
Stochastic Search for
Signal Processing Algorithm Optimization

Bryan Singer Manuela Veloso

May, 2001
CMU-CS-01-137

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Many difficult problems can be viewed as search problems. However, given a new task with an embedded
search problem, it is challenging to state and find a truly effective search approach. In this paper, we
address the complex task of signal processing optimization. We first introduce and discuss the complexities
of this domain. In general, a single signal processing algorithm can be represented by a very large number
of different but mathematically equivalent formulas. When these formulas are implemented in actual code,
unfortunately their running times differ significantly. Signal processing algorithm optimization aims at
finding the fastest formula. We present a new approach that successfully solves this problem, using an
evolutionary stochastic search algorithm, STEER, to search through the very large space of formulas. We
empirically compare STEER against other search methods, showing that it notably can find faster formulas
while still only timing a very small portion of the search space.

This research was sponsored by the DARPA Grant No. DABT63-98-1-0004. The first author, Bryan Singer, was
partly supported by a National Science Foundation Graduate Fellowship.

The content of the information in this publication does not necessarily reflect the position or the policy of
the Defense Advanced Research Projects Agency (DARPA), the National Science Foundation (NSF), or the US
Government, and no official endorsement should be inferred.



Keywords: evolutionary algorithms, signal processing, performance optimization, genetic algorithms



1 Introduction

Signal processing algorithms take as an input a signal, as a numerical dataset and output a transformation
of the signal that highlights specific aspects of the dataset. Many signal processing algorithms can be
represented by a transformation matrix A which is multiplied by an input data vector X to produce the
desired output vector Y = AX (Rao and Yip, 1990). Näıve implementations of this matrix multiplication are
too slow for large datasets or real time applications. However, the transformation matrices can be factored,
allowing for faster implementations.

These factorizations can be represented by mathematical formulas and a single signal processing algorithm
can be represented by many different, but mathematically equivalent, formulas (Auslander et al., 1996).
Interestingly, when these formulas are implemented in code and executed, they often have very different
running times. The complexity of modern processors makes it difficult to analytically predict or model by
hand the performance of formulas. Further, the differences between current processors lead to very different
optimal formulas from machine to machine. Thus, a crucial problem is finding the formula that implements
the signal processing algorithm as efficiently as possible.

Signal processing optimization presents a very challenging search problem as there is a very large num-
ber of formulas that represent the same signal processing algorithm. Exhaustive search, as the most basic
search approach, is only possible for very small transform sizes or over limited regions of the space of formu-
las. Dynamic programming offers a significantly more effective search method. By assuming independence
among substructures, dynamic programming searches for a fast implementation while only timing a few
formulas. However, this independence assumption has not been verified, and thus it is not known if dynamic
programming finds even a near optimal formula.

We present a new stochastic evolutionary algorithm, STEER, for searching through this large space of
possible formulas. STEER searches through many more formulas than dynamic programming, covering a
larger portion of the search space, while still timing a tractable number of formulas as opposed to exhaustive
search. As dynamic programming had previously been the only search choice available for most transform
sizes, STEER provides a significantly different search approach as well as an opportunity to evaluate dynamic
programming.

We initially developed STEER specifically for the Walsh-Hadamard Transform (WHT). We then extended
STEER as well as exhaustive search and dynamic programming to work across a wide variety of transforms,
including new user-defined transforms. These extensions allow for optimization of arbitrary signal transforms
without the search algorithms needing to be modified for the particular transform currently being optimized.

Through empirical comparisons, we show that STEER can find formulas that run faster than what
dynamic programming finds for several transforms. For at least one case, we show that STEER is able to
find a formula that runs about as fast as the best one found by exhaustive search while timing significantly
less formulas than exhaustive search. Specifically with the WHT, STEER provides evidence, for the first
time, that dynamic programming finds very good formulas if dynamic programming does not make a poor
choice early in its search.

A few other researchers have addressed similar goals. FFTW (Frigo and Johnson, 1998) uses binary
dynamic programming to search for an optimal FFT implementation. Singer and Veloso (2000) have recently
shown that machine learning techniques can effectively learn to predict running times for WHT formulas.

