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Abstract

The purpose of this work is to introduce and experimentally validate a framework,
based on statistical machine learning, for handling a broad range of problems in information
retrieval (IR).

Probably the most important single component of this framework is a parametric sta-
tistical model of word relatedness. A longstanding problem in IR has been to develop a
mathematically principled model for document processing which acknowledges that one se-
quence of words may be closely related to another even if the pair have few (or no) words
in common. The fact that a document contains the word automobile, for example, sug-
gests that it may be relevant to the queries Where can I find information on motor
vehicles? and Tell me about car transmissions, even though the word automobile
itself appears nowhere in these queries. Also, a document containing the words plumbing,
caulk, paint, gutters might best be summarized as common house repairs, even if

none of the three words in this candidate summary ever appeared in the document.

Until now, the word-relatedness problem has typically been addressed with techniques
like automatic query expansion [75], an often successful though ad hoc technique which
artificially injects new, related words into a document for the purpose of ensuring that

related documents have some lexical overlap.

In the past few years have emerged a number of novel probabilistic approaches to infor-
mation processing—including the language modeling approach to document ranking sug-
gested first by Ponte and Croft [67], the non-extractive summarization work of Mittal and
Witbrock [87], and the Hidden Markov Model-based ranking of Miller et al. [61]. This the-
sis advances that body of work by proposing a principled, general probabilistic framework
which naturally accounts for word-relatedness issues, using techniques from statistical ma-
chine learning such as the Expectation-Maximization (EM) algorithm [24]. Applying this
new framework to the problem of ranking documents by relevancy to a query, for instance,
we discover a model that contains a version of the Ponte and Miller models as a special
case, but surpasses these in its ability to recognize the relevance of a document to a query

even when the two have minimal lexical overlap.

Historically, information retrieval has been a field of inquiry driven largely by empirical
considerations. After all, whether system A was constructed from a more sound theoretical
framework than system B is of no concern to the system’s end users. This thesis honors
the strong engineering flavor of the field by evaluating the proposed algorithms in many
different settings and on datasets from many different domains. The result of this analysis
is an empirical validation of the notion that one can devise useful real-world information

processing systems built from statistical machine learning techniques.
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Chapter 1

Introduction

1.1 Overview

The purpose of this document is to substantiate the following assertion: statistical machine
learning represents a principled, viable framework upon which to build high-performance
information processing systems. To prove this claim, the following chapters describe the
theoretical underpinnings, system architecture and empirical performance of prototype sys-

tems that handle three core problems in information retrieval.

The first problem, taken up in Chapter 3, is to assess the relevance of a document to a
query. “Relevancy ranking” is a problem of growing import: the remarkable recent increase
in electronically available information makes finding the most relevant document within a
sea of candidate documents more and more difficult, for people and for computers. This
chapter describes an automatic method for learning to separate the wheat (relevant docu-
ments) from the chaff. This chapter also contains an architectural and behavioral descrip-
tion of WEAVER, a proof-of-concept document ranking system built using these automatic
learning methods. Results of a suite of experiments on various datasets—mnews articles,
email correspondences, and user transactions with a popular web search engine—suggest

the viability of statistical machine learning for relevancy ranking.

The second problem, addressed in Chapter 4, is to synthesize an “executive briefing” of
a document. This task also has wide potential applicability. For instance, such a system
could enable users of handheld information devices to absorb the information contained in
large text documents more conveniently, despite the device’s limited display capabilities.
Chapter 4 describes a prototype system, called OCELOT, whose guiding philosophy differs
from the prevailing one in automatic text summarization: rather than extracting a group

of representative phrases and sentences from the document, OCELOT synthesizes an entirely

17
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new gist of the document, quite possibly with words not appearing in the original document.
This “gisting” algorithm relies on a set of statistical models—whose parameters OCELOT
learns automatically from a large collection of human-summarized documents—to guide its
choice of words and how to arrange these words in a summary. There exists little previous
work in this area and essentially no authoritative standards for adjudicating quality in a
gist. But based on the qualitative and quantitative assessments appearing in Chapter 4,

the results of this approach appear promising.

