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Abstract

We propose an novel method of computing and storing DataCubes. Our idea is to use Bayesian

Networks, which can generate approximate counts for any query combination of attribute values

and \don't cares." A Bayesian network represents the underlying joint probability distribution of

the data that were used to generate it. By means of such a network the proposed method, NetCube,

exploits correlations among attributes. Our proposed preprocessing algorithm scales linearly on the

size of the database, and is thus scalable; it is also parallelizable with a straightforward parallel

implementation. Moreover, we give an algorithm to estimate counts of arbitrary queries that is fast

(constant on the database size). Experimental results show that NetCubes have fast generation

and use (a few minutes preprocessing time per 100,000 records and less than a second query

time), achieve excellent compression (at least 1800:1 compression ratios on real data) and have

low reconstruction error (less than 5% on average). Moreover, our method naturally allows for

visualization and data mining, at no extra cost.



Keywords: DataCube approximation, count query, Bayesian network, Bayesian network structure

learning, machine learning.



1 The Problem

The problem of computing counts of records with desired characteristics from a database is a

very common one in the area of decision support systems and data mining. A typical scenario is

as follows: a customer analyst wants to discover groups of customers that exhibit an interesting

or unusual behavior that might lead to possibly pro�table insights into the company's customer

behavior. In other words, a company wants to be able to model its customer base well, and the

better it is able to do that, the more insights it can obtain from the model and more pro�table

it has the opportunity to be. In this scenario an analyst would, through an interactive query

process, request count information from the database, possibly drilling-down in interesting subsets

of the database of customer information. One can easily understand that it is very important that

the results to these queries be returned quickly, because that will greatly facilitate the process of

discovery. It is also important that they are accurate up to a reasonable degree, although it is not

imperative that they are exact. The analyst wants an approximate �gure of the result of the query

and getting it correct down to the last digit is not necessary.

Our solution to the problem is motivated by the observation that we need great speed coupled with

only reasonable accuracy. In the following paragraphs we show that this is true for our method

through performance results. In fact, our method can �t a database of billions of records in the

main memory of a single workstation. There is no magic to this|it is due to the fact that we do not

use the data to answer the query but only a model of the data. In doing this, our paper proposes

a new viewpoint on the computation of DataCubes, one that advocates the use of models of the

data rather than the data themselves for answering DataCube queries. Having said that, the real

challenge lies in how to construct a model of the data that is good enough for our purposes. For this,

there are two important considerations that are relevant to the problem that we are addressing:

One, the model should be an accurate description of our data, or at the very least of the quantities

derived from them that are of interest. In this problem these quantities are the counts in the

database of every interesting count query that can be applied to them (i.e. queries with some

minimum support such as 1%, otherwise they can be due to noise and errors in the data). Second,

the model should be simple enough so that using it instead of the actual data to answer a query

should not take an exorbitant amount of time or consume an enormous amount of space, more so

perhaps than using the raw data themselves.

These two issues are conicting, and the problem of balancing them is a central issue in the AI

�eld of machine learning (which concerns itself with the development of models of data): it is

always possible to describe the data (or the derived quantities we are interested in) better, or at

least as well, with increasingly complex models. However, the cost of such models increases with

complexity, in terms of both size to store the model parameters and time that it takes to use it

for computing the relevant quantities (the query counts in our case). In this paper we chose to

use Bayesian networks (BNs). Such models are not the only choice possible, but we picked them

because they are a mature, broadly acceptable and well respected method of modeling data in the

machine learning community. This acceptance and respect comes not only from their practical

e�ectiveness, but also from their sound mathematical foundations in probability theory, as opposed

to a multitude of other ad hoc approaches that exist in the literature. The method of producing

the BNs from data that we use is one that has proven to be scienti�cally acceptable in the machine

1



learning community and good in practice [LB94, Suz96].

The remainder of the paper is organized as follows. In section 2 we briey review the current

literature on DataCubes and the prevalent current implementation, bitmaps, and also of Bayesian

networks. In section 3 we present a simple introduction to Bayesian networks and methods of

inducing their structure from data. In section 4 we describe our approach, and we show some

experimental results in section 5. We conclude with a discussion of relevant issues and directions

of future research in section 6.

2 Related Work

DataCubes were introduced in [GBLP96]. They may be used, in theory, to answer any query

quickly (e.g. constant time for a table-lookup representation). In practice however they have

proven exceedingly di�cult to compute and store because of their inherently exponential nature.

