p0))P

s02S �
P

pc(p0)
� �I

abs(p;p0)
� �D

dInd(h;sym(p;p0))

(6.10)

is the probability of transforming from state s = hp; hi into s
0 = hp0; h0i. Because of

its implicit reliance on P, this equation ensures that the pitch range constraints are

met. The remaining constraints, however, still need to be provided for.

The numerator treats the probability of the next pitch as a sole function of:

� its pitch class, pc(p0);

� the absolute interval between itself and the previous pitch, abs(p; p0);

� the transition out of relevant directional history h via direction sym(p; p0).

The denominator is the normalizing constant. With a sparse matrix implementation,

� can be calculated in O(9 � n2
P
) time.

While there is no reason to expect that the transition matrix de�ned by equa-

tion 6.10 will provide long-term convergence (equations 6.6-6.9), the independence

assumption will tend to produce sequences that, at least in the short term, map back

into the desired goal. When a transition's conglomerative terms are, in isolation, quite

likely, its unnormalized value will attenuate less than a transition whose terms do not

cooperate. After normalization, those transitions that accommodate the largest con-

glomeration of trends will have the greatest chance of being selected. In this way,

�P, �I, and �D act as a sophisticated �lter, magnifying those events that are most

collaborative and attenuating those that are not.

Intervallic Modi�cation

For Equation 6.10 to be well-de�ned, the dimension of �I may need to be extended.

When the maximum interval that is accessed by the second term, abs(p
max
; p

min
), is

greater than 13 (more than an octave), the dimension of �I must be increased.

When increasing �I, all intervals beyond dimension 13 are weighted according to

the probability of their complement, where an interval's complement is de�ned to be

142

the interval modulo 12 (the interval with octaves subtracted o�). Intervals larger

than a Major 7th are then normalized so that their total sum equals the probability

originally allocated to the larger-than-an-octave bin.

�I is also modi�ed so that the probability associated with any interval outside of

the range i
min

and i
max

is zero.

Temporal Modi�cation

At each step in a walk, degeneracy determines whether or not i
min

is a unison or a

Minor 2nd interval. Similarly, a di�erent PC parameterization is used for on- and

o�-beats. Thus, four transition matrices are created in total, one for each possible

degeneracy and beat combination. This set of matrices:

L =
D
�(true; true); �(true; false); �(false; true); �(false; false)

E
;

is de�ned by the parameters: �C, p
min

, p
max

, and i
max

. When the �rst argument of

� is true, it is calculated using the unison i
min

interval. Similarly, when the second

argument is true, it is calculated using the on-beat PC parameterization.

6.3.7 Forward-Backward Pitch Sequence Generation

generatePS (Table 6.4) takes a T step walk:

� = h�
1
; � � � ; �

t
; � � � ; �

T
i;

through the chain de�ned by L. Unison constraints, u, and on-beat constraints, b, are
handled on a step-by-step basis, determining at each step which matrix from L is to be

used. Prior context, which determines the walk's initial state, is handled via �D and

mrp. Clamping constraints, C and c, are propagated through the chain's transition

matrices using a variant of the forward-backwards algorithm. With a sparse matrix

implementation, �, the most expensive calculation, requires in O(9 � n2
P
� c) oating

point operations.

The walk starts in the initial state, q
t=0 (line 4 and 5), as described in the `Prior

Constraints' section. Each new state is sampled from the output transitions of the

current state using the appropriate beat and degeneracy con�guration (lines 6a and

9). For each execution of the for loop (line 6), each new state becomes the previous

143

generatePS(mrp; �D;L; u; b; c; C)

determine the length of the walk, T, from u or b.

determine the number of states, n
S
, from a matrix in L

1: make �
t=c

a zero vector

for p 2 C, h 2 H

1a: �
t=c;s=<p;h>

= 1

end

for t=c� 1; t � 1; t��

� = L(u
t+1
; b

t+1
)

2: �
t;s
=

X
s0 in S

�
s;s0
� �

t+1;s0

3: end

4: sample h
t=0

from the stationary distribution implied by �D

5: q
t=0

=

mrp; h

0

�
6: for t=1; t � T; t++

6a: � = L(ut; bt)

if t � c

for s0 2 S

7: !
s0
= �

s=q
t�1

;s0
� �

t;s0

end

normalize !

else

8: set ! to the row in � corresponding to state q
t�1

end

9: q
t
=

p
t
; h

t

�
�Mnom(1; !)

10: �
t
= p

t

end

return � =

�
1
; � � � ; �

t
; � � � ; �

T

�
Table 6.4: The generatePS Pitch Sequence Generator

144

state. This process continues until all T steps have been taken. From this walk,

the pitch sequence is obtained by stripping out the history part of each state tuple

(line 10).

Clamping constraints are handled by c di�erent n
S
-dimensional � vectors. Beta

was chosen because of its use in the seminal Hidden Markov Model (HMM) paper

by Rabiner and Juang (1986). The di�erence between their � and the one used here

is that, in generatePS, state is not hidden. Rather than marginalizing over hidden

state, � marginalizes over all possible ways of getting to a future clamped state before

it is yet known how the walk will get there. The s-th element of �
t
is de�ned to be:

�
t;s = Pr(q

t+1
2 S; q

t+2
2 S; � � � ; q

t=c 2 �
p 2 C; h 2 H	; � � � ; q

T
2 Sjq

t
= s):

The term of interest occurs at clamp point q
t=c. In this location, only states that

include a pitch from set C may occur.

� values are setup in lines 1 through 3. At step t = c, � is de�ned so that only

those states in the future that emanate out of a clamped node have a probability of

occurring (line 1a). Up to and including the c-th step of the walk, vector �t accounts

for the change in transition probabilities that results when only one of a restricted

subset of states may occur at step t = c (line 2). While t � c, the probability of a

next state depends on � and � (line 7). Once the walk has passed clamp c, there

is no subset over which to marginalize, and so � is no longer used (line 8). It is

only because of the chain's Markov assumption that the calculation of � is eÆcient,

requiring a look ahead of one step (line 2).

6.3.8 Searching for a Good Pitch Sequence

Although generatePS ensures that the desired constraints will be met, there is no

guarantee that a particular �nite walk will map into the desired goal.7 However,

because in real musical contexts about 50% of the walks achieve the desired conglom-

erative behavior (Section 6.5), the odds of generating a sequence that maps into the

goal signi�cantly increases when the generatePS distribution is re-sampled several

times.

searchPS (Table 6.5) samples generatePS n
walks

times. The distribution being

sampled is de�ned by the mrp; �D;L; u; b; c; and C arguments. searchPS also speci�es
7For �nite walks, this is also an issue with the exact solution.

145

searchPS(mrp; �D;L; u; b; c; C; yC; lC;
C)

success = false; n
goals

= 0; n
subgoals

= �1; di� =1

for n = 1; n � n
walks

; n++

1: �
try

= generatePS(mrp; �D;L; u; b; c; C)

2: xC = featuresCGL(mrp; �
try
)

3:

yC
try
; lC

try

�
= classifyCGL(xC;
C)

4: if yC == yC
try

success = true

n
goals

++

if jlC � lC
try
j < di�

5: �� = �
try
; di� = jlC � lC

try
j

end

6: elseif !success

7: matches = number of subgoals shared between yC and yC
try

if n
subgoal

< matches

8: �
�
= t

try
; n

subgoal
= matches

end

end

end

rate =
n
goal

n
walks

return

�
�
; success; rate

�
Table 6.5: The searchPS Pitch Sequence Generator

how to determine which of these walks, ��, is \best" | a concept that is de�ned by

the yC, lC, and
C arguments. Two di�erent user models are presented (once via L
and again via
C) so that di�erent models can be used to drive generation and assess

�tness. The former model is called the generative model and the latter is called the

search control model.

When at least one walk maps into the desired goal, searchPS is considered suc-

cessful (the success value that is returned is set to true). Otherwise, searchPS is

considered a failure. When searchPS succeeds, how easy its generation task was is

quanti�ed by rate, which records how many of the individual walks that were sampled

mapped into the desired goal.

Each execution of the outermost loop samples a new walk, �
try

(line 1). This walk

must be classi�ed before its quality can be assessed (lines 2 and 3). When de�ning a

\best" walk, two special cases must be handed:

1. No walk may map into the goal, in which case the \next best thing" needs to be

146

de�ned.

2. When more than one walk maps into the desired class, an additional distinction for

determining \best" is needed.

Initially, assessment is concerned with �nding any walk that maps into goal yC (the

equality in line 4). Until a walk that maps into yC is found, the \next best thing"

is de�ned by how many of the underlying subgoals it achieves (lines 7 and 8). Each

individual component in yC is treated as a di�erent subgoal, so when all three subgoals

match, the control loop at line 4 (rather than line 6) is executed. Once a goal sequence

has been found, only walks that achieve this goal with a more similar surprise (i.e.,

labeled likelihood, Section 5.10.5) are considered better (line 5).

6.4 Complete vMn-Based Generation Algorithm

Algorithm vMnGenerate (Table 6.6) details how Generate Stages I, II, and III are

combined into the complete algorithm. For convenience, generation is only passed the

bar numbers for call and response, r and r0, because these can be used to access those

variables that change per segment (i.e., lines 1, 5, 10, and 12). All other generation-

related parameters | rhythmic control (, 0, 00), absolute range constraints, relative

range constraints (p
incr
; i

incr
), the number of walks (n

seeds
), and the generative and

search control models | are obtained as part of a particular experiment's generation

setup. After generating a response, vMnGenerate automatically incorporates its result

into the environment and the agent's state using index r0 (line 12).

The values of a particular generation setup are �xed up-front, before online inter-

action begins. Absolute pitch range values are obtained by examining the training set

for its minimum and maximum pitches values. For Parker's training set, the E[: 3

to A : 5 range is obtained; for Grappelli, the range is G : 3 to A : 6.

Within vMnGenerate, when call and response variables must be distinguished,

primes are used. The call's ranges are determined before its rhythm is tweaked (line 2).

These ranges, the absolute and relative pitch range constraints, and the maximum

interval range constraint, combine to specify what values of p
min
; p

max
; and i

max
to use

when calculating L. Next, rhythm tweaking transforms the call's VLT (line 3), and

from this result, degeneracy constraints are determined (line 4).

Another generation setup parameter, last , indicates when last clamping is active

147

vMnGenerate(r; r0; g)

1: retrieve v; yC; and lC for call bar r

2: determine p
min
; p

max
; and i

max
using both the ranges found in v

and the range constraint constants

3: v0 = v:recursiveTweak()

4: calculate u and b for v0

5: retrieve mrp 0 for response bar r0

6: calculate L using yC, p
min
; p

max
; i

max
, and the generative user model

retrieve the search control model,
C
search

8: if last

determine length of the walk, T 0, from u or b

9: c = T 0

10: C =
�
mrp

r+1

	
end

11:

�; success ; rate

�
= searchPS(mrp 0; �D;L; u; b; c; C; yC; lC;
C

search
)

11a: assign � to non-rest leaves of v0

12: update the environment concerning v0 and mrp
r0+1

Table 6.6: The Complete vMnGenerate Generation Algorithm

(line 8). Last clamping forces the last pitch in the response (line 9) to be identical to

the last pitch in the musican's call (line 10). In this situation, goal-driven generation

is essentially being asked to \�ll in the blanks" between two pitches using a speci�c

conglomerative trend. The pitches to assign to v0 are then sampled and assigned to v0

(lines 11 and 11a) The �nal task is informing the environment about the new response

(line 12). This task includes scheduling v0 into a real-time bu�er for playback in bar

r0 and, given this playback, updating the MRP.

vMnGenerate only tweaks rhythm once (line 3), but samples n
walks

di�erent pitch

sequences (line 11). This decision was made because v0 a�ects u, b, and c, which di-

rectly impact the most expensive calculation, �. While � is expensive, its amortization

over n
walks

makes it real-time feasible. For example, in the current implementation,

approximately 2.5 seconds are needed to calculate � and L, with which a walk takes

about 1 [ms] to sample. For live performance, an execution time on the order of 1.5

seconds per segment is needed. Fortunately, it should be easy to reduce the cost of �

because no optimizations (sparse matrix calculations, etc.) have yet been tried.

148

6.4.1 Simulated Music Datasets

A simulated dataset for a musician's training data is created with the following steps:

1. Retrieve the entire set of musician's improvisation segments (including the pickup

bar).

2. Strip out any segments that contain only rests (no pitches will be generated for these

data-points; they are uninteresting).

3. Generate one long response for the call that is comprised of what is left in this sequence

of segments.

4. Use this response improvisation to construct a new conglomerative histogram dataset.

Because this procedure generates very long solos, wandering becomes a signi�cant

issue. Wandering occurs because, over the long term, the previous MRP controls

where in P the next segment is likely to go. As generation progresses from segment to

segment, there is more and more opportunity for the solo's pitch content to gravitate

towards either end of P's range. Last clamping is very e�ective in this circumstance

because it forces the simulated solo response to have the same MRPs that were found

in the musician's warmup data. Thus, data simulated with last clamping is more

tightly coupled to the training data. When clamping is inactive, only the relative

range constraints restrict wandering (by modifying the range of P on a per-segment

basis). Typically, without last clamping, incremental ranges must be signi�cantly

smaller (e.g., Table 6.7) before results of similar musical quality are produced.

6.4.2 Solo Trading

When trading solos, the cut-and-paste scenario (Section 3.3.3) is used, so the call's

tonal abstractions may not be compatible with the underlying harmony that accom-

panies the response. Hence, cut-and-paste is modi�ed as follows. Given that: 1) bar

r is to be generated, 2) the underlying harmony contains n
harm

bars per chorus, and

3) the training set's �rst chorus bar is number n
offset

, the PC goal is copied from one

of the training bars in column:

mod(r� n
offset

; n
harm

):

For example, the columns in Figure 3.1 correspond to n
harm

= 12 and n
offset

= 2.

149

Cut and paste for the INT and DIR goals proceeds without modi�cation:

yI
r
= yI

r�length
; (6.11)

yD
r
= yD

r�length
:

length was de�ned on page 62.

6.4.3 Other Interaction Scenarios

Only the simple abstract cut-and-paste interaction has currently been considered, but

there is nothing inherent in vMnGenerate's strategy that keeps it from handling richer

interaction scenarios.

One intriguing and powerful possibility that others have also argued for involves

hierarchical, multi-resolution control of musical sequences (Mozer 1994; H�othker 1999;

H�ornel 1998). For example, imagine having BoB use a call's entire abstract sequence

to predict (rather than copy) what goal sequence is used to control response. All that

would be needed to support this richer scheme is a higher-level sequence predictor.

Similar prediction techniques could also be applied to vary aspects of generation that

are currently treated as constants. For example, how much rhythm is embellished or

simpli�ed from bar to bar could be estimated on a per-segment basis.

More general interaction scenarios are also possible. Clamping provides a plethora

of opportunities, allowing the user to customize their own environment, introduce

domain knowledge, etc. For example, the lead-sheet abstraction could be extended to

allow speci�c events (harmonies, scale preferences, contours, rhythmic transformation

properties) to be \snapped in" at speci�c time points. The importance of this type

of user control has been demonstrated elsewhere (Abrams, Oppenheim, Pazel, and

Wright 1999), and its integration into BoB's generation algorithm would be relatively

straightforward.

6.5 Performance

The practical conglomerative-driven generation approach is empirically validated in

two ways. Both evaluations use simulated music data, so performance is measured in

real music contexts. First, how much better the practical generation scheme is than

150

random guessing is investigated. Next, the degree to which this generation scheme

reproduces the underlying user model's structure is evaluated.

6.5.1 Compared to Random Guessing

One way to evaluate how well the practical independence assumption works is to

estimate how much it outperforms a method that knows nothing about the learned

user model. This latter method is implemented as a completely non-informative vMn

model, where all component values are identical and uniformly distributed.

This comparison is measured by simulating two di�erent datasets and contrast-

ing the performance of their searchPS algorithms. In both simulations, the search

control model that de�nes performance is one of the learned user models described

in Table 5.8. In one dataset, the generative model is non-informative; in the other

dataset, generation is based on the learned model. In total, eight datasets (Table 6.7)

were simulated. Each dataset is referred to by a scenario index, which identi�es its

generation setup.

This set of experiments focuses on measuring how well conglomerative goals are

achieved. (In order to control the experiments as much as possible, rhythms were

not modi�ed.) Although it has been my experience that goals are usually met with a

smaller search (e.g., n
walks

= 25), the value of 150 was used to provide more accurate

rate estimates.

setup: = 0 = 0, 00 = 1, n
walks

= 150

Simulated Music Datasets Generative Setup

Number Generative Last

Scenario Musician of Bars Model Clamping p
incr

i
incr

I

Parker 120

uniform
inactive 3 3

II learned

III uniform
active 12 12

IV learned

V

Grappelli 129

uniform
inactive 3 3

VI learned

VII uniform
active 12 12

VIII learned

Table 6.7: Simulated Music Data

151

The performance of searchPS scenario is summarized in Table 6.8. The Success

Rate statistics that are reported were only compiled for those bars that were success-

fully generated. These rates reect how easy it was to simulate the successful data's

bars. This quanti�cation is important because it impacts how large n
walks

must be to

succeed most of the time. The histograms in Figure 6.9 provide more detail about

the success rate distribution for scenarios I and II.

Performance Results

Number of Number of Success Rate

Scenario Success Bars Failure Bars Ave Std Min Max

I 92 28 0.037 0.045 0.0067 0.33

II 120 0 0.4 0.19 0.033 0.81

III 98 22 0.043 0.1 0.0067 1.0

IV 120 0 0.47 0.21 0.033 1.0

V 66 63 0.052 0.089 0.0067 0.51

VI 122 7 0.45 0.24 0.0067 0.94

VII 59 70 0.075 0.19 0.0067 1.0

VIII 125 4 0.56 0.24 0.0067 1.0

Table 6.8: SearchPS Performance

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

success rate

co
un

ts

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

success rate

co
un

ts

Figure 6.9: Ease in Generation for Scenario I (left) and II (right)

Clearly, the non-informed generator accomplishes many fewer goals than the corre-

sponding learned generator. In the worst case (VII), 70 out of 129 goals fail. In other

words, 70 of the simulated bars did not exhibit the playing modes that were assigned

to the original Grappelli data. Learning, on the other hand, is quite successful. All

of the simulated Parker bars succeed, and only a few of the Grappelli bars fail.8 Not

8For those learn-based bars that did fail, only two of them did so because a sequence with the

correct PC class was never found. In all other cases, the DIR mapping failed.

152

only is the learned generator more successful, its success rates are much larger, which

means that more of the algorithm's time can be spent �ne-tuning a bar's surprise (as

opposed to searching for a sequence that maps into the right playing mode).

In all but the non-informed Grappelli case, clamping improves performance. The

most likely explanation is that, as a side-e�ect of more tightly coupling the simula-

tion task to the original dataset, the space of possible searches becomes more highly

focused in a useful way. For example, in the most extreme case (2 of Grappelli's bars,

and one of Parker's) clamping assured success because it �xed the bar's only pitch

value (hence the 1.0 Max Success Rates).

6.5.2 Compared to the Original Training Data

Another useful indicator of how well the practical independence assumption works is

obtained by comparing the trends found in the original dataset to the trends exhib-

ited in the simulated data. In Figure 6.10, comparisons between the distribution of

Parker's original and simulated PC, INT, and DIR counts are presented. The dotted

bars reect the distributions found in Parker's training data; the solid bars correspond

to a simulated dataset's distribution. For simulation scenarios, II and IV, refer to

Table 6.7. Histogram bin labels were described in Sections 4.4.3, 4.4.4, and 4.4.6.

The important point in each of these �gures is that a distribution corresponds

to a dataset's overall trend. For example, the solid bars in plot (a) show how all

the counts in Parker's PC training data are distributed when all the bars are viewed

together. Similarly, the dotted bars in plot (a) display how the counts produced by

simulation scenario II are distributed. Although there is not a big di�erence between

the clamped and un-clamped �gures, the di�erence between the original and simulated

distributions is somewhat larger in the un-clamped scenario, especially with the PC

distribution.

6.5.3 With Respect to the Underlying Model's Structure

While it is encouraging that conglomerative generation successfully responds to all

(most) of Parker's (Grappelli's) calls, an even stronger indication of how well the

practical approach works can be obtained by running further learning experiments on

these simulated datasets. In the experiments presented here, how well the practical

153

(a) Scenario II, PC Data (b) Scenario IV, PC Data

C Db D Eb E F Gb G Ab A
0

0.05

0.1

0.15

0.2

0.25

P
r

C Db D Eb E F Gb G Ab A
0

0.05

0.1

0.15

0.2

0.25

P
r

(c) Scenario II, INT Data (d) Scenario IV, INT Data

u m2 M2 m3 M3 P4 tt P5 m6 M6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
r

u m2 M2 m3 M3 P4 tt P5 m6 M6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
r

(e) Scenario II, DIR Data

o/− 2/− 3/− +/− 2/− 3/−−/− 2/− 3/−−/o 2/o 3/o +/o 2/o 3/o o/o 2/o 3/o−/+ 2/+ 3/+ o/+ 2/+ 3/+ +/+ 2/+ 3/+
0

0.05

0.1

0.15

Pr

(e) Scenario IV, DIR Data

o/− 2/− 3/− +/− 2/− 3/−−/− 2/− 3/−−/o 2/o 3/o +/o 2/o 3/o o/o 2/o 3/o−/+ 2/+ 3/+ o/+ 2/+ 3/+ +/+ 2/+ 3/+
0

0.05

0.1

0.15

Pr

Figure 6.10: Distribution of Counts in Parker's Training and Simulated Data

154

generation scheme closes the loop| integrating learned knowledge into the generation

process | is measured by comparing how similar a model learned for the simulated

data is to the original learned model.

This evaluation involves the following steps:

1. Learn
Tr ;C and Y Tr ;C from XTr ;C (the learned models reported in Table 5.8 are

used).

2. Generate simulated datasetXC using
Tr ;C for both the search control and generation

models (simulations from Table 6.7 are used).

3. Learn
C and Y C from XC.

4. Obtain an additional partition for each dataset using the other dataset's classi�er:

Y 0
Tr ;C

= classifyVmn(XTr ;C;
C);

Y 0
C
= classifyVmn(XC;
Tr ;C):

5. Estimate the disagreement between the learned models by determining the average

di�erence between their partitions:

disP =
diff(Y Tr ;P; Y 0Tr ;P; true) + diff(YP; Y0P; true)

2
;

disI =
diff(Y Tr ;I; Y 0Tr ;I; true) + diff(YI; Y0I; true)

2
;

disD =
diff(Y Tr ;D; Y 0Tr ;D; true) + diff(YD; Y0D; true)

2
:

diff is de�ned in Appendix D.

The larger these disagreements are, the less compatible the two learned model's under-

lying structures are likely to be. While some of this disagreement can be explained in

terms of \learning noise," i.e., the original model's expected total error rate (hardness

plus cost), some of it can also be attributed to generation not exactly replicating the

vMn model's structure.

PC, INT, and DIR model discrepancies were estimated for simulation scenarios

II, IV, VI, and VIII. The results are presented in Table 6.9. For comparison, the

corresponding expected total error rate (Column `Tot') is displayed (this rate comes

from Table 5.10). To get a feel for what these numbers mean, consider the worst-case

possibility: random guessing (Column `Rand').

155

Datasets PC Model INT Model DIR Model

Musician Simulation disP Tot Rand dis I Tot Rand disD Tot Rand

Parker
II 0.45

.32 .80
0.25

.31 .75
0.05

.09 .66
IV 0.16 0.35 0.11

Grappelli
VI 0.09

.18 .75
0.09

.23 .80
0.12

.07 .75
VIII 0.08 0.13 0.29

Table 6.9: Relearn Generation Experiments

When compared to random performance, there is no denying that generation can

reproduce a fair amount of the learned vMn model's structure. Overall, the lowest

discrepancies were obtained with Grappelli's un-clamped simulation (scenario IV). In

this case, PC and INT discrepancies are half of what can be explained by \learning

noise" alone. The DIR discrepancy, on the other hand, is twice as large as its \learning

noise." Nonetheless, these numbers indicate that most of the underlying structure

that was learned to explain Grappelli's training data is in fact reproduced by the

generation algorithm. For the clamped Grappelli case, PC discrepancy decreases ever

so slightly (as it should given the additional coupling it provides) at the expense of

INT and DIR performance. With Parker, clamping greatly improves PC's discrepancy

(reducing it from 45 to 16%), but once again this comes at the expense of INT and

DIR structural loss. That clamping inuences Parker's PC discrepancy so much is

likely due him playing more chromatically than Grappelli.

6.6 Discussion

6.6.1 Rhythm and Pitch

In the music perception community, there is open debate concerning whether or not

the treatment of rhythm and pitch should be uni�ed or whether they can be treated as

independent dimensions (Boltz 1999). In BoB, the coupling between rhythm and pitch

content is relatively weak | the number of leaves and the presence of syncopation

being the only direct links. Fortunately, stronger ties with rhythm can be supported

with clamping constraints.

Handling other important aspects of rhythm will require extending the CGL fea-

ture space. For example, rests are currently ignored, even though these are per-

ceptually important (serving to mark various parts of a motive or phrase, etc). In

156

addition, no distinction is made between compound and composite durations. Rather,

both durations produce additional PC counts, and both produce unison interval and

zero-motion related counts even though musically, these correspond to di�erent phe-

nomena (syncopation and note repetition respectively).

When I was �rst creating the system and analyzed Parker's data, this distinction

seemed unimportant (only 1.6% of his 870 PC counts were attributed to note repe-

tition, as were 13% of his 102 unison interval counts). Later on, when I looked at

Grappelli's data, repetition played a more serious role (causing 4.2% of his 867 PC

counts and 24% of his 149 unison intervals). In hindsight, it is easy to see that this

issue deserves more explicit consideration and should be dealt with in future work.

6.6.2 Coupling Learning and Generation

For goals to be achieved in real-time, a pitch-sequence sampling procedure that tightly

couples with
C is needed. While many music generation schemes, e.g., BoB, EMI

(Cope 1992), CHIME (Franklin 2001), GenJam (Biles 1994), are cast in a generate-

and-test framework, the explicit and principled coupling between generatePS and

�C distinguishes this algorithm from other approaches. In particular, with an exact

solution, multiple samples would only be needed because a given sample might fall into

a competing component's decision boundary. Although with the practical approach

no such guarantee exists, in real musical contexts, a single goal-based generation

attempt can be expected to succeed on the order of 50% of the time.9 In other words,

after a reasonably small number of searchPS trials, failure becomes unlikely. For

example, with n
walks

=10, on average, about 0.1% can be expected to fail.

6.6.3 Conglomerative Goals and Constraints

The practical sampling scheme provides principled methods for incorporating con-

straints directly into a playing mode driven Markov chain. These constraints are

serviced in two ways. First, multiple transition matrices are provided, which allows

various range, degeneracy and beat-related constraints to be realized. Second, a

forward-backwards propagation algorithm is provided, which allows a fairly general

set of clamping constraints to be met.

9This estimate is based on the average rate values obtained for the learned generative models in

Table 6.8.

157

I cannot over-emphasize the computational power that this goal-driven, constraint-

ensuring combination provides. For example, early in my research, I built a proba-

bilistic solo-modifying algorithm that tweaked both pitch and rhythm simultaneously.

Due to the hierarchical nature of the rhythmic encoding (VLTs were used), the result-

ing rhythms were usually acceptable. The pitches that were assigned to these rhythms,

however, often strongly violated one's musical common sense. I had originally been

motivated by the idea of \tweaking a particular branch in a VLT, while ensuring that

it realized a particular playing mode", but I lacked a method for generating a pitch

sequence that, on the one hand, realized this mode, and on the other hand, started

and ended on prede�ned pitches. What I really wanted was an algorithm that could

perform both melody completion10 and run in real time. vMnGenerate ful�lls this

need.

While there are ample occasions where the solos BoB generates using vMnGenerate

violate one's musical common sense, the clamping constraints provide a mechanism

for eliminating some of this egregious behavior. For example, one listener noted that,

in particular solos, a scale's Minor 3rd tone should not have been played because, in its

evolving context, its Major 3rd had just been played. Violations of this sort could be

handled by a particular choice of interval clamping constraints (and such reasoning is

only possible because the model explicitly encodes intervals into its representation).

That such violations occur merely indicate the obvious: although CGL

features capture important aspects of a melody's temporal content, they

do not capture all salient aspects. In this light, constraints can be viewed

as providing a \back-door" mechanism for manually imposing additional

temporal structure onto a particular mode's generator.

This observation naturally leads one to consider the possibility of learning these

additional constraints directly from music data. Whether or not such a concept can

be learned is an open research question, but I am optimistic. Recall that sample size

sparsity is a mechanism by which speci�c histograms can reveal partial information

about their underlying component generators (Section 5.10.3). Provided the vMn

model captures real playing mode distinctions, it is reasonable to consider inferring

which parts of these components are revealed in certain contexts.