The final problem, which appears in Chapter 5, is in some sense a hybrid of the first
two: succinctly characterize (or summarize) the relevance of a document to a query. For
example, part of a newspaper article on skin care may be relevant to a teenager interested
in handling an acne problem, while another part is relevant to someone older, more worried
about wrinkles. The system described in Chapter 5 adapts to a user’s information need in
generating a query-relevant summary. Learning parameter values for the proposed model
requires a large collection of summarized documents, which is difficult to obtain, but as a

proxy, one can use a collection of FAQ (frequently-asked question) documents.

1.2 Learning to process text

Pick up any introductory book on algorithms and you’ll discover, in explicit detail, how to
program a computer to calculate the greatest common divisor of two numbers and to sort

a list of names alphabetically. These are tasks which are easy to specify algorithmically.

This thesis is concerned with a set of language-related tasks that humans can perform,
but which are difficult to specify algorithmically. For instance, it appears quite difficult
to devise an automatic procedure for deciding if a body of text addresses the question
¢ ‘How many kinds of mammals are bipedal?’’. Though this is a relatively straightfor-
ward task for a native English speaker, no one has yet invented a reliable algorithmic
specification for it. One might well ask what such a specification would even look like.
Adjudicating relevance based on whether the document contained key terms like mammals
and bipedal won’t do the trick: many documents containing both words have nothing
whatsoever to do with the question. The converse is also true: a document may contain

neither the word mammals nor the word bipedal, and yet still answer the question.

The following chapters describe how a computer can “learn” to perform rather sophisti-
cated tasks involving natural language, by observing how a person performs the same task.
The specific tasks addressed in the thesis are varied—ranking documents by relevance to
a query, producing a gist of a document, and summarizing a document with respect to a

topic. But a single strategy prevails throughout:
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1. Data collection: Start with a large sample of data representing how humans perform
the task.

2. Model selection: Settle on a parametric statistical model of the process.

3. Parameter estimation: Calculate parameter values for the model by inspection of the
data.

Together, these three steps comprise the construction of the text processing system. The

fourth step involves the application of the resulting system:

4. Search: Using the learned model, find the optimal solution to the given problem—the
best summary of a document, for instance, or the document most relevant to a query,

or the section of a document most germane to a user’s information need.

There’s a name for this approach—it’s called statistical machine learning. The technique
has been applied with success to the related areas of speech recognition, text classification,
automatic language translation, and many others. This thesis represents a unified treatment
using statistical machine learning of a wide range of problems in the field of information

retrieval.

There’s an old saying that goes something like “computers only do what people tell
them to do.” While strictly true, this saying suggests a overly-limited view of the power
of automation. With the right tools, a computer can learn to perform sophisticated text-

related tasks without being told explicitly how to do so.

1.3 Statistical machine learning for information retrieval

Before proceeding further, it seems appropriate to deconstruct the title of this thesis: Sta-

tistical Machine Learning for Information Retrieval.

Machine Learning

Machine Learning is, according to a recent textbook on the subject, “the study of algorithms
which improve from experience” [62]. Machine learning is a rather diffuse field of inquiry,
encompassing such areas as reinforcement learning (where a system, like a chess-playing
program, improves its performance over time by favoring behavior resulting in a positive
outcome), online learning (where a system, like an automatic stock-portfolio manager,

optimizes its behavior while performing the task, by taking note of its performance so far)
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and concept learning (where a system continuously refines the set of viable solutions by

eliminating those inconsistent with evidence presented thus far).

This thesis will take a rather specific view of machine learning. In these pages, the
phrase “machine learning” refers to a kind of generalized regression: characterizing a set
of labeled events {(z1,y1), (z2,y2), ... (Tn,yn)} with a function ® : X — Y from event to
label (or “output”). Researchers have used this paradigm in countless settings. In one,
X represents a medical image of a working heart: Y represents a clinical diagnosis of the
pathology, if any, of the heart [78]. In machine translation, which lies closer to the topic at
hand, X represents a sequence of (say) French words and Y a putative English translation
of this sequence [6]. Loosely speaking, then, the “machine learning” part of the title refers
to the process by which a computer creates an internal representation of a labeled dataset

in order to predict the output corresponding to a new event.