Outside the signal processing field, several researchers have addressed the problem of selecting the optimal
algorithm. Most of these approaches only search among a few algorithms instead of the space of thousands
of different formulas we consider in our work. Lagoudakis and Littman (2000) use reinforcement learning
to learn to select between two algorithms during successive recursive calls when solving sorting or order
statistic selection problems. Brewer (1995) uses linear regression to learn to predict running times for four
different implementations across different input sizes, allowing him to quickly predict which of the four
implementations should run fastest given a new input size. PHiPAC (Bilmes et al., 1997) and ATLAS
(Whaley and Dongarra, 1998) use a set of parameterized linear algebra algorithms. For each algorithm, a
pre-specified search is made over the possible parameter values to find the optimal implementation. Adding
to these successful approaches, we contribute the use of evolutionary techniques in searching for the optimal
implementations of a variety of signal processing transforms.

1



2 Signal Processing Background

The Walsh-Hadamard Transform of a signal x of size 2n is the product WHT (2n) · x where

WHT (2n) =
n⊗
i=1

[
1 1
1 −1

]
,

and ⊗ is the tensor or Kronecker product (Beauchamp, 1984). If A is a m×m matrix and B a n×n matrix,
then A⊗B is the block matrix product a1,1B · · · a1,mB

...
. . .

...
am,1B · · · am,mB

 .
For example, WHT (22) =

[
1 1
1 −1

]
⊗
[

1 1
1 −1

]
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
By calculating and combining smaller WHTs appropriately, the structure in the WHT transformation

matrix can be leveraged to produce more efficient algorithms. Let n = n1 + · · ·+ nt with all of the nj being
positive integers. Then, WHT (2n) can be rewritten as

t∏
i=1

(I2n1+···+ni−1 ⊗WHT (2ni)⊗ I2ni+1+···+nt )

where Ik is the k × k identity matrix. This break down rule can then be recursively applied to each of
these new smaller WHTs. Thus, WHT (2n) can be rewritten as any of a large number of different but
mathematically equivalent formulas.

Any of these formulas for WHT (2n) can be uniquely represented by a tree, which we call a “split tree.”
For example, suppose WHT (25) was factored as:

WHT (25)
= [WHT (23)⊗ I22 ][I23 ⊗WHT (22)]
= [{(WHT (21)⊗ I22)(I21 ⊗WHT (22))} ⊗ I22 ]

[I23 ⊗ {(WHT (21)⊗ I21)(I21 ⊗WHT (21))}]

The split tree corresponding to the final formula is shown in Figure 1(a). Each node’s label in the split tree
is the base two logarithm of the size of the WHT at that level. The children of a node indicate how the
node’s WHT is recursively computed.

5

3 2

21 1 1

5

2 1 2

(a) (b)

Figure 1: Two different split trees for WHT (25).

In general, each node of a split tree should contain not only the size of the transform, but also the
transform at that node and the break down rule being applied. Recall that a break down rule specifies

2



how a transform can be computed from smaller or different transforms. In Figure 1, the representation was
simplified since it only used one break down rule which only involved WHTs.

There is a very large number of possible split trees, or equivalently formulas, for a WHT of any given
size. WHT(2n) has on the order of Θ((4 +

√
8)n/n3/2) different possible split trees. For example, WHT (28)

has 16,768 different split trees. Considering only binary WHT split trees slightly reduces the search space,
but there are still Θ(5n/n3/2) split trees (Johnson and Püschel, 2000).

For the results with the WHT, we used a WHT package, (Johnson and Püschel, 2000), which can
implement in code, run, and time WHT formulas passed to it. The WHT package allows leaves of the
split trees to be sizes 21 to 28 which are implemented as unrolled straight-line code. This introduces a
trade-off since straight-line code has the advantage that it does not have loop or recursion overhead but the
disadvantage that very large code blocks will overfill the instruction cache.

Figure 2 shows a histogram of the running times of all of the binary split trees of WHT (216) with no
leaves of size 21. This data was collected on a Pentium III running Linux. The histogram shows a significant
spread of running times, almost a factor of 6 from fastest to slowest. Further, it shows that there are
relatively few formulas that are amongst the fastest.

0.5 1 1.5 2 2.5 3

x 10
7

0

50

100

150

200

250

300

350

400

Running time in CPU cycles

N
um

be
r 

of
 fo

rm
ul

as

Figure 2: Histogram of running times of all WHT (216) binary split trees with no leaves of size 21.

