
Track-aligned Extents:

Matching Access Patterns to Disk Drive Characteristics

Jiri Schindler, John Linwood GriÆn, Christopher R. Lumb,

Gregory R. Ganger

April 2001

CMU-CS-01-119

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Track-aligned extents (traxtents) utilize disk-speci�c knowledge to match access patterns to the strengths of modern

disks. By allocating and accessing related data on disk track boundaries, a system can avoid most rotational latency

and track crossing overheads. Avoiding these overheads can increase disk access eÆciency by up to 50% for mid-sized

requests (100{500 KB). This paper describes traxtents, algorithms for detecting track boundaries, and use of traxtents

in �le systems and video servers. For large �le workloads, a modi�ed version of FreeBSD's FFS implementation

reduces application run times by 20% compared to the original version. A video server using traxtent-based requests

can support 56% more concurrent streams at the same startup latency and bu�er space. For LFS, 44% lower overall

write cost for track-sized segments can be achieved.

We thank the members and companies of the Parallel Data Consortium (at the time of this writing: EMC Corporation, Hewlett-
Packard Labs, Hitachi, IBM Corporation, Intel Corporation, LSI Logic, Lucent Technologies, Network Appliances, PANASAS, Platys
Communications, Seagate Technology, Snap Appliances, Sun Microsystems, Veritas Software Corporation) for their insights and support.
This work is partially supported by the National Science Foundation via CMU's Data Storage Systems Center. John GriÆn is supported
in part by a National Science Foundation Graduate Fellowship.

Keywords: data layout, disk characterization, disk eÆciency, �le systems, track-aligned access

1 Introduction

Rotating media has come full circle, so to speak. The �rst uses of disks in the 1950s ignored the e�ects of

geometry in the interest of getting a working system. Later, algorithms were developed that paid attention

to disk geometry in order to improve disk eÆciency. These algorithms were often hard-coded and hardware-

speci�c, making them fragile across generations of hardware. To address this, a layer of abstraction was

standardized between operating systems and disks, virtualizing disk storage as a at array of �xed-sized

blocks. Unfortunately, this abstraction hides too much information, making the OS's task of maximizing

disk eÆciency more diÆcult than necessary.

File systems and databases attempt to mitigate the ever-present disk performance problem by aggressively

clustering on-disk data and issuing fewer, larger disk requests. This is done with only a vague understanding

of disk characteristics, focusing on the notion that bigger requests are better because they amortize posi-

tioning delays over more data transfer. Although this notion is generally correct, there are performance and

complexity costs associated with making requests larger and larger. For video servers, ever-larger request

sizes result in an increase in both bu�er space requirements and stream initiation latency [6, 7, 14, 17, 24].

Log-structured �le systems (LFS) incur a greater cleaning overhead as segment size increases [5, 18, 27].

Even for general �le system operation, allocation of very large sequential regions competes with space man-

agement robustness [19], and very large accesses may put deep prefetching ahead of foreground requests. In

some circumstances, useful large requests are not even possible; for example, many �les are too small. These

examples all indicate that achieving higher disk eÆciency with smaller request sizes would be valuable.

This paper describes and analyzes track-aligned extents (traxtents), extents that are aligned and sized

so as to match the corresponding disk track size. By exploiting a small amount of disk-speci�c knowledge

in this way, a system can signi�cantly increase the eÆciency of mid-to-large requests (100 KB and up).

Traxtent-aware access yields up to 50% higher disk eÆciency. This improvement stems from two main

sources. First, track-aligned access minimizes the number of track switch delays, which have not improved

much over the years and are now signi�cant (0.6{1.1 ms) relative to other delays. Second, full-track access

eliminates rotational latency (3 ms per request on average at 10,000 RPM) for disk drives whose �rmware

supports zero-latency access. Point A of Figure 1 shows random track-aligned accesses yielding an eÆciency

within 82% of the maximum possible, whereas unaligned accesses only achieve 56% of the best-case for the

same request size.

Using traxtents requires three main system software changes. First, the track boundaries must be iden-

ti�ed. This task is more diÆcult than might be expected, because of the zoned recording and media defect

management common in modern disk drives. Second, disk space allocation and placement algorithms must

be changed to situate data in traxtents. Third, request-generating routines must be changed to utilize trax-

tents as the unit of access. Since di�erent traxtents will have di�erent sizes due to zone boundaries and

media defects, this variability must be handled by the system software. Supporting this variability at the

system level is also suÆcient to avoid hardware-speci�c dependencies. This paper discusses these system-

level changes and how they are handled in a prototype implementation of a traxtent-aware FFS �le system

in FreeBSD 4.0. This implementation includes new algorithms for identifying track boundaries.

We evaluate track-based access with both detailed disk measurements and overall system performance

measurements. The former shows increased disk eÆciency, reduced access time variance, and system require-

ments that must be satis�ed to achieve the highest eÆciency. The latter show promising improvements in

several situations. For example, when accessing two large �les concurrently, the traxtent-aware FFS yields

20% higher performance compared to current defaults. In exploring video server workloads, we observe an

ability to support either 56% more concurrent streams at the same startup latency or a 5� reduction in

startup latency and bu�er space for the maximum number of streams supported by the video server. Finally,

we compute 44% lower overall write cost for track-sized segments in LFS.

The remainder of this paper is organized as follows. Section 2 motivates track-based access by describing

the technology drivers and expected bene�ts in more detail. Section 3 describes system changes required

for traxtents. Section 4 describes our implementation of traxtents in FreeBSD. Section 5 evaluates traxtents

under a variety of circumstances. Section 6 discusses related work. Section 7 summarizes this paper's

contributions.

1

Quantum Atlas 10K II Efficiency vs. I/O Size

0

0.2

0.4

0.6

0.8

1

0 256 512 768 1024 1280 1536 1792 2048
I/O size [KB]

D
is

k
ef

fic
ie

nc
y

Track-aligned I/O

A

B

Unaligned I/O

maximum streaming efficiency

Figure 1: Measured advantage of track-aligned access over unaligned access. This graph plots disk

eÆciency as a function of I/O size. We de�ne disk eÆciency as a fraction of total access time (which includes seek

and rotational latency) spent reading or writing data to the media. The access time was measured on a random read

workload to a Quantum Atlas 10K II disk's �rst zone of size 264 KB. The maximum achievable streaming eÆciency

is less than 1 because no data is transferred during a head switch. Point A highlights the higher eÆciency of track-

aligned access (0.73, or 82% of the maximum possible) over unaligned access for a track-sized request. Point B shows

where unaligned I/O eÆciency catches up to the aligned eÆciency at Point A. The drop-o�s in the track-aligned curve

occurs whenever the aligned access crosses a track boundary. Note that the highest eÆciency is achieved whenever

I/O size is a multiple of the track size.

2 Track-based Disk Access

In determining what data to read and write and when, system software attempts to maximize overall perfor-

mance in the face of two competing pressures. On the one hand, the underlying disk technology pushes for

larger request sizes in order to maximize disk eÆciency. Speci�cally, time-consuming mechanical delays can

be amortized by transferring large amounts of data between each repositioning of the disk head. For example,

Point B of Figure 1 shows that reading or writing 1 MB at a time results in a 75% disk eÆciency for normal

(track-unaligned) access. On the other hand, complexity and other resource limitations can impose a cost

on the use of very large requests. For example, bu�er space limitations and irregular application behavior

may prevent the higher disk eÆciency of larger requests from translating into improved overall performance.

This section discusses the system pressures that push for smaller request sizes, the disk characteristics that

make track-based accesses particularly eÆcient, and the types of applications that will bene�t most from

track-based disk access.