While constraints are valuable, they can also decrease the strength of coupling

between �C and the generatePS pitch sequence distribution. For example, this is

10As was done in the work of Bellgard (1993)

158

exactly the a�ect that the � vectors have. It is also easy to dream up situations in

which realistic constraints would make goal-based generation diÆcult. For example,

suppose BoB was generating a pitch sequence of length four, and this was to be

assigned to the leaves of a VLT that contained four quarter-notes. Should �C expect

unison intervals 90% of the time, degeneracy would allow at most 50% of the tree's

intervals to be unisons. Clamping the last note in a sequence presents a similar

conict when the MRP is signi�cantly lower (or higher) than the clamp's pitch and

�D strongly prefers downwards (or upwards) motions.

Fortunately, preliminary simulations seem to indicate that constraints and goals

can be successfully realized in real musical situations (Section 6.5). However, further

research needs to be done. For instance, it is worth pursuing a generation method

that relies on a parameterization that has been conditioned so as to optimize goal yC

for a particular set of constraints.

6.6.4 Convergence and Sparsity

Given how sample size impacts classifyVmn's discrimination power, one might think

that walks that are shorter would be more diÆcult to successfully generate. On the

other hand, since the conglomerative goal and additional constraints together impose

a set of temporal constraints, one might expect short walks to be easier to generate

because their search spaces are smaller.

One reason this generation scheme works in practice is because of how sparse per-

bar histograms are. This sparsity can be thought of in terms of providing enough

\noise" to allow the sampling algorithm to \adequately" explore its solo space.11 In

particular, with fewer counts, there are more opportunities for a given sample's basic

histogram shape to vary.

That walks are short also hides that the sampling scheme is inexact and more

counts will only clarify any divergence that may exist between the generatePS dis-

tribution and �C. Divergence alone, however, does not determine a sampling scheme's

success rate. Rather, success depends upon how much a given component's generatePS

distribution falls within the corresponding goal's decision boundary. Typically, it is

easier to learn boundaries than it is to learn entire distributions, so measuring per-

11Since this exploration heavily prefers collaborative PC, INT, and DIR combinations, this \noise"

is hardly random.

159

formance in terms of these boundaries also contributes to the generation algorithm's

success.

160

Chapter 7

Musical Evaluation

In this chapter, the performance of BoB's user-speci�c perception and generation

components are assessed from a musical point of view. The former is assessed from a

qualitative, musical basis, and the latter is assessed in terms of empirical human lis-

tening experiments. Parametric details concerning the learned Parker and Grappelli

models, the musical appropriateness embedded within these details, and the musi-

cally reasonable ways in which these details operate upon the training data are �rst

presented. Given BoB's unsupervised learning paradigm, this validation is especially

important because it provides an assurance that, although various vMn modeling

assumptions are violated when a musician generates their solos, in practice, useful

and salient musical structure is learned. Next, the degree to which these two learned

models and their corresponding components produce behaviors that are noticeable

to human listeners is discussed. This chapter is primarily written for a musically fa-

miliar audience; a basic understanding of harmonies, scales, and other basic musical

concepts is assumed.

7.1 Overview

With respect to user-speci�c perception, Parker's learned PC model is the focus of

attention because, through this analysis, the basic methodology for reasoning about

the other models follows. In addition, this analysis powerfully demonstrates two

key bene�ts of applying a vMn model to short melodic segments. These bene�ts

arise because the components themselves, as well as their use in perceiving a speci�c,

161

temporally ordered training set, provide a very exible and distributed representation

that, musically speaking, happens to capture sensible, musician-speci�c information.

The analysis of Parker's INT and DIR models are geared towards shedding light

on the musical meaning that these models' various feature combinations capture.

With the additional data provided in Appendix E, readers can perform more detailed

analyses for these models if desired. The same thing is true of Grappelli's model,

which is detailed in Appendix F. To conclude the musical analysis of user-speci�c

perception, several sets of examples from Parker's and Grappelli's training data, each

set mapping into a di�erent CGL playing mode, are presented, contrasted, and com-

pared to provide a more concrete idea of how the vMn perception mechanism works

when perceiving short melodic segments.

With respect to generation, two di�erent types of listening experiments will be

outlined, each exploring a speci�c question. In the playing mode variation experi-

ments, subjects were asked to listen to pairs of segments and assess whether or not

they thought the two were generated by the same or di�erent playing modes. The

hypothesis in this experiment was that listeners would be able to tell the di�erence,

and, to the extent that they could, this would justify the need for using a mixture

model that can provide multiple components. In the learn model variation experi-

ments, subjects were asked to �rst listen to a call from a particular musician's training

set, then listen to a pair of responses to this call, and assess whether or not each of

these responses was generated using the same or di�erent learned models. Once again,

the hypothesis in this experiment was that listeners would be able to tell the di�er-

ence, and, to the extent that they could, this would justify the need for user-speci�c

learning.

7.2 Customized Perception: Charlie Parker

In this section, the user model learned for Charlie Parker's training data, XP ;C, is

described. The score used to construct this training set is in Appendix E.1. This

model is the same one that was �rst presented from a machine learning point of view

in Tables 5.8 and 5.10.

162

7.2.1 Learned Tonality

The �ve pitch-class components that were learned for Parker, i.e., �P ;P
k=1

; �P ;P
k=2

; � � � ; �P ;P
k=5

,

are shown in the �rst �ve rows of Table 7.1. Both a symbol and a number (far left

columns) refer to the same component, e.g., ` ' and `1' both refer to the component

in row one. The former symbol is used in �gures, e.g., Figure 7.1, and the latter is

used in scores, e.g., Table 7.4.

Since each PC component identi�es a preference for certain pitch classes, it makes

sense to consider how these components lend themselves to musical scale-based in-

terpretations. For each component, strong correlations between their more probable

bins and a particular scale's pitch-class set can be found. This correspondence led me

to interpret each as identi�ed in the far right column (the background gray columns

identify this scale's pitch-class set). With components , , and ,

these interpretations are immediately obvious: a one-to-one correspondence between

a scale's pitch-class set and a component's more probable bins exists. Regardless

of scalar interpretation, however, all that BoB knows is that each component has a

certain mixture weight and pitch-class distribution.

The `Size' column contains two equivalent numbers, how many bars in XP ;P were

assigned to a component, and what percentage of the training set (NP = 119) this

number corresponds to. A component's size is related to its mixture weight, �, since

this value is the posterior-weighted sum of the training data (Equation 5.12). How

this model partitioned each of Parker's Mohawk bars is presented in Appendix E.2.1

through E.2.5.

The pitch-class distribution in the bottom row, the single mixture, presents how

BoB would have modeled Parker had it been forced to �t a single Multinomial com-

ponent to his entire dataset. This model reects the distribution of pitch classes

per improvisation, while the k = 5 model demonstrates how the tonality in di�er-

ent bars can be partitioned into distinct regions. That multiple component models

estimate speci�c pitch-class distributions using averages constructed primarily from

\like-minded" histograms is crucial | only the most mundane musician would play

a solo whose pitch-class distribution was constant throughout. Similarly, there is no

reason to expect that a single tonal distribution would adequately describe a musi-

cian's behavior in a �xed harmonic region.1 It is useful to compare these models by

1Which was what was assumed in the Dannenberg and Mont-Reynaud (1987) model. In partic-

ular, a single component for each eighth-note in a blues progression was used, which amounts to

163

Symbol Pitch-Class Probabilities Size � Associated Scale

1
0.23

34 28.6% 0.309 B[Major Bebop scale

2

0.34

41 34.5% .310 E[Bebop-7 scale

3
0.23

10 8.4% .079 E[Min+7 scale

4

0.27

23 19.3% .186 E[Major scale

5 0.15 11 9.2% .115
B[Major scale

(with chromaticism)

0.22

a single mixture (for comparison)

Table 7.1: Parker's Learned PC Components

164

considering which parts of the single mixture's probabilities split into which parts

of the vMn's �ve components; this comparison highlights exactly how the mixture

model enlarges BoB's perception of Parker's tonal usage. Inventive musicians will

use di�erent scales (or at least di�erent realizations of the same scale) in di�erent

choruses.

The �rst two components, which account for a substantial part of the training set

(63%), have straightforward Bebop scalar interpretations. These interpretations

lend impressive credibility to the algorithm's ability to learn musician-

speci�c results because the Bebop scales were de�ned in part so as to

explain the improvisational style that Parker had a hand in inventing (Os-

transky 1977; Baker 1983). The harmonic context ofMohawk lends further credibility

to the musical appropriateness of what was learned. For a B[blues progression, it

makes perfect sense to base one's improvisations on B[and E[scales.

A closer look at Table 7.1 sheds light on what I mean when I say that this model

is a distributed representation.2 For example, consider the component. Rather

than viewing this component as an abstract, symbolic B[Major Bebop scale, BoB

sees it as something that prefers pitch class B[about twice as much as its other prob-

able pitches (C;D, E[, F, G[, G and A[). However, when perceiving a histogram that

contains twice as many B[counts as it does C counts, both components and

will appear to be likely generators. In this case, an absence of D[counts becomes

a crucial indicator, as does the presence of A counts. In the vMn model, I use the

term `distributedness' to refer to the fact that various component's features collabo-

rate and/or inhibit one another during perception | the overall result is somewhat

emergent. In the context of generation, this distributed representation is all the more

useful than a symbolic, scalar view because it provides information about how the

user realizes particular pitch sequences.

Spontaneously creating melody, an act as simple as improvised humming, is as

much about one's ingenious use of exceptions as it is about one's adhering to certain

rules (Loy 1991; Papadopoulos and Wiggins 1999; Johnson-Laird 1991). Since the

dataset determines how probable a component's pitch classes are, BoB is free to

construct a palette that accommodates both an artist's choice of scales and their

subsequent, personalized modi�cation. For example, a reasonable interpretation of

breaking Figure 3.1 into 96 columns and �tting a single PC probability distribution to each column.
2While mixture models can be implemented in terms of neural networks, my use of the term

`distributed' is higher-level than what is typically referred to when discussing neural nets.

165

the component is the following synthesis of musical ideas:

Improvise on the B[Major scale, but prefer the tritone (E) over the scale's 4th

(E[), and add blues chromatic tones (the Minor 2nd, 3rd, and 7th) to the mix.

While such concepts are roughly described in jazz texts, e.g., (Baker 1983;

Russell 1959; Coker 1970; Ostransky 1977; Aebersold 1992), the idea of

using a symbolic, musical scale based framework to integrate such a wide

variety of possibilities into a coherent model that automatically and inti-

mately adapts to a particular user seems a daunting exercise at best, and

at worst, a scenario whose very premise hinders the simulation of truly

creative behavior.

Another excellent way to assess the musical quality of what the PC model learned

is to consider the degree to which its perception of the training set makes sense given

the underlying harmonic structure over which the improvisations were played (and

of which the learning algorithm had no explicit knowledge). In Figure 7.1, Parker's

training data is presented in terms of its PC component mapping versus location in

the 12-bar blues chorus. Each symbol corresponds to one of the bars in Figure 3.1

and identi�es which component in Table 7.1 that BoB deemed most likely to have

generated the bar's tonal content.3

1 2 3 4 5 6 7 8 9 10 11 12

10

9

8

7

6

5

4

3

2

1

ch
or

us

Figure 7.1: Parker's PC Modes and the 12-bar Blues

At �rst glance Figure 7.1 may not look very structured, but there are distinctions

3Two aspects of Figure 7.1 follow directly from how Parker's dataset was constructed. First, the

PC sequences in chorus 1 and 6 are identical because Parker's two heads were identically transcribed

(di�ering only by an octave). Second, the symbol for bar 8 of chorus 5 is omitted because that bar,

which contained no counts, was not included in the training set.

166

in BoB's perception that correlate with the underlying harmonic changes that take

place in the blues (Columns 1, 5, 7, 9 and 11; Section 3.2.3). For example:

� In Column 1, Parker predominantly uses the E[Bebop 7 scale (occurs 70% of

the time).

� Columns 5 and 6 are almost universally assigned to the Bebop scales (and

account for 19 out of 20 classi�cations).

� Only in Columns 7, 9 and 10 is the B[Major Bebop scale () used 50% or more

of the time.

� The assignments in Column 12 appropriately handle turn-backs and endings. In this

key, an E[scale (choruses 1, 3-4, and 6-9) is a reasonable turn-back choice (Giomi

and Ligabue 1988). As is typical musical practice, when Parker �nishes his solos

(choruses 5 and 10) he chooses a scale that returns to the tonic (B[).

The learning priors (Section 5.7.4) ensure that any classi�cation has the potential

to be incorrect, and a solution's hardness quanti�es how much error to expect (around

20% for
P ;P, Table 5.8). In other words, structure is not more blatant in this �gure

partly because 20% of the classi�cations are probably incorrect. Fortunately, since

vMn models classi�cation error probabilistically, it also provides estimates concerning

which assignments are most likely to be correct (via the posterior,); this provides a

new avenue through which structure can emerge. For example, the bars in Columns 6

and 11 were much more con�dently assigned to their components than were the bars

in any other columns.

Section 6.4.3 presented some compelling reasons for learning the structure of more

abstract musical sequences. Figure 7.1 provides a concrete example of where the

training data for such a learning experiment might come from. Although preliminary

experiments indicate that, at least with this level of noise, more bars of data are needed

for learning to be productive, this �gure motivates the types of things one might want

BoB to be able to learn. Learning this temporal structure will be pursued in future

work.

7.2.2 Learned Melodic Continuity and Contour

The four melodic continuity and three melodic contour components that were learned

for Parker are presented in Tables 7.2 and 7.3. It is useful to consider INT and DIR

167

behaviors together because they are linked: that unison intervals correspond to zero

motions and vice versa (Section 4.3.4). Except for the fact that the bin labels for INT

and DIR are di�erent, the layout of these tables is analogous to that of Table 7.1.

In particular, aside from knowing a component's mixture weight and intervallic (or

directional) distribution, BoB is unaware of the `Meaning' assigned to a component

| I provided these interpretations.

Each INT component label abbreviates an interval's full name as de�ned in Sec-

tion 4.4.4. (Both references will be used interchangeably.) Instead of showing a DIR

component's twenty-seven transition probabilities, Table 7.3 presents its correspond-

ing stationary distribution. The stationary distribution summarizes a component's

asymptotic behavior (Section 6.3.3), so each bin reects how often a particular di-

rectional history state (Figure 4.5) is likely to be occupied when parsing an in�nitely

long direction sequence generated by that component. For example, DIR bin label

`++' indicates how likely two isolated, adjacent upwards motions are.

With respect to the meanings assigned to the intervallic components, my interpre-

tations are motivated in part by the Implication-Realization Model hypothesized by

Narmour (1990). Roughly speaking, Narmour hypothesizes that, at a Gestalt-based

level, listening to an interval that is smaller than or equal to a Major 3rd sets up the

implication that the melody will `similarly continue,' i.e., proceed in the same melodic

direction using a `similar sized' interval.4 He also hypothesizes that listening to an

interval that is larger than or equal to a Minor-6th sets up the implication that the

melody is undergoing a \reversal," i.e., pivoting around the most recent note, pro-

ceeding in the opposite direction via a `relatively smaller' next interval. Concerning

intervals within the Minor 3rd and Minor 6th range, he postulates that these \thresh-

old intervals" are more ambiguous, having the \potential to imply either continuation

or reversal, though not in equal proportion."

With respect to repeated tones (which produce unison counts), Narmour's \du-

plicative structure" and BoB's INT/DIR coupling are synonymous | both corre-

spond to observing \lateral registral direction" (zero motion) and unison intervallic

di�erence. Unfortunately, BoB's CGL representation does not currently distinguish

between syncopated rhythms and repeated tones, so when ascribing meaning to this

interval, I do so after having referred to its usage in speci�c training data parti-

4In this section, single quotes refer to my own choice of words; double quoted text was taken

directly from (Narmour 1990).

168

Symbol Intervallic Probabilities Size � Meaning

1
0.25

51 42.9% .411

relatively continuous and

syncopated melodies,

occassionally irregular

2

0.44

25 21% .229

mostly continuous,

occasionally jagged,

irregular, or syncopated

melodies

3
0.31

9 7.6% .089

mostly irregular and jagged

melodies, syncopation and

repeated tones

4
0.30

34 28.6% .271

mostly continuous,

occasionally jagged or

irregular melodies.

0.26

a single mixture (for comparison)

Table 7.2: Parker's Learned INT Components

tions (Appendices E.2.6 through E.2.9). With these coarse distinctions, meanings are

assigned to intervals as follows:

� Syncopated and repeated refer to speci�c unison interval usages.

� Continuous refers to intervals greater than the unison and less than or equal to a

Major 3rd.

� Irregular refers to intervals in the \threshold" range.

� Jagged refers to intervals greater than or equal to a Minor 6th.

With respect to melodic contour, trends in the training data partitions (Appen-

dices E.2.10 through E.2.12) reveal, at a high-level, three types of behavior:

1. An upwards string refers to a run of ascending motion.

169

Symbol Directional Probabilities Size � Meaning

1

0.28

45 37.8% .373

mostly syncopated/repeated

tone melodies, rarely an

obvious direction trend, but

for an occassional downards

string

2

0.35

33 27.7% .270

mostly longer downwards

strings separated by shorter

upwards strings

3
0.24

41 34.5% .356

mostly longer upwards

strings separated by shorter

downwards strings

0.22

a single mixture (for comparison)

Table 7.3: Parker's Learned DIR Components

2. A downwards string refers to a run of descending motion.

3. No obvious trend refers to a lack of presence of either of the above trends.

In the single mixture (Table 7.3), the largest proportion of probability mass lies on

states that record downwards motion (`�', `��', `���'), which makes sense given

that:

\anyone interested in melodic analysis notices right away the phenomenon of

ascending leaps followed by descending linear patterns." (page 220)

With respect to Parker, this trend has also been commented on in H�ornel, Langnickel,

Sandberger, and Sieling (1999). Roughly speaking, in the learned k = 3 model, BoB

will assign bars that exhibit this behavior to the component. Although overall,

when contrasting the di�erent components relative preference for ascending versus

descending trends, it is clear that downwards motion is still most prevalent, the

component accounts for the smallest portion of the training data.

Instead, the most popular component, , corresponds to melodies that display

no obvious directional trend. This lack of trend is largely due to the bars in this

170

partition containing more rests and larger intervals than are found in the other two

partitions. As a result, the segments in tend to be more jumpy and/or contain

melodic lines that divide into more than one phrase. It is quite possible that, with

a better segmentation scheme, a larger portion of the training data would then be

explained by a downward string-based component(s). Regardless, it is not the case

that what is globally the most prevalent in a training set should necessarily produce

the most heavily weighted component. While this may seem counter-intuitive, it is

entirely appropriate for a melodic model. For example, only such a model could

handle the case where overall more motion is downwards, but the motion occurs in a

highly concentrated, small number of segments.

Where Narmour (1990) applies his theories to speci�c melodies, probabilistic vMn

components must be interpreted in likelihood-based terms | in terms of what behav-

ior is most and/or least expected. Roughly, I quantify this notion with the following

adjectives, listed in order from most to least likely: mostly, relatively, somewhat, oc-

casionally, and rarely. In general, such quanti�cations need to be considered as a

matter of degree, i.e., in relative as opposed to absolute terms. For example, reasons

such as voice-leading mean that melodic intervals will tend to be relatively small in

the �rst place, which is why, in the single INT mixture (Table 7.2), a majority of the

density lies between the unison and the Perfect 4th. As such, when I say that the

INT component is `mostly irregular and jagged,' this `mostly' is a matter of

degree.

Finally, let me clarify why Narmour's model received so much attention in this

section. BoB's primary purpose is not to encode Narmour's ideas, although I do be-

lieve that many of them could be used to improve BoB's melodic feature space. To

seriously implement his ideas, BoB's representation would need be to be extended

so as to: consider rests; treat the octave interval separately from larger-than-octave

intervals; consider di�erences between pairs of intervals; etc. In addition, while Nar-

mour distinctly separates intervallic and directional trends, his theory does consider

various combinations of these behaviors, and so some form of additional coupling

between intervals and melodic direction would be needed. Interestingly, the represen-

tation presented by Steinsaltz and Wessel (in progress) explicitly handles two of these

issues (pairs of intervals and their melodic directions). In concentrating on those as-

pects, however, their model, which lacks the ability to observe any trend longer than

a pair of intervals, does not provide as rich a view of melodic contour as does BoB.

171

7.2.3 Conglomerative Perception Examples

In this section, several sets of examples from Parker's training data, each set mapping

into a di�erent playing mode, are presented, contrasted, and compared to provide a

more concrete idea of how the vMn perception mechanism works when perceiving

short segments of melody.

These examples are listed in Table 7.4, each row presenting a di�erent playing

mode, as indicated by the bars' conglomerative class tags.5 For example, the playing

mode associated with the bottom row is yC = h1; 4; 3i, and this playing mode's

components can be interpreted using Tables 7.1 through 7.3 (e.g., the �rst row in

Table 7.1 is the PC mode's generator, the fourth row in Table 7.2 is the INT mode's

generator, and so on). Below each example, its bar location within the training set

(Appendix E.1) is given. The reason that a pickup note into each bar is displayed

is because the INT and DIR histograms rely on this information (via MRP). When

classifying an example's PC histogram, pickup notes are ignored.

Example 1 Example 2 Example 3

V ������#���#�#���#� ���#�###�#�# 3
2,2,2� H#V V #�###�####�#�##�##

3

�2,2,2��#V V ������#�###�#�## 3��2,2,2��#V
bar 31 bar 91 bar 102

V ������#� ������#���####
4,1,1H������#V V ���������#���������#���#####

4,1,1

� H#V V �###�###
4,1,1

� H#V
bar 28 bar 36 bar 65

V ���###� ���#������##�#�#���#������#
1,4,3

� H���#V V ���#�#�#���#�#���#������##�#�#�#������#���#���##���#� ���# 3

1,4,3I������#V V ������#���#���##� ���#� ������#� ������#
	�#

1,4,3I#V
bar 48 bar 59 bar 94

Table 7.4: Parker Conglomerative Class Examples

When people hear these examples in demos, they tend to appreciate

5This tag is comprised of the three bold-face, comma-separated numbers printed above and to

the left of each bar. From left to right, the numbers in this tag indicate which PC, INT, and DIR

components BoB deemed most likely to have generated the example.

172

the fact that, within rows, the examples sound more similar than they

do between rows. This observation makes sense given that listeners can perceive

various aspects of a melody's tonal, intervallic, and contour properties (Deutsch 1999;

Krumhansl 1990; Bartlett 1993). However, when listening to these segments, it is dif-

�cult to pinpoint exactly why these distinctions are perceived. It is rather a transient,

vague impression. Because the vMn model is a precise speci�cation, its underlying

mechanisms can be used to help shed light on these distinctions. To really appreciate

these examples, on must listen to them. Even though on the surface | for example,

with respect to an edit-based similarity view | all of the segments look quite di�erent

from one another, some of them just \�t together" more with one another than with

others.

7.2.4 Quantifying Per Row Trends

Per-row, examples can be compared in terms of how many features are shared or

absent, i.e., which features across examples contain or do not contain counts? Sim-

ilarly, partially shared features are those whose counts are obtained from two of the

three examples. Per-row, features can also be compared in terms of their frequency

of occurrence (FoO), a term that is best de�ned by way of an example. Consider row

two, which has a total of nineteen PC counts. If one were to ask how many of these

examples' counts lie on bins C and E[, the FoO would be 2:1:16 because there are two

counts on bin C (bar 28 and bar 36) and one count on bin E[(bar 65); the sixteen

remaining counts are unclaimed.

These metrics can be used to loosely quantify the commonalities between exam-

ples,6 from which a reader can proceed to reason about the most notable di�erences

between rows. Since the components in Tables 7.1 through 7.3 were used to partition

these examples in the �rst place, it is no surprise7 that the commonalities found are

consistent with the results reported in these tables.

7.2.5 Parker CGL Examples: y
C = h2; 2; 2i

In the examples in row one, except for the A in bar 91, pitches coincide with the

E[Bebop-7 scale. Pitch classes C, F, G, A[, and B[are shared, while E, G[, and B

6Bold type is used to highlight the coarsest of similarities.
7Rather, this had better be the case!

173

are absent. Melodies are also essentially continuous, with shared intervals m2

and M2, and partially shared intervals m3 and M3 (the only other present intervals

are a single P4 in bar 31, a M7 in bar 91, and a m6 in bar 102). Furthermore,

melodies are mostly descending runs. More speci�cally, these examples produce

the following direction sequences (equation 4.1):

d
n=31 = h�;+;�;�;�;�;+;+;�;�i; (7.1)

d91 = h+;+;�;�;�;�;+;+;+;�;�;�;�i;
d102 = h+;�;�;�;�;�;�i:

As a result of how these sequences are parsed (Figure 4.5), the following transitions

are shared:

�=�; �� =�;���=� :

Present transitions, which delineate the other melodic motions used to connect these

descending runs together, are:

+=�;++ =�;+++=�;�=+;���=+;+=+;++ =+ :

The other remaining 16 transitions are absent.

7.2.6 Parker CGL Examples: y
C = h4; 1; 1i

For the examples in row two, pitches coincide with the E[Major scale. Al-

though only pitch-class F in this scale is shared (D is noticeably absent in bar 65), all

but the reasonably probable B[pitch class are present. Almost all of the intervals

are continuous or syncopated: the FoO for syncopated, continuous, and irregular

intervals is 5:11:3. Although u is the only shared interval, M2 through M3 are par-

tially shared. These segments also do not display an obvious trend in melodic

direction. Aside from the short descending runs in bar 28 and bar 36, only single

steps in particular directions occur. The only shared transition among these three is

+/�.

7.2.7 Parker CGL Examples: y
C = h1; 4; 3i

For the examples in row three, pitches coincide with the B[Major Bebop scale.

All of the tones in this scale are shared except for pitch-class F and A. The G[tone

174

| which is what distinguishes this scale from the more traditional B[Major scale |

is noticeably present.8 While melodies are generally continuous, occasionally

a jagged interval appears. Shared intervals include m2, m3, and M3. Viewed

as one higher-level meta-feature, the m6/M6 combination is also a shared feature.

This combination of intervals is an important part of these examples' character, and

also one reason why each maps into component four (as opposed to component two).

Except for bar 94, these melodies contain more ascending than descending

runs.

7.2.8 Example Bar 65 Revisited

It is revealing to take a closer look at how the INT histogram for bar 65 is classi�ed

because, in this example, the mixture model's weights play an important part in its

classi�cation. This example is further detailed in in Table 7.5. The bar's intervallic

feature vector (xI) is displayed, as is its assigned class (the winning component) and

that component that was the next most-likely generator (the runner up). These

components' posteriors (I) and surprises (labeled likelihood lI) are also shown.

With respect to the posterior, component one is the clear winner (0.63 versus

0.37). However, if one were to only look at the histogram's surprise under both mod-

els, component two \better explains" the histogram's counts (0.0017 versus 0.0016).

This example is a good one to look at in terms of understanding the vMn model's

classi�cation scheme because, although the u and M3 terms on component one are

larger, these each only account for a single count in xI. Component two's M2 inter-

val, on the other hand, is slightly more probable than component one's, but this bin

explains four counts. What the surprise values indicate is that if one were to only

look at the probability of the Multinomial, then component two's average is closer to

xI than is component one's. Because component two is approximately half as likely

as component one (� = 0:23 versus 0.41), bar 65 is otherwise assigned.

7.3 Customized Perception: Stephane Grappelli

In this section, the appendix that details the user model learned for Stephane Grap-

pelli's training data, XG;C, is described. Some conglomerative examples are also

8G[is also noticeably absent in row one.

175

bar 65

V �###�###
4,1,1

� H#V

INT histogram

xI

u m2 M2 m3 M3 P4 tt P5 m6 M6 m7 M7 o
0

1

2

3

4

winning component

yI = 1

� = 0:41

 I = 0:63 lI = 0:0016

u m2 M2 m3 M3 P4 tt P5 m6 M6 m7 M7 o
0.00

0.25

0.50

runner up

component

yI = 2

� = 0:23

 I = 0:37 lI = 0:0017

u m2 M2 m3 M3 P4 tt P5 m6 M6 m7 M7 o
0.00

0.25

0.50

Table 7.5: Parker INT Classi�cation Example

presented. For the score used to construct this training set, see Appendix F.1. This

model is the same one that was �rst presented from a machine learning point of view

in Tables 5.8 and 5.10.

Analogous to what was just presented for Parker, Appendix F presents information

concerning Grappelli's learned components and their perception of his training data.

For a high-level summary concerning what musical information Grappelli's PC, INT,

and DIR components encode, consult Tables F.1 through F.3. This appendix also

lists how Grappelli's model segregates his improvisations and displays graphs that

demonstrate how these models perceive playing mode as a function of underlying

harmonic context.

Several sets of examples from Grappelli's training data, each set mapping into

a di�erent playing mode, are demonstrated (Table 7.6) to provide some concrete

176

examples of how his modes di�er. This table's setup is analogous to the one presented

for Parker (Table 7.4). The only di�erence is that conglomerative class components

are de�ned in Tables F.1 through F.3 and bar location is with respect to the training

set de�ned in Appendix F.1.