The four types of discrete cosine transforms (DCTs) (Rao and Yip, 1990) are considerably different from
the WHT. The following differences are of importance:

• While we have used just one basic break down rule for the WHT, there are several very different break
down rules for most of the different types of DCTs.

• While the break down rule for the WHT allowed for many possible sets of children, most of the break
down rules for the DCTs specify exactly one set of children.

• While the WHT factored into smaller WHTs, the break down rules for the DCTs often factor one
transform into two transforms of different types or even translate one DCT into another DCT or into
a discrete sine transform. Thus, a split tree for a DCT labels the nodes not only with the size of the
transform, but also with the transform and the applied break down rule.

• The number of factorizations for the DCTs grows even quicker than that for the WHT. For example,
DCT type IV already has about 1.9 × 109 different factorizations at size 25 and about 7.3 × 1018

factorizations at size 26 with our current set of break down rules.

3 Search Techniques

There are several approaches for searching for fast implementations of signal processing algorithms, including
exhaustive search, dynamic programming, random search, and evolutionary algorithms.

One simple approach to optimization is to exhaust over all possible formulas of a signal transform and
to time each one on each different machine that we are interested in. There are three problems with this
approach: (1) each formula may take a non-trivial amount of time to run, (2) there is a very large number
of formulas that need to be run, and (3) just enumerating all of the possible formulas may be impossible.
These problems make the approach intractable for transforms of even small sizes.

3



With the WHT, there are several ways to limit the search space. One such limitation is to exhaust just
over the binary split trees, although there still are many binary split trees. In many cases, the fastest WHT
formulas never have leaves of size 21. By searching just over split trees with no leaves of size 21, the total
number of trees that need to be timed can be greatly reduced, but still becomes intractable at larger sizes.

A common approach for searching the very large space of possible implementations of signal transforms
has been to use dynamic programming (Johnson and Burrus, 1983; Frigo and Johnson, 1998; Haentjens, 2000;
Sepiashvili, 2000). This approach maintains a list of the fastest formulas it has found for each transform and
size. When trying to find the fastest formula for a particular transform and size, it considers all possible
splits of the root node. For each child of the root node, dynamic programming substitutes the best split tree
found for that transform and size. Thus, dynamic programming makes the following assumption:

Dynamic Programming Assumption: The fastest split tree for a particular transform and
size is also the best way to split a node of that transform and size in a larger tree.

While dynamic programming times relatively few formulas for many transforms, it would need to time
an intractable number of formulas for large WHTs. However, by restricting to just binary WHT split trees,
dynamic programming becomes very efficient. Between the two extremes, k-way dynamic programming
considers split trees with at most k children at any node. Unfortunately, increasing k can significantly
increase the number of formulas to be timed.

As another generalization, k-best dynamic programming keeps track of the k best formulas for each
transform and size (Haentjens, 2000; Sepiashvili, 2000). This softens the dynamic programming assumption,
allowing for the fact that a sub-optimal formula for a given transform and size might be the optimal way
to split such a node in a larger tree. Unfortunately, moving from standard 1-best to just 2-best more than
doubles the number of formulas to be timed.

While dynamic programming has been frequently used, it is not known how far from optimal it is at larger
sizes where it can not be compared against exhaustive search. Other search techniques with different biases
will explore different portions of the search space. This exploration may find faster formulas than dynamic
programming finds or provide evidence that the dynamic programming assumption holds in practice.

A very different search technique is to generate a fixed number of random formulas and time each. This
approach assumes that while the running times of different formulas may vary considerably, there is still a
sufficiently large number of formulas that have running times close to the optimal. Evolutionary techniques
provide a refinement to the previous approach (Goldberg, 1989). Evolutionary algorithms add a bias to
random search directing it toward better formulas.

4 STEER for the WHT

We developed an evolutionary algorithm named STEER (Split Tree Evolution for Efficient Runtimes) to
search for optimal signal transform formulas. Our first implementation of STEER explicitly only searched
for optimal WHT formulas. This section describes STEER for the WHT, while Section 6 describes our more
recent implementation of STEER that will work for a variety of transforms.