2.1 Limitations on request size

System software designers would like to be able to always use the large disk requests that maximize eÆciency.

Unfortunately, in practice, resource limitations and imperfect information about future accesses make this

diÆcult. Pressure against ever-larger requests occurs for four di�erent reasons: (1) responsiveness, (2) limited

bu�er space, (3) irregular access patterns, and (4) storage space management.

Responsiveness. Although larger requests increase disk eÆciency, they do so at the expense of higher

latency. This trade-o� between eÆciency and responsiveness is a recurring theme in computer systems,

and it is particularly steep for disk systems. The latency increase can manifest itself in several di�erent

ways. At the local level, the non-preemptive nature of disk requests combined with the long access times

of large requests (35{50 ms for 1 MB requests) result in substantial I/O wait times for small, synchronous

requests. This problem has been noted for both FFS and LFS [5, 31]. At the global level, grouping

substantial quantities of data into large disk writes usually requires heavy use of write-back caching. Although

application performance is usually decoupled from the eventual write-back, application changes are not

persistent until the disk writes complete. Making matters worse, the amount of data that must be delayed and

bu�ered to achieve large enough writes continues to grow. As another example, many video servers schedule

2

fetches of video segments in carefully-determined rounds of disk requests. Using larger disk requests increases

the time for each round, which increases the time required to start streaming a new video. Section 5.5

quanti�es the start-up latency required for modern disks.

Bu�er Space. Although memory sizes continue to grow, they remain �nite. Larger disk requests

stress memory resources in two ways. For reads, larger disk requests are usually created by fetching more

data farther in advance of the actual need for it; this prefetched data must be bu�ered until it is needed.

For writes, larger disk requests are usually created by holding more data in write-back cache until enough

contiguous data is dirty; this dirty data must be bu�ered until it is written to disk. The persistence problem

discussed above can be addressed with non-volatile RAM bu�ers, but the bu�er space issue will remain.

Irregular Access Patterns. Large disk requests are most easily generated when applications use

regular access patterns and large �les. Although sequential full-�le access is relatively common [23, 1, 38],

most data objects are much smaller than the disk request sizes needed to achieve good disk eÆciency.

For example, most �les are well below 32 KB in size in UNIX-like systems [12, 33] and below 64 KB

in Microsoft Windows systems [38, 10]. Directories and �le attribute structures are almost always much

smaller. To achieve suÆciently large disk requests in such environments, access patterns across data objects

must be predicted at on-disk layout time. Although approaches to grouping small data objects have been

explored [27, 12, 15, 26, 11], all are based on imperfect heuristics, and thus they rarely group things perfectly.

Even though disk eÆciency is higher, misgrouped data objects result in wasted disk bandwidth and bu�er

memory, since some fetched objects will go unused. Further, as the target request sizes grow, identifying

suÆciently strong inter-relationships becomes more diÆcult.

Storage Space Management. Large disk requests are only possible when closely related data is

collocated on the disk. Achieving this collocation requires that on-disk placement algorithms be able to �nd

large regions of free space when needed. Also, when grouping multiple data objects together, growth of

individual data objects must be accommodated. All of these needs must be met with little or no information

about the sequence of future storage allocation and deallocation operations. Collectively, these facts create a

complex storage management problem. Systems can address this problem with combinations of pre-allocation

heuristics [4, 16], on-line reallocation actions [27, 34, 35], and idle-time reorganization [18, 2]. There is no

straightforward solution, and the diÆculty grows with the target disk request size.

2.2 Disk characteristics

Modern storage protocols, such as SCSI and IDE/ATA, expose storage capacity as a linear array of �xed-sized

blocks (Figure 2(a)). By building atop this abstraction, OS software need not concern itself with complex

device-speci�c details, and code can be reused across the large set of storage devices that use these interfaces

(e.g., disk drives and disk arrays). Likewise, by exposing only this abstract interface, storage device vendors

are free to modify and enhance their internal implementations. Behind this interface, the storage device

must translate the logical block numbers (LBNs) to physical storage locations. Figure 2(b) illustrates this

translation for a disk drive, wherein LBNs are assigned sequentially on each track before moving to the next.

Disk drive advances over the past decade have conspired to make the track a sweet-spot for disk eÆciency,

yielding the 50% increase at Point A of Figure 1. This section describes these advances.

Head Switch. A head switch occurs when a single request accesses a sequence of LBNs whose on-disk

locations span two di�erent tracks. This head switch consists of turning on the electronics for the appropriate

read/write head and adjusting its position. The position adjustment is necessary because the second track,

which usually lies on a di�erent surface, may not be perfectly aligned with the �rst one. Therefore, the disk

has to read servo information to determine where the head is located and then shift the set of arms to center

the head above the second track. The same actions are needed for single-track seeks on the same surface. In

the example of Figure 2(b), head switches occur between logical blocks 199 and 200, 399 and 400, and 598

and 599.

Even compared to other disk characteristics, head switch time has improved only a little in the past

decade. While disk rotation speeds have improved by a factor of 3� and average seek times by a factor of

2.5�, head switch times have decreased by only 20{40% (see Table 1). At 0.6{1.1 ms, the head switch time

now takes about 1/5 of a revolution for a 15,000 RPM disk. These trends have increased the signi�cance of

head switch time.

Naturally, not all requests span track boundaries. The probability of a head switch, Phs, depends on

3

199 200 MAX0

(a) System's view of storage.

ro
ta

tio
n

560
0

5
8

0
X

X

581

2
0

21

22

2
0

0
39

9
19

559
199

561
1

739
380

738
379

740
381

57
9

75
8

(b) Mapping of LBNs onto physical sectors.

Figure 2: Standard system view of disk storage and its mapping onto physical disk sectors. (a)

illustrates the linear sequence of logical blocks, often 512 bytes, that the standard disk protocols expose. (b) shows

one example mapping of those logical block numbers (LBNs) onto the disk media. The depicted disk drive has 200

sectors per track, two media surfaces, and track skew of 20 sectors. Logical blocks are assigned to the outer track

of the �rst surface, the outer track of the second surface, the second track of the �rst surface, and so on. The track

skew accounts for the head switch delay and ensures optimal streaming bandwidth. The picture also shows a defect

between the sectors with LBN 580 and 581 which has been handled by slipping. Therefore, the �rst LBN on the

following track is 599 instead of 600.

Head Avg. Sectors

Disk Year RPM Switch Seek per Track

HP C2247 1992 5400 1 ms 10 ms 96{56

Quantum Viking 1997 7200 1 ms 8.0 ms 216{126

IBM Ultrastar 18 ES 1998 7200 1.1 ms 7.6 ms 390{247

IBM Ultrastar 18LZX 1999 10000 0.8 ms 5.9 ms 382{195

Quantum Atlas 10K 1999 10000 0.8 ms 5.0 ms 334{224

Seagate Cheetah X15 2000 15000 0.8 ms 3.9 ms 386{286

Quantum Atlas 10K II 2000 10000 0.6 ms 4.7 ms 528{353

Table 1: Representative disk characteristics. Note the relatively small change in the head switch penalty

compared with other disk improvements.

4

Average Rotational Latency for a 10K RPM disk

0

1

2

3

4

5

6

0% 25% 50% 75% 100%
I/O size [% of track size]

R
ot

at
io

na
ll

at
en

cy
[m

s]

Zero-latency Disk
Ordinary Disk

Figure 3: Average rotational latency for ordinary and zero-latency disks as a function of request size.