Example 1 Example 2 Example 3

V ###���#�M##3,1,4"V V ####M#	N#M#	I������#
3,1,4H���#V V #####N#	###3,1,4N���#V

bar 3 bar 88 bar 117

V ########
1,1,2

M#V V
���#� ���#���#������#M���

���#
��M���

������#1,1,2
M#V V #########1,1,2M#V

bar 23 bar 28 bar 119

V �#######3,1,1���#
V V ############

3,1,1H#V V ##########
3,1,1I#V

bar 54 bar 92 bar 120

Table 7.6: Grappelli Conglomerative Class Examples

7.4 Grappelli CGL Examples: y
C
= h3; 1; 4i

In the �rst row, tones correspond to a fragment of pitch-classes in the F

Major scale, ranging from the leading tone (E) up through the scale's 3rd degree

(A). All of these pitch classes are shared but the A in bar 3. These melodies are

continuous and heavily syncopated, shared intervals include: u, m2, and M2. m3

and M3, also continuous intervals, are present, as is the fairly surprising two-octave

leap (bar 88). When syncopation is not controlling melodic contour, descending

runs are the main directional trend.

177

7.5 Grappelli CGL Examples: y
C
= h1; 1; 2i

In the second row, with the exception of the B, all shared and present pitches

coincide with the F Major scale. It is interesting that B is shared because it is also

the scale's tritone, an especially important tone in jazz. Absent tones include D[, E[,

G[, and A[. These melodies are primarily continuous, although not syncopated.

The only large interval is the single M7 leap in bar 28. The only syncopated interval

is in bar 119. Given that the FoO for unison, m2/M2, and all other intervals is 1:21:1,

it may seem surprising at �rst glance that INT component one was chosen, for it

also has a reasonable sized unison probability. It is these examples' heavy use of the

m2/M2 intervals that attracted them to this component. More generally, component

one's large m2/M2 probabilities | very common melodic intervals | are a primary

reason why its mixture weight is so large. In terms of direction, descending runs

are overwhelmingly present.

7.6 Grappelli CGL Examples: y
C
= h3; 1; 1i

The mode of the third row's examples was chosen to demonstrate how di�erent seg-

ments can look when just one of a CGL's subgoals is changed. In particular, with

respect to PC and INT, these examples are almost identical in nature to row one.

The only di�erence is that row three's examples display no obvious upwards or down-

wards trends. Instead, directional content is a mix of syncopation, up/down steps,

and short ascending or descending runs.

7.7 Listening Experiments

Two di�erent types of listening experiments were conducted, each designed to answer

a speci�c question. In the playing mode variation experiments (PMV), human sub-

jects were asked to listen to pairs of segments and assess whether or not they thought

the two were generated by the same or di�erent playing modes. The hypothesis in this

experiment was that listeners would be able to tell the di�erence between same and

di�erent playing modes, thus justifying the need for a mixture model that can provide

multiple (versus a single) components. In the learning model variation experiments

(LMV), subjects were asked to �rst listen to: i) a call from a particular musician's

178

training set, and ii) a pair of responses to this call. Listeners were then asked to

assess whether or not each of these responses was generated using the same or di�er-

ent learned models. Once again, the hypothesis in this experiment was that listeners

would be able to tell the di�erence, justifying the need for user-speci�c learning.

7.7.1 Generating Pairs of Solos

Individual pairs of generated responses (solo one, s
r
, and solo two, s

r0
) were ob-

tained using a generate function very similar to vMnGenerate (Table 6.6). Whereas

vMnGenerate performs solos in real-time, the generator used in these experiments

calculated solo pairs (s
r
and s

r0
) in advance using a particular pair of call contexts (r

and r0respectively). A single listening trial is made up of one pair of solos. A trial

was played back to the user through a simple keyboard-driven menu, allowing listen-

ers to repeat the playback of each solo pair, querying them to make an assessment

concerning the pair's sameness or di�erence, and logging their assessment.

7.7.2 Experimental Setup

One-on-one, I would introduced a listener to BoB, after which they would �rst perform

a PMV experiment and then perform one (or two) LMV experiments (depending

upon how tired they were after the �rst LMV experiment). Eleven adults listened,

most of whom were aÆliated with the Computer Science Department at Carnegie

Mellon University. About three-quarters of the listeners were pro�cient improvisors.

It usually took a listener about an hour to �nish the experiments.

Playing Mode Variation Speci�cs

With PMV, Parker's learned model and training data were used to construct listening

pairs. Each solo occupied one bar, containing on average about 9 unique pitches.

Solos were played back at a tempo of 150 beats-per-minute, requiring about 1.5 [sec]

of time per solo. Since each pair was played back with a short pause separating each

solo, about 3.5 [sec] in total was required to listen to a complete trial. Twenty-�ve

pairs were generated, thirteen sharing the same mode and twelve having di�erent

modes. The random-seed chosen by the �rst listening subject was used to initialize

the generator for all subsequent listeners, i.e., all listeners heard the same response

179

pairs. For a transcription of BoB's responses, and more detail concerning generation,

see Appendix G.1. Eleven di�erent listeners completed this experiment.

Learn Mode Variation Speci�cs

LMV experiments were either Grappelli-based (or Parker-based), depending upon

which musician's training data was used to simulate the call contexts. Once a par-

ticular musician was chosen to be the basis, the �rst response was always generated

using the learned model for that musician, e.g., generation was driven by the Grap-

pelli (Parker) model. What varied between trials was whether or not the same (versus

the other) learning model was used to generate the second response. While the call

impacts a response in that it is mapped into an abstract goal (mode and surprise),

the learned model's impact on a response is twofold (it de�nes this abstract mapping

and provides the component parameters used to drive generation).

Call contexts were between three and four bars long, each response containing on

average about 22 unique pitches. A tempo of 175 (150) beats-per-minute for Grappelli

(Parker) was used for playback. Listening to a Grappelli (Parker) response took on

average about 5 (6) [sec]. Each call/response pair was separated by a short pause.

In total about 22 to 26 [sec] of listening per trial was required. Fifteen pairs were

generated, eight sharing the same model and seven using di�erent models. Once

again, all listeners heard the same pairs. For a transcription of BoB's responses, and

more detail concerning generation, see Appendices G.2.2 and G.2.1.

Some listeners were too tired to do two LMV experiments. In these cases only the

Grappelli based experiment was run. Ten (seven) listeners completed the Grappelli

(Parker) based experiment.

In the LMV experiments, the listener's goal is subtly di�erent than it is in PMV.

Essentially, the listener is being asked to distinguish between whether or not the

same call is passed through a same or di�erent \generative �lter," where the �lter's

operation is inuenced by two somewhat di�erent operations. When two di�erent

models are used to generate responses to the same call, one might naively expect

the di�erences between these models to blatantly emerge in the resulting responses.

However, realize that because the same call is input to both generators, each will map

this into that goal mode that most closely encodes its pitch-sequence behavior given

that that model. To some extent, this mapping attenuates some of the di�erences

that actually exist between the models.

180

Introducing Listeners to the System

Listeners conducted the experiments themselves, listening to audio generated by a

PC9 in my graduate student oÆce, entering their answers and progressing to the next

trial via a keyboard-driven menu. To order to avoid inuencing the listener's decisions

in other ways, solos were played back mechanically using a simple MIDI synthesizer

patch.10

Before listening began, I would briey summarize the purpose of the experiment:

to distinguish between \sameness" and \di�erentness." I would also describe at a

high-level how BoB operated and how a typical improvisor would likely interact with

the complete system. Since the goal of these experiments was to assess BoB's handling

of pitch-sequence content, listeners were informed to \try and ignore rhythm as much

as possible," rather focusing on the solo's pitch-based content (tonality, general shape,

etc.). Several participants told me that the most helpful piece of information they

received during this introduction was to keep in mind the following question:

If you were interacting with BoB and it had just played solo s
r0
instead of solo

s
r
, would this have had a \similar" impact on your improvisational experience?

Before a set of listening trials began, the user was given a couple of demonstration

rounds, so that they could practice listening to response pairs, drawing conclusions

about them, and entering their assessment into the computer. During this demo,

listeners did not know whether a pair was di�erent or not in advance, but after

entering their assessment BoB would tell them what the answer was. The point of

this exchange was to allow the users to gain some practice paying as much attention

to pitch-based content as possible, providing some concrete interaction to help them

acquire a notion of what was being asked of them. While this procedure ran the

risk of biasing a listener (in the worst case, \teaching them" to distinguish between

various components in the mixture model), no listener felt compelled to run more than

one or two of these demonstration pairs. Given that a listener's success rate usually

improved as the trials progressed (because, in an unsupervised fashion, they were

able to develop a better idea of what it meant to distinguish between two concepts),

I believe the biasing impact of the initial demo trail was slight.

9Audio was produced using a SoundBlaster sound card.
10One disadvantage of this playback was that the music had a primitive \Donkey Kong" sounding

video-game quality.

181

7.7.3 On the Subject of Listening to Music

I cannot emphasize how diÆcult the task I was asking listeners to perform is, and to

all who gave their time, I am grateful. Ideally, a listener's assessment should be based

upon their instantaneous, gut response to a pair of solos. However, asking someone

to assess sameness or di�erence makes it more diÆcult to obtain an instantaneous

reaction. Rather, aware that they are being asked to perform a speci�c task, listeners

will invariably attempt to organize what they hear as the experiment progresses in

order to make the task as easy as possible.

Another issue concerning data collection via music listening arises in virtually all

music-cognition experiments. Often, studies are run with listeners hearing a very

short series of tones that occupy a much smaller time span than was used in each

LMV trial. While very short listening segments are useful because they allow one or

two variables to be carefully controlled and critically listened to, the problem is that

these conditions do not reect the richness of what goes on when people listen to an

entire musical experience in real-time. Unfortunately, music listening is diÆcult to

control and monitor in more complex settings because melody is so heavily inuenced

by context. Another problem with melodic listening is that one or two \bad notes"

can stick out more than the other twenty-one or so good ones. Music listening is

a temporal phenomenon | unlike a painting, its content can not be perceived all

at once. Without being able to instantaneously appreciate the whole experience,

it becomes questionable to what extent, and under what conditions, listeners are

assessing what one really wants to measure.

SuÆce it to say that music listening tests are diÆcult to conduct and interpret.

This fact is especially true in IMC domains, where the goal is not so much to assess

how people listen to music as to assess to what degree the system enhances their

improvisational experience.

7.7.4 Experimental Results

The results for the Parker PMV test and for the Grappelli- and Parker-based LMV

tests are summarized in Table 7.7. Results are segregated according to the listener's

ability to identify same and di�erent pairs. Histograms for each experiment and

segregation provide a more detailed look at the data that was collected (Table 7.8).

Each histogram count corresponds to a listener's average performance, i.e., his

182

Experiment Same Correct Di�erent Correct

n
subj

Ave 95% CI n
trials

P-Val Ave 95% CI n
trials

P-Val

PMV Parker 11 0.69 0.61 0.78 13 0.001 0.64 0.57 0.71 12 0.003

LMV Grappelli 10 0.61 0.50 0.72 8 0.055 0.91 0.84 0.98 7 0.000

LMV Parker 15 0.51 0.28 0.74 8 0.47 0.44 0.23 0.64 7 0.72

Table 7.7: Listener Results

or her ability to correctly assess n
trials

of sameness (or di�erence) pairs. The results

in Table 7.7 quantify expected listener performance. Our concern is to determine

whether or not listeners can distinguish between same or di�erent pairs with better

than random-guessing performance. In this table, performance is normalized over the

total number of subjects (n
subjs

). The Student's t test is used to calculate P-Values

with respect to the following research hypothesis (Casella and Berger 1990):

Listeners can identify sameness (or di�erence) between pairs with better than

50% accuracy.

Those experiments in which this distinction is at least 0.05 signi�cant are highlighted

in bold type. The `CI' �eld refers to the 95% con�dence interval of the estimated

listener performance rate.

Especially for the LMV tests, it would have been better to increase the value

of n
trials

in order to ensure that the underlying distribution of the observed listener

averages is approximately Gaussian.11 However, due to the time required to take

the tests, collecting more data would have been impractical. Nonetheless, there

is little doubt that in the LMV Grappelli-based setting, listeners can tell

when the Parker model is being used instead of the Grappelli model. In

this case, the 95% con�dence interval for how well users can distinguish between

di�erent models is exceptionally high ([0:84; 0:98]). When Parker's solo calls were

being responded to with Grappelli's model, distinctions between models were less

obvious. This is a result of the fact that although Parker's playing preferences (and

learned model) are more \far out,"12 when such playing is mapped onto Grappelli's

model, the call's \wildness" is somewhat attenuated. In general, listeners seemed to

have more trouble identifying similar LMV trials than they did identifying dissimilar

11The Student's t test, which is based on exact sampling theory (Spiegel 1994), alleviates a similar

concern about the size of n
subjs

.
12For example, realizing more dissonances and syncopation.

183

Same Assessment Di�erent Assessment

PMV Experiment; Parker Based

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

average correct

co
un

ts

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

average correct

co
un

ts
LMV Experiment; Grappelli Based

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

average correct

co
un

ts

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

average correct

co
un

ts

LMV Experiment; Parker Based

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

average correct

co
un

ts

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

average correct

co
un

ts

Table 7.8: Listening Experiment Results

184

ones. Within a given model \similarity" is still coarsely de�ned (in part because

of sample size sparsity), which o�ers one explanation for why dissimilarity is more

easily distinguished in general. For an IMC, this coarseness is bene�cial, providing

rich generalizations in situations where the computer must at least appear creative.

Listeners were also able to signi�cantly distinguish between same and di�erent

Parker playing modes, sameness being slightly easier to identify than di�erence, e.g.,

69% of same (versus 64% of di�erent) correctly identi�ed on average.

With the PMV pair solos shown in (Appendix G.1, the interested reader can

further investigate how generation works. For example, it is instructive to compare

the bars generated between two di�erent and same pairs, constructing histograms for

their CGL features and comparing the shapes of these histograms to the shapes of

their underlying generative component parameters. Through such an analysis, the

richness of the vMn generalization mechanism and its inherent reliance upon sample

size sparsity is further demonstrated.

Some listeners observed that most of their decisions were inuenced by intervallic

and directional trends. In particular, rhythmic syncopation and very jagged melodies

were often noted as decisive factors. Some listeners complained that there was no

harmonic background provided for these listening experiments, hypothesizing that

had harmonic knowledge been provided, distinctions between di�erent tonal modes

would have been easier to make. In general, each subjects' running commentary

during their listening trials was informative (I have recorded these comments in a

log book). While these logs reaÆrm my suspicion that such vague listening tests

are diÆcult to administer and interpret, they also suggest mechanisms for future

improvement. For example, about half the listeners noted LMV pairs were simpler to

assess than PMV pairs. This observation makes sense given that relative distinctions

(e.g., compare two responses to a particular call) are typically easier to make than

absolute distinctions (e.g., determine if two modes are identical or di�erent). However,

because of the length of an LMV trial, only one or two listeners were able to carefully

remember and recall what they had heard within it. As a result, other listeners found

the PMV trials easier to assess.

Unfortunately, there is likely no procedure that will please all listeners. For exam-

ple, while some complained that last note clamping made assessment diÆcult because

it diminished the di�erence between two solos in their minds, others complained that

in one pair the last note \did not �t as well," making assessment easier. While some

185

people were extremely frustrated by the lack of harmonic background, other peo-

ple seemed to enjoy listening to melodies in this less constrained context. What

was most encouraging about these experiments were that in all but two

cases, musicians found the system's interactive behavior both interesting

and rich, regardless of the bad note or two it would often play. To summa-

rize the general impression musically pro�cient listeners seemed to have about BoB's

performance:

Wow....it seems like the system is really trying to respond and interact with the

call. Its de�nitely a far cry from random behavior...

7.7.5 With Respect to Solo Trading

I will close this chapter by calling attention to the solo trading scores in Appendix H.

These scores outline the live demos that I typically play when giving talks (MIDI �les

of these scores will be available on my web page, http://www.cs.cmu.edu/~bthom,

shortly). Four di�erent solo-trading scenarios are presented:

1. Parker trading solos with BoB trained on Parker;

2. Parker trading solos with BoB trained on Grappelli;

3. Grappelli trading solos with BoB trained on Grappelli;

4. Grappelli trading solos with BoB trained on Parker.

In these scenarios, BoB and the musician trade fours. Four bar calls were taken from

contiguous segments of the musician's training data (every last bar was replaced by a

rest so that there was a short pause between each call and response). To generate a re-

sponse, BoB would transform this call context as described in Section 6.4.2, producing

three bars of response (and a rest bar) for the next four bars of accompaniment.

Because these demos generate more bars than an LMV trial, audiences typically

have an easier time appreciating the distinction between these di�erent scenarios than

they do distinguishing between pairs in a particular LMV trial. What is interesting

about this observation is that short-term, gut reactions become less important when

listeners collect more data, forming longer-term opinions about what the agent is

doing. In other words, in longer-term interactive contexts, the importance of an

186

agent's ability to customize itself to a user and respond to various playing modes may

be even more important than the types of listening experiments conducted above

indicate.

187

188

Chapter 8

Related & Future Work /

Limitations

The IMC domain is interdisciplinary and draws on techniques from a wide variety of

�elds: real-time systems, arti�cial intelligence, human-computer-interaction, statis-

tics, music analysis, psychology and cognition, etc. In this chapter, a few related

research projects in interactive computer music systems, melodic representation, and

machine learning are presented. Since related research naturally sets the stage for

considering limitations of this thesis' approach and motivates directions for future

research, these topics are also presented.

8.1 Real-time Interaction

As a necessary precursor to live interaction, BoB needs rhythmic quantization (RQ).

The whole point is to have musicians play with BoB. This issue is the most

pressing future research item. The diÆculties associated with RQ were presented

in Sections 3.1.2 and 3.1.3.

Given its strong probabilistic basis, the RQ technique proposed by Cemgil, Desain,

and Kappen (2000) is a natural choice for integration with BoB. Their approach

is Bayesian, combining a probabilistic code-book that models the likelihood that

particular codes (scores) \explain" a performed onset sequence with a prior that

penalizes \complex" codes more heavily than \simple" ones. This penalty makes the

classi�cation task well-de�ned because it ensures that more complex scores will not

189

necessarily better explain performances. BoB's requirement for encodable rhythms

can be handled by restricting the contents of the codebook.

An attractive aspect of their model is that its explicit mathematical formula-

tion made it straightforward to tune parameters using perceptual data. (This data

measured musicians transcribing and perform various rhythm scores (Desain, Aarts,

Cemgil, Kappen, and van Thienen 1999).) An open question is how well their model

will work in live improvisations, where higher-level musical context may have a large

impact on a musician's expressivity. Since BoB can adapt itself to whatever input it

receives, in practice this issue may be irrelevant.

8.2 Musical Expression

An obvious limitation is BoB's mechanical, unexpressive playback. In addition to

signi�cantly bolstering a system's believability, expression plays an important part

in communicating higher-level intent (for example, emotional meaning (Bresin and

Friberg 2000)). With the recent strides that have been made in automating musical

expression, integrating BoB with one of these technologies is worth considering.

In Dannenberg and Derenyi (1998), synthesis and low-level performance mod-

els were integrated. Their research focused on standard trumpet-based performance

practices and required less symbolic knowledge than other methods. While integrat-

ing this model into BoB would require some modi�cation (their performance model

was tuned for classical music, required phrasing information, etc.) the endeavor looks

promising.

Another possibility is the Saxex model (Arcos, de Mantaras, and Serra 1998),

which uses case-based reasoning techniques to �nd synthesis parameters that are

\appropriate" for expressing a score. Integration with BoB is straightforward in that

Saxex operates upon note sequences in speci�c harmonic contexts. More diÆcult

issues remain. For example, Saxex does not run in real-time and the current system

operates upon \expressivizing" an audio signal (versus MIDI). Fortunately, providing

an interface that would allow the system to operate directly with MIDI data is part

of Arcos, de Mantaras, and Serra (1998)'s research agenda. Given that Saxex was

crafted to operated on jazz ballads, the interesting research question is how well their

approach will perform in more general improvised settings.

190

8.3 Melodic Representation

There are obvious limitations to BoB's melodic representation. For example, no e�ort

has been made to explicitly craft what notes within a segment are most salient. This

task, however, boils down to developing \a really good" melodic representation. As

with any complex human domain, this development requires one to essentially ful�ll

the \AI dream." Nevertheless, the search for better melodic representations lies at

the core of computer music research for:

How do we make sense of what we hear as music? One of the most evident

features of [a] piece is that it has a melody | in some respects it is a melody.

(Cross 1999)

In terms of computational modeling, two often cited sources of inspiration are Nar-

mour (1990) and Lerdahl and Jackendo� (1983), which provide details about how one

might model the e�ects of rhythm, meter, pitch, melodic contour, etc. As insightful as

these theories are, they are only partially useful for creating a computational melody

model. Ultimately, there are just too many di�erent factors that inuence melodic un-

derstanding. For example, with respect to the \`brute' mechanistic system" proposed

in Narmour (1990), the author cautions:

Let me, however, emphasize as strongly as possible that ... one cannot mech-

anistically apply [...it...] in the explanation and interpretation of melody. For

idiostructural context or style itself always impinges upon [...it]. That is why I

say that [...it...] constitutes a hypothesis: one must not invoke it simplistically.

With these diÆculties in mind, extensions which address some of BoB's representa-

tional shortcomings are proposed.

It is worth investigating how much a \more musical" segmentation scheme would

improve performance. The work of Lerdahl and Jackendo� (1983) introduced a foun-

dation upon which many real-time segmentation algorithms have been constructed

(Rowe 1993; Stammen and Pennycook 1994). Recently, Cambouropoulos (2001) pro-

posed LBDM, a computational model for segmenting melody that is simpler and more

general than other models based on a limited set of rules, e.g., (Lerdahl and Jack-

endo� 1983). A crucial aspect of LBDM is that it can be applied to non-quantized

191

performance data.1 Since BoB handles the number of events per segment as variable,

its integration with LBDM is straightforward. LBDM's functionality would allow

interesting quantitative (e.g., are clusters better separated?) and qualitative (e.g.,

musically, do the clustering partitions make more sense?) questions to be explored.

I also expect that a solo's quality may dramatically improve if knowledge concern-

ing key notes (like the target notes considered in Toiviainen (1995)) is incorporated

into the generation scheme. Another possibility is to investigate reducing the number

of \really bad notes" that are generated by experimenting with various harmonic and

metrical constraints. When live interaction is in place, a fruitful way to begin im-

proving the system's melodic representation will be to have as many musicians play

with the system as possible. By carefully analyzing the corpus of interactions that

result, a comprehensive list of \serious errors" can be compiled. This list can then be

used to incrementally address BoB's melodic shortcomings by: adding new features or

modifying existing features, adding new constraints, either manually or with the help

of additional ML algorithms, etc. Such incremental improvements will also shed light

on other important issues. For example, as constraints are added, more information

about how these constraints impact searchPS's performance will be obtained.

8.4 Interactive Computer Music Systems

Rowe (1993) observes that \interactive music systems change their behavior in re-

sponse to musical input" | providing a level of companionship to the musician by

de�nition. Prior work tends to fall into one of two camps (Walker 1997). The �rst

camp embraces the author-the-aesthetics paradigm, where the composer is the author

of the program, and it is assumed that he or she will set it up to respond \appropri-

ately." In the second camp, the attempt is to build an aesthetically neutral system

that can be tailored by an end-user. (The Max program is a good example of this

approach (Puckette and Zicarelli 1991; Winkler 1998).) With the advent of machine

learning, interactive systems have also begun to employ learning techniques for oper-

ationalizing more autonomous musical aesthetics.

1Even when a system ultimately operates on a transcription, it is reasonable to expect that

segmenting must operate on raw data.

192

8.4.1 Roger Dannenberg

Dannenberg's artistic goal is to have the computer be an extension of his compositions.

Many of his interactive implementations fall into the author-the-aesthetics camp.

Typically, his compositions make real-time performance decisions that adapt to the

nuances of a human performer. Music recognition is either hand-coded and/or trained

using human-supervised learning data. Music generation is generally designed to carry

out the composer's (rather than the performer's) goals.

Perhaps BoB's PC modeling scheme and the scoreless accompanist developed by

Dannenberg and Mont-Reynaud (1987) are most related. The purpose of this system

was to accompany a soloist while they freely improvised over a 12-bar blues (tempo

was not restricted). Before live interaction began, MIDI training data was collected

while the improvisor soloed over a computer-provided blues progression. This data

was used to build a real-time model that could predict at what location in the blues

progression the musician was likely to be soloing over. A highly local view of the

blues was constructed | a di�erent pitch class distribution built for each eighth-note

| and for each eighth-note, a single Multinomial distribution was estimated. It was

noted that a less disperse likelihood function would probably improve performance

and the vMn model provides one mechanism for addressing this issue.

Another motivating piece of work was the improvisational style recognizer devel-

oped by Dannenberg, Thom, and Watson (1997). In this research, improvisations

were broken up into segments and converted into histogram-based features. Improvi-

sations were collected in a supervised fashion: the computer told the musician what

type of improvisation to play next (e.g., bluesy, frantic, etc.) and the musician, mo-

tivated by this suggestion, improvised freely. This data was used to build a classi�er

that could distinguish between di�erent improvisational intentions. Since classi�ca-

tion performance was impressive, the natural next step was to consider using this

technology in a more directed fashion, e.g., to have the computer respond in kind.

This consideration poignantly demonstrated the diÆculty in closing such an abstract

learning loop and motivates my interest in melodic generation.

8.4.2 Robert Rowe

Like Dannenberg, Rowe has extensively experimented with creating and performing

with interactive computer music systems. His Cypher system was developed on top of

193

a strong musical foundation, providing a variety of meaningful (hand-tuned) feature

detectors that provide classi�cations about: loud versus soft, high versus low tones,

phrase detection, chord identi�cation, etc. Cypher can operate in both scored and

improvisational settings. The underlying architecture was based on Minsky's society

of mind ideas (Minsky 1986; Minsky 1981) | individual tasks were handled by rather

simple agents that worked in isolation. In terms of using Cypher, the paradigm is

author-based:

The user's task is to con�gure the way in which the player will respond ... ac-

cording to connections made by the user between features and transformations.

Rowe's sensibilities �t naturally into the IMC domain. A large part of my vision was

spelled out in Rowe (1993):

In developing my own computer musician, I attempt to make human partici-

pation a vital and natural element of the performance situation...[to]...develop

computer musicians that do not just play back music for people, but become

increasingly adept at making new and engaging music with people, at all levels

of technical pro�ciency.

Implicit in his approach is the pragmatic observation that the audience is be willing

to suspend their disbelief (page 43). In particular, although Rowe �nds the task of

building an interactive computer music system daunting because the content of the

representations and the goals are roughly equivalent to human musicianship, this does

not deter him from arguing that:

even a little bit of musicianship can make computer programs engaging partners

for a variety of applications and compelling members of performing and impro-

vising ensembles. In other words, not all musicianship has to be encoded to

make these systems useful, and many incremental improvements are available

to take them beyond the level they have already reached. (Rowe 2000)

8.4.3 David Wessel

Open-ended improvisational experiences are actively sought in Wessel's computer-

assisted performance settings, which, at their core, embrace an author-the-aesthetics

paradigm, albeit in a more spontaneous fashion. For example, the emphasis in Wessel,

194

Wright, and Kahn (1998) was to create technologies for organizing and controlling

the access to rhythmic and timbral material so that human computer musicians could

author meaningful musical experiences to accompany the performance of a classical

Khyal singer on-the-y. Typically, Wessel's interaction with live improvisers involves

performing alongside them in a meta fashion, directing their live acoustic or MIDI

data into internal software modules that have been constructed with the explicit

purpose of providing him with a set of controls for modifying the input in some way

so as to create new audio that blends in and enhances the live improvisation.

The most relevant aspect of Wessel's research is his modeling of music as a stochas-

tic process, using these models for novel generation and/or subsequent modi�ca-

tion. Statistical constructs have been often used to operationalize his tools. The

Markov chain melodic generational process being developed by Steinsaltz and Wessel

(in progress) is a recent example.

8.4.4 George Lewis

Somewhere in between the two di�erent authoring purposes of Dannenberg and Wessel

sits the research of George Lewis. Lewis's computer performers are designed to play in

the context of improvised music, the point to infuse a separate, recognizable personality

into its behavior which can participate in musical discourse on an equal footing with

humans. While the composer is responsible for some aspects of his systems' behaviors

(i.e., setting certain probabilities) other aspects are owned entirely by the systems

themselves (i.e., harmonic and rhythmic input does not react to what the musician

plays) (Rowe 1993).

Lewis describes his Voyager system as quite open-ended, pointing out that the

emergent properties that arise \when playing with the thing" are of primary interest

to him (Casserly 1997; Roads 1985). In this sense, his motivation and purpose in

systems building leans more towards Wessel's (and my) views than Dannenberg's.

At the same time, Dannenberg and Lewis, both practicing improvisers, have spent

years hand-crafting their interactive software environments and in this sense, Lewis's

impact on AI and music is akin to the impact that Harold Cohen has had on AI and

drawing.2

2Cohen created the Aaron drawing program (McCorduck 1991), which can generate astonishingly

humanlike sketches using algorithms that, in their essence, are a life-long attempt to mechanize

Cohen's artistic notions.