Given a particular size, STEER generates a set of random WHT formulas of that size and times them.
It then proceeds through evolutionary techniques to generate new formulas and to time them, searching for
the fastest formula. STEER is very similar to a standard genetic algorithm (Goldberg, 1989) except that
STEER uses split trees instead of a bit vector as its representation. At a high level, STEER proceeds as
follows:

1. Randomly generate a population P of legal split trees of a given size.

2. For each split tree in P , obtain its running time.

3. Let Pfastest be the set of the b fastest trees in P .

4. Randomly select from P , favoring faster trees, to generate a new population Pnew.

5. Cross-over c random pairs of trees in Pnew.

4



6. Mutate m random trees in Pnew.

7. Let P ← Pfastest ∪ Pnew.

8. Repeat step 2 and following.

All selections are performed with replacement so that Pnew may contain many copies of the same tree. Since
obtaining a running time is expensive, running times are cached and only new split trees in P at step 2 are
actually run.

4.1 Tree Generation and Selection

Random tree generation produces the initial population of legal split trees from which STEER searches. To
generate a random split tree, STEER creates a set of random leaves and then combines these randomly to
generate a full tree.

To generate the new population Pnew, trees are randomly selected from P using fitness proportional
reproduction which favors faster trees. Specifically, STEER selects from P by randomly choosing any
particular tree with probability proportional to one divided by the tree’s running time. This method weights
trees with faster running times more heavily, but allows slower trees to be selected on occasion.

4.2 Crossover

In a population of legal split trees, many of the trees may have well optimized subtrees, even while the
entire split tree is not optimal. Crossover provides a method for exchanging subtrees between two split
trees, allowing for one split tree to potentially take advantage of a better subtree found in another split tree
(Goldberg, 1989).

Crossover on a pair of trees t1 and t2 proceeds as follows:

1. Let s be a random node size contained in both trees.

2. If no s exists, then the pair can not be crossed-over.

3. Select a random node n1 in t1 of size s.

4. Select a random node n2 in t2 of size s.

5. Swap the subtrees rooted at n1 and n2.

For example, a crossover on trees (a) and (b) at the node of size 6 in Figure 3 produces the trees (c) and
(d).

2 3

5

33

6 3 4

182

20

2 2

42

6

3 7 4

14

20

2 3

5

2 4

2 2

20

2 18

3 46

3 7 4

14

20

6

3 3

(a) (b) (c) (d)

Figure 3: Crossover of trees (a) and (b) at the node of size 6 produces trees (c) and (d) by exchanging
subtrees.

5



4.3 Mutation

Mutations are changes to the split tree that introduce new diversity to the population. If a given split tree
performs well then a slight modification of the split tree may perform even better. Mutations provide a way
to search the space of similar split trees (Goldberg, 1989).

We present the mutations that STEER uses with the WHT. Except for the first mutation, all of them
come in pairs with one essentially doing the inverse operation of the other. Figure 4 shows one example of
each mutation performed on the split tree labeled “Original.” The mutations are:

• Flip: Swap two children of a node.

• Grow: Add a subtree under a leaf, giving it children.

• Truncate: Remove a subtree under a node that could be a leaf, making the node a leaf.

• Up: Move a node up one level in depth, causing the node’s grandparent to become its parent.

• Down: Move a node down one level in depth, causing the node’s sibling to become its parent.

• Join: Join two siblings into one node which has as children all of the children of the two siblings.

• Split: Break a node into two siblings, dividing the children between the two new siblings.

2 3

5

33

6 3 4

182

20

33

6

2 3

5

20

2 18

34

33

6

20

2 18

3 4

2 2

5

2 3 2 3

5

20

2 18

3 46

Original Flip Grow Truncate

2 3

5

33

6

20

2

3 4

13

33

6

20

2 18

3 411

2 3

20

2 18

11 3 4

2 3 3 3 33

6

2 3

5

20

11 72

3 4

Up Down Join Split

Figure 4: Examples of each kind of mutation, all performed on the tree labeled “Original.”

4.4 Running STEER

Figure 5 shows a typical plot of the running time of the best formula (solid line) and the average running
time of the population (dotted line) as the population evolves. This particular plot is for WHT (222) on a
Pentium III. The average running time of the first generation that contains random formulas is more than
twice the running time of the best formula at the end, verifying the wide spread of run times of different
formulas. Further, both the average and best run times decrease significantly over time, indicating that the
evolutionary operators are finding better formulas.