The question of how accurately a machine can learn to perform a labeling task is an
important one: accuracy depends on the amount of labeled data, the expressiveness of
the internal representation, and the inherent difficulty of the labeling problem itself. An
entire subfield of machine learning called computational learning theory has evolved in the
past several years to formalize such questions [46], and impose theoretic limits on what an
algorithm can and can’t do. The reader may wish to ruminate, for instance, over the setting
in which X is a computer program and Y a boolean indicating whether the program halts

on all inputs.

Statistical Machine Learning

Statistical machine learning is a flavor of machine learning distinguished by the fact that the
internal representation is a statistical model, often parametrized by a set of probabilities.
For illustration, consider the syntactic question of deciding whether the word chair is acting
as a verb or a noun within a sentence. Most any English-speaking fifth-grader would have
little difficulty with this problem. But how to program a computer to perform this task?
Given a collection of sentences containing the word chair and, for each, a labeling noun or
verb, one could invoke a number of machine learning approaches to construct an automatic
“syntactic disambiguator” for the word chair. A rule-inferential technique would construct
an internal representation consisting of a list of lemmae, perhaps comprising a decision tree.
For instance, the tree might contain a rule along the lines “If the word preceding chair
is to, then chair is a verb.” A simple statistical machine learning representation might
contain this rule as well, but now equipped with a probability: “If the word preceding chair

is to, then with probability p chair is a verb.”

Statistical machine learning dictates that the parameters of the internal representation—
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the p in the above example, for instance—be calculated using a well-motivated criterion.
Two popular criteria are maximum likelihood and maximum a posteriori estimation. Chap-

ter 2 contains a treatment of the standard objective functions which this thesis relies on.

Information Retrieval

For the purposes of this thesis, the term Information Retrieval (IR) refers to any large-
scale automatic processing of text. This definition seems to overburden these two words,
which really ought only to refer to the retrieval of information, and not to its translation,
summarization, and classification as well. This document is guilty only of perpetuating
dubious terminology, not introducing it; the premier Information Retrieval conference (ACM
SIGIR) traditionally covers a wide range of topics in text processing, including information

filtering, compression, and summarization.

Despite the presence of mathematical formulae in the upcoming chapters, the spirit
of this work is practically motivated: the end goal was to produce not theories in and of
themselves, but working systems grounded in theory. Chapter 3 addresses one IR-based
task, describing a system called WEAVER which ranks documents by relevance to a query.
Chapter 4 addresses a second, describing a system called OCELOT for synthesizing a “gist” of
an arbitrary web page. Chapter 5 addresses a third task, that of identifying the contiguous
subset of a document most relevant to a query—which is one strategy for summarizing a

document with respect to the query.

1.4 Why now is the time

For a number of reasons, much of the work comprising this thesis would not have been

possible ten years ago.

Perhaps the most important recent development for statistical text processing is the
growth of the Internet, which consists (as of this writing) of over a billion documents®. This
collection of hypertext documents is a dataset like none ever before assembled, both in sheer
size and also in its diversity of topics and language usage. The rate of growth of this dataset
is astounding: the Internet Archive, a project devoted to “archiving” the contents of the
Internet, has attempted, since 1996, to spool the text of publicly-available Web pages to
disk: the archive is well over 10 terabytes large and currently growing by two terabytes per
month [83].

LA billion, that is, according to an accounting which only considers static web pages. There are in fact

an infinite number of dynamically-generated web pages.
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That the Internet represents an incomparable knowledge base of language usage is well
known. The question for researchers working in the intersection of machine learning and
IR is how to make use of this resource in building practical natural language systems. One
of the contributions of this thesis is its use of novel resources collected from the Internet to

estimate the parameters of proposed statistical models. For example,

e Using frequently-asked question (FAQ) lists to build models for answer-finding and

query-relevant summarization;

e Using server logs from a large commercial web portal to build a system for assessing

document relevance;

e Using a collection of human-summarized web pages to construct a system for document

gisting.