195

8.4.5 Other Related Interactive Systems

Improvisation Builder

Walker (1997) proposed Improvisation Builder (IB) in order to break out of the au-

thoring camp. A primary distinction of IB is that it can play jazz with a musician

without relying on any sort of lead sheet. Rather, conversation analysis techniques

were used to infer what IB should do at a given time (to solo or to accompany). As

more sophisticated interaction scenarios are developed, it will make sense to consider

integrating these techniques with BoB.

The Reactive Accompanist

The goal of the reactive accompanist was to provide real-time chordal accompaniment

to a folk melodist playing without a score (Bryson 1992). This research embraced the

subsumption architecture (Brooks 1990), in stark contrast to a symbolic, knowledge-

based approach. Thus it was natural for the system to operate on live acoustic input.

In particular, a neural network was trained on a set of accompaniment examples,

learning to predict what chord should be played given a recent window of acoustic

input. One aspect of this system that, in lieu of its subsumption basis is surprising,

is that it did not handle other important lower-level issues, like what note sequences

should realize speci�c chord sequences. Although BoB does not operate directly on

live audio, its most basic representation (the VLT) tackles the other analogous low-

level issue, i.e., what notes to play for a speci�c melodic mode.

GenJam

GenJam is a genetic algorithm-based model of a jazz musician learning to improvise

(Biles 1994). The most relevant aspect of this work is that human listeners' aesthetic

preferences are used to drive the generation of the next set of improvisations, i.e.,

this system is a concrete example of how one might automatically convert a listener's

musical sensibility into operational procedures. One reason why I did not try a similar

approach was that it seemed unreasonable to expect IMC users to listen to and rate

many examples. In addition, this data collection procedure necessarily removes the

musician from improvisation's most fundamental aspect: its physical and spontaneous

creation of melody. While the original system was not interactive, later work GenJam

196

was enhanced so that a live musician could, for example, trade fours with it (Biles

1998). Attempts to address the system's \�tness bottleneck" were also explored (Biles

1995; Biles 1996; Biles 1998).

CHIME

Recently, Franklin (2001) developed CHIME, an agent that learns to trade solos with

a jazz musician in two di�erent phases. CHIME represents melody as a sequence

of pitches and rests with sixteenth-note durations (slurs were used to create longer

notes). In phase one, a recurrent neural network learns how to reproduce three jazz

melodies (taken from saxophonist Sonny Rollins' transcriptions). In phase two, a

real-valued reinforcement learning algorithm was used in conjunction with a human

performer's solos to re�ne the network's behavior. The reward signal, which Franklin

(2001) constructed by hand, rated the agent's solos in terms of simple jazz-based

harmonic criteria. This system's relation to BoB was also described on pages 67, 78,

80, and 157.

8.5 Machine Learning

8.5.1 Clustering

Multinomial-based clustering has not received as much attention in machine learning

as Gaussian-based clustering has (McLachlan and Basford 1988). When algorithms

do cluster Multinomials, they often impose special restrictions on the number of

counts they may contain. For example, in Autoclass (Hanson, Stutz, and Cheeseman

1991), discrete variables are either present or not (i.e., no more than one count per

bin is allowed). In order to use Autoclass with variable-sized histograms, one needs

to break up the counts within a given histogram and model each independently.3

Another common approach is to insist that each bin contains at most one count

(Meila and Heckerman 1998; McLachlan and Basford 1988). During the initial stage

of my research, the clustering algorithms that I found in the literature imposed these

types of restrictions. As a result, I developing vMn. Later on, Multinomial clustering

received more attention (largely because the web made document clustering a hot

3J. Stutz, personal communication, December 1999.

197

topic). For example, in Nigam, McCallum, Thrun, and Mitchell (1998), variable-size

labeled and unlabeled histograms were combined into a Multinomial mixture model

for classifying documents. In contrast to vMn, in their model, histogram counts were

explicitly normalized because they felt that longer documents should not be more

heavily considered. More recently, Multinomial clustering has received more attention

in its application to the inference of Markov chains (Thom 2000b; Ramoni, Sebastiani,

and Cohen 2000b; Ramoni, Sebastiani, and Cohen 2000a; Sebastiani, Ramoni, and

Cohen 2000; Smyth 1999; Cadez, Ga�ney, and Smyth 2000).

A valuable aspect of using a probabilistic model is that it allows simulated exper-

imentation. In pure machine learning terms, vMn's application to BoB motives two

directions for future research:

1. How much does the assumption that segments are independent impact learning per-

formance? This issue could be explored by simulating histogram datasets using a

higher-level sequence generator, which allows the correlation between segments to be

controlled and the impact on learning performance to be assessed.

2. What changes when CGL histograms are clustered as an entire unit rather than in

separate PC, INT and DIR models? This question makes sense when one considers

that various bins in PC, INT and DIR might be correlated with one another. While

in the Multinomial, bins are modeled as independent, in terms of classi�cation, they

can still collaborate with one another towards improved discrimination.4

8.5.2 Sequence Learning

Both Feulner and H�ornel (1994) and Mozer (1994) used neural networks to learn

melodic structure. Once trained on input melodies, these networks were able to

produce \similar" output melodies. One complaint with these schemes was that their

generated melodies lacked structural coherence (H�ornel 1998). An interesting method

for dealing with this was proposed in H�ornel (1998): construct networks that operate

over multiple time scales. The basic idea is that melodies are comprised of motives,

within which distinct note-by-note generation schemes will be operative. By breaking

the problem into two separate learning networks, one could expect better predictive

power (and hence better generative power) because the consideration of what happens

4The essential line of reasoning for why this is true is argued in a di�erent context in Smyth

(1999).

198

next (the next note, the next motive) is now explicitly organized around a hierarchical

scheme that is likely to be inuencing the actual production of melody. H�ornel (1998)

demonstrated impressive results for a system trained in this way on the melodies of

Pachelbel. BoB has an analogous set of clusters | preferences for certain tonalities,

intervals and contours. A compelling direction for future research is to perform higher-

level sequence learning on this kind of data (as was described in Section 7.2.1).

This investigation becomes more interesting when one considers that higher-level

sequence prediction is easier when the size of its alphabet (e.g., the number of mo-

tive classes) is small because there are less ways in which to guess the next motive

incorrectly. Similarly, the smaller the number of classes, the less distinction between

melodic segments within a class, which makes the prediction of the next note more

diÆcult. As demonstrated in (H�ornel 1998), there is a complex interaction between

these two a�ects, and one would expect that at the \right" level of granularity an \op-

timal" model might be obtained. This raises the exciting possibility of unifying into

one algorithm both learning to predict higher-level sequences and learning to cluster

the lower-level sequences that are transformed into these higher-level classes. Such

an algorithm would be of great value in temporal, discrete, unsupervised domains.

In future work, I plan to use a universal compression algorithm (UCA) to learn dis-

crete sequences in BoB. Such an algorithm is ideal because it asymptotically achieves

the best possible compression rate for any source distribution (Lartillot, Dubnov,

Assayag, and Bejerano 2001). This performance is because the learner can build

variable-sized contexts into its prediction algorithm as needed. Clearly, this capabil-

ity is ideal in musical contexts. UCAs have already been used to produce impressive

results when modeling musical structure (Dubnov, Assayag, and El-Yaniv 1998; As-

sayag, Rueda, Laurson, Agon, and Delerue 1998; Lartillot, Dubnov, Assayag, and

Bejerano 2001).

199

200

Chapter 9

Conclusion

In this chapter, the long-term vision that drives this research is recapped and the

scienti�c contributions made to the the �elds of machine learning, intelligent agents,

and interactive music systems are summarized.

9.1 The Vision

In abstract terms, my vision is to develop technologies that allow the computer to

begin participating as a �rst-class citizen in creative, artistic, collaborative exchanges.

It is of enormous bene�t that artistic goals are at least as valuable as purely technical

ones. I �rmly believe that good art, when transformed into a computational setting,

will breed good science, but that the converse is not necessarily true.

In concrete terms, the vision of my research is to interactively improvise with the

computer, using it as a tool when practicing alone to capture and experiment with

my all-too-transient spontaneous musical ideas. The penultimate goal would be to

someday produce an artifact that could:

... answer me halfway through my phrase, bringing me to the point where I can

actually sing what its going to play next, and then, instead of playing that, it'll

play something against it which compliments what I'm singing in my head.1

This goal is an inherently interactive one. Although IMC technology might be

1The paraphrased musings of drummer Keith Copeland on improvising with jazz pianist Ahmad

Jamal (Berliner 1994).

201

amenable to generating stand-alone melodies, this "brain-in-a-vat" exchange merely

detracts from the main point: to interact with, enhance, and leverage o� of the

spontaneous creativity of the musician.

9.2 Contributions

This thesis o�ers �ve contributions to the �elds of machine learning, intelligent agents,

and interactive music systems.

9.2.1 The Improvisational Music Companion

Chapter 2 introduced and explored the concept of an agent as a spontaneous musical

companion. Of potentially great bene�t to AI, this exploration forces one to tackle

the seemingly impossible task of \operationalizing nothing" because:

...music is not about anything in particular...the challenge and potential rewards

for both AI and the broader domain of cognitive science lie in attempting to

reconcile [its] dual aspects: music is humanly universal yet at the same time

appears to be a strangely functionless activity. (Cross 1999)

In tackling this issue in BoB, a new agenda for machine learning and musical intel-

ligence emerged. To oversimplify, less e�ort was invested engineering speci�c music

details so that more time could be spent building a completely exible, adaptive, and

intimate solo-trading model.

9.2.2 The Hierarchical Set of Melodic Views

Chapter 4 introduced a novel melody representation scheme in which solos were seg-

mented per-bar, providing a highly localized view of the melody. Segments were

further decomposed into a set of views that explicitly captured salient aspects of

their rhythm, tonality, and melodic continuity and contour

A major contribution is the representation's hierarchical, musically meaningful,

multifaceted nature. VLTs are used to build PC, INT, and DIR histograms, which in

turn are used to build CGL feature vectors, which in turn are mapped into user-speci�c

playing modes, which in turn display certain degrees of musical surprise. While the

202

more abstract views ensure that the agent can see \beyond the solo's immediate

melodic surface," the highly localized segments provide the exibility needed to inti-

mately adapt and respond to the musician. Furthermore, this representation's hierar-

chical and musically meaningful handling of rhythm, tonality, and melodic continuity

and contour is a big part of why, as demonstrated in Chapter 7, BoB's solo-trading

model is easy to understand, interpret, and (when desired) infuse with higher-level

domain knowledge.

9.2.3 Learning a User's Playing Modes

In Chapter 5, an EM-based variable-sized mixture of Multinomials was introduced

to cluster a set of histograms. In BoB, this technology is used to learn to perceive a

segment's tonality and melodic continuity and contour trends in a user-speci�c way.

With respect to machine learning, the main contribution is this model's ability

to learn structure when datasets are relatively sparse. Counts within the dataset

become more powerful indicators of model structure because the vMn model explicitly

treats each histograms' counts as having been generated by a particular underlying

Multinomial component. The music contributions of this model were demonstrated in

Chapter 7. Within the learned components' parameters and among their perception of

the training data, musically appropriate and powerful musician-speci�c abstractions

are embedded. For example, the two most probable PC components learned for

Parker's model have natural Bebop scalar interpretations. This result is impressive

because the learner had no explicit tonal/harmonic knowledge and the training set

was very small.2 To fully appreciate this result, one must realize that these scales

were de�ned by musicians after the fact to explain the improvisations that Parker

had a hand in inventing.

9.2.4 Transforming a Solo Call into an Appropriate Response

In itself, user-speci�c perception does not provide a means by which the computer

can respond to a musician. Another contribution of this thesis is an algorithm that

\closes the learning loop," reversing the learned mapping from solos to user-speci�c

playing modes. In chapter 6, this algorithm, in conjunction with another that tweaks

2Containing only 119 histograms, with an average of 7.5 counts in total distributed among a

histogram's 12 bins.

203

a call's rhythmic structure, were introduced, providing the functionality needed to

generate novel user- and context-speci�c solo responses.

Reversing the user-speci�c model was accomplished by incorporating the desired

component's learned parameters into a Markov chain that, when sampled, would

produce pitch sequences that tend to exhibit the desired conglomeration of trends.

Another important aspect of this algorithm is its ability to simultaneously ensure that

a fairly arbitrary set of constraints are maintained, providing a natural mechanism

for including rhythmic, contextual, and/or domain speci�c considerations later on.

Another crucial aspect concerns real-time eÆciency, which was feasible only when

some independence assumptions were made about how to incorporate the learned

mode's parameters into the generator.

The main contribution of the tree-tweaking algorithm is its hierarchical nature,

providing an ideal basis for reasoning about rhythmic modi�cation. Similarly, the

main contribution of the pitch sequence generator is the ideal basis it provides for

reasoning about a melody's pitch content. As a result, the algorithm is quite mu-

sically powerful. To cite one example, straight out-of-the-box, this algorithm could

be used to generate a pitch sequence that starts and ends on speci�c tones and \�lls

in the blanks" in such a way that a particular conglomeration of trends emerges.

This approach was demonstrated to successfully reverse learned mappings and main-

tain constraints in a variety of realistic musical settings. The listening experiments

presented in Chapter 7 also indicate that controlling generation on a per-user and

per-mode basis has noticeable impact.

9.2.5 The BoB Solo-Trading Architecture

Chapter 3 introduced an overall architecture where this thesis' representation, learn-

ing, perception, and generation components were combined to produce BoB, an

agent that trades user- and context-speci�c solos with a musician in real time (al-

beit presently via simulation). An important aspect of this architecture is that the

user-model is learned o�ine (automatically con�guring itself to about 15 minutes of

warmup data). While real-time online modi�cation of this model is a feasible possibil-

ity, it is unlikely to expect that o�ine learning can be eliminated altogether.3 Online,

it is trivial to perceive user playing modes in real-time. With minimal e�ort (or a

3Depending on how careful one wants to be in learning the number of components in a user-model,

o�ine learning can take anywhere from a few minutes to a few days.

204

slightly faster computer) the generation algorithm can execute in real-time (currently

about 3 seconds per bar are needed).

9.3 Closing Remarks

Before closing, a few remarks about the call-and-response metaphor that was used

to ground human-computer interaction are in order. It is easy to make an argument

that call-and-response is in essence a toy problem, and taken literally, I agree with

this statement. However, this task has only been used to situate BoB, and from

within this paradigm, much more cooperative modes of interaction can be imagined.

For example, scheduling issues aside, what the computer needs to be able to move

beyond call-and-response is the ability to predict what is coming next. This skill

requires a user-model that can:

� perceive strings-of-notes with some degree of abstraction;

� generate abstract intentions on a note-by-note basis.

Band-OUT-of-a-Box presents a working system that begins to tackle both of these

issues. With such a model in hand, meaningful and interesting applications can

follow.

205

206

Appendix A

Interpreting Pseudo-code

All of the algorithms presented in this thesis are outlined in pseudo-code, presented

with the goal of supporting reimplementation. Pseudo-code is presented in tables

(e.g., Table 5.4), the main body enclosed in a large box, and the function's name and

argument enclosed again in another. When individual lines need to be identi�ed, they

begin with a number followed by a colon. This number serves as the line's tag. For

readability, some algorithms are broken up into a set of functions.

The Terminal type font is used to identify functions as well as primitive program-

ming keywords (e.g., for, Argmax, abs, etc.). Functions are de�ned using pseudo-code

that loosely follows C++-like conventions. For example:

� Operator `++' increments a variable by one.

� Return values are passed using the return keyword.

� Multiple assignments per line are separated by a `;'.

� Function application takes place when the function is followed by an argument list,

`(� � �)'.

� When the reference operator, `&', is used, it indicates that an argument is being

passed by reference.

In the main body of a function, mathematical variables follow the same conven-

tions that hold for formulas. As a result, in the following context, if a tuple is returned

by a particular line in function blah:

returnhfoo; bari;

207

and it is assigned via

bash = blah();

then bash, and foo and bar , might be used interchangeably (and vice versa).

For tree-based functions, an object oriented style of pseudo-code is used. Again,

syntax loosely follows C++-like conventions. For example:

� class methods are declared with the `< class >::< method >' identi�er.

� class methods and �elds are retrieved from objects using the `.' operator, and when

inside a given method, these �elds are accessed using keyword `this'.

� the name of a class's constructor has the same name as its class.

A major simpli�cation is that pseudo-code glosses over low-level memory related

issues and garbage collection is assumed to automatically take care of itself. As a

result, access to an object (or this) always uses the `.' operator. Similarly, construc-

tors are executed as regular function calls (as opposed to using new). When these

constructors receive arguments, it will be clear from context what �elds within the

object these are used to initialize.

208

Appendix B

Interpreting Music Scores

Musical scores adhere to the following conventions:

1. Bar marker `j' identi�es where one bar ends and the next begins.

2. Bars are numbered and displayed in the order in which they were played. A small

number at the upper left-hand column of a sta� refers to the number of the bar that

begins that sta�.

3. During interaction, two staves are used, one for the call's bars and one for the re-

sponse's.

4. When text to the left of a sta� appears, it indicates who played that sta�'s notes

(`Parker' or `P' for Parker; `Grappelli' or `G' for Grappelli; `Bob' or `B' for BoB).

5. Harmonic accompaniment chords appear underneath the a stave. Standard chord

notation is used.

6. Section marker `jj' serves to break up choruses and/or separate calls and responses.

7. When three comma-separated numbers are printed in bold type above and to the

left of a bar, it is the bar's conglomerative class tag. A bar's tag indicates to which

user-playing mode that a segment has been assigned. For example, if a bar was tagged

with 1,3,2, then a model's �rst PC component, third INT component, and second

DIR component are most likely to have generated it.

The Lilypond program was used to produce BoB's musical scores (Nienhuys,

Nieuwenhuizen, and Mariano 1999). When BoB converts its tree-based melodic rep-

resentation (Section 4.3) into a Lilypond score, no e�ort is made to transform it into

209

a more succinct Lilypond input. This decision impacts the scores produced in several

ways:

1. Since syncopated rhythms are represented via compound durations, rhythms

are not always printed in their \simplest" form (e.g., bars 50, 109, and 110 in

Parker's training data).

2. Since leaves do not contain articulation information, slurs are only drawn when

rhythms are syncopated.

3. Pitches are notated without reference to a musical key. Chromatic tones are

notated using [-based notation rather than a #-based equivalent, even when,

diatonically speaking, it is less appropriate to do so.

Although not standard in music notation practice, when Lilypond displays a bar

whose �rst note is slurred with a previous bar's identical, but chromatically altered

tone, it assumes that this alteration holds during the entire bar. Thus, for example,

in bar 110 of Parker's training data (page 223), all of the �rst sixth eight notes are

B[.

210

Appendix C

VLT Construction

This pseudo-code accompanies Section 4.3. For details concerning pseudo-code nota-

tion, see Appendix A.

The makeVLT function (Table C.1) parses a list of notes, s, attempting to convert

its corresponding list of transcribed durations into a sequence of valid durations. If a

sequence of valid durations exists, then the VLT is completely speci�ed, the function

returns a status of true, and the corresponding VLT is stored in v. Equivalently,

this algorithm returns false, failing to build v, when the transcription speci�ed by

note list s is not encodable. Note object curr is the current event in the transcription

that is attempting to be converted into a valid duration (or set of valid durations).

The valid duration, d, that is currently being considered, is sought for by recursively

calling makeVLT on smaller valid durations until one that can encode at least part of

curr is found.

This code relies on the leaf, int2, and int3 classes (Section 6.2.1). A note class

is also assumed, which stores duration, pitch, and tie information. In addition, it

is assumed that mathematical operations on fractional durations are handled with

perfect precision and that a 4/4 meter and per-bar segmentation scheme is used.

makeVLT is a recursive search algorithm, parsing s from left to right, each call

attempting to use part or all of curr's duration to construct the next node in v.

What this algorithm recurses over is the duration of the current internal VLT node,

d, being considered (each recursion follows one of links shown in Figure 4.2).

When doSomething returns true, it means that another node in v was constructed

by either:

211

makeVLT(&curr ;&s;&v; d)

1: if isDone(s; curr)

return false

2: elseif !doSomething(s; curr ; d; v)

3: s
halve

= s; curr
halve

= curr ; v
halveLeft

= v
halveRight

= an empty tree

4: ok
halve

= isValid(1; 2; d) and makeVLT(curr
halve

; s
halve

; v
halveLeft

; d2) and

makeVLT(curr
halve

; s
halve

; v
halveRight

; d2)

5: s
third

= s; curr
third

= curr ; v
thirdLeft

= v
thirdMid

= v
thirdRight

= an empty tree

6: ok
third

= isValid(1; 3; d) and makeVLT(curr
third

; s
third

; v
thirdLeft

; d3) and

makeVLT(curr
third

; s
third

; v
thirdMid

; d3) and makeVLT(curr
third

; s
third

; v
thirdRight

; d3)

if ok
halve

and ok
third

and

7: total number of nodes in v
halveLeft

and v
halveRight

�

total number of nodes in v
thirdLeft

, v
thirdMid

and v
thirdRight

ok
third

= false

end

if ok
halve

8: s = s
halve

; curr = curr
halve

; v = int2(v
halveLeft

; v
halveRight

)

return true

elseif ok
third

9: s = s
third

; curr = curr
third

; v = int3(v
thirdLeft

; v
thirdMid

; v
thirdRight

)

return true

else

return false

end

else

10: return true

end

isDone(s; curr)

return s is empty and curr :dur == 0

doSomething(&s;&curr ;&v; d)

if curr :dur == d

11: v = leaf(curr); curr = pop o� �rst element in s

return true

elseif curr :dur > d

12: v = leaf(curr :pitch; d; curr:tie); curr = note(curr :pitch; curr:dur� d; true)

return true

else

return false

end

Table C.1: The makeVLT Encoable Sequence to VLT Converter

212

1. using up all of curr's duration, in which case the next element of the list is retrieved

(line 11);

2. using up part of curr's duration, in which case the amount that remains to be placed

in v is reduced (line 12).1

In either case, work has been done and makeVLT exits its current recursion with a

successful status (line 10).

When work is not immediately possible (the block beginning at line 2), the search

for a shorter valid note duration begins, recursively attempting to subdivide by both

two (line 4) and three (line 6). Both splits must be attempted in order to ensure

that Restriction III can be enforced via the size check at line 7. Note that either of

these splits (or their subsequent makeVLT calls) could fail, in which case the search

backtracks to the next viable possibility.

If line 1 is ever called, it means that all of s has been placed in v but more children

are required, hence an unsuccessful status is returned.

The reason that makeVLT only terminates with a false status when s is not encod-

able is because, in the worst-case, it tries every possible combination of subdivisions

before giving up. Backtracking, which undoes the unfruitful recursions that do not

pan out (lines 3, 5, 8, and 9), is the main reason why makeVLT is complex. When

makeVLT returns with a true status, v is guaranteed to be a VLT because:

1. All subdivisions have been recursively tried.

2. isValid ensures that Restrictions I and II are maintained.

3. The size check ensures that Restriction III is maintained.2

1It is this line of code that ultimately produces compound durations (Section 4.3.4). The key

point is that the last �eld of the note object, which contains the value of its tie, remains true until

the compound duration is completely inserted into v.
2This statement assumes that a local size check can produce the globally smallest tree.

213

214

Appendix D

Learning Appendix

This appendix accompanies Chapter 5.

D.1 Multinomial Sampling

This pseudo-code accompanies Section 5.7.1.

MnomSample(sz ; �)

for m = 1; m � M; m++

if m == 1

x
m
� Binom(sz ; �

m
)

elseif m < M

x
m
� Binom

sz �

m�1X
m0=1

x
m0
;

�
mPM

m0=m �m0

!

else

x
m
= sz �

M�1X
m0=1

x
m0

end

end

return x

D.2 Multinomial Versus Gaussian Components

A Mnom's mean, variance, and covariance (Section 5.7.1) can be used to de�ne a

Gaussian distribution. When sz is large enough, this de�nition provides a good

215

approximation to the Mnom distribution. The reason I originally considered such an

approximation scheme for clustering histograms is because Gaussian mixture model

implementations are so common. However, I abandoned this idea for two reasons.

First, the Gaussian approximation becomes less appropriate as sz decreases. Second,

the histogram clustering model should explicitly consider the number of counts.

D.2.1 The Guassian Multinomial Approximation

In Figure D.1, di�erent 2-dimensional Mnom distributions are displayed in order to

provide an indication of how seriously sz a�ects the quality of the Gaussian approxi-

mation when counts are as sparse as they are in BoB's representative datasets.

Each plot is a di�erent distribution. The distributions are arranged as follows:

1. each row of distributions uses the same sz value, ranging from one count (top row)

to thirty (bottom row).

2. each column of distributions uses the same probability vector, the left uniformly

distributed, � = h0:5; 0:5i, and the right uneven, � = h0:75; 0:25i.

The Multinomial probability distribution is drawn as a solid line, and the Gaus-

sian approximation is dashed. A single bin is suÆcient for displaying 2-dimensional

distributions because, since sz is known, the other bin is completely speci�ed. An

important subtlety is that Mnom is only de�ned on integer values (marked by aster-

icks). The error between an Mnom and its Gaussian approximation is worse when �

is less uniform.

D.2.2 Considering Counts

The Gaussian approximation to the Mnom assumes that sz is �xed. One way to

accomodate this assumption would be to normalize the histograms.1 Clustering could

then be performed on the probability vectors that result. In BoB, however, it makes

sense to consider those histograms with more counts more heavily. Typically, when a

musician plays a very fast passage of notes, it is easier to identify an underlying scale

because there is more information available upon which to base ones assessment.

1Histogram normalization is often done in text learning, e.g., (Nigam, McCallum, Thrun, and

Mitchell 1998).

216

� = h0:5; 0:5i � = h0:75; 0:25i
sz = 1

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

bin 1

pro
b

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bin 1

pro
b

sz = 4

0 1 2 3 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

bin 1

pro
b

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

bin 1

pro
b

sz = 30

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

bin 1

pro
b

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

bin 1

pro
b

Figure D.1: The Multinomial and Its Gaussian Approximation

217

D.3 Quality Assessment

This pseudo-code accompanies Section 5.7.5.

D.3.1 Comparing Solution Partitions

diff compares two speci�c dataset partitions. Only when one or both of these clus-

terings is based on learning does consistancy relabeling enter into the comparison.

This logic is handled by the doMap variable.

diff(Y; Y 0; doMap)

if doMap

remap Y 0 so that its labels are as consistent with Y as possible

end

numDi� = 0

for n = 1; n � N; n++

if y
n
6= y0

n

numDi� ++

end

end

fracDi� = numDi�
N

return fracDi�

D.3.2 estHardness

estHardness(
)

X;Y

� n
sim� vMn(
)

Ŷ = classifyVmn(X;
)

hardness = diff(Y ; Ŷ ; false)

return

hardness ; X; Y

�

218

D.3.3 estCost

estCost(
)

XTr
n
sim� vMn(
)

Tr = learnVmn
(XTr ;K)

hardness ; XTe ; Y Te

�
= estHardness(
)

Y Te = classifyVmn(XTe ;
Tr)

cost = hardness � diff(Y Te ; Y Te ; true)

return cost

D.3.4 estLearn

estLearn(
)

XTr ; Y Tr

� n
sim� vMn(
)

Tr = learnVmn
(XTr ;K)

overFit = U(XTr j
) - U(XTr j
Tr)

XTe ; Y Te

� n
sim� vMn(
)

underGeneralize = U(XTe j
) - U(XTe j
Tr)

return

overFit ; underGeneralize

�

D.3.5 obsInstabilities

obsInstabilities(X;K)

for n =1; n � n
expt

; n++

 = learnVmn
(X;K)

Y
n
= classifyVmn(X;
)

end

n = 1

for n0 =1; n0 � n
expt

; n0 ++

for n00 = n
0 + 1; n00 � n

expt
; n00 ++

instabilities
n
= diff(Y

n0
; Y

n00
; true)

n++

end

end

return instabilities

219

D.3.6 obsFitnesses

obsFitnesses(X;K)

for n =1; n � n
expt

; n++

�ts

n
;

�
= learnVmn
(X;K)

end

n = 1

for n0 =1; n0 � n
expt

; n0 ++

for n00 = n
0 + 1; n00 � n

expt
; n00 ++

�tDi�s
n
= �ts

n0
� �ts

n00

n++

end

end

translate �tDi�s vector so that its minimum value is 0

return

�ts;�tDi�s

�

220

D.4 Musician-Speci�c Hardness And Instabilities

Curves

These �gures accompany Section 5.8.1. For each learning task, the chosen \best"

number of components (Table 5.8) is enclosed in a small circle.

