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Abstract

The purpose of this work is to introduce and experimentally validate a framework,
basedon statistical madine learning, for handling a broad range of problemsin information
retrieval (IR).

Probably the most important single componernt of this framework is a parametric sta-
tistical model of word relatedness. A longstanding problem in IR has beento dewelop a
mathematically principled model for documert processingwhich adknowledgesthat one se-
guenceof words may be closely related to another even if the pair have few (or no) words
in common. The fact that a document contains the word automobile , for example, sug-
geststhat it may be relevant to the queries Wherecan | find information on motor
vehicles? and Tell meabout car transmissions , even though the word automobile
itself appearsnowhere in thesequeries. Also, a document containing the words plumbing,
caulk, paint, gutters might best be summarized as commorhouse repairs , even if
none of the three words in this candidate summary ever appearedin the documert.

Until now, the word-relatednessproblem has typically beenaddressedwith techniques
like automatic query expansion[75], an often successfulthough ad hoc technique which
arti cially injects new, related words into a documert for the purpose of ensuring that
related documerts have somelexical overlap.

In the past few yearshave emergeda number of novel probabilistic approadiesto infor-
mation processing|including the language modeling approad to documert ranking sug-
gested rst by Ponte and Croft [67], the non-extractive summarization work of Mittal and
Witbro ck [87], and the Hidden Markov Model-basedranking of Miller etal. [61]. This the-
sis advancesthat body of work by proposing a principled, general probabilistic framework
which naturally accourns for word-relatednessissues,using techniques from statistical ma-
chine learning sud as the Expectation-Maximization (EM) algorithm [24]. Applying this
new framework to the problem of ranking documerts by relevancy to a query, for instance,
we discover a model that contains a version of the Ponte and Miller models as a special
case,but surpasseghesein its ability to recognizethe relevance of a documert to a query
even when the two have minimal lexical overlap.

Historically, information retrieval hasbeena eld of inquiry driven largely by empirical
considerations. After all, whether systemA was constructed from a more sound theoretical
framework than system B is of no concernto the system's end users. This thesis honors
the strong engineering avor of the eld by evaluating the proposedalgorithms in many
di erent settings and on datasetsfrom many di erent domains. The result of this analysis
is an empirical validation of the notion that one can devise useful real-world information
processingsystemsbuilt from statistical machine learning techniques.
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Chapter 1

In tro duction

1.1 Overview

The purposeof this documert is to substartiate the following assertion: statistical machine
learning represerts a principled, viable framework upon which to build high-performance
information processingsystems. To prove this claim, the following chapters describe the
theoretical underpinnings, systemarchitecture and empirical performanceof prototype sys-
tems that handle three core problemsin information retrieval.

The rst problem, taken up in Chapter 3, is to assesghe relevance of a documert to a
query. \Relevancy ranking" is a problem of growing import: the remarkable recent increase
in electronically available information makes nding the most relevant documert within a
seaof candidate documerts more and more di cult, for people and for computers. This
chapter describesan automatic method for learning to separatethe wheat (relevant docu-
ments) from the cha. This chapter also cortains an architectural and behavioral descrip-
tion of weaver , a proof-of-conceptdocumert ranking system built using these automatic
learning methods. Results of a suite of experiments on various datasets|news articles,
email correspondences,and user transactions with a popular web seart engine|suggest
the viability of statistical macdine learning for relevancy ranking.

The secondproblem, addressedin Chapter 4, is to synthesizean \executive brie ng" of
a documert. This task also has wide potential applicability. For instance, such a system
could enable usersof handheld information devicesto absorb the information cortained in
large text documerts more corveniertly, despite the device's limited display capabilities.
Chapter 4 describes a prototype system, called ocelot , whoseguiding philosophy di ers
from the prevailing onein automatic text summarization: rather than extracting a group
of represerativ e phrasesand sertencesfrom the documert, ocelot synthesizesan ertirely

17
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new gist of the documert, quite possiblywith words not appearingin the original documert.
This \gisting” algorithm relies on a set of statistical models|whose parameters ocelot
learns automatically from a large collection of human-summarizeddocumerts|to guide its
choice of words and how to arrange thesewords in a summary. There exists little previous
work in this area and essetially no authoritativ e standards for adjudicating quality in a
gist. But basedon the qualitative and quartitativ e assessmes appearing in Chapter 4,
the results of this approadc appear promising.

The nal problem, which appearsin Chapter 5, is in somesensea hybrid of the rst
two: succinctly characterize (or summarize) the relevance of a documert to a query. For
example, part of a newspaper article on skin care may be relevant to a teenagerinterested
in handling an acneproblem, while another part is relevant to someoneolder, more worried
about wrinkles. The systemdescribed in Chapter 5 adapts to a user'sinformation needin
generating a query-relevant summary. Learning parameter values for the proposedmodel
requires a large collection of summarized documerts, which is dicult to obtain, but asa
proxy, one can usea collection of FAQ (frequertly-asked question) documerts.

1.2 Learning to pro cess text

Pick up any introductory book on algorithms and you'll discover, in explicit detail, how to
program a computer to calculate the greatest common divisor of two numbers and to sort
a list of namesalphabetically. Theseare tasks which are easyto specify algorithmically.

This thesisis concernedwith a set of language-relatedtasks that humans can perform,
but which are dicult to specify algorithmically. For instance, it appears quite di cult
to devise an automatic procedure for deciding if a body of text addressesthe question
“"How manykinds of mammalsare bipedal?” . Though this is a relatively straightfor-
ward task for a native English speaker, no one has yet invented a reliable algorithmic
speci cation for it. One might well ask what sudh a speci cation would even look like.
Adjudicating relevance basedon whether the documert contained key terms like mammals
and bipedal won't do the trick: many documerts cortaining both words have nothing
whatsoewver to do with the question. The corverseis also true: a documert may cortain
neither the word mammalsior the word bipedal , and yet still answer the question.

The following chapters describe how a computer can\learn" to perform rather sophisti-
cated tasks involving natural language,by observinghow a personperformsthe sametask.
The speci c tasks addressedin the thesis are varied|ranking documerts by relevance to
a query, producing a gist of a documert, and summarizing a documert with respect to a
topic. But a single strategy prevails throughout:
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1. Data collection: Start with a large sample of data represening how humans perform
the task.

2. Model selection: Settle on a parametric statistical model of the process.

3. Parameter estimation: Calculate parameter valuesfor the model by inspection of the
data.

Together,thesethree stepscomprisethe construction of the text processingsystem. The
fourth step involvesthe application of the resulting system:

4. Sarch: Usingthe learnedmodel, nd the optimal solution to the given problem|the
best summary of a documen, for instance, or the documert most relevant to a query,
or the section of a documert most germaneto a user'sinformation need.

There's a namefor this approadi|it's called statistical machine learning. The technique
has beenapplied with succesgo the related areasof speed recognition, text classi cation,
automatic languagetranslation, and many others. This thesisrepresens a uni ed treatment
using statistical maadhine learning of a wide range of problemsin the eld of information
retrieval.

There's an old saying that goes something like \computers only do what people tell
them to do." While strictly true, this saying suggestsa overly-limited view of the power
of automation. With the right tools, a computer can learn to perform sophisticated text-
related tasks without beingtold explicitly how to do so.

1.3 Statistical machine learning for information retriev al

Before proceedingfurther, it seemsappropriate to deconstruct the title of this thesis: Sta-
tistical Machine Learning for Information Retrieval.

Mac hine Learning

Machine Learning is, accordingto arecer textb ook on the subject, \the study of algorithms
which improve from experience" [62]. Machine learning is a rather diuse eld of inquiry,
encompassingsud areasasreinforcemen t learning (where a system,like a chess-plging
program, improves its performance over time by favoring behavior resulting in a positive
outcome), online learning (where a system, like an automatic stock-portfolio manager,
optimizes its behavior while performing the task, by taking note of its performanceso far)
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and concept learning (where a system cortinuously re nes the set of viable solutions by
eliminating those inconsistert with evidencepreseried thus far).

This thesis will take a rather specic view of macdiine learning. In these pages,the
phrase \machine learning" refersto a kind of generalizedregression: characterizing a set
of labeled events f(X1;y1); (X2;¥2);:::(Xn;y¥n)g with a function : X ! Y from event to
label (or \output”). Researbers have used this paradigm in courtless settings. In one,
X represeits a medical image of a working heart: Y represeins a clinical diagnosisof the
pathology, if any, of the heart [78]. In madine translation, which lies closerto the topic at
hand, X represens a sequenceof (say) French words and Y a putativ e English translation
of this sequencg6]. Loosely speaking, then, the \machine learning” part of the title refers
to the processby which a computer createsan internal represertation of a labeled dataset
in order to predict the output corresponding to a new evert.

The question of how accurately a machine can learn to perform a labeling task is an
important one: accuracy depends on the amourt of labeled data, the expressienessof
the internal represertation, and the inherent dicult y of the labeling problem itself. An
ertire sub eld of macdhine learning called computational learning theory has ewlved in the
past seweral yearsto formalize such questions[46], and imposetheoretic limits on what an
algorithm canand can't do. The readermay wish to ruminate, for instance, over the setting
in which X is a computer program and Y a booleanindicating whether the program halts
on all inputs.

Statistical Mac hine Learning

Statistical machinelearning is a a vor of madine learning distinguished by the fact that the
internal represenation is a statistical model, often parametrized by a set of probabilities.
For illustration, considerthe syntactic questionof decidingwhether the word chair is acting
as a verb or a noun within a sertence. Most any English-speaking fth-grader would have
little dicult y with this problem. But how to program a computer to perform this task?
Given a collection of sertencescontaining the word chair and, for ead, a labeling noun or
verb, one could invoke a number of madine learning approacesto construct an automatic
\syntactic disambiguator" for the word chair . A rule-inferertial technique would construct
an internal represertation consistingof a list of lemmae, perhapscomprising a decisiontree.
For instance, the tree might contain a rule along the lines \If the word preceding chair

is to, then chair is a verb." A simple statistical madine learning represenation might
cortain this rule aswell, but now equippedwith a probability: \If the word precedingchair

is to, then with probability p chair is a verb."

Statistical madhine learning dictates that the parametersof the internal represenation|
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the p in the above example, for instance|b e calculated using a well-motivated criterion.
Two popular criteria are maximum likelihood and maximum a posteriori estimation. Chap-
ter 2 contains a treatment of the standard objective functions which this thesis relies on.

Information  Retriev al

For the purposesof this thesis, the term Information Retrieval (IR) refersto any large-
scaleautomatic processingof text. This de nition seemsto overburden these two words,
which really ought only to refer to the retrieval of information, and not to its translation,
summarization, and classi cation as well. This documert is guilty only of perpetuating
dubiousterminology, not introducingit; the premier Information Retrieval conferencg ACM
SIGIR) traditionally coversa wide range of topics in text processing,including information
ltering, compression,and summarization.

Despite the presenceof mathematical formulae in the upcoming chapters, the spirit
of this work is practically motivated: the end goal was to produce not theories in and of
themselhes, but working systemsgrounded in theory. Chapter 3 addressesone IR-based
task, describing a system called weaver which ranks documerts by relevanceto a query.
Chapter 4 addresses second,describinga systemcalled ocelot for synthesizinga\gist" of
an arbitrary web page. Chapter 5 addresses third task, that of identifying the cortiguous
subsetof a documert most relevant to a querylwhic h is one strategy for summarizing a
documen with respect to the query.

1.4 Why now is the time

For a number of reasons,much of the work comprising this thesis would not have been
possibleten yearsago.

Perhaps the most important recert developmen for statistical text processingis the
growth of the Internet, which consists(as of this writing) of over a billion documerts®. This
collection of hypertext documerts is a datasetlike none ever beforeassenbled, both in sheer
sizeand alsoin its diversity of topics and languageusage. The rate of growth of this dataset
is astounding: the Internet Archive, a project dewoted to \archiving” the contents of the
Internet, has attempted, since 1996, to spool the text of publicly-available Web pagesto
disk: the archive is well over 10 terabytes large and currently growing by two terabytes per
month [83].

1A billion, that is, according to an accourting which only considers static web pages. There are in fact
an in nite  number of dynamically-generated web pages.
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That the Internet represens an incomparable knowledge baseof languageusageis well
known. The question for researtiers working in the intersection of machine learning and
IR is how to make use of this resourcein building practical natural languagesystems. One
of the contributions of this thesisis its use of novel resourcescollected from the Internet to
estimate the parametersof proposedstatistical models. For example,

Using frequertly-asked question (FAQ) lists to build models for answer- nding and
query-relevant summarization;

Using sener logs from a large commercial web portal to build a systemfor assessing
documert relevance;

Using a collection of human-summarizedweb pagesto construct a systemfor documernt
gisting.

Some researters have in the past few years begun to consider how to leverage the
growing collection of digital, freely available information to producebetter natural language
processingsystems. For example, Nie has investigated the discovery and use of a corpus
of web page pairs|eac h pair consisting of the same pagein two dierent languages|to
learn a model of translation betweenthe languages[64]. Resnik's Strand project at the
University of Maryland focusesmore on the automatic discovery of such web pagepairs [73].

Learning statistical models from large text databasescan be quite resource-irtensive.
The machine useto conduct the experiments in this thesis? is a Sun Microsystems 266Mhz
six-processorUltraSparc workstation with 1.5GB of physical memory. On this macdhine,
someof the experiments reported in later chapters required days or even weeksto complete.
But what takesthree days on this machine would require three months on a macdine of less
recent vintage, and so the increasein computational resourcespermits experiments today
that wereimpractical until recerily. Looking ahead,statistical modelsof languagewill likely
becomemore expressiv and more accurate, becausetraining these more complex models
will be feasiblewith tomorrow's computational resources. One might say \What Moore's
Law giveth, statistical models taketh away."

1.5 A motiv ating example

This section preserts a casestudy in statistical text processingwhich highlights many of
the themesprevalert in this work.

2and, for that matter, to typesetthis document
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From a sequenceof words w = fwsi;ws;:::wng, the part-of-speed labeling problem is
to discover an appropriate set of syntactic labels s, one for ead of the n words. This is a
generalization of the \noun or verb?" example given earlier in this chapter. For instance,
an appropriate labeling for the quick brown fox jumped over the lazy dog might be

w: The quick brown  fox jumped over the lazy dog :
s. DET ADJ ADJ NOUN-S VERB-P PREP DET ADJ NOUN-S PUNC

A reasonabléeline of attack for this problemisto try to encapsulateinto an algorithm the
expert knowledge brought to bear on this problem by a linguistlor, ewven lessambitiously,
an elemenary sdool child. To start, it's probably safeto say that the word the just about
always behavesas a determiner (DETIn the above notation); but after picking o this and
someother low-hanging fruit, hope of specifying the requisite knowledgequickly fades. After
all, even a word like dog could, in somecircumstances,behave as a verb3. Becauseof this
di cult vy, the earliest automatic tagging systems,basedon an expert-systemsarchitecture,
achieved a per-word accuracy of only around 77% on the popular Brown corpus of written
English [37].

(The Brown corpusis a 1;014 312-word corpus of running English text excerptedfrom
publications in the United Statesin the early 1960's. For years, the corpus hasbeena pop-
ular bencdhmark for assessinghe performanceof general natural-language algorithms [30].
The reported number, 77%, refersto the accuracyof the systemon an \evaluation" portion
of the dataset, not usedduring the construction of the tagger.).

Surprisingly, perhaps, it turns out that a knowledge of English syntax isn't at all
necessarylor even helpfullin  designingan accurate tagging system. Starting with a col-
lection of text in which ead word is annotated with its part of speed, one can apply
statistical macdhine learning to construct an accurate tagger. A successfularchitecture for
a statistical part of speet tagger usesHidden Markov Models (HMMs), an abstract state
madine whosestates are di erent parts of speed, and whoseoutput symbols are words.
In producing a sequenceof words, the machine progressesthrough a sequenceof states
corresponding to the parts of speed for thesewords, and at ead state transition outputs
the next word in the sequence. HMMs are described in detail in Chapter 2.

It's not ertirely clear who was rst responsible for the notion of applying HMMs to the
part-of-speet annotation problem; much of the earliestreseart involving natural language
processingand HMMs was conducted behind a veil of secrecyat defense-relatedU.S. gov-
ernmernt agencies. Howewer, the earliest accourt in the scierti ¢ literature appearsto be
Bahl and Mercer in 1976[4].

3And cometo think of it, in a pathological example, so could \ the ."
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Conveniertly, there exist sewral part-of-speet-annotated text corpora, including the
Penn Treebank, a 43, 113-setence subset of the Brown corpus [57]. After automatically
learning model parametersfrom this dataset, HMM-based taggershave achieved accuracies
in the 95% range [60].

This exampleserwesto highlight a number of conceptswhich will appearagain and again
in these pages:

The viability of prolabilistic methals. Most importantly, the succes®f Hidden Markov
Model tagging is a substartiation of the claim that knowledge-free(in the senseof not
explicitly embedding any expert advice concerningthe target problem) probabilistic
methods are up to the task of sophisticated text processing|and, more surprisingly,
can outperform knowledge-rich techniques.

Starting with the right dataset In order to learn a pattern of intelligent behavior,
a madine learning algorithm requires examplesof the behavior. In this case,the
Penn Treebankprovidesthe examples,and the quality of the tagger learnedfrom this
dataset is only asgood asthe datasetitself. This is a restatement of the rst part of
the four-part strategy outlined at the beginning of this chapter.

Intel ligent madel selection: Having a high-quality datasetfrom which to learn a behav-
ior doesnot guararntee success.Just asimportant is discovering the right statistical
model of the process|the secondof our four-part strategy. The HMM framework
for part of speed tagging, for instance, is rather non-intuitiv e. There are certainly
many other plausible models for tagging (including exponertial models [72], another
technique relying on statistical learning methods), but nonesofar have proven demon-
strably superior to the HMM approad.

Statistical madiine learning can sometimesfeel formulaic: postulate a parametric
form, usemaximum likelihood and a large corpusto estimate optimal parameter val-
ues, and then apply the resulting model. The scienceis in the parameter estimation,
but the art is in devising an expressi statistical model of the processwhoseparam-
eters can be feasibly and robustly estimated.

1.6 Foundational work

There are two typesof scierti ¢ preceden for this thesis. First is the slewof recert, related
work in statistical macdine learning and IR. The following chapters include, whenewer ap-
propriate, referenceto theseprecederts in the literature. Secondis a small body of seminal
work which lays the foundation for the work described here.
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Information  theory is concernedwith the production and transmission of informa-
tion. Using a framework known asthe source-tiannel model of communication, information
theory has establishedtheoretical bounds on the limits of data compressionand comnu-
nication in the presenceof noise and has contributed to practical technologies as varied
as cellular communication and automatic speed transcription [2, 22]. Claude Shannonis
generally credited as having founded the eld of study with the publication in 1948 of an
article titled \A mathematical theory of communication,” which introduced the notion of
measuring the entropy and information of random variables [79]. Shannonwas also as re-
sponsible as anyone for establishingthe eld of statistical text processing: his 1951 paper
\Prediction and Entropy of Printed English" connectedthe mathematical notions of entropy
and information to the processingof natural language[80].

