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Abstract

The purpose of this work is to introduce and experimentally validate a framework,

basedon statistical machine learning, for handling a broad rangeof problemsin information

retrieval (IR).

Probably the most important single component of this framework is a parametric sta-

tistical model of word relatedness. A longstanding problem in IR has been to develop a

mathematically principled model for document processingwhich acknowledgesthat one se-

quenceof words may be closely related to another even if the pair have few (or no) words

in common. The fact that a document contains the word automobile , for example, sug-

gests that it may be relevant to the queries Where can I find information on motor

vehicles? and Tell me about car transmissions , even though the word automobile

itself appearsnowhere in thesequeries. Also, a document containing the words plumbing,

caulk, paint, gutters might best be summarized as commonhouse repairs , even if

none of the three words in this candidate summary ever appearedin the document.

Until now, the word-relatednessproblem has typically beenaddressedwith techniques

like automatic query expansion [75], an often successfulthough ad hoc technique which

arti�cially injects new, related words into a document for the purpose of ensuring that

related documents have somelexical overlap.

In the past few yearshave emergeda number of novel probabilistic approachesto infor-

mation processing|including the languagemodeling approach to document ranking sug-

gested�rst by Ponte and Croft [67], the non-extractive summarization work of Mittal and

Witbro ck [87], and the Hidden Markov Model-basedranking of Miller et al. [61]. This the-

sis advancesthat body of work by proposing a principled, generalprobabilistic framework

which naturally accounts for word-relatednessissues,using techniques from statistical ma-

chine learning such as the Expectation-Maximization (EM) algorithm [24]. Applying this

new framework to the problem of ranking documents by relevancy to a query, for instance,

we discover a model that contains a version of the Ponte and Miller models as a special

case,but surpassesthesein its abilit y to recognizethe relevanceof a document to a query

even when the two have minimal lexical overlap.

Historically, information retrieval has beena �eld of inquiry driven largely by empirical

considerations. After all, whether systemA was constructed from a more sound theoretical

framework than system B is of no concern to the system's end users. This thesis honors

the strong engineering 
a vor of the �eld by evaluating the proposedalgorithms in many

di�eren t settings and on datasets from many di�eren t domains. The result of this analysis

is an empirical validation of the notion that one can devise useful real-world information

processingsystemsbuilt from statistical machine learning techniques.
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Chapter 1

In tro duction

1.1 Overview

The purposeof this document is to substantiate the following assertion: statistical machine

learning represents a principled, viable framework upon which to build high-performance

information processingsystems. To prove this claim, the following chapters describe the

theoretical underpinnings, systemarchitecture and empirical performanceof prototype sys-

tems that handle three core problems in information retrieval.

The �rst problem, taken up in Chapter 3, is to assessthe relevanceof a document to a

query. \Relevancy ranking" is a problem of growing import: the remarkable recent increase

in electronically available information makes �nding the most relevant document within a

seaof candidate documents more and more di�cult, for people and for computers. This

chapter describesan automatic method for learning to separatethe wheat (relevant docu-

ments) from the cha�. This chapter also contains an architectural and behavioral descrip-

tion of weaver , a proof-of-conceptdocument ranking system built using these automatic

learning methods. Results of a suite of experiments on various datasets|news articles,

email correspondences,and user transactions with a popular web search engine|suggest

the viabilit y of statistical machine learning for relevancy ranking.

The secondproblem, addressedin Chapter 4, is to synthesizean \executive brie�ng" of

a document. This task also has wide potential applicabilit y. For instance, such a system

could enableusersof handheld information devicesto absorb the information contained in

large text documents more conveniently, despite the device's limited display capabilities.

Chapter 4 describes a prototype system, called ocelot , whoseguiding philosophy di�ers

from the prevailing one in automatic text summarization: rather than extracting a group

of representativ e phrasesand sentencesfrom the document, ocelot synthesizesan entirely

17



18 In tro duction

new gist of the document, quite possiblywith words not appearing in the original document.

This \gisting" algorithm relies on a set of statistical models|whose parameters ocelot

learns automatically from a large collection of human-summarizeddocuments|to guide its

choice of words and how to arrange thesewords in a summary. There exists little previous

work in this area and essentially no authoritativ e standards for adjudicating quality in a

gist. But basedon the qualitativ e and quantitativ e assessments appearing in Chapter 4,

the results of this approach appear promising.

The �nal problem, which appears in Chapter 5, is in somesensea hybrid of the �rst

two: succinctly characterize (or summarize) the relevance of a document to a query. For

example,part of a newspaper article on skin care may be relevant to a teenagerinterested

in handling an acneproblem, while another part is relevant to someoneolder, more worried

about wrinkles. The system described in Chapter 5 adapts to a user's information needin

generating a query-relevant summary. Learning parameter values for the proposedmodel

requires a large collection of summarized documents, which is di�cult to obtain, but as a

proxy, one can usea collection of FAQ (frequently-asked question) documents.

1.2 Learning to pro cess text

Pick up any introductory book on algorithms and you'll discover, in explicit detail, how to

program a computer to calculate the greatest common divisor of two numbers and to sort

a list of namesalphabetically. Theseare tasks which are easyto specify algorithmically.

This thesis is concernedwith a set of language-relatedtasks that humans can perform,

but which are di�cult to specify algorithmically. For instance, it appears quite di�cult

to devise an automatic procedure for deciding if a body of text addressesthe question

``How many kinds of mammalsare bipedal?'' . Though this is a relatively straightfor-

ward task for a native English speaker, no one has yet invented a reliable algorithmic

speci�cation for it. One might well ask what such a speci�cation would even look like.

Adjudicating relevance basedon whether the document contained key terms like mammals

and bipedal won't do the trick: many documents containing both words have nothing

whatsoever to do with the question. The converse is also true: a document may contain

neither the word mammalsnor the word bipedal , and yet still answer the question.

The following chapters describe how a computer can \learn" to perform rather sophisti-

cated tasks involving natural language,by observinghow a personperforms the sametask.

The speci�c tasks addressedin the thesis are varied|ranking documents by relevance to

a query, producing a gist of a document, and summarizing a document with respect to a

topic. But a single strategy prevails throughout:
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1. Data collection: Start with a large sampleof data representing how humans perform

the task.

2. Model selection: Settle on a parametric statistical model of the process.

3. Parameter estimation: Calculate parameter valuesfor the model by inspection of the

data.

Together, thesethree stepscomprisethe construction of the text processingsystem. The

fourth step involves the application of the resulting system:

4. Search: Using the learnedmodel, �nd the optimal solution to the given problem|the

best summary of a document, for instance,or the document most relevant to a query,

or the section of a document most germaneto a user's information need.

There's a namefor this approach|it's calledstatistical machine learning. The technique

has beenapplied with successto the related areasof speech recognition, text classi�cation,

automatic languagetranslation, and many others. This thesisrepresents a uni�ed treatment

using statistical machine learning of a wide range of problems in the �eld of information

retrieval.

There's an old saying that goes something like \computers only do what people tell

them to do." While strictly true, this saying suggestsa overly-limited view of the power

of automation. With the right tools, a computer can learn to perform sophisticated text-

related tasks without being told explicitly how to do so.

1.3 Statistical machine learning for information retriev al

Before proceedingfurther, it seemsappropriate to deconstruct the title of this thesis: Sta-

tistical Machine Learning for Information Retrieval.

Mac hine Learning

Machine Learning is, accordingto a recent textb ook on the subject, \the study of algorithms

which improve from experience" [62]. Machine learning is a rather di�use �eld of inquiry,

encompassingsuch areasas reinforcemen t learning (where a system, like a chess-playing

program, improves its performanceover time by favoring behavior resulting in a positive

outcome), online learning (where a system, like an automatic stock-portfolio manager,

optimizes its behavior while performing the task, by taking note of its performanceso far)
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and concept learning (where a system continuously re�nes the set of viable solutions by

eliminating those inconsistent with evidencepresented thus far).

This thesis will take a rather speci�c view of machine learning. In these pages, the

phrase \machine learning" refers to a kind of generalizedregression: characterizing a set

of labeled events f (x1; y1); (x2; y2); : : : (xn ; yn )g with a function � : X ! Y from event to

label (or \output"). Researchers have used this paradigm in countless settings. In one,

X represents a medical image of a working heart: Y represents a clinical diagnosisof the

pathology, if any, of the heart [78]. In machine translation, which lies closer to the topic at

hand, X represents a sequenceof (say) French words and Y a putativ e English translation

of this sequence[6]. Looselyspeaking, then, the \machine learning" part of the title refers

to the processby which a computer createsan internal representation of a labeled dataset

in order to predict the output corresponding to a new event.

The question of how accurately a machine can learn to perform a labeling task is an

important one: accuracy depends on the amount of labeled data, the expressivenessof

the internal representation, and the inherent di�cult y of the labeling problem itself. An

entire sub�eld of machine learning called computational learning theory has evolved in the

past several years to formalize such questions[46], and imposetheoretic limits on what an

algorithm can and can't do. The readermay wish to ruminate, for instance,over the setting

in which X is a computer program and Y a boolean indicating whether the program halts

on all inputs.

Statistical Mac hine Learning

Statistical machine learning is a 
a vor of machine learning distinguished by the fact that the

internal representation is a statistical model, often parametrized by a set of probabilities.

For illustration, considerthe syntactic questionof decidingwhether the word chair is acting

as a verb or a noun within a sentence. Most any English-speaking �fth-grader would have

little di�cult y with this problem. But how to program a computer to perform this task?

Given a collection of sentencescontaining the word chair and, for each, a labeling noun or

verb , onecould invoke a number of machine learning approachesto construct an automatic

\syntactic disambiguator" for the word chair . A rule-inferential technique would construct

an internal representation consistingof a list of lemmae,perhapscomprising a decisiontree.

For instance, the tree might contain a rule along the lines \If the word preceding chair

is to , then chair is a verb." A simple statistical machine learning representation might

contain this rule aswell, but now equippedwith a probabilit y: \If the word precedingchair

is to , then with probabilit y p chair is a verb."

Statistical machine learning dictates that the parametersof the internal representation|
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the p in the above example, for instance|b e calculated using a well-motivated criterion.

Two popular criteria are maximum likelihood and maximum a posteriori estimation. Chap-

ter 2 contains a treatment of the standard objective functions which this thesis relies on.

Information Retriev al

For the purposesof this thesis, the term Information Retrieval (IR) refers to any large-

scaleautomatic processingof text. This de�nition seemsto overburden these two words,

which really ought only to refer to the retrieval of information, and not to its translation,

summarization, and classi�cation as well. This document is guilt y only of perpetuating

dubious terminology, not introducing it; the premier Information Retrieval conference(ACM

SIGIR) traditionally covers a wide range of topics in text processing,including information

�ltering, compression,and summarization.

Despite the presenceof mathematical formulae in the upcoming chapters, the spirit

of this work is practically motivated: the end goal was to produce not theories in and of

themselves, but working systemsgrounded in theory. Chapter 3 addressesone IR-based

task, describing a system called weaver which ranks documents by relevance to a query.

Chapter 4 addressesa second,describinga systemcalled ocelot for synthesizinga \gist" of

an arbitrary web page. Chapter 5 addressesa third task, that of identifying the contiguous

subset of a document most relevant to a query|whic h is one strategy for summarizing a

document with respect to the query.

1.4 Wh y now is the time

For a number of reasons,much of the work comprising this thesis would not have been

possibleten yearsago.

Perhaps the most important recent development for statistical text processingis the

growth of the Internet, which consists(as of this writing) of over a billion documents1. This

collection of hypertext documents is a dataset like noneever beforeassembled, both in sheer

sizeand alsoin its diversity of topics and languageusage.The rate of growth of this dataset

is astounding: the Internet Archive, a project devoted to \archiving" the contents of the

Internet, has attempted, since 1996, to spool the text of publicly-available Web pagesto

disk: the archive is well over 10 terabytes large and currently growing by two terabytes per

month [83].

1A billion, that is, according to an accounting which only considers static web pages. There are in fact

an in�nite number of dynamically-generated web pages.
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That the Internet represents an incomparable knowledgebaseof languageusageis well

known. The question for researchers working in the intersection of machine learning and

IR is how to make useof this resourcein building practical natural languagesystems. One

of the contributions of this thesis is its useof novel resourcescollected from the Internet to

estimate the parametersof proposedstatistical models. For example,

� Using frequently-asked question (FAQ) lists to build models for answer-�nding and

query-relevant summarization;

� Using server logs from a large commercial web portal to build a system for assessing

document relevance;

� Using a collection of human-summarizedwebpagesto construct a systemfor document

gisting.

Some researchers have in the past few years begun to consider how to leverage the

growing collection of digital, freely available information to producebetter natural language

processingsystems. For example, Nie has investigated the discovery and use of a corpus

of web page pairs|eac h pair consisting of the same page in two di�eren t languages|to

learn a model of translation between the languages[64]. Resnick's Strand project at the

University of Maryland focusesmore on the automatic discovery of such web pagepairs [73].

Learning statistical models from large text databasescan be quite resource-intensive.

The machine useto conduct the experiments in this thesis2 is a Sun Microsystems266Mhz

six-processorUltraSparc workstation with 1.5GB of physical memory. On this machine,

someof the experiments reported in later chapters required days or even weeksto complete.

But what takesthree days on this machine would require three months on a machine of less

recent vintage, and so the increasein computational resourcespermits experiments today

that wereimpractical until recently. Looking ahead,statistical modelsof languagewill likely

becomemore expressive and more accurate, becausetraining these more complex models

will be feasiblewith tomorrow's computational resources. One might say \What Moore's

Law giveth, statistical models taketh away."

1.5 A motiv ating example

This section presents a casestudy in statistical text processingwhich highlights many of

the themesprevalent in this work.

2and, for that matter, to typeset this document
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From a sequenceof words w = f w1; w2; : : : wng, the part-of-speech labeling problem is

to discover an appropriate set of syntactic labels s, one for each of the n words. This is a

generalization of the \noun or verb?" example given earlier in this chapter. For instance,

an appropriate labeling for the quick brown fox jumped over the lazy dog might be

w: The quick brown fox jumped over the lazy dog .

s: DET ADJ ADJ NOUN-S VERB-P PREP DET ADJ NOUN-S PUNC

A reasonableline of attack for this problem is to try to encapsulateinto an algorithm the

expert knowledgebrought to bear on this problem by a linguist|or, even lessambitiously,

an elementary school child. To start, it's probably safeto say that the word the just about

always behavesas a determiner (DETin the above notation); but after picking o� this and

someother low-hanging fruit, hopeof specifying the requisite knowledgequickly fades. After

all, even a word like dog could, in somecircumstances,behave as a verb3. Becauseof this

di�cult y, the earliest automatic tagging systems,basedon an expert-systemsarchitecture,

achieved a per-word accuracyof only around 77% on the popular Brown corpus of written

English [37].

(The Brown corpus is a 1; 014; 312-word corpus of running English text excerpted from

publications in the United States in the early 1960's. For years,the corpushas beena pop-

ular benchmark for assessingthe performanceof generalnatural-language algorithms [30].

The reported number, 77%, refersto the accuracyof the systemon an \evaluation" portion

of the dataset, not usedduring the construction of the tagger.).

Surprisingly, perhaps, it turns out that a knowledge of English syntax isn't at all

necessary|or even helpful|in designingan accurate tagging system. Starting with a col-

lection of text in which each word is annotated with its part of speech, one can apply

statistical machine learning to construct an accurate tagger. A successfularchitecture for

a statistical part of speech tagger usesHidden Markov Models (HMMs), an abstract state

machine whosestates are di�eren t parts of speech, and whoseoutput symbols are words.

In producing a sequenceof words, the machine progressesthrough a sequenceof states

corresponding to the parts of speech for thesewords, and at each state transition outputs

the next word in the sequence.HMMs are described in detail in Chapter 2.

It's not entirely clear who was �rst responsible for the notion of applying HMMs to the

part-of-speech annotation problem; much of the earliest research involving natural language

processingand HMMs was conducted behind a veil of secrecyat defense-relatedU.S. gov-

ernment agencies. However, the earliest account in the scienti�c literature appears to be

Bahl and Mercer in 1976[4].

3And come to think of it, in a pathological example, so could \ the ."
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Conveniently, there exist several part-of-speech-annotated text corpora, including the

Penn Treebank, a 43; 113-sentence subset of the Brown corpus [57]. After automatically

learning model parametersfrom this dataset, HMM-based taggershave achieved accuracies

in the 95% range [60].

This exampleservesto highlight a number of conceptswhich will appearagain and again

in thesepages:

� The viability of probabilistic methods: Most importantly, the successof Hidden Markov

Model tagging is a substantiation of the claim that knowledge-free(in the senseof not

explicitly embedding any expert advice concerning the target problem) probabilistic

methods are up to the task of sophisticated text processing|and, more surprisingly,

can outperform knowledge-rich techniques.

� Starting with the right dataset: In order to learn a pattern of intelligent behavior,

a machine learning algorithm requires examplesof the behavior. In this case, the

Penn Treebankprovides the examples,and the quality of the tagger learned from this

dataset is only as good as the dataset itself. This is a restatement of the �rst part of

the four-part strategy outlined at the beginning of this chapter.

� Intel ligent model selection: Having a high-quality dataset from which to learn a behav-

ior does not guarantee success.Just as important is discovering the right statistical

model of the process|the secondof our four-part strategy. The HMM framework

for part of speech tagging, for instance, is rather non-intuitiv e. There are certainly

many other plausible models for tagging (including exponential models [72], another

technique relying on statistical learning methods), but nonesofar have proven demon-

strably superior to the HMM approach.

Statistical machine learning can sometimes feel formulaic: postulate a parametric

form, usemaximum likelihood and a large corpus to estimate optimal parameter val-

ues,and then apply the resulting model. The scienceis in the parameter estimation,

but the art is in devising an expressive statistical model of the processwhoseparam-

eters can be feasibly and robustly estimated.

1.6 Foundational work

There are two typesof scienti�c precedent for this thesis. First is the slewof recent, related

work in statistical machine learning and IR. The following chapters include, whenever ap-

propriate, referenceto theseprecedents in the literature. Secondis a small body of seminal

work which lays the foundation for the work described here.
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Information theory is concernedwith the production and transmission of informa-

tion. Using a framework known asthe source-channel model of communication, information

theory has established theoretical bounds on the limits of data compressionand commu-

nication in the presenceof noise and has contributed to practical technologies as varied

as cellular communication and automatic speech transcription [2, 22]. Claude Shannon is

generally credited as having founded the �eld of study with the publication in 1948 of an

article titled \A mathematical theory of communication," which introduced the notion of

measuring the entropy and information of random variables [79]. Shannonwas also as re-

sponsible as anyone for establishing the �eld of statistical text processing:his 1951 paper

\Prediction and Entropy of Printed English" connectedthe mathematical notions of entropy

and information to the processingof natural language[80].

From Shannon's explorations into the statistical properties of natural language arose

the idea of a languagemodel, a probabilit y distribution over sequencesof words. Formally,

a language model is a mapping from sequencesof words to the portion of the real line

between zero and one, inclusive, in which the total assignedprobabilit y is one. In prac-

tice, text processingsystemsemploy a languagemodel to distinguish likely from unlikely

sequencesof words: a useful language model will assign a higher probabilit y to A bird

in the hand than hand the a bird in . Languagemodels form an integral part of mod-

ern speech and optical character recognition systems[42, 63], and in information retrieval

as well: Chapter 3 will explain how the weaver system can be viewed as a generalized

type of languagemodel, Chapter 4 introduces a gisting prototype which relies integrally

on language-modelling techniques, and Chapter 5 useslanguagemodels to rank candidate

excerpts of a document by relevanceto a query.

Mark ov Mo dels were invented by the Russian mathematician A. A. Markov in the

early yearsof the twentieth century asa way to represent the statistical dependenciesamong

a setof random variables. An abstract state machine is Markovian if the state of the machine

at time t + 1 and time t � 1 are conditionally independent, given the state at time t. The

application Markov had in mind was, perhaps coincidentally, related to natural language:

modeling the vowel-consonant structure of Russian [41]. But the tools he developed had a

much broader import and subsequently gave rise to the study of stochastic processes.

Hidden Mark ov Mo dels are a statistical tool originally designedfor use in robust

digital transmissionand subsequently applied to a wide rangeof problemsinvolving pattern

recognition, from genome analysis to optical character recognition [26, 54]. A discrete

Hidden Markov Model (HMM) is an automaton which moves between a set of states and

produces,at each state, an output symbol from a �nite vocabulary. In general, both the

movement between states and the generated symbols are probabilistic, governed by the

values in a stochastic matrix.
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Applying HMMs to text and speech processingstarted to gain popularit y in the 1970's,

and a 1980symposium sponsoredby the Institute for DefenseAnalysis contains a number

of important early contributions. The editor of the papers collected from that symposium,

John Ferguson,wrote in a prefacethat

Measurementsof the entropy of ordinary Markov models for languagereveal that

a substantial portion of the inherent structure of the languageis not included in

the model. There are alsoheuristic argumentsagainst the possibility of capturing

this structure using Markov models alone.

In an attempt to produce stronger, more e�cient models, we consider the

notion of a Hidden Markov model. The idea is a natural generalization of the

idea of a Markov model...This idea allows a wide scope of ingenuity in selecting

the structure of the states,and the nature of the probabilistic mapping. Moreover,

the mathematicsis not hard, and the arithmetic is easy, givenaccessto a modern

computer.

The \ingenuit y" to which the author of the above quotation refers is what Section 1.2

labels as the secondtask: model selection.



Chapter 2

Mathematical machinery

This chapter reviewsthe mathematical tools on which the following chaptersrely:

rudimentary information theory, maximum likelihood estimation, convexity, the

EM algorithm, mixture models and Hidden Markov Models.

The statistical modelling problem is to characterize the behavior of a real or imaginary

stochastic process. The phrase stochastic process refers to a machine which generatesa

sequenceof output values or \observations" Y : pixels in an image, horse race winners, or

words in text. In the language-basedsetting we're concernedwith, these values typically

correspond to a discrete time series.

The modelling problem is to comeup with an accurate (in a sensemade preciselater)

model � of the process. This model assignsa probabilit y p� (Y = y) to the event that

the random variable Y takes on the value y. If the identit y of Y is in
uenced by some

conditioning information X , then one might instead seeka conditional model p� (Y j X ),

assigninga probabilit y to the event that symbol y appearswithin the context x.

The languagemodelling problem, for instance, is to construct a conditional probabilit y

distribution function (p.d.f.) p� (Y j X ), where Y is the identit y of the next word in

some text, and X is the conditioning information, such as the identit y of the preceding

words. Machine translation [6], word-sensedisambiguation [10], part-of-speech tagging [60]

and parsing of natural language[11] are just a few other human language-relateddomains

involving stochastic modelling.

Before beginning in earnest, a few words on notation are in place. In this thesis (as

in almost all language-processingsettings) the random variables Y are discrete, taking on

valuesin some�nite alphabet Y|a vocabulary of words, for example. Heedingconvention,

we will denote a speci�c value taken by a random variable Y as y.

27
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For the sake of simplicit y, the notation in this thesiswill sometimesobscurethe distinc-

tion between a random variable Y and a value y taken by that random variable. That is,

p� (Y = y) will often be shortenedto p� (y). Lightening the notational burden even further,

p� (y) will appear as p(y) when the dependenceon � is entirely clear. When necessaryto

distinguish betweena single word and a vector (e.g. phrase,sentence, document) of words,

this thesis will use bold symbols to represent word vectors: s is a single word, but s is a

sentence.

2.1 Building blo cks

One of the central topics of this chapter is the EM algorithm, a hill-clim bing procedurefor

discovering a locally optimal member of a parametric family of models involving hidden

state. Before coming to this algorithm and some of its applications, it makes senseto

introducesomeof the major players: entropy and mutual information, maximum likelihood,

convexity, and auxiliary functions.

2.1.1 Information theory

X Y
Decoded

M*
Noisy
Channel

Source

Message

M

Message
Encoder Decoder

Figure 2.1: The source-channel model in information theory

The �eld of information theory, as old as the digital computer, concerns itself with the

e�cien t, reliable transmission of information. Figure 2.1 depicts the standard information

theoretic view of communication. In somesense,information theory is the study of what

occurs in the boxes in this diagram.

Enco ding : Before transmitting somemessageM acrossan unreliable channel, the

sendermay add redundancy to it, so that noiseintroduced in transit can be identi�ed

and correctedby the receiver. This is known as error-correcting coding. We represent

encoding by a function  : M ! X .

Channel : Information theorists have proposedmany di�eren t ways to model how

information is compromised in traveling through a channel. A \channel" is an ab-

straction for a telephonewire, Ethernet cable, or any other medium (including time)

acrosswhich a messagecan becomecorrupted. One common characterization of a

channel is to imagine that it acts independently on each input sent through it. As-

suming this \memoryless" property, the channelmay becharacterizedby a conditional
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probabilit y distribution p(Y j X ), whereX is a random variable representing the input

to the channel, and Y the output.

Deco ding : The inverseof encoding: givena messageM which wasencodedinto  (M )

and then corrupted via p(Y j  (M )), recover the original message. Assuming the

sourceemits messagesaccordingto someknown distribution p(M ), decoding amounts

to �nding

m? = argmax
m

p( (m) j y)

= argmax
m

p(y j  (m)) p(m); (2.1)

where the secondequality follows from Bayes' Law.

To the uninitiated, (2.1) might appear a little strange. The goal is to discover the

optimal messagem?, but (2.1) suggestsdoing so by generating (or \predicting") the input

Y . Far more than a simple application of Bayes' law, there are compelling reasonswhy the

ritual of turning a search problem around to predict the input should be productive. When

designing a statistical model for languageprocessingtasks, often the most natural route

is to build a generative model which builds the output step-by-step. Yet to be e�ectiv e,

such models need to lib erally distribute probabilit y massover a huge number of possible

outcomes. This probabilit y can be di�cult to control, making an accurate direct model

of the distribution of interest di�cult to fashion. Time and again, researchers have found

that predicting what is already known from competing hypothesesis easier than directly

predicting all of the hypotheses.