5 Search Algorithm Comparison for WHT

Figure 6 shows two different runs of binary dynamic programming on the same Pentium III. For sizes larger
than 210, many of the formulas found in the second run are more than 5% slower than those found in the
first run. An analysis of this and several other runs shows that the major difference is what split tree is
chosen for size 24. The two fastest split trees for that size have close running times. Since the timer is not
perfectly accurate, it times one split tree sometimes faster and sometimes slower than the other from run to

6



8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

2e+09

2.2e+09

0 20 40 60 80 100 120 140

F
or

m
ul

a 
ru

nn
in

g 
tim

e 
in

 C
P

U
 c

yc
le

s

�

Generations

average
best

Figure 5: Typical plot of the best and average running time of formulas as STEER evolves the population.

0.9

0.95

1

1.05

1.1

1.15

1.2

5 10 15 20 25

R
un

ni
ng

 T
im

es
 D

iv
id

ed
 b

y 
R

un
 1

 T
im

es

�

Log of Size

Run 1
Run 2

Figure 6: Two runs of dynamic programming.

run. However, one particular split tree is consistently faster than the other when used in larger sizes. Thus,
a poor choice early in the search can produce significantly worse results at larger sizes.

Figure 7 compares the best running times found by a variety of search techniques on the same Pentium III.
In this particular run, plain binary dynamic programming chose the better formula for size 24 and performs
well. All of the search techniques perform about equally well except for the random formula generation
method which tends to perform significantly worse for sizes larger than 215, indicating that some form of
intelligent search is needed in this domain and that blind sampling is not effective.

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

5 10 15 20 25

R
un

ni
ng

 T
im

es
 D

iv
id

ed
 b

y 
B

in
ar

y 
1-

B
es

t D
P

 T
im

es

�

Log of Size

Binary 1-Best DP
Binary 2-Best DP
3-Way 1-Best DP
STEER
5000 Random Formulas
Binary NoLeaf1 Exhaustive

Figure 7: Comparison of best WHT running times.

Figure 8 compares the number of formulas timed by each of the search methods. A logarithm scale
is used along the y-axis representing the number of formulas timed. Effectively all of the time a search
algorithm requires is spent in running formulas. The random formula generation method sometimes times
less formulas than were generated if the same formula was generated twice. The number of formulas timed

7



by the exhaustive search method grows much faster than all of the other techniques, indicating why it quickly
becomes intractable for larger sizes. Clearly plain binary dynamic programming has the advantage that it
times the fewest formulas.

1

10

100

1000

10000

100000

5 10 15 20 25

N
um

be
r 

of
 F

or
m

ul
as

 T
im

ed

Log of Size

Binary 1-Best DP
Binary 2-Best DP
3-Way 1-Best DP
STEER
5000 Random Formulas
Binary NoLeaf1 Exhaustive

Figure 8: Number of WHT formulas timed.

Of the search methods compared, dynamic programming both finds fast WHT formulas and times rel-
atively few formulas. However, we have also shown that dynamic programming can perform poorly if it
chooses a poor formula for one of the smaller sizes. STEER also finds fast formulas but is not as strongly
impacted by poor initial choices.

6 Optimization for Arbitrary Transforms

As part of the SPIRAL research group (Moura et al., 1998), we are developing a system for implementing and
optimizing a wide variety of signal transforms, including user-specified transforms. This system begins with
a database of signal transforms and break down rules for factoring those transforms that can be extended
by users. Mathematical formulas can be generated for fully factored transforms (Püschel et al., 2001), and
these formulas can be compiled into executable code (Xiong et al., 2001). This section discusses how we
have adapted search methods to this system so that they can be used to optimize arbitrary transforms, and
then empirically compares the search methods.

Exhaustive search requires generating every possible formula for a given transform. In the SPIRAL
system, this is done by using every applicable break down rule on the transform and then recursively
every combination of applicable break down rules on the resulting children. We have also adapted dynamic
programming to this new setting. Given a transform to optimize, dynamic programming uses every applicable
break down rule to generate a list of possible sets of children. For each of these children, it then recursively
calls dynamic programming to find the best split tree(s) for the children, memoizing the results. Each of
these possible sets of children are used to form an entire split tree of the original transform. These new split
trees are then timed to determine the fastest.