Some researchers have in the past few years begun to consider how to leverage the
growing collection of digital, freely available information to produce better natural language
processing systems. For example, Nie has investigated the discovery and use of a corpus
of web page pairs—each pair consisting of the same page in two different languages—to
learn a model of translation between the languages [64]. Resnick’s STRAND project at the

University of Maryland focuses more on the automatic discovery of such web page pairs [73].

Learning statistical models from large text databases can be quite resource-intensive.
The machine use to conduct the experiments in this thesis? is a Sun Microsystems 266Mhz
six-processor UltraSparc workstation with 1.5GB of physical memory. On this machine,
some of the experiments reported in later chapters required days or even weeks to complete.
But what takes three days on this machine would require three months on a machine of less
recent vintage, and so the increase in computational resources permits experiments today
that were impractical until recently. Looking ahead, statistical models of language will likely
become more expressive and more accurate, because training these more complex models
will be feasible with tomorrow’s computational resources. One might say “What Moore’s

Law giveth, statistical models taketh away.”

1.5 A motivating example

This section presents a case study in statistical text processing which highlights many of

the themes prevalent in this work.

Zand, for that matter, to typeset this document



1.5 A motivating example

From a sequence of words w = {wy,ws,...w,}, the part-of-speech labeling problem is
to discover an appropriate set of syntactic labels s, one for each of the n words. This is a
generalization of the “noun or verb?” example given earlier in this chapter. For instance,

an appropriate labeling for the quick brown fox jumped over the lazy dog might be

w: The quick brown fox jumped over the lazy dog
s: DET  ADJ ADJ  NOUN-S VERB-P PREP DET ADJ NOUN-S PUNC

A reasonable line of attack for this problem is to try to encapsulate into an algorithm the
expert knowledge brought to bear on this problem by a linguist—or, even less ambitiously,
an elementary school child. To start, it’s probably safe to say that the word the just about
always behaves as a determiner (DET in the above notation); but after picking off this and
some other low-hanging fruit, hope of specifying the requisite knowledge quickly fades. After
all, even a word like dog could, in some circumstances, behave as a verb3. Because of this
difficulty, the earliest automatic tagging systems, based on an expert-systems architecture,
achieved a per-word accuracy of only around 77% on the popular Brown corpus of written
English [37].

(The Brown corpus is a 1,014, 312-word corpus of running English text excerpted from
publications in the United States in the early 1960’s. For years, the corpus has been a pop-
ular benchmark for assessing the performance of general natural-language algorithms [30].
The reported number, 77%, refers to the accuracy of the system on an “evaluation” portion

of the dataset, not used during the construction of the tagger.).

Surprisingly, perhaps, it turns out that a knowledge of English syntax isn’t at all
necessary—or even helpful—in designing an accurate tagging system. Starting with a col-
lection of text in which each word is annotated with its part of speech, one can apply
statistical machine learning to construct an accurate tagger. A successful architecture for
a statistical part of speech tagger uses Hidden Markov Models (HMMs), an abstract state
machine whose states are different parts of speech, and whose output symbols are words.
In producing a sequence of words, the machine progresses through a sequence of states
corresponding to the parts of speech for these words, and at each state transition outputs

the next word in the sequence. HMMs are described in detail in Chapter 2.

It’s not entirely clear who was first responsible for the notion of applying HMMs to the
part-of-speech annotation problem; much of the earliest research involving natural language
processing and HMMs was conducted behind a veil of secrecy at defense-related U.S. gov-

ernment agencies. However, the earliest account in the scientific literature appears to be
Bahl and Mercer in 1976 [4].

3And come to think of it, in a pathological example, so could “the.”
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Conveniently, there exist several part-of-speech-annotated text corpora, including the
Penn Treebank, a 43,113-sentence subset of the Brown corpus [57]. After automatically
learning model parameters from this dataset, HMM-based taggers have achieved accuracies
in the 95% range [60].