One classical application of information theory is communication between sourceand

receiver separated by some distance. Deep-spaceprobes and digital wireless phones, for

example,both usea form of codesbasedon polynomial arithmetic in a �nite �eld to guard

against lossesand errors in transmission. Error-correcting codesare also becomingpopular

for guarding against packet lossin Internet tra�c, where the technique is known as forward

error correction [33].

The source-channel framework hasalsofound application in settingsseeminglyunrelated

to communication. For instance, the now-standard approach to automatic speech recogni-

tion views the problem of transcribing a human utterance from a source-channel perspective

[3]. In this case,the sourcemessageis a sequenceof words M . In contrast to communication

via error-correcting codes,we aren't free to selectthe code here|rather, it's the product of

thousandsof yearsof linguistic evolution. The encoding function mapsa sequenceof words

to a pronunciation X , and the channel \corrupts" this into an acoustic signal Y |in other

words, the soundemitted by the personspeaking. The decoder's responsibilit y is to recover

the original word sequenceM , given
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� the received acoustic signal Y ,

� a model p(Y j X ) of how words sound when voiced,

� a prior distribution p(X ) over word sequences,assigninga higher weight to more 
uen t

sequencesand lower weight to less
uen t sequences.

One can also apply the source-channel model to languagetranslation. Imagine that the

persongeneratingthe text to betranslated originally thought of a string X of English words,

but the words were\corrupted" into a French sequenceY in writing them down. Hereagain

the channel is purely conceptual, but no matter; decoding is still a well-de�ned problem of

recovering the original English x, given the observed French sequenceY , a model p(Y j X )

for how English translates to French, and a prior p(X ) on English word sequences[6].

2.1.2 Maxim um lik eliho od estimation

Given is someobserved samples = f s1; s2; : : : sN g of the stochastic process.Fix an uncon-

ditional model � assigninga probabilit y p� (S = s) to the event that the processemits the

symbol s. (A model is called unconditional if its probabilit y estimate for the next emitted

symbol is independent of previously emitted symbols.) The probabilit y (or likelihood) of

the samples with respect to � is

p(s j � ) =
NY

i =1

p� (S = si ) (2.2)

Equivalently, denoting by c(y) the number of occurrencesof symbol y in s, we can rewrite

the likelihood of s as

p(s j � ) =
Y

y 2 Y

p� (y)c(y) (2.3)

Within someprescribed family F of models, the maximum likelihood model is that � as-

signing the highest probabilit y to s:

� ? � argmax
� 2 F

p(s j � ) (2.4)

The likelihood is monotonically related to the averageper-symbol log-likelihood,

L (s j � ) � logp(s j � ) =
X

y 2 Y

c(y)
N

logp� (y); (2.5)

So the maximum likelihood model � ? = argmax� 2 F L(s j � ). Since it's often more conve-

nient mathematically, it makessensein practice to work in the log domain when searching

for the maximum likelihood model.
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The per-symbol log-likelihood has a convenient information theoretic interpretation. If

two parties use the model � to encode symbols|optimally assigningshorter codewords to

symbols with higher probabilit y and vice versa|then the per-symbol log-likelihood is the

averagenumber of bits per symbol required to communicate s = f s1; s2 : : : sN g. And the

averageper-symbol perplexity of s, a somewhatlesspopular metric, is related by 2� L (sj� ) [2,

48].

The maximum likelihood criterion has a number of desirabletheoretical properties [17],

but its popularit y is largely due to its empirical successin selectedapplications and in the

convenient algorithms it gives rise to, like the EM algorithm. Still, there are reasonsnot

to rely overly on maximum likelihood for parameter estimation. After all, the sample of

observedoutput which constitutes s is only a representativ eof the processbeingmodelled. A

procedurewhich optimizes parametersbasedon this samplealone|as maximum likelihood

does|is liable to su�er from over�tting. Correcting an over�tted model requirestechniques

such assmoothing the model parametersusingsomedata held out from the training [43, 45].

There have been many e�orts to introduce alternative parameter-estimation approaches

which avoid the over�tting problem during training [9, 12, 82].

Someof thesealternative approaches, it turns out, are not far removed from maximum

likelihood. Maximum a posteriori (MAP) modelling, for instance, is a generalization of

maximum likelihood estimation which aims to �nd the most likely model given the data:

� ? = argmax
�

p(� j s)

Using Bayes' rule, the MAP model turns out to be the product of a prior term and a

likelihood term:

� ? = argmax
�

p(� )p(s j � )

If onetakesp(� ) to be uniform over all � , meaningthat all models � are a priori equally

probable, MAP and maximum likelihood are equivalent.

A slightly more interesting use of the prior p(� ) would be to rule out (by assigning

p(� ) = 0) any model � which itself assignszeroprobabilit y to any event (that is, any model

on the boundary of the simplex, whosesupport is not the entire set of events).

2.1.3 Convexit y

A function f (x) is convex(\concave up") if

f (�x 0 + (1 � � )x1) � �f (x0) + (1 � � )f (x1) for all 0 � � � 1: (2.6)
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That is, if one selectsany two points x0 and x1 in the domain of a convex function, the

function always lies on or under the chord connecting x0 and x1:

x
0

x1

f(x)

A su�cien t condition for convexity|the one taught in high school calculus|is that f

is convex if and only if f 00(x) � 0. But this is not a necessarycondition, since f may not

be everywheredi�eren tiable; (2.6) is preferablebecauseit applieseven to non-di�eren tiable

functions, such as f (x) = j x j at x = 0.

A multiv ariate function may be convex in any number of its arguments.

2.1.4 Jensen's inequalit y

Among the most useful properties of convex functions is that if f is convex in x, then

f (E [x]) � E [f (x)] or f (
X

x
p(x)x) �

X

x
p(x)f (x) (2.7)

where p(x) is a p.d.f. This follows from (2.6) by a simple inductiv e proof.

What this means, for example, is that (for any p.d.f. p) the following two conditions

hold:

X

x
p(x) log f (x) � log

X

x
p(x)f (x) since� log is convex (2.8)

exp
X

x
p(x)f (x) �

X

x
p(x) expf (x) sinceexp is convex (2.9)

We'll also �nd use for the fact that a concave function always lies below its tangent; in

particular, logx lies below its tangent at x = 1:

x=1

y=0

1-x

log x
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2.1.5 Auxiliary functions

At their most general,auxiliary functions are simply pointwise lower (or upper) bounds on

a function. We've already seenan example: x � 1 is an auxiliary function for logx in the

sensethat x � 1 � logx for all x. This observation might prove useful if we're trying to

establishthat somefunction f (x) lies on or above logx: if we can show f (x) lies on or above

x � 1, then we're done, since x � 1 itself lies above logx. (Incidentally, it's also true that

logx is an auxiliary function for x � 1, albeit in the other direction).

We'll be making use of a particular type of auxiliary function: one that bounds the

change in log-likelihood between two models. If � is one model and � 0 another, then we'll

be interested in the quantit y L (s j � 0) � L (s j � ), the gain in log-likelihood from using � 0

instead of � . For the remainder of this chapter, we'll de�ne A(� 0; � ) to be an auxiliary

function only if

L (s j � 0) � L (s j � ) � A(� 0; � ) and A(�; � ) = 0

Together, theseconditions imply that if we can �nd a � 0 such that A(� 0; � ) > 0, then � 0 is

a better model than � |in a maximum likelihood sense.

The core idea of the EM algorithm, introduced in the next section, is to iterate this

processin a hill-clim bing scheme. That is, start with somemodel � , replace� by a superior

model � 0, and repeat this processuntil no superior model can be found; in other words,

until reaching a stationary point of the likelihood function.

2.2 EM algorithm

The standard setting for the EM algorithm is as follows. The stochastic processin question

emits observableoutput Y (words for instance),but this data is an incompleterepresentation

of the process. The complete data will be denoted by (Y; H )| H for \partly hidden."

Focusing on the discrete case,we can write yi as the observed output at time i , and hi as

the state of the processat time i .

The EM algorithm is an especially convenient tool for handling Hidden Markov Models

(HMMs). HMMs are a generalizationof traditional Markov models: whereaseach state-to-

state transition on a Markov model causesa speci�c symbol to be emitted, each state-state

transition on an HMM contains a probability distribution over possibleemitted symbols. One

can think of the state as the hidden information and the emitted symbol as the observed

output. For example, in an HMM part-of-speech model, the observable data are the words

and the hidden states are the parts of speech.
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The EM algorithm arisesin other human-languagesettings as well. In a parsing model,

the words are again the observed output, but now the hidden state is the parse of the

sentence [53]. Some recent work on statistical translation (which we will have occasion

to revisit later in this thesis) describes an English-French translation model in which the

alignment betweenthe words in the French sentenceand its translation represents the hidden

information [6].

We postulate a parametric model p� (Y; H ) of the process,with marginal distribution

p� (Y ) =
X

h

p� (Y; H = h). Given someempirical samples, the principle of maximum like-

lihood dictates that we �nd the � which maximizes the likelihood of s. The di�erence in

log-likelihood betweenmodels � 0 and � is

L (s j � 0) � L (s j � ) =
X

y
q(y) log

p� 0(y)
p� (y)

=
X

y
q(y) log

X

h

p� 0(y; h)
p� (y)

=
X

y
q(y) log

X

h

p� 0(y; h)p� (h j y)
p� (y; h)

applying Bayes' law to p� (y)

�
X

y
q(y)

X

h

p� (h j y) log
p� 0(y; h)
p� (y; h)

| {z }
Call this Q(� 0 j � )

applying (2.8) (2.10)

We've establishedthat L (s j � 0) � L (s j � ) � Q(� 0 j � ). It's also true (by inspection) that

Q(� j � ) = 0. Together, theseearn Q the title of auxiliary function to L . If we can �nd a

� 0 for which Q(� 0 j � ) > 0, then p� 0 has a higher (log)-likelihood than p� .

This observation is the basisof the EM (expectation-maximization) algorithm.

Algorithm 1: Expectation-Maximization (EM)

1. (Initialization ) Pick a starting model �

2. Repeat until log-likelihood convergences:

(E-step) ComputeQ(� 0 j � )

(M-step) �  argmax� 0 Q(� 0 j � )

A few points are in order about the algorithm.

� The algorithm is greedy, insofar as it attempts to take the best step from the current

� at each iteration, paying no heed to the global behavior of L (s j � ). The line of
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reasoningculminating in (2.10) establishedthat each step of the EM algorithm can

never produce an inferior model. But this doesn't rule out the possibility of

{ Getting \stuck" at a local maximum

{ Toggling betweentwo local maxima corresponding to di�eren t modelswith iden-

tical likelihoods.

Denoting by � i the model at the i th iteration of Algorithm 1, under certain assump-

tions it can be shown that lim n � n = � ?. That is, eventually the EM algorithm

convergesto the optimal parameter values[88]. Unfortunately, theseassumptionsare

rather restrictiv e and aren't typically met in practice.

It may very well happen that the spaceis very \bump y," with lots of local maxima.

In this case, the result of the EM algorithm depends on the starting value � 0; the

algorithm might very well end up at a local maximum. One can enlist any number of

heuristics for high-dimensional search in an e�ort to �nd the global maximum, such

as selectinga number of di�eren t starting points, searching by simulating annealing,

and so on.

� Along the same line, if each iteration is computationally expensive, it can some-

times pay to try to speedconvergenceby using second-derivative information. This

technique is known variously as Aitk en's acceleration algorithm or \stretc hing" [1].

However, this technique is often unviable becauseQ00is hard to compute.

� In certain settings it can be di�cult to maximize Q(� 0 j � ), but rather easy to �nd

some � 0 for which Q(� 0 j � ) > 0. But that's just �ne: picking this � 0 still improves

the likelihood, though the algorithm is no longer greedy and may well run slower.

This version of the algorithm|replacing the \M"-step of the algorithm with some

technique for simply taking a step in the right direction, rather than the maximal

step in the right direction|is known as the GEM algorithm (G for \generalized").

2.2.1 Example: mixture weight estimation

A quite typical problem in statistical modelling is to construct a mixture model which is

the linear interpolation of a collection of models. We start with an observed sample of

output f y1; y2; : : : yT g and a collection of distributions p1(y); p2(y) : : : pN (y). We seekthe

maximum likelihood member of the family of distributions

F �

(

p(Y = y) =
NX

i =1

� i pi (y) j � i � 0 and
X

i

� i = 1

)
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Membersof F are just linear interpolations|or \mixture models"|of the individual models

pi , with di�eren t members distributing their weights di�eren tly across the models. The

problem is to �nd the best mixture model. On the faceof it, this appearsto be an (N � 1)-

dimensional search problem. But the problem yields quite easily to an EM approach.

Imagine the interpolated model is at any time in oneof N states,a2 f 1; 2; : : : N g, with:

� � i : the a priori probabilit y that the model is in state i at sometime;

� p� (a = i; y) = � i pi (y): the probabilit y of being in state i and producing output y;

� p� (a = i j y) =
� i pi (y)

P
i � i pi (y)

: the probabilit y of being in state i , given that y is the

current output

A convenient way to think of this is that in state i , the interpolated model relies on the

i 'th model. The appropriate version of (2.10) is, in this case,

Q(� 0 j � ) =
X

y
q(y)

NX

a=1

p� (a j y) log
p� 0(y; a)
p� (y; a)

The EM algorithm says to �nd the � 0 maximizing Q(� 0 j � )|sub ject, in this case, to
P

i � 0
i = 1. Applying the method of Lagrangemultipliers,

@
@� 0

i

"

Q(� 0 j � ) � 
 (
X

i

� 0
i � 1)

#

= 0

X

y
q(y)p� (a = i j y)

1
p� 0(y; a = i )

pi (y) � 
 = 0

X

y
q(y)p� (a = i j y)

1
� 0

i
� 
 = 0

To easethe notational burden, introduce the shorthand

Ci �
X

y
q(y)p� (a = i j y)

1
� 0

i

=
1

� 0
i

X

y
q(y)

� i pi (y)
P

i � i pi (y)
(2.11)

Applying the normalization constraint gives � 0
i = CiP

i
Ci

. Intuitiv ely, Ci is the expected

number of times the i 'th model is usedin generatingthe observed sample,given the current

estimatesfor f � 1; � 2; : : : � ng.

This is, onceyou think about it, quite an intuitiv e approach to the problem. Sincewe don't

know the linear interpolation weights, we'll guessthem, apply the interpolated model to
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Algorithm 2: EM for calculating mixture model weights

1. (Initialization ) Pick initial weights � such that � i 2 (0; 1) for all i

2. Repeat until convergence:

(E-step) ComputeC1; C2; : : : CN , given the current � , using (2.11) .

(M-step) Set � i  CiP
i

Ci

the data, and seehow much each individual model contributes to the overall prediction.

Then we can update the weights to favor the models which had a better track record, and

iterate. It's not di�cult to imagine that someonemight think up this algorithm without

having the mathematical equipment (in the EM algorithm) to prove anything about it. In

fact, at least two peopledid [39] [86].

* * *

A practical issueconcerningthe EM algorithm is that the sum over the hidden statesH

in computing (2.10) can, in practice, be an exponential sum. For instance, the hidden state

might represent part-of-speech labelings for a sentence. If there exist T di�eren t part of

speech labels, then a sentenceof length n hasT n possiblelabelings,and thus the sum is over

Tn hidden states. Often someclevernesssu�ces to sidestep this computational hurdle|

usually by relying on someunderlying Markov property of the model. Such clevernessis

what distinguishes the Baum-Welch or \forw ard-backward" algorithm. Chapters 3 and 4

will face these problems, and wil use a combinatorial sleight of hand to calculate the sum

e�cien tly.

2.3 Hidden Mark ov Mo dels

Recall that a stochastic processis a machine which generatesa sequenceof output values

o = f o1; o2; o3 : : : ong, and a stochastic processis calledMarkovian if the state of the machine

at time t + 1 and at time t � 1 are conditionally independent, given the state at time t:

p(ot+1 j ot � 1ot ) = p(ot+1 j ot ) and p(ot � 1 j otot+1 ) = p(ot � 1 j ot )

In other words, the past and future observations are independent, given the present obser-

vation. A Markov Model may be thought of as a graphical method for representing this

statistical independenceproperty.
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A Markov model with n states is characterized by n2 transition probabilities p(i; j )|

the probabilit y that the model will move to state j from state i . Given an observed state

sequence,say the state of an elevator at each time interval,

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11

1st 1st 2nd 3rd 3rd 2nd 2nd 1st stalled stalled stalled

one can calculate the maximum likelihood values for each entry in this matrix simply by

counting: p(i; j ) is the number of times state j followed state i , divided by the number of

times state i appearedbeforeany state.

Hidden Markov Models (HMMs) are a generalization of Markov Models: whereas in

conventional Markov Models the state of the machine at time i and the observed output at

time i are oneand the same,in Hidden Markov Models the state and output are decoupled.

More speci�cally , in an HMM the automaton generatesa symbol probabilistically at each

state; only the symbol, and not the identit y of the underlying state, is visible.

To illustrate, imagine that a person is given a newspaper and is asked to classify the

articles in the paper as belonging to either the businesssection, the weather, sports, horo-

scope, or politics. At �rst the person begins reading an article which happens to contain

the words shares , bank, investors ; in all likelihood their eyes have settled on a business

article. They next 
ip the pagesand begin reading an article containing the words front

and showers, which is likely a weather article. Figure 2.2 shows an HMM corresponding

to this process|the states correspond to the categories,and the symbols output from each

state correspond to the words in articles from that category. According to the valuesin the

�gure, the word taxes accounts for 2:2 percent of the words in the news category, and 1:62

percent of the words in the business category. Seeingthe word taxes in an article does

not by itself determine the most appropriate labeling for the article.

To fully specify an HMM requires four ingredients:

� The number of states j S j

� The number of output symbols j W j

� The state-to-state transition matrix, consisting of j S j � j S j parameters

� An output distribution over symbols for each state: j W j parameters for each of the

j S j states.

In total, this amounts to S(S � 1) free parameters for the transition probabilities, and

W � 1 free parameters for the output probabilities.
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Figure 2.2: A Hidden Markov Model for text categorization.

2.3.1 Urns and mugs

Imagine an urn containing an unknown fraction b(� ) of white balls and a fraction b(� ) of

black balls. If in drawing T times with replacement from the urn we retrieve k white balls,

then a plausible estimate for b(� ) is k=T. This is not only the intuitiv e estimate but also

the maximum likelihood estimate, as the following line of reasoningestablishes.

Setting 
 � b(� ), the probabilit y of drawing n = k white balls when sampling with

replacement T times is

p(n = k) =

 
T
k

!


 k (1 � 
 )T � k

The maximum likelihood value of 
 is

argmax



p(n = k) = argmax



 
T
k

!


 k (1 � 
 )T � k

= argmax



 

log

 
T
k

!

+ k log 
 + (T � k) log(1 � 
 )

!

Di�eren tiating with respect to 
 and setting the result to zero yields 
 = k=T, as expected.

Now we move to a more interesting scenario,directly relevant to Hidden Markov Models.

Say we have two urns and a mug:
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Denote:

bx (� ) = fraction of white balls in urn x

bx (� ) = fraction of black balls in urn x (= 1 � bx (� ))

a1 = fraction of 1's in mug

a2 = fraction of 2's in mug (= 1 � a1)

To generatea single output symbol using this model, we apply the following procedure:

First, draw a number x from the mug; then draw a ball from urn x. This processrepresents

a mixture model: the urns are states, and the black and white balls are outputs. The

probabilit y of drawing a single black ball is:

p(� ) = p(urn 1)p(� j urn 1) + p(urn 2)p(� j urn 2)

The processis alsoan HMM: the mug represents the hidden state and the balls represent

the outputs. An output sequenceconsisting of white and black balls can arise from a large

number of possiblestate sequences.

Algorithm 3: EM for urn density estimation

1. (Initialization ) Pick a starting value a1 2 (0; 1)

2. Repeat until convergence:

(E-step) Computeexpected number of draws from urn 1 and 2

in generating o: c(1) def= E[# from urn 1 j o]

(M-step) a1  
c(1)

c(1) + c(2)

One important question which arisesin working with models of this sort is to estimate

maximum-likelihood valuesfor the model parameters,given a sampleo = f o1; o2; : : : oT g of
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output from the model. For simplicit y, we'll restrict attention to calculating a maximum-

likelihood estimate for a1, the fraction of 1's in the mug. In this setting, one can think of

the EM algorithm as a procedureof iterativ ely re�ning an estimate for a1.

2.3.2 Three problems

The previous example was still too simple, since the underlying Markov chain was zeroth

order, meaning that the probabilit y of drawing a number from the urn is independent of

the previously-drawn number. One can add \history" to the setup by introducing two more

mugs:

� �
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The generative model corresponding to this setting is:

1. Draw a number x from mug 0

2. Draw a ball from urn x

3. Draw a new number x̂ from mug x

4. Set x  x̂ and go to step 2.

We'll denote by ax1 the fraction of 1's in mug x; that is, the probabilit y that after

drawing from mug x, the next urn drawn from is 1.

The three canonical HMM-related problems are:

I. Probability calculation: What is the probabilit y that an HMM with known parameters

will generateo = f o1; o2 : : : oT g as output?

I I. Decoding: What's the most likely state sequencethat an HMM of known parameters

followed in generating o = f o1; o2 : : : oT g?



42 Mathematical machinery

I I I. Parameter estimation: Given that an HMM with unknown parameters generated

the output sequenceo = f o1; o2; : : : oT g, estimate maximum-likelihood values for the

HMM's parameters.

I. Probabilit y calculation

To begin, we'll addressan easierversion of the �rst problem: the joint probabilit y of an

output sequenceand a hidden sequence,such as

K
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This probabilit y is

p(o; s) = as0 bs0 (o1)
TY

i =2

asi � 1si bsi (oi ) (2.12)

The �rst term inside the product in (2.12) is the probabilit y that the i th state is si , given

that the previous state was si � 1; the secondterm is the probabilit y of generating oi from

state si .

Calculating the probabilit y of just the output sequencealone, however, requiresat �rst

glancesumming (2.12) over the 2T di�eren t possiblehidden state sequences:

p(o) =
X

s
as0 bs0 (o1)

TY

i =2

asi � 1si bsi (oi ) (2.13)

Such an expensive operation is infeasible,but thankfully there is a more e�cien t way, using

dynamic programming.

Figure 2.3 shows the trellis corresponding to all 2T possiblestate sequences.At this

point it is useful to introduce two helper variables:

� x
i

def= p(o1o2 : : : oi � 1; si = x)

� x
i

def= p(oi oi +1 : : : oT j si = x)

In words, � x
i is the probabilit y that the HMM generatesthe �rst i � 1 symbols from the
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Figure 2.3: A trellis depicting, in compact form, all possible hidden state sequencesin

generating a sequenceof T balls from the urns and mugs model.

output sequenceo, and after doing so winds up in state x. And � x
i is the probabilit y that,

starting from state x, the HMM generatesthe su�x of o starting with oi .

Notice that p(o) = � 1
i � 1

i + � 2
i � 2

i for any i 2 f 1; 2; : : : Tg. In particular,

p(o) = � 1
T + � 2

T : (2.14)

Notice also that � and � can be expressedrecursively:

� 1
i = � 1

i � 1b1(oi )a11 + � 2
i � 1b2(oi )a21 (2.15)

Equation (2.15) implies a linear-time calculation for � T
1 and � T

2 , which in turn implies

(by inspecting (2.14)) a linear-time calculation for p(o).

I I. Deco ding

We now pursue the secondquestion: what's the most likely state sequencethat a known

HMM follows in generating o? Of course, one could attempt to calculate p(o; s) for all

2T possiblepaths s, but there is a better way|kno wn as the Viterbi algorithm [29]. This

algorithm relies on the Markovian property of the state machine in the following way:

The most probable path ending in state x at time i contains, as its �rst i � 1

entries, the most probable path ending at somestate at time i � 1.

To begin, imagine that we know the most likely state sequenceending in state 1 at time

i � 1, and also the most likely state sequenceending in state 2 at time i � 1:
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Furthermore, denote by � the joint probabilit y p(o1o2 : : : oi � 1; s1s2 : : : si � 21) that the

HMM follows the optimal path up to state 1 at time i � 1, during which it generatesthe

�rst i � 1 symbols of o. Similarly, let � be the probabilit y that the HMM follows the optimal

path to state 2 at time i � 1 and generatesthe appropriate pre�x of o in so doing.

What is the best path ending at time i and state 1? By the underlying Markov property

of the HMM, the only possibleanswers are represented by the dotted lines:
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The lighter-colored candidate hasprobabilit y �a 21 and the darker-coloredcandidate has

probabilit y �a 11. Calculating the optimal path ending in state 1 at time i therefore requires

a number of calculations which is only linear in the number of states, and (by applying the

recursionT times) calculating the optimal path in generatingall T symbols from o requires

time proportional to T j s j. This recursive procedure is an implementation of the Viterbi

algorithm [29].

I I I. Parameter estimation

We will now addressthe third question|that of parameter estimation. For simplicit y, we'll

focus attention on estimating the maximum-likelihood value for b1(� ): the probabilit y of

drawing a black ball from the �rst urn. (The other parametersare ax1 for x 2 f 0; 1; 2g.)

To begin, denote by 
 t (1) the posterior probabilit y that the HMM is in state 1 at time

t while producing the output sequenceo. In terms of previously-de�ned quantities, 
 t (1) is


 t (1) = p(st = 1 j o) =
� 1

t � 1
t

p(o)
: (2.16)
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Given the observed output sequencef o1o2 : : : oT g, the maximum-likelihood estimatesof

the numerator and denominator in the last term above may be written as

p(output = � ; state = 1) =
P

t :ot = � 
 t (1)
T

p(state = 1) =
P

t 
 t (1)
T

Combining the above last three equalities, we have

b1(� ) =
p(output = � ; state = 1)

p(state = 1)

=
P

t :ot = � 
 t (1)
P

t 
 t (1)
(2.17)

Notice that in (2.16) and (2.17), 
 t (1) is expressedin terms of b1(� ) and b1(� ) is ex-

pressedin terms of 
 t (1). So we cannot calculate these quantities in closed form. But

the mutually recursive de�nitions suggestan iterativ e algorithm, known as Baum-Welch or

forward-backward estimation, summarizedin Algorithm 4.