The request size is expressed as a percentage of the track size. The rotational latency is shown in absolute terms for

a 10,000 RPM disk.

workload and disk characteristics. For a request of S sectors and a track size of N sectors, Phs = (S� 1)=N ,

assuming that the requested locations are uncorrelated with track boundaries. With S approachingN , almost

every request will involve a head switch, which is why we refer to conventional systems as \track-unaligned"

even though they are only track-unaware. In this situation (S = N), track-aligned access improves the

response time of most requests by the 0.6{1.1 ms head switch time. Even for smaller accesses, head switches

can be common without track-alignment. For example, with 64 KB requests (S = 128) and an average track

size of 192 KB (N = 384), a head switch occurs for every third access.

Zero-latency Access. The second modern disk feature that pushes for track-based access is zero-latency

access, also known as immediate access or access-on-arrival. When a disk wants to read S contiguous sectors,

the simplest approach is to position the head (by a combination of seek and rotational latency) to the �rst

sector and read the S sectors in ascending LBN order. With zero-latency access support, a disk can read

the S sectors from the media into its bu�ers in any order. In the best case of reading exactly one track, the

head can start reading data as soon as the seek is completed; no rotational latency is required in this case

because all sectors on the track are needed. The S sectors are read into an intermediate bu�er, assembled

in ascending LBN order, and sent to the host. The same concept applies to writes, except that data must

be delivered from the host to the disk's bu�ers before being written onto the media.

As an example of zero-latency access on the disk from Figure 2(b), consider a read request to logical

blocks 200{399. First, the head is moved to the track containing these blocks. Suppose that after the seek,

the disk head is positioned above the sector containing LBN 380. A zero-latency disk can start reading

immediately the contiguous range 380{399. Since all of the desired logical blocks are mapped onto a single

track, the head keeps reading past the sector with LBN 399 and reads the remaining sectors with LBN

200{379. Thus, the entire track is read in only one rotation even though the head arrived in the \middle"

of the track.

The expected rotational latency for a zero-latency disk decreases as the request size, S, increases as shown

in Figure 3. An ordinary disk, on the other hand, has an expected rotational latency of (N � 1)=2N , or

approximately 1/2 revolution, regardless of the request size. Therefore, a request for all N sectors on a track

requires only one revolution after the seek for a zero-latency disk, and anywhere from one to two (average

of 1.5) otherwise.

2.3 Putting it all together

For requests around the track size (100{500 KB), the potential bene�t of track-based access is substantial.

A track-unaligned access for N media sectors involves four delays: seek, rotational latency, N sectors worth

of media transfer, and head switch. A N -sector track-aligned request eliminates the rotational latency and

head switch delays. This reduces access times for modern disks by 3{4 ms out of 9{12 ms, resulting in a

50% increase in eÆciency.

Of course, the real bene�t provided by track-based access depends on the workload. For example, a

5

workload of random small requests, as characterizes transaction processing, will see minimal improvement

because request sizes are too small. At the other end of the spectrum, applications involving large sequential

I/O activity will also see little bene�t, because positioning costs can be amortized over large transfers. Track-

based access provides most bene�t to applications with medium-sized I/Os that have imperfect locality. In

Section 5, we explore several examples of such applications, including large �le accesses that share the disk

with other activity, video servers, and log-structured �le systems.

3 Traxtent-aware System Design

Track-based disk access is possible with relatively minor changes to existing systems. This section discusses

practical design considerations involved with these changes.

3.1 Extracting track boundaries

In order to use track boundary information, systems must �rst obtain a list of where those boundaries occur.

Speci�cally, systems must know the range of LBNs that map onto each track. Under ideal circumstances,

the disk would provide this information directly. However, since modern SCSI and IDE/ATA disks do not,

the track boundaries must be determined experimentally.

Extracting track boundaries is made diÆcult by the internal space management algorithms employed by

disk �rmware. In particular, three aspects complicate the basic LBN-to-physical mapping pattern. First,

because outer tracks have greater circumference than inner tracks, modern disks record more sectors on the

outer tracks. Typically, the set of tracks is partitioned into 8{20 subsets (referred to as zones or bands) with

a di�erent number of sectors per track in each zone. Second, because some amount of defective media is

expected, some fraction of the disk's sectors are set aside as spare space for defect management. This spare

space disrupts the pattern even when there are no defects. Worse, there are a wide array of spare space

schemes (e.g., spare sectors per track, spare sectors per cylinder, spare tracks per zone, spare space at the

end of the disk, etc.); we have observed over 10 distinct schemes in di�erent disk makes and models. Third,

when defects exist, the default LBN-to-physical mapping is complicated by the disk's avoidance strategy for

the defective regions. Defect avoidance is handled in one of two ways: slipping, wherein the LBN-to-physical

mapping is modi�ed to simply skip the defective sector, and remapping, wherein the LBN that would be

located in a defective sector is instead located elsewhere leaving other mappings unchanged. Slipping is more

eÆcient and more common, but it a�ects the mappings of subsequent LBNs.

Although track detection can be complex, this extraction need be performed only once. Track boundaries

only change in use if new defects \grow" on the disk, which is rare after the �rst 48 hours of operation [25].

3.2 Allocation and access

Extent-based systems such as NTFS [22] and XFS [36] allocate disk space to �les by specifying ranges of

LBNs (extents) associated with each �le. Block-based �le systems such as Ext2 [4] and FFS [19] group LBNs

into �xed-size allocation units (blocks) typically 4 or 8 KB in size. Extent-based systems lend themselves

naturally to track-based alignment of data: extent ranges during allocation can be chosen on the basis of

track boundaries. Block-based systems can approximate track-sized extents by placing sequential runs of

blocks such that they never span track boundaries. This wastes some space when track sizes are not evenly

divisible by the block size. However, this space is usually less than 5% of total storage space and could be

reclaimed by the system for storing inodes, superblocks, or fragmented blocks.

Once the system determines that a large �le is being written, it may be useful to reserve (preallocate)

entire traxtents even when writing less than a traxtent worth of data. It may also be useful to reserve

traxtents for use by �les that tend to be accessed as a group [12, 26] such that many small �les can be read

or written with a single track-sized request. When the �le system becomes aged and fragmented it may be

bene�cial to support relocation of small �les and fragments to free track-sized extents, which would be a

process much like cleaning in a log-structured �le system [27]. A similar relocation could be done for large

�les to retro�t existing disk partitions for traxtent-optimized access.

6

After allocation routines are modi�ed to situate data on track boundaries, system software must also be

extended to generate traxtent requests whenever possible. Usually, this will involve extending or clipping

prefetch and write-back requests based on track boundaries.

Our experimentation has uncovered an additional design consideration: current systems will only realize

the full bene�t of traxtent-based requests when utilizing command queueing at the disk. Although zero-

latency disks can access LBNs from the media in any order, the current SCSI and IDE/ATA protocols only

allow for in-order delivery of data to/from the host. As a result, bus transfer overheads hide some of the

bene�t of zero-latency access. By having multiple requests outstanding at the disk, the next request's seek

can be overlapped with the current request's bus transfer, yielding the full disk eÆciency bene�ts shown in

Figure 1. Fortunately, most modern disks and most current OSes support command queueing at the disk.

4 Implementation

We have developed a prototype implementation of a traxtent-aware �le system in FreeBSD. This imple-

mentation identi�es track boundaries and modi�es the FreeBSD FFS implementation to take advantage

of this information. This section describes our algorithms for detecting track boundaries and details our

modi�cations to FFS.

4.1 Detecting track boundaries

We have implemented two approaches to detecting track boundaries: a general approach applicable to any

disk interface supporting a read command and a specialized approach for SCSI disks.