This example serves to highlight a number of concepts which will appear again and again

in these pages:

o The viability of probabilistic methods: Most importantly, the success of Hidden Markov
Model tagging is a substantiation of the claim that knowledge-free (in the sense of not
explicitly embedding any expert advice concerning the target problem) probabilistic
methods are up to the task of sophisticated text processing—and, more surprisingly,

can outperform knowledge-rich techniques.

e Starting with the right dataset: In order to learn a pattern of intelligent behavior,
a machine learning algorithm requires examples of the behavior. In this case, the
Penn Treebank provides the examples, and the quality of the tagger learned from this
dataset is only as good as the dataset itself. This is a restatement of the first part of

the four-part strategy outlined at the beginning of this chapter.

o Intelligent model selection: Having a high-quality dataset from which to learn a behav-
ior does not guarantee success. Just as important is discovering the right statistical
model of the process—the second of our four-part strategy. The HMM framework
for part of speech tagging, for instance, is rather non-intuitive. There are certainly
many other plausible models for tagging (including exponential models [72], another
technique relying on statistical learning methods), but none so far have proven demon-

strably superior to the HMM approach.

Statistical machine learning can sometimes feel formulaic: postulate a parametric
form, use maximum likelihood and a large corpus to estimate optimal parameter val-
ues, and then apply the resulting model. The science is in the parameter estimation,
but the art is in devising an expressive statistical model of the process whose param-

eters can be feasibly and robustly estimated.

1.6 Foundational work

There are two types of scientific precedent for this thesis. First is the slew of recent, related
work in statistical machine learning and IR. The following chapters include, whenever ap-
propriate, reference to these precedents in the literature. Second is a small body of seminal

work which lays the foundation for the work described here.
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Information theory is concerned with the production and transmission of informa-
tion. Using a framework known as the source-channel model of communication, information
theory has established theoretical bounds on the limits of data compression and commu-
nication in the presence of noise and has contributed to practical technologies as varied
as cellular communication and automatic speech transcription [2, 22]. Claude Shannon is
generally credited as having founded the field of study with the publication in 1948 of an
article titled “A mathematical theory of communication,” which introduced the notion of
measuring the entropy and information of random variables [79]. Shannon was also as re-
sponsible as anyone for establishing the field of statistical text processing: his 1951 paper
“Prediction and Entropy of Printed English” connected the mathematical notions of entropy

and information to the processing of natural language [80].

From Shannon’s explorations into the statistical properties of natural language arose
the idea of a language model, a probability distribution over sequences of words. Formally,
a language model is a mapping from sequences of words to the portion of the real line
between zero and one, inclusive, in which the total assigned probability is one. In prac-
tice, text processing systems employ a language model to distinguish likely from unlikely
sequences of words: a useful language model will assign a higher probability to A bird
in the hand than hand the a bird in. Language models form an integral part of mod-
ern speech and optical character recognition systems [42, 63|, and in information retrieval
as well: Chapter 3 will explain how the WEAVER system can be viewed as a generalized
type of language model, Chapter 4 introduces a gisting prototype which relies integrally
on language-modelling techniques, and Chapter 5 uses language models to rank candidate

excerpts of a document by relevance to a query.

Markov Models were invented by the Russian mathematician A. A. Markov in the
early years of the twentieth century as a way to represent the statistical dependencies among
a set of random variables. An abstract state machine is Markovian if the state of the machine
at time ¢t + 1 and time ¢ — 1 are conditionally independent, given the state at time ¢. The
application Markov had in mind was, perhaps coincidentally, related to natural language:
modeling the vowel-consonant structure of Russian [41]. But the tools he developed had a

much broader import and subsequently gave rise to the study of stochastic processes.