Algorithm 4: Baum-Welch

1. (Initialization: ) Pick a starting value b1(� ) 2 (0; 1)

2. Repeat until convergence:

(E-step) Compute the expected number of times � is

generated from state 1 in producing o:

E [� j 1] =
X

t : ot = �

 t (1)

(M-step) Calculate b1(� ) according to (2.17)

As an instantiation of the EM algorithm, the Baum-Welch procedure inherits the at-

tractiv e convergenceguarantees of EM. The reader is referred to [5, 24, 69] for further

details.
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Chapter 3

Do cumen t ranking

This chapter applies statistical machine learning to the task of ordering docu-

ments by relevance to a query. The approach contains two main ingredients:

�rst, novel probabilistic models governing the relation between queriesand rele-

vant documents, and second, algorithms for estimating optimal parameters for

these models. The architecture and performance of a proof-of-concept system,

called weaver , is described. On a suite of datasetswith very di�er ent char-

acteristics, weaver exhibits promising performance, often with an e�ciency

approaching real-time. This chapter gives an information-theoretic motivation

for thesemodels, and showshow they generalize the recently proposed retrieval

methods of languagemodeling and Hidden Markov Models.

3.1 Problem de�nition

The goal in this chapter is to construct probabilistic models of languageto addressa core

problem in information retrieval: ranking documents by relevanceto a query.

The approach relies on the notion of document distil lation. When a person formulates

a query to an information retrieval system, what he is really doing (one could imagine) is

distilling an information need into a succinct form. This distillation processbeginswith a

document|con taining the normal super
uence of textual fat and connective tissue such as

prepositions, commasand so forth|and endswith a query, comprisedof just thoseskeletal

index terms characterizing the document. It may be that some of these index terms do

not even appear in the document: one could easily imagine a newspaper article containing

the words Pontiff , massand confession , but never Catholicism , the single word which

might best typify the document.

47
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The strategy this chapter takesin assessingthe relevanceof a document to a query is to

estimate the likelihood that a personwould distill the document into the query. This \cart

beforethe horse" view of retrieval is exactly that introducedin Section2.1. This perspective

is obviously not a faithful model of how a personformulates a query, yet it turns out to be

a useful expedient. In formulating probabilistic models of the retrieval process,it appears

easier to view the problem as a compressionfrom document to query than an expansion

from query to document. Moreover, the query-generative models proposed here can ac-

count, in a natural and principled way, for many of the featuresthat are critical to modern

high performanceretrieval systems,including term weighting, query expansion,and length

normalization. A prototype ranking system called weaver which employs these models

demonstratesvery promising empirical behavior, without sacri�cing the nimble execution

of more traditional approaches.

An ideal document retrieval system would contain at least enough linguistic sophis-

tication to account for synonymy e�ects|to know, for instance, that Pontiff and Pope

are related terms, and a document containing one may be related to a query containing

the other. One could imagine equipping a relevancy ranking system with a database of

such relations. Such a system would be more sophisticated, and hopefully more accurate,

than one which adjudicated relevance solely on the basis of word overlap. Loosely speak-

ing, this is the approach described here; this chapter contains algorithms for automatically

constructing this databaseof word relations from a collection of documents.

In a sense,weaver has a pedigreein statistical translation, which concernsitself with

how to mine large text databasesto automatically discover such semantic relations. Brown

et al. [13, 14] showed, for instance, how a computer can \learn" to associate French terms

with their English translations, given only a collection of bilingual French/English sentences.

The Candide system[6], an experimental project at IBM Research in the early 1990s,used

the proceedingsof the Canadian parliament, maintained in both English and French, to

automatically learn to translate betweentheselanguages.

3.1.1 A conceptual model of retriev al

In formulating a query to a retrieval system, a user beginswith an information need. This

information needis represented asa fragment of an \ideal document"|a portion of the type

of document that the user hopes to receive from the system. The user then translates or

distills this ideal document fragment into a succinct query, selectingkey terms and replacing

someterms with related terms: replacing pontiff with pope, for instance.

Summarizing the model of query generation,
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1. The user has an information need= .

2. From this need,he generatesan ideal document fragment d = .

3. He selectsa set of key terms from d= , and generatesa query q from this set.

A reader might at this point be somewhatba�ed at the notion that when ful�lling an

information need,a personseeksa document most similar to a fragment d = he has in his

mind. After all, if the user knewwhat he was looking for, he wouldn't have the information

needin the �rst place. What the user seeksis, in fact, exactly what he doesn't know.

To escape this apparent contradiction, we need to clearly de�ne the notion of \user."

For the purposesof this discussion,a user is someonewho has a rough idea about what

the desired document might contain. The user isn't the person who wants to learn the

circumstancesof Caesar'sdeath, but rather the referencelibrarian who knows Caesarwas

assassinatedby Longinus and Brutus on March 15, 44 B.C., and who would like a list of

documents which roughly match the ideal document fragment Caesar's assassination

by Longinus and Brutus on March 15.

One can view the imaginary processof query formulation as a corruption of the ideal

document. In this setting, the task of a retrieval system is to �nd those documents most

similar to d= . In other words, retrieval is the task of �nding, among the documents com-

prising the collection, likely preimagesof the user's query. Figure 3.1 depicts this model of

retrieval in a block diagram.

information
need

Retrieval Search
Engine

translation model
Document-queryDocument

generation model query

documents
retrieved user's

query

ideal document
fragment

= d= q

f dg q

Figure 3.1: A conceptual view of query generation (above) and retrieval (below)

Figure 3.1 is drawn in a way that suggestsan information-theoretic perspective. One

can view the information need= asa signal that getscorrupted as the userU distills it into

a query q. That is, the query-formulation processrepresents a noisy channel, corrupting

the information needjust as a telephonecable corrupts the data transmitted by a modem.

Given q and a model of the channel|ho w an information needgetscorrupted into a query|
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the retrieval system'stask is to identify thosedocuments d that best satisfy the information

needof the user.

More precisely, the retrieval system's task is to �nd the a posteriori most likely docu-

ments given the query; that is, those d for which p(d j q; U) is highest. By Bayes' law,

p(d j q; U) =
p(q j d; U) p(d j U)

p(q j U)
: (3.1)

Sincethe denominator p(q j U) is �xed for a given query and user, one can ignore it for the

purposeof ranking documents, and de�ne the relevance� q (d) of a document to a query as

� q (d) = p(q j d; U)
| {z }

query-dep enden t

� p(d j U)
| {z }

query-indep enden t

: (3.2)

Equation (3.2) highlights the decomposition of relevance into two terms: �rst, a query-

dependent term measuring the proximit y of d to q, and second,a query-independent or

\prior" term, measuring the quality of the document according to the user's general pref-

erencesand information needs.Though this chapter assumesthe prior term to be uniform

over all documents, it's likely that in real-world retrieval systemsthe prior will be crucial

for improved performance, and for adapting to a user's needsand interests. At the very

least, the document prior can be used to discount \dubious" documents|those that are

very short, or perhapsdocuments in a foreign language.1

Section3.3 will contain a detailed formulation of two parametric models p(q j d), but as

a preview, we outline here the four steps to model construction.

� Data collection: Start with a corpusof (d; q) pairs, whereeach pair consistsof a query

and a document relevant to the query. Acquiring a collection of (d; q) pairs from which

to learn the document-to-query distillation model is a matter requiring somecreativit y.

Insofar as the distillation model has a large number of parameters,robust estimation

of these parameters requires a large document/query collection. This chapter will

make use several di�eren t datasets. But in general it may be unrealistic to assume

the existenceof a large collection of query-document pairs, and so this chapter also

introducesa strategy for overcoming a lack of labeled training data. Section 3.4 will

describe a technique for synthesizing (d; q) pairs from a collection consisting solely of

documents|unlab eled data, in other words|using statistical sampling.

1As a reminder, boldface letters refer to sequencesof words|suc h as documents or queries|while italic

letters denote single terms. So p(q j d) is the probabilit y of generating a single query word from an entire

document d, while p(q j d) is the probabilit y that, in generating an entire query from the document d, a

user selectedq.
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� Model selection: The core ingredient of the statistical distillation model introduced

here is a square stochastic matrix of word-to-word \relatedness" probabilities. For

a vocabulary of 20; 000 words, the matrix has size 400; 000; 000, or 1:6GB if each

parameter is a four-byte 
oating point value. Of course, sparsematrix techniques

in practice reduce this size dramatically, and in fact Section 3.6 describes a lossy

compressiontechnique wherein the matrix requiresspaceonly linear in the sizeof the

vocabulary.

� Parameter estimation: Given a collection of query, document pairs, use standard

machine learning algorithms to estimate optimal parameter valuesfor the parametric

model p(q j d)|a model of the likelihood that a sequenceof words q is a distillation

of (a translation of) a document d.

� Search: Given a learned model p(� j d) and a new query q, order documents by rele-

vanceto q by ranking them by decreasingp(q j d).

For an empirical evaluation of weaver , we report on experiments conducted on three

di�eren t datasets: newswirearticles drawn from the TREC corpus [84], a set of user trans-

actions collected from the Lycos search engine,and a set of personalemails.

3.1.2 Quan tifying \relev ance"

The traditional IR view of \relevance to a query" is a property that a document may or

may not enjoy. In other words, the relevanceof a d to a given query q may be thought of

as a binary random variable:

� q (d) =

(
1 if d is relevant to q

0 otherwise

The notation suggestsa functional dependencejust on d and q, but in fact � q (d) may

depend on a number of other factors, including the person U using the system. After all,

relevance is a subjective notion, and peoplemay disagreeabout the \true" value of � q (d).

Treating the relevance of a document to a query as a binary random variable has a

long history in information retrieval. The earliest referenceto a probabilistic approach

to retrieval appears to be in Maron and Kuhns [58]. In their seminal work on relevance,

Robertson and Sparck-Jones refer to the \Basic Question" of document ranking: \What

is the probabilit y that this document is relevant to this query?" [74]. They proposethat

the optimal document ranking algorithm relies on this probabilit y of relevance. Their well-

known \axiom" in IR is known as the Probability Ranking Principle :
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If retrieved documents are ordered by decreasing probability of relevance on the

data available, then the system's e�ectiveness is the best to be gotten for the

data.

The industry-standard t�df scoregrew out from this philosophy; it was originally de-

signedto distinguish betweendocuments for which � q (d) = 1 and thosefor which � q (d) = 0.

This chapter also takes the Probabilit y Ranking Principle as axiomatic, though it pro-

posesa novel way to think about|and calculate|do cument relevance. weaver 's retrieval

strategy involves calculating a score,denoted by p(d j q), for estimating the relevance of

document d to query q. Unlike the t�df score,p(d j q) is a probabilit y distribution over

documents, and therefore
P

d p(d j q) = 1. One can interpret p(d j q) as the probabilit y

that document d is the most relevant document in the collection for q. One could argue

that more is required of p(d j q) than of � q (d): the former must imposea total ordering

on documents, while the latter must only reveal a yes/no value for each document. In fact,

one can reducea p(d j q) ranking to a � q (d) ranking, given a single real-valued relevance

threshold; i.e., a cuto� value for p(d j q).

3.1.3 Chapter outline

The rest of this chapter will proceedas follows. Section3.2 lays the groundwork by de-

scribing the languagemodeling approach to retrieval. Section3.3 introducestwo statistical

modelsgoverning the distillation of documents to queries. Section3.4 explains how onecan

estimate, via the EM algorithm, the parameters of such models automatically using just

a collection of documents. Section3.5 discussesthe results of a set of experiments using

three datasets: TREC newswiredata, user transactions from a large commercialweb search

engine,and a collection of personalemail correspondences,and alsocomparesthe proposed

ranking algorithm to a more traditional vector-spacetechnique: t�df with Rocchio-based

automatic query expansion.

The responsibilit y of a large-scaledocument retrieval systemis to �nd thosedocuments

most relevant to a query in a spritely manner. One might think this needfor speedprecludes

the useof \in teresting" modelsfor relevancescoring;after all, a retrieval systemcan't a�ord

to get boggeddown evaluating a complicated relevancemetric for each document. However,

Section3.6showshow, with a certain mix of preprocessing,time-spacetradeo�s, and e�cien t

data structures, weaver can can have its cake and eat it too: e�cien t retrieval with a non-

trivial relevance function. Finally, Section3.7 will suggest how the proposed statistical

machine learning approach may be applicable to cross-languageretrieval.
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3.2 Previous work

The �elds of information retrieval, bibliometrics, and languageprocessinghave been well

populated over the years with research identifying itself as probabilistic in nature. As

mentioned above, probabilistic approachesto IR date back at least forty years. Rather than

attempting a survey of all this work, this section instead focus on two recently introduced

probabilistic approachesmost similar in spirit to the approach proposedin this chapter.

3.2.1 Statistical machine translation

The Candide pro ject was a research project undertaken at IBM Thomas J. Watson Re-

search Laboratories in the early 1990sto assesshow far statistical machine learning tech-

niques could go in constructing an automatic language translation system [6]. Starting

from the proceedingsof the Canadian parliament|con veniently transcribed in both En-

glish and French|the Candide system calculated parameter values for a statistical model

of language-to-languagetranslation. An electronically transcribed version of the Canadian

parliament proceedings,known as Hansards, comprise several hundred million words and

are an invaluable resourcefor machine learning and translation. Not only the retrieval sys-

tem described in this chapter, but also the summarization system described in Chapter 4

owe an intellectual debt to Candide, both in the generalsenseof parameter estimation using

text corpora, and, more speci�cally , in using the EM algorithm as a learning paradigm.

3.2.2 Language modeling

Statistical models of languageare in common use in many language-relatedtechnologies,

including automatic speech and handwriting recognition [42]. Ponte and Croft [67, 68] have

recently proposedusing languagemodels for retrieval in the following way.

To each document in the collection, associate a probabilit y distribution l (� j d) over

words|in other words, a language model. Now imagine compressingthe document d

by selecting a size m for the smaller document, and then drawing m words at random

from d. The probabilit y that this processwill result in the new compresseddocument

c = f c1; c2 : : : cm g is

p(c j d) = � (m)
mY

i =1

l (ci j d) (3.3)

Here � (�) is a distribution over lengths for the resulting compresseddocument.

The idea behind the languagemodeling approach to retrieval is to equate the relevance

of a document to a query with the probabilit y that the query would be generatedby this
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processof compressionapplied to the document. Here again one can see,as in Section 3.1,

a query-generative view of retrieval.

In the most straightforward implementation, the probabilit y that a document will gen-

erate a word w is exactly the frequency of w in the document. But this isn't quite right,

becauseit suggeststhat a document not containing w should never generate w. This

amounts to saying that all documents not containing every word in the query are equally

irrelevant| l (q j q) = 0|to the query.

One can avoid this situation by linearly interpolating or \smoothing" the frequency-

basedestimate with a model l (� j D) estimated using the entire collection D of documents,

rather than just d:

l � (w j d) = � l (w j d) + (1 � � )l (w j D) (3.4)

The value of � can be estimated using standard machine learning techniques on a col-

lection of data separatefrom that usedto determine the l (� j d) and l (� j D) distributions.

With smoothing, (3.3) becomes

l (q j d) =
mY

i =1

� l (qi j d) + (1 � � )l (qi j D) (3.5)

The predictivestatistical modelsusedin many language-relatedtechnologiesarecontext-

sensitive, meaning they assessthe likelihood of a word appearing in text by inspecting the

preceding words: apple is more likely when the previous word was juicy than when the

previous word was, say, hyperbolic . However, the statistical model l (� j d) is context-

independent, assumingnaively that the author of a document generatesthe document by

drawing words independently from a \bag of words." The issueof context-dependencecomes

up again in Chapter 4, but in that casethe problem is addressedby modeling short-range

dependenciesbetweenwords in text.

3.2.3 Hidden Mark ov Mo dels

This sectiondiscussesanother recently-prop osedquery-generative model for retrieval which,

although employing essentially the samescoringformula asthe languagemodeling approach,

arrivesat this formula from a very di�eren t direction.

Miller et al. [61] proposeusing HMMs for retrieval in the following way. To each docu-

ment d2 D in the collection, associate a distinct two-state HMM. The �rst of thesestates

generateswords w from the document d itself according to l (w j d): if 10 percent of the
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words in d are w, then when the automaton is in this state it outputs the symbol w with

probabilit y 1=10. The secondstate generateswords according to l (w j D), the frequencyof

w in the collection overall. The transitions within a two-state HMM are in general given

by a two-by-two transition matrix, but by assuming the probabilit y of moving to a state

is independent of the current state, one can capture the transition probabilities using two

values f a1; a2g, where ai denotesthe probabilit y that the machine is in the i th state. Fig-

ure 3.2 illustrates such a two-state automaton. This machine is essentially identical to the

\t wo urns and a mug" exampleof Section 2.3.1.
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Figure 3.2: An idealized two-state Hidden Markov Model for document retrieval. To each

document corresponds a distinct such automaton. The relevance of a document d to a

queryq is proportional to the likelihood that the probabilistic automaton for d will produce

q. Depicted is an imaginary automaton corresponding to a document about golf. While in

the left (document) state the automaton outputs words accordingto their frequencyl (� j d)

in the document, and while in the right (collection) state, it outputs words according to

their frequency l (� j D) in the collection.

As with the languagemodeling approach, document relevance for a query is equated

with p(q j d): the probabilit y, in this case, that the automaton for d will generate the

query q = f q1; q2; : : : qmg ::

p(q j d) =
mY

i =1

a1l (qi j d) + (1 � a1)l (qi j D) (3.6)

The HMM approach appears to be quite extensible: one could add more states, use a
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more sophisticated transition model, and account for word context by allowing states to

output word sequenceslike bigrams (pairs of words) or trigrams. But in its two-state form

with state-independent transitions, the HMM is in fact equivalent to the languagemodeling

technique (with smoothing); this correspondenceis obvious by inspection of (3.5) and (3.6).

* * *

The languagemodeling and Hidden Markov Model approachestogether represent a novel

and theoretically motivated \query-generative" approach to retrieval. Moreover, recent

work has established the empirical performance of these techniques to be competitiv e or

in somecasessuperior to standard t�df -basedretrieval. However, theseapproachesdo not

address(except asa post-processingstep not integrated into the overall probabilistic model)

the important issueof word-relatedness: accounting for the fact that Caesar and Brutus

are related concepts. The word-relatednessproblem has received much attention within

the document retrieval communit y, and researchers have applied a variety of heuristic and

statistical techniques|including pseudo-relevance feedback and local context analysis [28,

89].

This chapter will introduce a technique which generalizesboth the LM and HMM ap-

proaches in such a way that the resulting model accounts for the word-relatednessphe-

nomenon. Interpolating a document-model with a collection-wide distribution over words

(as the LM and HMM approachespropose)ensuresthat no document assignsa zeroproba-

bilit y to any word, but it doesnot acknowledgethat a document containing car is likely to

generatea query containing the word automobile . The next section will develop a general

statistical framework for handling theseissues.

3.3 Mo dels of Do cumen t Distillation

Supposethat an information analyst is given a newsarticle and asked to quickly generate

a list of a few words to serve as a rough summary of the article's topic. As the analyst

rapidly skims the story, he encounters a collection of words and phrases.Many of thesehe

rejectsas irrelevant, but his eyesrest on certain key terms ashe decideshow to render them

in the summary. For example, when presented with an article about Pope John Paul I I's

visit to Cuba in 1998,the analyst decidesthat the words Pontiff and Vatican can simply

be represented by the word Pope, and that Cuba, Castro and island can be collectively

referred to as Cuba.

This section presents two statistical models of this query formation process,making

speci�c independenceassumptionsto derive computationally and statistically e�cien t algo-

rithms. While our simple query generationmodelsare mathematically similar to thoseused
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for statistical translation of natural language[14], the duties of the modelsare qualitativ ely

di�eren t in the two settings. Document-query distillation requires a compressionof the

document, while translation of natural languagewill tolerate little being thrown away.

3.3.1 Mo del 1: A mixture model

A \distillation model" refersto a conditional probabilit y distribution p(q j d) over sequences

of query words q = f q1; q2 : : : ; qm g, given a document d = f d1; d2; : : : ; dng. The value

p(q j d) is an estimate of the probabilit y that, starting from the document d, a personwill

distill d into q.

Imagine that a persondistills a document d into a query q as follows:

� Choosea length m for the query, according to a samplesizemodel � (m j d).

� For each position j 2 [1: : : m] in the query:

{ Choosea word di 2 d in the document from which to generate the next query

word.

{ Generate the next query word by \translating" di |i.e., by sampling from the

distribution � (� j di ).

Following Brown et al. [13], an alignment between sequencesof words is a graphical

representation of which document words are responsible for the words in the query. One

can also include in position zero of the document an arti�cial \n ull word," written <null> .

The purposeof the null word is to generatespuriousor content-free terms in the query, like

the words in the phraseFind all of the documents: : :.

Using the alignment a, p(q j d) decomposesas

p(q j d) =
X

a
p(q; a j d) =

X

a
p(q j a;d)p(a j d) (3.7)

Imagining that each query word arisesfrom exactly one document word, (3.7) becomes

p(q j a;d) =
mY

i =1

� (qi j dai ) (3.8)

Here dai is the document word aligned with the i th query word, and � (q j d) is a parameter

of the model|the probabilit y that the document word d is paired with the query word
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Figure 3.3: A word-to-word alignment of an imaginary document/query pair. The score

of this single alignment, p(q; a j d), is a product of individual � (qj j da j ) word-to-word

\relation" probabilities. Calculating the relevanceof d to q involvessumming the scoreof

all alignments.

q in the alignment. Figure 3.3 depicts one of 518 possible alignments of an imaginary

document/query pair.

If q contains m words and d contains n + 1 words (including the null word), there are

(n + 1)m alignments between d and q. Assuming that all these alignments are a priori

equally likely, one can write

p(q j d) =
p(m j d)
(n + 1)m

X

a

mY

i =1

� (f i j eai ) (3.9)

Given a collection of document/query pairs C = f (q1; d1); (q2; d2); (q3; d3) : : :g, the

likelihood method suggeststhat one should adjust the parameters of (3.9) in such a way

that the model assignsas high a probabilit y as possibleto C. This maximization must be

performed, of course, subject to the constraints
P

f � (q j d) = 1 for all words d. Using

Lagrangemultipliers,

� (q j d) = � � 1
X

a
p(q; a j d)

mX

j =1

� (q; qj )� (d;daj ); (3.10)
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where � is the Kronecker delta function.

The parameter � (q j d) appearsexplicitly in the lefthand sideof (3.10), and implicitly in

the right. By repeatedly solving this equation for all pairs (q; d) (in other words, applying

the EM algorithm), one eventually reachesa stationary point of the likelihood.

Equation (3.10) contains a sum over alignments, which is exponential and suggeststhat

computing the parameters in this way is infeasible. In fact, this is not the case,since

X

a

mY

i =1

� (qi j dai ) =
mY

i =1

nX

j =0

� (qi j dj ) (3.11)

This rearranging meansthat computing
P

a p(q; a j d) requires only �( mn) work, rather

than �( nm ).

We have already adopted the notation that m � j q j. Similarly, we will denote the

length of the document by n � j d j. The probabilit y p(q j d) is then the sum over all

possiblealignments, given by

p(q j d) =
� (m j d)
(n + 1)m

nX

a1=0

� � �
nX

am =0

mY

j =1

� (qj j daj ): (3.12)

(As a reminder, the rangeof a is from zeroto n, rather than 1 to n, becausethe arti�cial

null word lives in position zero of every document.)

A little algebraicmanipulation shows that the probabilit y of generatingquery q accord-

ing to this model can be rewritten as

p(q j d) = � (m j d)
mY

j =1

�
n

n + 1
p(qj j d) +

1
n + 1

� (w j <null> )
�

(3.13)

where

p(qj j d) =
X

w
� (qj j w) l (w j d) ;

with the document languagemodel l (w j d) given by relative counts. Thus, the query terms

are generatedusing a mixture model|the document languagemodel provides the mixing

weights for the word-relation model, which has parameters � (qj w). An alternative view

(and terminology) for this model is to describe it as a Hidden Markov Model, where the

states correspond to the words in the vocabulary, and the transition probabilities between

statesare proportional to the word frequencies.The reader is invited to note the di�erences

betweenthis useof HMMs, depicted in Figure 3.4, and the two-state HMM of Figure 3.2.

The simplest versionof Model 1, henceforthwritten asModel 0, is the onefor which each

word w can be mapped only to itself; that is, the word-relation probabilities are \diagonal":

� (qj w) =
�

1 if q = w

0 otherwise.
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Figure 3.4: The document-to-query distillation processof Model 1 may be interpreted as a

Hidden Markov Model: states represent words in the document, and the automaton moves

to a state corresponding to word w according to the frequency of w in d. The output

distribution at state w is the EM-trained distribution over words: � (qj w) measureshow

closelyword q is related to word w.

In this case,the query generation model is given by

p(qj d) =
n

n + 1
l (q j d) +

1
n + 1

� (qj <null> ) ;

a linear interpolation of the document languagemodel and the background model associated

with the null word.

3.3.2 Mo del 10: A binomial model

This imaginary information analyst, when asked to generatea brief list of descriptive terms

for a document, is unlikely to list multiple occurrencesof the same word. To account

for this assumption in terms of a statistical model, one can assumethat a list of words is

generatedby making several independent translations of the document d into a singlequery

term q, in the following manner. First, the analyst choosesa word w at random from the

document. He choosesthis word according to the document languagemodel l (w j d). Next,

he translates w into the word or phrase q according to the word-relation model � (q j w).