D.4.1 Charlie Parker

setup: n
EM

=60 �=0 n
seeds

=10 n
expt

=5

XP ;P

0 5 10 15

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

k

ha
rdn

es
s

0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

k

ins
tab

iliti
es

XP ;I

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

ha
rdn

es
s

0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

k

ins
tab

iliti
es

XP ;D

0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

k

ha
rdn

es
s

0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

k

ins
tab

iliti
es

221

D.4.2 Stephan Grappelli

setup: n
EM

=60 �=0 n
seeds

=10 n
expt

=5

XG;P

0 5 10 15

0.05

0.1

0.15

0.2

0.25

k

ha
rd

ne
ss

0 5 10 15

0

0.1

0.2

0.3

0.4

k

ins
tab

ilit
ies

XG;I

0 5 10 15

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

ha
rd

ne
ss

0 5 10 15

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

ins
tab

ilit
ies

XG;D

0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

k

ha
rd

ne
ss

0 5 10 15

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

ins
tab

ilit
ies

222

Appendix E

The Charlie Parker Model

This appendix, which accompanies the customized perception of Charlie Parker (Sec-

tion 7.2), lists the improvisations used to train Parker's model, shows how the model

that was learned segregates these improvisations, and displays graphs that demon-

strate how these models perceive playing modes as a function of underlying harmonic

context.

E.1 Training Data

Training dataset XP was created using the music score presented below. This score

was obtained as described in Section 3.2.2. Section markers divide the transcription

into ten 12-bar choruses. All segments except the pickup (bar 1) and the segment

containing no notes (bar 57) were used to construct XP , producing NP = 119 data-

points in total.

Each bar's conglomerative class tag is de�ned according to the learned models in

Tables 7.1 through 7.3. These tags were assigned after learning took place and were

assigned to all the bars in the score, regardless of whether or not they were included

in XP . As a result, because bar 57's histogram contains no counts, its assignment is

based solely on the components' mixture weights.

223

Mohawk I and II

2,1,1

VParker: ####� H#�
7�E

#2,1,1�###
7�B

�##
7mF

#4,1,1�#�##
3##�##�#

�B
#
3

2,4,2�##�##� H#��
7�E

#3,1,1###�#�##
7�B

#1,2,3� H#
7F

�
7mC

�Parker:

�B
�V
2,1,1

7 1,3,1

P: V #####�# 3#�#
7�B

#4,1,3M#�###�#
7F

�2,1,3#####�#
7mC

#2,1,1M#�
7G

�#�###�#
�B

#
3

3,4,3

M#�#M#�
�B

#1,3,1##�##�###VP:

7�E
#1,3,17

13 4,1,3

P: V ###�##	
7�B

�
7mF

�5,2,2�###
�B

#
4,1,1

���##�#�##�#���#
3

������#
7�E

���#
1,1,3

���#���#������#���#���#� ���# 3
H���#�

7�B
�2,2,3#�###�#�

7F

3H#�VP:

7mC

#
4,1,313

18 2,4,2

P: V �� ���#������#�###�###�
7mC

#1,4,2

���#�#�#�#
7G

�
�B

�2,4,2�#�#�#���# 3�#
�B
���������#

1,4,3

� ������#�###���#� ���#� ������#�
H������#

7�E
�1,2,3���#���##�#�##���#���#������#� ������#� ���#���#�VP:

7�E
#

2,4,218

23 1,4,2

P: V ������#���#���#���#
3�#���#� ���#�#

7�E
#
2,1,3

####�#��##�
7�B

#5,4,2##�#
7F

#�##
7mC

�1,4,3�H####� H#�
7�B

#
1,4,3

�#�#�#������#���#���##� ���#���## 3VP:

7F

�1,4,223

28 4,1,1

P: V �##�####� ���#
3������#�B

���#
5,4,3

������#���#�#���#� ���#�###�#�
7�E

3
2,2,2H#��##�#�#�#�

7�E
#
3

2,1,3##�# 3�
7�B

�
7mF

�2,3,1������#� ������#���###VP:

�B
#
4,1,128

33 4,2,2

P: V #�##
3

7F

�
7mC

�4,3,3���������#���������#���####
7�B

#
4,1,1

###�#�# 3#�##
7F

�3,2,3����#���#
7mC

���#
5,1,1

#�#
7G

###�#�# 3�VP:

H
�B

#
4,2,233

382,1,1

P: V ���#� ���#������#�#####�
7�E

#1,2,2#M#
7�B

�
7mF

�2,1,1�#######�#
3

�B
#2,4,3� H#��#�#

7�E
#1,1,1### 3���##�#VP:

7�B
#2,1,138

43 2,2,1

P: V �###
3

��
� ���������#���������#������#� ������#

7mC

���#
4,2,2

���##�###�#
7G

��
�B

#
4,2,2

3�#####
�B

#
1,1,3

������#���#���#���#
3���#���#� ���#�VP:

7�E
#

2,2,143

47 1,4,2

P: V ������#� ������##�##
�B

#
4,1,2

� ���#�#####�#�
7�E

#4,2,1�##�
7�B

#2,3,1

#H#
7F

���
7mC

#
3,1,1

���###� ���#������##�#�#���#
7�B

������#
1,4,3

���#���##� ���#������#�##VP:

7F

#
1,4,247

53 2,2,1

P: V ������#�###�##�#�#�##�####
7mC

#5,4,2

7G�B
�2,1,1�##

�B
#
4,1,1

� ���#�## 3�#�##�#
3

M#�
7�E

�2,4,2�#�#�
7�E

#3,1,1##
7�B

#� H#�VP:

7mF

�2,2,153

224

59 1,4,3

P: V ���####H#
7F

��###�#
7mC

#
1,2,2�#�#�##�########���#������#� ���#

7�B���#
5,4,3

���#�#�#���#�#���#������##�#�#�#������#���#���##���#�VP:

7F

���# 3

1,4,359

621,2,2

P: V ������##� ������#���#�###
7�E

���#
1,3,1

���#���#���#���#� H���#�
7�E

#
2,1,1

�###
7�B

�##
7mF

#
4,1,1

�#� ������#���������#
3���#������#� ���#���#�#

�B
���# 3

2,4,2

� ���##�#������#�
H������#

��
7�E

#
3,1,1

#���#���#� ������#� ������#������#�VP:

7�B
���#

1,2,262

68 1,3,1

P: V ���������#������#���������#������#���#� ������#
3���������#� ���#

7�B
#
4,1,3H#����#������#���#� ���#

7F

�2,1,3���#������#���#������#���#� ���#
7mC

#
2,1,1H#�

7G

�#� ���###�#
�B

3

3,4,3H#����#
H#�VP:

�B
������#

1,3,168

73 4,1,3

P: V �##�#
7�B

#
7mF

�2,2,3�������#� ������#������#���������#�B
���#

4,1,3

������#���#���#���#
3##���#� ���#�

7�E
#

2,1,1

#���#���#���#������#� ���#���#
7�B

�2,1,1���#� ������#���������#������#� ���#�
7F

������#
3H���������#

�VP:

7mC

���������#
4,1,373

78 2,1,2

P: V �#�#�#####�
7G

#� H#�
�B

�5,4,3���������#�#� ���#### 3�##�#
�B

#
3,1,1H#����#���#� ���# 3�

7�E
�1,3,1�#�##�#�## 3VP:

7�E
#2,1,278

82 1,2,2

P: V �##
7F

#H#�
7mC

�4,1,1����#� ���#�#�#
7�B

���#
2,4,3

�#���#������##�#�#�#	������#������#� ���#���#
7F

#
1,4,2

� ���#� ������#� ������#
	�� H#######�#VP:

7mC

�1,2,282

862,2,1

P: V ��#���#� ���#������#�
7�E

#
2,2,3

##�##
7�B

��
7mF

������#
5,2,1

� ������#������#���������##�##
�B

#
4,4,2

������#���#�#�#������#� ���#�#
7�E

#
2,1,2### 3�M#�####�#�VP:

7�B
3

2,2,186

91 2,2,2

P: V ##�##�#�#�#
7G

#�#�#�#####
�B

#
5,4,2

���#������#���#���#������#������#� ���####���#�##�#�#�
�B

#
1,4,2

#�###�####�#�##�##
3

VP:

7�E
�2,2,291

94 1,4,3

P: V #�###� H#�
7�E

�1,2,3�#�###�#�
7�B

#2,4,3####
7F

�
7mC

�4,1,1�###�##
7�B

#
3,1,1

�##���###
7F

������#
5,3,3

������#���#���##� ���#� ������#� ������#
	�VP:

7mC

#
1,4,394

100 2,1,1

P: V �##
�B

#
4,1,1

������#���#���#���#
3���#H���#��

7�E
���#

2,1,3

������#�###�#�## 3�
7�E

�2,2,2

7�B
��##

7mF

#4,1,1#####�#VP:

�B
#

3

2,1,1100

105 4,2,2

P: V ##�#
7F

�
7mC

�2,1,1##�##### 3�#
7�B

#
1,1,3

�#�#�#������#������#� ���#���#
7F

#
1,2,2

���#� ���#� ������#
3

�
H������#

��H#�
7mC

#
1,1,3

###�#�# 3###
7G

���#���##�####VP:

�B
�4,2,2105

225

1102,1,1

P: V "�###
7�E

#2,1,1�#�##�#�H#
7�E

#
2,1,3

� ���##�#�
7�B

##�#���#� ������#H������#
7mF

�2,4,3�#�#� ���#�#�#
�B

#
3,1,2�###

3

�#### 3##�# 3

7�E
�2,1,1#�######VP:

7�B
#2,1,1110

116 1,4,3

P: V #�### 3
7F

��#���#�##�
7mC

#1,4,2�#�###�##�
7�B

#1,1,1###
3�##�#�#�#

7F

������#
1,4,3

������#� ���#���##�������#�
7mC

#
1,4,1

�#�##�
7G

������#������####�#
�B

35,4,2�#####
3�VP:

�B
�1,4,3116

E.2 Segregated Views

In the following subsections, three segregated views of Parker's training data are

presented. All the bars assigned to PC component one (as de�ned in Table 7.1) are

presented �rst, followed by components two through �ve, followed by the INT and DIR

component models. In other words, the score from Appendix E.1 is rearranged and

presented in three di�erent ways, according to the learned tonal, melodic continuity,

and melodic contour based partitions. Because INT and DIR assignment relies on a

bar's MRP, in these partitions, each bar's pickup note is also included.

Per subsection, components are further ordered (from left to right, top to bot-

tom) according to their CGL mapping. For example, in Section E.2.1, the two bars

assigned to conglomerative class yC = h1; 1; 1i (i.e., conglomerative class tag `1; 1; 1')
are listed �rst, followed by the four bars assigned to yC = h1; 1; 3i, and so on. That,

for example, yC = h1; 4; 1i appears in the list in isolation indicates that it was the

only bar in Parker's transcription that was assigned to that conglomerative class.

While some CGL classes account for only a single training bar (and other classes,

like yP ;C = h1; 2; 1i, are not shown at all because they do not account for any bars),

separately, each PC, INT, and DIR component accounts for all the bars in a given

section.

226

E.2.1 PC Component 1

1,1,1

V �#�###�##�#V
1,1,1 1,1,1

V � H#��#�##V
1,1,1 1,1,3

V ���##�#�##�#���#
3

������#� ���#V
1,1,3

1,1,3

V #### 3�######V
1,1,3 1,1,3

V ���#� ���#� ������#
3

�
H������#

��H#�#V
1,1,3

1,1,3

V ##�##### 3�##V
1,1,3

1,2,2

V #���#���#� ������#� ������#������#� ���#V
1,2,2 1,2,2

V ���#� ���#������#�#####�#V
1,2,2 1,2,2

V �#�#�#������#������#� ���#���##V
1,2,2

1,2,2

V ���####H#��###�##V
1,2,2 1,2,2

V � ���#� ������#� ������#
	�� H#######�#�V

1,2,2 1,2,3

V ###�#�##�#V
1,2,3

1,2,3

V #�###� H#��V
1,2,3

1,2,3

V � ������#�###���#� ���#� ������#�
H������#

�V
1,2,3

1,3,1

V M#�#M#�#V
1,3,1

1,3,1

V H#����#
H#�������#V

1,3,1 1,3,1

V ##�##�###�#V
1,3,1 1,3,1

V ������##� ������#���#�###� ���#V
1,3,1

1,3,1

V H#����#���#� ���# 3��V
1,3,1 1,4,1

V ������#� ���#���##�������#�#V
1,4,1 1,4,2

V �� ���#������#�###�###�#V
1,4,2

1,4,2

V #�### 3��#���#�##�#V
1,4,2 1,4,2

V �#���#������##�#�#�#	������#������#� ���#���##V
1,4,2 1,4,2

V ���#���##� ���#������#�###V
1,4,2

1,4,2

V ���#������#���#���#������#������#� ���####���#�##�#�#�#V
1,4,2 1,4,2

V �#�#�#������#���#���##� ���#���##
3�V

1,4,2 1,4,3

V ���###� ���#������##�#�#���#������#V
1,4,3

1,4,3

V ###
3�##�#�#�#������#V

1,4,3 1,4,3

V ������#���#���##� ���#� ������#� ������#
	�#V

1,4,3
1,4,3

V �H####� H#�#V
1,4,3

1,4,3

V �#�#�#���# 3�#���������#
V

1,4,3 1,4,3

V �#####
3��V

1,4,3 1,4,3

V ##�##�##�V
1,4,3

1,4,3

V ���#�#�#���#�#���#������##�#�#�#������#���#���##���#� ���#
3V

1,4,3

E.2.2 PC Component 2

2,1,1

V #�######�#V
2,1,1 2,1,1

V #####�##V
2,1,1 2,1,1

V ���#������#���#������#���#� ���##V
2,1,1

2,1,1

V "�###�#V
2,1,1 2,1,1

V ������#���#���#���#
3##���#� ���#�#V

2,1,1 2,1,1

V ####� H#�#V
2,1,1

2,1,1

V ���#���#���#���#� H���#�#V
2,1,1 2,1,1

V ### 3���##�##V
2,1,1 2,1,1

V �V
2,1,1

2,1,1

V ##�#��V
2,1,1 2,1,1

V #M#��V
2,1,1 2,1,1

V �###
3

�#### 3##�# 3�V
2,1,1

2,1,1

V #���#���#���#������#� ���#���#�V
2,1,1 2,1,1

V #####�##
3

V
2,1,1 2,1,2

V �#�##�#�## 3�#V
2,1,2

2,1,2

V ������#���#�#�#������#� ���#�##V
2,1,2 2,1,3

V ������#���#���#���#
3���#H���#�� ���#V

2,1,3 2,1,3

V ������#���#���#���#
3�#���#� ���#�##V

2,1,3

227

2,1,3

V �#�##�#�H##V
2,1,3 2,1,3

V M#�###�#�V
2,1,3 2,1,3

V H#����#������#���#� ���#�V
2,1,3

2,1,3

V
H#��##�#�#�#�#

3

V
2,1,3 2,2,1

V ������#���#���#���#
3���#���#� ���#�#V

2,2,1 2,2,1

V ###� H#��V
2,2,1

2,2,1

V ### 3�M#�####�#�# 3V
2,2,1 2,2,2

V ������#�###�#�## 3��V
2,2,2 2,2,2

V #�###�####�#�##�##
3

�V
2,2,2

2,2,2

V ������#���#�#���#� ���#�###�#�# 3V
2,2,2 2,2,3

V ��#���#� ���#������#�#V
2,2,3 2,2,3

V �##�##�V
2,2,3

2,2,3

V ���#���#������#���#���#� ���# 3H���#��V
2,2,3 2,3,1

V �##�#V
2,3,1 2,3,1

V ##�# 3���V
2,3,1

2,4,2

V ���#���##�#�##���#���#������#� ������#� ���#���#�#V
2,4,2 2,4,2

V ���#�#�#�#��V
2,4,2 2,4,2

V � ���#�## 3�#�##�#
3

M#��V
2,4,2

2,4,2

V �#�##
3##�##�##

3

V
2,4,2 2,4,2

V �#� ������#���������#
3���#������#� ���#���#�#���# 3V

2,4,2 2,4,3

V �#�###�#�#V
2,4,3

2,4,3

V ����#� ���#�#�#���#V
2,4,3 2,4,3

V �#######�#
3#V

2,4,3 2,4,3

V � ���##�#�##�#���#� ������#H������#
�V
2,4,3

E.2.3 PC Component 3

3,1,1

V �###�##�#V
3,1,1 3,1,1

V �#�#�#V
3,1,1 3,1,1

V ���������#�#� ���#### 3�##�##V
3,1,1

3,1,1

V #H#���#V
3,1,1 3,1,1

V �##�##� H#��#V
3,1,1 3,1,1

V � ���##�#������#�
H������#

��#V
3,1,1

3,1,2

V �#�#� ���#�#�##V
3,1,2 3,2,3

V ###�#�# 3#�##�V
3,2,3 3,4,3

V M#��#�###�##
3

V
3,4,3

3,4,3

V H#��#� ���###�## 3V
3,4,3

E.2.4 PC Component 4

4,1,1

V ��##�#V
4,1,1 4,1,1

V ���������#���������#���#####V
4,1,1 4,1,1

V ������#� ������#���####V
4,1,1

4,1,1

V �####V
4,1,1 4,1,1

V �###V
4,1,1 4,1,1

V �###V
4,1,1

4,1,1

V �###�###V
4,1,1 4,1,1

V �###�###V
4,1,1 4,1,1

V ####��V
4,1,1

4,1,1

V �###H#��V
4,1,1 4,1,2

V ������#� ������##�###V
4,1,2 4,1,3

V �������#� ������#������#���������#���#
V

4,1,3

4,1,3

V #####�# 3

#�##V
4,1,3 4,1,3

V ���������#������#���������#������#���#� ������#
3���������#� ���##V

4,1,3 4,1,3

V #�###�#�# 3H#�#V
4,1,3

228

4,1,3

V ���#� ������#���������#������#� ���#� ������#
3H���������#

����������#V
4,1,3 4,2,1

V � ���#�#####�#�#V
4,2,1

4,2,2

V �###
3

��
� ���������#���������#������#� ������#���#V

4,2,2

4,2,2

V ���##�###�#��#V
4,2,2 4,2,2

V #�####�#�# 3�H#V
4,2,2 4,2,2

V ###�#�# 3###���#���##�####�V
4,2,2

4,3,3

V #�##
3��V

4,3,3 4,4,2

V � ������#������#���������##�###V
4,4,2

E.2.5 PC Component 5

5,1,1

V ����#���#���#V
5,1,1 5,2,1

V ##�##��
� ������#V
5,2,1 5,2,2

V ###�##	��V
5,2,2

5,3,3

V �##���###������#V
5,3,3 5,4,2

V ������#�###�##�#�#�##�#####V
5,4,2 5,4,2

V ####�#��##�#V
5,4,2

5,4,2

V ##�##�#�#�##�#�#�######V
5,4,2 5,4,2

V �#�##� ������#������####�## 3

V
5,4,2 5,4,3

V �#�#�##�########���#������#� ���#���#V
5,4,3

5,4,3

V �##�####� ���#
3

������#���#V
5,4,3 5,4,3

V �#�#�#####�#� H#��V
5,4,3

E.2.6 INT Component 1

V �#�###�##�#1,1,1H#V V � H#��#�##1,1,1� I#V V ���##�#�##�#���#
3

������#���#
1,1,3

� H���#V

V #### 3�######
1,1,3H������#V V ���#� ���#� ������#

3

�
H������#

��H#�#
1,1,3I#V V ##�##### 3�##

1,1,3H#V

V #�#######2,1,1� H#V V #####�##2,1,1M#V V ���#������#���#������#���#� ���##
2,1,1H#V

V "�####2,1,1�M#V V ������#���#���#���#
3##���#� ���#�#

2,1,1H#V V ####� H#�#2,1,1�M#V

V ���#���#���#���#� H���#�#
2,1,1

� H#V V ### 3���##�##2,1,1
M#V V �2,1,1�#V

V ##�#��2,1,1#V V #M#��2,1,1� H#V V �###
3

�#### 3##�# 3�2,1,1H#V

V #���#���#���#������#� ���#���#�2,1,1� H���#V V #####�##
3

2,1,1

M#V V �#�##�#�## 3#2,1,2�M#V

V ������#���#�#�#������#� ���#�##
2,1,2� H#V V ������#���#���#���#

3���#H���#�� ���#
2,1,3H������#V V ������#���#���#���#

3�#���#� ���#�##
2,1,3H#V

V �#�##�#�H##
2,1,3

� H���#V V M#�###�#�2,1,3�#V V H#����#������#���#� ���#�2,1,3� ���#V

V
H#��##�#�#�#�#

3

2,1,3� I#V V �###�###
3,1,1

�#V V �#�#�#3,1,1� H#V

229

V ���������#�#� ���#### 3�##�##
3,1,1H#V V #H#���#

3,1,1

� H���#V V �##�##� H#��#3,1,1

M#V

V � ���##�#������#�
H������#

��#
3,1,1H#V V �#�#� ���#�#�##

3,1,2� I#V V ��###4,1,1� H#V
V ���������#���������#���#####

4,1,1

� H#V V ������#� ������#���####
4,1,1H������#V V �####

4,1,1

� H���#V

V �###
4,1,1

� H���#V V �###
4,1,1H������#V V �###�###4,1,1�M#V

V �###�###
4,1,1

� H#V V ####��4,1,1�#V V �###H#��4,1,1����#V
V ������#� ������##�###

4,1,2

� H���#V V �������#� ������#������#���������#���#
4,1,3H������#V V #####�# 3

#�##4,1,3M#V

V ���������#������#���������#������#���#� ������#
3���������#� ���##

4,1,3H#V V #�###�#�# 3H#�#
4,1,3H#V V ���#� ������#���������#������#� ���#� ������#

3H���������#
����������#

4,1,3H���������#V

V ����#���#���#
5,1,1H#V

E.2.7 INT Component 2

V #���#���#� ������#� ������#������#� ���#
1,2,2I���#V V ���#� ���#������#�#####�#1,2,2#V V �#�#�#������#������#� ���#���##

1,2,2H���#V

V ���####H#��###�##
1,2,2I#V V � ���#� ������#� ������#

	�� H#######�#�1,2,2� I#V V ###�#�###1,2,3� H#V

V #�###� H#��1,2,3M#V V � ������#�###���#� ���#� ������#�
H������#

�1,2,3���#V V ������#���#���#���#
3���#���#� ���#�#

2,2,1H���#V

V ###� H#��2,2,1� ������#V V ### 3�M#�####�#�# 3
2,2,1� H#V V ������#�###�#�## 3��2,2,2��#V

V #�###�####�#�##�##
3

�2,2,2��#V V ������#���#�#���#� ���#�###�#�# 3
2,2,2� H#V V ��#���#� ���#������#�#

2,2,3I#V
V �##�##�2,2,3�

� ������#V V ���#���#������#���#���#� ���# 3H���#��2,2,3� H#V V ###�#�# 3#�##�3,2,3����#V

V � ���#�#####�#�#
4,2,1��#V V �###

3

��
� ���������#���������#������#� ������#���#

4,2,2I���#V V ���##�###�#��#
4,2,2H#V

V #�####�#�# 3�H#
4,2,2

� H#V V ###�#�# 3###���#���##�####�4,2,2�#V V ##�##��������#
5,2,1

� H������#V
V ###�##	��5,2,2�#V

230

E.2.8 INT Component 3

V M#�#M#�#1,3,1H#V V H#����#
H#�������#

1,3,1H������#V V ##�##�####1,3,1� H#V
V ������##� ������#���#�###���#

1,3,1

� H���#V V H#����#���#� ���# 3��1,3,1��#V V �##�#2,3,1

#V

V ##�# 3���2,3,1
� ������#V V #�##

3��4,3,3���������#
V V �##���###������#

5,3,3H������#V

E.2.9 INT Component 4

V ������#� ���#���##�������#�#
1,4,1H#V V �� ���#������#�###�###�#1,4,2I���#V V #�### 3��#���#�##�#1,4,2I#V

V �#���#������##�#�#�#	������#������#� ���#���##
1,4,2

� I���#V V ���#���##� ���#������#�###
1,4,2� I#V V ���#������#���#���#������#������#� ���####���#�##�#�#�#

1,4,2I#V

V �#�#�#������#���#���##� ���#���##
3�1,4,2�� ���#V V ���###� ���#������##�#�#���#������#

1,4,3

� H���#V V ###
3�##�#�#�#������#

1,4,3H������#V

V ������#���#���##� ���#� ������#� ������#
	�#

1,4,3I#V V �H####� H#�#
1,4,3I#V V �#�#�#���# 3�#���������#

1,4,3

�
H������#V

V �#####
3��1,4,3"V V ##�##�##�1,4,3�� H#V V ���#�#�#���#�#���#������##�#�#�#������#���#���##���#� ���# 3

1,4,3I������#V
V ���#���##�#�##���#���#������#� ������#� ���#���#�#

2,4,2I#V V ���#�#�#�#��2,4,2�#V V � ���#�## 3�#�##�#
3

M#��2,4,2��#V

V �#�##
3##�##�##

3

2,4,2� H#V V �#� ������#���������#
3���#������#� ���#���#�#���# 3

2,4,2

� H���#V V �#�###�#�#2,4,3I#V

V ����#� ���#�#�#���#
2,4,3

� I#V V �#######�#
3#2,4,3� H#V V � ���##�#�##�#���#� ������#H������#

�2,4,3�#V

V M#��#�###�##
3

3,4,3

M#V V H#��#� ���###�## 3

3,4,3H#V V � ������#������#���������##�###
4,4,2H������#V

V ������#�###�##�#�#�##�#####5,4,2H#V V ####�#��##�#5,4,2

M#V V ##�##�#�#�##�#�#�######
5,4,2

� I���#V
V �#�##� ������#������####�## 35,4,2� H#V V �#�#�##�########���#������#� ���#���#

5,4,3

� I���#V V �##�####� ���#
3������#���#

5,4,3H������#V

V �#�#�#####�#� H#��5,4,3H���������#V

231

E.2.10 DIR Component 1

V �#�###�##�#1,1,1H#V V � H#��#�##1,1,1� I#V V M#�#M#�#1,3,1H#V
V H#����#

H#�������#
1,3,1H������#V V ##�##�####1,3,1� H#V V ������##� ������#���#�###���#

1,3,1

� H���#V

V H#����#���#� ���# 3��1,3,1��#V V ������#� ���#���##�������#�#
1,4,1H#V V #�#######2,1,1� H#V

V #####�##2,1,1M#V V ���#������#���#������#���#� ���##
2,1,1H#V V "�####2,1,1�M#V

V ������#���#���#���#
3##���#� ���#�#

2,1,1H#V V ####� H#�#2,1,1�M#V V ���#���#���#���#� H���#�#
2,1,1

� H#V

V ### 3���##�##2,1,1
M#V V �2,1,1�#V V ##�#��2,1,1#V

V #M#��2,1,1� H#V V �###
3

�#### 3##�# 3�2,1,1H#V V #���#���#���#������#� ���#���#�2,1,1� H���#V

V #####�##
3

2,1,1

M#V V ������#���#���#���#
3���#���#� ���#�#

2,2,1H���#V V ###� H#��2,2,1� ������#V

V ### 3�M#�####�#�# 3
2,2,1� H#V V �##�#2,3,1

#V V ##�# 3���2,3,1
� ������#V

V �###�###
3,1,1

�#V V �#�#�#3,1,1� H#V V ���������#�#� ���#### 3�##�##
3,1,1H#V

V #H#���#
3,1,1

� H���#V V �##�##� H#��#3,1,1

M#V V � ���##�#������#�
H������#

��#
3,1,1H#V

V ��###4,1,1� H#V V ���������#���������#���#####
4,1,1

� H#V V ������#� ������#���####
4,1,1H������#V

V �####
4,1,1

� H���#V V �###
4,1,1

� H���#V V �###
4,1,1H������#V

V �###�###4,1,1�M#V V �###�###
4,1,1

� H#V V ####��4,1,1�#V
V �###H#��4,1,1����#V V � ���#�#####�#�#

4,2,1��#V V ����#���#���#
5,1,1H#V

V ##�##��������#
5,2,1

� H������#V

E.2.11 DIR Component 2

V #���#���#� ������#� ������#������#� ���#
1,2,2I���#V V ���#� ���#������#�#####�#1,2,2#V V �#�#�#������#������#� ���#���##

1,2,2H���#V

V ���####H#��###�##
1,2,2I#V V � ���#� ������#� ������#

	�� H#######�#�1,2,2� I#V V �� ���#������#�###�###�#1,4,2I���#V

232

V #�### 3��#���#�##�#1,4,2I#V V �#���#������##�#�#�#	������#������#� ���#���##
1,4,2

� I���#V V ���#���##� ���#������#�###
1,4,2� I#V

V ���#������#���#���#������#������#� ���####���#�##�#�#�#
1,4,2I#V V �#�#�#������#���#���##� ���#���##

3�1,4,2�� ���#V V �#�##�#�## 3#2,1,2�M#V

V ������#���#�#�#������#� ���#�##
2,1,2� H#V V ������#�###�#�## 3��2,2,2��#V V #�###�####�#�##�##

3

�2,2,2��#V

V ������#���#�#���#� ���#�###�#�# 3
2,2,2� H#V V ���#���##�#�##���#���#������#� ������#� ���#���#�#

2,4,2I#V V ���#�#�#�#��2,4,2�#V

V � ���#�## 3�#�##�#
3

M#��2,4,2��#V V �#�##
3##�##�##

3

2,4,2� H#V V �#� ������#���������#
3���#������#� ���#���#�#���# 3

2,4,2

� H���#V

V �#�#� ���#�#�##
3,1,2� I#V V ������#� ������##�###

4,1,2

� H���#V V �###
3

��
� ���������#���������#������#� ������#���#

4,2,2I���#V

V ���##�###�#��#
4,2,2H#V V #�####�#�# 3�H#

4,2,2

� H#V V ###�#�# 3###���#���##�####�4,2,2�#V

V � ������#������#���������##�###
4,4,2H������#V V ###�##	��5,2,2�#V V ������#�###�##�#�#�##�#####5,4,2H#V

V ####�#��##�#5,4,2

M#V V ##�##�#�#�##�#�#�######
5,4,2

� I���#V V �#�##� ������#������####�## 35,4,2� H#V

E.2.12 DIR Component 3

V ���##�#�##�#���#
3

������#���#
1,1,3

� H���#V V #### 3�######
1,1,3H������#V V ���#� ���#� ������#

3

�
H������#

��H#�#
1,1,3I#V

V ##�##### 3�##
1,1,3H#V V ###�#�###1,2,3� H#V V #�###� H#��1,2,3M#V

V � ������#�###���#� ���#� ������#�
H������#

�1,2,3���#V V ���###� ���#������##�#�#���#������#
1,4,3

� H���#V V ###
3�##�#�#�#������#

1,4,3H������#V

V ������#���#���##� ���#� ������#� ������#
	�#

1,4,3I#V V �H####� H#�#
1,4,3I#V V �#�#�#���# 3�#���������#

1,4,3

�
H������#V

V �#####
3��1,4,3"V V ##�##�##�1,4,3�� H#V V ���#�#�#���#�#���#������##�#�#�#������#���#���##���#� ���# 3

1,4,3I������#V
V ������#���#���#���#

3���#H���#�� ���#
2,1,3H������#V V ������#���#���#���#

3�#���#� ���#�##
2,1,3H#V V �#�##�#�H##

2,1,3

� H���#V

V M#�###�#�2,1,3�#V V H#����#������#���#� ���#�2,1,3� ���#V V
H#��##�#�#�#�#

3

2,1,3� I#V
V ��#���#� ���#������#�#

2,2,3I#V V �##�##�2,2,3�
� ������#V V ���#���#������#���#���#� ���# 3H���#��2,2,3� H#V

V �#�###�#�#2,4,3I#V V ����#� ���#�#�#���#
2,4,3

� I#V V �#######�#
3#2,4,3� H#V

V � ���##�#�##�#���#� ������#H������#
�2,4,3�#V V ###�#�# 3#�##�3,2,3����#V V M#��#�###�##

3

3,4,3

M#V

233

V H#��#� ���###�## 3

3,4,3H#V V �������#� ������#������#���������#���#
4,1,3H������#V V #####�# 3

#�##4,1,3M#V

V ���������#������#���������#������#���#� ������#
3���������#� ���##

4,1,3H#V V #�###�#�# 3H#�#
4,1,3H#V V ���#� ������#���������#������#� ���#� ������#

3H���������#
����������#

4,1,3H���������#V

V #�##
3��4,3,3���������#

V V �##���###������#
5,3,3H������#V V �#�#�##�########���#������#� ���#���#

5,4,3

� I���#V
V �##�####� ���#

3������#���#
5,4,3H������#V V �#�#�#####�#� H#��5,4,3H���������#V

E.3 Melodic Continuity in Time

Figure E.1 presents an analogous view for INT component usage that Figure 7.1 did

for PC. Each symbol corresponds to one of the bars in Figure 3.1 and identi�es which

component in Table 7.2 that BoB deemed most likely to have generated that bar's

intervallic content.