To solve this problem, several approaches have been proposed. [HRU96] suggest materializing

only a subset of views and propose a principled way of selecting which ones to prefer. Their

system computes the query from those views at run time. Cubes containing only cells of some

minimum support are suggested in [BR99] and a coarse-to-�ne traversal is proposed that improves

speed by condensing cells of less that the minimum support. Histogram-based approaches also

exist [IP99], as well as approximations such as histogram compression using the DCT transform

[LKC99] or wavelets [VW99]. Bitmaps are relatively recent method for e�ciently computing counts

from highly compressed bitmapped information about the properties of records in the database.

They are exact techniques. Unlike the DataCube and Bayesian networks, bitmaps do not maintain

counts, but instead perform a pass over several bitmaps at runtime in order to answer an aggregate

query [Joh99, CI99]. Query optimizers for bitmaps also exist [Wu99].

There has not been much work on applying Bayesian networks to databases. An exception is

[SBMU98], where possible causal relations from data are computed for purposes of data mining.

Also, [DM99] used Bayesian networks for lossless data compression applied to relatively small

datasets. Data mining research itself has been mostly focused on discovering association rules from

data [MS98, JA99], which can be viewed of as a special case of Bayesian network induction.

Bayesian network research on the other hand has ourished in the last decade, spurred mostly by

Pearl's seminal book [Pea97]. An updated version is a comprehensive textbook and reference on

Bayesian networks, while a more readable exposition mainly focused on expert systems is [Nea90].

[Hec95] contains a comprehensive overview of approaches to inference and structure induction.

Restricted classes of Bayesian networks such as trees have been solved optimally [CL68] in the

past. However, the general problem is NP-complete [Chi95]. There exist two general approaches:

the hill-climbing approach based on the MDL score [LB94, Suz96], the prevalent, more practical one

which is used here, and the constraint-based approach. Constraint-based algorithms are covered in

[SGS93].
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Table of Symbols

D Main database

N Number of records in main database i.e. jDj

U Set of attributes: fX1; : : : ; Xng

n Number of attributes i.e. jUj

(x1; x2; : : : ; xn)j Tuple j in database, j = 1; : : : ; N

Di Database subset used to construct Bayesian network Bi

m Size of each subset jDij ; i = 1; : : : ; K

K Number of database subsets i.e. dN=me

Bi Bayesian network constructed from Di, equal to hEi; Tii

Ei Set of edges of graph of Bi

Ti Set of probability tables of Bi

3 Bayesian Network Overview

In this section we present some background on Bayesian networks, emphasizing the points that

relate to our current application to decision support systems and data mining. We also discuss

methods to automatically compute their structure from data samples (database records) taken

from a domain of interest. It should be noted that this is a di�cult problem in its own right. In

this paper we draw from years of research for the most practical and widely accepted solution, and

propose a new algorithm to attack the problem in the context of very large databases.

Before we begin, we introduce some notation: we denote variables with capital letters X , Y etc.)

and their values with lower-case letters (x, y etc.). Sets are shown in bold letters (U, D etc.). The

symbols used throughout the paper is shown in the table on page 3.

The attributes in the database are also referred to as \variables" throughout the paper, since they

have a one-to-one correspondence to the variables that appear in the Bayesian network.

3.1 A Brief Introduction to Bayesian Networks

A Bayesian network (BN) is a graphical representation of a probability distribution function over

a set of variables U = fX1; X2; : : : ; Xng. It consists of two parts: (a) the directed network struc-

ture, and (b) the conditional probability tables, one for each variable. The network structure is

constrained to be acyclic. Undirected cycles are allowed i.e. cycles along which not all edges are

pointed in the same way. Such structures represent alternative paths of inuence between variables.

The variables are typically discrete, although BNs with continuous variables are also possible.

As an example, a simple Bayesian network is shown in �gure 1. It depicts three boolean variables,

A (\home alarm goes o�"), B (\burglar enters the house") and C (\earthquake occurs"). In this

paper we will assume that all variables are binary, although this is not necessary and it does not

a�ect the generality of our approach. In the binary case, each conditional probability table records

the probabilities of that variable takes the value \true" for each possible combination of values

(\true" or \false") of its parents. The meaning of the BN in �gure 1 is that A depends on B and

A depends on C but B and C are independent.
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Figure 1: Example Bayesian network and DataCube constructed from a database of 1,000 examples.

The Bayesian network consumes less space in this example because B and C are independent.