STEER as described above used many operators that heavily relied on properties of the WHT. We have
adapted STEER to the SPIRAL system so it can optimize arbitrary signal transforms. The following changes
were made:

• Random Tree Generation. A new method for generating a random split tree was developed. For a
given transform, a random applicable break down rule is chosen, and then a random set of children
are generated using the break down rule. This is then repeated recursively for each of the transforms
of the children.

• Crossover. Crossover remains the same except the definition of equivalent nodes. Now instead of
looking for split tree nodes of the same size, crossover must find nodes with the same transform and
size.

8



• Mutation. We developed a new set of mutations since the previous ones were specific to the WHT.
We have developed three mutations that work in this general setting without specific knowledge of the
transforms or break down rules being considered. They are:

– Regrow: Remove the subtree under a node and grow a new random subtree.

– Copy: Find two nodes within the split tree that represent the same transform and size. Copy the
subtree underneath one node to the subtree of the other.

– Swap: Find two nodes within the split tree that represent the same transform and size. Swap the
subtrees underneath the two nodes.

Figure 9 shows an example of each of these mutations. These mutations are general and will work with
arbitrary user specified transforms and break down rules.

Original Regrow
24

22�DCT II 22�DCT IV

23DCT II 23DST II

22� 22�

DST IV 2 DST II 222�DCT IV2DST IV 2DST II

RuleDCT4_4

DCT II 2 DST II 2

RuleDCT4_3

DCT IV
RuleDCT4_3

RuleDCT2_2

RuleDCT2_2

RuleDST2_3

RuleDST4_1 RuleDST2_3
DST IV DST II

DCT II 2 DCT IV 2

24

22�DCT IV

23DCT II 23DST II

22� 22�

22�DCT IV2DST IV 2DST II

RuleDCT4_4

DCT II 2 DST II 2

RuleDCT4_3

22�DCT II
RuleDCT2_2

DCT II 2 DCT IV 2 22�DCT II
RuleDCT2_2

DCT II 2 DCT IV 2

DCT IV
RuleDCT4_3

RuleDCT2_2 RuleDST2_3

RuleDST4_1
DST IV DST II

RuleDST2_2

Copy Swap
24

22�DCT II 22�DCT IV

23DCT II 23DST II

22� 22�

DST IV 2 DST II 222�DCT IV

DCT II 2 DST II 2

RuleDCT4_3
DCT II 2 DST II 2

RuleDCT4_3

DCT IV
RuleDCT4_3

RuleDCT2_2

RuleDCT2_2

RuleDST2_3

RuleDST4_1 RuleDST2_3
DST IV DST II

DCT II 2 DCT IV 2

24

22�DCT II 22�DCT IV

23DCT II 23DST II

22� 22�

DST IV 2 DST II 222�DCT IVDCT II 2 DST II 2

RuleDCT4_3

2DST IV 2DST II

RuleDCT4_4

DCT IV
RuleDCT4_3

RuleDCT2_2

RuleDCT2_2

RuleDST2_3

RuleDST4_1 RuleDST2_3
DST IV DST II

DCT II 2 DCT IV 2

Figure 9: Examples of each general mutation, all performed on the tree labeled “Original.”

We ran dynamic programming and STEER on a Pentium III to find fast implementations of DCTs.
Figure 10 shows the running times of the best formulas found by each algorithm for DCT IV across three
sizes. Figure 11 shows the same but for the four types of DCTs all of size 25. Both diagrams indicate that
STEER consistently finds the fastest formulas.

For DCT type IV size 24, exhaustive search was also performed over the space of 31,242 different formulas
that can be generated with our current set of break down rules. Figure 12(a) shows the running times of the
fastest formulas found by each search algorithm. Figure 12(b) shows the number of formulas timed by each
of the search algorithms. The formulas found by the exhaustive search and by STEER are about equally
fast while the one found by dynamic programming is slower. However, dynamic programming times very
few formulas, and STEER times orders of magnitude less than the exhaustive search.

7 Conclusion

We have introduced a stochastic evolutionary search approach, STEER, for finding fast signal transform
implementations. This domain is particularly difficult in that there is a very large number of formulas

9



Size 8 Size 16 Size 32
0
�

500
�

1000
�

1500
�

2000
�

2500
�

3000
�

Fo
rm

ul
a 

ru
nt

im
e 

in
 n

an
os

ec
on

ds

Legend
DP 1-Best
DP 2-Best
DP 4-Best
STEER

Figure 10: Best DCT type IV times across several sizes.