Hidden Markov Models are a statistical tool originally designed for use in robust
digital transmission and subsequently applied to a wide range of problems involving pattern
recognition, from genome analysis to optical character recognition [26, 54]. A discrete
Hidden Markov Model (HMM) is an automaton which moves between a set of states and
produces, at each state, an output symbol from a finite vocabulary. In general, both the
movement between states and the generated symbols are probabilistic, governed by the

values in a stochastic matrix.
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Applying HMMs to text and speech processing started to gain popularity in the 1970’s,
and a 1980 symposium sponsored by the Institute for Defense Analysis contains a number
of important early contributions. The editor of the papers collected from that symposium,

John Ferguson, wrote in a preface that

Measurements of the entropy of ordinary Markov models for language reveal that
a substantial portion of the inherent structure of the language is not included in
the model. There are also heuristic arguments against the possibility of capturing
this structure using Markov models alone.

In an attempt to produce stromger, more efficient models, we consider the
notion of a Hidden Markov model. The idea is a natural generalization of the
idea of a Markov model... This idea allows a wide scope of ingenuity in selecting
the structure of the states, and the nature of the probabilistic mapping. Moreover,
the mathematics is not hard, and the arithmetic is easy, given access to a modern

computer.

The “ingenuity” to which the author of the above quotation refers is what Section 1.2

labels as the second task: model selection.



Chapter 2
Mathematical machinery

This chapter reviews the mathematical tools on which the following chapters rely:
rudimentary information theory, mazximum likelthood estimation, convexity, the
EM algorithm, mixture models and Hidden Markov Models.

The statistical modelling problem is to characterize the behavior of a real or imaginary
stochastic process. The phrase stochastic process refers to a machine which generates a
sequence of output values or “observations” Y: pixels in an image, horse race winners, or
words in text. In the language-based setting we’re concerned with, these values typically

correspond to a discrete time series.

The modelling problem is to come up with an accurate (in a sense made precise later)
model A of the process. This model assigns a probability py(Y = y) to the event that
the random variable Y takes on the value y. If the identity of Y is influenced by some
conditioning information X, then one might instead seek a conditional model py(Y | X),

assigning a probability to the event that symbol y appears within the context x.

The language modelling problem, for instance, is to construct a conditional probability
distribution function (p.d.f.) px(Y | X), where Y is the identity of the next word in
some text, and X is the conditioning information, such as the identity of the preceding
words. Machine translation [6], word-sense disambiguation [10], part-of-speech tagging [60]
and parsing of natural language [11] are just a few other human language-related domains

involving stochastic modelling.

Before beginning in earnest, a few words on notation are in place. In this thesis (as
in almost all language-processing settings) the random variables Y are discrete, taking on
values in some finite alphabet J—a vocabulary of words, for example. Heeding convention,

we will denote a specific value taken by a random variable Y as y.
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For the sake of simplicity, the notation in this thesis will sometimes obscure the distinc-
tion between a random variable Y and a value y taken by that random variable. That is,
pA(Y = y) will often be shortened to py(y). Lightening the notational burden even further,
pa(y) will appear as p(y) when the dependence on A is entirely clear. When necessary to
distinguish between a single word and a vector (e.g. phrase, sentence, document) of words,
this thesis will use bold symbols to represent word vectors: s is a single word, but s is a

sentence.

2.1 Building blocks

One of the central topics of this chapter is the EM algorithm, a hill-climbing procedure for
discovering a locally optimal member of a parametric family of models involving hidden
state. Before coming to this algorithm and some of its applications, it makes sense to
introduce some of the major players: entropy and mutual information, maximum likelihood,

convexity, and auxiliary functions.

2.1.1 Information theory

M X . Y [\
Source Encoder Noisy Decoder Decoded

Message Channel Message

Figure 2.1: The source-channel model in information theory

The field of information theory, as old as the digital computer, concerns itself with the
efficient, reliable transmission of information. Figure 2.1 depicts the standard information
theoretic view of communication. In some sense, information theory is the study of what

occurs in the boxes in this diagram.

Encoding: Before transmitting some message M across an unreliable channel, the
sender may add redundancy to it, so that noise introduced in transit can be identified
and corrected by the receiver. This is known as error-correcting coding. We represent

encoding by a function ¢ : M — X.