In general, a probability distribution can be speci�ed with a set of numbers whose size is exponential

in jUj ; namely the entries in the joint probability distribution table. One can represent such a table

by a completely connected BN in general, without any great bene�t. However, when independencies

exist in the domain, using a BN instead of the full joint probability table results in two major

bene�ts:

1. Storage savings. These may be signi�cant to the point where infeasibly large domains may

be representable, provided that they exhibit a su�cient number of independencies among the

variables of the domain. The savings are typically exponential. Also, conditional indepen-

dencies are very common in practice.

2. Clear and intuitive representation of independencies. Given the graphical represen-

tation of a BN, it is easy to determine the variables on which a quantity of interest depends

on statistically and which are irrelevant and under what conditions.

Edge omissions indicate the existence of conditional independencies among variables in the domain.

As mentioned above, if all variables in the domain statistically depend on all others, then there is

no storage advantage to using a BN, since the storage required for the speci�cation of the network

is exponential in jUj : Fortunately, in practice this is not the norm, and in fact the most interesting

domains for data mining are those that exhibit a considerable number of independencies.

In order to illustrate the storage space savings in this domain, we can look at �gure 1(b). There

we see the complete DataCube of the domain using a database that contains 1,000 examples. The

numbers that have to be stored in the DataCube are 22 essential counters, whereas the numbers

necessary in the corresponding BN are 6 probability entries. We see that for this particular example
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this is certainly not a signi�cant improvement, especially considering the overhead of specifying the

parents of each node and using oating point numbers for the probability entries. However, for large

networks with tens or hundreds of variables, the savings increases exponentially, if the corresponding

network is sparse. For n attributes, the DataCube has to store 2n tables of counts, with each table

having size equal to the product of the cardinalities of the attributes they include (minus one).

No full joint table for hundreds of variables containing either probabilities or counts could ever be

stored for example using today's technology. However, such a domain can be succinctly represented

by its joint probability distribution by taking into account the independencies that exist and using

its Bayesian network instead. Such is the approach that we propose in this paper.

The independencies expressed by a Bayesian network can be easily read from its structure. In

�gure 1 for example, B (\burglar") and C (\earthquake") are independent in the absence of any

knowledge about A (\alarm")1 If they were not, then either edge B ! C or C ! B would have

to have been included in the network. Conditional independence information can be very use-

ful in practice in decision support systems and data mining applications. In the market basket

paradigm for example, a customer that buys mouthwash may have increased probability of also

buying shaving foam. However, the knowledge of the customer's gender may make the probability

of shaving foam purchase very unlikely (e.g. for female customers). In this case, the local net-

work structure that involves the three binary variables Mouthwash; ShavingFoam and Gender

would be Mouthwash Gender ! ShavingFoam: According to this structure, Mouthwash and

ShavingFoam are probabilistically dependent in the absence of any information, but are indepen-

dent given information on the customer's Gender.

3.2 Computation of the Bayesian Network Structure

The discussion of the previous section serves to establish the usefulness of modeling data domains

using BNs. However, BNs are not as widely used as more traditional methods such as bitmaps

for example, especially within the database community. We argue that the main reason for this,

apart from the fact that the database and machine learning communities are mostly separate, lies

in the computational di�culty in inducing models from data. Bayesian network induction from

data is not an exception. However, we argue in this paper that the bene�ts are great, especially

in domains such as decision support systems and data mining where they are a natural �t. In

this paper we present an algorithm for computing and querying BNs constructed from very large

databases that cannot �t in main memory, solving one of the main obstacles in adopting such a

promising approach to many important problems in the database community.

We should note that the main di�culty in modeling with BNs lies in determining the structure of

the graph. Once the graphical structure has been determined, the computation of the conditional

probability tables is simple: a simple counting procedure of the records in the database that

correspond to each entry would achieve a maximum likelihood estimate of the true table entries.