Thus, the probabilit y of choosing q as a representativ e of the document d is

p(qj d) =
X

w 2 d

l (w j d) � (q j w):
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Assumethat the analyst repeats this processn times, where n is chosenaccording to the

samplesizemodel � (n j d), and that the resulting list of words is �ltered to removeduplicates

before it is presented as the summary, or query, q = q1; q2; : : : qm .

Calculating the probabilit y that a particular query q is generatedin this way requiresa

sum over all samplesizesn, and considerthat each of the terms qi may have beengenerated

multiple times. Thus, the processdescribed above assignsto q a total probabilit y

p(q j d) =
X

n
� (n j d)

X

n1> 0

� � �
X

nm > 0

 
n

n1 � � � nm

! mY

i =1

p(qi j d)n i

This expressioncan be calculated e�cien tly using simple combinatorial identities and dy-

namic programming techniques. But instead of pursuing this path, assumethat the number

of samplesn is chosenaccording to a Poissondistribution with mean � (d):

� (n j d) = e� � (d ) � (d)n

n!
:

Making this assumption meansthat p(q j d) can be rewritten as

p(q j d) = e� � (d )
X

n
� (d)n

X

n1> 0

: : :
X

nm > 0

1
n1!n2! : : : nm !

mY

i =1

p(qi j d)n i

Note that sincen =
P m

i=1 n i ,

� (d)n = � (d)n1+ n2+ :::nm

Using this fact, distribute the � (d)n over the inner sumsand do away with the sum over n:

p(q j d) = e� � (d )
X

n1> 0

: : :
X

nm > 0

1
n1!n2! : : : nm !

mY

i =1

p(qi j d)n i � (d)n i

Rewriting the sum over n1,

p(q j d) = e� � (d )
X

n1

1
n1!

p(q1 j d)n1
X

n2> 0

: : :
X

nm > 0

�
1

n2! : : : nm !

� mY

i =2

p(qi j d)n i � (d)n i

Similarly, one can expand the rest of the n i , yielding

p(q j d) = e� � (d )
mY

i =1

X

n i

1
n i !

p(qi j d)n i � (d)n i

Finally, apply the Taylor seriesexpansionof ex to get

p(q j d) = e� � (d )
mY

i =1

�
e� (d)p(qi jd ) � 1

�
; (3.14)
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This formula shows that the probabilit y of the query is given as a product of terms.

Yet the query term translations are not independent, due to the processof �ltering out the

generatedlist to remove duplicates. The model expressedin equation (3.14) will henceforth

be denoted as Model 10.

Model 10 has an interpretation in terms of binomial random variables. Supposethat a

word w does not belong to the query with probabilit y � w = e� � (d )p(w j d) . Then Model 10

amounts to 
ipping independent � w-biasedcoins to determine which set of words comprise

the query [36]. That is, the probabilit y p(q j d) of equation (3.14) can be expressedas

p(q j d) =
Y

w 2 q

(1 � � w)
Y

w 2= q

� w :

This model wasinspired by another IBM statistical translation model, onethat wasdesigned

for modeling a bilingual dictionary [15].

Model 10 also has an interpretation in the degeneratecaseof diagonal word-relation

probabilities. To seethis, let us make a further simpli�cation by �xing the averagenumber

of samplesto bea constant � independent of the document d, and supposethat the expected

number of times a query word is drawn is lessthan one,so that maxi � l (qi j d) < 1. Then to

�rst order, the probabilit y assignedto the query according to Model 10 is a constant times

the product of the languagemodel probabilities:

p(q = q1; : : : ; qm j d) � e� � � m
mY

i =1

l (qi j d) : (3.15)

Since the mean � is �xed for all documents, the document that maximizes the righthand

side of the above expressionis that which maximizes
Q m

i=1 l (qi j d). And this should look

familiar: it's proportional to the languagemodeling scoregiven in 3.3.

3.4 Learning to rank by relev ance

The key ingredient in the models introduced in the previous section is the collection of

word-relation probabilities � (qj w). A natural question to ask at this point is how to obtain

theseprobabilities. One strategy is to learn thesevaluesautomatically from a collection of

data, using the likelihood criterion. Ideal would be a collection of query/document pairs to

learn from, obtained by human relevance judgments; in other words, a collection of pairs

(q; d) where in each pair the document d is known to be relevant to the query q. We report

in Section 3.5 on the use of several di�eren t datasets for this purpose. But in practice it

may occur that no suitably large collection of query/document pairs exists from which to

robustly estimate the model parameters, and so here we describe a method for learning

valuesfrom just a collection of documents, which is considerablyeasierto acquire.
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3.4.1 Synthetic training data

From a collection of documents, one can teaseout the semantic relationships among words

by generatingsynthetic queriesfor a large collection of documents and estimating the word-

relation probabilities from this synthetic data.

At a high level, the idea is to take a document and synthesize a query to which the

document would be relevant. There are a number of candidate methods for synthesizing a

query from a document. One could samplewords uniformly at random from the document,

but this scheme would generatequeriescontaining a disproportionate number of common

words like the, of, and, but . Preferable would be a sampling algorithm biased in favor

of words which distinguish the document from other documents.

To explain the rationale for the scheme applied here, we return to the �ctitious infor-

mation analyst, and recall that when presented with a document d, he will tend to select

terms that are suggestive of the content of the document. Supposenow that he himself

selectsan arbitrary document d from a databaseD, and asksus to guess,basedonly upon

his summary q, which document he chose. The amount by which one is able to do bet-

ter, on average, than randomly guessinga document from D is the mutual information

I (D ; Q) = H (D) � H (D j Q) between the random variables representing his choice of doc-

ument D and query Q [42]. Here H (D) is the entropy in the analyst's choice of document,

and H (D j Q) is the conditional entropy of the document given the query. If he is playing

this gamecooperatively, he will generatequeriesfor which this mutual information is large.

With this gamein mind, onecantakea collection of documents D and, for each document

d 2 D, compute the mutual information statistic [42] for each of its words according to

I (w; d) = p(w; d) log
p(w j d)
p(w j D)

:

Here p(w j d) is the probabilit y of the word in the document, and p(w j D) is the probabilit y

of the word in the collection at large. By scaling these I (w; d) values appropriately, one

can construct an arti�cial cumulativ e distribution function ~I over words in each document.

Drawing m � � (� j d) random samplesfrom the document according to this distribution

results in a query q = q1; : : : ; qm . Several such querieswere generatedfor each document.

In some sense,query generation is just a version of query reformulation, where the

original query is empty. Taking this view brings into scope the large body of work in the

IR communit y on query reformulation. The popular Rocchio relevancefeedback technique,

for instance, is a method for re�ning a query by examining the set of documents known to

be relevant|and also a set known not to be relevant|to that query [75]. We will revisit

query expansiontechniques later in this chapter.
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q � (qj w)
ibm 0.674

computer 0.042
machine 0.022
analyst 0.012
software 0.011

workstation 0.007
stock 0.006
system 0.006

business 0.005
market 0.005

w = ibm

q � (q j w)
defend 0.676
trial 0.015
case 0.012
court 0.011
charge 0.011
judge 0.010

attorney 0.009
convict 0.007

prosecutor 0.006
accuse 0.006

w = defend

q � (qj w)
whittaker 0.535
climber 0.048
everest 0.032
climb 0.023

expedition 0.018
garbage 0.015
chinese 0.015
peace 0.015
cooper 0.013
1963 0.012
w = whittaker

q � (qj w)
solzhenitsyn 0.319
citizenship 0.049

exile 0.044
archipelago 0.030
alexander 0.025

soviet 0.023
union 0.018

komsomolskaya 0.017
treason 0.015

vishnevskaya 0.015
w = solzhenitsyn

q � (qj w)
carcinogen 0.667

cancer 0.032
scientific 0.024

science 0.014
environment 0.013

chemical 0.012
exposure 0.012
pesticide 0.010

agent 0.009
protect 0.008
w = carcinogen

q � (q j w)
unearth 0.816

bury 0.033
dig 0.018

remains 0.016
find 0.012
body 0.010
bone 0.007
death 0.004
site 0.003

expert 0.003
w = unearth

q � (qj w)
pontiff 0.502

pope 0.169
paul 0.065
john 0.035

vatican 0.033
ii 0.028

visit 0.017
papal 0.010
church 0.005
flight 0.004

w = pontiff

q � (q j w)
everest 0.439
climb 0.057

climber 0.045
whittaker 0.039
expedition 0.036

float 0.024
mountain 0.024
summit 0.021
highest 0.018
reach 0.015

w = everest

q � (qj w)
wildlife 0.705

fish 0.038
acre 0.012

species 0.010
forest 0.010

environment 0.009
habitat 0.008

endangered 0.007
protected 0.007

bird 0.007
w = wildlife

Figure 3.5: Sample EM-trained word-relation probabilities learned from a corpus of
newswirearticles collected from the NIST-sponsoredTREC project [84].
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3.4.2 EM training

The resulting corpus f (d; q)g of documents and synthetic querieswas usedto �t the prob-

abilities of Models 1 and 10 with the EM algorithm [24], run for only three iterations to

avoid over�tting. A sample of the resulting word-relation probabilities, when trained on

the Associated Press(AP) portion of the TREC volume 3 corpus, is shown in Figure 3.5.

In this �gure, a document word is shown together with the ten most probable query words

that it will map to according to the model.

For these experiments, a 132; 625-word vocabulary was used. In principle, the word-

relatednessmatrix corresponding to this vocabulary has17:5 billion parameters. But enforc-

ing that � (q j d) = 0 for all pairs of word (q; d) which did not co-occur in a query/document

pair in the training corpusreducedthe number of freeparametersto 47; 065; 200. Maximum

likelihood valuesestimatesfor theseparameterswere calculated from a corpus obtained by

generating �v e synthetic mutual information queries for each of the 78,325documents in

the collection.

Speci�cally , the data-generation processwas as follows:

1. Do for each document d 2 D:

� Do for x = 1 to 5:

{ Selecta length m for this query according to � (� j d)

{ Do for i = 1 to m:

� Select the next query word by sampling the scaleddistribution: qi � ~I

{ Record this (d; q) pair

For statistical modelsof this form, smoothing or interpolating the parametersaway from

their maximum likelihood estimatesis important. One can usea linear interpolation of the

background unigram model and the EM-trained word-relation model:

p � (q j d) = � p(qj D) + (1 � � ) p(qj d) (3.16)

= � p(qj D) + (1 � � )
X

w 2 d

l (w j d) � (q j w) :

The weight was empirically set to � = 0:05 on heldout data. The models for the baseline

languagemodeling approach, Model 0, were also smoothed using linear interpolation:

l
 (w j d) = 
 p(w j D) + (1 � 
 ) l (w j d) :

This interpolation weight was �xed at 
 = 0:1. The Poissonparameter for the samplesize

distribution was �xed at � = 15, independent of the document. No adjustment of any
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parameters,other than thosedetermined by unsupervisedEM training of the word-relation

probabilities, was carried out on the experiments described below.

Algorithm 5 is a method for estimating, given a query q and a large collection of doc-

uments d, the relevance� q (d) of each document to the query. The procedure|completely

impractical for large-scaleIR datasets|is to visit each document d in the collection and

compute p(q j d) for each, according to (3.16). Section 3.6 takesup the matter of ranking

documents e�cien tly, using an inverted index and an approximation to p(qj d).

Algorithm 5: \Naiv eRank" document ranking

Input: Query q = f q1; q2; : : : qm g;

Collection of documents D = f d1; d2; : : : dN g;

Word-relation probability � (q j w) for all word pairs q; w

Output: Relevance score � q (d) for each document d

1. Do for each document d2 D in the collection

2. Set � q (d)  1

3. Do for each query word q2 q:

4. Calculate p � (q j d) according to (3.16)

5. Set � q (d) = � q (d) � p � (q j d)

3.5 Exp erimen ts

This section describes the results of experiments conducted using weaver with a hetero-

geneousset of queriesand documents. The document datasetsemployed here include two

corpora of newswire articles, a set of transactions with a large commercial web search en-

gine, and a set of personalemails. We also devote someattention to a comparisonagainst

traditional vector spacemethods.

Someof the questionstheseexperiments addresswill include:

� How doesthe length of the query a�ect the behavior of weaver ?

� How doesthe sizeof the document corpus a�ect the behavior of weaver ?
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� How does the type of document|newswire articles, web pages,or email|a�ect the

behavior of weaver ?

� What is the di�erence in practice betweenModel 0, Model 1 and t�df ?

� What is the di�erence in practice betweenModel 0 and the traditional languagemodel

ranking; in other words, how good is the approximation in (3.15)?

� In practice, what is an appropriate number of iterations for EM training for Model 1?

3.5.1 TREC data

The experiments here examine the behavior of the various candidate ranking algorithms

on long queries,drawn from the concept �elds of TREC topics 51-100,and short queries,

drawn from the title �elds of these sametopics. Typically, the concept �eld of a TREC

topic comprises20or morekeywords, while the title �eld is much moresuccinct|usually not

more than four words. The rather exhaustive concept �eld queriesare perhapsnot atypical

of a query submitted by a librarian or expert information scientist, though certainly longer

than \real-world" queries submitted, for instance, by usersof commercial search engines.

The latter are more similar to the TREC title �elds. For illustration, a full TREC topic

appears in Figure 3.6.

The experiments in this section use two main document collections: a set of 78,325

Associated Press(AP) articles and another set of 90,250San Jose Mercury News (SJMN)

articles. A separateset of experiments was conductedon a much smaller collection of 2,866

broadcast news transcripts from the Spoken Document Retrieval (SDR) track of the 1998

TREC evaluation. All of the data werepreprocessedby converting to upper case,stemming

using the Porter stemmer [70], and �ltering with a list of 571 stopwords from the SMART

system.

Precision-recall curves for the AP and SJMN data, generated from the output of the

TREC evaluation software, appear in a seriesof �gures and tables starting with Figure 3.7.

The baseline curves in these plots show the performance of the t�df measure using a

commonly-used tf score [67]. They also show the result of using Model 0 to score the

documents, suppressingthe word-relation component of Model 1.

The �rst set of plots, depicted in Figure 3.7, illustrate the relative precision-recallper-

formance of Models 1, 10 and Model 0, using the AP and SJMN collections. Figure 3.7

contains the exact valuescorresponding to the AP plot.
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Domain : International Economics

Topic : Airbus Subsidies

Description : Document will discuss government assistance to Airbus Industrie,

or mention a trade dispute between Airbus and a U.S. aircraft producer over the
issue of subsidies.

Summary : Document will discuss government assistance to Airbus Industrie, or

mention a trade dispute between Airbus and a U.S. aircraft producer over the issue
of subsidies.

Narrativ e: A relevant document will cite or discuss assistance to Airbus Industrie
by the French, German, British or Spanish government(s), or will discuss a trade

dispute between Airbus or the European governments and a U.S. aircraft producer,
most likely Boeing Co. or McDonnell Douglas Corp., or the U.S. government, over

federal subsidies to Airbus.

Concept(s) :

1. Airbus Industrie

2. European aircraft consortium, Messerschmitt-Bo el kow-Bloh m GmbH,British

Aerospace PLC, Aerospatiale, Construcciones Aeronauticas S.A.

3. federal subsidies, government assistance, aid, loan, financing

4. trade dispute, trade controversy, trade tension

5. General Agreement on Tariffs and Trade (GATT) aircraft code

6. Trade Policy Review Group (TPRG)

7. complaint, objection

8. retaliation, anti-dumping duty petition, countervailing duty petition,

sanctions

Figure 3.6: An example topic (51) from the TREC collection. Document ranking systems

often behave quite di�eren tly on short and long queries,and so this chapter includesevalu-

ation results on both types,using the shorter title and more explicit concept�elds of TREC

topics 51-100.
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t�df Model 1 %�

Relevant: 5845 5845 |

Rel.ret.: 5845 5845 |

Precision:

at 0.00 0.6257 0.7125 +13.9
at 0.10 0.5231 0.5916 +13.1

at 0.20 0.4569 0.5217 +14.2
at 0.30 0.3890 0.4554 +17.1

at 0.40 0.3425 0.4119 +20.3
at 0.50 0.3035 0.3636 +19.8

at 0.60 0.2549 0.3148 +23.5

at 0.70 0.2117 0.2698 +27.4
at 0.80 0.1698 0.2221 +30.8

at 0.90 0.1123 0.1580 +40.7
at 1.00 0.0271 0.0462 +70.5

Avg.: 0.2993 0.3575 +19.4

Precision at:

5 docs: 0.4809 0.5574 +15.9

10 docs: 0.4702 0.5170 +10.0

15 docs: 0.4326 0.5135 +18.7
20 docs: 0.4213 0.4851 +15.1

30 docs: 0.3894 0.4539 +16.6
100 docs: 0.2960 0.3419 +15.5

200 docs: 0.2350 0.2653 +12.9
500 docs: 0.1466 0.1610 +9.8

1000docs: 0.0899 0.0980 +9.0
R-Precision: 0.3254 0.3578 +10.0

Table 3.1: Performance of t�df versusModel 1 for queries constructed from the concept

�elds. Thesenumbers correspond to left plot in Figure 3.7.
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Figure 3.7: Comparing the performanceof Models1 and 10 to the baselinet�df and Model 0

performance on AP data (left) and San Jose Mercury News document collections (right)

when ranking documents for queriesformulated from the TREC \concept" �elds for topic

51-100.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

Model 1, 3 EM iterations
Model 1, 2 EM iterations

Model 0

Figure 3.8: The discrepancybetweentwo and three EM iterations of training for Model 10.

As with all statistical parameter estimation, over�tting during EM training is a concern.

Figure 3.9 shows the performanceof Model 10 on the AP data when the probabilities are

trained for two and three iterations. The rather minor performancedi�erence betweenthese

two curvessuggeststhat only a small number of iterations are required for convergencefor

thesemodels.

To study the e�ects of query length on weaver 's performance, we also scored the

documents for the title �elds of topics 51{100, where the averagequery length is only 2.8

words. Comparing with Figure 3.7 (the corresponding performancefor long queriesusing

the samedocument collection) reveals that all candidate ranking algorithms deteriorate in
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Figure 3.9: Comparing t�df , Model 0, and Model 1 on short, title-�eld querieswith Asso-

ciated Pressdocuments.
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Figure 3.10: Comparing Model 0 to the \traditional" languagemodel scoreusing the prod-

uct
Q m

i =1 l (qi j d).

performance. This is, of course,to be expected. What is notable is the substantial relative

improvement of Model 1 over the t�df baseline: 30.2% in averageprecision and 17.8% in

R-precision on theseshort queries. The marginal improvement of Model 1 over Model 0 is

smaller herme|6.3% in averageprecision and 4.9% in R-precision.

Figure 3.10comparesModel 0 with the traditional languagemodel scoringscore
Q

i l (qi j d),

as in Ponte and Croft's method. The curves are essentially indistinguishable, suggesting

that the approximation in equation (3.15) is good.

The TREC evaluation methodology is popular within the information sciencescommu-

nit y for a number of reasons.First, the TREC datasetscomewith human-assignedrelevance

judgments, a rare and valuable commodit y in the IR communit y. Second,the documents|

mostly newswirearticles|are rather uniform in sizeand style. But perhapsmost important
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is that, for better or worse, the TREC evaluation method has becomea widely recognized

benchmark for document ranking systems.

Of course,a ranking algorithm which exhibits promising behavior on the TREC dataset

may not perform as well in more rugged terrain. The next two sectionsdescribe the results

of experiments conducted on datasets with markedly di�eren t characteristics from TREC

data:

� A collection of userqueriesto the Lycossearch enginealongwith the webpageselected

by the user from among those suggestedby Lycos;

� A set of email subject lines (corresponding to queries) and bodies (corresponding to

documents).

3.5.2 Web data

For the purposesof this section, a \clic kthrough record" refers to a query submitted to

the Lycos search engine, and the URL selectedby the submitter from among the choices

presented by Lycos. Table 3.2 lists a small extract of clickthrough recordsfrom a Lycos log

in the early months of 2000.

From a large collection of clickthrough recordssimilar to that in Table 3.2, we fetched

the contents of each URL. Doing so givesa set of (query, web page) records: each web page

is relevant to its associated query. More precisely, a Lycos user suspected the document to

be relevant, basedon what information the usercould gleanfrom the URL of the document

and Lycos's capsulesummary of the document. The idea, then, is to view the clickthrough

data as a collection of human relevancejudgments.

The experiments reported in this section relied on a simple �lter to detect and remove

those recordscontaining objectionable content such as pornography and hate speech. This

eliminated about 20%of the recordsgathered,leaving 630; 812records. Other than mapping

the query characters to lowercase,no processingof the queries submitted to Lycos was

performed. A space-delimitedsequenceof characters represents a single term.

Avoiding preprocessingof the search engine's log�le underscoresthe \pushbutton" na-

ture of weaver 's retrieval algorithm. However, the data cry out for at least a minimal

amount of preprocessing: the query in the secondentry of Table 3.2, for instance, con-

tains a comma, which distinguishes it from the semantically identical missoula mt. And

the ninth query in the table contains an easily-detectablemisspelling, which distinguishes
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Query Selected URL

felony jud13.flcourts.org/felon y.ht ml

missoula, mt missoula.bigsky.net/scor e/

feeding infants solid foods members.tripod.com/drlee 90/s oli d.ht ml

colorado lotto results www.co-lotto.com/

northern blot www.invitrogen.com/expre ssio ns/ 1196-3.h tml

wildflowers www.life.ca/nl/43/flower s.ht ml

ocean whales playmaui.com/ocnraftn.ht ml

ralph lauren polo www.shopbiltmore.com/dir /sto res /pol o.ht m

bulldog hompage www.adognet.com/breeds/2 abul m01.htm l

lyrics www.geocities.com/timess quare/c auld ron/ 8071

churches in atlanta acme-atlanta.com/religio n/ch ris tn.h tml

retail employment www.crabtree-evelyn.com/ employ/ reta il.h tml

illinois mortgage brokers www.birdview.com/ypages2 /c3. htm

stock exchange of singapore www.ses.com.sg

front office software www.saleslogic.com/sales logi x.p html

free 3d homearchitect www.adfoto.com/ads1/homeplan s.s html

country inns sale innmarketing.com/form.ht ml

free desktop wallpaper www.snap-shot.com/photos /fir eworks/

automotive marketing research www.barndoors.com/rcmres ourc es. htm

router basics www.wheretobuy.com/prdct /706 /55 .htm l

Table 3.2: A sample of Lycos clickthrough records|user query and the selected

URL|during a several-secondwindow in February, 2000.

it from bulldog homepage. But since Model 1 can ferret out correlations among terms,

correctly and misspelled ones,preprocessingbecomesrather lessimportant.

The web pageswere subject to rather more severe preprocessing. A publicly-available

tool (lynx ) siphoned o� markup tags, images, and all other components of a web page

besidesplain text. A separate �lter then removed punctuation, lowercasedthe text, and

truncated all retrieved web pagesto 2048bytes, for e�ciency .

The data were split into three parts by assigningeach record, randomly, to one of the

following disjoint sets:

� Training: 624; 491 (query, document) pairs

� Heldout: 1000pairs

� Evaluation: 5321pairs
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Ranking web pagesinvolved a linear interpolation of three models:

p(qj d) = � � (q j d) + � l (q j d) + 
 l (q j D) (3.17)

Estimating � , � , and 
 worked as follows. First, we �xed � = 0 and determined

the optimal ratio between � and 
 by line search in one dimension on the heldout data.

Surprisingly, the optimal ratio turned out to be � = 0:99, 
 = 0:01. One intuition for this

result is as follows. Queries to commercial web search engineslike Lycos tend to be very

short; the averagequery length in the Lycos training data, for instance,was2:6 words. The

model l (q j D) is especially useful for longer queries,to help a relevant document overcome

a \missing" query word. But with short (and especially single-word) queries,a document

is lesslikely to be relevant if it doesn't contain all the terms in the query.

After �xing the � : 
 ratio, we calculated � by applying a line search for the best

� : (� + 
 ) ratio, which turned out to be 6 : 4. The �nal ratio was therefore � = 0:4; � =

0:594; 
 = 0:006.

Using standard precision/recall metrics to evaluate weaver 's performanceon this dataset

makeslittle sense,becausehere there exists only a single relevant document for each query.

Instead of using precision/recall, we concentrate on the rank of the single known relevant

document within the relevancy ranking produced by the system. Putting these ranks to-

gether gives a vector of ranks, where the i 'th entry is the rank, according to weaver , of

the known relevant document for query i .

There are a number of di�eren t reasonablemetrics to use in evaluating a list of ranks.

The median value in the vector is one reasonablemetric; another is the inverseharmonic

mean rank. From a set of rankings f r 1; r2; : : : r N g, one can measurethe inverseharmonic

mean rank as follows:

M def=
N

P N
i=1

1
r i

A lower number indicates better performance; M = 1, which is optimal, means that the

algorithm consistently assignsthe �rst rank to the correct answer.

Table3.3contains the results from Model 0 and Model 1 on the Lycosevaluation dataset.

Model 1 achievesa �v e percent lower inverseharmonic mean rank than Model 0. However,

the median rank of the correct document was substantially higher with Model 1.

For the sake of e�ciency , the ranking algorithm used an inverted index, as described

in the next section, to e�cien tly rank just those documents exhibiting somelexical overlap

with the query (in the caseof Model 0) or those documents containing a word w which is
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a high-probabilit y replacement for a query word (in the caseof Model 1). We will call the

set of ranked documents the qualifying set for a query.

It may occasionally happen that the known relevant document for a query does not

appear in qualifying set for that query. This could happenfor a number of reasons,including

� The document (a web page, that is) may have changed between the time it was

recordedin the Lycos transaction log and the time it was downloaded in preparation

for training weaver . While the original document may have been relevant to the

query, the updated document was not.

� The words shared by query and document were excisedfrom the document during

weaver 's preprocessing,appearing, for instance, within an html <meta>element.

� The algorithm failed to recognizethe relevancy relationship between the query and

document.