1 2 3 4 5 6 7 8 9 10 11 12

10

9

8

7

6

5

4

3

2

1

ch
or

us

Figure E.1: Parker's INT Modes and the 12-bar Blues

E.4 Melodic Contour and Harmony

Figure E.2 presents an analogous view for DIR component usage that Figure 7.1 did

for PC. Each symbol corresponds to one of the bars in Figure 3.1 and identi�es which

component in Table 7.3 that BoB deemed most likely to have generated that bar's

directional content.

234

1 2 3 4 5 6 7 8 9 10 11 12

10

9

8

7

6

5

4

3

2

1

ch
or

us

Figure E.2: Parker's DIR Modes and the 12-bar Blues

235

236

Appendix F

Learned Grappelli Model

This appendix, which accompanies the customized perception of Stephan Grappelli

(Section 7.3), lists the improvisations used to train Grappelli's model, outlines the

parameters that the model learned, shows how the model segregates the training im-

provisations, and displays graphs that demonstrate how these models perceive playing

modes as a function of underlying harmonic context.

F.1 Training Data

Training dataset XG was created using the music score presented below. This score

was obtained as described in Section 3.2.2. Section markers divide the transcription

into four 32-bar choruses. All segments except the pickup (bar 1) and the segments

containing single notes (bars 40 and 74) were used to construct XG , producing NG =

126 data-points in total.

Each bar's conglomerative class tag is de�ned with respect to the learned models

in Tables F.1 through F.3. These tags were assigned after learning took place and

were assigned to all the bars in the score, regardless of whether or not they were

included in XG . As a result, because the DIR histograms in bars 40 and 74 contain

no counts, their DIR assignments were based solely on that component whose mixture

weight was largest.

237

I've Found a New Baby I

1,1,1

VGrappelli:

������#� ���#� ���#���###
7C

#1,1,3"##
7G

#4,1,4###���###
D

#4,1,4"##
D

#4,4,1###���#�M#
D

#3,1,4"
D

���"2,5,2���#� ���######�#Grappelli:

7A

�
3

V
1,1,1

8 2,1,4

G: V ���#���#####
7G

#
2,5,3

#####
D

#
4,1,1

#�######�
D

#1,4,2#�#�####
D

#1,1,1�######
D

#4,1,2##���#� ���##���#
7A

���#2,1,4���"���#���#���#VG:

F

���#2,1,48

15 1,5,2

G: V #���#���#� ���###�
D

#2,5,3######
D

#
3,1,2

#####�#�
A

#4,5,2#�##�###
A

#4,1,1######
F

#4,1,4	####�M���#	N���#���#
F

#3,1,2�####VG:

7C

���"1,5,215

22 1,5,2

G: V #####
3

####
D

���#3,1,2���#� ���###�#�#
D

#1,5,3�###���#� ���#������#�#�
7A

#
1,5,3

�#�#�#�####
7C

#
4,1,2

#######
G

#1,1,2##�####VG:

G

#1,5,222

28 1,1,2

G: V ####
D

���"3,5,2� ���"
7A

���"2,1,1� ���#��
F

#
1,3,1

#######
7C

#
3,4,4

####�##�#
7G

#1,1,2#####���#
D

������#4,4,2���#� ���#���#������#M������
#

��VG: M
D

���������#1,1,228

35 4,1,4

G: V ���������#�M������
���#

�������
���#���������#

7A

�3,3,4��
F

#
3,5,2

######�#
7C

#2,5,2�#�#####���#
7G

������#2,4,2���#������#������#���##�#�
D

#4,4,3###� ���#���#
D

#2,1,2�####�#�##VG:

D

#4,1,435

42 4,1,4

G: V #�#�##�##
7C

#1,1,3#######
7G

�3,3,4�M##�##
D

#4,1,4#####���#�
D

���#4,5,2������#���#���#������#���#���#���#������#� ���#
3

D

�1,5,1�M������
#������#�������

#���������#VG:

D

������#4,1,442

48 4,5,2

G: V �######
G

#3,1,1���#�M##�#�#
D

#4,1,3#####���#
D

���#3,5,1���#���#���#� ���###�#�
A

#1,5,3H#�#�##�
A

#4,2,4�###�##
F

#
3,5,1

#######VG:

F

#4,5,248

55 1,5,2

G: V �#�#####
D

#2,4,1##���#������#���#������#
D

������#2,4,1����������#�#�#
D

#4,1,1#���#� ���###�#�#
D

#4,5,3�###�####
7A

#
4,5,2

###�###�#
7C

#1,1,2##�#####VG:

G

#1,5,255

62 1,5,2

G: V #���#���#	N##���#
D

���#2,2,1###���#�###
D

���#2,2,2##���#���####
7A

���#2,3,4##���#���#H#	N���#M���#
F

�2,3,1��H###
7C

#
3,1,1

#�H###�#VG:

7G

#1,5,262

68 2,2,2

G: V
D

����!2,1,2� ���#�H####
7A

#3,1,2�#######
F

���#2,4,2� ���#������#� ���#� ���#M���#	N���#M���#	I
7C

#1,1,3###���#�###
7G

���#2,2,2#���#���#�#���#
D

���#2,2,1###���#�###VG:

D

���#2,2,268

75 2,1,1

G: V #######	I
F

#
3,1,4

##�##�#�##
7C

#1,5,2##� ���###���#
7G

������#2,4,2���###�#�###
D

#4,1,2M#�###���#�
D

���#3,1,1� ���#� ���#� ���#� ���#� ���#� ���#�VG: M
D

���#2,1,175

238

81 1,1,3
G: V #########

D

#4,1,4�#�#�####
D

#4,1,2#######
A

���#3,1,2�M���#����#������#�
M������
#

	N
A

������#1,1,1N������#	���#���#��VG:

F

#
1,1,381

86 2,5,3

G: V ######�M
D

#4,5,2##���#������#���#������#

D

������#2,4,1������#���##���#�
M������
#

	N������
���#���������#

7A

#4,4,2####M#	N#M#	I
7C

������#
3,1,4

���#######
G

#1,5,2���#���###�##VG:

G

#
2,5,386

92 3,1,1
G: V ������������"�

F

#
2,1,3�##�###�#

7C

#1,1,2N#	###�###
7G

#1,5,2##���#���###
D

#2,5,3###########VG:

D

#
3,1,192

97 3,5,1
G: V

� ������#������#� ���#
3

� ���#���#
D

������#
3

1,4,3���#������#������#��
D

#4,4,1#####���#
D

������#2,4,2N���#	������#������#��M������
���#

D

���������#2,4,1������������#���������#���������#������������#���������#���������#���������#������������#���������#
3

	VG: N
7A

������������#3,5,197

102 4,4,4

G: V ������#� ���#���#���H
D

#
2,1,3

#�H###�#�
7A

#4,1,2�#�###	######
F

#4,1,4	#####
M#�

7C

���#3,4,1���"������#������#VG:

7G

������#
3

4,4,4102

107 1,1,4

G: V #####�##
F

#1,1,2�####�##
7C

#2,5,2� ���#���#������#���#�M������
#

7G

������#2,4,4	������
#������#���������#������#���������#

D

���������#4,1,1������#� ���#���#���M
D

#2,4,3####���#� ���#������#������#	VG: N
D

������#1,1,4107

113 4,2,3
G: V #####���#

G

���#3,1,2#####N#	##
D

#3,1,4N���#	M���#� ���##���##
D

������#1,4,1#� ������#���#������#���#���������#�
A

���������#1,4,1���#���������#���������#M���#�
A

������������#4,3,1���������#� ������#���##�##�VG: H
F

#
4,2,3113

119 1,1,2

G: V � ���#####���#������#���#�
D

���#2,4,4���#���#���#� ���#���###
D

#1,1,3�#�######
7A

#
1,1,3

#########
7C

#
3,1,1

########VG:

G

#1,1,2119

124 2,1,4

G: V ��H###
7A

#
4,1,1

#####
���#���#

F

#2,5,2�#�#�#�#####
7C

#1,1,3####M#	N##
7G

#3,1,4##� ���#	N���#N���#	##
D

#2,4,2####M���#	N���#���#VG:

D

���#2,1,4124

239

F.2 Learned Tonality

The four pitch-class components learned for XG;P are shown in Table F.1. Organiza-

tion of this table is analogous to Table 7.1. For a listing of how this model partitioned

each of Grappelli's transcribed bars, see Appendix F.5.1 through F.5.4.

Symbol Pitch-Class Probabilities Size � Associated Scale

1 0.18 33 26.2% .292 F Major scale

2

0.39

35 27.8% .253 D Minor triad

3

0.30

24 19.0% .185
fragment of the

F Major scale

4

0.31

34 27.0% .270 D Harmonic Minor scale

0.20

a single mixture (for comparison)

Table F.1: Grappelli's Learned PC Components

F.3 Learned Melodic Continuity

The �ve intervallic components learned forXG;I are shown in Table F.2. Organization

of this table is analogous to Table 7.2. For a listing of how this model partitioned

each of Grappelli's transcribed bars, see Appendix F.5.5 through F.5.9.

240

Symbol Intervallic Probabilities Size � Meaning

1

0.34

60 47.6% .438
relatively continuous melodies,

syncopation and repeated tones

2

0.48

7 5.6% 0.054

somewhat continuous,

occasionally jagged or

syncopated melodies

3

0.45

6 4.8% .049
mostly jagged melodies,

syncopated or repeated tones

4
0.27

24 19.0% .213
relatively irregular, syncopated

melodies

5
0.27

29 23.0% .246
very continuous melodies, rarely

syncopation or a repeated tone

0.26

a single mixture (for comparison)

Table F.2: Grappelli's Learned INT Components

241

F.4 Learned Melodic Contour

The four directional components learned for XG;D are shown in Table F.3. Organiza-

tion of this table is analogous to Table 7.3. For a listing of how this model partitioned

each of Grappelli's transcribed bars, see Appendix F.5.10 through F.5.13.

Symbol Directional Probabilties Size � Meaning

1
0.31

32 25.4% .236

very syncopated/repeated tone

melodies, rarely an obvious

direction trend, but for an

occassional downards/upwards

string

2

0.38

47 37.3% .372
mostly longer downwards strings

separated by upwards steps

3

0.45

22 17.5% .173

mostly longer upwards strings

separated by syncopation,

repeated tones, or a short

downwards string

4
0.22

25 19.8% .219

relatively long downards strings

separated by

syncopation/repeated tones

0.20

a single mixture (for comparsion)

Table F.3: Grappelli's Learned DIR Components

F.5 Segregated Views

In the following subsections, three segregated views of Grappelli's training data are

presented. With the exception that now conglomerative class tags refer to Tables F.1

through F.3, the organization of this section is analogous to Appendix E.2.

242

F.5.1 PC Component 1

1,1,1

V
�M���#����#������#�

M���
���#

	N���
���#

V
1,1,1 1,1,1

V #�#�#####V
1,1,1 1,1,2

V ########V
1,1,2

1,1,2

V #####�###V
1,1,2 1,1,2

V ###�###�##V
1,1,2 1,1,2

V �##�###�##V
1,1,2

1,1,2

V ####�##�##V
1,1,2 1,1,2

V #########V
1,1,2 1,1,2

V
���#� ���#���#������#M���

���#
��M���

������#
V

1,1,2

1,1,3

V
� ���#������#� ���#� ���#M���#	N���#M���#	I#V

1,1,3 1,1,3

V #�#�##�###V
1,1,3 1,1,3

V �#�#�#�######V
1,1,3

1,1,3

V
������#� ���#� ���#���####V

1,1,3 1,1,3

V
���#���#���#� ���#���####V

1,1,3 1,1,3

V N���
���#

	���#���#��#V
1,1,3

1,1,3

V �#�#######V
1,1,3 1,1,4

V ####���#� ���#������#������#	N���
���#

V
1,1,4 1,3,1

V
� ���#��#V

1,3,1

1,4,1

V N���#	M���#� ���##���##������#
V

1,4,1 1,4,1

V #� ������#���#������#���#���������#� ���������#
V

1,4,1
1,4,2

V #�######�#V
1,4,2

1,4,3

V
� ������#������#� ���#

3

� ���#���#������#
3

V
1,4,3 1,5,1

V
������#���#���#������#���#���#���#������#� ���#

3
�V
1,5,1 1,5,2

V �####���"
V

1,5,2

1,5,2

V #�H###�##V
1,5,2 1,5,2

V ##�##�#�###V
1,5,2 1,5,2

V ##�######V
1,5,2

1,5,2

V N#	###�####V
1,5,2 1,5,2

V ##�#####V
1,5,2 1,5,2

V ���#####
###V

1,5,2

1,5,3

V
���#� ���###�#�##V

1,5,3 1,5,3

V
���#���#���#� ���###�#�#V

1,5,3 1,5,3

V �###���#� ���#������#�#�#V
1,5,3

F.5.2 PC Component 2

2,1,1

V
� ���#� ���#� ���#� ���#� ���#� ���#�M���#V

2,1,1 2,1,1

V
� ���"� ���"

V
2,1,1 2,1,2

V
����!

V
2,1,2

2,1,2

V ###� ���#���##V
2,1,2 2,1,3

V ������#� ���#���#���H#V
2,1,3 2,1,3

V
������������"�#V

2,1,3

2,1,4

V ##���#� ���##���#���#V
2,1,4 2,1,4

V
���"���#���#���#���#

V
2,1,4 2,1,4

V ####M���#	N���#���#� ���#
V

2,1,4

2,2,1

V #���#���#	N##���#���#
V

2,2,1 2,2,1

V #���#���#�#���#���#
V

2,2,1 2,2,2

V ###���#�###���#V
2,2,2

2,2,2

V ###���#�###���#V
2,2,2 2,2,2

V ###���#�###���#V
2,2,2 2,3,1

V ##���#���#H#	N���#M���#�V
2,3,1

2,3,4

V ##���#���####���#V
2,3,4 2,4,1

V ##���#������#���#������#������#
V

2,4,1 2,4,1

V ##���#������#���#������#������#
V

2,4,1

2,4,1

V �#�######V
2,4,1 2,4,1

V N���#	������#������#��M���
������#���������#

V
2,4,1 2,4,2

V �#######���#V
2,4,2

2,4,2

V #####���#���
���#

V
2,4,2 2,4,2

V ##� ���###���#������#V
2,4,2 2,4,2

V �#�#####���#������#V
2,4,2

243

2,4,2

V ##� ���#	N���#N���#	###V
2,4,2 2,4,3

V
������#� ���#���#���M#V

2,4,3 2,4,4

V
� ���#####���#������#���#� ���#

V
2,4,4

2,4,4

V
� ���#���#������#���#�M���

���#������#
V

2,4,4 2,5,2

V "���"
V

2,5,2 2,5,2

V ######�##V
2,5,2

2,5,2

V #####
���#���##V

2,5,2 2,5,2

V �####�###V
2,5,2 2,5,3

V ##���#���####V
2,5,3

2,5,3

V #���#���#� ���###�#V
2,5,3 2,5,3

V
���#���######V

2,5,3 2,5,3

V
���#���###�###V

2,5,3

F.5.3 PC Component 3

3,1,1

V M#�###���#� ���#
V

3,1,1 3,1,1

V ��H####V
3,1,1 3,1,1

V ##########V
3,1,1

3,1,1

V ############V
3,1,1 3,1,1

V �#######V
3,1,1 3,1,2

V 	####�M���#	N���#���##V
3,1,2

3,1,2

V #######���#V
3,1,2 3,1,2

V � ���#�H#####V
3,1,2 3,1,2

V #####
3

####���#
V

3,1,2

3,1,2

V #####���#���#
V

3,1,2 3,1,2

V #######V
3,1,2 3,1,4

V ####M#	N###V
3,1,4

3,1,4

V #######	I#V
3,1,4 3,1,4

V ###���#�M##V
3,1,4 3,1,4

V ####M#	N#M#	I������#V
3,1,4

3,1,4

V #####N#	###V
3,1,4 3,3,4

V #######�V
3,3,4 3,3,4

V
���������#�M���

������#
����
������#���������#�V

3,3,4

3,4,1

V 	#####
M#����#

V
3,4,1 3,4,4

V ########V
3,4,4

3,5,1

V
������������#���������#���������#������������#���������#���������#���������#������������#���������#

3
	N���

���������#
V

3,5,1

3,5,1

V #####���#���#
V

3,5,1 3,5,1

V �###�###V
3,5,1 3,5,2

V ####���"
V

3,5,2

3,5,2

V ��#V
3,5,2

F.5.4 PC Component 4

4,1,1

V ����������#�#�##V
4,1,1 4,1,1

V #�##�####V
4,1,1 4,1,1

V ��H####V
4,1,1

4,1,1

V ######V
4,1,1 4,1,1

V 	���
���#������#���������#������#���������#���������#

V
4,1,1 4,1,2

V #�H###�#�#V
4,1,2

4,1,2

V �#######V
4,1,2 4,1,2

V
���###�#�####V

4,1,2 4,1,2

V �#�#�#####V
4,1,2

4,1,2

V �#�#�#�#####V
4,1,2 4,1,3

V
���#�M##�#�##V

4,1,3 4,1,4

V ##########V
4,1,4

4,1,4

V ###���####V
4,1,4 4,1,4

V "###V
4,1,4 4,1,4

V �M���
���#������#����

���#���������#������#
V

4,1,4

244

4,1,4

V �M##�###V
4,1,4 4,1,4

V �####�#�###V
4,1,4 4,1,4

V #######V
4,1,4

4,1,4

V �#�###	#######V
4,1,4 4,2,3

V ���������#� ������#���##�##�H#V
4,2,3 4,2,4

V H#�#�##�#V
4,2,4

4,3,1

V
���#���������#���������#M���#�������������#

V
4,3,1

4,4,1

V "###V
4,4,1 4,4,1

V
���#������#������#��#V

4,4,1

4,4,2

V #####���#������#V
4,4,2 4,4,2

V
������#���##���#�

M���
���#

	N���
������#���������##V

4,4,2 4,4,3

V
���#������#������#���##�#�#V

4,4,3

4,4,4

V
���"������#������#������#

3V
4,4,4 4,5,2

V ########V
4,5,2 4,5,2

V #####���#� ���#
V

4,5,2

4,5,2

V #####
#�M#V

4,5,2 4,5,2

V #####�#�#V
4,5,2 4,5,2

V �###�#####V
4,5,2

4,5,3

V #���#� ���###�#�##V
4,5,3

F.5.5 INT Component 1

V
�M���#����#������#�

M���
���#

	N���
���#1,1,1N���

���#
V V #�#�#####1,1,1�M#V V ########

1,1,2

M#V

V #####�###1,1,2� H#V V ###�###�##1,1,2M#V V �##�###�##1,1,2N#V

V ####�##�##1,1,2H#V V #########1,1,2M#V V
���#� ���#���#������#M���

���#
��M���

������#1,1,2
M#V

V
� ���#������#� ���#� ���#M���#	N���#M���#	I#1,1,3� H#V V #�#�##�###1,1,3H#V V �#�#�#�######1,1,3H#V

V
������#� ���#� ���#���####1,1,3"V V

���#���#���#� ���#���####1,1,3
M#V V N������#	���#���#��#

1,1,3H#V

V �#�#######
1,1,3J#V V ####���#� ���#������#������#	N���

���#1,1,4M���
���#

V V
� ���#� ���#� ���#� ���#� ���#� ���#�M���#

2,1,1����!
V

V
� ���"���"2,1,1� ���#

V V
����!2,1,2� ���#

V V ###� ���#���##2,1,2� H#V

V ������#� ���#���#���H#
2,1,3

#V V ������������"�#
2,1,3�H#V V ##���#� ���##���#���#

2,1,4���"
V

V
���"���#���#���#���#2,1,4M���

���#
V V ####M���#	N���#���#���#2,1,4�N���#V V M#�###���#� ���#3,1,1

M���#V
V ��H####

3,1,1

#V V ##########
3,1,1I#V V ############

3,1,1H#V
V �#######3,1,1���#
V V 	####�M���#	N���#���##3,1,2� H#V V #######���#3,1,2�M���#V

V � ���#�H#####3,1,2� H#V V #####
3

####���#3,1,2� ���#
V V #####���#���#3,1,2

N#V

V #######
3,1,2H#V V ####M#	N###3,1,4M#V V #######	I#

3,1,4H#V

245

V ###���#�M##3,1,4"V V ####M#	N#M#	I������#
3,1,4H���#V V #####N#	###3,1,4N���#V

V ����������#�#�##4,1,1M#V V #�##�####4,1,1M#V V ��H####
4,1,1H#V

V ######
4,1,1H#V V 	���

���#������#���������#������#���������#���������#4,1,1M���
���#

V V #�H###�#�#4,1,2

O
#V

V �#######4,1,2M#V V
���###�#�####4,1,2M#V V �#�#�#####4,1,2M#V

V �#�#�#�#####
4,1,2H#V V

���#�M##�#�##4,1,3M#V V ##########4,1,4� H#V

V ###���####4,1,4"V V "###4,1,4M#V V �M���
���#������#����

���#���������#������#4,1,4���������#
V

V �M##�###4,1,4M#V V �####�#�###4,1,4M#V V #######4,1,4	N#V
V �#�###	#######4,1,4	N#V

F.5.6 INT Component 2

V #���#���#	N##���#���#2,2,1� H#V V #���#���#�#���#���#2,2,1� H#V V ###���#�###���#2,2,2�M���#V

V ###���#�###���#2,2,2M#V V ###���#�###���#2,2,2M#V V ���������#� ������#���##�##�H#
4,2,3H#V

V H#�#�##�#4,2,4� H#V

F.5.7 INT Component 3

V
� ���#��#

1,3,1H#V V ##���#���#H#	N���#M���#�2,3,1�H#V V ##���#���####���#2,3,4H#V

V #######�3,3,4�M#V V
���������#�M���

������#
����
������#���������#�3,3,4�#V V

���#���������#���������#M���#�������������#4,3,1M���
������#

V

F.5.8 INT Component 4

V N���#	M���#� ���##���##������#1,4,1
M#V V #� ������#���#������#���#���������#� ���������#1,4,1

M���#V V #�######�#1,4,2

M#V

V
� ������#������#� ���#

3

� ���#���#������#
3

1,4,3

M���#V V ##���#������#���#������#������#2,4,1����������#
V V ##���#������#���#������#������#2,4,1�

M���
���#

V

246

V �#�######2,4,1M#V V N���#	������#������#��M���
������#���������#2,4,1�M���#V V �#######���#2,4,2�M���#V

V #####���#������#2,4,2N���#V V ##� ���###���#������#2,4,2M���#V V �#�#####���#������#2,4,2M���#V

V ##� ���#	N���#N���#	###2,4,2H#V V
������#� ���#���#���M#

2,4,3

N#V V
� ���#####���#������#���#� ���#2,4,4

M���#V

V
� ���#���#������#���#�M���

���#������#2,4,4	N���
���#

V V 	#####
M#����#3,4,1���"

V V ########
3,4,4H#V

V "###4,4,1M#V V
���#������#������#��#4,4,1#V V #####���#������#4,4,2M���#V

V
������#���##���#�

M���
���#

	N���
������#���������##4,4,2M#V V

���#������#������#���##�#�#4,4,3

M#V V
���"������#������#������#

3

4,4,4
� ������#

V

F.5.9 INT Component 5

V
������#���#���#������#���#���#���#������#� ���#

3
�1,5,1�M���

���#
V V �####���"1,5,2���#

V V #�H###�##1,5,2H#V
V ##�##�#�###1,5,2M#V V ##�######1,5,2�M#V V N#	###�####1,5,2M#V

V ##�#####1,5,2M#V V ���#####
###1,5,2���#

V V ���#� ���###�#�##1,5,3� H#V

V ���#���#���#� ���###�#�#1,5,3H#V V �###���#� ���#������#�#�#
1,5,3H#V V "���"2,5,2�M���#V

V ######�##2,5,2H#V V #####���#���##2,5,2
M#V V �####�###2,5,2�M���#V

V ##���#���####2,5,3H#V V #���#���#� ���###�#2,5,3H#V V ���#���######
2,5,3H#V

V ���#���###�###
2,5,3H#V V

������������#���������#���������#������������#���������#���������#���������#������������#���������#
3

	N���
���������#3,5,1������������"

V V #####���#���#3,5,1�M���#V

V �###�###
3,5,1H#V V ####���"3,5,2�M���#V V ��#

3,5,2H#V

V ########
4,5,2

M#V V #####���#� ���#4,5,2M���
���#

V V #####
#�M#

4,5,2

M#V

V #####�#�#4,5,2H#V V �###�#####
4,5,2H#V V #���#� ���###�#�##4,5,3� H#V

247

F.5.10 DIR Component 1

V
�M���#����#������#�

M���
���#

	N���
���#1,1,1N���

���#
V V #�#�#####1,1,1�M#V V

� ���#��#
1,3,1H#V

V N���#	M���#� ���##���##������#1,4,1
M#V V #� ������#���#������#���#���������#� ���������#1,4,1

M���#V V
������#���#���#������#���#���#���#������#� ���#

3
�1,5,1�M���

���#
V

V
� ���#� ���#� ���#� ���#� ���#� ���#�M���#

2,1,1����!
V V

� ���"���"2,1,1� ���#
V V #���#���#	N##���#���#2,2,1� H#V

V #���#���#�#���#���#2,2,1� H#V V ##���#���#H#	N���#M���#�2,3,1�H#V V ##���#������#���#������#������#2,4,1����������#
V

V ##���#������#���#������#������#2,4,1�
M���
���#

V V �#�######2,4,1M#V V N���#	������#������#��M���
������#���������#2,4,1�M���#V

V M#�###���#� ���#3,1,1

M���#V V ��H####
3,1,1

#V V ##########
3,1,1I#V

V ############
3,1,1H#V V �#######3,1,1���#

V V 	#####
M#����#3,4,1���"