The problem of structure discovery from data is NP-complete in its generality [Chi95]. There exist

several potential solutions to this. One is to use a domain expert to specify the structure, but

1It is less intuitive that this structure implies that B and C become dependent if the value of A is known. Although

this makes a lot of sense, it is not within the scope of this paper and we will not discuss it further. For more details,
please see [SGS93].
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Procedure B = BuildFromMemoryUsingData(D)

1. E  ;; T  ProbabilityTables(E;D); B  hE; T i

2. score � inf

3. do:

(a) maxscore score

(b) for each attribute pair (A;B) do:

(c) for each E0 2 fE [ fA! Bg ; E � fA! Bg ; E � fA! Bg [ fB ! Agg do:

(d) T 0  ProbabilityTables(E0;D)

(e) B0  hE0; T 0i

(f) newscore ScoreFromData(B0;D))

(g) if newscore > score then: B  B0; score newscore

4. while score > maxscore

5. return B

that is a slow and error-prone process, especially in large domains with many variables. In such

domains, like market basket analysis, such a speci�cation by an expert may be impossible or at

least questionable. Therefore there is great bene�t in both speed and reliability in automating

this procedure as much as possible. Currently the most widely accepted method of BN structure

discovery from data is described in [LB94, Suz96]. The method works by using heuristic search

in the space of legal structures (i.e. structures without directed cycles) in an attempt to optimize

an objective function, frequently referred to as score. The score that is frequently used in practice

is the Minimum Description Length (MDL) of the data by the BN. This score is optimized for a

BN that describes the data (predicts their probability) well, without at the same time being overly

complex. We note here that this score is theoretically derived and not arbitrary. The heuristic

search procedure frequently used is greedy hill-climbing, where each step consists of an addition,

deletion or reversal of an edge in the current network that is under consideration during search. The

search procedure can be initialized in a variety of ways, such as an empty, a completely connected

or a randomly created initial network. The direct objective of this method is to produce a network

that describes the data well so that its predictions (probability estimates) of future data, assumed

drawn from the same distribution as the training data, are as accurate as possible.

The algorithm outlined in the previous paragraph is the one we used in this paper. It is implemented

within the BuildFromMemoryUsingData(D) routine that is shown on page 6 [LB94, Suz96].

The procedure ProbabilityTables() is typically a straightforward maximum-likelihood estimation

of the probability entries from the database, which consists of counting the number of database

records that fall into each table entry of each probability table in the BN.

The score that is used and the probability table computation are central points in our approach

since they are the only places in the algorithm that the database D is accessed (see algorithm on
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page 6). We use the MDL score which is de�ned as follows:

ScoreFromData(B;D) = �
NX
i=1

pi ln pi � penalty(B)

pi = Pr((x1; x2; : : : ; xn)i; B;D) =
nY

j=1

Pr(Xj = (xj)i j Paj ;D) (1)

where Paj is the set of parents of variable Xj in B and the conditional probability Pr(Xj = (xj)i j

Paj ;D) is computed by simple counting within the database D. We see that the score has two

components: one that describes how well the network B describes the data (�
P
pi ln pi) and one

that penalizes B for being too large (see discussion in section 1 and [LB94, Suz96] for details). In

section 4.2.1 we will describe how to compute this score, and in particular the �rst term, from a

Bayesian network B that represent the database D instead of the database itself. This results in

major performance bene�ts during the BN generation (preprocessing step), making the di�erence

in the feasibility of the generation process when D does not �t in main memory.

In section 4.2.1 we also show how to implement the ProbabilityTables() procedure without accessing

the database.

3.3 Using the BN for Probability Estimation: BN Inference

After generating a single BN for our database, we can use it to answer count queries. In order to

do that, we need to estimate the probability (expected frequency) of the query using the BN, and

multiply it with the number of records in the database (see section 4.2.2). We do not need to access

the database for this.

The computation of this probability may be involved and in general cannot be simply read o� the

probabilities in the tables of the network. For example consider two variables X and Y that are

very far apart but connected by a directed path. The probability of X = 0 and Y = 1 without

knowledge of the value of any other variable in the network is not a simple function of the entries

in the conditional probability tables of the BN. Rather, it requires a process called probabilistic

inference.2

There exist several algorithms for inference. Two kinds of methods exist: approximate and exact.

Approximate ones [Hen88, FC89, SP89] are sample-based, and generate an arti�cial database of

samples during the process of estimation (the generated samples are discarded immediately and

only the count of those than matched the query is kept). Their main disadvantage is that they

are slow and may need a great number of samples to estimate the probability of the query to a

su�cient degree. For exact inference, the most popular method is the join-tree algorithm [Nea90,

Pea97, HD94]. Its running time depends on the number of variables and the complexity of the BN,

but in practice for typical BNs of a few tens of variables it runs in under a second. This is the

method we use in this paper, contained in the EstimateProbability() procedure that appears in

section 4.2.2.