4.1.1 General approach

Our extraction algorithm locates track boundaries by identifying discontinuities in access eÆciency. Recall

from Figure 1 that disk eÆciency for track-aligned requests increases linearly with the number of sectors

being transferred until a head switch occurs. Starting from sector with LBN 0 of the disk (S = 0), our

algorithm issues successive requests of increasing size, each starting at sector S (i.e., read 1 sector starting

at S, read 2 sectors starting at S, etc.). Eventually an N -sector read returns in more time than a linear

model suggests, which identi�es sector S+N as the start of a new track. The process begins anew by setting

S = S +N and repeating the algorithm.

The method described above is clearly suboptimal; our actual implementation uses a binary search

algorithm to �nd N . In addition, once a track size is determined, the common case of each subsequent track

being the same size is quickly veri�ed for the last found value of N . This veri�cation checks if a discontinuity

between S +N � 1 and S +N occurs. If so, we set S = S +N and repeat the veri�cation, otherwise we set

N = 1 and start anew from location S. This veri�cation thus results in performing full extraction only on

�rst tracks of a new zone or tracks containing defects. Using this technique, the track boundaries of a 9 GB

disk (the Atlas 10K) are extracted in four hours. Talagala et al. describe a much quicker algorithm that

extracts approximate geometry information using just the read command [37]; however, for our purposes the

exact track boundaries must be identi�ed.

A problem with using read requests to detect track boundaries is the sector prefetching and caching

performed by disk �rmware. To obviate the e�ects of �rmware caching, we issue 100 parallel extraction

operations to widespread locations such that the cache is ushed each time we return to block S. An

alternative approach would be to use write operations; however, this is undesirable because of the destructive

nature of writes and the fact that some disks implement delayed writes internally.

4.1.2 SCSI-speci�c approach

The SCSI command set supports query operations that can help with track boundary detection. Worthington

et al. describe how these operations can be used to determine LBN-to-physical mappings [40]. Building

upon their basic mechanisms, we have implemented an automated disk drive characterization tool called

DIXtrac [29]. This tool includes a �ve-step algorithm that exploits the regularity of geometry and layout

7

characteristics to eÆciently and automatically extract the complete LBN-to-physical mappings in less than

one minute (fewer than 30,000 LBN translations), independent of disk capacity:

1. Use the Read Capacity command to determine the highest LBN, and determine the number of cylin-

ders and surfaces by mapping random and targeted LBNs to physical locations using the Send/Receive
Diagnostic command.

2. Use the Read Defect List command to obtain a list of all media defect locations.

3. Determine where spare sectors are located on each track and cylinder, and detect any other space

reserved by the �rmware. This is done by an expert-system-like process of combining the results of

several queries, including whether or not (a) each track in a cylinder has the same number of LBN-

holding sectors; (b) one cylinder within a set has fewer sectors than can be explained by the defect

list; and (c) the last cylinder in a zone has too few sectors.

4. Determine zone boundaries and the number of sectors per track in each zone by counting the sectors

on a defect-free, spare-free track in each zone.

5. Identify the remapping mechanism used for each defective sector. This is determined by back-translating

the LBNs returned in step 2.

These steps are described in more detail in [29]. DIXtrac has been successfully used on 11 disk models

from 4 di�erent manufacturers.

4.2 Traxtent support in FreeBSD

This section reviews the basic operation of FreeBSD FFS [19] and describes our changes to implement

traxtent-aware allocation and access in FreeBSD.

4.2.1 FreeBSD FFS overview

FreeBSD assigns three identifying block numbers to bu�ered disk data (Figure 4). The lblkno represents

the o�set within a �le; that is, the bu�er containing the �rst byte of �le data is identi�ed by lblkno 0. Each

lblkno is associated with one blkno (physical block number), which is an abstract representation of the disk

media used by the OS to simplify space management. Each blkno directly maps to a range of contiguous

disk sector numbers (LBNs), which are the actual addresses presented to the disk drive during an access.

In our experiments, the minimum disk request size is one physical block, which is 8 KB (sixteen contiguous

LBNs). In this section, \block" refers to a physical block.

FFS clusters large sequential groups of disk sectors into �xed-size block groups (\cylinder groups"). Each

block group contains a small amount of summary information|inodes, free block map, etc.|followed by a

large contiguous array of data blocks. Block group size, block allocation and media access characteristics

were once based on the underlying disk's physical geometry. Although this geometric dependence is no longer

true, block groups are still used in their original form because they localize related data (e.g., �les in the

same directory) and their inodes, resulting in more eÆcient disk access. The block groups created for our

experiments are 32 MB in size.

FFS uses the clustered allocation and access algorithms described by McVoy & Kleiman [20]. When

newly created data are committed to disk, blocks are allocated to a �le by selecting the closest \cluster" of

free blocks (relative to the last block committed) large enough to store all N blocks of bu�ered data. In the

common case (when the block group is sparsely populated with minimal fragmentation) the cluster selected

contains the N blocks immediately following the last block committed. To ensure fair local allocation among

multiple �les, the system allows only half of the blocks in a block group to be allocated to a single �le before

switching to a new block group.

FFS implements a history-based readahead (prefetching) algorithm when reading large �les sequentially.

The system maintains a \sequential count" of the last run of sequentially accessed blocks (if the last four

accesses were for blocks 17, 20, 21, and 22, the sequential count is 3). When the number of cached readahead

blocks drops below 32, FFS issues a new readahead of length l beginning with the �rst noncached block,

8

10 11 12

101 102 103 104 105

16421626 1658 1674 1690 1706

file offset

physical blocks

disk sectors
LBN

blkno

lblkno

track boundary

Figure 4: Mapping system-level blocks to disk sectors. Physical block 101 maps directly to disk sectors

1626{1641. Block 103 is an excluded block (see Section 4.2.2) because it spans the disk track boundary between LBNs

1669{1670.

where l is the lowest of (a) the sequential count, (b) the number of contiguously allocated blocks remaining

in the current cluster, or (c) 32 blocks1.

4.2.2 FreeBSD FFS modi�cations

Excluded blocks and traxtent allocation. We introduce the concept of the excluded block, high-

lighted in Figure 4. Our modi�ed cluster allocation algorithm ignores excluded blocks when considering

layout of large �le data: whenever the preferred block (the next sequential block) is excluded, we instead

allocate the �rst block of the closest available traxtent. When possible, mid-size �les are allocated such that

they �t within a single traxtent. On average, one out of every twenty blocks of the Quantum Atlas 10K is

excluded under our modi�ed FFS.

Traxtent-sized access. No fundamental changes are necessary in the FFS clustered readahead algo-

rithm. FFS properly identi�es runs of blocks between excluded blocks as clusters and accesses them with a

single disk request. We eliminate the sequential access counter to prevent multiple partial accesses to a single

traxtent. We handle the special case where there is no excluded block between traxtents by ensuring that

no readahead request goes beyond a track boundary. At a low level, unmodi�ed FreeBSD already supports

command queuing at the device and attempts to have at least one outstanding request for each active data

stream.

Traxtent data structures. When the �le system is created, track boundaries are stored on disk. At

mount time, they are read into an extended FreeBSD mount structure. We chose the mount structure because

it is available everywhere traxtent information is needed. This approach also allows the use of traxtents to

be controlled at mount time.

5 Evaluating Traxtents

We examine the performance bene�ts of track-based access at two levels. We begin by evaluating the disk

in isolation, �nding a 50% improvement in disk eÆciency and a reduction in response time variance. We

then quantify system-level performance gains, noting a 20% reduction in run time for large �le operations,

44% lower write cost in LFS, and a 56% increase in the number of concurrent streams serviceable on a video

server.