In this case,the model assignsa scoreof zero for the correct document. We mark these

queriesas \defaulted" and exclude them from the cumulativ e results. Not surprisingly, the

number of defaulted queriesin Model 1 was signi�cantly lower than that of Model 0. This

discrepancyprobably represents an unfair advantage for Model 0, which facedfewer di�cult

queriesthan Model 1.

queries 5321

queriesprocessed 4363

documents ranked 624,491

Mo del 0 Mo del 1

model weights(�; � ; 
 ) 0; 0:99; 0:01 0:4; 0:594; 0:006

defaulted queries 802 549

inv. harmonic rank 31.47 29.85

median rank 2422 3562

Table 3.3: Results of Lycos document-ranking experiments. The experiments involved

ordering the 4363test documents by relevanceto each of the 4363queries. The only known

relevancejudgments is a singlequery-document pairing according to the clickthrough data.

The harmonic rank and median rank measure,in di�eren t ways, how highly the automatic

ranking algorithm listed the matching document for each query.
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3.5.3 Email data

In this sectionwe explore the useof statistical document ranking techniquesfor the purpose

of organizing email messages.More speci�cally , the goal was to explore the potential for

learning a correlation betweenthe subject line of an email (acting as a query) and its body

(acting as a document). A system which could correlate messagebodies with subjects

accurately could conceivably be applied to the automatic categorization of emails, a task

of great import not only to individuals with an unwieldy amount of email, but also to

corporate call centers which could exploit such a system to assign incoming requests for

help to di�eren t topics, priorit y levels, or experts.

The corpus contained 5731documents: each document consistedof a subject line and

email body; these emails were randomly sampled from a collection of personal correspon-

dencesaccumulated by a single personover the span of three years.

A collection of email correspondenceshasvery di�eren t characteristics than oneconsist-

ing of newswirearticles. SomeIR research has investigated the task of online classi�cation

of email by content [51], but there has been scant work on searching and ranking emails

within a document retrieval setting. For sure,the dearth of research arisesfrom the di�cult y

inherent in procuring a distributable collection of email correspondences.

Speci�cally , the evaluation task was as follows.

� Provide a retrieval systemwith a randomly selected95%portion of the (subject/b ody)

pairs. The systemcan, in the caseof t�df , usethis data to estimate term frequencies,

or, in the caseof the Model 1 system,construct a statistical word-relation model.

� Use the remaining �v e percent of the subject/b ody pairs to evaluate the system by

ranking each body by relevance to each subject and calculating the average rank

assignedto the correct body for each subject.

Table 3.4 summarizesthe results of �v e comparisonsbetweent�df and Model 1, where

each trial consisted of an independent, randomly-selected 95 : 5 partition of the email

collection (in other words, each email record in the collection wasassignedto the \training"

category with probabilit y 0:95 in each trial).

To illustrate the type of information contained in the distillation model, Table 3.5 shows

four entries from the model.
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Trial # queries arithmetic mean inv. harmonic mean # correct

1 305 73.7/37.3 1.92/1.86 138/141

2 294 73.1/35.7 1.82/1.70 140/154

3 264 73.5/32.9 1.93/1.84 114/120

4 294 77.5/38.0 1.94/1.78 129/145

5 279 73.7/36.4 1.91/1.76 123/139

Average: 74.3/36.0 1.90/1.78 128.8/139.8

Table 3.4: Comparing t�df with Model 1 for retrieving emails by subject line. The values

should be read as t�df /Mo del 1. The last three columns are three di�eren t ways to gauge

the quality of the ranking algorithm.

copy: copy 0.985 carbon 0.003 blind 0.002

ascii : ascii 0.438 charset 0.131 text/plain 0.126

flight : flight 0.980 airport 0.007 visit 0.001

at&t : at&t 0.952 labs 0.012 research 0.006

Table 3.5: The (tail-truncated) distributions for a selectgroup of words. The distributions

were learned from a collection of personalemails.

3.5.4 Comparison to standard vector-space techniques

The Model-0 (LM-based) and t�df -baseddocument ranking methods sharethe sameweak-

ness:an inabilit y to account for word relatednesse�ects intrinsically. \Mo del 1"-style doc-

ument ranking accounts for this shortcoming in LM-based retrieval, and query expansion

addressesthe sameproblem in t�df -basedretrieval.

Query expansion techniques such as Rocchio [75] use the original query to rank docu-

ments tentativ ely, and then expand the query with those words appearing most often in

the highest ranked documents. Document ranking thus becomesa two-passprocess. In

contrast, Model 1 builds (o�ine) a statistical model of word-relatednessfrom the document

corpus and usesthat model in gauging relevance.

So Model 1 and query expansion are similar, in that they both rely on lexical co-

occurrencestatistics to handle word-relatedness. But these techniques di�er in what data

they mine for co-occurrencestatistics and how they use that data: Model 1 examinesthe

corpus as a whole, whereasquery expansionexaminesdocuments related (via a high t�df

score) to the query.

This section reports on a brief empirical study of the relative behavior of these four
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metho d capsule summary

t�df
cosine-basedsimiliarit y metric between document and query,

where words are weighted according to their \information con-

tent."

t�df + query expansion

wordsappearingrelatively more frequently in the highest-ranked

documents in a t�df ranking are accordeda higher weight in a

new, synthetic query, which is used in a secondranking.

Model 0

Uses a stochastic model constructed from the document (in-

terpolated with a model constructed from the entire corpus) to

\predict" the query. Documents whosemodelspredict the query

with high likelhood are accordedhigher relevance.

Model 1

words related to those appearing in the query participate

through a statistical model of word-relatedness. The model is

calculated o�ine, independently of any particular query.

Figure 3.11: Capsulesummary of four ranking techniques

algorithms|Mo del 0, Model 1, t�df and t�df with Rocchio-based query expansion|on

a single task: TREC-style document ranking using newswire documents. For reference,

Figure 3.11 contains a capsulesummary of the four techniques.

We used the TREC AP88 corpus: 79,919Associated Press newsfeeddocuments from

1988, with TREC topics (queries) 251-300and TREC-supplied relevance judgments. The

experiments reported hereusedonly the title �eld from the topics. This dataset is somewhat

atypical of traditional IR datasets in that relevant documents are rather sparse. In fact,

amongthe 50 topics, two topics contained only onedocument judged relevant by the human

assessors,and none of the four algorithms below placed that document among the 1000

documents deemedmost relevant to the topic. Removing these two topics, as the four

experiments reported below all did, reducesthe number of topics to 48. For illustration,

Figure 3.12 depicts one of thesetopics.

We begin with a brief description of the experimental procedure followed in each case,

followed by comparative results and a discussionof thoseresults. In general,the idea wasto

give each method the fullest opportunit y to excel|b y varying the appropriate parameters

from each method and selecting the con�guration which performed best on the evaluation

data.

1. t�df -based ranking : This experiment used the samet�df ranking formula as else-
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Topic : Cigarette Consumption

Description : What data is available on cigarette consumption by country?

Narrativ e: If cigarette smoking is a causative factor in lung cancer, then

countries with higher cigarette consumption per capita might experience a

higher incidence of lung cancer. This topic would provide basic data for

such a comparison.

Normalized: cigarett consumpt data cigarett consumpt countri cigarett smoke

caus factor lung cancer countri higher cigarett consumpt capita experi

higher incid lung cancer topic provid basic data comparison

Figure 3.12: For reference,a representativ e topic from those used in the experiments of

Section 3.5.4. The experiments reported in this section usedthe entire topic when adjudi-

cating relevance. The \Normalized" entry refers to the view of this topic after converting

the words to uppercase,stemming, and removing stopwords.

where in this section to rank the documents in the AP88 corpus by relevance to the

provided topics [67].

2. t�df with Ro cchio-based query expansion : To implement query expansion, we

employed a popular IR technique known as the Rocchio method. For a given query,

the Rocchio-basedranking procedureworks as follows:

1) Rank documents using t�df , as above.

2) Take the top n1 most relevant documents f r 1; r2; : : : r n1 g according to this rank-

ing, and expand the query as follows:

q  q + �
n1X

i =1

r i

n1
(3.18)

3) Rerank documents with respect to this updated (expanded) topic.

In general, the Rocchio method involvesan additiv e and subtractive term:

q  q + �
nX

i =1

r i

n1
� 


n2X

i =1

r i

n2
(3.19)
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cigarett (7.9375)cancer (3.95) smoke(3.8875)consumpt (3.3375) lung (3.0875)tobacco (2.5875)

higher (2.375)data (2.15) number (2.0625) countri (2.0375)topic (2) year (1.725)death (1.425)

smoker (1.275) percent (1.275) caus (1.15) basic (1.1125)provid (1.075) capita (1.075) incid

(1.0375) factor (1.0375) experi (1.0375) comparison (1.0375) (0.9375) cipollon (0.8625)

compani (0.7875) report (0.75) case (0.7125) american (0.7125) product (0.675) rate (0.6)

health (0.6) billion (0.6) societi (0.5625)research (0.5625)monei (0.5625)state (0.525) feder

(0.525) cost (0.525) mr (0.4875) leukemia (0.4875) danger (0.4875) claim (0.4875) women

(0.45) warn (0.45) 1987 (0.45) lawyer (0.4125) evid (0.4125) 10 (0.4125) studi (0.375) morri

(0.375) maker (0.375) link (0.375) increas (0.375) group (0.375) gener (0.375) drop (0.375)

diseas (0.375) dai (0.375) attornei (0.375) price (0.3375) market (0.3375) liabil (0.3375)

gunsalu (0.3375) fda (0.3)

Figure 3.13: An expandedversion of the topic from Figure 3.12, using Rocchio to estimate

the weights.

In theseexperiments, we took � = 0:75 (a somewhatstandard value in the industry),

and 
 = 0, e�ectiv ely deactivating the subtractive term. We found that taking n1 = 10

performedbest, though in fact this value is rather lower than the \industry standard"

range of between30 and 50.

As the graph in Figure 3.14 shows (and as is expected), query expansionprovides an

improvement over \v anilla" t�df except at the very highest precision range.

As an illustration, Figure 3.13 displays the top few terms, along with their weights,

for the query-expandedversion of the topic in Figure 3.12.

3. Mo del-0 results : In theseexperiments, we found that setting � = 0:80 wasoptimal.

The language modelling approach performs surprisingly well relative to traditional

vector-spacetechniques, though it cannot match the performanceof t�df with query

expansionat the lower-precisionregions.

4. Mo del-1 results

As we have described earlier, Model 1 includes a word-to-word statistical relation

model, which e�ectiv ely spreadsthe probabilit y of a word over a number of related

concepts. Two examplesof individual word transition vectors are:
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Figure 3.14: Precision-recall curves for four techniques under discussion in this section:

t�df , t�df with Rocchio-basedquery expansion,Model 0 and Model 1.

cigarett : cigarett 0.268101smoke0.0510487tobacco 0.0369069smoker

0.0273317pack 0.0181277brand 0.00906122rj 0.00877782lung

0.00708167carton 0.00667786product 0.00616576

cancer : cancer 0.242286 breast 0.0113614diseas 0.0101922studi

0.00693828 treatment 0.00580977 lung 0.00568525 evid

0.00508431 tumor 0.00505677 surgeri 0.00501926 smoke

0.0043776
Using thesemodelsand (3.17), a Model 1-basedranking algorithm exhibited a perfor-

mancesuperior to t�df with Rocchio-basedquery expansion,as seenin Figure 3.14|

except at the lowest (and usually least interesting) part of the curve.

3.6 Practical considerations

Conventional high-performanceretrieval systemstypically decomposethe task of ranking

documents by relevanceto a query q = f q1; q2; : : : qng into a retrieval and a query expansion
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stage. For instance, in the automatic relevance feedback approach, the system �rst ranks

just those documents whosecontent overlaps with q, and assumesthe other members of D

are not relevant to the query. In part becausethere may exist relevant documents which

have no words in common with the query, the system then expands q to include a set of

words which appeared frequently among the top-ranked documents in the �rst step, and

ranks documents whosecontent overlaps with this expandedquery.

The crucial aspect of this two-step processis that in each step, the ranking algorithm

can disregard documents containing none of the words in the query. This approximation|

ignoring the potentially large subsetof the document collection with no words in common

with the query|mak es the di�erence between a usable and impractically slow ranking

algorithm.

A retrieval system that only considersdocuments containing words in the query can

organize the collection e�cien tly into an inverted index, which lists for each word the

documents containing that word. Processinga query with an inverted index is then a

simple matter of visiting just those lists in the inverted index corresponding to words in the

query. Inverted indicesare a nearly ubiquitous component of large-scaledocument retrieval

systems.

At �rst glance,it would seemthat modelswhich capture the semantic proximit y between

words are incompatible with the use of an inverted index. After all, when using Model 1

or Model 1', all documents are \in play" for a given query: a document not containing a

query word might, after all, still generatethat word with high probabilit y. But forfeiting

the use of an inverted index entirely and explicitly computing a relevance scorefor every

document, as NaiveRank does,is too ine�cien t. Calculating the relevanceof a document

to a query using Model 1 (equation (3.13)) requires time proportional to j q j � j d j: the

product of the sizeof the query and the sizeof the document. In practice, it appearsthat

NaiveRank can require an hour or more per query for a TREC-sized document collection

of a few hundred thousand documents, on a modern-day workstation.

The remainder of this section presents a set of heuristics to allow e�cien t (albeit ap-

proximate) ranking of documents by their probabilit y p � (q j d) of generating the query in

a distillation process.This section also shows how, by using a data structure similar to an

inverted index, one can achieve near real-time retrieval performance.

The key observation is that the ranking algorithm o�ers a time-spacetradeo�. Rather

than calculating the sum in (3.13) during ranking, one can precompute p(q j d) for every

known word q and each document d 2 D, and store the results in a matrix, illustrated in

Figure 3.6. Denote this \in verted matrix"|similar to an inverted index, but containing an

entry for every(d;q) pair|b y the symbol I . (As a reminder: p(q j d) is just onecomponent
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Figure 3.15: NaiveRank computes p � (qi j d) according to (3.16) for each word qi in the

query q = f q1; q2 : : : qm g. Avoiding this costly processis not di�cult: just precompute,

once and for all, p(q j d) for all words q and documents d. Calculating p � (q j d) is then

a matter of multiplying the precomputed p(q i j d) together, factoring in the smoothing

terms p(q j D) along the way. This �gure depicts a data structure I which stores these

precomputed values.

of the smoothed probabilit y p � (q j d) of q given d. By inspection of (3.16), onecan seealso

a contribution from the document-wide languagemodel p(q j D).)

Precomputing the cellsof I and then using thesevaluesin NaiveRank reducesthe cost

of ranking from j D j � j q j � j d j to j D j � j q j operations.

Unfortunately, the matrix I , with as many columns as documents in the collection and

as many rows as there are distinct words recognizedby the system,can be prohibitiv ely ex-

pensive to compute and store. A 100; 000document collection and 100; 000word vocabulary

would require a matrix 400GB in size. One can thereforemake the following approximation

to (3.16):

p � (qj d) � � p(q j D) + (1 � � )
X

w 2 T n (q)

l (w j d) � (q j w) (3.20)

where T n (q) def= f w : � (q j w) is among the n largest � -valuesfor any wg

Roughly speaking,T n (q) is the set of n words most likely to map to q. In other words, (3.20)

assumesthat each document covers at most n concepts. In the performed experiments, n

was set to 25. Making this approximation results in most valuesp(q j d) dropping to zero,

yielding a sparseI matrix|easy to store and precomputeusing conventional sparse-matrix

techniques.
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Of course, any approximation runs the risk of gaining speed at the cost of accuracy.

To addressthis, the new ranking algorithm therefore rescores(and reranks) the top-scoring

documents according to (3.16).

Algorithm 6: \F astRank": e�cien t document ranking

Input: Query q = f q1; q2; : : : qm g;

Collection of documents D = f d1; d2; : : : dN g;

Word-relation probability � (qj w) for all word pairs q; w

Inverted mapping  from words to documents

Output: Relevance score � q (d) for each document d

1. Do for each document d 2 D in the collection

2. Set � q (d)  1

3. Do for each query word q2 q

4. Do for each document d 2 D

5. Set p � (q j d)  � p(q j D) (precomputed)

6. If d 2 I (q) then p � (q j d)  p � (q j d) + (1 � � )p(q j d) (precomputed)

7. Rescore the top-ranking documents according to (3.16).

Figure 3.16 shows that, on the AP subset of the TREC dataset, the precision/recall

performance of the fast, approximate algorithm is essentially indistinguishable from the

naive, exact algorithm. But the former algorithm is considerably faster: on a 266Mhz

workstation with 1.5GB of physical memory, NaiveRank required over an hour per query

while FastRank required an averageof only 12 secondsper query2.

3.7 Application: Multilingual retriev al

In many real-world settings (such as the Internet), several di�eren t languagesmay appear

within a collection. Ideally, a document retrieval system should be capableof retrieving a

document relevant to the user's query no matter what the languageof the document.

2Had the time di�erence between FastRank and NaiveRank been less marked, one might reasonably

insist on a more rigorous evaluation framework: running the system in single-user mode, clearing the I/O

caches, running multiple trials, and so forth.
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NaiveRank FastRank

Relevant: 5845 5845

Rel.ret.: 4513 4386

Precision:

at 0.00 0.7411 0.7411

at 0.10 0.5993 0.5994

at 0.20 0.5291 0.5295

at 0.30 0.4487 0.4501

at 0.40 0.4079 0.4085

at 0.50 0.3646 0.3599

at 0.60 0.3125 0.3161

at 0.70 0.2721 0.2698

at 0.80 0.2136 0.2043

at 0.90 0.1366 0.1433

at 1.00 0.0353 0.0339

Avg.: 0.3531 0.3523

Precision at:

5 docs: 0.5489 0.5489

10 docs: 0.5255 0.5255

15 docs: 0.5149 0.5163

20 docs: 0.4883 0.4883

30 docs: 0.4553 0.4567

100 docs: 0.3351 0.3357

200 docs: 0.2596 0.2601

500 docs: 0.1582 0.1594

1000docs: 0.0960 0.0933

R-Precision: 0.3707 0.3718

Figure 3.16: The NaiveRank and FastRank algorithms yield almost indistinguishable

results when applied to the AP portion of the TREC data using the narrativ e �elds of

queries51-100.



86 Do cumen t ranking

To simplify the exposition, focus on a two-languagescenario: a user issuesa query q

in a sourcelanguageS, and the system ranks documents in a target languageT by their

relevanceto q.

Somepopular strategiesfor this problem are:

1. Cast the problem as a monolingual one by translating the documents into language

S. The cost of translating the entire collection D of documents may be expensive, but

the computation can be performed o�ine, prior to processinga user's query.

2. Cast the problem as a monolingual one by translating the query to the language

T [64]. This obviates the need to translate the entire collection, which can be an

expensive proposition. However, since queries are typically quite short, accurately

translating the query may be impossible;the context of a word (its neighbors) usually

plays an important role in disambiguating the word's meaningduring translation. For

instance,shoulda multilingual retrieval systemrender the English query suit into the

French query costume (piece of clothing) or into proc�es (legal action)? In principle,

translating words within a document can be easierbecausesurrounding words often

serve to disambiguate the meaning.

3. Franz et al. have also suggesteda hybrid approach which ranks documents in two

di�eren t ways: �rst, by translating the query into T , and second, by translating

the documents into S. They have demonstrated that the performance of a system

which employs both techniquescan exceedthat resulting from the application of either

strategy alone [31].

Another approach|the one pursued here|is to avoid explicit translation altogether,

by incorporating translation into the retrieval framework. In other words, perform trans-

lation and retrieval simultaneously. This idea has precedent in the IR literature: Dumais

et al. have, for instance, proposedthe useof latent semantic indexing to perform retrieval

acrossmultiple languages[25].

Performing retrieval acrosslanguageswithin the framework described in Section 3.3 is

a straightforward matter. One can use model (3.12) as before, but now interpret � (w j q)

as a measureof the likelihood that a word q in the languageS is a translation of a word w

in the languageT . In other words, � is now a model of translation rather than semantic

proximit y.

Presented with a bilingual collection of (q; d) pairs, where each q is in the language

S and each d is in T , applying the EM-based strategy of Section 3.4 would work without

modi�cation. Nothing in the models described in Section 3.3 assumesthe queries and

documents are in the samelanguage.
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3.8 Application: Answ er-�nding

Searching the web or skimming a lengthy manual to �nd the answer to a speci�c question

can be a tedious exercise. Moreover, for a large retail company, employing a battalion of

customer-support personnelto perform this sametask on behalf of telephonecustomerscan

be an expensive proposition. A recent study has concludedthat providing help to a single

customer via a live telephone operator can cost a company $20 to $25 per call [32]. This

section investigateshow the statistical techniques of this chapter can help in automating

the processof answer-�nding. The ultimate goal is a system which, equipped with a large

collection of prepackagedanswers, can automatically identify the best responseto a user's

query.

Starting from a large collection of answered questions, the algorithms described here

learn lexical correlations betweenquestionsand answers. Two examplesof such correlations

are

� Questions containing the word why are more likely, in general, to be paired with an

answer beginning with the word because.

� A question containing the word vacation is likely to be paired with an answer con-

taining one of the words f flight, trip, cruise g.

To serve as a collection of answered questions,this section relies on two typesof datasets:

Usenet FA Qs: A collection of Usenet frequently-asked question (FAQ) documents.

This dataset, a dynamic and publically available entit y3, presently contains several

thousand individual FAQ documents, totalling hundreds of megabytes. The topics of

thesedocuments rangefrom lib ertarianism to livestock predators to Fortran program-

ming. This section uses,for experimental purposes,a set of 200 documents from the

comp.* Usenethierarchy containing 1800questions.

Call-cen ter dialogues : A collection of questionssubmitted by customersto Ben &

Jerrys, along with the answer supplied by a company representativ e. This dataset

contained 5145question/answer pairs.

One can cast answer-�nding as a traditional document retrieval problem by considering

each answer asan isolated document and viewing the query as just another (albeit smaller)
3The Usenet FAQ collection is available at ftp://rtfm.mit.edu and http://www.faqs.org . The Ben &

Jerrys dataset is proprietary .
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Figure 3.17: Excerpts from two of the question/answer corpora used here. Left: Q/A

pairs from the Usenet comp.* newsgroups.Right: Q/A pairs from Ben & Jerry's customer

support.

document. Traditional t�df -basedranking of answers will reward candidate answers with

many words in common with the query.

Employing traditional t�df -basedvector-spaceretrieval to �nd answers seemsattrac-

tiv e, since t�df is a standard, time-tested algorithm in the toolbox of any IR professional.

However, the experiments reported below demonstrate that standard t�df retrieval per-

forms poorly compared with techniques that \learn" to locate answers by inspection of a

collection of answered questions.

The lexical chasm

In ranking documents by relevance to a query, traditional information retrieval systems

place a large emphasison lexical similarit y between document and query: the closer the

distribution of words in a candidate document is to the query, the more relevant is the

question. Many usersof document retrieval systemshave this model (or somevaguenotion

of it) in mind, and in formulating their query they usually employ terms that they expect

would appear in a relevant document. But userswho submit questionsto an answer-�nding

system can't be expected to anticipate the lexical content of an optimal response: there

is often very little overlap between the terms in a question and the terms appearing in its

answer. For example, the best response to the question Where's a good place to get

dinner? might be Zaphod's Bar and Grill has great fajitas , which have no tokens

in common.
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More generally, questionsoften contain terms that di�er from, but are related to, the

terms in the matching answer. The group of terms f what, when, where, why, howg will

typically appear more frequently in questionsthan answers, for example. The legal vocab-

ularies for questionsand answers are the same,but the probabilit y distributions over those

vocabulariesare di�eren t for questionsand their answers.

Furthermore, the probabilit y distribution for terms in the answer is linked to the proba-

bilit y distribution of the terms in the question. Thus there is both a mismatch betweenthe

terms in queriesand the terms in responsesmatching those queries,as well as a correspon-

dencebetweenthe mismatched terms in the query and response. For example, in a where

question, the responsefrequently contains the words f near, adjacent, street, ong and

so forth.

This combination of a vocabulary mismatch and linkage between query and response

vocabulariesis in somesensea lexical chasm. The query is on onesideof the chasmand the

responseon the other side. The vocabularies on the two sidesof the chasm are the same,

but the distributions di�er on each side of the chasm. The distributions on the two sidesof

the chasm are linked at the semantic and discourselevels.

This chasm suggeststhat traditional bag-of-words retrieval might be less e�ectiv e at

matching questions to responsesthan matching keywords to documents. To bridge the

lexical chasm, an IR systemmust adopt a strategy that rises from the lexical level towards

the semantic level.

Traditional IR systemsbasedon the t�df ranking criterion [76] su�er from a particular

form of the lexical gap problem, namely the problem of synonymy. A query containing the

term Constantinople ought to fetch documents about Istanbul, but doing so requires a

step beyond comparing the word frequencyhistograms in query and candidate documents.

The techniques introduced in this chapter are designedto bridge the lexical gap between

questionsand answersby characterizing the co-occurrencebetweenoneword in a query and

another word in an answer. Of course,traditional vector-spacedocument ranking methods

addressthe lexical mismatch problem as well, using query expansion.

When there's only one known relevant document for each query (as is the casehere),

What really counts is how closea correct answer is to the top of the returned list. Instead

of precision-recall measures,therefore, this section usesthe rank of the correct answer in

the returned list as a metric of performance. More speci�cally , it relies in inverseharmonic

mean rank.

The advantage of the median is that it is lessa�ected by non-representativ e tails of the

distribution. The inverseharmonic meanrank is designedto give an intuitiv e feel for where

the correct answer is likely to appear. It alsopenalizesrank changesnear the top more than
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Usenet comp.* FAQs

Inv. Harmonic

Method Median p Mean p

t�df 3.0 0 - 4.12 -

translation 1.60 0.008 1.72 < 0.001

Ben & Jerry's Call Center FAQ

Inv. Harmonic

Method Median p Mean p

t�df 16.6 - 6.25 -

translation 25.2 - 3.41 < 0.001

Table 3.6: Answer-�nding experiments on Usenet, and a call-center dataset. The numbers

here are averagedover �v e runs of randomly selectedtesting set of 10% of the document

sets. The p values are unpaired t-statistics for the test that the model outperforms the

baseline.

changesfarther away; a drop in rank from two to three is more signi�cant than a change

from 99 to 100.