Type I Type II Type III Type IV
0
�

500
�

1000
�

1500
�

2000
�

2500
�

3000
�

3500
�

Fo
rm

ul
a 

ru
nt

im
e 

in
 n

an
os

ec
on

ds
Legend
DP 1-Best
DP 2-Best
DP 4-Best
STEER

Figure 11: Best DCT size 25 times across 4 types.

that implement the same transform and there is a wide variance in run times between formulas. We have
described the development of STEER both specifically for the WHT and for a wide variety of transforms.
This later form of STEER is able to optimize arbitrary transforms, even user-defined transforms that it has
never before seen.

We have shown that STEER finds faster DCT formulas than dynamic programming while still timing
significantly less formulas than exhaustive search. In at least one case, STEER was able to find a DCT
formula that runs about equally as fast as the optimal one found by exhaustive search. We have shown
that a poor early choice can cause dynamic programming to perform sub-optimally. However, STEER has,
for the first time, provided evidence that dynamic programming does perform well when searching for fast
WHT formulas, if dynamic programming does not make a poor early choice.

STEER mainly relies on a tree representation of formulas combined with a set of operators to effectively
and legally transform the trees. STEER is thus applicable to general algorithm optimization with similar
tree representations.

Acknowledgements

We would especially like to thank Jeremy Johnson, José Moura, and Markus Püschel for their many helpful
discussions.

References

L. Auslander, J. Johnson, and R. Johnson. Automatic implementation of FFT algorithms. Technical Report
96-01, Drexel University, 1996.

K. Beauchamp. Applications of Walsh and Related Functions. Academic Press, 1984.

J. Bilmes, K. Asanović, C. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC: a Portable,

10



DP 1-Best STEER Exhaustive
0

200

400

600

800

1000

Fo
rm

ul
a 

ru
nt

im
e 

in
 n

an
os

ec
on

ds

DP 1-Best

54

STEER

423
�

Exhaustive

31242
�

0

5000

10000

15000

20000

25000

30000

35000

N
um

be
r 

of
 f

or
m

ul
as

 ti
m

ed

(a) (b)

Figure 12: DCT type IV size 24 search comparison.

High-Performance, ANSI C coding methodology. In Proceedings of International Conference on Supercom-
puting, 1997.

E. Brewer. High-level optimization via automated statistical modeling. In Proceedings of the 5th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, 1995.

M. Frigo and S. Johnson. FFTW: An adaptive software architecture for the FFT. In Proceedings of Inter-
national Conference on Acoustics, Speech, and Signal Processing, volume 3, 1998.

D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading,
MA, 1989.

G. Haentjens. An investigation of Cooley-Tukey decompositions for the FFT. Master’s thesis, ECE Dept.,
Carnegie Mellon University, 2000.

H. Johnson and C. Burrus. The design of optimal DFT algorithms using dynamic programming. In IEEE
Transactions on Acoustics, Speech, and Signal Processing, volume 31, 1983.

J. Johnson and M. Püschel. In search of the optimal Walsh-Hadamard transform. In Proceedings of Inter-
national Conference on Acoustics, Speech, and Signal Processing, 2000.

M. Lagoudakis and M. Littman. Algorithm selection using reinforcement learning. In Proceedings of Inter-
national Conference on Machine Learning, 2000.

J. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna, and M. Veloso. SPIRAL: Portable Library of
Optimized Signal Processing Algorithms, 1998.

M. Püschel, B. Singer, M. Veloso, and J. Moura. Fast automatic generation of DSP algorithms. In Proceedings
of The International Conference on Computational Science, 2001.

K. Rao and P. Yip. Discrete Cosine Transform. Academic Press, Boston, 1990.

D. Sepiashvili. Performance models and search methods for optimal FFT implementations. Master’s thesis,
ECE Dept., Carnegie Mellon University, 2000.

B. Singer and M. Veloso. Learning to predict performance from formula modeling and training data. In
Proceedings of International Conference on Machine Learning, 2000.

R. Whaley and J. Dongarra. Automatically tuned linear algebra software. In Proceedings of the 1998 ACM/
IEEE SC98 Conference, 1998.

J. Xiong, D. Padua, and J. Johnson. SPL: A language and compiler for DSP algorithms. Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2001. To
appear.

11