Channel: Information theorists have proposed many different ways to model how
information is compromised in traveling through a channel. A “channel” is an ab-
straction for a telephone wire, Ethernet cable, or any other medium (including time)
across which a message can become corrupted. One common characterization of a
channel is to imagine that it acts independently on each input sent through it. As-

suming this “memoryless” property, the channel may be characterized by a conditional
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probability distribution p(Y | X), where X is a random variable representing the input
to the channel, and Y the output.

Decoding: The inverse of encoding: given a message M which was encoded into ¢(M)
and then corrupted via p(Y | ¥(M)), recover the original message. Assuming the
source emits messages according to some known distribution p(M), decoding amounts

to finding

m* = argrlglaxp(ib(mﬂy)

= argrznaxp(y | ¥(m)) p(m), (2.1)

where the second equality follows from Bayes’ Law.

To the uninitiated, (2.1) might appear a little strange. The goal is to discover the
optimal message m*, but (2.1) suggests doing so by generating (or “predicting”) the input
Y. Far more than a simple application of Bayes’ law, there are compelling reasons why the
ritual of turning a search problem around to predict the input should be productive. When
designing a statistical model for language processing tasks, often the most natural route
is to build a generative model which builds the output step-by-step. Yet to be effective,
such models need to liberally distribute probability mass over a huge number of possible
outcomes. This probability can be difficult to control, making an accurate direct model
of the distribution of interest difficult to fashion. Time and again, researchers have found
that predicting what is already known from competing hypotheses is easier than directly

predicting all of the hypotheses.

One classical application of information theory is communication between source and
receiver separated by some distance. Deep-space probes and digital wireless phones, for
example, both use a form of codes based on polynomial arithmetic in a finite field to guard
against losses and errors in transmission. Error-correcting codes are also becoming popular
for guarding against packet loss in Internet traffic, where the technique is known as forward

error correction [33].

The source-channel framework has also found application in settings seemingly unrelated
to communication. For instance, the now-standard approach to automatic speech recogni-
tion views the problem of transcribing a human utterance from a source-channel perspective
[3]. In this case, the source message is a sequence of words M. In contrast to communication
via error-correcting codes, we aren’t free to select the code here—rather, it’s the product of
thousands of years of linguistic evolution. The encoding function maps a sequence of words
to a pronunciation X, and the channel “corrupts” this into an acoustic signal Y—in other
words, the sound emitted by the person speaking. The decoder’s responsibility is to recover

the original word sequence M, given
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e the received acoustic signal Y,
e a model p(Y | X) of how words sound when voiced,

e a prior distribution p(X) over word sequences, assigning a higher weight to more fluent

sequences and lower weight to less fluent sequences.

One can also apply the source-channel model to language translation. Imagine that the
person generating the text to be translated originally thought of a string X of English words,
but the words were “corrupted” into a French sequence Y in writing them down. Here again
the channel is purely conceptual, but no matter; decoding is still a well-defined problem of
recovering the original English x, given the observed French sequence Y, a model p(Y | X)

for how English translates to French, and a prior p(X) on English word sequences [6].

2.1.2 Maximum likelihood estimation

Given is some observed sample s = {s1, s2,... sy} of the stochastic process. Fix an uncon-
ditional model \ assigning a probability p)(S = s) to the event that the process emits the
symbol s. (A model is called unconditional if its probability estimate for the next emitted
symbol is independent of previously emitted symbols.) The probability (or likelihood) of

the sample s with respect to A is

p(s|N) Hm (2.2)

Equivalently, denoting by ¢(y) the number of occurrences of symbol y in s, we can rewrite
the likelihood of s as

ps1 3 = T o) (2.3
yey

Within some prescribed family F of models, the mazimum likelihood model is that X\ as-
signing the highest probability to s:
A* = argmax p(s | \) (2.4)
ANEF