Exp erimen ts

The framework introduced in this chapter applies to question-answering as follows. One

can equate the relevance of an answer r to a question q with the quantit y p(q j r ). The

entries of the stochastic \w ord-relatedness"matrix in this casehave the interpretation that

the i; j th cell re
ects the likelihood that an answer containing the word j corresponds to a

question containing word i .

There are reasonsto think an approach inspired by language translation might work

well for question-answering: trained on a su�cien t amount of question/answer pairs, the

translation model should learn how answer-words \translate to" question-words, bridging

the lexical chasm. For instance, words like at, location, place, street, directions

will all translate with reasonablyhigh probabilit y to the question-word where.

Using an alignment a betweenquestion and answer words, p(q j r ) decomposesas

p(q j r ) =
X

a
p(q; a j r ) =

X

a
p(q j a; r )p(a j r ) (3.21)

From here one can follow the derivation following (3.7), with d now replacedby r .
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Having learned the word-to-word synonymy parameters from the training data, the

systemis then ready to perform answer-�nding as follows. Starting from an input question

q, rank each answer according to p(q j r ) via (3.9). The sum in (3.9) is over an exponential

number of alignments, but one can calculate this value e�cien tly by rearranging the sum

and product|b y now a familiar routine.

As Table 3.6 indicates, using weaver for answer-�nding has promise. The only excep-

tion is the median rank on the Ben & Jerry's problem. Interestingly, while the median rank

falls, the harmonic meanrisesconsiderably. The inverseharmonic meanis more sensitive to

smaller numbers (documents with higher rank). This suggestsa higher fraction of correct

documents ranked closeto the top than with t�df |the behavior onewould expect from an

answer-�nding system.

Extensions

Exploiting documen t structure

The experiments reported in this sectiontreat the question/answer pairs asisolated objects.

In reality, they often occur as part of a larger document structure. There are several

strategies for exploiting this structure to improve the accuracyof answer retrieval.

One idea is to try to �nd not the individual answer best matching the input question,

but instead the best region|collection of answers, say|for the question. Giving a user

a larger body of text which probably contains the correct answer is of course inferior to

providing just the answer, but better than providing the wrong answer, or no answer at all.

The IR communit y has explicitly acknowledgedthis multi-level de�nition of correctness;in

the TREC question-answering track, systemsmay participate in the 55-byte or 255-byte

subtracks. In the former, participating systemsmust identify a window of at most 55 words

containing the answer; in the latter, systemsare permitted up to 255-word windows [84].

Another approach is to introduce a function of the position of an answer in an FAQ as

a prior probabilit y that the answer is appropriate. It may be, for example, that simpler,

more general questions usually occur early in a user's manual, and people generally ask

more generalquestions�rst; an obvious strategy in this casewould be to bias towards the

�rst several answers early in a dialogue with a user.

Exploiting question structure

Questions come in di�eren t 
a vors: who-type questions are characterized by a somewhat

di�eren t syntax and lexicon than where-type questions. Answers to these questions are
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di�eren t as well. For instance, words and phraseslike behind , next to , and near may

appearwith a higher frequencyin answersto where-questionsthan answersto who-questions.

We have already discussedhow Model 1 inherently accounts for the \lexical mismatch"

betweenquestionsand answers. Going further, however, onecould try to exploit the di�er-

encebetweenquestion types;accounting, for instance, for the di�erence betweenanswers to

where questionsand answers to whoquestions. The central idea is to automatically identify

the type (who, what, why, where, how) of an input question, and use that information to

help assesscandidate answers. Ideally, the resulting algorithm would bias the candidate

answers in favor of where answers when processingan where question.

One way to incorporate such a change into a probabilistic framework is as follows.

Introduce a class-basedmodel p(tq j t r ), which assignsa probabilit y to the event that an

answer of type t r is the correct responseto a question of type t q . Also intro duce a model

p(q j tq ) for generatinga query q from a query classt q . Interpolating this model with (3.7)

gives

p(q j r ) = �p (tq j t r )p(q j tq ) + (1 � � )
X

a
p(q; a j r ) (3.22)

Unfortunately, the problem of identifying question type has long been recognizedas

di�cult. [50]. For instance, the question \Ho w do I get to the World Trade Center" appears

to be a how-question, but is implicitly more of a where-question.

* * *

This section focuseson the task of locating an answer within a large collection of can-

didate answers. This is to be contrasted with the problem of question-answering, a con-

siderably more ambitious endeavor, requiring the construction of an answer by searching a

large collection of text. Question answering systemsare usually domain-speci�c and highly

knowledge-intensive, applying sophisticated linguistic analysis to both the question and the

text to be searched for an answer.

Somewhat more closely related to the present work is the FAQ-Finder system under

development at U.C. Irvine [16]. The system attempts to locate, within a collection of

Usenet FAQ documents, the most appropriate answer to an input question. The FAQ-

Finder system is similar to the work described in this paper in starting with a t�df -based

answer-scoringapproach. In trying to bridge the lexical chasm, however, the paths diverge:

FAQ-Finder relies on a semantic network to establish correlations betweenrelated terms

such as husband and spouse. In contrast, the weaver approach depend only on the

availabilit y of a suitable training set. By not relying on any external sourceof data, Model 1

appearsto be better suited to the production of \v ertical" document ranking applications.
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That is, given a collection of medical documents, say, or legal or �nancial documents, the

techniques described in this chapter describe how to construct from thesedocuments, with

no additional data gathering or human annotating, a domain-speci�c text ranking system

with an intrinsic notion of query expansion.

3.9 Chapter summary

Taking as a starting point the idea of using statistical languagemodels for document re-

trieval, this chapter has demonstrated how machine learning techniques can give rise to

more sophisticatedand powerful modelsnot only for document retrieval, but alsofor a wide

range of problems in information processing.

After outlining the approach, this chapter presented two closely related models of the

document-query \translation" process. With the EM algorithm, the parameters of these

modelscanbe learnedautomatically from a collection of documents. Experiments on TREC

data, user transactions from a large web search engine, and a collection of emails demon-

strate that even thesesimple methods are competitiv e with standard baselinevector space

methods. In somesense,the statistical word-relatednessmodels intro duced here are theo-

retically principled alternatives to query expansion.

Of course, the actual models proposed here only begin to tap the potential of this

approach. More powerful models of the query generation processshould o�er performance

gains, including:

Explicit fertility models: One of the fundamental notions of statistical translation is

the idea of fertility , wherea sourceword can generatezeroor more words in the target

sentence. While there appears to be no good reasonwhy a word selectedfrom the

document should generatemore than a single query term, onemight bene�t from the

addedsophistication of a model which recognizesinfertility probabilities: somewords

or phrasesare more likely than others to generateno terms at all in the query. For

instance, the phrasesThis document is about or In conclusion carry negligeable

information content. The useof stop word lists mitigates but doesnot eliminate the

needfor this feature.

Discarding the independence assumption: weaver makes the usual \bag of words"

assumptionabout documents, ignoring word order in the sourcedocument for the sake

of simplicit y and computational ease.But the relative ordering of words is informativ e

in almost all applications, and crucial in some. The senseof a word is often revealed

by nearby words, and soby heedingcontextual clues,onemight hope to obtain a more

accurate mapping from document words to query words.
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Recognizing word position within a document: In most cases,the beginning of a doc-

ument is more important, for the purposesof distillation, than the end of that docu-

ment. Someonelooking for information on Caribbeanvacationswould typically prefer

a document which covers this topic in the very beginning over a document which does

not mention it in the �rst hundred page. The proposedmodels do not recognizethis

distinction, but one could imagine biasing the l (� j d) distribution to accord lower

weight to words appearing near the end of a document. Of course, this feature is a

special caseof the previous one.



Chapter 4

Do cumen t gisting

This chapter intr oducesocelot , a prototype systemfor automatically generating

the \gist" of a webpageby summarizing it. Although most text summarization

research to date has focused on the task of newsarticles, webpagesare quite dif-

ferent in both structure and content. Instead of coherent text with a well-de�ned

discourse structure, they are more often likely to be a chaotic jumble of phrases,

links, graphics and formatting commands. Such text provides little foothold for

extractive summarization techniques,which attempt to generate a summary of a

document by excerpting a contiguous, coherent span of text from it. This chapter

builds upon recent work in non-extractive summarization, producing the gist of

a web page by \tr anslating" it into a more concise representation rather than

attempting to extract a representative text span verbatim. ocelot usesprob-

abilistic models to guide it in selecting and ordering words into a gist. This

chapter describes a technique for learning these models automatically from a

collection of human-summarized webpages.

4.1 In tro duction

The problem of automatic text summarization is to designan algorithm to produce useful

and readable summariesof documents without human intervention. Even if this problem

were well-de�ned (which it is not), it appearsto be profoundly di�cult. After all, humans

engagedin the summarization task leveragea deepsemantic understanding of the document

to be condensed,a level of analysis well beyond the reach of automation using current

technology.

An important distinction in summarization is betweengenericsummaries,which capture

95
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the central ideasof the document in much the sameway that the abstract of this chapter

was designedto distill its salient points, and query-relevant summaries, which re
ect the

relevance of a document to a user-speci�ed query. This chapter focuseson the generic

summarization problem, while the following chapter looksat query-relevant summarization.

Sincecondensinga document into a useful and meaningful summary appearsto require

a level of intelligence not currently available in synthetic form, most previous work on

summarization has focusedon the rather lessambitious goal of extractive summarization:

selectingtext spans|either completesentencesor paragraphs|from the original document,

and arranging the segments in some order to produce a summary. Unfortunately, this

technique seemsto be a poor �t for web pages,which often contain only disjointed text.

The ocelot approach to web page summarization is to synthesizea summary, rather

than extract one. ocelot relieson a setof statistical modelsto guide its choiceof words and

how to arrange thesewords in a summary. The models themselvesare built using standard

machine learning algorithms, the input to which is a large collection of human-summarized

web pages.Speci�cally , this chapter usesdata from the Open Directory Project [66], a large

and ongoingvolunteer e�ort to collect and describe the \b est" web siteson the Internet. As

of January 2000,the Open Directory Project contained 868; 227 web pages,each annotated

with a short (roughly 13 word) human-authored summary.

Someimportant prior work in extractive summarization has explored issuessuch as cue

phrases[52], positional indicators [27], lexical occurrencestatistics [59], and the useof im-

plicit discoursestructure [56]. Most of this work relies fundamentally on a property of the

sourcetext which web pagesoften lack: a coherent stream of text with a logical discourse

structure. Somewhat closer in spirit to ocelot is work on combining an information ex-

traction phasefollowed by generation; for instance, the fr ump system [23] used templates

for both information extraction and presentation|but onceagain on newsstories, not web

pages.

The very notion that a genericweb pagesummarizer would be useful is predicated, in

a sense,on the lazinessof web pageauthors. After all, html o�ers multiple opportunities

to web page authors (the title �eld, for instance, and the meta description �eld) to

include a summary of the page'scontents. But neither of these�elds is required by html ,

and even when present, their content is often only marginally informativ e. Lastly, query-

relevant summaries(which arenot the focusof this chapter) will always needto begenerated

dynamically anyway, sincethe query isn't known at the time the pageis written.

The ocelot project bearsa closerelation to the work on automatic translation of natu-

ral languagedescribed earlier. To review, the central idea of statistical machine translation

is that starting from a \bilingual" corpus of text, one can apply statistical machine learn-
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ing algorithms to estimate maximum-likelihood parameter valuesfor a model of translation

between the two languages. For instance, the Candide system at IBM [6] used the pro-

ceedingsof the Canadian parliament|main tained in both French and English|to learn

an English-French translation model. In an entirely analogousway, one can useOpen Di-

rectory's \bilingual corpus" of web pagesand their summaries to learn a mapping from

web pagesto summaries. Probably the fundamental di�erence betweenocelot 's task and

natural languagetranslation is a degreeof di�cult y: a satisfactory translation of a sentence

must capture its entire meaning, while a satisfactory summary is actually expected to leave

out most of the sourcedocument's content.

Besidesits pedigreein statistical machine translation, this work is most similar to the

non-extractivesummarization systemproposedby Witbro ck and Mittal [87] in the context of

generatingheadlinesautomatically from newsstories. It alsobearssomeresemblance, in its

useof probabilistic models for word relatedness,to recent work in document retrieval [7, 8].

4.2 Statistical gisting

Conceptually, the task of building the ocelot system decomposesas follows: (a) content

selection : determining which words should comprise the summary, (b) word ordering: ar-

ranging these words into a readable summary, and (c) search: �nding that sequenceof

words which is optimal in the dual sensesof content and readability.

Con ten t Selection

This chapter proposestwo methods for word selection. The simpler of the strategies is to

select words according to the frequency of their appearancein the document d. That is,

if word w appears with frequency � (w j d) in d, then it should appear in a gist g of that

document with the samefrequency:

E [� (w j g)] = E[� (w j d)]:

HereE[�] is the expectation operator. This technique is essentially identical to the \language

modelling approach" to document retrieval proposedrecently by Ponte and Croft [68].

A natural extension is to allow words which do not appear in the document to appear

in the gist. To do so, this chapter recycles the technique introduced in Chapter 3 for

automatically discovering words with similar or related meaning.



98 Do cumen t gisting

Surface Realization

In general, the probabilit y of a word appearing at a speci�c position in a gist dependson

the previous words. If the word platypus already appearedin a summary, for instance, it's

not likely to appear again. And although the might appear multiple times in a summary,

it is unlikely to appear in position k if it appeared in position k � 1. The gisting model

which ocelot usestakes into account the ordering of words in a candidate gist by using

an n-gram model of language.

Search

Though the tasks of content selection and surface realization have been introduced sepa-

rately, in practice ocelot selectsand arranges words simultaneously when constructing

a summary. That is, the system produces a gist of a document d by searching over all

candidatesg to �nd that gist which maximizesthe product of a content selectionterm and

a surfacerealization term. ocelot applies genericViterbi search techniques to e�cien tly

�nd a near-optimal summary [29].

4.3 Three mo dels of gisting

This section introducesthree increasingly sophisticated statistical models to generatethe

gist of a given document. The next section will include a discussionof how to estimate the

parametersof thesemodels.

The idea of viewing document gisting as a problem in probabilistic inference is not

prevalent. But intuitiv ely, one can justify this perspective as follows. To begin, postulate

a probabilistic model p(g j d) which assignsa value (a probabilit y) to the event that the

string of words g = f g1; g2; : : : gn g is the best gist of the document d = f d1; d2 : : : dmg.

One way to think about such a model is as the limiting value of a hypothetical process.

Give the document d to a large number of people and ask each to produce a gist of the

document. The value p(g j d) is the fraction of participants who produce g as the number

of participants goesto in�nit y.

Given a document d, the optimal gist for that document is, in a maximum likelihood

sense,

g? = argmax
g

p(g j d): (4.1)

This section hypothesizesa few forms of the model and applies traditional statistical
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methods|maxim um-likelihood estimation and in particular the expectation-maximization

(EM) algorithm|to compute the parametersof the hypothesizedmodels.

I. A \bag of words" approac h

According to this model, a persongisting a document d beginsby selectinga length n for the

summary accordingto someprobabilit y distribution � over possiblelengths. Then, for each

of the n assignedpositions in the gist, he draws a word at random, from the document to be

gisted, and �lls in the current slot in the gist with that word. In combinatorial terminology,

the values of the words in the gist are i.i.d. variables: the result of n independently and

identically distributed random trials. In imagining a person composesa gist in such a

way, this model makes a strong independenceassumption among the words in the input

document, viewing them as an unordered collection.

Algorithm 7: Bag of words gisting

Input: Document d with word distribution � (� j d);

Distribution � over gist lengths;

Output: Gist g of d

1. Select a length n for the gist: n � �

2. Do for i = 1 to n

3. Pick a word from the document: w � � (� j d)

4. Set gi = w

Onceagain denoting the frequencyof word w in d by � (w j d), the probabilit y that the

personwill gist d into g = f g1; g2; : : : gn g is

p(g j d) = � (n)
nY

i =1

� (gi j d):

Though this model is simplistic, it makesoneplausible assumption: the more frequently

a word appears in a document, the more likely it is to be included in a gist of that page.

This algorithm is essentially identical (albeit in a di�eren t setting) to the languagemodelling

approach to document retrieval introduced by Ponte and Croft [68], and also to Model 0,

introduced in Section 3.3.1.



100 Do cumen t gisting

I I. Accoun ting for unseen words

Algorithm 7 is limited in a number of ways, oneof which is that the generatedsummariescan

only contain words from the input document. A logical extensionis to relax this restriction

by allowing the gist to contain words not present in the sourcedocument. The idea is to

draw (as before) a word according to the word frequenciesin the input document, but then

replacethe drawn word with a related word|a synonym, perhaps,or a word usedin similar

contexts|b efore adding it to the gist.

Determining which word to substitute in placeof the sampledword requiresa probabilit y

distribution � (� j w): if u is a very closely related word to v, then one would expect

� (u j v) to be large. If the system recognizesW words, then the � model is just a W � W

stochastic matrix. (One could reasonablyexpect that the diagonal entries of this matrix,

corresponding to \self-similarit y" probabilities, will typically be large.) We will call this

algorithm expanded-lexicon gisting, since the lexicon of candidate words for a summary of

d are no longer just those appearing in d.

This \dra w then replace with a similar word" model of document gisting is similar to

the IBM-st yle model of languagetranslation [14]. The simplest of this family of statistical

models pretends that a person renders a document into a di�eren t language by drawing

words from it and translating each word|\dra w, then translate" rather than \dra w, then

replacewith a related word."

Algorithm 8: Expanded-lexicongisting

Input: Document d with word distribution � (� j d);

Distribution � over gist lengths;

Word-similarity model � (� j u) for all words w

Output: Gist g of d

1. Select a length for the gist: n � �

2. Do for i = 1 to n

3. Pick a word from the document: u � � (� j d)

4. Pick a replacement for that word: v � � (� j w)

5. Set gi = v

As before,one can write down an expressionfor the probabilit y that a personfollowing
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this procedure will select, for an input document d, a speci�c gist g = f g1; g2; : : : gng.

Assuming d contains m words,

p(g j d) = � (n)
nY

i =1

p(gi j d) (4.2)

= � (n)
nY

i =1

�
1
m

� mX

j =1

� (g j dj )

In form, Algorithm 8 is a recast version of Model 1, described in Chapter 3, where

the queries have now becomesummaries. However, the context in the two casesis quite

di�eren t. In document ranking, the task is to assigna scorep(q j d) to each of a set of

documents f d1; d2 : : : dn g. In gisting, the task is to construct (synthesize) a gist g for which

p(g j d) is highest. Secondly, the word-independenceassumption which appears in p(q j d)

and p(g j d) is relatively innocuous in document ranking, where word order in queries is

often ignored at essentially no cost by IR systems. In gisting, however, word order is of

potentially great importance: a 
uen t candidate summary is to be preferred over a dis
uent

one consisting of the samewords, rearranged.

I I I. Generating readable summaries

One can extend Algorithm 8 by enforcingthat the sequenceof words comprising a candidate

gist are coherent. For instance,onecould ensurethat two prepositions never appear next to

each other in a gist. The next algorithm attempts to capture a notion of syntactic regularity

by scoring candidate gists not only on how well they capture the essence(the processof

content selection) of the original document, but also how coherent they are as a string of

English words.

The coherenceor readability of an n-word string g = f g1; g2; : : : gng comprising a candi-

date gist is the a priori probabilit y of seeingthat string of words in text, which will appear

as p(g). One can factor p(g) into a product of conditional probabilities as

p(g) =
nY

i =1

p(gi j g1; g2 : : : gi � 1)

In practice, one can usea trigr am model for p(g), meaning that

p(gi j g1; g2 : : : gi � 1) � p(gi j gi � 2gi � 1) (4.3)

Although n-gram models of languagemake a quite strong (and clearly false) locality as-

sumption about text, they have nonethelessproven successfulin many human language

technologies,including speech and optical character recognition [42, 63].
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To devisea formal model of gisting which accounts for both readability and �delit y to

the sourcedocument, we apply Bayes' Rule to (4.1):

g? = argmax
g

p(g j d)

= argmax
g

p(d j g) p(g): (4.4)

According to (4.4), the optimal gist is the product of two terms: �rst, a �delit y term

p(d j g), measuring how closely d and g match in content, and a readability term p(g),

measuringthe a priori coherenceof the gist g.

For the readability term, onecanusethe languagemodel (4.3). For the content proximit y

model p(d j g), one can simply reversethe direction of (4.2):

p(d j g) = �̂ (m)
nY

i =1

p(di j g) (4.5)

= �̂ (m)
nY

i =1

mX

j =1

�
1
n

�
� (d j gj )

Here �̂ is a length distribution on documents, which systemdesignerswould in generalwish

to distinguish from the length distribution on summaries1.

Algorithm 9: Readablegisting

Input: Document d with word distribution � (� j d);

Distribution � over gist lengths;

Word-similarity model � (� j w) for all words w

Trigram language model p(g) for gists

Output: Gist g of d

1. Select a length n for the gist: n � �

2. Search for the sequence g = f g1; g2; : : : gng maximizing p(d j g)p(g)

One can think of p(g) as a prior distribution on candidate gists, and p(d j g) as the

probabilit y that the document d would arise from the gist g.

One way to make senseof the seemingreverseorder of prediction in (4.4) is with the

source-channel framework from information theory. Imagine that the document to be gisted

1ocelot 's task is to �nd the best gist of a document, and the �̂ term will contribute equally to every

candidate gist. We can therefore ignore this term from now on.
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was originally itself a gist: the germ of an idea in the imagination of whoever composed

the page. The actual composition of the web page is like a corruption of this original

message,and the goal of a gisting algorithm is to recover, from the web page itself, this

original, hidden, ideal gist. In doing so, the algorithm makes use of a model p(d j g)

of how ideas for web pagesget converted (\corrupted") into pages,and a model p(g) for

what constitutes an a priori likely and unlikely gist. Figure 4.1 illustrates this information-

theoretic interpretation.
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Algorithm 9 leavesunspeci�ed the somewhatinvolvedmatter of searching for the optimal

g. Speech and handwriting recognition systems face a similar problem in attempting to

generate a transcription of a detected signal (an acoustic or written signal) which both

accounts for the perceived signal and is a coherent string of words. As mentioned earlier,

the most successfultechnique has beento apply a Viterbi-t ype search procedure,and this

is the strategy that ocelot adopts.

4.4 A source of summarized web pages

Applying machine learning to web-pagegisting requiresa largecollection of gistedwebpages

for training. As mentioned previously, a suitable corpus for this task can be obtained from

the Open Directory Project (http://dmoz.org ). What makes Open Directory useful for

learning to gist is that each of its entries|individual web sites|is summarized manually,

by a human Open Directory volunteer.

For the experiments reported here, an automated script attempted to download each

of the Open Directory's 868; 227 web pages2, along with the directory's description of each

site. Since individual web sites oftem restrict requestsfor data from automatic programs

(\spiders"), many of the pageswere inaccessible.Those that were accessiblewere subject

to the following processing:

2The directory is growing quickly, and at last count was approaching two million entries.
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� Normalize text: remove punctuation, convert all text to lowercase;replace numbers

by the symbol num; remove each occurrenceof the 100 most common overall words

(stopword-�ltering). Though nothing in the algorithms requires the excision of stop-

words, doing so yields a marked speedupin training.

� Remove all links, images,and meta-information

� Remove pagescontaining adult-oriented content 3;

� Remove html markup information from the pages;

� Remove pagescontaining frames;

� Remove pagesthat had beenmoved since their original inclusion in the Open Direc-

tory; in other words, pagescontaining just a \P agenot found" message.

� Remove pagesor gists that weretoo short|less than 400or 60characters,respectively.

Pagesthat are too short are likely to be \pathological" in someway|often a error

pagedelivered by the origin server indicating that a password is required to view the

document, or the document has moved to a di�eren t location, or a certain type of

browser is required to view the document.

� Remove duplicate web pages;

� Partition the remaining set of pairs into a training set (99%) and a test set (1%).

(Traditionally when evaluating a machine learning algorithm, one reservesmore than

this fraction of the data for testing. But one percent of the Open Directory dataset

comprisesover a thousandweb pages,which wassu�cien t for the evaluations reported

below.)

At the conclusionof this process,103; 064 summariesand links remainedin the training

set, and 1046 remained in the test set. Figure 4.2 shows a \b efore and after" example of

this �ltering processon a single web page, along with Open Directory's summary of this

page. After processing,the averagelength of the summarieswas13:6 words, and the average

length of the documents was 211:1 words.

4.5 Training a statistical mo del for gisting

This sectiondiscussesthe training of various statistical modelsfor the speci�c task of gisting

web pages.
3Skipping the pageslisted in the Adult hierarchy goes far, but not the entire way, towards solving this

problem.
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Svenska
sidan

   

Welcome!
We sell and buy antiques and 
collectibles of good quality. 
Our shop is in central 
Karlskrona (Sweden) at 
Borgmästarekajen (close to the 
County Museum and 
Fisktorget). See the map!

You will find Swedish 
porcelain (china), glass and 
textiles here. We are 
specialised in porcelain from 
Karlskrona. We have been in 
business since 1989.

 
Our opening hours are: 
Tuesday, Wednesday and Thursday 15.00-18.00 
Saturday: 10.00-13.00 
Other times on agreement! 

 

Bookmark this
site!

Copyright© 1999 Utsigten Antik & Kuriosa. Updated 2000-01-16.  

Contact us with email to utsigten@antikviteter.net or phone 0455-20374. 