From Shannon's explorations into the statistical properties of natural language arose
the idea of a languagemodel, a probability distribution over sequence®f words. Formally,
a language model is a mapping from sequencesof words to the portion of the real line
between zero and one, inclusive, in which the total assignedprobability is one. In prac-
tice, text processingsystemsemploy a languagemodel to distinguish likely from unlikely
sequencesf words: a useful language model will assigna higher probability to A bird
in the handthan hand the a bird in. Languagemodelsform an integral part of mod-
ern speet and optical character recognition systems[42, 63], and in information retrieval
as well: Chapter 3 will explain how the weaver system can be viewed as a generalized
type of language model, Chapter 4 introducesa gisting prototype which relies integrally
on language-malelling techniques, and Chapter 5 useslanguagemodelsto rank candidate
excerpts of a documert by relevanceto a query.

Mark ov Mo dels were inverted by the Russian mathematician A. A. Markov in the
early yearsof the twertieth certury asaway to represen the statistical dependenciesamong
a setof random variables. An abstract state madine is Markovian if the state of the madine
at time t+ 1 and time t 1 are conditionally independert, given the state at time t. The
application Markov had in mind was, perhaps coincidertally, related to natural language:
modeling the vowel-consonah structure of Russian[41]. But the tools he developed had a
much broader import and subsequetly gave rise to the study of stochastic processes.

Hidden Mark ov Mo dels are a statistical tool originally designedfor usein robust
digital transmissionand subsequetly applied to a wide range of problemsinvolving pattern
recognition, from genome analysis to optical character recognition [26, 54]. A discrete
Hidden Markov Model (HMM) is an automaton which moves between a set of states and
produces, at ead state, an output symbol from a nite vocabulary. In general, both the
movemen between states and the generated symbols are probabilistic, governed by the
valuesin a stochastic matrix.
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Applying HMMs to text and speed processingstarted to gain popularity in the 1970's,
and a 1980 symposium sponsoredby the Institute for DefenseAnalysis cortains a number
of important early contributions. The editor of the papers collected from that symposium,
John Ferguson,wrote in a prefacethat

Measurementsof the entropy of ordinary Markov modelsfor languagerevel that
a substantial portion of the inherent structure of the languageis not included in
the model. There are also heuristic argumentsagainst the possibility of capturing
this structure using Markov models alone.

In an attempt to produce stronger, more e cient maodels, we consider the
notion of a Hidden Markov model. The idea is a natural geneslization of the
idea of a Markov model...This idea allows a wide smpe of ingenuity in seleting
the structure of the states, and the nature of the prolkabilistic mapping. Moreover,
the mathematicsis not hard, and the arithmetic is easy, givenacacessto a modern
computer.

The \ingenuity" to which the author of the above quotation refersis what Section 1.2
labels as the secondtask: model selection.



Chapter 2

Mathematical machinery

This chapterreviewsthe mathematial tools on which the following chaptersrely:
rudimentary information theory, maximum likelihood estimation, convexity, the
EM algorithm, mixture models and Hidden Markov Models.

The statistical modelling problem is to characterize the behavior of a real or imaginary
stochastic process. The phrase stochastic process refers to a madiine which generatesa
sequenceof output valuesor \observations" Y: pixels in an image, horse race winners, or
words in text. In the language-basedsetting we're concernedwith, these values typically
correspond to a discrete time series.

The modelling problem is to come up with an accurate (in a sensemade preciselater)
model of the process. This model assignsa probability p (Y = y) to the event that
the random variable Y takes on the value y. If the identity of Y is inuenced by some
conditioning information X, then one might instead seeka conditional model p (Y j X),
assigninga probability to the evert that symbol y appearswithin the context x.

The languagemodelling problem for instance, is to construct a conditional probability
distribution function (p.d.f.) p (Y j X), where Y is the identity of the next word in
sometext, and X is the conditioning information, sud as the identity of the preceding
words. Machine translation [6], word-sensedisambiguation [10], part-of-speed tagging [60]
and parsing of natural language[11] are just a few other human language-relateddomains
involving stochastic modelling.

Before beginning in earnest, a few words on notation are in place. In this thesis (as
in almost all language-praessingsettings) the random variables Y are discrete, taking on
valuesin some nite alphabet Y|a vocabulary of words, for example. Heeding corvertion,
we will denote a speci ¢ value taken by a random variable Y asy.

27
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For the sake of simplicity, the notation in this thesiswill sometimesobscurethe distinc-
tion betweena random variable Y and a value y taken by that random variable. That is,
p (Y = vy) will often be shortenedto p (y). Lightening the notational burden even further,
p (y) will appear as p(y) when the dependenceon s ertirely clear. When necessaryto
distinguish betweena single word and a vector (e.g. phrase, sertence, documert) of words,
this thesis will use bold symbols to represert word vectors: s is a single word, but s is a
sertence.

2.1 Building blocks

One of the certral topics of this chapter is the EM algorithm, a hill-clim bing procedurefor
discovering a locally optimal member of a parametric family of models involving hidden
state. Before coming to this algorithm and some of its applications, it makes senseto
intro duce someof the major players: entropy and mutual information, maximum likelihood,
corvexity, and auxiliary functions.

2.1.1 Information theory

M X ) Y M
Source Encoder Noisy Decoder Decoded

Message Channel Message

Figure 2.1: The source-dhvannel model in information theory

The eld of information theory, as old as the digital computer, concernsitself with the
e cien t, reliable transmission of information. Figure 2.1 depicts the standard information
theoretic view of communication. In somesense,information theory is the study of what
occursin the boxesin this diagram.

Enco ding : Before transmitting somemessageM acrossan unreliable channel, the
sendermay add redundancyto it, sothat noiseintroducedin transit can be identi ed
and corrected by the receiver. This is known aserror-correcting coding. We represen
encaling by a function :M ! X.

Channel : Information theorists have proposed many di erent ways to model how
information is compromisedin traveling through a channel. A \channel" is an ab-
straction for a telephonewire, Ethernet cable, or any other medium (including time)
acrosswhich a messagecan becomecorrupted. One common characterization of a
channel is to imagine that it acts independertly on ead input sert through it. As-
sumingthis \memoryless" property, the channel may be characterizedby a conditional
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probability distribution p(Y jX), whereX is arandom variable represetting the input
to the channel, and Y the output.

Decoding : The inverseof encaling: givenamessagevl which wasencaledinto (M)
and then corrupted via p(Y j (M)), recover the original message. Assuming the
sourceemits messagesccordingto someknown distribution p(M ), decading amounts
to nding

3
I

arg rrqnaxp( (m)jy)
arg nrq1na><|0(yj (m)) p(m); (2.1)

where the secondequality follows from Bayes' Law.

To the uninitiated, (2.1) might appear a little strange. The goal is to discover the
optimal messagem?, but (2.1) suggestsdoing so by generating (or \predicting”) the input
Y. Far more than a simple application of Bayes' law, there are compelling reasonswhy the
ritual of turning a seard problem around to predict the input should be productive. When
designing a statistical model for language processingtasks, often the most natural route
is to build a geneative model which builds the output step-by-step. Yet to be e ective,
such models needto liberally distribute probability massover a huge number of possible
outcomes. This probability can be dicult to control, making an accurate direct model
of the distribution of interest di cult to fashion. Time and again, researders have found
that predicting what is already known from competing hypothesesis easierthan directly
predicting all of the hypotheses.

One classical application of information theory is communication between source and
receiver separated by some distance. Deep-spaceprobes and digital wireless phones, for
example, both usea form of codesbasedon polynomial arithmetic in a nite eld to guard
againstlossesand errorsin transmission. Error-correcting codesare also becomingpopular
for guarding against padet lossin Internet tra c, wherethe technique is known asforward
error correction [33].

The source-tiannel framework hasalsofound application in settings seeminglyunrelated
to communication. For instance, the now-standard approac to automatic speed recogni-
tion viewsthe problem of transcribing a human utterance from a source-tiannel perspective
[3]. In this casethe sourcemessageas a sequencedf words M . In cortrast to communication
via error-correcting codes,we aren't freeto selectthe code here|rather, it's the product of
thousandsof yearsof linguistic ewolution. The encaling function maps a sequenceof words
to a pronunciation X, and the channel \corrupts” this into an acousticsignal Y [in  other
words, the sound emitted by the personspeaking. The decaler's responsibility is to recover
the original word sequenceM , given
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the received acoustic signal Y,
a model p(Y j X)) of how words sound when voiced,

aprior distribution p(X) over word sequencesassigninga higher weight to more uent
sequencesnd lower weight to less uent sequences.

One can also apply the source-tiannel model to languagetranslation. Imagine that the
persongeneratingthe text to betranslated originally thought of a string X of English words,
but the words were\corrupted” into a French sequenceY in writing them down. Here again
the channel is purely conceptual, but no matter; decading is still a well-de ned problem of
recovering the original English x, given the obsened French sequenceY, a model p(Y | X)
for how English translates to French, and a prior p(X) on English word sequenceg6].

2.1.2 Maxim um lik eliho od estimation

Given is someobsened samples = fs1;sy;::: sy g of the stochastic process.Fix an uncon-
ditional model assigninga probability p (S = s) to the evert that the processemits the
symbol s. (A model is called unconditional if its probability estimate for the next emitted
symbol is independert of previously emitted symbols.) The probability (or likelihood) of
the samples with respectto is

W
p(sj )= p(S=s) (2.2)
i=1

Equivalently, denoting by c(y) the number of occurrencesof symbol y in s, we can rewrite
the likelihood of s as

Y
p(sj )= p (y) (2.3)
y2yY

Within some prescribed family F of models, the maximum likelihood model is that as-
signing the highest probability to s:

argmaxp(sj ) (2.4)
2F
The likelihood is monotonically related to the averageper-synmbol log-likelihood,
. . X ¢
Lsi ) togpesi )= Diogp () 25)

y2yY

Sothe maximum likelihood model ? = argmax 2 ¢ L(sj ). Sinceit's often more corve-

nient mathematically, it makessensein practice to work in the log domain when searding
for the maximum likelihood model.
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The per-symbol log-likelihood has a corveniert information theoretic interpretation. If
two parties usethe model to encade symbols|optimally assigningshorter codewords to
symbols with higher probability and vice versajthen the per-synbol log-likelihood is the
average number of bits per symbol required to communicate s = fs;;Sz:::syg. And the
averageper-symbol perplexity of s, a somewhatlesspopular metric, is related by 2 L(s1 ) [2,
48].

The maximum likelihood criterion hasa number of desirabletheoretical properties [17],
but its popularity is largely due to its empirical succesdn selectedapplications and in the
corveniert algorithms it givesrise to, like the EM algorithm. Still, there are reasonsnot
to rely overly on maximum likelihood for parameter estimation. After all, the sample of
obsened output which constitutes s is only arepresenativ e of the processbeing modelled. A
procedurewhich optimizes parametersbasedon this samplealonejas maximum likelihood
does|is liable to su er from over tting. Correcting an over tted model requirestechniques
such assmoothing the model parametersusing somedata held out from the training [43, 45)].
There have been many e orts to introduce alternative parameter-estimation approades
which avoid the over tting problem during training [9, 12, 82].

Someof thesealternativ e approadies, it turns out, are not far removed from maximum
likelihood. Maximum a posteriori (MAP) modelling, for instance, is a generalization of
maximum likelihood estimation which aimsto nd the most likely model given the data:

?= argmaxp( j9)

Using Bayes' rule, the MAP model turns out to be the product of a prior term and a
likelihood term:

7= argmaxp( )p(sj )

If onetakesp( ) to beuniform over all , meaningthat all models are a priori equally
probable, MAP and maximum likelihood are equivalert.

A slightly more interesting use of the prior p( ) would be to rule out (by assigning
p( ) = 0) any model which itself assignszero probability to any evert (that is, any model
on the boundary of the simplex, whosesupport is not the ertire set of everts).

2.1.3 Convexity

A function f (x) is convex(\concave up") if

f(xo+ (1 Ix1)  f (xp)+ (2 )f (x1) for all O 1 (2.6)
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That is, if one selectsany two points xo and x; in the domain of a convex function, the
function always lies on or under the chord connectingxg and x1:

f(x)

A sucien t condition for corvexity|the onetaught in high sdool calculus|is that f
is corvex if and only if f °¥x) 0. But this is not a necessarycondition, sincef may not
be everywheredi erentiable; (2.6) is preferable becauset appliesevento non-di erentiable
functions, such asf (x) =jxjat x = 0.

A multiv ariate function may be corvex in any number of its argumerts.

2.1.4 Jensen's inequalit y
Among the most useful properties of convex functions is that if f is corvex in x, then

X X
FEXD)  Ef()] or f( p(x)x) p()F (x) (2.7)

X
where p(x) is a p.d.f. This follows from (2.6) by a simple inductiv e proof.

What this means, for example, is that (for any p.d.f. p) the following two conditions
hold:

X
p(x)logf (x) log p(x)f (x) since log is convex (2.8)
X X X
exp  p(X)f(x) p(x) expf (x) sinceexp is corvex (2.9)
X X

We'll also nd usefor the fact that a concave function always lies below its tangert; in

particular, logx lies below its tangernt at x = 1. .
-X
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2.1.5 Auxiliary functions

At their most general,auxiliary functions are simply pointwise lower (or upper) bounds on
a function. We've already seenan example: x 1 is an auxiliary function for logx in the
sensethat x 1 logx for all x. This obsenation might prove useful if we're trying to
establishthat somefunction f (x) lies on or above logx: if we canshow f (x) lieson or above
x 1, then we're done, sincex 1 itself lies above logx. (Incidentally, it's alsotrue that
logx is an auxiliary function for x 1, albeit in the other direction).

We'll be making use of a particular type of auxiliary function: one that bounds the
changein log-likelihood betweentwo models. If  is one model and © another, then we'll
be interested in the quartity L(sj 9 L(sj ), the gain in log-likelihood from using °
instead of . For the remainder of this chapter, we'll dene A( ¢ ) to be an auxiliary
function only if

Lsji 9 L(sj ) A(%) and A(; )=0

Together, these conditions imply that if wecan nd a %suc that A( ¢ ) > 0,then Ois
a better model than [in a maximum likelihood sense.

The core idea of the EM algorithm, introduced in the next section, is to iterate this
processin a hill-clim bing scheme. That is, start with somemodel , replace by a superior
model C and repeat this processuntil no superior model can be found; in other words,
until reading a stationary point of the likelihood function.

2.2 EM algorithm

The standard setting for the EM algorithm is asfollows. The stochastic processin question
emits obsenable output Y (wordsfor instance), but this data is an incompleterepresertation
of the process. The complete data will be denoted by (Y;H)| H for \partly hidden."
Focusing on the discrete case,we can write y; asthe obsened output at time i, and h; as
the state of the processat time i.

The EM algorithm is an especially corveniert tool for handling Hidden Markov Models
(HMMs). HMMs are a generalization of traditional Markov models: whereasead state-to-
state transition on a Markov model causesa speci ¢ symbol to be emitted, ead state-state
transition onan HMM contains a prokability distribution over possibleemitted symbols. One
can think of the state asthe hidden information and the emitted symbol as the obsened
output. For example,in an HMM part-of-speed model, the obsenable data are the words
and the hidden states are the parts of speed.
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The EM algorithm arisesin other human-languagesettings aswell. In a parsing model,
the words are again the obsened output, but now the hidden state is the parse of the
sertence [53]. Somerecert work on statistical translation (which we will have occasion
to revisit later in this thesis) describes an English-French translation model in which the
alignment betweenthe wordsin the Frendch sertenceand its translation represerts the hidden
information [6].

We pggstulate a parametric model p (Y;H) of the process,with marginal distribution
p(Y)= p (Y;H = h). Given someempirical samples, the principle of maximum like-

h
lihood dictates that we nd the which maximizes the likelihood of s. The di erence in
log-likelihood betweenmodels %and is

. . _ p ofy)
Lsj 9 L(sj ) = y q(y)log—IO )
X p o(y;h)
= |
, q(y) log P
X po(y:h)p (hj .
= a(y) log P (yp (); h() 1Y) applying Bayes'law to p (y)
y h !
X X . ol ;h .
Q) phinigt LD appying 28)  (210)
12 A7 )

Call this Q( % )

We've establishedthat L(sj 9 L(sj ) Q( % ). It's alsotrue (by inspection) that
Q( j )= 0. Together,theseearn Q the title of auxiliary function to L. If wecan nd a
Ofor which Q( °j ) > 0, then p o has a higher (log)-likelihood than p .

This obsenation is the basisof the EM (expectation-maximization) algorithm.

Algorithm  1: Expectation-Maximization (EM)

1. (Initialization ) Pick a starting model
2. Repeat until log-likelihood convergences:

(E-step) Compute Q( °j )
(M-step) argmax oQ( %j )

A few points are in order about the algorithm.

The algorithm is greedy insofar asit attempts to take the best step from the current
at ead iteration, paying no heedto the global behavior of L(sj ). The line of
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reasoningculminating in (2.10) establishedthat ead step of the EM algorithm can
never produce an inferior model. But this doesn't rule out the possibility of

{ Getting \stuck" at a local maximum

{ Toggling betweentwo local maxima corresponding to di erent modelswith iden-
tical likelihoods.

Denoting by ; the model at the ith iteration of Algorithm 1, under certain assump-
tions it can be shavn that lim, " = 7. That is, evertually the EM algorithm
convergesto the optimal parameter values[88]. Unfortunately, theseassumptionsare

rather restrictive and aren't typically met in practice.

It may very well happen that the spaceis very \bumpy,” with lots of local maxima.
In this case,the result of the EM algorithm depends on the starting value g; the
algorithm might very well end up at a local maximum. One can enlist any number of
heuristics for high-dimensional seard in an e ort to nd the global maximum, sud
as selectinga number of di erent starting points, searding by simulating annealing,
and soon.

Along the sameline, if ead iteration is computationally expensiwe, it can some-
times pay to try to speedcorvergenceby using second-deriative information. This
technique is known variously as Aitk en's acceleration algorithm or \stretc hing" [1].
Howewer, this technique is often unviable becauseQ®is hard to compute.

In certain settings it can be dicult to maximize Q( °j ), but rather easyto nd

some °for which Q( °j ) > 0. But that's just ne: picking this O still improves
the likelihood, though the algorithm is no longer greedy and may well run slower.
This version of the algorithm|replacing the \M"-step of the algorithm with some
technique for simply taking a step in the right direction, rather than the maximal
step in the right direction|is known asthe GEM algorithm (G for \generalized").

2.2.1 Example: mixture weight estimation

A quite typical problem in statistical modelling is to construct a mixture model which is
the linear interpolation of a collection of models. We start with an obsened sample of
output fy1;y2;:::yTrg and a collection of distributions pi(y); p2(y) :::pn(y). We seekthe
maximum likelihood member of the family of distributions
( X X )
FooplY=y)= ipi(y)j i Oand i=1
i=1 i
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Membersof F arejust linear interpolations|or \mixture models”|of the individual models
pi, with dierent members distributing their weights di erently acrossthe models. The
problemisto nd the best mixture model. On the faceof it, this appearsto bean (N 1)-
dimensional seard problem. But the problem yields quite easilyto an EM approad.