V

V
������������#���������#���������#������������#���������#���������#���������#������������#���������#

3
	N���

���������#3,5,1������������"
V V #####���#���#3,5,1�M���#V V �###�###

3,5,1H#V

V ����������#�#�##4,1,1M#V V #�##�####4,1,1M#V V ��H####
4,1,1H#V

V ######
4,1,1H#V V 	���

���#������#���������#������#���������#���������#4,1,1M���
���#

V V
���#���������#���������#M���#�������������#4,3,1M���

������#
V

V "###4,4,1M#V V
���#������#������#��#4,4,1#V

F.5.11 DIR Component 2

V ########
1,1,2

M#V V #####�###1,1,2� H#V V ###�###�##1,1,2M#V
V �##�###�##1,1,2N#V V ####�##�##1,1,2H#V V #########1,1,2M#V

V
���#� ���#���#������#M���

���#
��M���

������#1,1,2
M#V V #�######�#1,4,2

M#V V �####���"1,5,2���#
V

V #�H###�##1,5,2H#V V ##�##�#�###1,5,2M#V V ##�######1,5,2�M#V
V N#	###�####1,5,2M#V V ##�#####1,5,2M#V V ���#####

###1,5,2���#
V

V
����!2,1,2� ���#

V V ###� ���#���##2,1,2� H#V V ###���#�###���#2,2,2�M���#V

V ###���#�###���#2,2,2M#V V ###���#�###���#2,2,2M#V V �#######���#2,4,2�M���#V

V #####���#������#2,4,2N���#V V ##� ���###���#������#2,4,2M���#V V �#�#####���#������#2,4,2M���#V
248

V ##� ���#	N���#N���#	###2,4,2H#V V "���"2,5,2�M���#V V ######�##2,5,2H#V
V #####���#���##2,5,2

M#V V �####�###2,5,2�M���#V V 	####�M���#	N���#���##3,1,2� H#V

V #######���#3,1,2�M���#V V � ���#�H#####3,1,2� H#V V #####
3

####���#3,1,2� ���#
V

V #####���#���#3,1,2
N#V V #######

3,1,2H#V V ####���"3,5,2�M���#V
V ��#

3,5,2H#V V #�H###�#�#4,1,2

O
#V V �#######4,1,2M#V

V
���###�#�####4,1,2M#V V �#�#�#####4,1,2M#V V �#�#�#�#####

4,1,2H#V

V #####���#������#4,4,2M���#V V
������#���##���#�

M���
���#

	N���
������#���������##4,4,2M#V V ########

4,5,2

M#V

V #####���#� ���#4,5,2M���
���#

V V #####
#�M#

4,5,2

M#V V #####�#�#4,5,2H#V
V �###�#####

4,5,2H#V

F.5.12 DIR Component 3

V
� ���#������#� ���#� ���#M���#	N���#M���#	I#1,1,3� H#V V #�#�##�###1,1,3H#V V �#�#�#�######1,1,3H#V

V
������#� ���#� ���#���####1,1,3"V V

���#���#���#� ���#���####1,1,3
M#V V N������#	���#���#��#

1,1,3H#V

V �#�#######
1,1,3J#V V

� ������#������#� ���#
3

� ���#���#������#
3

1,4,3

M���#V V ���#� ���###�#�##1,5,3� H#V

V ���#���#���#� ���###�#�#1,5,3H#V V �###���#� ���#������#�#�#
1,5,3H#V V ������#� ���#���#���H#

2,1,3

#V

V ������������"�#
2,1,3�H#V V

������#� ���#���#���M#
2,4,3

N#V V ##���#���####2,5,3H#V

V #���#���#� ���###�#2,5,3H#V V ���#���######
2,5,3H#V V ���#���###�###

2,5,3H#V

V
���#�M##�#�##4,1,3M#V V ���������#� ������#���##�##�H#

4,2,3H#V V
���#������#������#���##�#�#4,4,3

M#V

V #���#� ���###�#�##4,5,3� H#V

249

F.5.13 DIR Component 4

V ####���#� ���#������#������#	N���
���#1,1,4M���

���#
V V ##���#� ���##���#���#

2,1,4���"
V V

���"���#���#���#���#2,1,4M���
���#

V

V ####M���#	N���#���#���#2,1,4�N���#V V ##���#���####���#2,3,4H#V V
� ���#####���#������#���#� ���#2,4,4

M���#V

V
� ���#���#������#���#�M���

���#������#2,4,4	N���
���#

V V ####M#	N###3,1,4M#V V #######	I#
3,1,4H#V

V ###���#�M##3,1,4"V V ####M#	N#M#	I������#
3,1,4H���#V V #####N#	###3,1,4N���#V

V #######�3,3,4�M#V V
���������#�M���

������#
����
������#���������#�3,3,4�#V V ########

3,4,4H#V

V ##########4,1,4� H#V V ###���####4,1,4"V V "###4,1,4M#V

V �M���
���#������#����

���#���������#������#4,1,4���������#
V V �M##�###4,1,4M#V V �####�#�###4,1,4M#V

V #######4,1,4	N#V V �#�###	#######4,1,4	N#V V H#�#�##�#4,2,4� H#V

V
���"������#������#������#

3

4,4,4
� ������#

V

F.6 Tonality in Time

Figure F.1 presents an analogous view for Grappelli's PC component usage that

Figure 7.1 did for Parker's. However, in this case, each symbol corresponds to one of

the bars in Grappelli's four 32-bar AABA choruses rather than to one of the bars in

Figure 3.1. Each symbol is de�ned in Table F.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

4

3

2

1

ch
or

us

Figure F.1: Grappelli's PC Modes and the 32-bar AABA Form

250

F.7 Melodic Continuity in Time

Figure F.2 presents an analogous view for Grappelli's INT components that Figure F.1

did for his PC components. Each symbol's meaning is de�ned in Table F.2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

4

3

2

1

ch
or

us

Figure F.2: Grappelli's INT Modes and the 32-bar AABA Form

F.8 Melodic Contour in Time

Figure F.3 presents an analogous view for Grappelli's DIR components that Figure F.1

did for his PC components. Each symbol's meaning is de�ned in Table F.3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

4

3

2

1

ch
or

us

Figure F.3: Grappelli's DIR Modes and the 32-bar AABA Form

251

252

Appendix G

Listener Tests

This appendix lists the solos that were generated by BoB for the listening experiments

(Section 7.7).

G.1 Parker Mode Variation Pairs

For each listening trial, a pair of call contexts was created as follows:

� Select Rhythm: randomly sample a rhythm VLT from the following set of training

bars: f 7,15,27,42,48 g .

� Select Modes: randomly sample a pair of modes from the set:

nD
h2; 1; 1i; h1; 2; 2i

E
;
D
h4; 2; 2i; h1; 4; 3i

E
;
D
h2; 1; 3i; h1; 4; 2i

Eo
:

� Select Trial: randomly sample whether or not the calls should have the same or

di�erent modes.

� Generate: the following generation setup was used to generate each solo: � = �0 =

0; �00 = 1; n
walks

= 20; p
incr

= i
incr

= 15. In addition, Parker's absolute pitch range

values were used.

For a given trial, each calls' rhythms, MRPs, and last clamps were identical.

Rhythm and MRP were de�ned by the training bar obtained in the select rhythm

step. The last clamp came from the MRP of the subsequent training bar. The mode

of r was always the �rst element in the pair sampled in the select mode step. When

253

the second solo was to be di�erent, the mode of r0 was the second element. The

remaining subtly concerned what to do with each call's surprise. Since no call was

presented to the listener, and since the goal was to determine if di�erent and same

modes could be distinguished, each mode's likelihood was set to zero (the \best" solo

was the most expected one). This decision had the added bene�t of reducing some

of the randomness in these experiments, as did the decision to employ last clamping

and hold rhythm modi�cation constant.

Trial 1: rhythm bar 7; di�erent Trial 2: rhythm bar 48; di�erent

Vr: �##�#�##� ���#�##
2,1,3�r:

H#V Vr: ���#���#���#���#������####� ���#���#
2,1,3

�r:
H���#V

Vr': ##�####�##1,4,2�r':

H#V Vr': ���#� ���������#���������#� ������#������#������#���������#������#� ���#���#
1,4,2

�r':
H���#V

Trial 3: rhythm bar 7; same Trial 4: rhythm bar 27; same

Vr: �#####�##�#4,2,2�r:

H#V Vr: ������#���������#���#���#
3���#���#���#������#� ���#

2,1,3

r:

H#V

Vr': �#######�#4,2,2�r':

H#V Vr': ������#���#���#�# 3#���#���#� ���#�#
2,1,3

r':

H#V

Trial 5: rhythm bar 15; di�erent Trial 6: rhythm bar 42; same

Vr: ���#���#���#���#���#���#���# 3���#� ���#
2,1,1

�r: H���#V Vr: ���#� ���####�###�#2,1,1

r: M#V
Vr': ���#���#���#������#� ���#���## 3�#���#

1,1,2

�r': H���#V Vr': ���########�#2,1,1

r': M#V

Trial 7: rhythm bar 7; same Trial 8: rhythm bar 15; di�erent

Vr: ######�#�#2,1,1�r:

H#V Vr: ���#������#���������#���#� ������#���#������#
3� ���#�#

2,1,3

�r:
H���#V

Vr': ######�#�#2,1,1�r':

H#V Vr': ���#���#���#���������#������#� ���## 3�##
1,4,2

�r':
H���#V

254

Trial 9: rhythm bar 42; di�erent Trial 10: rhythm bar 42; di�erent

Vr: ���#####�####
4,2,2

r: M#V Vr: ���####�###�##2,1,1
r: M#V

Vr': ���##�######�#1,4,3

r': M#V Vr': ���##���#� ���#���####�#1,2,2

r': M#V

Trial 11: rhythm bar 15; di�erent Trial 12: rhythm bar 15; same

Vr: ���#������#� ���#������#���������#������#���������#
3������#� ������#

4,2,2

�r:
H���#V Vr: ���##���#���#���#���## 3� ���#�#

2,1,1

�r: H���#V

Vr': ���#������#������#���#���#������#������#
3� ���#������#

1,4,3

�r': H���#V Vr': ���#���#���#���#���#���#���# 3� ���#�#
2,1,1

�r': H���#V

Trial 13: rhythm bar 17; same Trial 14: rhythm bar 7; di�erent

Vr: �#####�##�#4,2,2�r:

H#V Vr: �######�#�#2,1,3�r:

H#V
Vr': �#####�##�#4,2,2�r':

H#V Vr': ##�#�###�##1,4,2�r':

H#V

Trial 15: rhythm bar 48; same Trial 16: rhythm bar 27; same

Vr: ���#������#� ���#� ������#���������#������#���������#� ���������#���������#������#
4,2,2

�r:

H���#V Vr: ������#���#������#���#
3������#���#���#� ���#�#

2,1,3

r:

H#V

Vr': ���#������#���������#������#���������#������#� ������#� ������#� ���#� ������#
4,2,2

�r':
H���#V Vr': ������#���#������#���#

3�#� ���#���##���#
2,1,3

r':

H#V

Trial 17: rhythm bar 42; di�erent Trial 18: rhythm bar 7; di�erent

Vr: ���########�#4,2,2

r: M#V Vr: ######�##2,1,1�r:

H#V
Vr': ���######�#�#�#1,4,3

r': M#V Vr': ###�#####1,2,2�r':

H#V

255

Trial 19: rhythm bar 15; same Trial 20: rhythm bar 42; same

Vr: ���#������#���#� ������#�#���#������#
3� ���#���#

2,1,3

�r:
H���#V Vr: ���#� ���#�####�##�#2,1,3

r: M#V

Vr': ���#���#������#���#���#���#���#
3������#���#

2,1,3

�r': H���#V Vr': ���#���#������#���#�#� ���###�#2,1,3

r': M#V

Trial 21: rhythm bar 42; same Trial 22: rhythm bar 48; same

Vr: ���#���#�#���#�##�#� ���##
2,1,3

r: M#V Vr: ���#���#�#���#���#������#���#� ������#� ���#�#
2,1,3

�r:
H���#V

Vr': ���#���#���#�#���#���#���#� ���##
2,1,3

r': M#V Vr': ���#���#���#���#���###� ���#������#�#
2,1,3

�r': H���#V

Trial 23: rhythm bar 15; di�erent Trial 24: rhythm bar 15; same

Vr: ���#�#���#�#���#���#�# 3� ���#������#
2,1,3

�r:
H���#V Vr: ���#�#���#���#� ������#���#���#

3� ���#������#
2,1,3

�r:
H���#V

Vr': ���#������#������#� ���#� ������#� ���������#���������#
3

� ������#������#
1,4,2

�r':
H���#V Vr': ���#���##���#�#���#� ���# 3

� ������#���#
2,1,3

�r': H���#V

Trial 25: rhythm bar 27; di�erent

Vr: ������#���#���#���#
3� ���##���#�#���#

2,1,1

r:

H#V

Vr': ������#������#���#���#
3� ���#���####

1,2,2

r':

H#V

G.2 Learn Variation Pairs

For each listening trial, a pair of call contexts was created as follows:

� Select Call: randomly determine the start and end of the call context by sampling

a tuple from a speci�c range of training bars. In particular, when the experiment was

Grappelli based, select from the following range of bars:

n
h34; 36i; h92; 95i; h119; 122i

o
:

When the experiment was Parker based, select from the following range:

256

n
h25; 27i; h42; 44i; h74; 76i; h106; 108i

o
.

� Select Trial: randomly sample whether or not the same or di�erent learned models

should be used.

� Generate: the following generation setup was used to generate each solo: � = �0 =

0; �00 = 1; n
walks

= 20; p
incr

= i
incr

= 15. The training data for the musician in the

select call step was used to determine the absolute pitch range values.

For a given trial, each response used the same call solo, and this solo ranged over

those bars in the training set de�ned by the select call step. Thus, for example, if the

start bar was 34, the call would include what Grappelli played in bars 34 through 36,

including each bars' VLTs, MRPs, and last clamps. The learned model for response

r was always the musician in the select call step. What varied between trials was

whether or not the same (or di�erent) learned model was used to perceive the call's

goal (surprise and mode) and generate the \in kind" response for context r0.

G.2.1 Grappelli Based

Trial 1: rhythm bars 34 to 36; di�erent

VGrappelli: ###� ���#���##�####�#�#######
Grappelli:

���"
V

3,5,2

Vr:
#�#�##�##

2,1,2�########4,1,4#� ���###
r:

"V
3,5,2

5,4,3

Vr': �##�#�#�##5,2,2###�#####1,2,1##� ���#������#
r':

���"
V

5,4,3

Trial 2: rhythm bars 92 to 95; same

VGrappelli: �##�###�##N#	###�######���#���###############Grappelli: #V
3,1,1

Vr: �###�####1,1,2N#	#�##�####1,5,2####�#�##
2,5,3

###########r: #V
3,1,1

3,1,1

Vr': �##�#�##�##1,1,2N#	#######1,5,2#� ���#���#####2,5,3#�#########�#r': #V
3,1,1

257

Trial 3: rhythm bars 119 to 122; same

VGrappelli:

���#���#���#� ���#���####�#�#########################Grappelli: #V
1,1,2

Vr:

���#���#���#� ���#���####1,1,3######�##
1,1,3

##########
3,1,1

##�###�###r:
#V
1,1,2

1,1,2

Vr':

���########1,1,3########
1,1,3

##########
3,1,1

#####�###r':
#V
1,1,2

Trial 4: rhythm bars 34 to 36; same

VGrappelli: ###� ���#���##�####�#�#######
Grappelli:

���"
V

3,5,2

Vr:

#�#�##�##
2,1,2�##�######4,1,4####

r:

"V
3,5,2

3,5,2

Vr': ###���#
#�#

2,1,2�########4,1,4##� ���##
r':

"V
3,5,2

Trial 5: rhythm bars 92 to 95; di�erent

VGrappelli: �##�###�##N#	###�######���#���###############Grappelli: #V
3,1,1

Vr: �####�###1,1,2
N#	###�##�##1,5,2#####�##

2,5,3

###########r: #V
3,1,1

5,2,1

Vr': �###�###�#1,2,2

N#	##� ���####�#1,4,2##�#�####5,1,3#�#�##�##�####�#r': #V
5,2,1

Trial 6: rhythm bars 119 to 122; di�erent

VGrappelli:

���#���#���#� ���#���####�#�#########################Grappelli: #V
1,1,2

Vr:

���#���#������#� ���#���####1,1,3####�#�#�##
1,1,3

##�########
3,1,1

####�###�#r:
#V
1,1,2

5,2,2

Vr':

���#�##�#�#���###1,2,3�######�##
5,2,3

###�#�##�#���#� ���#� ���#
5,2,3

#�######�#
r':

#V
5,2,2

Trial 7: rhythm bars 34 to 36; same

VGrappelli: ###� ���#���##�####�#�#######
Grappelli:

���"
V

3,5,2

Vr:
#�#�##�##

2,1,2�#�#######4,1,4#� ���###
r:

"V
3,5,2

3,5,2

Vr': ##���#� ���#�##
2,1,2�########4,1,4#� ���###

r':

"V
3,5,2

258

Trial 8: rhythm bars 92 to 95; same

VGrappelli: �##�###�##N#	###�######���#���###############Grappelli: #V
3,1,1

Vr: �###�#�##�#1,1,2

N#	###�####1,5,2#######
2,5,3

#�##########r: #V
3,1,1

3,1,1

Vr': �#####�##1,1,2N#	######���#1,5,2##�#�##�#�#
2,5,3

###########r': #V
3,1,1

Trial 9: rhythm bars 119 to 122; di�erent

VGrappelli:

���#���#���#� ���#���####�#�#########################Grappelli: #V
1,1,2

Vr:

���#� ���#� ���#���#�#�###1,1,3##�##�##�##
1,1,3

##########
3,1,1

#######�#�
r:

#V
1,1,2

5,2,2

Vr':

���######�#�#1,2,3�##�#�#�##�##5,2,3##�#�#�####���##
5,2,3

##���#� ���#�#�###
r':

#V
5,2,2

Trial 10: rhythm bars 34 to 36; di�erent

VGrappelli: ###� ���#���##�####�#�#######
Grappelli:

���"
V

3,5,2

Vr:
###���#���##

2,1,2�#�#�##�####4,1,4##���##
r:

"V
3,5,2

5,4,3

Vr': ##�#�###5,2,2�###������#�#�##�#1,2,1#� ���#� ���#���#
r':

������"
V

5,4,3

Trial 11: rhythm bars 92 to 95; same

VGrappelli: �##�###�##N#	###�######���#���###############Grappelli: #V
3,1,1

Vr: �###�##�##1,1,2N#	##�#####1,5,2##�#�##�#�#
2,5,3

###########�r: #V
3,1,1

3,1,1

Vr': �###�#�#�##1,1,2N#	#�##�##�##1,5,2##�#�###�#
2,5,3

#########�#�#r': #V
3,1,1

Trial 12: rhythm bars 119 to 122; same

VGrappelli:

���#���#���#� ���#���####�#�#########################Grappelli: #V
1,1,2

Vr:

���##���######1,1,3####�#�#�##
1,1,3

###�#######
3,1,1

##�###�###
r:

#V
1,1,2

1,1,2

Vr':

���#� ���#���#���#���####1,1,3�##�####�##
1,1,3

########�##
3,1,1

###�#####
r':

#V
1,1,2

259

Trial 13: rhythm bars 34 to 36; di�erent

VGrappelli: ###� ���#���##�####�#�#######
Grappelli:

���"
V

3,5,2

Vr:

#�#�#�#�##
2,1,2�#�#�######4,1,4##�##

r:

"V
3,5,2

5,4,3

Vr': ##�#�###5,2,2�###�#�####1,2,1##� ���#���#
r':

"V
5,4,3

Trial 14: rhythm bars 92 to 95; same

VGrappelli: �##�###�##N#	###�######���#���###############Grappelli: #V
3,1,1

Vr: �#####�##1,1,2N#	�###�####1,5,2##�###�##
2,5,3

##�#########r: #V
3,1,1

3,1,1

Vr': �######�#1,1,2

N#	##�#####1,5,2##�###�#�#
2,5,3

#######
####r': #V

3,1,1

Trial 15: rhythm bars 119 to 122; di�erent

VGrappelli:

���#���#���#� ���#���####�#�#########################Grappelli: #V
1,1,2

Vr:

���#���#���#� ���#���####1,1,3�##�##�##�##
1,1,3

##########
3,1,1

#######�#r: #V
1,1,2

5,2,2

Vr':

���#������#������#���#������#� ���###1,2,3�#�#�####�##
5,2,3

##���#���#������#���#�#���#�##
5,2,3

#�#�#####� ���#
r':

���#
V

5,2,2

G.2.2 Parker Based

Trial 1: rhythm bars 25 to 27; di�erent

VParker: ������#���#���#���#
3�#���#� ���#�######�#��##�###�##�##Parker: �V

1,4,3

Vr: ������#���#���#� ������#
3���#���#� ���#�#�#

2,1,3

#�###�#��##�#5,4,2##�#�###
r:

�V
1,4,3

1,4,3

Vr': ������#���#������#���# 3���#####
1,5,1

#####�###
2,5,2###�###

r': �V
1,4,3

260

Trial 2: rhythm bars 42 to 44; same

VParker: #### 3�######������#���#���#���#
3���#���#� ���#�#���#� ���#������#�#####�Parker: #V

1,2,2

Vr: �#�###
3###�#���#� ���#

1,1,3

������#������#���#������#
3���#���#� ������#� ���#

2,2,1

���########�
r:

#V
1,2,2

1,2,2

Vr': ##�#�# 3##�##������#� ���#
1,1,3

������#� ������#���#���#
3���#���#���#� ���#

2,2,1

���#�#######�r': #V
1,2,2

Trial 3: rhythm bars 106 to 108; same

VParker:
##�##### 3�##�#�#�#������#������#� ���#���##���#� ���#� ������#

3

�
H������#

��H#�Parker: #V
1,1,3

Vr:

##�#�###�# 3

�##
1,1,3

�##�###�#���#� ���#
1,2,2

���#���������#� ���������#
3

�
H������#

��H���#�r: ���#V
1,1,3

1,1,3

Vr':
######�#

3

##1,1,3�##���##�##� ���#������#
1,2,2

���#�#�# 3
H#���M#r':

#V
1,1,3

Trial 4: rhythm bars 74 to 76; same

VParker:
�������#� ������#������#���������#���#������#���#���#���#

3##���#� ���#�##���#���#���#������#� ���#���#Parker:
�V

2,1,1

Vr:
�������#�#� ������#���������#������#

4,1,3

������#���#� ���## 3#���##�#�#
2,1,1

#���#���#���#� ���#������#� ������#r:
�V

2,1,1

2,1,1

Vr': �������#� ���#� ������#���##
4,1,3

������#���#���#�# 3

���#���#� ���#�##
2,1,1

#���#���##� ���#���#�#r': �V
2,1,1

Trial 5: rhythm bars 25 to 27; di�erent

VParker: ������#���#���#���#
3�#���#� ���#�######�#��##�###�##�##Parker: �V

1,4,3

Vr: ������#���������#���## 3���#� ������#���#�#� ���#
2,1,3

#�###�#�#�##5,4,2#�###�#�#
r:

�V
1,4,3

1,4,3

Vr': ������#������#���#������#
3���#�#���#���#���#

1,5,1

###�#�#�#�##
2,5,2######r': �V

1,4,3

Trial 6: rhythm bars 42 to 44; di�erent

VParker: #### 3�######������#���#���#���#
3���#���#� ���#�#���#� ���#������#�#####�Parker: #V

1,2,2

Vr: ##�## 3##�##�#� ���#
1,1,3

������#� ������#���#���#
3���#���#� ���##

2,2,1

���#������#���##�##�##�
r:

#V
1,2,2

1,1,2

Vr': �##�#�#
3

#�##���#� ���#������#
1,1,3

������#������#������#���#
3������#� ���#���#������#

1,1,1

���##�#�##�###
r':

#V
1,1,2

261

Trial 7: rhythm bars 106 to 108; same

VParker:
##�##### 3�##�#�#�#������#������#� ���#���##���#� ���#� ������#

3

�
H������#

��H#�Parker: #V
1,1,3

Vr:
#####�#�#

3

##1,1,3####�###� ���#
1,2,2

���#� ���## 3� H#��H���#�r: #V
1,1,3

1,1,3

Vr': ####�#�#�# 3�#���#
1,1,3

�####�###�#
1,2,2

���#�#�# 3H���#��H#�r': #V
1,1,3

Trial 8: rhythm bars 74 to 76; same

VParker:
�������#� ������#������#���������#���#������#���#���#���#

3##���#� ���#�##���#���#���#������#� ���#���#Parker:
�V

2,1,1

Vr:
�������#���#���������#� ������#� ���#

4,1,3

������#���##���# 3���#�#� ���#���#�#
2,1,1

#���#���#���#� ������#� ���#���#r:
�V

2,1,1

2,1,1

Vr': �
� ������#� ���###���#

4,1,3

������#������#� ������#���#
3���#���#� ���#�#�#

2,1,1

#���#���#���#���#���#� ���#r': �V
2,1,1

Trial 9: rhythm bars 25 to 27; di�erent

VParker: ������#���#���#���#
3�#���#� ���#�######�#��##�###�##�##Parker: �V

1,4,3

Vr: ������#���#������#���#
3������#� ���##�#���#

2,1,3

##�#�#�#�#�##5,4,2#�#�####
r: �V

1,4,3

1,4,3

Vr': ������#� ���#� ���#�# 3�#�##� ���##
1,5,1

####�#�#�##
2,5,2##�#�###r': �V

1,4,3

Trial 10: rhythm bars 42 to 44; di�erent

VParker: #### 3�######������#���#���#���#
3���#���#� ���#�#���#� ���#������#�#####�Parker: #V

1,2,2

Vr: ###���#
3

������#���#� ���###���#
1,1,3

������#���#� ������#���#
3���#���#� ���#�#

2,2,1

���##�###�##�#
r:

#V
1,2,2

1,1,2

Vr': #�#�#���#
3�##�#���#���#������#

1,1,3

������#������#� ���#������#
3

� ���#���#���#� ���#
1,1,1

���#� ���#������#���#
####�r': #V

1,1,2

Trial 11: rhythm bars 106 to 108; same

VParker:
##�##### 3�##�#�#�#������#������#� ���#���##���#� ���#� ������#

3

�
H������#

��H#�Parker: #V
1,1,3

Vr:
####�### 3

##
1,1,3

##���#���#���###� ���#
1,2,2

���### 3

M#��H#r: #V
1,1,3

1,1,3

Vr':
#�###�#���#������#

3

� ������#���#
1,1,3

####�##�#� ���#
1,2,2

���##���# 3
H#��� H���#r': #V

1,1,3

262

Trial 12: rhythm bars 74 to 76; same

VParker:
�������#� ������#������#���������#���#������#���#���#���#

3##���#� ���#�##���#���#���#������#� ���#���#Parker:
�V

2,1,1

Vr:
�������##� ���#� ������#���������#

4,1,3

������#���#���#� ������#
3���#�#���##� ���#

2,1,1

#���#�#���#� ���#������#������#r:
�V

2,1,1

2,1,1

Vr':
�

� ������#���������#� ���������#� ���##
4,1,3

������#���#���## 3##���#�#� ���#
2,1,1

#���#�#���#� ���#���#������#r':
�V

2,1,1

Trial 13: rhythm bars 25 to 27; di�erent

VParker: ������#���#���#���#
3�#���#� ���#�######�#��##�###�##�##Parker: �V

1,4,3

Vr: ������#���#� ������#���#
3������##���#� ���#���#

2,1,3

##�##�#�#�##5,4,2####�##r:
�V

1,4,3

1,4,3

Vr': ������#���#���#���# 3#####
1,5,1

##�###�###2,5,2###���###r': �V
1,4,3

Trial 14: rhythm bars 42 to 44; same

VParker: #### 3�######������#���#���#���#
3���#���#� ���#�#���#� ���#������#�#####�Parker: #V

1,2,2

Vr: #�### 3

���#####� ���#
1,1,3

������#�#���#���#
3���#���#���#� ���#

2,2,1

���######�##
r:

#V
1,2,2

1,2,2

Vr': #�#�#���#
3#�#���#������#������#� ���#

1,1,3

������#���#������#���#
3���#���#� ���#���#

2,2,1

���#� ���#���######
r':

#V
1,2,2

Trial 15: rhythm bars 106 to 108; di�erent

VParker:
##�##### 3�##�#�#�#������#������#� ���#���##���#� ���#� ������#

3

�
H������#

��H#�Parker: #V
1,1,3

Vr:

#�#�##�### 3

##
1,1,3

#�#�##���������#������#������#� ���#
1,2,2

���### 3H#��H���#�r: #V
1,1,3

1,1,1

Vr':
##�###�#�# 3

#���#
1,5,3

#���#� ���#������#������#���������#������#������#
1,5,2

���#�#�# 3� H#��� H#r': #V
1,1,1

263

264

Appendix H

Trading Solos

This appendix accompanies Section 7.7.5.