Filter ed : svenska sidan utsigten antik kuriosa welcome we sell and buy antiques

and collectibles of good quality our shop is in central karlskrona sweden at

borgmstarekajen close to the county museumand fisktorget see the map you will

find swedish porcelain china glass and textiles here we are specialized in

porcelain from karlskrona we have been in business since num welcome to our shop

our opening hours are tuesday wednesday and thursday num num num num saturday num

num num num other times on agreement bookmark this site copyright num utsigten

antik kuriosa updated num num num contact us with email to utsigtenantikvit ete r

net or phone num num

Open Dir ectory gist: sell and buy antiques and collectibles of good quality our

shop is in central karlskrona sweden

Figure 4.2: A web page (top), after �ltering (middle), and the Open Directory-provided

gist of the page(bottom). Interestingly, the Open Directory gist of the document, despite

being produced by a human, is rather subpar; it's essentially the �rst two sentencesfrom

the body of the web page.
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4.5.1 Estimating a model of word relatedness

Recall that in Algorithm 9, the underlying statistical model p(d j g) which measuresthe

\pro ximit y" betweena web paged and a candidate gist g is a generative model, predicting

d from g. This model factors, as seenin (4.5), into a product of sums of � (d j g) terms:

the probabilit y that a word g in a gist of a web page gives rise to a word d in the page

itself. What follows is a description of how one can learn theseword-to-word \relatedness"

probabilities automatically from a collection of summarizedweb pages.

If there are Wg di�eren t recognizedwords in gists and Wp di�eren t recognizedwords in

web pages,then calculating the parametersof the individual � modelsis equivalent to �lling

in the entries of a Wg � Wp stochastic matrix. As mentioned above, there exist algorithms,

�rst developed in the context of machine translation [14], for estimating maximum-likelihood

valuesfor the entries of this matrix using a collection of bilingual text. In this case,the two

\languages" are the verboselanguageof documents and the succinct languageof gists.

For the purposesof estimating the � parameters, we re-introduce the notion of an

alignment a between sequencesof words, which in this casecaptures how words in gists

produce the words in a web page. ocelot also makes use of an arti�cial null added to

position zero of every gist, whosepurposeis to generatethose words in the web page not

strongly correlated with any other word in the gist.

Using a, p(d j g) decomposesin a by-now familiar way:

p(d j g) =
X

a
p(d; a j g) =

X

a
p(d j a;g)p(a j g) (4.6)

Making the simplifying assumptionthat to each word in d correspondsexactly one\parent"

word in g (possibly the null word), one can write

p(d j a;g) =
mY

i =1

� (di j gai ) (4.7)

Heregai is the gist word aligned with the i th web pageword. Figure 4.3 illustrates a sample

alignment betweena small web pageand its summary.

If d contains m words and g contains n + 1 words (including the null word), there are

(n + 1)m alignments betweeng and d. By assumingthat all thesealignments are equally

likely allows us to write

p(d j g) =
p(m j g)
(n + 1)m

X

A

mY

i =1

� (di j gai ) (4.8)

ocelot views the Open Directory dataset as a collection of web pagesand their sum-

maries, C= f (d1; g1); (d2; g2); (d3; g3) : : :. The likelihood method suggeststhat one should
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Figure 4.3: One of the exponentially many alignments between this imaginary docu-

ment/gist pair. Calculating the scorep(d j g) of a document/gist pair involves, implicitly ,

a sum over all possibleways of aligning the words. This diagram is analogousto Figure 3.3,

though now the righthand column corresponds to a summary, rather than a query.

adjust the parameters of (4.8) in such a way that the model assignsas high a probabil-

it y as possible to C. This maximization must be performed subject to the constraints
P

d � (d j g) = 1 for all words g. Using Lagrangemultipliers,

� (d j g) = Z
X

a
p(d; a j g)

mX

j =1

� (d;dj )� (g; gaj ); (4.9)

where Z is a normalizing factor and � is the Kronecker delta function.

The parameter � (d j g) appears explicitly in the left-hand side of (4.9), and implicitly

in the right. By repeatedly solving this equation for all pairs d;g (in other words, applying

the EM algorithm), one eventually reachesa stationary point of the likelihood.

Equation (4.9) contains a sum over alignments, which is exponential and suggeststhat

the computing the parameters in this way is infeasible. In fact, just as with (3.11), we can

rewrite the expressionin a way that leadsto a more e�cien t calculation:

X

a

mY

i =1

� (di j gai ) =
mY

i =1

nX

j =0

� (di j gj ) (4.10)

This rearranging means that computing
P

a p(d; a j g) requires only �( mn) work, rather

than �( nm ).



108 Do cumen t gisting

Figure 4.4 shows the progressof the perplexity of the Open Directory training data

during the six iterations of training, using all the 103; 064gist/w eb pagepairs in the training

set (24; 231; 164 words in the web pagedata and 1; 922; 393 words in the summaries). The

vocabularieswere constructed from the top 65535words appearing at least twice; all other

words were mapped to the symbol oo v (for \out of vocabulary").

Table 4.1 shows the top entries for a few selectedwords.
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Figure 4.4: Decreasein perplexity of the training set during the six iterations of the EM

algorithm

4.5.2 Estimating a language model

ocelot attempts to ensure that its hypothesized gists are readable with the help of a

trigram model of the form (4.3). For a W -word vocabulary, such a model is characterized

by W 3 parameters: p(w j u; v) is the probabilit y that the word w follows the bigram u; v.

Constructing such a model involved calculating p(w j u; v) valuesfrom the full training

set of Open Directory gists. Building the languagemodel consistedof the following steps:

1. Construct a vocabulary of active words from those words appearing at least twice

within the collection of summaries. This amounted to 37; 863 unique words.

2. Build a trigram word model from this data using maximum-likelihood estimation.

3. \Smooth" this model (by assigningsomeprobabilit y massto unseentrigrams) using

the Good-Turing estimate [35].

To accomplish the �nal two steps, ocelot uses the publicly-available CMU-Cambridge

LanguageModelling Toolkit [21].
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job job 0.194 jobs 0.098 career 0.028 employment0.028
wilderness wilderness 0.123 the 0.061 national 0.032 forest 0.028

associations associations 0.083 association 0.063 oo v 0.020 members0.013

ibm ibm 0.130 business 0.035 solutions 0.019 support 0.017
camera camera 0.137 cameras 0.045 photo 0.020 photography 0.014

investments investments 0.049 investment 0.046 fund 0.033 financial 0.025
contractor contractor 0.080 contractors 0.030 construction 0.027 our 0.016

quilts quilts 0.141 quilt 0.074 i 0.036 quilting 0.034
exhibitions exhibitions 0.059 oo v 0.056 art 0.048 museum0.041

ranches ranches 0.089 springs 0.034 colorado 0.032 ranch 0.030

Table 4.1: Word-relatednessmodels � (� j w) for selectedwords w, computed in an unsuper-

vised manner from the Open Directory training data.

4.6 Evaluation

Summarization research has grappled for yearswith the issueof how to perform a rigorous

evaluation of a summarization system [34, 38, 44, 71]. One can categorizesummarization

evaluations as

� extrinsic: evaluating the summary with respect to how useful it is when embeddedin

someapplication;

� intrinsic : adjuticating the merits of the summary on its own terms, without regard

to its intended purpose.

This section reports on one extrinsic and two intrinsic evaluations, using Algorithm 9.

4.6.1 In trinsic: evaluating the language model

Since ocelot usesboth a language model and a word-relatednessmodel to calculate a

gist of a web page, isolating the contribution of the languagemodel to the performance

of ocelot is a di�cult task. But the speech recognition literature suggesta strategy:

gauge the performance of a languagemodel in isolation from the rest of the summarizer

by measuring how well it predicts a previously-unseencollection G of actual summaries.

Speci�cally , one can calculate the probabilit y which the languagemodel assignsto a set of

unseenOpen Directory gists; the higher the probabilit y, the better the model.
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Musicians United TM 
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Open Dir ectory gist: a chapter of the

national audubon society serving the

communities of savannah chatham county

and the surrounding areas

Open Dir ectory gist: to advocate the

rights of independent music artists

and raise public awareness of artists

distributing their music directly to the

public via the internet
ocelot gist: audubon society atlanta area

savannah georgia chatham and local birding

savannah keepers chapter of the audubon

georgia and leasing

ocelot gist: the music business and

industry artists raise awareness rock and

jazz

Figure 4.5: Selectedoutput from ocelot . The original web page is shown above with the

actual and hypothesizedgists below.

The log-likelihood assignedby � to an n-word collection G is

logp(G) =
nX

i =1

logp(gi j gi � 2gi � 1)

As described in Chapter 2, the perplexity of G according to the trigram model is related to

logp(G) by

�( G) = exp

(

�
�

1
n

� nX

i =1

logp(gi j gi � 2gi � 1)

)

Roughly speaking, perplexity can be thought of as the average number of \guesses" the

languagemodel must make to identify the next word in a string of text comprising a gist

drawn from the test data. An upper bound in this setting is j W j= 37; 863: the number of

di�eren t words which could appear in any single position in a gist. To the test collection

of 1046gists consisting of 20; 775 words, the languagemodel assigneda perplexity of 362.



4.6 Evaluation 111

This is to be compared with the perplexity of the same text as measuredby the weaker

bigram and unigram models: 536 and 2185,respectively. The messagehere is that, at least

in an information theoretic sense,using a trigram model to enforce
uency on the generated

summary is superior to using a bigram or unigram model (the latter is what is usedin \bag

of words" gisting).

4.6.2 In trinsic: gisted web pages

Figure 4.5 shows two examplesof the behavior of ocelot on web pagesselectedfrom the

evaluation set of Open Directory pages|w eb pages,in other words, which ocelot did not

observe during the learning process.

The generated summaries do leave something to be desired. While they capture the

essenceof the sourcedocument, they are not very 
uen t. The performanceof the system

could clearly bene�t from more sophisticatedcontent selectionand surfacerealization mod-

els. For instance, even though Algorithm 9 strives to produce well-formed summarieswith

the help of a trigram model of language,the model makesno e�ort to preserve word order

betweendocument and summary. ocelot has no mechanism, for example, for distinguish-

ing betweenthe documents Dog bites manand Man bites dog. A goal for future work is

to considersomewhatmore sophisticatedstochastic models of language,investigating more

complexapproachessuch aslonger rangeMarkov models,or even more structured syntactic

models, such as the onesproposedby Chelba and Jelinek [19, 20]. Another possibility is to

considera hybrid extractive/non-extractiv e system: a summarizer which builds a gist form

entire phrasesfrom the sourcedocument where possible,rather than just words.

4.6.3 Extrinsic: text categorization

For an extrinsic evaluation of automatic summarization, we developed a user study to

assesshow well the automatically-generated summary of a document helps a user classify a

document into one of a �xed number of categories.

Speci�cally , we collecteda set of 629web pagesalong with their human-generatedsum-

maries, made available by the OpenDirectory project. The pages were roughly equally

distributed acrossthe following categories:

Spor ts/Mar tial Ar ts Society/Philosophy

Spor ts/Motorspor ts Society/Milit ar y

Spor ts/Equestrian Home/Gardens

For each page,we generatedsix di�eren t \views":



112 Do cumen t gisting

1. the text of the web page

2. the title of the page

3. an automatically-generated summary of the page

4. the OpenDirectory-provided, human-authored summary of the page

5. a set of words, equal in size to the automatically-generated summary, selecteduni-

formly at random from the words in the original page

6. the leading sequenceof words in the page, equal in length to the automatically-

generatedsummary.

Taking an information theoretic perspective, one could imagine each of these views as

the result of passingthe original document through a di�eren t noisy channel. For instance,

the title view results from passing the original document through a �lter which distills a

document into its title. With this perspective, the question addressedin this user study is

this: how much information is lost through each of these�lters? A better representation of

a document, of course,loseslessinformation.

To assessthe information quality of a view, we ask a user to try to guessthe proper

(OpenDirectory-assigned)classi�cation of the original page, using only the information in

that view. For concreteness,Table 4.6.3 displays a single entry from among those collected

for this study. Only very lightweight text normalization was performed: lowercasing all

words, removing �lenames and urls, and mapping numbers containing two or more digits

to the canonical token [num] .

Table 4.6.3 contains the results of the user study. The results were collected from

six di�eren t participants, each of whom classi�ed approximately 120 views. The records

assignedto each user were selecteduniformly at random from the full collection of records,

and the view for each record was randomly selectedfrom among the six possibleviews.

Perhapsthe most intriguing aspect of theseresults is how the human-provided summary

was actually more useful to the users, on average, than the full web page. This isn't too

surprising; after all, the human-authored summary was designedto distill the essenceof

the original page,which often contains extraneousinformation of tangential relevance. The

synthesized summary performed approximately as well as the title of the page, placing

it signi�cantly higher than a randomly-generated summary but also inferior to both the

original pageand the human-generatedsummary.
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full page: davidcoulthard com david coulthard driving the [num] mclaren mercedes

benz formula 1 racing car click here to enter copyright [num] [num] davidcoulthard

com all rights reserved privacy policy davidcoulthard com is not affiliated with
david coulthard or mclaren

title : david coulthard

Op enDirectory human summary : website on mclaren david coulthard the scottish

formula 1 racing driver includes a biography racing history photos quotes a
message board

automatically-generated summary : criminal driving teams automobiles formula 1
racing more issues shift af railings crash teams

Randomly-selected words : davidcoulthard policy click david mclaren driving to

[num] com reserved with [num] copyright or

Leading words : davidcoulthard com david coulthard driving the [num] mclaren

mercedes benz formula 1 racing car

Table 4.2: A single record from the user study, containing the six di�eren t views of a single

web page. This document was from the topic Spor ts/Motorspor ts .

4.7 Translingual gisting

With essentially no adaptation, ocelot could serveasa translingual summarization system:

a system for producing the gist of a document in another language. The only necessary

ingredient is a collection of documents in onelanguagewith summariesin another: the word-

relatednessmatrix would then automatically becomea matrix of translation probabilities.

Experts in the �eld of information retrieval consider translingual summarization to be a

key ingedient in enabling universal accessto electronic information|-in other words, the

internationalization of the Internet [65].

Someinitial proof-of-conceptexperiments to generateEnglish summariesof French web

pagessuggest that ocelot may indeed be useful in this setting. For this purpose, one

can usethe samelanguagemodel on (English) summariesas in Section 4.6. Since locating

a suitably large parallel corpus of French web pagesand English summaries from which

to estimate � is di�cult, we were forced to use a pre-built translation model, constructed

from the proceedingsof the Canadian parliament|the Hansards described in Chapter 1.
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view # of samples # correct accuracy

OpenDirectory human-provided summary 109 94 0.862

Words in original page 131 108 0.824

First n words in page 98 75 0.765

Title of page 112 80 0.714

Synthesizedsummary 115 80 0.695

Words randomly-selectedfrom page 122 76 0.622

Table 4.3: Results of an extrinsic user study to assessthe quality of the automati-

cally-generatedweb pagesummaries.

The subset of the Hansard corpus used to estimate this model contained two million par-

allel English/French sentences,comprising approximately 43 million words. Using a model

trained on parliamentary discourseon the domain of web pagegisting has its shortcomings:

words may sometimeshave quite di�eren t statistics in the Hansards than in the average

web page. One potential line of future work involves using a web spidering tool to identify

and download web pagespublished in di�eren t languages[73].

Figure 4.6 givesan example of French web pagegisted into English.

4.8 Chapter summary

This chapter has described the philosophy, architecture, and performance of ocelot , a

prototype web-pagesummarization system. ocelot is designedto generatenon-extractive

summaries of a source document; in fact, the generated summaries are likely to contain

words not even appearing in the original document. This approach to summarization ap-

pearsparticularly well-suited to web pages,which are often disjointed lists of phrasesand

links not amenableto traditional extraction-based techniques.

As it stands, ocelot represents but an initial foray into automating the processof

web page gisting. Considerably more sophisticated models will be required to produce

useful, readable summaries. As mentioned, considerably more e�ort will have to go into

evaluation|via userstudies,most probably|in order to assessthe relative extrinsic quality

of competing summarization techniques.

Asked to summarizea web page,a reasonablyintelligent personwould no doubt make

use of information that ocelot ignores. For instance, text often appears in web pages

in the form of bitmapp ed images, but this information is lost without a front-end OCR

module to extract this text. Also, the systemdoesnot exploit structural cluesabout what's
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� � � � � � � � � � � � � � � � 	 � 
 � � � 
 � 
 � � � � 
�� � � � � � � � � � 
 � � � � � � � � � � � � � � � ����� 
 � � � � � � � � � � � � 
 � � � � � 
 �

[Division des blessures chez les enfants]

SCHIRPT 

Un grave problème de santé chez les enfants 

Au Canada, depuis 10 ans, les blessures chez les enfants sont devenues un 
grave problème de santé publique. Ce problème n'est pas nouveau, mais ce n'est 
que récemment que l'on a commencé à en étudier toute la portée. Le taux de 
mortalité reflète l'ampleur des blessures les plus graves : chaque année, les 
blessures causent plus de décès chez les jeunes Canadiens et Canadiennes de 
plus d'un an que toutes les autres causes réunies. Pour chaque décès lié à une blessure, on 
compte 45 hospitalisations et environ 1 300 visites à l'urgence dans l'ensemble du pays. 
Ajoutons qu'environ 90 p. 100 de ces blessures sont probablement prévisibles et évitables. 

Jusqu'à récemment, on ignorait presque tout des circonstances entourant les blessures chez 
les enfants. Les taux de décès et d'hospitalisation, bien qu'utiles, ne répondent pas à toutes 
les questions de ceux qui travaillent à la prévention des blessures. Que faisait l'enfant lorsqu'il 
a subi la blessure? Où était-il? Que s'est-il passé? Le Système canadien hospitalier d' 
information et de recherche en prévention des traumatismes (SCHIRPT) est né en 1990 pour 
répondre à ces questions. 

[Début de la page] [Division des blessures chez les enfants] [Précédente] [Prochaine] 
[LLCM] [DGPS] [Contact] [Droits d'auteur/désistements] [English]
Dernière mise à jour : 1997-10-24

ocelot gist: health protection branch of the protection of health anti inflation

guidelines health of animals in volume may table of contents of our children in

central canada review of u.s beginning at page volume final vote day may

Figure 4.6: Selectedoutput from a French-English version of ocelot

important on the page. For instance, the text within the <title> : : : </title> region is

likely to be relatively important, while text within a <small> : : : </small> is probably less

important.

Algorithm 9 is too resource-intensive to be a real-time procedure. In fact, on the work-

station used in the experiments here, calculating a gist using this algorithm could take as

long asa few minutes. An important next step is to devisean e�cien t, approximate version

of this algorithm, in the spirit of the FastRank proceduredescribed in the previous chapter.

Another next step, as mentioned earlier, is to consider using phrasesextracted from

the source document as atomic units|just like individual words|in piecing together a

summary. That is, the candidate constituents of a summary of a document are all the words

known to the system,plus a set of phrasesappearing in the sourcedocument. Perhapsthis

strategy is a step back towards extractive summarization, but consideringphrasesfrom the

sourcedocument might increasethe chancefor a 
uen t summary.
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Chapter 5

Query-relev ant summarization

This chapter addressesthe problemof query-relevant summarization: succinctly

characterizing the relevance of a document to a query. Learning parameter val-

ues for the proposed statistical models requires a large collection of summarized

documents, which is di�cult to obtain. In its place, we propose the use of a

collection of FAQ (frequently-asked question) documents. Taking a learning ap-

proach enablesa principled, quantitative evaluation of the proposed system,and

the resultsof someinitial experiments|on a collection of UsenetFAQs and on a

FAQ-like set of customer-submitted questionsto several large retail companies|

suggestthe plausibility of learning for summarization.

5.1 In tro duction

An important distinction in document summarization is betweengeneric summaries, which

capture the central ideas of the document in much the sameway that the abstract above

was designedto distill this chapter's salient points, and query-relevant summaries, which

re
ect the relevanceof a document to a user-speci�ed query. Chapter 4 described a method

for generating genericsummariesof a document, while the focus here is on query-relevant

summarization, sometimescalled \user-focused" summarization [55].

Query-relevant summariesare especially important in the \needle(s) in a haystack" doc-

ument retrieval problem tackled in Chapter 3: a user has an information needexpressedas

a query (``What countries export smoked salmon?'' or maybe just ``export smoked

salmon'' ), and a retrieval systemmust locate within a large collection of documents those

documents most likely to ful�ll this need. Many interactive retrieval systems|commercial

web search engines,for instance|presen t the user with a small set of candidate relevant

117
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documents, each summarized;the user must then perform a kind of triage to identify likely

relevant documents from this set. The web pagesummariespresented by most search en-

gines are generic, not query-relevant, and thus provide very little guidance to the user in

assessingrelevance. This relianceon query-independent summariesis attributable in part to

economicreasons:summarizing a document de novo for every query is more expensive than

summarizing the document onceand for all, independent of any speci�c query. But query-

relevant summarization (QRS) can provide a more e�ectiv e characterization of a document

by accounting for the user's information needwhen generating a summary.
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Figure 5.1: One promising setting for query-relevant summarization is large-scaledocument

retrieval. Starting from a user-speci�ed query q, search enginestypically �rst (a) identify

a set of documents which appear potentially relevant to the query, and then (b) produce a

short characterization � (d; q) of each document's relevanceto q. The purposeof � (d; q) is

to help the user decidewhich of the documents merits a more detailed inspection.

As with almost all previous work on summarization (excluding the previous chapter, of

course),this chapter focuseson the task of extractive summarization: selectingassummaries

text spans|either complete sentencesor paragraphs|from the original document.

5.1.1 Statistical models for summarization

From a document d and query q, the task of query-relevant summarization is to extract a

portion s from d which best reveals how the document relates to the query. To begin, we

start with a collection C of f d; q; sg triplets, wheres is a human-constructedsummary of d

relative to the query q. From such a collection of data, we �t the best function � : (q; d) ! s

mapping document/query pairs to summaries.

The mapping used here is a probabilistic one, meaning the system assignsa value
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Figure 5.2: Learning to perform query-relevant summarization requires a set of documents

summarizedwith respect to queries. The diagram shows three imaginary triplets f d; q; sg,

though the statistical learning techniquesdescribed in Section 5.2 require many thousands

of examples.

p(s j d; q) to each candidate summary s of (d; q). The QRS systemwill summarizea (d; q)

pair by selecting

� (d; q) def= argmax
s

p(s j d; q)

There are at least two ways to interpret p(s j d; q). First, one could view p(s j d; q) as

a \degree of belief" that the correct summary of d relative to q is s. Of course, what

constitutes a good summary in any setting is subjective: any two people performing the

same summarization task will likely disagreeon which part of the document to extract.

One could, in principle, ask a large number of people to perform the same task. Doing

so would impose a distribution p(� j d; q) over candidate summaries. Under the second,

or \frequentist" interpretation, p(s j d; q) is the fraction of people who would select s|

equivalently, the probabilit y that a personselectedat random would prefers asthe summary.

(This frequentist interpretation is similar to the interpretation of p(g j d) in Section 4.3.)

The statistical model p(� j d; q) is parametric, the valuesof which are learnedby inspec-

tion of the f d; q; sg triplets. The learning processinvolvesmaximum-likelihood estimation

of probabilistic languagemodels and the statistical technique of shrinkage[81].

This probabilistic approach easily generalizesto the generic summarization setting,

where there is no query. In that case, the training data consists of f d; sg pairs, where

s is a summary of the document d. The goal, in this case,is to learn and apply a mapping
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� : d ! s from documents to summaries. That is, �nd

� (d) def= argmax
s

p(s j d)

5.1.2 Using FA Q data for summarization

This chapter has proposedusing statistical learning to construct a summarization system,

but has not yet discussedthe one crucial ingredient of any learning procedure: training

data. The ideal training data would contain a large number of heterogeneousdocuments, a

large number of queries,and summariesof each document relative to each query. We know

of no such publicly-available collections. Many studies on text summarization have focused

on the task of summarizing newswiretext, but there is no obvious way to usenewsarticles

for query-relevant summarization within the framework proposedhere.

This chapter proposesa novel data collection for training a QRS model: frequently-

asked question documents. Each frequently-asked question document (FAQ) is comprised

of questions and answers about a speci�c topic. One can view each answer in a FAQ as

a summary of the document relative to the question which precededit. That is, an FAQ

with N question/answer pairs comesequipped with N di�eren t queriesand summaries: the

answer to the kth questionis a summary of the document relative to the kth question. While

a somewhatunorthodox perspective, this insight allows us to enlist FAQs aslabeledtraining

data for the purposeof learning the parametersof a statistical QRS model. (Sato and Sato

alsousedFAQs asa sourceof summarization corpora, but their approach wasquite di�eren t

from that presented here,and did not useeither statistical modelsor machine learning [77].)

FAQ data has someproperties that make it particularly attractiv e for text learning:

� There exist a large number of Usenet FAQs|sev eral thousand documents|publicly

available on the Web1. Moreover, many large companiesmaintain their own FAQs to

streamline the customer-responseprocess.

� FAQs are generally well-structured documents, so the task of extracting the con-

stituent parts (queries and answers) is amenable to automation. There have even

been proposals for standardized FAQ formats, such as RFC1153 and the Minimal

Digest Format [85].

� Usenet FAQs cover an astonishingly wide variety of topics, ranging from extraterres-

trial visitors to mutual-fund investing. If there's an online communit y of peoplewith

a common interest, there's likely to be a UsenetFAQ on that subject.

1Two online sourcesfor FAQ data are www.faqs.org and rtfm.mit.edu .
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Figure 5.3: FAQs consist of a list of questions and answers on a single topic; the FAQ

depicted here is part of an informational document on amniocentesis. This chapter views

answers in a FAQ as di�eren t summariesof the FAQ: the answer to the kth question is a

summary of the FAQ relative to that question.

5.2 A probabilistic mo del of summarization

Given a query q and document d, the query-relevant summarization task is to �nd

s? � argmax
s

p(s j d; q);

the a posteriori most probable summary for (d; q). Using Bayes' rule, one can rewrite this

expressionas

s? = argmax
s

p(q j s; d) p(s j d);

� argmax
s

p(q j s)
| {z }

relevance

p(s j d)
| {z }
�delity

; (5.1)

where the last line follows by dropping the dependenceon d in p(q j s; d).