Imagine the interpolated model is at any time in oneof N states,a2 f1;2;::: N g, with:

i. the a priori probability that the model is in state i at sometime;
p (a=1i;y) = ipi(y): the probability of beingin state i and producing output y;

pa=ijy)= P% the probability of being in state i, given that y is the
current output F

A corveniert way to think of this is that in state i, the interpolated model relies on the
i'th model. The appropriate version of (2.10) is, in this case,
x N p o(y; a)

O. _ .
Q( "] )= , q(y)azlp (ajy)log 0 (v.a)

The EM algorithm says to nd the © maximizing Q( °j )|sub ject, in this case,to
i 9= 1. Applying the method of Lagrange multipliers,

#
@ 0; X
— 1 = 0
@0 QC "1 ) «( o )
AP @=ijy)———p(y) = O
y po(y;a=i)
.. 1
ay)p (@=ijy)— = 0
y |
To easethe notational burden, introduce the shorthand
X o1
Ci ay)p (@=1ijy)—
y |
1X ipi(y)
= — p— 2.11
9y ) i iPi(Y) @1y

Applying the normalization constraint gives ¢ = PC—'C Intuitiv ely, C; is the expected
number of times the i'th model is usedin generatingthe obsened sample,given the current
estimatesfor f 1; 2;::: no.

This is, onceyou think about it, quite an intuitiv e approach to the problem. Sincewe don't
know the linear interpolation weights, we'll guessthem, apply the interpolated model to
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Algorithm  2: EM for calculating mixture model weights
1. (Initialization ) Pick initial weights such that ;2 (0;1) for all i

2. Repeat until convergence:

(E-step) ComputeC1;Cy;:::Cn, given the current |, using (2.11) .
(M-step) Set ;  PBS_

the data, and seehow much ead individual model cortributes to the overall prediction.
Then we can update the weights to favor the models which had a better track record, and
iterate. It's not dicult to imagine that someonemight think up this algorithm without
having the mathematical equipmen (in the EM algorithm) to prove anything about it. In
fact, at least two peopledid [39] [86].

A practical issueconcerningthe EM algorithm is that the sum over the hidden statesH
in computing (2.10) can, in practice, be an exponertial sum. For instance, the hidden state
might represen part-of-speet labelings for a sertence. If there exist T dierent part of
speed labels,then a sertenceof length n hasT" possiblelabelings,and thus the sumis over
T" hidden states. Often someclevernesssu ces to sidestepthis computational hurdle|
usually by relying on someunderlying Markov property of the model. Such clevernessis
what distinguishesthe Baum-Weldch or \forw ard-backward" algorithm. Chapters 3 and 4
will facethese problems, and wil use a combinatorial sleight of hand to calculate the sum
e cien tly.

2.3 Hidden Mark ov Mo dels

Recall that a stochastic processis a madiine which generatesa sequenceof output values
o0 = fo1;02;03::: 0,0, and a stochastic processs called Markovian if the state of the madhine
attime t+ 1and at time t 1 are conditionally independert, given the state at time t:

P(Ot+1 j O 10t) = p(Ot+1 jO) and p(o; 1 0t0+1) = P(O 1 Or)

In other words, the past and future obsenations are independert, given the presen obser-
vation. A Markov Model may be thought of as a graphical method for represetting this
statistical independenceproperty.
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A Markov model with n states is characterized by n? transition probabilities p(i; j )|
the probability that the model will move to state j from state i. Given an obsened state
sequencesa the state of an elewator at ead time interval,

0 O 03 04 05 O6 07 Og 09 010 011
I1st 1st 2nd 3rd 3rd 2nd 2nd 1st stalled stalled stalled

one can calculate the maximum likelihood values for ead entry in this matrix simply by
counting: p(i; j) is the number of times state j followed state i, divided by the number of
times state i appearedbefore any state.

Hidden Markov Models (HMMs) are a generalization of Markov Models: whereasin
convertional Markov Modelsthe state of the madine at time i and the obsened output at
time i are oneand the same,in Hidden Markov Modelsthe state and output are decoupled.
More speci cally, in an HMM the automaton generatesa symbol probabilistically at eadh
state; only the symbol, and not the identity of the underlying state, is visible.

To illustrate, imagine that a personis given a newspager and is asked to classify the
articles in the paper as belongingto either the businesssection, the weather, sports, horo-
scope, or politics. At rst the personbeginsreading an article which happensto corntain
the words shares, bank, investors ; in all likelihood their eyeshave settled on a business
article. They next ip the pagesand begin reading an article cortaining the words front
and showers, which is likely a weather article. Figure 2.2 shavs an HMM corresponding
to this process|the states correspond to the categories,and the symbols output from ead
state correspond to the words in articles from that category According to the valuesin the
gure, the word taxes accourts for 2:2 percen of the words in the news category and 1:62
percent of the words in the business category Seeingthe word taxes in an article does
not by itself determine the most appropriate labeling for the article.

To fully specify an HMM requiresfour ingredients:
The number of states| S|
The number of output symbols | W |
The state-to-state transition matrix, consistingofj S| | S| parameters

An output distribution over symbols for ead state: j W j parametersfor ead of the
] S| states.

In total, this amounts to S(S 1) free parametersfor the transition probabilities, and
W 1 free parametersfor the output probabilities.



Figure 2.2: A Hidden Markov Model for text categorization.

2.3.1 Urns and mugs

Imagine an urn containing an unknown fraction b( ) of white balls and a fraction b( ) of
black balls. If in drawing T times with replacemen from the urn we retrieve k white balls,
then a plausible estimate for b( ) is k=T. This is not only the intuitiv e estimate but also
the maximum likelihood estimate, asthe following line of reasoningestablishes.

Setting b( ), the probability of drawing n = k white balls when sampling with
replacemen T times is

pn=ky= . ko )Tk

The maximum likelihood value of is

k(l )T k
! !

argmaxp(n = k) arg max

k

argmax log 1 + klog + (T K)loga )

Di eren tiating with respectto and setting the result to zeroyields = k=T, asexpected.

Now we move to a more interesting scenario,directly relevant to Hidden Markov Models.
Say we have two urns and a mug:



Denote:

b( ) = fraction of white balls in urn x

bi( ) = fraction of black ballsinurn x (=1 b())
a; = fraction of 1'sin mug
a; = fraction of 2’sin mug (=1 aj)

To generatea single output symbol using this model, we apply the following procedure:
First, draw a number x from the mug; then draw a ball from urn x. This processrepresens
a mixture model the urns are states, and the black and white balls are outputs. The
probability of drawing a single black ball is:

p( ) = p(urn 1)p( jurn 1)+ p(urn 2)p( j urn 2)

The processs alsoan HMM: the mug represerts the hidden state and the balls represen
the outputs. An output sequenceconsisting of white and black balls can arise from a large
number of possiblestate sequences.

Algorithm  3: EM for urn density estimation

1. (Initialization ) Pick a starting value a;2 (0;1)
2. Repeat until convergence:

(E-step) Compute expected number of draws from urn 1 and 2
in generating o: c¢(1) £ E[# from urn 1j o]
c(1)

(M-Step) ag m

One important question which arisesin working with models of this sort is to estimate
maximume-likelihood valuesfor the model parameters, given a sampleo = fo1;0y;::: 079 of



The generative model corresponding to this setting is:

1. Draw a number x from mug O

2. Draw a ball from urn x

3. Draw a new number R from mug x
4. Setx R and goto step 2.

We'll denote by ax; the fraction of 1's in mug x; that is, the probability that after
drawing from mug x, the next urn drawn from is 1.

The three canonical HMM-related problems are:

I. Prohability calculation: What is the probability that an HMM with known parameters
will generateo = f0;;0,:::0rQg asoutput?

Il. Decoding: What's the most likely state sequenceghat an HMM of known parameters
followed in generatingo = f01;02:::07rQ?



This probability is

7
P(0;s) = asyhx, (01) as; 1s;bs; (0i) (2.12)
i=2
The rst term inside the product in (2.12) is the probability that the ith state is s;, given
that the previous state was s; 1; the secondterm is the probability of generating o; from
state s;.

Calculating the probability of just the output sequencealone, however, requiresat rst
glance summing (2.12) over the 2T di erent possiblehidden state sequences:

X 4
p(o) = as, b5, (01) as; 1s;bs;(01) (2.13)
S i=2
Sud an expensiwe operation is infeasible, but thankfully there is a more e cien t way, using
dynamic programming.

Figure 2.3 shows the trellis corresponding to all 2T possiblestate sequences.At this
point it is useful to introduce two helper variables:

X p(0102:::0 1;Si = X)

X def

i P(0iGi+1 1107 | Si = X)

118
[}

o

In words, [ is the probability that the HMM generatesthe rst i 1 symbols from the



Figure 2.3: A trellis depicting, in compact form, all possible hidden state sequencesn
generating a sequenceof T balls from the urns and mugs model.

output sequenceo, and after doing sowinds up in state x. And [ is the probability that,
starting from state x, the HMM generatesthe su x of o starting with o;.

Notice that p(o) = ! '+ 2 2foranyi2f1;2;:::Tg. In particular,
plo)y= 1+ %: (2.14)
Notice alsothat and can be expressedrecursively:

L= 1ib(o)an+ 7 ib(0)an (2.15)

Equation (2.15) implies a linear-time calculation for | and I, which in turn implies
(by inspecting (2.14)) a linear-time calculation for p(0).

Il. Decoding

We now pursue the secondquestion: what's the most likely state sequencethat a known
HMM follows in generating 0? Of course, one could attempt to calculate p(o;s) for all
2" possiblepaths s, but there is a better waylkno wn asthe Viterbi algorithm [29]. This
algorithm relies on the Markovian property of the state machine in the following way:

The most prokable path ending in state x at time i contains, asits rst i 1
entries, the most prolable path ending at somestate at time i 1.

To begin, imagine that we know the most likely state sequenceendingin state 1 at time
i 1, and alsothe most likely state sequenceending in state 2 at time i 1:



The lighter-colored candidate has probability a »; and the darker-coloredcandidate has
probability a ;1. Calculating the optimal path endingin state 1 at time i therefore requires
a number of calculations which is only linear in the number of states, and (by applying the
recursion T times) calculating the optimal path in generatingall T symbols from o requires
time proportional to Tj sj. This recursive procedureis an implementation of the Viterbi
algorithm [29].

I1l. Parameter estimation

We will now addressthe third question|that of parameter estimation. For simplicity, we'll
focus attention on estimating the maximume-likelihood value for b;( ): the probability of
drawing a black ball from the rst urn. (The other parametersare ayx; for x 2 f0; 1; 2g.)

To begin, denote by (1) the posterior probability that the HMM is in state 1 at time
t while producing the output sequencen. In terms of previously-de ned quartities, (1) is
11

t(1) = p(st = 1j0) = pt(ogz (2.16)
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Given the obsened output sequencd 010, ::: 0rg, the maximum-likelihood estimates of

the numerator and denominator in the last term above may be written as

i tor= t(l)

T
P
¢ (1)
T

p(output = ;state= 1)

p(state = 1)

Combining the above last three equalities, we have

p(output = ;state= 1)

bi() = b p(state = 1)
= s @ (2.17)

¢ t(1)

Notice that in (2.16) and (2.17), (1) is expressedin terms of by( ) and bi( ) is ex-
pressedin terms of ((1). So we cannot calculate these quartities in closedform. But
the mutually recursive de nitions suggestan iterativ e algorithm, known as Baum-Welch or
forward-backwad estimation, summarizedin Algorithm 4.

Algorithm  4: Baum-Weldh
1. (Initialization: ) Pick a starting value by( )2 (0;1)
2. Repeat until convergence:

(E-step Computethe expected number of times s
generated Qom state 1 in producing o:
E[ j1]= t(1)
t: o=
(M-step) Calculate by( ) according to (2.17)

As an instantiation of the EM algorithm, the Baum-Weldh procedure inherits the at-
tractive corvergenceguarantees of EM. The reader is referred to [5, 24, 69 for further
details.
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Chapter 3

Document ranking

This chapter applies statistical machine learning to the task of ordering docu-
ments by relevane to a query. The approach contains two main ingredients:
rst, novel prokabilistic models governing the relation betwe=n queriesand rele-
vant documents, and second, algorithms for estimating optimal parameters for
these models. The architecture and performance of a proof-of-concept system,
called weaver , is descrited. On a suite of datasetswith very di er ent char-
acteristics, weaver exhibits promising performance, often with an e ciency

approaching real-time. This chapter gives an information-theoretic motivation
for thesemodels, and showshow they genealize the recently propose retrieval
methads of languagemodeling and Hidden Markov Models.

3.1 Problem de nition

The goal in this chapter is to construct probabilistic models of languageto addressa core
problem in information retrieval: ranking documerts by relevanceto a query.

The approad relies on the notion of document distil lation. When a personformulates
a query to an information retrieval system, what he is really doing (one could imagine) is
distilling an information needinto a succinct form. This distillation processbeginswith a
documert|con taining the normal super uence of textual fat and connective tissue such as
prepositions, commasand soforthjand endswith a query, comprisedof just those skeletal
index terms characterizing the documert. It may be that some of these index terms do
not even appear in the documert: one could easily imagine a newspaper article containing
the words Pontiff , massand confession , but never Catholicism , the single word which
might best typify the documert.

a7
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The strategy this chapter takesin assessinghe relevanceof a documert to a query is to
estimate the likelihood that a personwould distill the documert into the query. This \cart
beforethe horse" view of retrieval is exactly that introducedin Section2.1. This perspective
is obviously not a faithful model of how a personformulates a query, yet it turns out to be
a useful expediert. In formulating probabilistic models of the retrieval process,it appears
easierto view the problem as a compressionfrom documert to query than an expansion
from query to document. Moreaover, the query-generative models proposed here can ac-
count, in a natural and principled way, for many of the featuresthat are critical to modern
high performanceretrieval systems,including term weighting, query expansion,and length
normalization. A prototype ranking system called weaver which employs these models
demonstratesvery promising empirical behavior, without sacri cing the nimble execution
of more traditional approades.

An ideal documernt retrieval system would contain at least enough linguistic sophis-
tication to account for synonymy e ects|to  know, for instance, that Pontiff and Pope
are related terms, and a documert cortaining one may be related to a query corntaining
the other. One could imagine equipping a relevancy ranking system with a database of
sud relations. Such a systemwould be more sophisticated, and hopefully more accurate,
than one which adjudicated relevance solely on the basis of word overlap. Loosely speak-
ing, this is the approad described here; this chapter contains algorithms for automatically
constructing this databaseof word relations from a collection of documerts.

In a senseweaver hasa pedigreein statistical translation, which concernsitself with
how to mine large text databasesto automatically discover such semariic relations. Brown
etal. [13, 14] showed, for instance, how a computer can \learn" to assaiate French terms
with their English translations, given only a collection of bilingual French/English seriences.
The Candide system|[6], an experimental project at IBM Researt: in the early 1990s,used
the proceedingsof the Canadian parliament, maintained in both English and French, to
automatically learn to translate betweentheselanguages.

3.1.1 A conceptual model of retriev al

In formulating a query to a retrieval system, a user beginswith an information need. This
information needis represened asa fragmen of an\ideal document”|a portion of the type
of documen that the user hopesto receive from the system. The userthen translates or
distills this ideal documert fragmert into a succinctquery, selectingkey terms and replacing
someterms with related terms: replacing pontiff ~ with pope, for instance.

Summarizing the model of query generation,
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1. The userhas an information need=.
2. From this need, he generatesan ideal documert fragment d-.

3. He selectsa set of key terms from d-, and generatesa query q from this set.

A reader might at this point be somewhatba ed at the notion that when ful lling an
information need, a personseeksa documert most similar to a fragmernt d- he hasin his
mind. After all, if the userknewwhat he waslooking for, he wouldn't have the information
needin the rst place. What the user seeksis, in fact, exactly what he doesrit know.

To escaye this apparert cortradiction, we needto clearly de ne the notion of \user."
For the purposesof this discussion,a user is someonewho has a rough idea about what
the desired documert might corntain. The userisn't the personwho wants to learn the
circumstancesof Caesar'sdeath, but rather the referencelibrarian who knows Caesarwas
assassinatedoy Longinus and Brutus on March 15, 44 B.C., and who would like a list of
documerts which roughly match the ideal documen fragment Caesar's assassination
by Longinus and Brutus on March 15.

One can view the imaginary processof query formulation as a corruption of the ideal
documert. In this setting, the task of a retrieval systemis to nd those documerts most
similar to d=. In other words, retrieval is the task of nding, amongthe documens com-
prising the collection, likely preimagesof the user's query. Figure 3.1 depicts this model of
retrieval in a block diagram.

- Document d- Document-query q
i translation model
information ~ generation model ey qocument query
need fragment

Retrieval Search

retrieved Engine user's
documents query

-—

Figure 3.1: A conceptual view of query generation (above) and retrieval (below)

Figure 3.1is drawn in a way that suggestsan information-theoretic perspective. One
canview the information need= asa signal that getscorrupted asthe userU distills it into
a query q. That is, the query-formulation processrepreserts a noisy channel, corrupting
the information needjust as a telephone cable corrupts the data transmitted by a modem.
Given g and a model of the channellho w an information needgetscorrupted into a query|



50

Document ranking

the retrieval system'stask is to identify thosedocumerts d that bestsatisfy the information
needof the user.

More precisely the retrieval system'stask is to nd the a posteriori most likely docu-
ments given the query; that is, those d for which p(djq; U) is highest. By Bayes' law,

p(gjd; U) p(dju)
@iy (31)

Sincethe denominator p(gjU) is xed for a given query and user, one canignore it for the
purposeof ranking documerts, and de ne the relevance (d) of a documert to a query as

p(dja; U) =

a(d) = plajdiy)  pgjy) (3.2)
query-dep endent query-indep enden t

Equation (3.2) highlights the decomposition of relevance into two terms: rst, a query-
dependert term measuring the proximity of d to g, and second,a query-independert or
\prior" term, measuringthe quality of the documert accordingto the user's general pref-
erencesand information needs. Though this chapter assumeshe prior term to be uniform
over all documerts, it's likely that in real-world retrieval systemsthe prior will be crucial
for improved performance, and for adapting to a user's needsand interests. At the very
least, the documert prior can be usedto discourt \dubious" documerts|those that are
very short, or perhapsdocumerts in a foreign language?

Section3.3 will contain a detailed formulation of two parametric modelsp(qjd), but as
a preview, we outline here the four stepsto model construction.