2Which is a generalization of logical inference|given a BN, it computes the probability of the truth of a compound

predicate (query) rather than a true/false value.
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4 Proposed Method

4.1 Problem Description

The problem we are addressing is the following:

Problem: we are given a database that does not �t in memory and a procedure

BuildFromMemoryUsingData(D) that is able to generate a BN from a memory-

resident database.

Desired Solution: a representation that can �t in memory and a procedure EstimateCount()

that uses it to compute the approximate answer to count queries that may specify an

arbitrary number of attribute values.

The naive DataCube solution is to preprocess and store the counts for all possible such queries

(see example in �gure 1). However, this is infeasible for almost any realistic domain. Compressed

bitmaps are one way of answering such queries exactly. However they may exceed the main memory

size for very large databases. Since their perfect accuracy is not needed in the kind of applications we

are addressing in this paper, it is reasonable to trade-o� a small amount of accuracy in exchange for

a much smaller representation that can �t in main memory, which in turn translates to a signi�cant

bene�t in query performance. Sampling is one approximate technique that is however linear (O(N))

in the database size, as are bitmaps.

In this paper we propose to represent the record counts in the database with a single Bayesian

network created from the entire database D. Our method is constant (O(1)) in the size of the

database. It consists of merging a number of BNs, Bi, each constructed from a partition Di

of the entire database into a single one, B. Each such network is created directly from Di if

it �ts into main memory, or by recursively splitting it, creating a network from each piece, and

combining them in the same fashion that we combine the Bi's into B. Each network Bi represents

the joint probability distribution of partition Di. Since the Bi's are typically far smaller than the

corresponding database partition Di, they can have the bene�t of (1) simultaneously �tting into

main memory and (2) tremendously speeding up the generation of the single network B since no

disk access is required (we do not access the database during merging or at query time).

The answer to a query is computed by using B to compute the probability (support) of the query

and multiplying it with with the number of records in D (denoted as N in the paper).

4.2 Proposed Algorithms

Before we present the algorithms, some notation (also see our table of symbols): the entire database

as a set of records is D, and we denote each partition that we use to construct a Bayesian network

Bi from as Di. Therefore
SN
i=1Di = D and Di

T
Dj = ;, for i 6= j. We want each partition Di to

be large enough so as to be representative, but small enough so that it �ts into the main memory

and satis�es the time constraints for building the corresponding Bayesian network. In the next two

sections we describe the algorithm to merge a number of Bayesian networks, each constructed from

a database partition using the BuildFromMemoryUsingData(Di) procedure, and the algorithm

to compute the count that corresponds to a user query.
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4.2.1 Algorithm for preprocessing the database: building and merging the BNs

The proposed procedure to build Bayesian network B from data stored on disk is as follows.

Procedure (B1; B2; : : : ; BK) = BuildFromDisk(D) :

1. Partition the database D into N equal partitions Di; i = 1; : : : ; K so that

each �ts in main memory. Let m = jDij ; for all i.

2. For each i = 1; : : : ; K do the following:

(a) Read Di into memory.

(b) Build Bayesian net Bi from Di: Bi = BuildFromMemoryUsingData(Di).

3. Merge the networks Bi into a single one: B = RecursivelyMerge(B1; B2; : : : ; BK).

The BuildFromMemoryUsingData() procedure contains the implementation of the algorithm

for �nding the structure of a Bayesian network from data that was described in section 3.2. Its

complexity for producing Bi is O(Nn(n + jEij)), with Ei the set of edges in the output network.

We note that the generation of each Bi can be done in parallel.

Having produced the networks Bi; i = 1; : : : ; K, we combine them into a single one, B, using the

following procedure:

Procedure B = RecursivelyMerge(B1; : : : ; BK) :

If B1; B2; : : : ; BK simultaneously �t in main memory then:

B = BuildFromMemoryUsingBNs(B1; B2; : : : ; BK)

else:
~B1 = RecursivelyMerge(B1; : : : ; BbK

2
c):

~B2 = RecursivelyMerge(BbK
2
c+1; : : :BK):

B = RecursivelyMerge( ~B1; ~B2):

The BuildFromMemoryUsingBNs(B1; : : : ; BK) procedure is the only remaining one that needs to

be de�ned. It is exactly the same as the BuildFromMemoryUsingData(D) one (see section 3.2),

with the exception that the score is now computed from the BNs (ScoreFromBNs() procedure)

that are its arguments instead of the database (ScoreFromData() procedure):

ScoreFromBNs( ~B;B1; : : : ; BK) =
X

t2Tables( ~B)

"
(1=K)

KX
k=1

EstimateProbability(t; Bk)

#
lnPr(t j ~B)

In the above formula the outer sum goes over all table entries t in ~B. Each such table entry

corresponds to a con�guration of variable assignments (for the node and the parents of the node

that it is attached to) and \don't cares" (for the remaining variables in the domain)|see �gure 1
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for example. The inner equally-weighted sum is simply an average over all networksBi; i = 1; : : : ; K

of the probability of that con�guration. Pr(t j ~B) is the probability of con�guration t in ~B, and

can be read directly o� the corresponding table entry of ~B.