Equation (5.1) is a search problem: �nd the summary s? which maximizes the product

of two factors:

1. The relev ance p(q j s) of the query to the summary: A document may contain some

portions directly relevant to the query, and other sectionsbearing little or no relation

to the query. Consider, for instance, the problem of summarizing a survey on the

history of organizedsports relative to the query \ Who wasLou Gehrig?" A summary

mentioning Lou Gehrig is probably more relevant to this query than one describing

the rules of volleyball, even if two-thirds of the survey happensto be about volleyball.
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2. The �delit y p(s j d) of the summary to the document: Among a set of candidate

summarieswhoserelevancescoresare comparable,we should prefer that summary s

which is most representativ e of the document as a whole. Summariesof documents

relative to a query can often mislead a reader into overestimating the relevanceof an

unrelated document. In particular, very long documents are likely (by sheerluck) to

contain someportion which appearsrelated to the query. A document having nothing

to do with Lou Gehrig may include a mention of his name in passing,perhapsin the

context of amyotropic lateral sclerosis,the diseasefrom which he su�ered. The �delit y

term guardsagainst this occurrenceby rewarding or penalizing candidate summaries,

depending on whether they are germaneto the main theme of the document.

More generally, the �delit y term represents a prior , query-independent distribution

over candidate summaries. In addition to enforcing �delit y, this term could serve

to distinguish between more and less
uen t candidate summaries, in much the same

way (as the previous chapter described) the trigram languagemodel steersocelot

towards a more 
uen t summary.

In words, (5.1) says that the best summary of a document relative to a query is relevant

to the query (exhibits a large p(q j s) value) and also representativ e of the document from

which it was extracted (exhibits a large p(s j d) value). What follows is a description of the

parametric form of thesemodels,and how to determine optimal valuesfor theseparameters

using maximum-likelihood estimation.

5.2.1 Language modeling

One reasonablestatistical model for both p(q j s) and p(s j d) is a unigram probabilit y

distribution over words; in other words, a languagemodel.

The �delit y mo del p(s j d)

One simple statistical characterization of an n-word document d = f d1; d2; : : : dn g is the

frequency of each word in d|in other words, a marginal distribution over words. That is,

if word w appearsk times in d, then pd (w) = k=n. This is not only intuitiv e, but also the

maximum-likelihood estimate for pd (w).

Now imagine that, when asked to summarize d relative to q, a person generatesa

summary from d in the following way:
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1. Selecta length m for the summary according to somedistribu-

tion ld .
2. Do for i = 1; 2; : : : m:

- Select a word w at random according to the distribution pd .

(That is, throw all the words in d into a bag, pull one out, and

then replaceit.)
3. Set si  w

In following this procedure, the person will generatethe summary s = f s1; s2; : : : smg

with probabilit y

p(s j d) = ld (m)
mY

i =1

pd (si ) (5.2)

Denoting by W the set of all known words, and by c(w 2 d) the number of times that

word w appears in d, one can also write (5.2) as a multinomial distribution:

p(s j d) = ld (m)
Y

w 2 W

p(w)c(w 2 d) : (5.3)

This characterization of d amounts to a bag of words model, since the distribution p d

does not take account of the order of the words within the document d, but rather views

d as an unordered set. Of course, ignoring word order (an approximation which should

be familiar to the reader by now) amounts to discarding potentially valuable information.

In Figure 5.3, for instance, the second question contains an anaphoric referenceto the

preceding question: a sophisticated context-sensitive model of languagemight be able to

detect that it in this context refers to amniocentesis , but a context-free model will not.

The relev ance mo del p(q j s)

In principle, one could proceedanalogouslyto (5.2), and take

p(q j s) = ls(k)
mY

i =1

ps(qi ): (5.4)

for a length-k query q = f q1; q2 : : : qkg. But this strategy su�ers from a sparseestimation

problem. In contrast to a document, which will typically contain a few hundred words, a

normal-sized summary contains just a handful of words. What this meansis that p s will

assignzeroprobabilit y to most words, and any query containing a word not in the summary

will receive a relevancescoreof zero.

(The �delit y model doesn't su�er from zero-probabilities, at least not in the extractive

summarization setting. Since a summary s is part of its containing document d, every
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word in s also appears in d, and therefore pd (s) > 0 for every word s2 s. But we have no

guarantee, for the relevancemodel, that a summary contains all the words in the query.)

One way to addressthis zero-probability problem is by interpolating or \smoothing"

the ps model with four more robustly estimated unigram word models. Listed in order of

decreasingvariance but increasingbias away from ps, they are:

pN : a probabilit y distribution constructed using not only s, but also all words within

the six summaries(answers) surrounding s in d. Since pN is calculated using more

text than just s alone, its parameter estimates should be more robust that those of

ps. On the other hand, the pN model is, by construction, biasedaway from ps, and

therefore provides only indirect evidencefor the relation betweenq and s.

pd : a probabilit y distribution constructed over the entire document d containing s.

This model has even lessvariance than pN , but is even more biasedaway from ps.

pC: a probabilit y distribution constructed over all documents d.

pU: the uniform distribution over all words.

Figure 5.4 is a hierarchical depiction of the various languagemodels which come into

play in calculating p(q j s). Each summary model ps livesat a leaf node, and the relevance

p(q j s) of a query to that summary is a convex combination of the distributions at each

node along a path from the leaf to the root2:

p(q j s) = � sps(q) + � N pN (q) + � d pd (q) + � CpC(q) + � UpU(q) (5.5)

Calculating the weighting coe�cien ts � = f � s; � N ; � d ; � C; � Ug is a fairly straightforward

matter using the statistical technique known as shrinkage [81], a simple form of the EM

algorithm. Intuitiv ely, the goal of this algorithm in this context is to calculate the relative

\reliabilit y" (predictiv e accuracy) of each of the constituent models, and assigna weight to

each model in accord with its reliabilit y.

As a practical matter, assuming the ls model assignsprobabilities independently of s

allows us to drop the ls term when ranking candidate summaries,sincethe scoreof all can-

didate summarieswill receive an identical contribution from the l s term. The experiments

reported in the following section make this simplifying assumption.

2By incorporating a pd model into the relevance model, equation (5.5) has implicitly resurrected the

dependenceon d which was dropped, for the sake of simplicit y, in deriving (5.1).
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Figure 5.4: The relevancep(q j sij ) of a query to the j th answer in document i is a convex

combination of �v e distributions: (1) a uniform model pU . (2) a corpus-widemodel pC; (3)

a model pd i constructed from the document containing sij ; (4) a model pN ij constructed

from sij and the neighboring sentencesin d i ; (3) a model psij constructed from sij alone.

(The pN distribution is omitted for clarit y.)

5.3 Exp erimen ts

To gaugehow well our proposedsummarization technique performs, we applied it to two

di�eren t real-world collections of answered questions:

Usenet FA Qs: A collection of 201 frequently-asked question documents from the

comp.* Usenet hierarchy. The documents contained 1800 questions/answer pairs in

total.

Call-cen ter data : A collection of questionssubmitted by customersto the compa-

niesAir Canada,Ben and Jerry, Iomagic, and Mylex, along with the answerssupplied

by company representativ es. Among them, the four documents contain 10; 395 ques-

tion/answer pairs. This is a superset of the dataset used in Chapter 3.8.

These datasets made an appearancein Section 3.8, in the context of answer-�nding

using statistical retrieval.

This section reports on an identical, parallel set of cross-validated experiments on both

datasets. The �rst step wasto usea randomly-selectedsubsetof 70%of the question/answer

pairs to calculate the languagemodels ps; pN ; pd ; pC|a simple matter of counting word

frequencies. The second step was to use this same set of data to estimate the model

weights � = f � s; � N ; � d ; � C; � Ug using shrinkage,reserving the remaining 30% of the ques-

tion/answer pairs to evaluate the performanceof the system, in a manner described below.

Figure 5.5 shows the progressof the EM algorithm in calculating maximum-likelihood

valuesfor the smoothing coe�cien ts � , for the �rst of the three runs on the Usenetdata. The
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Algorithm 10: Shrinkagefor ~� estimation

Input: Distributions ps; pd ; pC; pU,

H = f d; q; sg (not used to estimate ps; pd ; pC; pU)

Output Model weights ~� = f � s; � N ; � d ; � C; � Ug

1. Set � s  � N  � d  � C  � U  1=5

2. Repeat until ~� converges:

3. Set count s = count N = count d = count C = count U = 0

4. Do for all f d; q; sg2 H

5. ( E-step ) count s  count s + � sps (q)
p(q j s)

(similarly for count N ; count d , count C, countU)

6. ( M-step) Set � s  count sP
i

count i
(similarly for � N ; � d ; � C; � U)

quick convergenceand the �nal � values were essentially identical for the other partitions

of this dataset.

The call-center data's convergencebehavior wassimilar, although the �nal � valueswere

quite di�eren t. Figure 5.6shows the �nal model weights for the �rst of the three experiments

on both datasets. For the UsenetFAQ data, the corpuslanguagemodel is the bestpredictor

of the query and thus receivesthe highestweight. This may seemcounterintuitiv e; onemight

suspect that answer to the query (s, that is) would be most similar to, and therefore the

best predictor of, the query. But the corpus model, while certainly biased away from the

distribution of words found in the query, contains (by construction) no zeros,whereaseach

summary model is typically very sparse.

In the call-center data, the corpus model weight is lower at the expenseof a higher

document model weight. This might arise from the fact that the documents in the Usenet

data were all quite similar to one another in lexical content, in contrast to the call-center

documents. As a result, in the call-center data the document containing s will appear much

more relevant than the corpus as a whole.

Evaluating the performanceof the trained QRS model involved the previously-unseen

portion of the FAQ data as follows: For each test (d; q) pair, record how highly the system

ranked the correct summary s?|the answer to q in d|relativ e to the other answers in d.
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Figure 5.5: Estimating the weights of the �v e constituent models in (5.5) using the EM

algorithm. The values here were computed using a single, randomly-selected70% portion

of the Usenet FAQ dataset. Left: The weights � for the models are initialized to 1=5, but

within a few iterations settle to their �nal values. Right: The progressionof the likelihood of

the training data during the execution of the EM algorithm; almost all of the improvement

comesin the �rst �v e iterations.

Repeat this entire sequencethree times for both the Usenet and the call-center data.

For thesedatasets,it turns out that using a uniform �delit y term in placeof the p(s j d)

model described above yields essentially the sameresult. This is not surprising: while the

�delit y term is an important component of a real summarization system, the evaluation

described here was conducted in an answer-locating framework, and in this context the

�delit y term|enforcing that the summary be similar to the entire document from which it

was drawn|is not so important.

Table 5.1 shows the inverse harmonic mean rank on the two collections. The third

column of Table 5.1 shows the result of a QRS system using a uniform �delit y model, the

fourth corresponds to a standard t�df -based ranking method [67], and the last column

re
ects the performanceof randomly guessingthe correct summary from all answers in the

document.
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� s � N � d � C � U
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Figure 5.6: Maximum-likelihood weights for the various components of the relevancemodel

p(q j s). Left: Weights assignedto the constituent models from the Usenet FAQ data.

Right: Corresponding breakdown for the call-center data. These weights were calculated

using shrinkage.

5.4 Extensions

5.4.1 Answ er-�nding

The readermay by now have realizedthat the QRS approach described hereis applicable to

the answer-�nding task described in Section3.8: automatically extracting from a potentially

lengthy document (or set of documents) the answer to a user-speci�ed question.

That section described how to use techniques from statistical translation to bridge the

\lexical chasm" between questionsand answers. This chapter, while focusing on the QRS

problem, hasincidentally madestwo additional contributions to the answer-�nding problem:

1. Dispensingwith the simplifying assumption that the candidate answers are indepen-

dent of one another by using a model which explicitly accounts for the correlation

betweentext blocks|candidate answers|within a single document.

2. Proposing the use of FAQ documents as a proxy for query-summarizeddocuments,

which are di�cult to comeby.

Answer-�nding and query-relevant summarization are, of course,not one and the same.
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trial # questions LM t�df random

1 554 1.41 2.29 4.20

UsenetFAQ data 2 549 1.38 2.42 4.25

3 535 1.40 2.30 4.19

1 1020 4.8 38.7 1335

Call-center data 2 1055 4.0 22.6 1335

3 1037 4.2 26.0 1321

Table 5.1: Performance of query-relevant extractiv e summarization on the Usenet and

call-center datasets. The numbers reported in the three rightmost columns are inverse

harmonic mean ranks: lower is better.

For one, the criterion of containing an answer to a question is rather stricter than mere

relevance. Put another way, only a small number of documents actually contain the answer

to a given query, while every document can in principle be summarizedwith respect to that

query. Second,it would seemthat the p(s j d) term, which acts as a prior on summariesin

(5.1), is lessappropriate in a question-answering session:who caresif a candidate answer

to a query doesn't bear much resemblance to the document containing it?

5.4.2 Generic extractiv e summarization

Although this chapter focuseson the task of query-relevant summarization, the coreideas|

formulating a probabilistic model of the problem and learning the values of this model

automatically from FAQ-like data|are equally applicable to generic summarization. In

this case,one seeksthe summary which best typi�es the document. Applying Bayes' rule

as in (5.1),

s? � argmax
s

p(s j d)

= argmax
s

p(d j s)
| {z }

generative

p(s)
| {z }
prior

(5.6)

The �rst term on the right is a generative model of documents from summaries,and the

secondis a prior distribution over summaries. One can think of this factorization in terms

of a dialogue. Alice, a newspaper editor, hasan idea s for a story, which sherelates to Bob.

Bob researches and writes the story d, which one can view as a \corruption" of Alice's

original idea s. The task of genericsummarization is to recover s, given only the generated

document d, a model p(d j s) of how the Alice generatessummariesfrom documents, and

a prior distribution p(s) on ideass.
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The central problem in information theory is reliable communication through an unre-

liable channel. In this setting, Alice's idea s is the original signal, and the processby which

Bob turns this idea into a document d is the channel, which corrupts the original message.

The summarizer's task is to \decode" the original, condensedmessagefrom the document.

This is exactly the approach described in the last chapter, except that the summarization

technique described there was non-extractive.

The factorization in (5.6) is super�cially similar to (5.1), but there is an important

di�erence: p(d j s) is a generative, from a summary to a larger document, whereasp(q j s)

is compressive, from a summary to a smaller query.

5.5 Chapter summary

The task of summarization is di�cult to de�ne and even more di�cult to automate. Histor-

ically, a rewarding line of attack for automating language-relatedproblemshasbeento take

a machine learning perspective: let a computer learn how to perform the task by \w atch-

ing" a human perform it many times. This is the strategy adopted in this and the previous

chapter.

In developing the QRS framework, this chapter has more or lessadhered to the four-

step strategy described in Chapter 1. Section 5.1 described how one can useFAQs to solve

the problem of data collection. Section 5.2 introduced a family of statistical models for

query-relevant summarization, thus covering the secondstep of model selection. Section5.2

also covered the issue of parameter estimation in describing an EM-based technique for

calculating the maximum-likelihood member of this family. Unlike in Chapter 4, search

wasn't a di�cult issuein this chapter|all that is required is to compute p(s j d; q) according

to (5.1) for each candidate summary s of a document d.

There has been some work on learning a probabilistic model of summarization from

text; someof the earliest work on this was due to Kupiec et al. [49], who useda collection

of manually-summarized text to learn the weights for a set of features used in a generic

summarization system. Hovy and Lin [40] present another systemthat learnedhow the po-

sition of a sentencea�ects its suitabilit y for inclusion in a summary of the document. More

recently, there has beenwork on building more complex, structured models|probabilistic

syntax trees|to compresssingle sentences[47]. Mani and Bloedorn [55] have recently pro-

poseda method for automatically constructing decisiontrees to predict whether a sentence

should or should not be included in a document's summary. These previous approaches

focus mainly on the genericsummarization task, not query relevant summarization.

The languagemodelling approach described heredoessu�er from a common
a w within
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text processingsystems: the problem of word relatedness. A candidate answer containing

the term Constantinople is likely to be relevant to a question about Istanbul, but recog-

nizing this correspondencerequires a step beyond word frequency histograms. A natural

extension of this work would be to integrate a word-replacement model as described in

Section 3.8.

This chapter hasproposedthe useof two novel datasetsfor summarization: the frequently-

asked questions(FAQs) from Usenetarchivesand question/answer pairs from the call cen-

ters of retail companies. Clearly this data isn't a perfect �t for the task of building a

QRS system: after all, answersare not summaries. However, the FAQs appear to represent

a reasonablesource of query-related document condensations. Furthermore, using FAQs

allows us to assessthe e�ectiv enessof applying standard statistical learning machinery|

maximum-likelihood estimation, the EM algorithm, and so on|to the QRS problem. More

importantly, it allows for a rigorous, non-heuristic evaluation of the system'sperformance.

Although this work is meant as an opening salvo in the battle to conquer summarization

with quantitativ e, statistical weapons, future work will likely enlist linguistic, semantic, and

other non-statistical tools which have shown promise in condensingtext.



132 Query-relev ant summarization



Chapter 6

Conclusion

6.1 The four step pro cess

Assessingrelevance of a document to a query, producing a gist of a document, extracting

a summary of a document relative to a query, and �nding the answer to a question within

a document: on the face of it, theseappear to be a widely disparate group of problems in

information management. The central purposeof this work, however, was to intro duceand

experimentally validate an approach, basedon statistical machine learning, which applies

to all of theseproblems.

The approach is the four-step processto statistical machine learning described in Chap-

ter 1. With the full body of the thesis now behind us, it is worthwhile to recapitulate those

steps:

� Data collection : One signi�cant hurdle in using machine learning techniques to

learn parametric models is �nding a suitable dataset from which to estimate model

parameters. It hasbeenthis author's experiencethat the data collection e�ort involves

some amount of both imagination (to realize how a dataset can ful�ll a particular

need)and diplomacy (to obtain permissionfrom the owner of the dataset to useit for

a purposeit almost certainly wasn't originally intended for.)

Chapters 3, 4 and 5 proposednovel datasets for learning to rank documents, sum-

marize documents, and locate answers within documents. Thesedatasetsare, respec-

tiv ely, web portal \clic kthrough" data, human-summarized web pages,and lists of

frequently-asked question/answer pairs.

� Mo del selection : A common thread throughout this work is the idea of using para-

metric models adapted from those usedin statistical translation to capture the word-

133
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relatednesse�ects in natural language. Thesemodels are essentially two-dimensional

matrices of word-word \substitution" probabilities. Chapter 3 showed how this model

can be thought of as an extensionof two recently popular techniques in IR: language

modeling and Hidden Markov Models (HMMs).

� Parameter estimation : From a large dataset of examples(of gisted documents, for

instance), one can use the EM algorithm to compute the maximum-likelihood set of

parameter estimatesfor that model.

� Search: In the caseof answer-�nding, \search" is a simple brute-force procedure:

evaluate all candidate answersoneby one,and take the best candidate. In the caseof

document ranking, the number of documents in question and the e�ciency required

in an interactive application preclude brute-force evaluation, and so this thesis has

introduced a method for e�cien tly locating the most relevant document to a query

while visiting only a small fraction of all candidate documents. The technique is

somewhatreminiscent of the traditional IR expedient of using an inverseindex. In the

caseof document gisting, the search spaceis exponential in the sizeof the generated

summary, and so a bit more sophistication is required. Chapter 4 explains how one

can usesearch techniques from arti�cial intelligence to �nd a high-scoring candidate

summary quickly.

The promising empirical results reported herein do not indicate that \classic" IR tech-

niques, like re�ned term-weighting formulae, query expansion,(pseudo)-relevancefeedback,

and stopword lists, are unnecessary. The opposite may in fact be true. For example,

weaver relies on stemming (certainly a classic IR technique) to keep the matrix of syn-

onymy probabilities of manageablesize and ensurerobust parameter estimates in spite of

�nitely-sized datasets. More generally, the accumulated wisdom of decadesof research in

document ranking is exactly what distinguishesmature document ranking systemsin TREC

evaluations year after year. One would not expect a systemconstructed entirely from statis-

tical machine learning techniques to outperform thesesystems. An open avenue for future

applied work in IR is to discover ways of integrating automatically-learned statistical models

with well-establishedad hoc techniques.

6.2 The context for this work

Piecesof the puzzle assembled in this document have beenidenti�ed before. As mentioned

above, teams from BBN and the University of Massachusetts have examined approaches

to document ranking using languagemodels and Hidden Markov Models [61, 67]. A group
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at Justsystem Research and Lycos Inc. [87] have examinedautomatic summarization using

statistical translation.

In the caseof document ranking, this thesis extends the University of Massachusetts

and the BBN groups to intrinsically handle word-relatednesse�ects, which play a central

role in information management. Chapter 3 includes a set of validating experiments on

a heterogeneouscollection of datasets including email, web pages,and newswire articles,

establishing the broad applicabilit y of document ranking systems built using statistical

machine learning. Chapter 3 and subsequent chapters broaden the scope of this discovery

to other problems in information processing, namely answer-�nding and query-relevant

summarization.

In the caseof non-extractive summarization, Chapter 4 goes beyond previous work in

explicitly factoring the problem into content selectionand languagemodeling subtasks,and

proposinga technique for estimating thesemodelsindependently and then integrating them

into a summarization algorithm which relieson stack search to identify an optimal summary.

This work also represents the �rst attempt to apply non-extractive summarization to web

pages,a natural domain becauseof the often disjointed nature of text in such documents.

6.3 Future directions

Over the courseof this document appeared a number of avenues for further research. To

recap, here are three particularly promising directions which apply not just to a single

problem, but to several or all of the information processingproblems discussedherein.

Polysem y: weaver and ocelot both attack the problem of word relatedness(or,

loosely, \synonymy") through the useof statistical models parametrized by the prob-

abilit y that word x could appear in the place of word y. Knowing that a document

containing the word automobile is relevant to a query containing the word car is a

good start. But neither prototype directly addressesthe equally important problem

of polysemy|where a single word can have multiple meanings.

For instance, the word suit has more than one sense,and a document containing

this word is almost certainly relying on one of thesesenses.By itself, the word gives

no hint as to which senseis most appropriate, but the surrounding words almost

always elucidate the proper meaning. The task of word sensedisambiguation is to

analyze the context local to a word to decide which meaning is appropriate. There

is a substantial body of work on automatic word-sensedisambiguation algorithms,

some of which employs statistical learning techniques [10], and it stands to reason
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that such technology could improve the performanceof weaver and ocelot and the

QRS prototype described earlier.

For instance,a \p olysemy-aware" versionof weaver could replaceoccurrencesof the

word suit in the legal sensewith the new token suit 1, while replacing the word

suit in the clothing sensewith suit 2. The query business suit would then become

business suit 2, and documents using suit in the clothing sensewould receive a

high ranking for this query, while those using the word in the legal sensewould not.

A similar line of reasoningsuggestspolysemy-awarenesscould help in summarization.

Discarding the indep endence assumption : Using local context to disambiguate

the meaning of a word requires lifting the word independenceassumption|the as-

sumption that the order in which words appears in a document can be ignored. Of

course,the idea that the order of words in a document is of no import is quite ludi-

crous. The two phrasesdog bites manand man bites dog contain the samewords,

but have entirely di�eren t meanings.

By taking account of where words occur in a document, a text processingsystemcan

assigna higher priorit y to words appearing earlier in a document in the sameway that

peopledo. A document which explains in the �rst paragraph how to make an omelet,

for instance, can be more valuable to a user than a document which waits until the

ninth paragraph to do so.

Multilingual pro cessing: Both the weaver and ocelot systems are naturally

applicable to a multilingual setting, wheredocuments are in onelanguageand queries

(for weaver ) or summaries (for ocelot ) are in another. This feature isn't pure

serendipity; it exists becausethe architecture of both systemswas inspired by earlier

work in statistical translation. Finding high-quality multilingual text corpora and

tailoring weaver and ocelot for multilingual setting is a natural next step in the

development of thesesystems.

* * *

There are compelling reasonsto believe that the coming years will continue to witness

an increasein the quality and prevalenceof automatically-learned text processingsystems.

For one, as the Internet continues to grow, so too will the data resourcesavailable to

learn intelligent information processingbehavior. For example,as mentioned in Chapter 4,

recent work has described a technique for automatically discovering pairs of web pages

written in two di�eren t languages|Chinese and English, say [73]. Such data could be

used in learning a statistical model of translation. So as the number of web pageswritten
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in both Chinese and English increases,so too increasesthe raw material for building a

Chinese-Englishtranslation system.

Second,so long as Moore's Law continues to hold true, the latest breed of computers

will beable to manipulate increasinglysophisticatedstatistical models|larger vocabularies,

more parameters,and more aggressive useof conditioning information.
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Notes

Portions of Chapter 3 appearedin

A. Berger and J. La�ert y. The weaver system for document retrieval. Pro-

ceedings of the Text Retrieval Conference (TREC-8) , 1999.

A. Berger and J. La�ert y. Information retrieval as statistical translation. Pro-

ceedings of the ACM Conference on Research and Developmentin Information

Retrieval (SIGIR) , 1999.

A. Berger, R. Caruana, D. Cohn, D. Freitag and V. Mittal. Bridging the lex-

ical chasm: Statistical approaches to answer-�nding. Proceedings of the ACM

Conference on Research and Development in Information Retrieval (SIGIR) ,

2000.

Portions of Chapter 4 appearedin

A. Berger and V. Mittal. ocelot : A systemfor summarizing web pages.Pro-

ceedings of the ACM Conference on Research and Developmentin Information

Retrieval (SIGIR) , 2000.

Portions of Chapter 5 appearedin

A. Berger and V. Mittal. Query-relevant summarization using FAQs. Proceed-

ings of the 38th Annual Meeting of the Association for Computational Linguistics

(ACL) , 2000.
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