Four scores are transcribed below:

� Figure H.1: Parker trading solos with BoB trained on Parker;

� Figure H.2: Parker trading solos with BoB trained on Grappelli;

� Figure H.3: Grappelli trading solos with BoB trained on Grappelli;

� Figure H.4: Grappelli trading solos with BoB trained on Parker.

The bold font identi�es which training set the calls are taken from and the bold

italicized font identi�es which training set the model has been trained on. The

following setup was used to generate solos:

� = �0 = 1; �00 = 6; n
walks

= 50; p
incr

= i
incr

= 12.

Furthermore, the call musician's absolute pitch range values were used and last clamp-

ing is not enabled. There is about a one-third chance that a particular fringe node

will be modi�ed.

265

Figure H.1: Parker and BoB Trained on Parker
1

4
4V
4
4V

Parker

BoB

������#� ������#���###

�B
�
#������#���#���#���#

3�#���#� ���#�#

7�E
�
#####�#��##�

7�B
�
#

7F7mC

BoB

Parker

�B
�V

4
4

�V 4
4

5

P: V
B: V � ���##�#�#

�B
#
�

###�#
3

#�###���#� ���#
7�E���#
3

�

� ������#������#���#���#�#����#� ���#
7�E���#

�

7�B
VB:

VP:

7mF

�
�5

9

P: V
B: V �� ���#���#

7�B
���������#

�

7F7mC

�
����������#���������#���####

7�B
�
####�#�# 3#�##

7F

�
�����#���#

7mC

�
���#

7G

VB:

VP:

�B
�
�9

15

P: V
B: V

���#� ���#������#�#####�

7�E
�
#

7�B7mF
�
�

���#���#������#� ���##�##�
�B

#

�

�#####
3

�##� ���#
3H���#�VB:

VP:

7�E
� 3

�15

19

P: V
B: V � ���#���##�##

7F

#

�

�#������#���������#������#���������#� ���������#���������#������#
7mC

#

�

7G�B
�
�#### 3�#####

�B
�
#������#���#���#���#

3���#���#� ���#
VB:

�VP:

7�E
�
#

19

266

224

P: V
B: V

7�B7mF

�
�������#� ������##�##

�B

�
#� ���#�#####�#�

7�E

�
#�##�

7�B

�
#

7F7mC

�
�

������#�##
3

�###
3

####�##VB:

VP:

7�B
3

�24

30

P: V
B: V

������#�###�##�#�#�##�####

7mC

�
#

7G�B
�
�

������#���������#� ���������#������#
3

� ������#
�B

#

�

���#���#� ���#�#�####
7�E
���# 3

�
��#�##VB:

VP:

7�E
#

�30

35

P: V
B: V

7F7mC

�
��#�#�##�########���#������#� ���#

7�B
�
���#���#�#�#���#�#���#������##�#�#�#������#���#���##���#

VB:

�VP:

7F

�
���# 3

35

38

P: V
B: V �####�#�#�##���#�##�#� ���#���������#�##�

7�E
3

�

���#�#���# 3������####�#� ���#���####�VB:

VP:

7�B
#
�38

40

P: V
B: V

������##� ������#���#�###

7�E
�
���#���#���#���#���#� H���#�

7�E
�
#

7�B7mF

�
�

�###
3

�########�##�##�#VB:

VP:

�B
#
�40

44

P: V
B: V

7�B
�
�

� H���#����������#���������#
7�B

#

�

���####�##
7F

#
�

###�#H#�#�
7mC

#
�

7G�B
�
�H#����#

H#�
VB:

VP:

�B
�
������#

44

Lily was here, 1.3.84.

267

Figure H.2: Parker and BoB Trained on Grappelli
1

4
4V
4
4V

Parker

BoB

������#� ������#���###

�B
�
#������#���#���#���#

3�#���#� ���#�#

7�E
�
#####�#��##�

7�B
�
#

7F7mC

BoB

Parker

�B
�V

4
4

�V 4
4

5

P: V
B: V � ������#���������#������##

�B
#

�

���������#������#���## 3##�#���#���������#� ���#�
7�E

3

�

������#���#� ���#� ���#���#��#� ���#
7�E
������#

�

7�B
VB:

VP:

7mF

�
�5

9

P: V
B: V �

� ������#���������#�
7�B

������#

�

7F7mC

�
����������#���������#���####

7�B
�
####�#�# 3#�##

7F

�
�����#���#

7mC

�
���#

7G

VB:

VP:

�B
�
�9

15

P: V
B: V

���#� ���#������#�#####�

7�E
�
#

7�B7mF
�
�

####� ���#���##
�B

#
�

##���#���##
3#�#�# 3

� H���#�VB:

VP:

7�E
� 3

�15

19

P: V
B: V �##� ���#������#������###�#

7mC

#

�

7G�B
�
�#### 3�#####

�B
�
#������#���#���#���#

3���#���#� ���#
VB:

�VP:

7�E
�
#

19

268

223

P: V
B: V

� ���#�#####�#�

7�E

�
#�##�

7�B

�
#

7F7mC

�
�

������#� ���##
3

###
3

#�####�#
7�B

3

�

#���####VB:

VP:

7F

���#

�23

28

P: V
B: V

7G�B
�
�

���������#� ���### 3�#�
�B

#

�

���������#���������#������#������#� ���#������#������#� ���������#�
7�E

���������#
3

�
����������#������#� ���������#�

7�E
���������#

�

7�B7mF

�
�������#� ������##�##

VB:

VP:

�B
�
#

28

34

P: V
B: V

���#�#�#���#�#���#������##�#�#�#������#���#���##���#�

7F

�
���# 3������#�###�##�#�#�##�####

VB:

VP:

7mC

�
#34

36

P: V
B: V �### 3##���#������#� ������#������#���#�#�##

7�B
#

�

7F7mC

�
��#�#�##�########���#������#� ���#

VB:

VP:

7�B
�
���#

36

39

P: V
B: V

7�B7mF

�
�

� ���������#������#������#
3���##���###� ���#������#� ���������#���������#�#�###�

�B
#

�

###� ���#���#���������#������#���������#� ���#������#���������#������#���������#������#������#������#
VB:

VP:

7�E
3

�39

42

P: V
B: V

7�B
�
�

H���#�� ������#������#
7�B

#

�

#�##�#�#�#
7F

#

�

���#�#���##� H#�#
7mC

���#

�

7G�B
�
�H#����#

H#�

�B
�
������#������##� ������#���#�###

7�E
�
���#���#���#���#���#� H���#�

VB:

VP:

7�E
�
#

42

Lily was here, 1.3.84.

269

Figure H.3: Grappelli and BoB Trained on Grappelli
1

4
4V
4
4V

Grappelli

BoB #������#� ���#
3#������#

F

#

�

������#� ���#���##�M#
7C

#
�

"
7G

"
�

D

�
�"##

D

�
####���#�M#

D

�
#"

D

�
���"

BoB

Grappelli

7A

�V 4
4

�V 4
4

9

G: V
B: V �###� ���#������#�

7C

���#

�

� ������#������#� ������#������#� ������#������#
7G

���#

�

D

�
�#�######�

D

�
##�#�####

D

�
#�######

D

�
#

VB:

VG:

7A

�
�9

16

G: V
B: V �####

G

#
�

D

�
�######

D

�
######�#�

A

�
##�##�###

A

�
#

F

�
�

######VB:

VG:

F

#

�16

23
G: V
B: V

#####
3

####

D

�
���#���#� ���###�#�#

D

�
#

7A

�
�

#�#####
7C

#

�

���####�##VB:

VG:

G

#
�23

28
G: V
B: V

F

�

�

������#������#������#� ���#� H���#�� 3�H
F

���#

�

###�## 3####
7C

���#
�

���#������#� ���#���#
3

���#� ������#� ������#�
7G

���#
�

D

�

����#� ���#���#������#M������
#

��

VB:

VG: M

D

�

���������#28

Lily was here, 1.3.84.

270

Figure H.4: Grappelli and BoB Trained on Parker
1

4
4V
4
4V

Grappelli

BoB �####�� H���#
7C

���#

�

"
7G

"

�

D

�
�"##

D

�
####���#�M#

D

�
#"

D

�
���"

BoB

Grappelli

7A

�V 4
4

�V 4
4

8

G: V
B: V

D

�

�#�######�

D

�
##�#�####

D

�

#�######

D

�

#

7A

�

�
� ������#���������#���#

3

���##VB:

VG:

F

#

�8

14

G: V
B: V

#�##�###

A

�
#

F

�
�

�#� ���#�#�##�#�
F

���#

�
�#�##�#�#�

7C

#

�

�#���#� ������#������#�##VB:

VG:

7G

#

�14

19

G: V
B: V � ������#������#� ���#�###�

G

#
�

�#�##�#�
G

#

�

D

�
�######

D

�
######�#

VB:

�VG:

A

�
#19

24
G: V
B: V

���#� ���#���#������#M������
#

��M

D

�
���������######

3

####

D

�
���#���#� ���###�#�#

D

�
#

7A

�
�

�#�##�###�VB:

VG:

7C

���#

�24

29

G: V
B: V

F

�
�

���#���#�##H#�� 3�� H
F

���#

�

������#���#� ������#� ���#�# 3###�#
7C

#
�

#���#�##
3

�#�##
7G

#
�

VB:

VG:

D

�
�29

Lily was here, 1.3.84.

271

272

Bibliography

Abrams, S., D. V. Oppenheim, D. Pazel, and J. Wright (1999). Higher-level com-

position control in MusicSketcher: Modi�ers & smart harmony. In Proceedings

of the 1999 ICMC. International Computer Music Association.

Aebersold, J. (1992). How to Play Jazz and Improvise. Jamey Aebersold, New

Albany, IN.

Arcos, J., R. L. de Mantaras, and X. Serra (1998). Saxex: A case-based reasoning

system for generating expressive musical performances. Journal of New Music

Research 27 (3), 194{210.

Assayag, G., C. Rueda, M. Laurson, C. Agon, and O. Delerue (1998). Guessing the

composer's mind: Applying universal prediction to musical style. In Proceedings

of the 1998 ICMC. International Computer Music Association.

Association, I. M. (1989). MIDI 1.0 speci�cation.

AudioWorks (1988-1999). Sound2Midi. http://www.audioworks.com/s2m/s2m.htm.

Bailey, D. (1992). Improvisation, Its Nature & Practice in Music. Da Capo Press.

Baker, D. (1983). Jazz improvisation : A Comprehensive Method of Study For All

Players. Frangipani Press.

Bartlett, J. C. (1993). Tonal structure of melodies. In T. J. Tighe and W. J. Dowling

(Eds.), Psychology & Music: the Understanding of Melody & Rhythm. Lawrence

Erlbaum Associates, Inc.

Bates, J. (1992). The nature of character in interactive worlds. Technical Report

CMU-CS-92-200, School of Computer Science, Carnegie Mellon University.

Bellgard, M. (1993). Machine Learning of Constraints in Temporal Sequences: Ap-

plications of the E�ective Boltzmann Machine. Ph. D. thesis, Computer Science

Department, University of Western Australia.

273

Berliner, P. F. (1994). Thinking in Jazz, The In�nite Art of Improvisation. Univer-

sity of Chicago Press.

Bharucha, J. J. (1994). Tonality and expectation. In R. Aiello and J. A. Sloboda

(Eds.), Musical Perceptions. Oxford University Press.

Biles, J. (1994). GenJam: A genetic algorithm for generating jazz solos. In Pro-

ceedings of the 1994 ICMC. International Computer Music Association.

Biles, J. (1995). Training an iga via audience-mediated performance. In Proceedings

of the 1995 ICMC. International Computer Music Association.

Biles, J. (1996). Neural network �tness functions for an iga. In Proceedings of the

International ICSC Symposium on Intelligent Industrial Automation and Soft

Computing. ICSC Academic Press.

Biles, J. (1998). Interactive GenJam: Integrating real-time performance with a

genetic algorithm. In Proceedings of the 1998 ICMC. International Computer

Music Association.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press.

Boltz, M. G. (1999). The processing of melodic and temporal information: Inde-

pendent or uni�ed dimensions? Journal of New Music Research 28 (1), 66{79.

Bresin, R. and A. Friberg (2000). Emotional coloring of computer-controlled music

performances. Computer Music Journal 24 (4), 44{63.

Brooks, R. A. (1990). Elephants don't play chess. Robotics and Autonomous Sys-

tems 6.

Bryson, J. J. (1992). The subsumption strategy development of a music modeling

system. Master's thesis, Dept of Arti�cial Intelligence, University of Edinburgh.

Cadez, I., S. Ga�ney, and P. Smyth (2000). A generalized probabilistic framework

for clustering individuals. Technical Report UCI-ICS-00-09, University of Irvine,

Information and Computer Science.

Cadez, I. V. and P. Smyth (2001). Model complexity, goodness of �t and dimin-

ishing returns. In Advances in Neural Information Processing Systems 13 (to

appear). MIT Press.

Cambouropoulos, E. (2001). The local boundary detection model (LBDM) and its

application in the study of expressive timing. In Proceedings of the ICMC 2001.

ICMC.

274

Cambouropoulos, E., T. Crawford, and C. S. Iliopoulos (1999). Pattern processing

in melodic sequences: Challenges, caveats & prospects. In Proceedings from the

AISB'99 Symposium on Musical Creativity.

Casella, G. and R. L. Berger (1990). Statistical Inference. Wadsworth, Belmont,

CA.

Casserly, L. (1997). Person to ... person? Resonance Magazine 6 (1).

Cemgil, A. and B. Kappen (2001a). Bayesian real-time adaptation for interactive

performance systems. In Proceedings of the 2001 ICMC. International Computer

Music Association.

Cemgil, A. and B. Kappen (2001b). Tempo tracking and rhythm quantization by

sequential monte carlo. In Advances in Neural Information Processing Systems

13 (to appear). MIT Press.

Cemgil, A. T., P. Desain, and B. Kappen (2000). Rhythm quantization for tran-

scription. Computer Music Journal 24 (2), 60{76.

Chvatal, V. (1983). Linear Programming. W.H. Freeman.

Coker, J. (1970). The Jazz Idiom. Prentice-Hall Inc., Englewood Cli�s, NJ.

Cope, D. (1992). Computer modeling of musical intelligence in EMI. Computer

Music Journal 16 (2), 69{83.

Cross, I. (1999). Ai and music perception. AISB Quarterly 102, 12{25.

Cunha, U. S. and G. Romalho (2000). Combining o�-line and on-line learning for

predicting chords in tonal music. In Proceedings from the AAAI-2000 Music

and AI Workshop. AAAI Press.

Dannenberg, R. B. (1993). Software design for interactive multimedia performance.

Interface - Journal of New Music Research 22 (3), 213{218.

Dannenberg, R. B. and I. Derenyi (1998). Combining instrument and performance

models for high-quality music synthesis. Journal of New Music Research 27 (3).

Dannenberg, R. B. and B. Mont-Reynaud (1987). Following an improvisation in

real time. In Proceedings of the 1987 ICMC. International Computer Music

Association.

Dannenberg, R. B., B. Thom, and D. Watson (1997). A machine learning approach

to musical style recognition. In Proceedings of the 1997 ICMC. International

Computer Music Association.

275

DeGroot, M. H. (1970). Optimal statistical decisions. McGraw-Hill.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society .

Desain, Aarts, Cemgil, Kappen, and van Thienen (1999). Robust time-quantization

for music, from performance to score. In Proceedings of the 106th AES Conven-

tion. Audio Engineering Society.

Deutsch, D. (1999). The psychology of music. Academic Press.

Dubes, R. and A. Jain (1980). Clustering methodologies in exploratory data anal-

ysis. Advances in Computers 19 (11).

Dubnov, S., G. Assayag, and R. El-Yaniv (1998). Universal classi�cation applied to

musical sequences. In Proceedings of the 1998 ICMC. International Computer

Music Association.

Duda, R. O. and P. E. Hart (1973). Pattern classi�cation and scene analysis. Wiley.

Elliot, C. and J. Brzezinski (1998). Autonomous agents as synthetic characters. AI

Magazine, 13{30.

Elman, J. (1991). Distributed representations, simple recurrent networks, and

grammatical structure. Machine Learning 7 (2-3), 195{225.

Feulner, J. and D. H�ornel (1994). Melonet: Neural networks that learn harmony-

based melodic variations. In Proceedings of the 1994 ICMC. International Com-

puter Music Association.

Frank, A., A. Stern, and B. Resner (1997). Socially intelligent Virtual Petz. In

K. Dautenhahn (Ed.), Proceedings of the 1997 AAAI Fall Symposium on So-

cially Intelligent Agents. AAAI Press.

Franklin, J. A. (2001). Multi-phase learning for jazz improvisation and interaction.

In Proceedings of the Eighth Biennial Symposium for Arts & Technology.

Giomi, F. and M. Ligabue (1988). An interactive system for musical improvisation.

In Proceedings of the 1988 ICMC. International Computer Music Association.

Glaser, M. and S. Grappelli (1981). Jazz Violin. Oak Publications, NY, NY.

Goldsen, M. H. (Ed.) (1978). Charlie Parker Omnibook: For C Instruments. At-

lantic Music Corp.

Gridley, M. C. (1988). Jazz Styles, History and Analysis (third ed.). Prentice Hall.

276

Hanson, R., J. Stutz, and P. Cheeseman (1991). Bayesian classi�cation theory.

Technical Report FIA-90-12-7-01, NASA Ames Research Center.

Hayes-Roth, B. and R. van Gent (1997). Story-making with improvisational pup-

pets. In W. Johnson (Ed.), Proceedings of the First International Conference

on Autonomous Agents, pp. 1{7.

Heijink, H., P. Desain, H. Honing, and W. Windsor (2000). Make me a match: An

evaluation of di�erent approaches to score-performance matching. Computer

Music Journal , 43{56.

Hild, H., J. Feulner, and W. Menzel (1991). Harmonet: A neural net for harmoniz-

ing chorales in the style of J.S. Bach. In R. P. Lippmann, J. E. Moody, and D. S.

Touretzky (Eds.), Advances in Neural Information Processing 4, pp. 267{274.

Morgan Kaufman.

H�ornel, D. (1998). A multi-scale neural-network mode for learning and reproducing

chorale variations. In W. B. Hewlett and E. Selfridge-Field (Eds.), Melodic

Similarity; Concepts, Procedures, and Applications. The MIT Press.

H�ornel, D., J. Langnickel, B. Sandberger, and B. Sieling (1999). Statistical vs.

connectionist models of Bebop improvisation. In Proceedings of the 1999 ICMC.

International Computer Music Association.

H�ornel, D. and W. Menzel (1998). Learning musical structure & style with neural

networks. Computer Music Journal 22 (4), 44{62.

H�othker, K. (1999). Modeling the motivic process of melodies with markov chains.

In Proceedings of the 1999 ICMC, pp. 383{386.

Johnson-Laird, P. N. (1991). Jazz improvisation: A theory at the computational

level. In P. Howell (Ed.), Representing Musical Structure, pp. 291{325. Aca-

demic Press, Inc.

Kaufman, L. and P. J. Rousseeuw (1990). Finding groups in data : an introduc-

tion to cluster analysis. Wiley series in probability and mathematical statistics.

Wiley.

Kearns, M., Y. Mansour, and A. Ng (1997). An information-theoretic analysis of

hard and soft assignment methods for clustering. In Proceedings of the Thir-

teenth Conference on Uncertainty in Arti�cial Intelligence, pp. 282{293. Morgan

Kaufmann.

Kozen, D. C. (1991). The design and analysis of algorithms. Springer-Verlag.

277

Krumhansl, C. M. (1990). Cognitive Foundations of Musical Pitch. Oxford Univer-

sity Press.

Lartillot, O., S. Dubnov, G. Assayag, and G. Bejerano (2001). Automatic modeling

of musical style. In Proceedings of the 2001 ICMC. International Computer

Music Association.

Lerdahl, F. and R. Jackendo� (1983). A Generative Theory of Tonal Music. MIT

Press.

Levitt, D. (1981). A melody description system for jazz improvisation. Master's

thesis, MIT.

Longuet-Higgens, H. (1987). Mental Processes. MIT Press.

Loy, G. (1991). Connectionism and musiconomy. In P. M. Todd and D. G. Loy

(Eds.), Music and Connectionism, pp. 23{36. MIT Press.

Loyall, B. (1997). Believable Agents: Building Interactive Personalities. Ph. D.

thesis, Computer Science Department, CMU.

Marsden, A. (1999). Representation of melodies as elaboration trees. In Proceedings

from the AISB'99 Symposium on Musical Creativity.

Mateas, M. (1999). An oz-centric review of interactive drama & believable agents.

In M. J. Wooldridge and M. M. Veloso (Eds.), Lecture Notes in Arti�cial Intel-

ligence, Volume 1600, pp. 297{329. Springer-Verlag.

Mateas, M. (2001a). Expressive AI. Leonardo: The Journal of the International

Society of the Arts, Sciences and Technology 34 (2), 147{153.

Mateas, M. (2001b). Interactive drama, art and arti�cial intelligence. Unpublished

Dissertation Proposal.

McCorduck, P. (1991). Aaron's Code: Meta-art, Arti�cial Intelligence, and the

Work of Harold Cohen. W.H. Freeman.

McLachlan, G. J. and K. E. Basford (1988). Mixture Models: Inference & Applica-

tions to Clustering. Marcel Dekker.

Meila, M. and D. Heckerman (1998). An experimental comparison of several clus-

tering and initialization methods. Technical Report MSR-TR-98-06, Microsoft

Research Center.

Minsky, M. (1981). Music, mind, and meaning. Computer Music Journal 5 (3).

278

Minsky, M. (1986). The Society of Mind. Simon and Schuster.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Mongeau, M. and D. Sanko� (1990). Comparison of musical sequences. Computers

and the Humanities 24, 161{175.

Mozer, M. C. (1994). Neural network music composition by prediction: Exploring

the bene�ts of psychophysical constraints and multi-scale processing. Connec-

tion Science 6, 247{280.

Narmour, E. (1990). The Analysis and Cognition of Basic Melodic Structures. Uni-

versity of Chicago Press.

Nienhuys, H.-W., J. Nieuwenhuizen, and A. Mariano (1999). GNU lilypond, the

music typesetter. http://www.lilypond.org.

Nigam, K., A. McCallum, S. Thrun, and T. Mitchell (1998). Learning to classify

text from labeled & unlabeled documents. In Proceedings of the 1998 AAAI.

AAAI Press.

Ostransky, L. (1977). Understanding Jazz. Prentice-Hall, Inc., Englewood Cli�s,

NJ.

Pachet, F. (2000). Computer analysis of jazz chord sequence: Is Solar a blues? In

E. R. Miranda (Ed.), Readings in Music and Arti�cial Intelligence. Harwood

Academic Publishers.

Papadopoulos, G. and G. Wiggins (1999). Ai methods for algorithmic composition:

A survey, a critical view and future prospects. In Proceedings from the AISB'99

Symposium on Musical Creativity.

Pennycook, B. and D. Stammen (1993). Real-time recognition of melodic fragments

using the dynamic timewarp algorithm. In Proceedings of the 1993 ICMC. In-

ternational Computer Music Association.

PGMusic (1999). Band-in-a-box. http://www.pgmusic.com.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Nu-

merical recipes in C : the art of scienti�c computing. Cambridge University

Press.

Puckette, M. and D. Zicarelli (1991). MAX development package manual. Opcode

Systems, Inc.

279

Rabiner, L. and B. Juang (1986). An introduction to hidden markov models speech

recognition and processing. IEEE ASSP Magazine 3 (1), 4{16.

Ramoni, M., P. Sebastiani, and P. R. Cohen (2000a). Multivariate clustering by

dynamics. In Proceedings of the AAAI/IAAI 2000, pp. 633{638.

Ramoni, M., P. Sebastiani, and P. R. Cohen (2000b). Unsupervised clustering of

robot activities: a bayesian approach. In Proceedings of the Fourth International

Conference on Autonomous Agents, pp. 134{135.

Raphael, C. (1999). Automatic segmentation of acoustic musical signals using hid-

den markov models. IEEE Transactions on Pattern Analysis & Machine Intel-

ligence 10 (4).

Raphael, C. (2001). Music plus one: A system for exible and expressive musi-

cal accompaniment. In Proceedings of the 2001 ICMC. International Computer

Music Association.

Reis, B. Y. (1999). Simulating music learning: On-line perceptually guided pat-

tern induction of context models for multiple-horizon prediction of melodies. In

Proceedings from the AISB'99 Symposium on Musical Creativity.

Roads, C. (1985). Improvisation with George Lewis. In C. Roads (Ed.), Composers

and the Computer, pp. 75{88. William Kaufmann, Inc.

Rolland, P. and J. Ganascia (1996). Automated motive-oriented analysis of musical

corpuses: a jazz case study. In Proceedings of the 1996 ICMC. International

Computer Music Association.

Rolland, P.-Y. and J.-G. Ganascia (2000). Musical pattern extraction and simi-

larity assessment. In E. R. Miranda (Ed.), Readings in Music and Arti�cial

Intelligence, pp. 115{144. Harwood Academic Publishers.

Ross, S. M. (1993). Introduction to Probability Models. Academic Press Ltd.

Rowe, R. (1993). Interactive Music Systems : Machine Listening & Composing.

MIT Press.

Rowe, R. (2000). Interactive music systems in ensemble performance. In E. R. Mi-

randa (Ed.), Readings in Music and Arti�cial Intelligence. Harwood Academic

Publishers.

Russell, G. (1959). The Lydian Chromatic Concept of Tonal Organization for Im-

provisation: For All Instruments. Concept Publishing, Cambridge, MA.

280

Sebastiani, P., M. Ramoni, and P. Cohen (2000). Sequence learned via bayesian

clustering by dynamics. Technical Report KMi-TR-89, Knowledge Media Insti-

tute.

Sengers, P. (1998). Anti-Boxology: Agent Design in a Cultural Context. Ph. D.

thesis, Computer Science Department, CMU.

Smyth, P. (1997). Clustering sequences with hidden markov models. In Advances

in Neural Information Processing Systems 9. MIT Press.

Smyth, P. (1999). Probabilistic, model-based clustering of multivariate and sequen-

tial data. In Proceedings of the 7th International Workshop on AI and Statistics.

Morgan Kaufman.

Spiegel, M. R. (1994). Theory & Problems of Probability & Statistics. Schaum's

Outline. McGraw-Hill.

Stammen, D. and B. Pennycook (1994). Real-time segmentation of music using an

adaptation of lerdahl and jackendo�'s grouping principles. In Proceedings of the

1994 ICMPC.

Sudnow, D. (1978). Ways of the Hand, the Organization of Improvised Conduct.

Harvard University Press.

Thom, B. (1995). Predicting chords in jazz: the good, the bad & the ugly. In

Working Notes of the IJCAI Workshop on AI and Music, Montreal. Interna-

tional Joint Conferences on Arti�cial Intelligence.

Thom, B. (1999). Learning melodic models for interactive melodic improvisation.

In Proceedings of the 1999 ICMC. International Computer Music Association.

Thom, B. (2000a). Arti�cial intelligence and real-time interactive improvisation. In

Proceedings from the AAAI-2000 Music and AI Workshop. AAAI Press.

Thom, B. (2000b). Unsupervised learning and interactive jazz/blues improvisation.

In Proceedings of the AAAI-2000. AAAI Press.

Toiviainen, P. (1995). Modeling the target-note technique of bebop-style improvi-

sation. Music Perception 12 (4), 399{413.

Trilsbeek, P. and H. v. Thienen (1999). Quantization for notation: methods used

in commercial music software. Technical report, University of Nijmegen.

Vapnick, V. (1982). Estimation of Dependences Based on Empirical Data. Springer-

Verlag.

281

Walker, W. (1997). A computer participant in musical improvisation. In CHI 97

Electronic Publications.

Weigend, A. and N. Gershenfeld (1993). Results of the time series prediction com-

petition at the Santa Fe Institute. IEEE.

Wessel, D. and M. Wright (2000). Problems and prospects for intimate musical con-

trol of computers. In CHI '01 Workshop New Interfaces for Musical Expression.

ACM SIGCHI.

Wessel, D., M. Wright, and S. A. Kahn (1998). Preparation for improvised perfor-

mance in collaboration with a Khyal singer. In Proceedings of the 1998 ICMC.

International Computer Music Association.

Weyrauch, P. (1997). Guiding Interactive Drama. Ph. D. thesis, Computer Science

Department, CMU.

Widmer, G. (1996). Recognition & exploitation of contextual clues via incremental

meta-learning. In Proceedings of the 1996 ICML.

Widmer, G. (2000). Large-scale induction of expressive performance rules: First

quantitative results. In Proceedings of the 2000 ICMC. International Computer

Music Association.

Winkler, T. (1998). Composing Interactive Music: Techniques and Ideas Using

MAX. MIT Press.

Yoo, L. and I. Fujinaga (1999). A comparative latency study of hardware and soft-

ware pitch-trackers. In Proceedings of the 1999 ICMC. International Computer

Music Association.

282