Data collection: Start with a corpusof (d; q) pairs, whereead pair consistsof a query
and a documert relevant to the query. Acquiring a collection of (d; ) pairs from which
to learn the documert-to-query distillation modelis a matter requiring somecreativity.
Insofar as the distillation model has a large number of parameters, robust estimation
of these parameters requires a large document/query collection. This chapter will
make use seweral di erent datasets. But in generalit may be unrealistic to assume
the existenceof a large collection of query-documert pairs, and so this chapter also
intro ducesa strategy for overcoming a lack of labeled training data. Section 3.4 will
describe a technique for synthesizing (d; q) pairs from a collection consisting solely of
documertsjunlab eleddata, in other words|using statistical sampling.
1As a reminder, boldface letters refer to sequencesof words|suc h as documents or queries|while italic
letters denote single terms. So p(qgjd) is the probabilit y of generating a single query word from an entire

document d, while p(qjd) is the probability that, in generating an entire query from the documert d, a
user selectedq.
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Model seletion: The core ingredient of the statistical distillation model intro duced
here is a square stochastic matrix of word-to-word \relatedness" probabilities. For
a vocabulary of 20;000 words, the matrix has size 400 000 000, or 1.6GB if eath
parameter is a four-byte oating point value. Of course, sparsematrix techniques
in practice reduce this size dramatically, and in fact Section 3.6 describes a lossy
compressiontechnique wherein the matrix requiresspaceonly linear in the sizeof the
vocabulary.

Parameter estimation: Given a collection of query, document pairs, use standard
machine learning algorithms to estimate optimal parameter valuesfor the parametric
model p(gjd)|a model of the likelihood that a sequenceof words q is a distillation
of (a translation of) a documert d.

Sarch: Given a learned model p( jd) and a new query g, order documerts by rele-
vanceto q by ranking them by decreasingp(qjd).

For an empirical evaluation of weaver , we report on experimens conducted on three
di erent datasets: newswirearticles drawn from the TREC corpus[84], a set of usertrans-
actions collected from the Lycos seart engine,and a set of personalemails.

3.1.2 Quantifying \relev ance"

The traditional IR view of \relevanceto a query" is a property that a documernt may or
may not enjoy. In other words, the relevanceof a d to a given query g may be thought of
as a binary random variable:

1 if disrelevant to q

q(d) = .
0 otherwise

The notation suggestsa functional dependencejust on d and q, but in fact 4(d) may

depend on a number of other factors, including the personU using the system. After all,

relevanceis a subjective notion, and people may disagreeabout the \true" value of ¢(d).

Treating the relevance of a documert to a query as a binary random variable has a
long history in information retrieval. The earliest referenceto a probabilistic approadc
to retrieval appearsto be in Maron and Kuhns [58]. In their seminal work on relevance,
Robertson and Spard-Jonesrefer to the \Basic Question” of documert ranking: \What
is the probability that this documernt is relevant to this query?" [74]. They proposethat
the optimal documert ranking algorithm relies on this probability of relevance. Their well-
known \axiom" in IR is known asthe Prolability Ranking Principle:
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If retrieved documents are ordered by decreasing prokability of relevane on the
data available, then the system's e ectivenessis the best to be gotten for the
data.

The industry-standard t df scoregrew out from this philosophy; it was originally de-
signedto distinguish betweendocumerts for which 4(d) = 1and thosefor which 4(d) = 0.

This chapter also takesthe Probability Ranking Principle as axiomatic, though it pro-
posesa novel way to think aboutland calculate|do cumert relevance. weaver 's retrieval
strategy involves calculating a score,denoted by p(d j q), for estimating the relevance of
document d to query q. Unlike the tdf score,p(d j q) is a probability distribution over
documerts, and therefore 4 p(d j q) = 1. One can interpret p(d j q) as the probability
that documert d is the most relevant documert in the collection for q. One could argue
that more is required of p(d j q) than of 4(d): the former must imposea total ordering
on documerts, while the latter must only reveal a yes/no value for eath documert. In fact,
one can reducea p(d j q) ranking to a 4(d) ranking, given a single real-valued relevance
threshold; i.e., a cuto value for p(d j q).

3.1.3 Chapter outline

The rest of this chapter will proceedas follows. Section3.2 lays the groundwork by de-
scribing the languagemodeling approad to retrieval. Section3.3 intro ducestwo statistical
models governing the distillation of documerts to queries. Section3.4 explains how one can
estimate, via the EM algorithm, the parameters of such models automatically using just
a collection of documerts. Section3.5 discussesthe results of a set of experiments using
three datasets: TREC newswiredata, usertransactions from a large commercialweb seard
engine,and a collection of personalemail correspondencesand also comparesthe proposed
ranking algorithm to a more traditional vector-spacetechnique: tdf with Rocdio-based
automatic query expansion.

The responsibility of a large-scaledocumert retrieval systemisto nd those documerts
most relevant to a query in a spritely manner. One might think this needfor speedprecludes
the useof \in teresting” modelsfor relevancescoring; after all, a retrieval systemcan't a ord
to get boggeddown evaluating a complicated relevancemetric for ead documert. However,
Section3.6 shavshow, with a certain mix of preprocessingtime-spacetradeo s, ande cien t
data structures, weaver can can haveits cake and eat it too: e cien t retrieval with a non-
trivial relevance function. Finally, Section3.7 will suggesthow the proposed statistical
machine learning approac may be applicable to cross-languageretrieval.
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3.2 Previous work

The elds of information retrieval, bibliometrics, and language processinghave beenwell
populated over the years with researt identifying itself as probabilistic in nature. As
mentioned above, probabilistic approacesto IR date bad at leastforty years. Rather than
attempting a survey of all this work, this sectioninstead focus on two recenly introduced
probabilistic approactesmost similar in spirit to the approad proposedin this chapter.

3.2.1 Statistical machine translation

The Candide pro ject wasa researt project undertaken at IBM Thomas J. Watson Re-
seart Laboratories in the early 1990sto assesdhow far statistical machine learning tech-
nigques could go in constructing an automatic language translation system [6]. Starting
from the proceedingsof the Canadian parliament|con veniertly transcribed in both En-
glish and French|the Candide system calculated parameter valuesfor a statistical model
of language-to-languagdranslation. An electronically transcribed version of the Canadian
parliament proceedings,known as Hansards, comprise seeral hundred million words and
are an invaluable resourcefor machine learning and translation. Not only the retrieval sys-
tem described in this chapter, but also the summarization system described in Chapter 4
owe an intellectual debt to Candide, both in the generalsenseof parameter estimation using
text corpora, and, more speci cally, in using the EM algorithm as a learning paradigm.

3.2.2 Language modeling

Statistical models of language are in common use in many language-relatedtechnologies,
including automatic speed and handwriting recognition [42]. Ponte and Croft [67, 68] have
recerily proposedusing languagemodels for retrieval in the following way.

To eat documert in the collection, assaiate a probability distribution 1( jd) over
words|in  other words, a language model. Now imagine compressingthe documert d
by selecting a size m for the smaller documert, and then drawing m words at random
from d. The probability that this processwill result in the new compresseddocumert
c=fc;eiiiengis

\d
p(cjd)= (m) I(cjd) (3.3)
i=1
Here () is a distribution over lengths for the resulting compresseddocumert.

The idea behind the languagemodeling approad to retrieval is to equatethe relevance
of a documert to a query with the probability that the query would be generatedby this
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processof compressionapplied to the documert. Here again one can see,asin Section 3.1,
a query-generatiwe view of retrieval.

In the most straightforward implemenrtation, the probability that a documert will gen-
erate a word w is exactly the frequency of w in the documert. But this isn't quite right,
becauseit suggeststhat a document not containing w should never generate w. This
amouns to saying that all documerts not corntaining every word in the query are equally
irrelevant| 1(qjq) = OJto the query.

One can avoid this situation by linearly interpolating or \smoothing" the frequency-
basedestimate with a model | ( j D) estimated using the entire collection D of documerts,
rather than just d:

I (wjd)= I(wjd)+ (@ )i(wjD) (3.4)

The value of can be estimated using standard machine learning techniques on a col-
lection of data separatefrom that usedto determinethe |( j d) and I( j D) distributions.

With smoothing, (3.3) becomes

N
I(ajd) = I(gjd)+ @ )i(g]jD) (3.5)
i=1

The predictive statistical modelsusedin many language-relatedtechnologiesare context-
sensitive, meaning they assesghe likelihood of a word appearing in text by inspecting the
precedingwords: apple is more likely when the previous word was juicy than when the
previous word was, sa, hyperbolic . Howewer, the statistical model I( jd) is context-
independent assumingnaively that the author of a documert generatesthe documert by
drawing wordsindependertly from a\bag of words." The issueof context-dependencecomes
up again in Chapter 4, but in that casethe problem is addressedby modeling short-range
dependenciesbetweenwords in text.

3.2.3 Hidden Mark ov Mo dels

This sectiondiscussesnother recertly-prop osedquery-generative model for retrieval which,
although employing essetially the samescoringformula asthe languagemodeling approad,
arrivesat this formula from a very di erent direction.

Miller etal. [61] proposeusing HMMs for retrieval in the following way. To ead docu-
ment d2 D in the collection, assaiate a distinct two-state HMM. The rst of these states
generateswords w from the documert d itself accordingto I(w j d): if 10 percent of the



Figure 3.2: An idealized two-state Hidden Markov Model for documert retrieval. To eath
documernt corresponds a distinct such automaton. The relevance of a documert d to a
queryq is proportional to the likelihood that the probabilistic automaton for d will produce
g. Depicted is an imaginary automaton corresponding to a documert about golf. While in
the left (documernt) state the automaton outputs words accordingto their frequencyl( j d)
in the documert, and while in the right (collection) state, it outputs words according to
their frequencyl( j D) in the collection.

As with the language modeling approad, documert relevance for a query is equated
with p(q j d): the probability, in this case,that the automaton for d will generatethe

query q = foi; ;i :qng

hd
p(ajd)= al(gjd)+ (2 a)l(qg]jD) (3.6)
i=1

The HMM approad appearsto be quite extensible: one could add more states, use a
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more sophisticated transition model, and accourt for word cortext by allowing states to
output word sequencesike bigrams (pairs of words) or trigrams. But in its two-state form
with state-independert transitions, the HMM is in fact equivalent to the languagemodeling
technique (with smoothing); this correspondenceis obvious by inspection of (3.5) and (3.6).

* *x *

The languagemodeling and Hidden Markov Model approadestogether represen a novel
and theoretically motivated \query-generative" approad to retrieval. Moreover, recern
work has establishedthe empirical performance of these techniques to be competitive or
in somecasessuperior to standard t df -basedretrieval. Howewer, these approacesdo not
address(except asa post-processingstep not integrated into the overall probabilistic model)
the important issue of word-relatedness: accourting for the fact that Caesar and Brutus
are related concepts. The word-relatednessproblem has received much attention within
the documert retrieval community, and researtiers have applied a variety of heuristic and
statistical techniquesjincluding pseudo-releancefeedba& and local context analysis [28,
89.

This chapter will introduce a technique which generalizesboth the LM and HMM ap-
proachesin sud a way that the resulting model accourts for the word-relatednessphe-
nomenon. Interpolating a document-model with a collection-wide distribution over words
(asthe LM and HMM approadespropose)ensuresthat no documern assignsa zero proba-
bility to any word, but it doesnot adknowledgethat a documert containing car is likely to
generatea query containing the word automobile . The next sectionwill dewvelop a general
statistical framework for handling theseissues.

3.3 Mo dels of Document Distillation

Supposethat an information analyst is given a newsarticle and asked to quickly generate
a list of a few words to serwe as a rough summary of the article's topic. As the analyst
rapidly skims the story, he encourters a collection of words and phrases. Many of thesehe
rejectsasirrelevant, but his eyesrest on certain key terms ashe decideshow to renderthem
in the summary. For example, when preseried with an article about Pope John Paul I1's
visit to Cuba in 1998, the analyst decidesthat the words Pontiff and Vatican can simply
be represented by the word Pope and that Cubg Castro and island can be collectively
referred to as Cuba

This section preseris two statistical models of this query formation process, making
speci ¢ independenceassumptionsto derive computationally and statistically e cien t algo-
rithms. While our simple query generation models are mathematically similar to those used



3.3 Mo dels of Document Distillation 57

for statistical translation of natural language[14], the duties of the models are qualitativ ely
dierent in the two settings. Documen-query distillation requires a compressionof the
documen, while translation of natural languagewill tolerate little being thrown away.

3.3.1 Model 1: A mixture model

A \distillation model" refersto a conditional probability distribution p(q j d) over sequences

p(q j d) is an estimate of the probability that, starting from the documert d, a personwill
distill d into g.

Imagine that a persondistills a documert d into a query g as follows:

Choosea length m for the query, accordingto a samplesizemodel (mjd).
For ead position j 2 [1:::m] in the query:
{ Choosea word d; 2 d in the document from which to generatethe next query

word.

{ Generatethe next query word by \translating” dili.e., by sampling from the
distribution  ( jd;).

Following Brown etal. [13], an alignment between sequencesof words is a graphical
represermation of which documert words are responsible for the words in the query. One
can alsoinclude in position zero of the documert an arti cial \null word,” written <null> .
The purposeof the null word is to generatespuriousor content-free terms in the query, like
the words in the phraseFind all of the documents::.

Using the alignment a, p(q j d) decomposesas

X X
p(gjd)= p(g;ajd)=  p(qjad)p(ajd) (3.7)

a a

Imagining that ead query word arisesfrom exactly one documert word, (3.7) becomes
. W .
p(aja;d) = (G ] da) (3.8)
i=1

Here d,, is the documert word aligned with the ith query word, and (qj d) is a parameter
of the modellthe probability that the documert word d is paired with the query word



Figure 3.3: A word-to-word alignment of an imaginary documert/query pair. The score
of this single alignment, p(qg;a j d), is a product of individual (g j da;) word-to-word
\relation" probabilities. Calculating the relevanceof d to g involvessumming the scoreof
all alignmernts.

q in the alignmert. Figure 3.3 depicts one of 5'® possible alignmerts of an imaginary
documert/query pair.

If g cortains m words and d contains n + 1 words (including the null word), there are
(n+ 1)™ alignmerts betweend and g. Assuming that all these alignments are a priori
equally likely, one can write

pmjd) X ¥

p(gjd)= W . (fijey) (3.9

Given a collection of documert/query pairs C = f(q1;d1);(d2;d2);(qs;d3):::g, the
likelihood method suggeststhat one should adjust the parameters of (3.9) in sudh a way
that the model assignsas high a probability as possibleto C. This maximization must be
performed, of course, subject to the constraints  (qj d) = 1 for all words d. Using
Lagrange multipliers,

(@id= ' plaajd)  (qq) (ddy); (3.10)

a ]:1
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where is the Kronecker delta function.

The parameter (qj d) appearsexplicitly in the lefthand side of (3.10), and implicitly in
the right. By repeatedly solving this equation for all pairs (g;d) (in other words, applying
the EM algorithm), one evertually reachesa stationary point of the likelihood.

Equation (3.10) cortains a sum over alignments, which is exponertial and suggeststhat
computing the parametersin this way is infeasible. In fact, this is not the case,since

X ™ _ X _
(G jda) = (G jd) (3.11)
a i=1 i=1j=0
P
This rearranging meansthat computing ,p(q;a j d) requiresonly ( mn) work, rather
than ( n™).

We have already adopted the notation that m  jqj. Similarly, we will denote the
length of the document by n  jdj. The probability p(qjd) is then the sum over all
possiblealignmerts, given by
(mjd) ¥

p(gjd) = W -

(6§ da)): (3.12)

am=0j=1

(As areminder, the rangeof a is from zeroto n, rather than 1to n, becausethe arti cial
null word livesin position zero of every documert.)

A little algebraicmanipulation shows that the probability of generatingquery g accord-
ing to this model can be rewritten as

n
n+1

m
p(ajd)= (mjd) PG )+ —r (wj<nuli>) (3.13)

j=1

where

X

p(q jd) = (g jw)l(wjd);

w
with the documernt languagemodel | (wjd) given by relative counts. Thus, the query terms
are generatedusing a mixture model|the documert language model provides the mixing
weights for the word-relation model, which has parameters (qjw). An alternative view
(and terminology) for this model is to describe it as a Hidden Markov Model, where the
states correspond to the words in the vocabulary, and the transition probabilities between
statesare proportional to the word frequencies.The readeris invited to note the di erences
betweenthis use of HMMs, depicted in Figure 3.4, and the two-state HMM of Figure 3.2.

The simplestversionof Model 1, henceforthwritten asModel 0, is the onefor which eath
word w can be mapped only to itself; that is, the word-relation probabilities are \diagonal:
1 ifgq=w

) =
(aw) 0 otherwise.



Figure 3.4: The documert-to-query distillation processof Model 1 may be interpreted asa
Hidden Markov Model: statesrepresen words in the documert, and the automaton moves
to a state corresponding to word w according to the frequency of w in d. The output
distribution at state w is the EM-trained distribution over words: (qjw) measureshow
closelyword q is related to word w.

In this case,the query generation model is given by
n

rone LLCIL) ey

alinear interpolation of the documernt languagemodel and the background model assiated
with the null word.

p(ajd) = (qj <null> ) ;

3.3.2 Model 1% A binomial model

This imaginary information analyst, when asked to generatea brief list of descriptive terms
for a documernt, is unlikely to list multiple occurrencesof the sameword. To accoun
for this assumptionin terms of a statistical model, one can assumethat a list of words is
generatedby making seeral independert translations of the documert d into a single query
term g, in the following manner. First, the analyst choosesa word w at random from the
documen. He choosesthis word accordingto the documert languagemodel | (wjd). Next,
he translates w into the word or phrase q according to the word-relation model (qjw).
Thus, the probability of choosing g as a represenativ e of the documernt d is

X
p(qjd) = I(wjd) (qjw):
w2 d
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Assumethat the analyst repeats this processn times, where n is chosenaccordingto the
samplesizemodel (njd), andthat the resulting list of wordsis Itered to remove duplicates
beforeit is presenied asthe summary, or query, 9 = gi1;%;:::Gm-

Calculating the probability that a particular query g is generatedin this way requiresa
sum over all samplesizesn, and considerthat ead of the terms g; may have beengenerated

multiple times. Thus, the processdescribed above assignsto g a total probability
|
. X X X n W -
p(qjd) = (njd) 0N p(gjd)™
n n>0 np>0 1 m =1
This expressioncan be calculated e cien tly using simple combinatorial identities and dy-
namic programming techniques. But instead of pursuing this path, assumethat the number

of samplesn is chosenaccordingto a Poissondistribution with mean (d):
n
njy=e @1,

Making this assumption meansthat p(qjd) can be rewritten as

1

m .
gl gt P@Id)

i=1

X X
pgjdy=e @ (d"

n ni>0 nm>0

. P
Note that sincen= "1, nj,
(d)n - (d)n1+ No+:Nm

Using this fact, distribute the (d)" over the inner sumsand do away with the sum over n:

X X
pgjdy=e @ i =

ni>0 nm>0

v p(gjd)™ (o)™
ninat:iinm! i=1

Rewriting the sum over ny,

X w
p(gjd)™ ()™

. X 1 X
pajdy=e @ —p(qjd)™
N1 i=2

|- |
ni H n2>0 nm>0 nznm

Similarly, one can expand the rest of the nj, yielding

: X1 o .
pgjdy=e @ PG jd)™ ()"
i=1 onp
Finally, apply the Taylor seriesexpansionof e to get

¥ ,
pgjd)=e @ e Dp(ajd) 1 . (3.14)
i=1
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This formula shows that the probability of the query is given as a product of terms.
Yet the query term translations are not independert, due to the processof Itering out the
generatedlist to remove duplicates. The model expressedn equation (3.14) will henceforth
be denoted as Model 1°

Model 1° has an interpretation in terms of binomial random variables. Supposethat a
word w does not belong to the query with probability = e (DPWid)  Then Model 1°
amourts to ipping independert ,-biasedcoinsto determine which set of words comprise

the query [36]. That is, the probability p(qjd) of equation (3.14) can be expressedas
Y Y
p(qjd) = @ w w!
w2 q w2q
This modelwasinspired by another IBM statistical translation model, onethat wasdesigned
for modeling a bilingual dictionary [15].