5.1 Experimental setup

Most experiments described in this section were performed on two disks that support zero-latency access

(Quantum Atlas 10K and Quantum Atlas 10K II) and two disks that do not implement it (Seagate Chee-

tah X15 and IBM Ultrastar 18 ES). The disks were attached to a 550 MHz Pentium III-based PC. The

132 blocks is a representative value for several system variables, and in practice can be smaller on systems with limited
resources or larger on systems with custom kernels.

9

Atlas 10K II was attached via an Adaptec Ultra160 Wide SCSI adapter, the Atlas 10K and Ultrastar were

attached via an 80 MB/s Ultra2 Wide SCSI adapter, and the Cheetah via a Qlogic FibreChannel adapter.

We also examined workloads with the DiskSim disk simulator [13] con�gured to model the respective disks.

Examining these disks in simulation enables us to quantify the individual components of the overall response

time, such as seek and bus transfer time.

5.2 Basic performance

Two workloads, onereq and tworeq, are used to evaluate basic track-aligned performance. Each workload

consists of 5000 locality-free requests within the �rst zone of the disk. The di�erence is that onereq keeps

only one outstanding request at the disk, whereas tworeq ensures one request is always queued at the disk

in addition to the one being processed.

We compare the eÆciency of both workloads by measuring the average per-request completion time. We

de�ne the completion time as the reciprocal of request throughput (I/Os per second). Therefore, higher disk

eÆciency will result in a shorter average completion time, all else being equal. We introduce completion

time as a metric because it allows us to identify component delays more easily.

For onereq requests, completion time equals disk response time, as observed by the device driver, because

the next request is not issued until the current one is complete. As usual, disk response time measures the

elapsed time from when a request is sent to the disk to when completion is reported. For onereq requests, this

time includes some fraction when the read/write head is idle because the only outstanding request is waiting

for a bus transfer to complete. For tworeq requests, the completion time includes only media access delays,

since bus activity for any one request is overlapped with positioning and media access for another. The

components of completion times for the onereq and tworeq workloads are shown graphically in Figure 6(a).

5.2.1 Read performance

Figure 5 shows the improvement given by track-aligned accesses on the zero-latency Atlas 10K II. Completion

times for track-aligned accesses in onereq and tworeq decrease by 18% and 32% respectively, which correspond

to increases of 22% and 47% in eÆciency. The tworeq eÆciency increase exceeds that of onereq because tworeq

overlaps the bus transfer of the previous request with the media transfer of the current request.

Because of the complete overlap of bus and media transfers, the completion time for a track-aligned

track-sized request in the tworeq workload is 8.3 ms (calculated as shown in Figure 6(a)). Subtracting 2.2 ms

average seek time from the completion time yields 6.1 ms. This observed value corresponds to a single

revolution of 6 ms plus 0.1 ms of overhead and con�rms that track-aligned accesses to zero-latency disks

allow us to read a full track in a single revolution with no rotational latency.

The command queueing of tworeq is needed in current systems to address the in-order bus delivery

requirement. That is, even though zero-latency disks can read data out of order, they can only send data over

the bus in ascending LBN order. This results in only a 3% overlap, on average, between the media transfer

and bus transfer for the track-aligned access bar in Figure 6(b). The overlap would be nearly complete if

out-of-order bus delivery were used instead, as shown by the bottom bar. Out-of-order bus delivery would

improve the eÆciency of onereq to nearly that of tworeq while relaxing the queueing requirement (shown as

the \zero bus transfer" curve in Figure 5). Although the SCSI speci�cation allows out-of-order bus delivery

using the Modify Data Pointer command, the authors are not aware of any disk vendors that support

this operation.

5.2.2 Write performance

The improvement of track-aligned accesses over unaligned ones is larger for writes. For the onereq workload

on the Atlas 10K II, the completion time of track-sized writes is 10.0 ms for track-aligned access and 13.9 ms

for unaligned access, which is a reduction of 28%. For tworeq, the reduction in completion time is 34%.

These correspond to eÆciency increases of 39% and 51% respectively.

This larger improvement, relative to reads, occurs because the seek and bus transfer are completely

overlapped. The disk can initiate the seek as soon as the write command reaches it without waiting for the

data. While the seek is in progress, the data is transferred to the disk and bu�ered. Since the average seek

10

Atlas10K II Disk Drive

0

3

6

9

12

15

0% 20% 40% 60% 80% 100%
I/O size [% of track size]

C
om

pl
et

io
n

tim
e

[m
s]

onereq Unaligned I/O

onereq Track-aligned I/O

tworeq Unaligned I/O

tworeq Track-aligned I/O

zero bus transfer, simulation

Figure 5: Average completion time for track-aligned and unaligned reads as a function of I/O size for

Quantum Atlas 10K II. The dashed and solid lines show the measured response time for 5000 random track-aligned

and unaligned reads to the disk's �rst zone for the onereq and tworeq workloads. There are 528 sectors per track

in this zone. The thin dotted line represents the onereq workload replayed on a simulator con�gured with zero bus

transfer time; note that it approximates tworeq without having to ensure queued requests at the disk.

mxferseek bxfermxferseek bxfer

 end
T

2
 endT
1

completion time

onereq

 issue
T

2
 issue
T

1
 start

T
2

 start
T

1 = =

mxferseek

bxferbxfer

mxferseek

bxfer

 end
T

2
 endT
1

completion time

tworeq

 issue
T

2
 issue
T

3
 start

T
2

 start
T

3
 start

T
1

(a) Computing completion time. The completion
time of a tworeq request is obtained by subtracting
T
end

1
from T

end

2
which are measured as the end times

for requests 1 and 2. For onereq, the completion time
is T end

2
�T

issue

2
. T issue is the time when the request is

issued to the disk and T
start is the time the request is

actually processed at the disk. Notice that for tworeq,
T
issue does not correspond to T start because of queue-

ing at the disk.

media transfer

42 6 8 12 1410

time [ms]

2.2 ms

6 ms

2 msseek Normal
access

Track-aligned
access

Track-aligned access
out-of-order delivery

r. lat. & h. switch & mxfer

bxfer

seek

media transferseek

9.2 ms

bxfer

bxfer

(b) The breakdown of measured response time

for a zero-latency disk. The normal access rep-
resents the average response time for track-unaligned
access to zero-latency disk and includes seek, rota-
tional latency, and head switch. In the track-aligned
access case, the in-order bus transfer (labeled bxfer)
does not overlap media transfer (mxfer). Using out-
of-order bus delivery, nearly a complete overlap of bus
transfer is possible.

Figure 6: Elimination of bus transfer time from request response time.

11

Atlas 10K II Disk - Std. Deviation

0

3

6

9

12

15

0% 20% 40% 60% 80% 100%
I/O size [% of track size]

R
es

po
ns

e
tim

e
[m

s]
Track-aligned I/O
Unaligned I/O

Figure 7: Response time and its standard deviation for track-aligned and unaligned disk access. The

dotted lines represent the average response time while the envelope of solid lines is the response time � one standard

deviation. The data shown in the graph was obtained by running the onereq workload on a simulator con�gured with

zero bus transfer to eliminate the response time variance due to in-order bus delivery.

for the onereq workload is 2.2 ms and the data transfer takes about 2 ms, all of the data arrives at the disk

before the seek is complete and the zero-latency write begins.

5.2.3 Importance of zero-latency access

The completion time reduction for the other zero-latency disk (the Atlas 10K) is 16% and 32% for track-

sized requests in the onereq and tworeq workloads, corresponding to 19% and 47% higher eÆciencies. The

di�erence between this disk and the Atlas 10K II is due to the slightly larger average seek of 2.4 ms.