The computation of the probability tables by the ProbabilityTables() procedure is also done from

the Bi's without accessing the database; it is making use of the EstimateProbability() procedure:

8t 2 Tables( ~B) Pr(t) = (1=K)
KX
k=1

EstimateProbability(t; Bk)

Since the database access is O(N) during the BuildFromDisk(D) procedure, the number networks

at the base of the recursion is K = N=m = O(N), and accessing a BN does not depend on the

database size, it is easy to make the following observation:

Observation: the entire BuildFromDisk() algorithm is O(N) (linear in the size of

the original database) and thus scalable. Moreover, it is parallelizable, with a straight-

forward parallel implementation.

This observation is supported by the experimental results (section 5, �gure 5).

4.2.2 Algorithm for answering a count query from a Bayesian network

To estimate approximate counts for query Q from the Bayesian network B that is is the output of

the BuildFromDisk() procedure, we use the EstimateCount() procedure, shown below:

Procedure N̂ = EstimateCount(Q;B) :

N̂ = N � EstimateProbability(Q;B):

The procedure EstimateProbability() can be any inference method developed in the Bayesian

network literature. In our implementation we use the join-tree algorithm, which is a well-known

exact algorithm for computing the probability of the query. EstimateProbability() returns the

probability of query Q according to the probability distribution represented by B. Since B is a

representative of the N records contained in D, N �EstimateProbability(Q;B) is an estimate of

the number of records within D for which Q evaluates to \true."

Since the EstimateCount(Q;B) algorithm does not access the database, under our assumptions

we can make the following observation.

Observation: the EstimateCount(Q;B) procedure is O(1) in the size of the database.

This observation is also supported by our experimental results (section 5, �gure 3).
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5 Experimental Results

We experimentally tested our approach on real and synthetic data. The real data consists of

customer information data, obtained from a large anonymous retailer.3 It consists of over 3 million

customer transactions (3,261,809) containing information on whether the customer purchased any

of the 20 most popular items in the store. The data represents one week of activity and its concise

representation occupies around 8 MB. This size coincides with the size of its uncompressed bitmap.

Although this database is not large in size, we use it in order to obtain performance results on the

compression ratio we can obtain on real-world data.

In order to assess the scalability of our system, we needed larger sets that were not available at

the time of our evaluation. For this reason we used synthetic data for our scalability study. The

synthetic data we used were produced by a program available from IBM's QUEST site.4 The

generation program produces a speci�ed number of randomly generated association rules involving

a number of attributes (also randomly distributed around a user-speci�ed mean), and then generates

market-basket data whose statistical behavior conforms to those rules. We produced a database of

approximately 100 thousand and 1, 10, 100 and 196 million records from a store inventory of 5,000

items (products) using 10,000 customer patterns having an average length of 4. (Each customer

pattern corresponds to an \association rule.") The average transaction length was 10 items. As in

our real database, we used the 20 most frequently used items.

From both real and synthetic databases we then constructed a number of Bayesian networks from

that data in order to model their joint probability distribution. We split the data randomly in a

number of subsets Di, each containing at most m = 100; 000 records. We then used each subset

Di to construct the corresponding Bayesian network Bi.

Our experiments evaluate our approach with respect to the following dimensions:

1. Query count error.

2. Space to store models and e�ective compression of the database.

3. Time to answer a query.

4. Build time and scalability.

5. Visualization of the dependencies in the database.

Because the number of possible queries grows exponentially with the number of variables that are

allowed to be involved in it, we were not able to perform all possible queries of any sizeable length.

Instead we generated 10,000 random queries of length up to 5 variables and used them to assess

the query error. Each query may test for the presence or absence of any particular item in a

transaction, from the 20 most frequently purchased items. For example one such query may be

\what is the number of transactions in the database in which a customer purchased milk and orange

juice but not bread?"