Model 1° also has an interpretation in the degeneratecaseof diagonal word-relation
probabilities. To seethis, let us make a further simpli cation by xing the averagenumber
of samplesto beaconstart  independert of the documernt d, and supposethat the expected
number of times a query word is drawn is lessthan one,sothat max; 1(gjd) < 1. Then to
rst order, the probability assignedto the query accordingto Model 1%is a constart times
the product of the languagemodel probabilities:

m
p(a=a;:amjd) e ™ I(gjd): (3.15)

i=1
Sincethe mean is xed for all documernts, the documert that maximizes the righthand
side of the above expressionis that which maximizes Qi”;l I(gjd). And this should look

familiar: it's proportional to the languagemodeling scoregivenin 3.3.

3.4 Learning to rank by relevance

The key ingredient in the models introduced in the previous section is the collection of
word-relation probabilities (gjw). A natural questionto askat this point is how to obtain
these probabilities. One strategy is to learn these valuesautomatically from a collection of
data, using the likelihood criterion. Ideal would be a collection of query/do cumert pairs to
learn from, obtained by human relevance judgments; in other words, a collection of pairs
(g;d) wherein ead pair the documert d is known to berelevant to the query g. We report
in Section 3.5 on the use of sewral di erent datasets for this purpose. But in practice it
may occur that no suitably large collection of query/documert pairs exists from which to
robustly estimate the model parameters, and so here we describe a method for learning
valuesfrom just a collection of documerts, which is considerably easierto acquire.
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3.4.1 Synthetic training data

From a collection of documerts, one can teaseout the semartic relationships amongwords
by generating synthetic queriesfor a large collection of documerts and estimating the word-
relation probabilities from this synthetic data.

At a high level, the idea is to take a document and synthesize a query to which the
document would be relevant. There are a number of candidate methods for synthesizing a
query from a documert. One could samplewords uniformly at random from the documen,
but this scheme would generate queries containing a disproportionate number of common
words like the, of, and, but. Preferable would be a sampling algorithm biasedin favor
of words which distinguish the document from other documerts.

To explain the rationale for the sdheme applied here, we return to the ctitious infor-
mation analyst, and recall that when preserted with a documert d, he will tend to select
terms that are suggestie of the content of the documert. Supposenow that he himself
selectsan arbitrary documert d from a databaseD, and asksus to guess,basedonly upon
his summary q, which documert he chose. The amourt by which oneis able to do bet-
ter, on average, than randomly guessinga documert from D is the mutual information
I(D;Q)=H(D) H(DjQ) betweenthe random variables represening his choice of doc-
ument D and query Q [42]. HereH (D) is the entropy in the analyst's choice of document,
and H (D j Q) is the conditional ertropy of the documert given the query. If he is playing
this gamecooperatively, he will generatequeriesfor which this mutual information is large.

With this gamein mind, onecantake a collection of documenrts D and, for ead documert
d 2 D, compute the mutual information statistic [42] for ead of its words according to
p(wjd)
I (w;d) = p(w;d) log ———=:
(w;d) = p(w;d) gp(WJD)
Herep(w]jd) is the probability of the word in the documert, and p(w | D) is the probability
of the word in the collection at large. By scaling these | (w;d) values appropriately, one
can construct an arti cial cumulativ e distribution function " over words in ead documert.
Drawing m ( jd) random samplesfrom the document according to this distribution

In some sense,query generation is just a version of query reformulation, where the
original query is empty. Taking this view brings into scope the large body of work in the
IR community on query reformulation. The popular Rocdhio relevancefeedbad technique,
for instance, is a method for re ning a query by examining the set of documerts known to
be relevantjand also a set known not to be relevant|to that query [75]. We will revisit
guery expansiontechniques later in this chapter.
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q (qjw) q (qjw) q (gjw)
ibm 0.674 defend 0.676 whittaker 0.535
computer 0.042 trial 0.015 climber 0.048
machine 0.022 case 0.012 everest 0.032
analyst 0.012 court 0.011 climb 0.023
software 0.011 charge 0.011 expedition 0.018
workstation 0.007 judge 0.010 garbage 0.015
stock 0.006 attorney 0.009 chinese 0.015
system 0.006 convict 0.007 peace 0.015
business 0.005 prosecutor 0.006 cooper 0.013
market 0.005 accuse 0.006 1963 0.012
w = ibm w = defend w = whittaker
q (ajw) q (ajw) q (ajw)
solzhenitsyn 0.319 carcinogen 0.667 unearth 0.816
citizenship 0.049 cancer 0.032 bury 0.033
exile 0.044 scientific 0.024 dig 0.018
archipelago 0.030 science 0.014 remains | 0.016
alexander 0.025 environment 0.013 find 0.012
soviet 0.023 chemical 0.012 body 0.010
union 0.018 exposure 0.012 bone 0.007
komsomolskaya| 0.017 pesticide 0.010 death 0.004
treason 0.015 agent 0.009 site 0.003
vishnevskaya 0.015 protect 0.008 expert 0.003
w = solzhenitsyn w = carcinogen w = unearth
q (ajw) q (ajw) q (ajw)
pontiff 0.502 everest 0.439 wildlife 0.705
pope 0.169 climb 0.057 fish 0.038
paul 0.065 climber 0.045 acre 0.012
john 0.035 whittaker 0.039 species 0.010
vatican 0.033 expedition 0.036 forest 0.010
ii 0.028 float 0.024 environment 0.009
visit 0.017 mountain 0.024 habitat 0.008
papal 0.010 summit 0.021 endangered 0.007
church 0.005 highest 0.018 protected 0.007
flight 0.004 reach 0.015 bird 0.007
w = pontiff w = everest w = wildlife

Figure 3.5: Sample EM-trained word-relation probabilities learned from a corpus of
newswire articles collected from the NIST-sponsored TREC project [84].
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3.4.2 EM training

The resulting corpusf (d; q)g of documerts and synthetic querieswasusedto t the prob-
abilities of Models 1 and 1° with the EM algorithm [24], run for only three iterations to
avoid over tting. A sample of the resulting word-relation probabilities, when trained on
the Asscciated Press(AP) portion of the TREC volume 3 corpus, is shawvn in Figure 3.5.
In this gure, a documert word is showvn together with the ten most probable query words
that it will map to accordingto the model.

For these experiments, a 132 625-word vocabulary was used. In principle, the word-
relatednessmatrix corresponding to this vocabulary has17:5 billion parameters. But enforc-
ing that (qjd) = Ofor all pairs of word (q; d) which did not co-accur in a query/do cument
pair in the training corpusreducedthe number of free parametersto 47; 065 200. Maximum
likelihood valuesestimatesfor these parameterswere calculated from a corpus obtained by
generating v e synthetic mutual information queriesfor ead of the 78,325documerts in
the collection.

Speci cally, the data-generation processwas as follows:

1. Do for eath documert d 2 D:

Do for x = 1to 5:
{ Selecta length m for this query accordingto ( jd)
{ Dofori=1to m:
Selectthe next query word by sampling the scaleddistribution: g I
{ Recordthis (d;q) pair

For statistical models of this form, smathing or interpolating the parametersaway from
their maximum likelihood estimatesis important. One can usea linear interpolation of the
badkground unigram model and the EM-trained word-relation model:

p (ajd) = p(qjD)+ (1 )pg(qjd) (3.16)
= p(@b)+@@ ) l(wjd) (qjw):
w2d
The weight was empirically setto = 0:05 on heldout data. The models for the baseline

languagemodeling approad, Model 0, were also smoothed using linear interpolation:
I (wjd) = p(wjD)+ (1 )I(wjd):

This interpolation weight was xed at = 0:1. The Poissonparameter for the sample size
distribution was xed at = 15, independert of the documernt. No adjustment of any
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parameters,other than those determined by unsupervisedEM training of the word-relation
probabilities, was carried out on the experiments described below.

Algorithm 5 is a method for estimating, given a query q and a large collection of doc-
umerts d, the relevance ¢(d) of eadh documert to the query. The procedure|completely
impractical for large-scalelR datasets|is to visit ead documert d in the collection and
compute p(q j d) for ead, accordingto (3.16). Section 3.6 takesup the matter of ranking
documerts e cien tly, using an inverted index and an approximation to p(qjd).

Algorithm  5: \Naiv eRank" documert ranking

Input:  Query g = foq;;:::0ng;
Collection of documents D = fdq;dy;:::dng;
Word-relation  probability (gjw) for all word pairs q;w

Output: Relevance score 4(d) for each document d

1. Do for each document d2 D in the collection

2, Set 4(d) 1

3. Do for each query word g2 q:
4. Calculate p (gjd) according to (3.16)
5. Set q(d)= q(d) p (ajd)

3.5 Experiments

This section describesthe results of experiments conducted using weaver with a hetero-
geneousset of queriesand documerts. The documert datasets employed here include two
corpora of newswire articles, a set of transactions with a large commercial web seard en-
gine, and a set of personalemails. We also dewote someattention to a comparisonagainst
traditional vector spacemethods.

Someof the questionsthese experimens addresswill include:

How doesthe length of the query a ect the behavior of weaver ?

How doesthe size of the documert corpus a ect the behavior of weaver ?
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How doesthe type of documertlnewswire articles, web pages,or emailla ect the
behavior of weaver ?

What is the di erence in practice betweenModel 0, Model 1 and t df ?

What is the di erence in practice betweenModel 0 and the traditional languagemodel
ranking; in other words, how good is the approximation in (3.15)?

In practice, what is an appropriate number of iterations for EM training for Model 1?

3.5.1 TREC data

The experiments here examine the behavior of the various candidate ranking algorithms
on long queries, drawn from the concept elds of TREC topics 51-100,and short queries,
drawn from the title elds of these sametopics. Typically, the concept eld of a TREC
topic comprises20 or more keywords, while the title eld is much more succinctjusually not
more than four words. The rather exhaustive concept eld queriesare perhapsnot atypical
of a query submitted by a librarian or expert information sciertist, though certainly longer
than \real-world" queries submitted, for instance, by usersof commercial seard engines.
The latter are more similar to the TREC title elds. For illustration, a full TREC topic
appearsin Figure 3.6.

The experiments in this section use two main document collections: a set of 78,325
Asscaciated Press(AP) articles and another set of 90,250San Jose Mercury News (SJMN)
articles. A separateset of experiments was conducted on a much smaller collection of 2,866
broadcast news transcripts from the Spoken Document Retrieval (SDR) track of the 1998
TREC ewaluation. All of the data were preprocessediy corverting to upper case,stemming
using the Porter stemmer[70], and ltering with a list of 571 stopwords from the SMART
system.

Precision-recall curves for the AP and SJMN data, generatedfrom the output of the
TREC ewaluation software, appearin a seriesof gures and tables starting with Figure 3.7.
The baseline curves in these plots shov the performance of the tdf measureusing a
commonly-usedtf score[67]. They also show the result of using Model O to score the
documernts, suppressingthe word-relation componert of Model 1.

The rst set of plots, depicted in Figure 3.7, illustrate the relative precision-recall per-
formance of Models 1, 1° and Model 0, using the AP and SIMN collections. Figure 3.7
contains the exact valuescorresponding to the AP plot.
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Domain : International Economics
Topic: Airbus Subsidies

Description : Documentwill discuss government assistance to Airbus Industrie,
or mention a trade dispute between Airbus and a U.S. aircraft producer over the
issue of subsidies.

Summary : Documentwill discuss government assistance to Airbus Industrie, or
mention a trade dispute between Airbus and a U.S. aircraft producer over the issue
of subsidies.

Narrativ e: A relevant document will cite or discuss assistance to Airbus Industrie
by the French, German, British or Spanish government(s), or will discuss a trade

dispute between Airbus or the European governments and a U.S. aircraft  producer,

most likely Boeing Co. or McDonnell Douglas Corp., or the U.S. government, over

federal subsidies to Airbus.

Concept(s) :

1. Airbus Industrie

2. European aircraft  consortium, Messerschmitt-Bo el kowBloh m GmbH,British
Aerospace PLC, Aerospatiale, Construcciones Aeronauticas S.A.

3. federal subsidies, government assistance, aid, loan, financing

4. trade dispute, trade controversy, trade tension

5. General Agreement on Tariffs and Trade (GATT) aircraft  code

6. Trade Policy Review Group (TPRG)

7. complaint, objection

8. retaliation, anti-dumping duty petition,  countervailing  duty petition,
sanctions

Figure 3.6: An exampletopic (51) from the TREC collection. Documert ranking systems
often behave quite di erently on short and long queries,and sothis chapter includes evalu-

ation results on both types,using the shorter title and more explicit concept elds of TREC

topics 51-100.
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t df Model 1 %
Relewvant: | 5845 5845 |
Rel.ret.: | 5845 5845 |
Precision:
at 0.00 | 0.6257| 0.7125 | +13.9

at 0.10 | 0.5231| 0.5916 | +13.1

at 0.20 | 0.4569| 0.5217 | +14.2

at 0.30 | 0.3890| 0.4554 | +17.1

at 0.40 | 0.3425| 0.4119 | +20.3

at 0.50 | 0.3035| 0.3636 | +19.8

at 0.60 | 0.2549| 0.3148 | +23.5

at 0.70 | 0.2117| 0.2698 | +27.4

at 0.80 | 0.1698| 0.2221 | +30.8

at 0.90 | 0.1123| 0.1580 | +40.7

at 1.00 | 0.0271| 0.0462 | +70.5
Avg.: | 0.2993| 0.3575 | +19.4
Precision at:
5docs: | 0.4809| 0.5574 | +15.9
10docs: | 0.4702| 0.5170 | +10.0
15docs: | 0.4326| 0.5135 | +18.7
20docs: | 0.4213| 0.4851 | +15.1
30docs: | 0.3894| 0.4539 | +16.6
100docs: | 0.2960| 0.3419 | +155
200docs: | 0.2350| 0.2653 | +12.9
500docs: | 0.1466| 0.1610 +9.8
1000docs: | 0.0899| 0.0980 +9.0
R-Precision: | 0.3254| 0.3578 | +10.0

Table 3.1: Performanceof tdf versusModel 1 for queries constructed from the concept
elds. Thesenumbers correspond to left plot in Figure 3.7.
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Figure 3.7: Comparing the performanceof Models 1 and 1°to the baselinet df and Model 0

performanceon AP data (left) and San Jose Mercury News documert collections (right)

when ranking documerts for queriesformulated from the TREC \concept" elds for topic

51-100.
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Figure 3.8: The discrepancybetweentwo and three EM iterations of training for Model 1°

As with all statistical parameter estimation, over tting during EM training is a concern.
Figure 3.9 shows the performanceof Model 1° on the AP data when the probabilities are
trained for two and three iterations. The rather minor performancedi erence betweenthese
two curvessuggeststhat only a small number of iterations are required for corvergencefor

these models.

To study the e ects of query length on weaver 's performance, we also scored the
documernts for the title elds of topics 51{100, where the average query length is only 2.8
words. Comparing with Figure 3.7 (the corresponding performancefor long queries using
the samedocumert collection) revealsthat all candidate ranking algorithms deteriorate in
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Figure 3.9: Comparing tdf , Model 0, and Model 1 on short, title- eld querieswith Asso-
ciated Pressdocumerts.
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Figure 3.10: Comparing Model 0 to the \traditional* languagemodel scoreusing the prod-
uct Qim:l I(gjd).

performance. This is, of course,to be expected. What is notable is the substartial relative
improvemert of Model 1 over the tdf baseline: 30.2%in average precision and 17.8%in
R-precision on these short queries. The marginal improvemen of Model 1 over Model 0 is
smaller herme|6.3% in averageprecisionand 4.9%in R-precision.

Figure 3.10comparesModel 0 with the traditional IanguagemodelscoringscoreQi [(gjd),
asin Ponte and Croft's method. The curves are essetially indistinguishable, suggesting
that the approximation in equation (3.15) is good.

The TREC ewaluation methodology is popular within the information sciencescommu-
nity for a number of reasons.First, the TREC datasetscomewith human-assignedelevance
judgments, a rare and valuable commadity in the IR community. Second,the documerts|
mostly newswirearticles|are rather uniform in sizeand style. But perhapsmost important
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is that, for better or worse,the TREC ewaluation method has becomea widely recognized
bendmark for documert ranking systems.

Of course,a ranking algorithm which exhibits promising behavior on the TREC dataset
may not perform aswell in more ruggedterrain. The next two sectionsdescribe the results
of experiments conducted on datasets with markedly di erent characteristics from TREC
data:

A collection of userqueriesto the Lycos seard enginealongwith the web pageselected
by the user from among those suggestedby Lycos;

A set of email subject lines (corresponding to queries) and bodies (corresponding to
documernts).

3.5.2 Web data

For the purposesof this section, a \clic kthrough record" refersto a query submitted to
the Lycos seart engine, and the URL selectedby the submitter from among the choices
preseried by Lycos. Table 3.2 lists a small extract of clickthrough recordsfrom a Lycos log
in the early months of 2000.

From a large collection of clickthrough recordssimilar to that in Table 3.2, we fetched
the contents of eady URL. Doing so givesa set of (qQuery, web page)records: ead web page
is relevant to its assaiated query. More precisely a Lycos user suspcted the documert to
be relevant, basedon what information the usercould gleanfrom the URL of the documert
and Lycos's capsulesummary of the documert. The idea, then, is to view the clickthrough
data as a collection of human relevancejudgmernts.

The experiments reported in this sectionrelied on a simple lter to detect and remove
those records cortaining objectionable content such as pornography and hate speed. This
eliminated about 20% of the recordsgathered, leaving 630 812records. Other than mapping
the query characters to lowercase, no processingof the queries submitted to Lycos was
performed. A space-delimitedsequenceof characters represeits a single term.