Completion time does not drop signi�cantly for track-aligned accesses on disks that do not support

zero-latency access: The Ultrastar's completion time is reduced by only 6% while the Cheetah shows 8%

reduction. These 6{8% reductions in completion times are due solely to the elimination of the head switch

penalty in track-aligned access|the rotational latencies of 4 ms (Ultrastar) and 2 ms (Cheetah) are still

incurred.

5.2.4 Response time variance

Track-aligned access can signi�cantly lower the standard deviation, �, of response time as seen in Figure 7.

As the request size increases from one sector to the track size, �aligned decreases from 1.8 ms to 0.4 ms,

whereas �unaligned decreases from 2.0 ms to 1.5 ms. The standard deviation of the seeks in this workload is

0.4 ms, indicating that the response time variance for aligned access is due entirely to the seeks.

Lowering variance is important for improving the predictability of response time in real time applications.

Lowering the overall variance allows applications to make tighter bounds on the worst-case disk access time

and therefore schedule work more eÆciently.

5.3 FFS experiments

Three simple experiments compare our prototype traxtent-aware FFS performance to that of unmodi�ed

FFS. Each test is performed on a freshly-booted system with a clean disk partition.

The �rst experiment is an I/O-bound linear scan through a 4 GB �le. As expected, the traxtent-aware

system runs 5% slower than unmodi�ed FFS (199.8 s vs. 189.6 s). This is because FFS is optimized for large

sequential single-�le access and reads at the maximum disk streaming rate, whereas the traxtent system

inserts an excluded block one out of every twenty blocks (5%).

The second experiment consists of the diff application comparing two large �les. Because diff inter-

leaves fetches from the two �les, we expect to see a large speedup from improved disk eÆciency. For 512 MB

�les, the traxtent-aware system completes 19% faster than unmodi�ed FFS. A more detailed analysis shows

that traxtent FFS performs 6724 I/Os (average size of 160 KB) in 56.6 s while the unmodi�ed FFS performs

12

only 4108 I/Os (average size of 256 KB) but requires 69.7 s. To compare these numbers, we normalize the

accesses by subtracting out the media transfer time and bus transfer time and �nd that the unmodi�ed

FFS incurs 6.9 ms of overhead per request (including seek, rotational latency, and track switch time) while

the traxtent implementation incurs only 2.2 ms of overhead per request. The 19% improvement in overall

completion time corresponds to an improvement in disk eÆciency of 23%, which matches exactly with the

predicted value from the Atlas 10K model for this request pattern.

The third experiment veri�es write performance by copying a 1 GB �le to another �le in the same

directory. FFS commits dirty bu�ers as soon as a complete cluster is created, which results in two interleaved

request streams to the disk. This test shows a 20% reduction in run time for the traxtent-aware system

(124.9 s vs. 156.9 s).

5.4 Log-structured File System

The log-structured �le system (LFS) [27] was designed to reduce the cost of disk writes. Towards this end,

it remaps all new versions of data into large, contiguous regions called segments. Each segment is written to

disk with a single I/O operation, amortizing the positioning cost over one large write. A signi�cant challenge

for LFS is ensuring that empty segments are always available for new data. LFS answers this challenge with

an internal defragmentation operation called cleaning. Cleaning of a previously written segment involves

identifying the subset of \live" blocks, reading them into memory, and writing them into a new segment.

Live blocks are those that have not been overwritten or deleted by later operations.

There is a performance trade-o� between write eÆciency and the cost of cleaning. Larger segments o�er

higher write eÆciency but incur larger cleaning cost since more data has to be transferred for cleaning [18,

31]. Additionally, the transfer of large segments hurts the performance of small synchronous reads [5, 18].

Therefore, the goal is to �nd a segment size that is optimal for write eÆciency, cleaning cost, and small

synchronous I/O performance.

To evaluate the bene�t of using track-based access for LFS segments, we use the overall write cost (OWC)

metric described by Matthews et al. [18], which is a re�nement of the write cost metric de�ned for the Sprite

implementation of LFS [27]. It expresses the cost of writes in the �le system assuming all data reads are

serviced from the system cache. The OWC metric is de�ned as the product of write cost and disk transfer

ineÆciency:

OWC = WriteCost � TransferIneÆciency

=
Nnew

written
+Nclean

read
+Nclean

written

Ndata

written

�

T actual

xfer

T ideal

xfer

where N is the number of segments written due to new data or read and written due to segment cleaning

and T is the time for one segment transfer. WriteCost depends on the workload (i.e., how much new data is

written and how much old data is cleaned) but is independent of disk characteristics. TransferIneÆciencyI ,

on the other hand, depends only on disk characteristics. Therefore, we can use the values for WriteCost

given by Matthews et al. for their Auspex server trace [18] and determine the OWC for current disks based

on measured transfer ineÆciency. Based on data in Figure 1, the TransferIneÆciency is the ratio between

the maximum utilization and the achieved utilization.

Figure 8 shows that the OWC is smaller when track-aligned disk access is used and the cost is min-

imized when the segment size matches the track size. Unlike our use of empirical data for determining

TransferIneÆciency , Matthews et al. estimate its value as

TransferIneÆciency = Tpos �
BWdisk

Ssegment

+ 1

where Ssegment is the size of a segment (in bytes) and Tpos is the average positioning time (i.e., seek and

rotational latency). To show that our results are in agreement with their �ndings, we computed OWC for

the Atlas 10K II based on its speci�cations and plotted it in Figure 8 (labeled \5.2 ms*41 MB/s") along

with the OWC values for the track-aligned and unaligned I/O. Because the empirical values were obtained

from the disk's �rst zone, we used the average seek of 2.2 ms for the �rst zone, rotational latency of 3 ms

and peak bandwidth of 41 MB/s instead of the average values of 4.7 ms seek and 32 MB/s bandwidth. As

expected, the model is a good match for the unaligned case.

13

LFS Overall Write Cost (Auspex Workload)

1

2

3

32 64 128 256 512 1024 2048 4MB
segment size [KB]

O
ve

ra
ll

W
rit

e
C

os
t

Atlas 10K II track-aligned I/O
Atlas 10K II unaligned I/O
5.2 ms*41 MB/s (Atlas 10K II)

Figure 8: LFS overall write cost for the Auspex trace as a function of segment size. The two solid lines

represent track-aligned and unaligned disk access to Atlas 10K II's �rst zone. The dotted line is the overall write

cost for the Atlas 10K II disk computed with the transfer ineÆciency model as described in Matthews et al. [18].

5.4.1 Variable segment size

As shown in Figure 8, the lowest write cost is achieved when the size of a segment matches the size of a

track. Unfortunately, as discussed in Section 3, tracks have di�erent numbers of sectors depending on their

location on the disk and any defect management changes. An LFS must therefore allow for variable segment

sizes in order to match segment boundaries to track boundaries.

A segment usage table records whether each segment is allocated or free. In the SpriteLFS implementa-

tion [27], this table is kept as an in-memory kernel structure and is stored in the checkpoint region of the

�le system. The BSD-LFS implementation [30] stores this table in a special �le called the IFILE. Because

of the frequent use of this �le, the segment usage table is almost always in the �le system's bu�er cache.

Supporting variable-sized segments is relatively straightforward. This can be done by augmenting the

per-segment information in the segment usage table with the segment starting location (the LBN) and

the segment length. If segment starting locations must be block-aligned and/or segment lengths must be

multiples of the block size, the segment can be pruned as is done in the traxtent-aware FFS implementation

described in Section 4.

Using variable-sized segments also requires minimal changes. During the creation of the �le system, each

segment's starting location and length is set according to the track boundary information. When a new

segment is allocated in memory, its size is looked up in the segment usage table. When the segment becomes

full, it is written to the disk at the starting location given in the segment usage table. The procedures for

reading segments and for cleaning are similar.