3For con�dentiality reasons we cannot reveal the name the retailer nor the products involved.
4
http://www.almaden.ibm.com/cs/quest/
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Database Records Bitmap size Compression ratios (before:after)

(bytes) Gzip Bzip2 Sampling NetCube

Quest 100,000 250,000 7:1 7.8:1 72:1 581:1 (430 bytes)

1,000,000 2,500,000 7.1:1 7.9:1 77:1 5814:1 (430 bytes)

10,000,000 25,000,000 7.1:1 7.9:1 79:1 48170:1 (519 bytes)

100,000,000 250,000,000 7.1:1 8:1 79:1 414594:1 (603 bytes)

196,896,433 492,241,100 7.1:1 8:1 80:1 610721:1 (806 bytes)

Anonymous retailer 3,261,809 8,154,540 3.8:1 3.8:1 37:1 1889:1 (4317 bytes)

Table 1: Comparison of compression ratios for various databases used for the experiments. The

�rst rows correspond to the Quest-generated databases while the last one corresponds to real data

obtained from an anonymous retailer. The sampling �gures refer to 10% sampling and after bzip2

compression. For the NetCube, the trend of compression ratios that are increasing with database

size is due to increasing bene�ts from using an approximately �xed-sized probabilistic model of a

domain in place of data drawn from it.

Compression

In this set of experiments we compare the size of our representation to that of compressed bitmaps

and sampling by 10%, also compressed. Compressing the bitmaps of each of our databases produced

approximate 7:1 compression ratio for the synthetic Quest databases and 3.8:1 for the real-world

data. Compressing the sampled database predictably produces linear compression with respect

to compressed bitmaps. In stark contrast, the NetCube approach typically produced compression

ratios of 500:1 or more for synthetic data and 1800:1 or more for real data. The compression

ratios and BN sizes are shown in table 1 and are also plotted in �gure 2. The price for such a

high compression performance is the fact that it is lossy. As we mentioned above however, if the

application can tolerate errors of the order of 5%, then it may be the method of choice for the

data analyst, since sampling by 10% achieves much lower compression ratios with similar error;

moreover, sampling is linear in the size of the database while NetCube queries are approximately

constant.

Note that the network produced from real data occupies only 4 KB. If are allowed to make the

conservative assumption that the network from any given week is 10 times this one (40 KB), and

the assumption that doubling the database size doubles the size of the resulting network (for which

our experiments have no support of, and in fact indicate that it might not grow at that rate but

a much smaller one), then our approach makes it possible to �t 20 billion transactions in the

memory of a regular workstation with 256 MB of main memory, corresponding tomore than 100

years of transactions at this rate, e�ectively spanning the lifetime of most businesses.

Query time

We used a typical workstation with 256 MB of physical memory for our query time experiments.

Running our set of queries on the bitmaps we noticed a slowdown for the larger Quest databases

whose bitmap cannot �t into main memory. This happens because the bitmap system had to use
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Figure 2: Comparison of the size of the compressed database size using bitmaps, sampling by 10%

and NetCubes. The di�erence between gzip and bzip2 is small (see table 1), so only the best of

the two (bzip2) is used here.

part of the virtual memory system which resides on the disk. An important observation we can

make here is that although bitmap compression will temporarily alleviate this problem, a database

of more than 7 times our largest one would again force the bitmap method into the same thrashing

behavior (note the compression ratio 7:1 for bitmaps in table 1). Such a problematic database size

would not be atypical in today's real-world problems.

Even without the thrashing problem of bitmaps however, we see that the query times for sampling

increase (linearly) with database size, as expected. This also shows in �gure 3. In contrast, using

a set of BNs to answer queries is approximately constant. That proves that our method can be an

invaluable tool that remains practical for extremely large problems.

Query error

In �gure 4 we show our assessment of the query error using our set of 10,000 random queries

containing up to 5 variables. Because relative error becomes arti�cially large for queries of very

little support even when the count di�erence is not very large, we used queries that had at least 1%

support or more. Apart from arti�cially weighing the error rate, queries of very small support are

arguably \uninteresting" and can also be also due to spurious factors. Such treatment is consistent

with other approaches in the literature (e.g. [BR99]).

In �gure 4 we can see that the average relative error of NetCubes is very small, well under 5%.