Avoiding preprocessingof the seard engine'slog le underscoresthe \pushbutton” na-
ture of weaver 's retrieval algorithm. However, the data cry out for at least a minimal
amount of preprocessing: the query in the secondenry of Table 3.2, for instance, con-
tains a comma, which distinguishesit from the semarically identical missoula mt. And
the ninth query in the table cortains an easily-detectablemisspelling, which distinguishes
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Query

felony

missoula, mt

feeding infants solid foods
colorado lotto
northern blot
wildflowers
ocean whales
ralph lauren polo

bulldog hompage

lyrics

churches in atlanta

retail employment

illinois mortgage brokers
stock exchange of singapore
front office software

free 3d homearchitect
country inns sale

free desktop wallpaper

results

automotive marketing research

router basics

Selected URL

jud13.flcourts.org/felon y.ht ml
missoula.bigsky.net/scor e/
members.tripod.com/drlee 90/s oli d.ht ml
www.co-lotto.com/

www.invitrogen.com/expre ssio ns/ 1196-3.h tml
www.life.ca/nl/43/flower s.ht mi
playmaui.com/ocnraftn.nt ~ ml
www.shopbiltmore.com/dir /sto res/pol o.ht m
www.adognet.com/breeds/2 abul m0lhtm|
www.geocities.com/timess quare/c auld ron/ 8071
acme-atlanta.com/religio  n/chris tn.h tml
www.crabtree-evelyn.com/ employ/ reta il.h tml
www.birdview.com/ypages2 /c3. htm
WWW.Ses.com.sg

www.saleslogic.com/sales logi x.p html
www.adfoto.com/ads1l/homeplan s.s html
innmarketing.com/form.ht ~ ml
www.snap-shot.com/photos /fir ewaks/
www.barndoors.com/rcmres ourc es. htm
www.wheretobuy.com/prdct /706 /55 .htm|

Table 3.2: A sample of Lycos clickthrough records|user query and the selected

URL|during

a seweral-secondwindow in February, 2000.

it from bulldog homepage But since Model 1 can ferret out correlations among terms,
correctly and misspelled ones, preprocessingbecomesrather lessimportant.

The web pageswere subject to rather more seere preprocessing. A publicly-available
tool (lynx) siphonedo markup tags, images, and all other componerts of a web page
besidesplain text. A separate lter then removed punctuation, lowercasedthe text, and
truncated all retrieved web pagesto 2048 bytes, for e ciency .

The data were split into three parts by assigningead record, randomly, to one of the

following disjoint sets:

Training: 624 491 (query, documert) pairs

Heldout 1000 pairs

Evaluation: 5321 pairs
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Ranking web pagesinvolved a linear interpolation of three models:

p(ajd)= (qjd)+ I(qjd)+ I(qjD) (3.17)

Estimating , , and worked as follows. First, we xed = 0 and determined
the optimal ratio between and by line seard in one dimension on the heldout data.
Surprisingly, the optimal ratio turned out to be = 0:99, = 0:01. One intuition for this
result is as follows. Queriesto commercial web seart engineslike Lycos tend to be very
short; the averagequery length in the Lycostraining data, for instance, was2:6 words. The
model I (qj D) is especially useful for longer queries,to help a relevant documert overcome
a \missing" query word. But with short (and especially single-word) queries,a documernt
is lesslikely to be relevant if it doesn't cortain all the terms in the query.

After xing the : ratio, we calculated by applying a line seard for the best
:( + ) ratio, which turned out to be 6: 4. The nal ratio wastherefore = 0.4, =
0:594 = 0:006.

Using standard precision/recall metrics to evaluate weaver 's performanceon this dataset
makeslittle sensebecauseherethere exists only a singlerelevant documert for ead query.
Instead of using precision/recall, we concerirate on the rank of the single known relevant
documert within the relevancy ranking produced by the system. Putting these ranks to-
gether gives a vector of ranks, where the i'th ertry is the rank, according to weaver , of
the known relevant documert for query i.

There are a number of di erent reasonablemetrics to usein evaluating a list of ranks.
The median value in the vector is one reasonablemetric; another is the inverse harmonic
mean rank. From a set of rankings frq;r»;:::ry g, one can measurethe inverse harmonic
meanrank as follows:

g

Tz

M N 1
i=1 r;

A lower number indicates better performance; M = 1, which is optimal, meansthat the
algorithm consistertly assignsthe rst rank to the correct answer.

Table 3.3 contains the results from Model 0 and Model 1 on the Lycos evaluation dataset.
Model 1 achievesa v e percert lower inverseharmonic meanrank than Model 0. Howeer,
the median rank of the correct documert was substartially higher with Model 1.

For the sake of e ciency, the ranking algorithm used an inverted index, as described
in the next section,to e cien tly rank just those documerts exhibiting somelexical overlap
with the query (in the caseof Model 0) or those documerts containing a word w which is
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a high-probability replacemen for a query word (in the caseof Model 1). We will call the
set of ranked documerts the qualifying set for a query.

It may occasionally happen that the known relevant documert for a query does not
appearin qualifying setfor that query. This could happenfor a number of reasons,ncluding

The documert (a web page, that is) may have changed between the time it was
recordedin the Lycos transaction log and the time it was downloaded in preparation
for training weaver . While the original documert may have beenrelevant to the
query, the updated document was not.

The words shared by query and documernt were excisedfrom the document during
weaver 's preprocessing,appearing, for instance, within an html <meta>elemen.

The algorithm failed to recognizethe relevancy relationship betweenthe query and
documert.

In this case,the model assignsa scoreof zero for the correct document. We mark these
gueriesas\defaulted" and excludethem from the cumulativ e results. Not surprisingly, the
number of defaulted queriesin Model 1 was signi cantly lower than that of Model 0. This
discrepancyprobably represers an unfair advantage for Model 0, which facedfewer di cult
gueriesthan Model 1.

queries 5321
queries processe 4363
dacuments ranked 624,491

Mo del O Mo del 1
model weights(; ; ) 0;0:990:01 0:4;0:594 0:006

defaulted queries 802 549
inv. harmonic rank 31.47 29.85
median rank 2422 3562

Table 3.3: Results of Lycos documert-ranking experiments. The experiments involved
ordering the 4363test documerts by relevanceto ead of the 4363queries. The only known
relevancejudgmerts is a single query-documert pairing accordingto the clickthrough data.
The harmonic rank and median rank measure,in di erent ways, how highly the automatic
ranking algorithm listed the matching documert for eac query.
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3.5.3 Email data

In this sectionwe explore the useof statistical documert ranking techniquesfor the purpose
of organizing email messages.More speci cally, the goal was to explore the potential for
learning a correlation betweenthe subject line of an email (acting asa query) and its body
(acting as a documert). A system which could correlate messagebodies with subjects
accurately could conceiably be applied to the automatic categorization of emails, a task
of great import not only to individuals with an unwieldy amount of email, but also to
corporate call certers which could exploit such a system to assignincoming requestsfor
help to di erent topics, priority levels, or experts.

The corpus contained 5731 documerts: ead documert consistedof a subject line and
email body; these emails were randomly sampled from a collection of personal correspon-
dencesaccunulated by a single personover the span of three years.

A collection of email correspondenceshasvery di erent characteristics than one consist-
ing of newswire articles. SomelR researd has investigated the task of online classi cation
of email by content [51], but there has beenscart work on searting and ranking emails
within adocumert retrieval setting. For sure,the dearth of researt arisesfrom the di cult y
inherent in procuring a distributable collection of email correspondences.

Speci cally, the evaluation task was as follows.

Provide aretrieval systemwith arandomly selected95%portion of the (subject/b ody)
pairs. The systemcan, in the caseof t df , usethis data to estimate term frequencies,
or, in the caseof the Model 1 system, construct a statistical word-relation model.

Use the remaining v e percen of the subject/b ody pairs to evaluate the system by
ranking ead body by relevance to ead subject and calculating the average rank
assignedto the correct body for ead subject.

Table 3.4 summarizesthe results of v e comparisonsbetweent df and Model 1, where
ead trial consisted of an independen, randomly-selected 95 : 5 partition of the email
collection (in other words, ead email record in the collection was assignedto the \training"
category with probability 0:95in ead trial).

Toillustrate the type of information cortained in the distillation model, Table 3.5 shavs
four entries from the model.
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Trial # queries arithmetic mean inv. harmonic mean # correct

1 305 73.7/37.3 1.92/1.86 138/141

2 294 73.1/35.7 1.82/1.70 140/154

3 264 73.5/32.9 1.93/1.84 114/120

4 294 77.5/38.0 1.94/1.78 129/145

5 279 73.7/36.4 1.91/1.76 123/139
Average: 74.3/36.0 1.90/1.78 128.8/139.8

Table 3.4: Comparing t df with Model 1 for retrieving emails by subject line. The values
should be read ast df /Mo del 1. The last three columns are three di erent ways to gauge
the quality of the ranking algorithm.

copy: copy 0.985 carbon 0.003 blind 0.002
ascii : ascii 0.438 charset 0.131 text/plain 0.126
flight : flight 0.980 airport 0.007 visit 0.001
at&t : at&t 0.952 labs 0.012 research 0.006

Table 3.5: The (tail-truncated) distributions for a selectgroup of words. The distributions
were learned from a collection of personalemails.

3.5.4 Comparison to standard vector-space techniques

The Model-0 (LM-based) and t df -baseddocumert ranking methods sharethe sameweak-
ness:an inability to account for word relatednesse ects intrinsically. \Mo del 1"-style doc-
ument ranking accourts for this shortcoming in LM-based retrieval, and query expansion
addresseghe sameproblem in t df -basedretrieval.

Query expansiontechniques such as Rocchio [75] usethe original query to rank docu-
ments tentativ ely, and then expand the query with those words appearing most often in
the highest ranked documerts. Documert ranking thus becomesa two-passprocess. In
contrast, Model 1 builds (o ine) a statistical model of word-relatednessfrom the documen
corpus and usesthat model in gauging relevance.

So Model 1 and query expansion are similar, in that they both rely on lexical co-
occurrencestatistics to handle word-relatedness. But thesetechniquesdi er in what data
they mine for co-accurrencestatistics and how they usethat data: Model 1 examinesthe
corpus as a whole, whereasquery expansion examinesdocumerts related (via a high t df
score)to the query.

This section reports on a brief empirical study of the relative behavior of these four
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metho d capsule summary
cosine-basedsimiliarity metric between documert and query,
t df where words are weighted according to their \information con-
tent."

words appearingrelatively more frequertly in the highest-ranked
tdf + query exmnsion documerts in atdf ranking are accordeda higher weight in a
new, synthetic query, which is usedin a secondranking.

Uses a stochastic model constructed from the documert (in-
terpolated with a model constructed from the entire corpus) to
\predict" the query. Documerts whosemodels predict the query
with high likelhood are accordedhigher relevance.

Model O

words related to those appearing in the query participate
Model 1 through a statistical model of word-relatedness. The model is
calculated o ine, independertly of any particular query.

Figure 3.11: Capsule summary of four ranking techniques

algorithms|Mo del 0, Model 1, tdf and tdf with Rocdio-based query expansionjon
a single task: TREC-style documert ranking using newswire documerts. For reference,
Figure 3.11 contains a capsulesummary of the four techniques.

We usedthe TREC AP88 corpus: 79,919 Asscciated Press newsfeeddocumerts from
1988, with TREC topics (queries) 251-300and TREC-supplied relevance judgments. The
experimens reported hereusedonly the title eld from the topics. This datasetis somewhat
atypical of traditional IR datasetsin that relevant documerts are rather sparse. In fact,
amongthe 50 topics, two topics contained only onedocumert judged relevant by the human
assessorsand none of the four algorithms below placed that documert among the 1000
documens deemedmost relevant to the topic. Removing these two topics, as the four
experimens reported below all did, reducesthe number of topics to 48. For illustration,
Figure 3.12 depicts one of thesetopics.

We begin with a brief description of the experimental procedure followed in eat case,
followed by comparative results and a discussionof thoseresults. In general,the ideawasto
give eath method the fullest opportunity to excellb y varying the appropriate parameters
from ead method and selectingthe con guration which performed best on the evaluation
data.

1. tdf -based ranking : This experiment usedthe sametdf ranking formula as else-
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Topic: Cigarette Consumption
Description : What data is available on cigarette consumption by country?

Narrativ e: If cigarette smoking is a causative factor in lung cancer, then
countries with higher cigarette consumption per capita might experience a
higher incidence of lung cancer. This topic would provide basic data for
such a comparison.

Normalized: cigarett consumpt data cigarett consumpt countri cigarett smoke
caus factor lung cancer countri higher cigarett consumpt capita experi
higher incid lung cancer topic provid basic data comparison

Figure 3.12: For reference,a represenativ e topic from those usedin the experimerts of
Section 3.5.4. The experiments reported in this section usedthe ertire topic when adjudi-
cating relevance. The \Normalized" entry refersto the view of this topic after corverting
the words to uppercase,stemming, and remaving stopwords.

where in this sectionto rank the documerts in the AP88 corpus by relevanceto the
provided topics [67].

2. tdf with Rocchio-based query expansion : To implement query expansion, we
employed a popular IR technique known as the Rocciio method. For a given query,
the Rocdhio-basedranking procedureworks as follows:

1) Rank documerts usingt df , asabove.

2) Takethe top ny most relevant documerts frq;rp;:::rp, g accordingto this rank-
ing, and expand the query as follows:

X1 ri
q g+ — (3.18)
. N1
i=1
3) Rerank documerts with respect to this updated (expanded) topic.
In general,the Rocchio method involves an additive and subtractive term:
X X2 .
q g+ Ti fi (3.19)

i=1 N2
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cigarett (7.9375)cancer (3.95) smoke(3.8875)consumpt(3.3375)lung (3.0875)tobacco (2.5875)
higher (2.375)data (2.15) number (2.0625) courtri (2.0375)topic (2) year (1.725)death (1.425)
smoker (1.275) percent (1.275) caus (1.15) basic (1.1125)provid (1.075) capita (1.075) incid

(1.0375) factor (1.0375) experi (1.0375) comparison (1.0375) _ (0.9375) cipollon  (0.8625)
compani (0.7875) report (0.75) case (0.7125) american (0.7125) product (0.675) rate (0.6)
health (0.6) billion (0.6) societi (0.5625)research (0.5625)monei(0.5625)state (0.525)feder
(0.525) cost (0.525) mr (0.4875) leukemia (0.4875) danger (0.4875) claim (0.4875) women
(0.45) warn (0.45) 1987 (0.45) lawyer (0.4125) evid (0.4125) 10 (0.4125) studi (0.375) morri

(0.375) maker (0.375) link (0.375) increas (0.375) group (0.375) gener (0.375) drop (0.375)
diseas (0.375) dai (0.375) attornei  (0.375) price (0.3375) market (0.3375) liabil ~ (0.3375)
gunsalu (0.3375)fda (0.3)

Figure 3.13: An expandedversion of the topic from Figure 3.12, using Rocchio to estimate
the weights.

In theseexperiments, wetook = 0:75 (a somewhatstandard value in the industry),
and = 0, e ectiv ely deactivating the subtractive term. We found that taking n; = 10
performed best, though in fact this value is rather lower than the \industry standard"
range of between30 and 50.

As the graph in Figure 3.14 shows (and asis expected), query expansionprovides an
improvemert over \vanilla" tdf exceptat the very highest precisionrange.

As an illustration, Figure 3.13 displays the top few terms, along with their weights,
for the query-expandedversion of the topic in Figure 3.12.

3. Mo del-0 results : In theseexperimernts, we found that setting = 0:80 was optimal.
The language modelling approad performs surprisingly well relative to traditional
vector-spacetechniques, though it cannot match the performanceof t df with query
expansionat the lower-precisionregions.

4. Mo del-1 results

As we have described earlier, Model 1 includes a word-to-word statistical relation
model, which e ectiv ely spreadsthe probability of a word over a number of related
concepts. Two examplesof individual word transition vectors are:



Figure 3.14: Precision-recall curves for four techniques under discussionin this section:
tdf , tdf with Rocchio-basedquery expansion,Model 0 and Model 1.

cigarett : cigarett 0.268101smoke0.0510487%obacco 0.0369069%moker
0.0273317ack 0.0181277rand 0.00906122j 0.00877782ung
0.00708167carton 0.0066778@roduct 0.00616576

cancer: cancer 0.242286breast 0.0113614diseas 0.0101922studi
0.00693828 treatment  0.00580977 lung 0.00568525 evid
0.00508431 tumor 0.00505677 surgeri  0.00501926 smoke

0.0043776
Using thesemodelsand (3.17), a Model 1-basedranking algorithm exhibited a perfor-

mancesuperior to tdf with Rocchio-basedquery expansion,as seenin Figure 3.14|
exceptat the lowest (and usually least interesting) part of the curve.

3.6 Practical considerations

Conventional high-performanceretrieval systemstypically decomposethe task of ranking
documerts by relevanceto aquery g = fai; tp;::: gnginto aretrieval and a query expansion



82

Document ranking

stage. For instance, in the automatic relevance feedba& approad, the system rst ranks
just those documerts whosecontent overlaps with g, and assumeshe other members of D
are not relevant to the query. In part becausethere may exist relevant documenrts which
have no words in common with the query, the systemthen expandsq to include a set of
words which appeared frequertly among the top-ranked documerts in the rst step, and
ranks documerts whoseconent overlaps with this expandedquery.

The crucial aspect of this two-step processis that in ead step, the ranking algorithm
can disregard documerts cortaining none of the words in the query. This approximation|
ignoring the potentially large subsetof the document collection with no words in common
with the query|mak es the dierence between a usable and impractically slow ranking
algorithm.

A retrieval system that only considersdocumerts cortaining words in the query can
organize the collection e cien tly into an inverted index, which lists for ead word the
documerts cortaining that word. Processinga query with an inverted index is then a
simple matter of visiting just thoselists in the inverted index corresponding to words in the
qguery. Inverted indices are a nearly ubiquitous componert of large-scaledocumert retrieval
systems.

At rst glance,it would seemthat modelswhich capture the semartic proximity between
words are incompatible with the use of an inverted index. After all, when using Model 1
or Model 1', all documens are \in play" for a given query: a documert not containing a
query word might, after all, still generatethat word with high probability. But forfeiting
the use of an inverted index ertirely and explicitly computing a relevance scorefor every
documen, asNaiveRank does,is too ine cien t. Calculating the relevanceof a document
to a query using Model 1 (equation (3.13)) requirestime proportional to jqj jdj: the
product of the size of the query and the size of the documert. In practice, it appearsthat
NaiveRank can require an hour or more per query for a TREC-sized documert collection
of a few hundred thousand documernts, on a modern-day workstation.

The remainder of this section preserts a set of heuristics to allow e cient (albeit ap-
proximate) ranking of documerts by their probability p (g j d) of generating the query in
a distillation process.This section also shavs how, by using a data structure similar to an
inverted index, one can achieve near real-time retrieval performance.

The key obsenation is that the ranking algorithm o ers a time-spacetradeo . Rather
than calculating the sum in (3.13) during ranking, one can precompute p(qj d) for every
known word g and eat document d 2 D, and store the results in a matrix, illustrated in
Figure 3.6. Denote this \in verted matrix”|similar ~ to an inverted index, but cortaining an
entry for every(d;q) pair|b y the symbol | . (As areminder: p(qj d) is just onecomponert



Figure 3.15: NaiveRank computesp (g j d) accordingto (3.16) for each word ¢ in the
query q = fou;:::0ng. Avoiding this costly processis not dicult: just precompute,
onceand for all, p(qj d) for all words q and documerts d. Calculating p (q j d) is then
a matter of multiplying the precomputed p(q; j d) together, factoring in the smoothing
terms p(qj D) along the way. This gure depicts a data structure | which stores these

precomputed values.

of the smoothed probability p (gj d) of g givend. By inspection of (3.16), one can seealso
a cortribution from the documert-wide languagemodel p(qj D).)