5.5 Video servers

A video server is designed to serve large numbers of video streams to clients at guaranteed rates. To

accomplish this, the server fetches a time interval of video (i.e., 0.5 s) for all streams. This time interval is

called a round. Then, while those streams are transferred to the clients from the server's bu�er, the server

schedules the next round of requests. Since the per-stream disk access time is much less than the round

time, many simultaneous streams can be supported by a single disk.

The round time in a video server is determined by several factors: the video bit rate (which determines

the individual I/O size), the number of streams that can be supported by all disks (determined by disk access

time and bandwidth), and the amount of available bu�er space. The bu�er space required at the server is

2 � IOsizedisk �V , where V is the number of simultaneous video streams. Round time R also determines

the startup latency of a newly admitted stream. Assuming the video server stripes data across D disks, the

worst-case startup latency is R � (D + 1) [24, 8, 28, 32]. In practice, round time is chosen to meet system

goals given a trade-o� between startup latency and the maximum number of supportable streams.

14

5.5.1 Model

We evaluate the bene�ts of track-aligned access in video servers with a model that, for a given round time,

determines the maximum number of streams supported by the video server. Our evaluation is done for

a video server with 10 Quantum Atlas 10K II disks and follows the evaluation of the disk striping model

presented for the RIO video server [28].

Given a speci�c round time, the number of streams per disk Ndisk is computed as

Ndisk =
R

Tstream

where Tstream is the service time per stream. This per-stream service time will limit the maximum number

of streams that a single disk can serve and is computed as

Tstream =
IOsizedisk

BWdisk � EÆciency
disk

where IOsizedisk is the product of round time and video bit rate and EÆciency
disk

is a function of I/O sizes

as illustrated in Figure 1. Since track-aligned access increases EÆciency
disk

, more streams can be serviced

by the disk.

5.5.2 Soft real-time

Several video server projects, such as Tiger [3] and RIO [28], have designed video servers using soft real-time

guarantees. These systems provide guarantees that, with a certain probability, a request will not miss its

deadline. This allows a relaxation on the assumed worst-case seek and rotational latency and results in

higher bandwidth utilization for both track-aligned and unaligned access.

To evaluate our model system, we measured the performance of an Atlas 10K II disk. We issued a �xed

number of random track-sized requests simultaneously and measured how long they took to complete. This

measurement was repeated 10,000 times for each number of simultaneous requests from 10 to 80. 80 is the

maximum number of simultaneous 4 Mb/s streams that can be supported by a disk, given a 41 MB/s peak

bandwidth of the disk.

From the PDF of the measured response times, we obtained the round time that would meet 99.99% of

the deadlines for the 4 Mb/s rate. Given a 0.5 s round time (which translates to a worst-case startup latency

of 5.5 s for the 10-disk striped array), the track-aligned system is able to support up to 70 streams per disk.

In contrast, the unaligned system is only able to support 45 streams per disk. Therefore, the track-aligned

access can support 56% more streams at this minimal startup latency.

To support more than 70 and 45 streams per disk for the track-aligned and unaligned systems, the I/O

size must increase to meet the real-time requirements of the video streams. This increase in I/O size, however

causes an increase in the round time, which in turn increases the startup latency as shown in Figure 9. At 70

streams per disk, the startup latency for the track-aligned system is 4� smaller than for the track-unaligned

system.

5.5.3 Hard real-time

Although many video servers implement soft real-time requirements, there are applications that require hard

real-time deadlines. In their admission control algorithms, systems must assume the worst-case response time

to ensure that no deadline is missed. In computing the worst-case response time, one assumes the worst-case

seek, transfer time, and rotational latency. Both the track-aligned and unaligned access systems have the

same values for the worst-case seek2. However, the worst-case rotational latency for track-unaligned access

is one revolution, whereas track-based access su�ers no rotational latency. The worst-case transfer time will

be similar except that the track-unaligned system must assume a head switch will occur. Using the model

2The worst-case seek time for a single stream is much smaller than a full strobe seek (seek from one edge of the disk to the
other) and improves with increasing number of streams serviced by the disk. This is because a C-LOOK scheduler (either inside
or outside the disk) will order all requests to the disk in one round to minimize the seek distance. Therefore, the worst-case
seek time charged to a stream is equal to the longest possible seek route taken to serve all streams in one full sweep of the head
divided by the number of streams.

15

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Track-aligned I/O

Unaligned I/O

10-disk Video Server Performance

Streams per Disk

S
ta

rt
up

La
te

nc
y

[s
]

Figure 9: Worst-case startup latency of a video stream for track-aligned and unaligned accesses as a

function of streams per disk. The startup latency is shown for a 10-disk array. Thus, given that the maximum

number of simultaneous streams supported by a single disk is 80, the 10-disk array can support up to 800 streams.

The 10-disk array evaluation of startup latency follows the evaluation of RIO video server [28].

from Section 5.5.1 with a 4 Mb/s bit rate and an I/O size of 264 KB, the track-unaligned system supports

36 streams per disk whereas the track-based system supports up to 67 streams. This translates into 45%

and 83% disk eÆciency, respectively. With an I/O size of 528 KB, unaligned access yields 52 streams vs. 75

for track-based system. Unaligned I/O size must exceed 2.5 MB and incur a startup latency of 60.5 s to

achieve the same eÆciency as the track-aligned system.

6 Additional related work

Much related work has been discussed throughout this paper. Some other notable related work has promoted

zone-based allocation and detailed disk-speci�c request generation for small requests.

The Tiger video server [3] allocated primary copies of videos to the early portions of disks' LBN space in

order to exploit the higher bandwidth of outer zones. Secondary copies were allocated to the lower bandwidth

zones. Van Meter [21] suggested that there was general bene�t in changing �le systems to understand that

di�erent regions of the disk provide di�erent bandwidths.

By utilizing even more detailed disk information, several researchers have shown substantial decreases in

small request response times [9, 39, 41]. For small writes, these systems detect the position of the head and

re-map small writes to the nearest free block to minimize the positioning costs [9, 39]. For small reads, the

SR-Array [41] determines the head position when the read request is to be serviced and reads the closest of

several replicas.

7 Summary

This paper presents a case for track-aligned extents. It demonstrates feasibility with a working prototype,

and it demonstrates value with direct measurements. At the low level, traxtent accesses are shown to increase

disk eÆciency by approximately 50% compared to track-unaligned accesses of the same size. At the system

level, traxtents are shown to increase application eÆciency by 25{56% for large �le workloads, video servers,

and write-bound log-structured �le systems.

References

[1] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirri�, and John K. Ousterhout. Measurements

of a distributed �le system. ACM Symposium on Operating System Principles (Asilomar, Paci�c Grove, CA).

Published as Operating Systems Review, 25(5):198{212, 13{16 October 1991.

16

[2] Trevor Blackwell, Je�rey Harris, and Margo Seltzer. Heuristic cleaning algorithms in log-structured �le systems.

Annual USENIX Technical Conference (New Orleans, LA, 16{20 January 1995), pages 277{288. USENIX

Association, 1995.

[3] William J. Bolosky, Joseph S. Barrera, Richard P. Draves, Robert P. Fitzgerald, Garth A. Gibson, Michael B.

Jones, Steven P. Levi, Nathan P. Myhrvold, and Richard F. Rashid. The Tiger video �leserver. Technical Report

MSR{TR{96{09. Microsoft Corporation, April 1996.

[4] Daniel P. Bovet and Marco Cesati. Understanding the Linux kernel. O'Reilly & Associates, 2001.