The likelihood is monotonically related to the average per-symbol log-likelihood,

c\y
Ls | ) =logp(s | ) = Y W iogpy () (25)
yey
So the maximum likelihood model \* = argmax, ¢ # L(s | A). Since it’s often more conve-
nient mathematically, it makes sense in practice to work in the log domain when searching

for the maximum likelihood model.
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The per-symbol log-likelihood has a convenient information theoretic interpretation. If
two parties use the model \ to encode symbols—optimally assigning shorter codewords to
symbols with higher probability and vice versa—then the per-symbol log-likelihood is the
average number of bits per symbol required to communicate s = {s1,2...sy}. And the
average per-symbol perplezity of s, a somewhat less popular metric, is related by 2Ll 2,
48].

The maximum likelihood criterion has a number of desirable theoretical properties [17],
but its popularity is largely due to its empirical success in selected applications and in the
convenient algorithms it gives rise to, like the EM algorithm. Still, there are reasons not
to rely overly on maximum likelihood for parameter estimation. After all, the sample of
observed output which constitutes s is only a representative of the process being modelled. A
procedure which optimizes parameters based on this sample alone—as maximum likelihood
does—is liable to suffer from overfitting. Correcting an overfitted model requires techniques
such as smoothing the model parameters using some data held out from the training [43, 45].
There have been many efforts to introduce alternative parameter-estimation approaches

which avoid the overfitting problem during training [9, 12, 82].

Some of these alternative approaches, it turns out, are not far removed from maximum
likelihood. Maximum a posteriori (MAP) modelling, for instance, is a generalization of

maximum likelihood estimation which aims to find the most likely model given the data:
A* = argmax p(A | s)
A
Using Bayes’ rule, the MAP model turns out to be the product of a prior term and a
likelihood term:
A* = argmaxp(A)p(s | A)
A

If one takes p(A) to be uniform over all A, meaning that all models A are a priori equally

probable, MAP and maximum likelihood are equivalent.

A slightly more interesting use of the prior p(A) would be to rule out (by assigning
p(A) = 0) any model A which itself assigns zero probability to any event (that is, any model

on the boundary of the simplex, whose support is not the entire set of events).

2.1.3 Convexity

A function f(z) is convex (“concave up”) if

flazg+ (1 —a)zy) < af(zo) + (1 —a)f(xy) forall0 <a<1. (2.6)
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That is, if one selects any two points g and x1 in the domain of a convex function, the

function always lies on or under the chord connecting x¢ and x:

()

A sufficient condition for convexity—the one taught in high school calculus—is that f
is convex if and only if f”(z) > 0. But this is not a necessary condition, since f may not
be everywhere differentiable; (2.6) is preferable because it applies even to non-differentiable

functions, such as f(z) =| x| at x = 0.
A multivariate function may be convex in any number of its arguments.
2.1.4 Jensen’s inequality
Among the most useful properties of convex functions is that if f is convex in x, then

f(Elx]) < E[f( Zp )<Y p()f(w) (2.7)

where p(x) is a p.d.f. This follows from (2.6) by a simple inductive proof.

What this means, for example, is that (for any p.d.f. p) the following two conditions
hold:

Zp( log f(x) > log Zp since — log is convex (2.8)
xr

exp Zp(a: ) < Z p(x)exp f(x) since exp is convex (2.9)
xr

We'll also find use for the fact that a concave function always lies below its tangent; in

particular, log x lies below its tangent at x = 1: .
-X
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2.1.5 Auxiliary functions

At their most general, auxiliary functions are simply pointwise lower (or upper) bounds on
a function. We’ve already seen an example: z — 1 is an auxiliary function for logx in the
sense that x — 1 > logx for all x. This observation might prove useful if we’re trying to
establish that some function f(x) lies on or above log x: if we can show f(x) lies on or above
x — 1, then we're done, since x — 1 itself lies above logz. (Incidentally, it’s also true that

log x is an auxiliary function for = — 1, albeit in the other direction).

We’ll be making use of a particular type of auxiliary function: one that bounds the
change in log-likelihood between two models. If X is one mod