Precomputing the cellsof | and then using thesevaluesin NaiveRank reducesthe cost
of ranking from jDj jqgqj jdjtojDj |jq] operations.

Unfortunately, the matrix |, with as many columnsas documerts in the collection and
as many rows asthere are distinct words recognizedby the system, can be prohibitiv ely ex-
pensiveto compute and store. A 100 000documert collection and 100 000word vocabulary
would require a matrix 400GB in size. One can therefore make the following approximation
to (3.16):

X
p (qjd) p(ajD)+ (@1 ) I(wjd) (qjw) (3.20)
w2 Tn(q)

def

where T"(g) = fw: (qjw) isamongthe n largest -valuesfor any wg

Roughly speaking, T"(g) is the setof n words most likely to map to g. In other words, (3.20)
assumesthat ead documert covers at most n concepts. In the performed experimens, n
was set to 25. Making this approximation results in most valuesp(qj d) dropping to zero,
yielding a sparsel matrix|easy to store and precompute using corverntional sparse-matrix
techniques.
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Of course, any approximation runs the risk of gaining speed at the cost of accuracy
To addressthis, the new ranking algorithm therefore rescores(and reranks) the top-scoring
documernts accordingto (3.16).

Algorithm  6: \FastRank™": e cien t documert ranking

Input:  Query g = for; 0 ::0n0;
Collection of documents D = fdq;dy;:::dng;
Word-relation  probability (gjw) for all word pairs qw
Inverted mapping from words to documents

Output: Relevance score (d) for each document d

1. Do for each documentd 2D in the collection
2. Set 4(d) 1

3. Do for each query word gq2q

4. Do for each documentd?2D

5. Set p (gjd) p(qj D) (precomputed)

6. If d21(q) then p (qjd) p (gjd)+ (1 )p(gjd) (precomputed)

7. Rescore the top-ranking documents according to (3.16).

Figure 3.16 shaws that, on the AP subsetof the TREC dataset, the precision/recall
performance of the fast, approximate algorithm is essetially indistinguishable from the
naive, exact algorithm. But the former algorithm is considerably faster. on a 266Mhz
workstation with 1.5GB of physical memory, NaiveRank required over an hour per query
while FastRank required an averageof only 12 secondsper query?.

3.7 Application:  Multilingual retriev al

In many real-world settings (such as the Internet), seweral di erent languagesmay appear
within a collection. Ideally, a documert retrieval system should be capable of retrieving a
documert relevant to the user'squery no matter what the languageof the documert.

2Had the time di erence between FastRank and NaiveRank beenless marked, one might reasonably

insist on a more rigorous evaluation framework: running the system in single-user mode, clearing the 1/O
cadhes, running multiple trials, and so forth.
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NaiveRank FastRank
Relewant: 5845 5845
Rel.ret.: 4513 4386
Precision:
at 0.00 0.7411 0.7411
at 0.10 0.5993 0.5994
at 0.20 0.5291 0.5295
at 0.30 0.4487 0.4501
at 0.40 0.4079 0.4085
at 0.50 0.3646 0.3599
at 0.60 0.3125 0.3161
at 0.70 0.2721 0.2698
at 0.80 0.2136 0.2043
at 0.90 0.1366 0.1433
at 1.00 0.0353 0.0339
Avg.: 0.3531 0.3523
Precision at:
5 docs: 0.5489 0.5489
10 docs: 0.5255 0.5255
15 docs: 0.5149 0.5163
20 docs: 0.4883 0.4883
30 docs: 0.4553 0.4567
100docs: 0.3351 0.3357
200docs: 0.2596 0.2601
500 docs: 0.1582 0.1594
1000docs: 0.0960 0.0933
R-Precision: 0.3707 0.3718

Figure 3.16: The NaiveRank and FastRank algorithms yield almost indistinguishable
results when applied to the AP portion of the TREC data using the narrative elds of
queries51-100.
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To simplify the exposition, focus on a two-languagescenario: a user issuesa query q
in a sourcelanguageS, and the systemranks documerts in a target languageT by their
relevanceto g.

Somepopular strategiesfor this problem are:

1. Cast the problem as a monolingual one by translating the documerts into language
S. The costof translating the entire collection D of documerts may be expensiwe, but
the computation can be performed o ine, prior to processinga user's query.

2. Cast the problem as a monolingual one by translating the query to the language
T [64]. This obviates the needto translate the entire collection, which can be an
expensive proposition. Howewer, since queries are typically quite short, accurately
translating the query may beimpossible;the context of a word (its neighbors) usually
plays an important role in disambiguating the word's meaningduring translation. For
instance, should a multilingual retrieval systemrenderthe English query suit into the
French query costume (piece of clothing) or into proces (legal action)? In principle,
translating words within a documert can be easierbecausesurrounding words often
sene to disambiguate the meaning.

3. Franz etal. have also suggesteda hybrid approad which ranks documerts in two
dierent ways: rst, by translating the query into T, and second, by translating
the documerts into S. They have demonstrated that the performance of a system
which employs both techniquescan exceedthat resulting from the application of either
strategy alone [31].

Another approadi|the one pursued here|is to avoid explicit translation altogether,
by incorporating translation into the retrieval framework. In other words, perform trans-
lation and retrieval simultaneously. This idea has preceden in the IR literature: Dumais
etal. have, for instance, proposedthe use of latent semartic indexing to perform retrieval
acrossmultiple languages[25].

Performing retrieval acrosslanguageswithin the framework described in Section 3.3 is
a straightforward matter. One can use model (3.12) as before, but now interpret (w j Q)
as a measureof the likelihood that a word q in the languageS is a translation of a word w
in the languageT. In other words, is now a model of translation rather than semaric
proximity.

Preserted with a bilingual collection of (q;d) pairs, where ead q is in the language
S and eath d isin T, applying the EM-based strategy of Section 3.4 would work without
modi cation. Nothing in the models described in Section 3.3 assumesthe queries and
documerts are in the samelanguage.



3.8 Application:  Answ er- nding

87

3.8 Application:  Answ er- nding

Searding the web or skimming a lengthy manual to nd the answer to a speci ¢ question
can be a tedious exercise. Moreover, for a large retail compary, employing a battalion of
customer-support personnelto perform this sametask on behalf of telephonecustomerscan
be an expensive proposition. A recert study has concludedthat providing help to a single
customer via a live telephone operator can cost a compary $20to $25 per call [32]. This
section investigates how the statistical techniques of this chapter can help in automating
the processof answer- nding. The ultimate goal is a systemwhich, equipped with a large
collection of prepadkaged answers, can automatically identify the bestresponseto a user's
query.

Starting from a large collection of answered questions, the algorithms described here
learn lexical correlations betweenquestionsand answers. Two examplesof suc correlations
are

Questions cortaining the word why are more likely, in general,to be paired with an
answer beginning with the word because.

A question corntaining the word vacation is likely to be paired with an answer con-
taining one of the words f flight, trip,  cruise g.

To serwe as a collection of answered questions, this section relies on two typesof datasets:

Usenet FAQs: A collection of Usenetfrequertly-asked question (FAQ) documerts.
This dataset, a dynamic and publically available ertity3, preserly contains seeral
thousand individual FAQ documerts, totalling hundreds of megatytes. The topics of
thesedocumerts rangefrom lib ertarianism to livestock predatorsto Fortran program-
ming. This section uses,for experimenal purposes,a set of 200 documerts from the
comp.* Usenethierarchy cortaining 1800questions.

Call-cen ter dialogues : A collection of questionssubmitted by customersto Ben &
Jerrys, along with the answer supplied by a compary represertative. This dataset
cortained 5145 question/answer pairs.

One can cast answer- nding asa traditional documert retrieval problem by considering
ead answer asan isolated documert and viewing the query asjust another (albeit smaller)

3The Usenet FAQ collection is available at ftp://rtfm.mit.edu and http://www.fags.org . The Ben &
Jerrys dataset is proprietary .



Figure 3.17: Excerpts from two of the question/answer corpora used here. Left: Q/A
pairs from the Usenetcomp.* newsgroups.Right: Q/A pairs from Ben & Jerry's customer
support.

documen. Traditional tdf -basedranking of answers will reward candidate answers with
many words in common with the query.

Employing traditional tdf -basedvector-spaceretrieval to nd answers seemsattrac-
tive, sincet df is a standard, time-tested algorithm in the toolbox of any IR professional.
Howewer, the experimerts reported belov demonstrate that standard t df retrieval per-
forms poorly comparedwith techniquesthat \learn" to locate answers by inspection of a
collection of answered questions.

The lexical chasm

In ranking documerts by relevance to a query, traditional information retrieval systems
place a large emphasison lexical similarity between documernt and query: the closerthe
distribution of words in a candidate documert is to the query, the more relevant is the
guestion. Many usersof documert retrieval systemshave this model (or somevague notion
of it) in mind, and in formulating their query they usually employ terms that they expect
would appearin arelevant documert. But userswho submit questionsto an answer- nding

system can't be expected to anticipate the lexical content of an optimal response: there
is often very little overlap betweenthe terms in a question and the terms appearing in its
answer. For example, the best responseto the question Where's a good place to get

dinner? might be Zaphod's Bar and Grill has great fajitas , which have no tokens
in common.
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More generally questionsoften cortain terms that dier from, but are related to, the
terms in the matching answer. The group of terms fwhat, when where, why, howg will
typically appear more frequertly in questionsthan answers, for example. The legal vocab-
ularies for questionsand answers are the same,but the probability distributions over those
vocabulariesare di erent for questionsand their answers.

Furthermore, the probability distribution for terms in the answer is linked to the proba-
bility distribution of the terms in the question. Thus there is both a mismatch betweenthe
terms in queriesand the terms in responsesmatching those queries,aswell as a correspon-
dencebetweenthe mismatched terms in the query and response. For example, in a where
guestion, the responsefrequertly cortains the words f near, adjacent, street, ongand
soforth.

This combination of a vocabulary mismatch and linkage between query and response
vocabulariesis in somesensea lexical chasm The query is on oneside of the chasmand the
responseon the other side. The vocabularies on the two sidesof the chasm are the same,
but the distributions di er on ead side of the chasm. The distributions on the two sidesof
the chasm are linked at the semartic and discourselevels.

This chasm suggeststhat traditional bag-of-words retrieval might be lesse ective at
matching questionsto responsesthan matching keywords to documerts. To bridge the
lexical chasm, an IR system must adopt a strategy that risesfrom the lexical level towards
the semariic level.

Traditional IR systemsbasedon the t df ranking criterion [76] su er from a particular
form of the lexical gap problem, namely the problem of synonymy. A query containing the
term Constantinople ought to fetch documens about Istanbul, but doing so requires a
step beyond comparing the word frequency histogramsin query and candidate documerts.
The techniques introduced in this chapter are designedto bridge the lexical gap between
guestionsand answersby characterizing the co-cccurrencebetweenoneword in a query and
another word in an answer. Of course,traditional vector-spacedocumert ranking methods
addressthe lexical mismatch problem aswell, using query expansion.

When there's only one known relevant documernt for ead query (as is the casehere),
What really courts is how closea correct answer is to the top of the returned list. Instead
of precision-recall measures,therefore, this section usesthe rank of the correct answer in
the returned list asa metric of performance. More speci cally, it reliesin inverseharmonic
mean rank.

The advantage of the median s that it is lessa ected by non-represemativ e tails of the
distribution. The inverseharmonic meanrank is designedto give an intuitiv e feel for where
the correct answer is likely to appear. It alsopenalizesrank changesnear the top more than
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Usenetcomp.* FAQs
Inv. Harmonic

Method Median p Mean p
t df 3.00 - 4.12 -
translation 1.60 0.008 1.72 <0.001

Ben & Jerry's Call Center FAQ
Inv. Harmonic

Method Median p Mean p
t df 16.6 - 6.25 -
translation 25.2 - 341 <0.001

Table 3.6: Answer- nding experiments on Usenet, and a call-certer dataset. The numbers
here are averagedover v e runs of randomly selectedtesting set of 10% of the documert
sets. The p values are unpaired t-statistics for the test that the model outperforms the

baseline.

changesfarther away; a drop in rank from two to three is more signi cant than a change
from 99to 100.

Exp erimen ts

The framework introduced in this chapter applies to question-ansvering as follows. One
can equate the relevance of an answer r to a question g with the quantity p(q j r). The
entries of the stochastic \w ord-relatedness"matrix in this casehave the interpretation that
the i; jth cell re ects the likelihood that an answer containing the word j correspondsto a
question cortaining word i.

There are reasonsto think an approad inspired by languagetranslation might work
well for question-ansvering: trained on a su cien t amount of question/answer pairs, the
translation model should learn how answer-words \translate to" question-words, bridging
the lexical chasm. For instance, words like at, location, place, street, directions
will all translate with reasonablyhigh probability to the question-word where.

Using an alignmert a betweenquestion and answer words, p(q j r) decomposesas

X X
p(ajr)=  p(a;ajr)=  plajar)p(ajr) (3.21)

a a

From here one can follow the derivation following (3.7), with d now replacedby r.
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Having learned the word-to-word synorymy parameters from the training data, the
systemis then ready to perform answer- nding asfollows. Starting from an input question
g, rank eat answer accordingto p(q j r) via (3.9). The sumin (3.9) is over an exponertial
number of alignments, but one can calculate this value e cien tly by rearranging the sum
and product|b y now a familiar routine.

As Table 3.6 indicates, using weaver for answer- nding has promise. The only excep-
tion is the median rank on the Ben & Jerry's problem. Interestingly, while the median rank
falls, the harmonic meanrisesconsiderably The inverseharmonic meanis more sensitive to
smaller numbers (documerts with higher rank). This suggestsa higher fraction of correct
documernts ranked closeto the top than with tdf |the behavior onewould expect from an
answer- nding system.

Extensions
Exploiting document structure

The experimerts reported in this sectiontreat the question/answer pairs asisolated objects.
In reality, they often occur as part of a larger document structure. There are seweral
strategiesfor exploiting this structure to improve the accuracy of answer retrieval.

Oneideaisto try to nd not the individual answer best matching the input question,
but instead the best region|collection of answers, say|for the question. Giving a user
a larger body of text which probably contains the correct answer is of course inferior to
providing just the answer, but better than providing the wrong answer, or no answer at all.
The IR community has explicitly adknowledgedthis multi-lev el de nition of correctness;in
the TREC question-ansvering track, systemsmay patrticipate in the 55-byte or 255-kyte
subtracks. In the former, participating systemsmust identify a window of at most 55 words
containing the answer; in the latter, systemsare permitted up to 255-word windows [84].

Another approad is to introduce a function of the position of an answer in an FAQ as
a prior probability that the answer is appropriate. It may be, for example, that simpler,
more general questions usually occur early in a user's manual, and people generally ask
more generalquestions rst; an obvious strategy in this casewould be to bias towards the
rst seweral answersearly in a dialogue with a user.

Exploiting question structure

Questions comein dierent avors: whaetype questions are characterized by a somewhat
dierent syntax and lexicon than where-type questions. Answers to these questions are
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dierent as well. For instance, words and phraseslike behind, next to, and near may
appearwith ahigher frequencyin answersto where-questionsthan answersto whoequestions.

We have already discussedhow Model 1 inherently accourts for the \lexical mismatch"
betweenquestionsand answers. Going further, however, one could try to exploit the di er-
encebetweenquestiontypes;accouning, for instance, for the di erence betweenanswersto
where questionsand answersto whoquestions. The certral ideais to automatically identify
the type (who, what, why, where, how) of an input question, and usethat information to
help assesscandidate answers. Ideally, the resulting algorithm would bias the candidate
answersin favor of where answers when processingan where question.

One way to incorporate such a change into a probabilistic framework is as follows.
Introduce a class-basednodel p(tq j tr), which assignsa probability to the evert that an
answer of type t; is the correct responseto a question of type tq. Also introduce a model
p(q j tq) for generatinga query g from a query classtq. Interpolating this model with (3.7)
gives

X
p@jr)= ptgjt)p@jtgy) + (@ ) plag;ajr) (3.22)
a
Unfortunately, the problem of identifying question type has long been recognizedas
di cult. [50]. For instance,the question\How do | getto the World Trade Center" appears
to be a howquestion, but is implicitly more of a where-question.

* *x *

This section focuseson the task of locating an answer within a large collection of can-
didate answers. This is to be cortrasted with the problem of question-answering a con-
siderably more ambitious endeaor, requiring the construction of an answer by searding a
large collection of text. Question answering systemsare usually domain-speci ¢ and highly
knowledge-irtensive, applying sophisticated linguistic analysisto both the question and the
text to be seartied for an answer.

Somewhat more closely related to the presen work is the FAQ-Finder system under
dewvelopmert at U.C. Irvine [16]. The system attempts to locate, within a collection of
Usenet FAQ documerts, the most appropriate answer to an input question. The FAQ-
Finder systemis similar to the work described in this paper in starting with atdf -based
answer-scoringapproad. In trying to bridge the lexical chasm, howewer, the paths diverge:
FAQ-Finder relieson a semariic network to establish correlations betweenrelated terms
sud as husband and spouse. In cortrast, the weaver approad depend only on the
availability of a suitable training set. By not relying on any external sourceof data, Model 1
appearsto be better suited to the production of \v ertical" documert ranking applications.
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That is, given a collection of medical documerts, say, or legal or nancial documerts, the
techniques described in this chapter describe how to construct from these documerts, with
no additional data gathering or human annotating, a domain-speci ¢ text ranking system
with an intrinsic notion of query expansion.

3.9 Chapter summary

Taking as a starting point the idea of using statistical language models for documert re-
trieval, this chapter has demonstrated how macine learning techniques can give rise to
more sophisticated and powerful modelsnot only for documert retrieval, but alsofor a wide
range of problemsin information processing.

After outlining the approad, this chapter preseried two closely related models of the
documen-query \translation" process. With the EM algorithm, the parameters of these
modelscanbelearnedautomatically from a collection of documents. Experiments on TREC
data, user transactions from a large web seard engine, and a collection of emails demon-
strate that even these simple methods are competitiv e with standard baselinevector space
methods. In somesense,the statistical word-relatednessmodels intro duced here are theo-
retically principled alternativesto query expansion.

Of course, the actual models proposed here only begin to tap the potential of this
approacd. More powerful models of the query generation processshould o er performance
gains, including:

Explicit fertility models One of the fundamental notions of statistical translation is
the idea of fertility , wherea sourceword can generatezeroor more wordsin the target
sertence. While there appearsto be no good reasonwhy a word selectedfrom the
documert should generatemore than a single query term, one might bene t from the
added sophistication of a model which recognizesnfertility probabilities: somewords
or phrasesare more likely than others to generateno terms at all in the query. For
instance, the phrasesThis document is about or In conclusion carry negligeable
information content. The use of stop word lists mitigates but doesnot eliminate the
needfor this feature.