[5] Scott Carson and Sanjeev Setia. Optimal write batch size in log-structured �le systems. USENIX Workshop on

File Systems (Ann Arbor, MI), pages 79{91, 21{22 May 1992.

[6] Edward Chang and Hector Garcia-Molina. Reducing initial latency in a multimedia storage system. International

Workshop on Multi-Media Database Management Systems (Blue Mountain Lake, NY), pages 2{11, 14{16 August

1996.

[7] Edward Chang and Hector Garcia-Molina. E�ective memory use in a media server. VLDB (Athens, Greece.),

pages 496{505, 26{29 August 1997.

[8] Ann L. Chervenak, David A. Patterson, and Randy H. Katz. Choosing the best storage system for video service.

ACM Multimedia 95 (San Francisco, CA USA), pages 109{119, 5{9 November 1995.

[9] Tzi-Cker Chiueh and Lan Huang. Trail: track-based logging in Stony Brook Linux. Technical report ECSL

TR-68. SUNY Stony Brook, December 1999.

[10] John R. Douceur and William J. Bolosky. A large-scale study of �le-system contents. ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems (Alanta, Georgia), pages 59{70, 1{4 May 1999.

[11] Eran Gabber and Elizabeth Shriver. Lets put NetApp and CacheFlow out of business. SIGOPS European

Workshop (Kolding, Denmark), pages 85{90, 17{20 Sept. 2000.

[12] Gregory R. Ganger and M. Frans Kaashoek. Embedded inodes and explicit grouping: exploiting disk bandwidth

for small �les. Annual USENIX Technical Conference (Anaheim, CA), pages 1{17, January 1997.

[13] Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt. The DiskSim Simulation Environment Version 1.0

Reference Manual, CSE{TR{358{98. Department of Computer Science and Engineering, University of Michigan,

February 1998.

[14] Shahram Ghandeharizadeh, Seon Ho Kim, and Cyrus Shahabi. On con�guring a single disk continuous media

server. Technical report 94{590. USC., 8 November 1994.

[15] Sanjay Ghemawat. The modi�ed object bu�er: a storage management technique for object-oriented databases.

PhD thesis. Massachusetts Institute of Technology, Cambridge, MA, 7 September 1995.

[16] Dominic Giampaolo. Practical �le system design with the Be �le system. Morgan Kaufmann, 1998.

[17] Kimberly Keeton and Randy H. Katz. The evaluations of video layout strategies on a high-bandwidth �le server.

4th International Workshop on Network and Operating System Support for Digital Audio and Video (Lancaster,

England, UK.), pages 228{229, 3{5 November 1993.

[18] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y. Wang, and Thomas E. Anderson.

Improving the performance of log-structured �le systems with adaptive methods. ACM Symposium on Operating

System Principles (Saint-Malo, France, 5{8 October 1997). Published as Operating Systems Review, 31(5):238{

252. ACM, 1997.

[19] Marshall K. McKusick, William N. Joy, Samuel J. Le�er, and Robert S. Fabry. A fast �le system for UNIX.

ACM Transactions on Computer Systems, 2(3):181{197, August 1984.

[20] L. W. McVoy and S. R. Kleiman. Extent-like performance from a UNIX �le system. Winter USENIX Technical

Conference (Dallas, TX), pages 33{43, 21{25 January 1991.

[21] Rodney Van Meter. Observing the e�ects of multi-zone disks. Annual USENIX Technical Conference (Anaheim,

CA), pages 19{30, 6{10 January 1997.

17

[22] Rajeev Nagar. Windows NT File System Internals: A Developer's Guide. O'Reilly & Associates, 1997.

[23] John K. Ousterhout, Herv�e Da Costa, David Harrison, John A. Kunze, Mike Kupfer, and James G. Thompson.

A trace-driven analysis of the UNIX 4.2 BSD �le system. ACM Symposium on Operating System Principles

(Orcas Island, WA). Published as Operating Systems Review, 19(5):15{24, December 1985.

[24] Banu Ozden, Rajeev Rastogi, and Avi Silberschatz. Disk striping in video server environments. International

Conference on Multimedia Computing and Systems (Hiroshima, Japan), pages 580{589, 17{23 June 1996.

[25] Quantum Corporation. Quantum Atlas 10K 9.1/18.2/36.4 GB SCSI product manual, Document number 81-

119313-05, August 1999.

[26] ReiserFS. http://devlinux.com/projects/reiserfs/.

[27] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured �le system.

ACM Transactions on Computer Systems, 10(1):26{52, February 1992.

[28] Jose Renato Santos, Richard R. Muntz, and Berthier Ribeiro-Neto. Comparing random data allocation and

data striping in multimedia servers. ACM SIGMETRICS 2000 (Santa Clara, CA). Published as Performance

Evaluation Review, 28(1):44{55, 17{21 June 2000.

[29] Jiri Schindler and Gregory R. Ganger. Automated disk drive characterization. Technical report CMU{CS{99{176.

Carnegie-Mellon University, Pittsburgh, PA, December 1999.

[30] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin. An implementation of a log-structured

�le system for UNIX. Winter USENIX Technical Conference (San Diego, CA, 25{29 January 1993), pages

307{326, January 1993.

[31] Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline Chang, Sara McMains, and Venkata Padmanab-

han. File system logging versus clustering: a performance comparison. Annual USENIX Technical Conference

(New Orleans), pages 249{264. Usenix Association, 16{20 January 1995.

[32] Prashant J. Shenoy and Harrick M. Vin. EÆcient striping techniques for multimedia �le servers. 7th International

Workshop on Network and Operating System Support for Digital Audio and Video (St. Louis, MO), pages 25{36,

19{21 May 1997.

[33] Tracy F. Sienknecht, Rich J. Friedrich, Joe J. Martinka, and Peter M. Friedenbach. The implications of dis-

tributed data in a commercial environment on the design of hierarchical storage management. Performance

Evaluation, 20(1{3):3{25, May 1994.

[34] Keith Smith and Margo Seltzer. File layout and �le system performance. Technical report TR-35-94. Harvard

University, December 1994.

[35] Keith A. Smith and Margo Seltzer. A comparison of FFS disk allocation policies. USENIX.96 (San Diego, CA.,

22{26 January 1996), pages 15{25. USENIX Assoc., 1996.

[36] Adam Sweeney. Scalability in the XFS �le system. USENIX. (San Diego, California), pages 1{14, 22{26 January

1996.

[37] Nisha Talagala, Remzi H. Dusseau, and David Patterson. Microbenchmark-based extraction of local and global

disk characteristics. Technical report CSD{99{1063. University of California at Berkeley, 13 June 2000.

[38] Werner Vogels. File system usage in Windows NT 4.0. ACM Symposium on Operating System Principles

(Kiawah Island Resort, Charleston, South Carolina, 12{15 December 1999). Published as Operating System

Review, 33(5):93{109. ACM, December 1999.

[39] Randolph Y. Wang, David A. Patterson, and Thomas E. Anderson. Virtual log based �le systems for a pro-

grammable disk. Symposium on Operating Systems Design and Implementation (New Orleans, LA, 22{25 Febru-

ary 1999), pages 29{43. ACM, February 1999.

[40] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes. On-line extraction of SCSI disk

drive parameters. ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems (Ottawa,

Canada), pages 146{156, May 1995.

[41] Xiang Yu, Benjamin Gum, Yuqun Chen, Randolph Y. Wang, Kai Li, Arvind Krishnamurthy, and Thomas E.

Anderson. Trading capacity for performance in a disk array. Symposium on Operating Systems Design and

Implementation (San Diego, CA, 23{25 October 2000), pages 243{258. USENIX Association, 2000.

18