Those queries that happen to have larger than 5% error are typically those with small support, in

the range of 1%. We also see that only sampling at 10% has average error levels comparable to

NetCubes. That is the reason why in our evaluation we display �gures for 10% sampling only.
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Build time

As mentioned above, we generate a BN for each database piece of 100,000 records, i.e. m = 100; 000

in our implementation. As we can see in �gure 5, this makes our method linear on the database

size, and thus scalable. Each database piece can be processed in parallel, and the merging of the

BNs can also be done in parallel across the same recursion depth. Thus our method is parallelizable

in a straightforward manner. Parallelization over a cluster of workstations scales linearly, making

the generation of a database of 200 million transactions a matter of hours on a modest cluster of

10 workstations, as shown in �gure 5.

We note here that our attempts to create a single BN from the entire database using the straightfor-

ward BuildFromMemoryUsingData() algorithm that is reported in the literature (and displayed

on page 6) were unsuccessful for very large problems of size 100 million records or more; the al-

gorithm did not terminate while producing the network after 4 days and had to be

manually aborted. This clearly underscores the usefulness and indeed the absolute necessity of

using our recursive combination procedure (BuildFromDisk() procedure) for any kind of practical

application that involves very large databases.

Visualization

In �gure 6 we show a BN produced from real data corresponding to a week of activity of the 20

most frequently purchased items at a large anonymous retailer. The advantage of the graphical
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Figure 6: Bayesian network produced from real data obtained from a large anonymous retailer.

The database contains 3,261,809 records corresponding to a week of customer transactions on the

20 most frequently purchased items. The network occupies 4317 bytes on disk. For con�dentiality

reasons, we have anonymized the names of the products that are displayed in the graph.

representation of the BN that our approach generates is that it can be used to clearly depict

variables that are the most inuential to the ones that the analyst might be examining. Moreover,

the conditional probability tables will give our analyst the exact nature and strength of these

inuences. Therefore our approach �ts very well in the data mining procedure and can save the

analyst large amounts of time that would be otherwise spent on exploration, drill-down analysis

etc. of the customer database.

6 Discussion and Extensions

In this paper we use only binary variables. However, the concepts and implementation easily

extend to multi-valued discrete data easily. NetCubes can also handle continuous variables after

bucketization e.g. \salary" could become a discrete variable taking values \low" (� 10; 000),

\medium" (� 10; 000 and � 100; 000) or \high" (� 100; 000).

A subject of future research is the extension of the current system to the estimation of additional

aggregate functions of the DataCube operator, in addition to counts. For example, knowing the

probability distribution of a multi-valued attribute enables us to quickly estimate its average value.

Other quantities such the minimum and maximum values can be read directly from representation

of the Bayesian network.

The approach presented here lends itself easily to non-stationary distributions. Assume for example

that new data are incorporated in the database periodically, e.g. a supermarket may append

transaction data to the database at the end of each day. A data analyst may be interested in

certain quantities on a per-day basis. In that case the solution is easy: we can compute one Bayesian

network for each particular day only. That network can answer queries for that day. More often it
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query error.

is more useful to examine the behavior over broader time periods. The same approach will work

for that purpose: a query concerning several days, not necessarily consecutive, can be made to the

corresponding (single-day) networks covering the time period of interest. The resulting counts can

then be simply summed to obtain a count estimate for the entire time period.

7 Conclusions|Contributions

In this paper we propose a paradigm shift in the approximate computation of count DataCubes: we

propose to use a model of the data instead of the data themselves. Our approach, NetCube, uses

the proven technology of Bayesian networks to obtain the key advantage of large storage savings

in situations where only approximate answers are needed. This makes feasible the computation of

DataCubes for databases that were previously problematic using state-of-the-art methods such as

bitmaps.

A size-error comparison of our NetCube method versus competing methods is shown in �gure 7.

In summary, the advantages of the method are:

� Small space: the resulting BN takes up a tiny fraction of the space that the original data that

are queried upon. We produced greater than 1800:1 compression ratios on real data.

� Scalability : we can handle arbitrarily large databases; the method's execution time scales

linearly with the size of the database. Moreover, it is parallelizable with a straightforward

parallel implementation.
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� Fast query time: the method can answer arbitrary queries in a short time (typically under a

second). The query time is constant with respect to the database size.

� Good accuracy : we obtained less than 5% average relative error on a large number of queries

of minimum support of 1% or more.

� Suitability to data mining : the representation that is used by the algorithm, namely Bayesian

networks, are an excellent method for visually eliciting the most relevant causes of a quantity

of interest and are a natural method to support data mining.
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