Discarding the independen@ assumption weaver makesthe usual \bag of words"
assumptionabout documerts, ignoring word order in the sourcedocumert for the sake
of simplicity and computational ease.But the relative ordering of words is informativ e
in almost all applications, and crucial in some. The senseof a word is often revealed
by nearby words, and soby heedingcorntextual clues,onemight hopeto obtain a more
accurate mapping from documert words to query words.
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Recognizing word position within a document In most cases,the beginning of a doc-
ument is more important, for the purposesof distillation, than the end of that docu-
ment. Someondooking for information on Caribbeanvacationswould typically prefer
a documernt which coversthis topic in the very beginning over a documert which does
not mertion it in the rst hundred page. The proposedmodels do not recognizethis
distinction, but one could imagine biasing the |( j d) distribution to accord lower
weight to words appearing near the end of a documert. Of course,this feature is a
special caseof the previous one.



Chapter 4

Document gisting

4.1

The problem of automatic text summarization is to designan algorithm to produce useful
and readable summaries of documerts without human intervention. Even if this problem
were well-de ned (which it is not), it appearsto be profoundly di cult.
engagedn the summarization task leveragea deepsemartic understanding of the documert
to be condensed,a level of analysis well beyond the reach of automation using current

This chapterintr oducesocelot , a prototype systemfor automatically geneating
the \gist” of a web page by summarizing it. Although most text summarization
resarch to date hasfocusel on the task of newsarticles, webpagesare quite dif-
ferent in both structure and content. Instead of cohetent text with a well-de ned
disoourse structure, they are more often likely to be a chaotic jumble of phrases,
links, graphics and formatting commands. Suchtext provideslittle foothold for
extractive summarization techniques,which attempt to geneate a summary of a
dacument by exerpting a contiguous, coherent span of text from it. This chapter
builds upon recent work in non-extractive summarization, producing the gist of
a web page by \tr anslating” it into a more concise representation rather than
attempting to extract a representative text span verbatim. ocelot usesprob-
abilistic models to guide it in seleting and ordering words into a gist. This
chapter descrites a technique for learning these madels automatically from a
collection of human-summarizel webpages.

Intro duction

technology.

An important distinction in summarization is betweengenericsummaries,which capture

95

After all, humans
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the certral ideasof the documert in much the sameway that the abstract of this chapter
was designedto distill its saliert points, and query-relevant summaries, which re ect the
relevance of a documert to a user-sgeci ed query. This chapter focuseson the generic
summarization problem, while the following chapter looks at query-relevant summarization.

Sincecondensinga documert into a useful and meaningful summary appearsto require
a level of intelligence not currently available in synthetic form, most previous work on
summarization has focusedon the rather lessambitious goal of extractive summarization:
selectingtext spans|either completesertencesor paragraphs|from the original documert,
and arranging the segmeits in some order to produce a summary. Unfortunately, this
technique seemsto be a poor t for web pages,which often contain only disjointed text.

The ocelot approad to web page summarization is to synthesizea summary, rather
than extract one. ocelot relieson a setof statistical modelsto guide its choice of words and
how to arrange thesewords in a summary. The modelsthemselesare built using standard
madhine learning algorithms, the input to which is a large collection of human-summarized
web pages. Speci cally, this chapter usesdata from the Open Directory Project [66], a large
and ongoingvolunteer e ort to collect and describe the \b est" web siteson the Internet. As
of January 2000,the Open Directory Project contained 868 227 web pages,eat annotated
with a short (roughly 13 word) human-authored summary.

Someimportant prior work in extractive summarization has exploredissuessuc ascue
phrases[52], positional indicators [27], lexical occurrencestatistics [59], and the use of im-
plicit discoursestructure [56]. Most of this work relies fundamertally on a property of the
sourcetext which web pagesoften lack: a coherent stream of text with a logical discourse
structure. Somewhatcloserin spirit to ocelot is work on combining an information ex-
traction phasefollowed by generation; for instance, the fr ump system [23] usedtemplates
for both information extraction and presenation|but onceagain on newsstories, not web
pages.

The very notion that a genericweb page summarizer would be useful is predicated, in
a sense,on the lazinessof web page authors. After all, html o ers multiple opportunities
to web page authors (the title eld, for instance, and the meta description eld) to
include a summary of the page'scontents. But neither of these elds is required by html ,
and even when presen, their content is often only marginally informative. Lastly, query-
relevant summaries(which are not the focusof this chapter) will always needto be generated
dynamically anyway, sincethe query isn't known at the time the pageis written.

The ocelot project bearsa closerelation to the work on automatic translation of natu-
ral languagedescribed earlier. To review, the certral idea of statistical macdine translation
is that starting from a \bilingual” corpus of text, one can apply statistical madine learn-
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ing algorithms to estimate maximum-likelihood parameter valuesfor a model of translation
between the two languages. For instance, the Candide system at IBM [6] used the pro-
ceedingsof the Canadian parliamentjmain tained in both French and English|to learn
an English-French translation model. In an ertirely analogousway, one can use Open Di-
rectory's \bilingual corpus" of web pagesand their summariesto learn a mapping from
web pagesto summaries. Probably the fundamental di erence betweenocelot 's task and
natural languagetranslation is a degreeof di cult y: a satisfactory translation of a sertence
must capture its erntire meaning, while a satisfactory summary is actually expected to leave
out most of the sourcedocumert's cortent.

Besidesits pedigreein statistical machine translation, this work is most similar to the
non-extractive summarization systemproposedby Witbro ck and Mittal [87] in the context of
generating headlinesautomatically from newsstories. It alsobearssomeresenblance, in its
useof probabilistic modelsfor word relatedness,to recernt work in documernt retrieval [7, 8].

4.2 Statistical gisting

Conceptually, the task of building the ocelot system decomposesas follows: (a) content
seletion: determining which words should comprise the summary, (b) word ordering: ar-
ranging these words into a readable summary, and (c) search: nding that sequenceof
words which is optimal in the dual senseof content and readability.

Content Selection

This chapter proposestwo methods for word selection. The simpler of the strategiesis to
selectwords according to the frequency of their appearancein the documert d. That is,
if word w appearswith frequency (w jd) in d, then it should appearin a gist g of that
documen with the samefrequency:

E[ (wig)]=E[ (wjd):

HereE[ ] is the expectation operator. This technique is essetially identical to the \language
modelling approad” to documert retrieval proposedrecerly by Ponte and Croft [6§].

A natural extensionis to allow words which do not appear in the documen to appear
in the gist. To do so, this chapter recyclesthe technique introduced in Chapter 3 for
automatically discovering words with similar or related meaning.
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Surface Realization

In general, the probability of a word appearing at a speci ¢ position in a gist dependson
the previouswords. If the word platypus already appearedin a summary, for instance, it's
not likely to appear again. And although the might appear multiple times in a summary;,
it is unlikely to appear in position k if it appearedin position kK 1. The gisting model
which ocelot usestakesinto accourt the ordering of words in a candidate gist by using
an n-gram model of language.

Search

Though the tasks of content selection and surface realization have beenintroduced sepa-
rately, in practice ocelot selectsand arranges words simultaneously when constructing
a summary. That is, the system producesa gist of a documert d by seardiing over all
candidatesg to nd that gist which maximizesthe product of a cortent selectionterm and
a surfacerealization term. ocelot applies genericViterbi seard techniquesto e cien tly
nd a near-optimal summary [29].

4.3 Three models of gisting

This section introducesthree increasingly sophisticated statistical models to generatethe
gist of a given document. The next sectionwill include a discussionof how to estimate the
parameters of these models.

The idea of viewing document gisting as a problem in probabilistic inference is not
prevalent. But intuitiv ely, one can justify this perspective as follows. To begin, postulate
a probabilistic model p(g j d) which assignsa value (a probability) to the evernt that the
string of words g = fg;;0;:::09r,0 is the best gist of the documert d = fdy;dy:::dmQ.
One way to think about such a model is as the limiting value of a hypothetical process.
Give the documert d to a large number of people and ask ead to produce a gist of the
documert. The value p(g j d) is the fraction of participants who produce g asthe number
of participants goesto in nit y.

Given a documert d, the optimal gist for that document is, in a maximum likelihood
sense,

g’ = argénaxp(gjd): (4.1)

This section hypothesizesa few forms of the model and applies traditional statistical
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methods|maxim um-likelihood estimation and in particular the expectation-maximization
(EM) algorithm|to compute the parametersof the hypothesizedmodels.

I. A \bag of words" approach

According to this model, a persongisting adocumen d beginsby selectinga length n for the
summary accordingto someprobability distribution  over possiblelengths. Then, for eah
of the n assignedpositionsin the gist, he draws a word at random, from the documert to be
gisted, and lls in the current slot in the gist with that word. In combinatorial terminology,
the values of the words in the gist are i.i.d. variables: the result of n independertly and
identically distributed random trials. In imagining a person composesa gist in such a
way, this model makes a strong independenceassumption among the words in the input
documert, viewing them as an unordered collection.

Algorithm  7: Bag of words gisting

Input: Documentd with word distribution (jd);
Distribution over gist lengths;
Output: Gist g of d
1. Select a length n for the gist: n
2.Dofor i=1to n
3. Pick a word from the document: w (jd)

4. Set g =w

Once again denoting the frequencyof word w in d by (w j d), the probability that the
personwill gistd into g = fgi;02;:::0.0 IS

p(gjd)= (n) Y (g jd):
i=1
Though this model is simplistic, it makesone plausible assumption: the more frequertly
a word appearsin a documert, the more likely it is to be included in a gist of that page.
This algorithm is esseftially identical (albeit in adi erent setting) to the languagemodelling
approac to documert retrieval introduced by Ponte and Croft [68], and alsoto Model O,
introducedin Section3.3.1.
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Il. Accounting for unseen words

Algorithm 7islimited in a number of ways, oneof which is that the generatedsummariescan
only contain words from the input documert. A logical extensionis to relax this restriction
by allowing the gist to contain words not presen in the sourcedocument. The ideais to
draw (as before) a word accordingto the word frequenciesin the input documert, but then
replacethe drawn word with arelated wordla synorym, perhaps,or a word usedin similar
contexts|b eforeadding it to the gist.

Determining which word to substitute in placeof the sampledword requiresa probability
distribution ( j w): if u is a very closely related word to v, then one would expect
(ujv) to belarge. If the systemrecognizesW words, then the modelisjustaWw W
stochastic matrix. (One could reasonably expect that the diagonal ertries of this matrix,
corresponding to \self-similarit y* probabilities, will typically be large.) We will call this
algorithm expndel-lexicon gisting, sincethe lexicon of candidate words for a summary of
d are no longer just those appearing in d.

This \draw then replace with a similar word" model of documert gisting is similar to
the IBM-style model of languagetranslation [14]. The simplest of this family of statistical
models pretends that a personrendersa documert into a dierent language by drawing
words from it and translating eat word|\dra w, then translate" rather than \draw, then
replacewith a related word."

Algorithm  8: Expanded-lexicongisting

Input: Documentd with word distribution (jd);
Distribution over gist lengths;
Word-similarity = model ( ju) for all words w

Output: Gist g of d

1. Select a length for the gist: n
2. Dofor i=1to n
3. Pick a word from the document: u (jd)

4, Pick a replacement for that word: v (jw)

5. Set gi=vV

As before,one can write down an expressionfor the probability that a personfollowing
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this procedure will select, for an input documert d, a specic gist g = fg1;0;:::0n0.
Assuming d contains m words,
. Y] .
p(gjd) = (n) p(gjd) (4.2)

[N

(9id)

In form, Algorithm 8 is a recast version of Model 1, described in Chapter 3, where
the queries have now becomesummaries. Howewer, the corntext in the two casesis quite
dierent. In document ranking, the task is to assigna scorep(q j d) to ead of a set of
documerts fdj;dz:::dyg. In gisting, the task is to construct (synthesize) a gist g for which
p(g j d) is highest. Secondly the word-independenceassumption which appearsin p(q j d)
and p(g j d) is relatively innocuousin documert ranking, where word order in queriesis
often ignored at essehally no cost by IR systems. In gisting, however, word order is of
potentially greatimportance: a uent candidate summary is to be preferred over a dis uent
one consisting of the samewords, rearranged.

I1l. Generating readable summaries

One can extend Algorithm 8 by enforcingthat the sequenceof words comprising a candidate
gist are coheren. For instance, one could ensurethat two prepositions never appear next to
ead other in a gist. The next algorithm attempts to capture a notion of syntactic regularity
by scoring candidate gists not only on how well they capture the essencgthe processof
cortent selection) of the original documert, but also how coherert they are as a string of
English words.

The coherenceor readability of an n-word string g = fg1; g2;:: : gng comprising a candi-
date gist is the a priori probability of seeingthat string of words in text, which will appear
asp(g). One can factor p(g) into a product of conditional probabilities as

Nd
pP(9) =  P(Gij%hi%:iG 1)
i=1
In practice, one can usea trigram model for p(g), meaningthat
P(Gi j91;%::0 1) P(GijG 26 1) (4.3)

Although n-gram models of language make a quite strong (and clearly false) locality as-
sumption about text, they have nonethelessproven successfulin many human language
technologies,including speet and optical character recognition [42, 63].
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To devisea formal model of gisting which accourts for both readability and delit y to
the sourcedocumert, we apply Bayes' Rule to (4.1):

?

g’

argmaxp(g j d)
g

arg max p(d j ) p(9): (4.4)

According to (4.4), the optimal gist is the product of two terms: rst, a delit y term
p(d j g), measuring how closelyd and g match in content, and a readability term p(g),
measuringthe a priori coherenceof the gist g.

For the readability term, onecanusethe languagemodel (4.3). For the content proximity
model p(d j g), one can simply reversethe direction of (4.2):

N Y] .
(m)  p(dijo) (4.5)
i=1
A Yoo 1 )
= (m) " (djg)
i=1j=1

p(djg)

Here " is a length distribution on documents which systemdesignerswould in generalwish
to distinguish from the length distribution on summaries.

Algorithm  9: Readablegisting

Input: Documentd with word distribution (jd);
Distribution over gist lengths;
Word-similarity =~ model ( jw) for all words w
Trigram language model p(g) for gists

Output: Gist g of d

1. Select a length n for the gist: n

2. Search for the sequence g = fgi;g;:::0,g maximizing p(djg)p(g)

One can think of p(g) as a prior distribution on candidate gists, and p(d j g) asthe
probability that the documenrt d would arise from the gist g.

One way to make senseof the seemingreverse order of prediction in (4.4) is with the
source-tiannel framework from information theory. Imagine that the documert to be gisted

locelot 's task isto nd the best gist of a document, and the " term will contribute equally to every
candidate gist. We can therefore ignore this term from now on.



Figure 4.1: Gisting from a source-tannel perspective

Algorithm 9 leavesunspeci ed the somewhatinvolved matter of searding for the optimal
g. Speed and handwriting recognition systemsface a similar problem in attempting to
generate a transcription of a detected signal (an acoustic or written signal) which both
accours for the perceived signal and is a coheren string of words. As mentioned earlier,
the most successfultechnique has beento apply a Viterbi-t ype seart procedure,and this
is the strategy that ocelot adopts.

4.4 A source of summarized web pages

Applying macdine learning to web-pagegisting requiresa large collection of gisted web pages
for training. As mentioned previously, a suitable corpusfor this task can be obtained from

the Open Directory Project (http://dmoz.org ). What makes Open Directory useful for

learning to gist is that ead of its ertries|individual web sites|is summarized manually,

by a human Open Directory volunteer.

For the experiments reported here, an automated script attempted to download eadh
of the Open Directory's 868 227 web pageg, along with the directory's description of ead
site. Sinceindividual web sites oftem restrict requestsfor data from automatic programs
(\spiders™), many of the pageswere inaccessible. Those that were accessiblewere subject
to the following processing:

2The directory is growing quickly, and at last count was approaching two million entries.
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Normalize text: remove punctuation, corvert all text to lowercase;replace numbers
by the symbol num; remove ead occurrenceof the 100 most common overall words
(stopword- ltering). Though nothing in the algorithms requiresthe excision of stop-
words, doing soyields a marked speedupin training.

Remove all links, images,and meta-information
Remove pagescortaining adult-oriented cortent?;
Remove html markup information from the pages;
Remove pagescortaining frames;

Remove pagesthat had beenmoved sincetheir original inclusion in the Open Direc-
tory; in other words, pagesconaining just a \P age not found" message.

Remove pagesor giststhat weretoo short|less than 400or 60 characters, respectively.
Pagesthat are too short are likely to be \pathological" in someway|often a error
pagedelivered by the origin serwer indicating that a password is required to view the
documert, or the documert has moved to a dierent location, or a certain type of
browser is required to view the documert.

Remove duplicate web pages;

Partition the remaining set of pairs into a training set (99%) and a test set (1%).
(Traditionally when evaluating a machine learning algorithm, oneresenesmore than
this fraction of the data for testing. But one percert of the Open Directory dataset
comprisesover a thousand web pages,which wassu cien t for the evaluations reported
below.)

At the conclusionof this process,103 064 summariesand links remainedin the training
set, and 1046 remained in the test set. Figure 4.2 shawvs a \b efore and after" example of
this Itering processon a single web page, along with Open Directory's summary of this
page. After processingthe averagelength of the summarieswas13:6 words, and the average
length of the documerts was 2111 words.

4.5 Training a statistical model for gisting

This sectiondiscusseghe training of various statistical modelsfor the speci ¢ task of gisting
web pages.

3Skipping the pageslisted in the Adult hierarchy goesfar, but not the entire way, towards solving this
problem.



Filter ed: svenska sidan utsigten antik kuriosa welcome we sell and buy antiques
and collectibles of good quality our shop is in central karlskrona sweden at
borgmstarekajen close to the county museumand fisktorget see the mapyou will

find swedish porcelain china glass and textiles here we are specialized in
porcelain from karlskrona we have been in business since numwelcome to our shop
our opening hours are tuesday wednesday and thursday numnumnumnumsaturday num
numnumnumother times on agreement bookmark this site copyright numutsigten
antik kuriosa updated numnumnumcontact us with email to utsigtenantikvit eter

net or phone numnum

Open Dir ectory gist: sell and buy antiques and collectibles of good quality our
shop is in central karlskrona sweden

Figure 4.2: A web page (top), after ltering (middle), and the Open Directory-provided
gist of the page (bottom). Interestingly, the Open Directory gist of the documernt, despite
being produced by a human, is rather subpar; it's essetially the rst two sertencesfrom
the body of the web page.
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45.1 Estimating a model of word relatedness

Recall that in Algorithm 9, the underlying statistical model p(d j g) which measuresthe
\pro ximity" betweena web paged and a candidate gist g is a generative model, predicting
d from g. This model factors, as seenin (4.5), into a product of sumsof (dj g) terms:
the probability that a word g in a gist of a web page givesrise to a word d in the page
itself. What follows is a description of how one can learn these word-to-word \relatedness”
probabilities automatically from a collection of summarizedweb pages.

If there are Wy di erent recognizedwords in gists and Wy, di erent recognizedwords in
web pages,then calculating the parametersof the individual modelsis equivalernt to lling
in the ertries of a Wy W, stochastic matrix. As mentioned above, there exist algorithms,
rst dewvelopedin the context of machine translation [14], for estimating maximum-lik elihood
valuesfor the ertries of this matrix using a collection of bilingual text. In this case,the two
\languages" are the verboselanguageof documerts and the succinct languageof gists.

For the purposesof estimating the  parameters, we re-introduce the notion of an
alignment a between sequencesf words, which in this casecaptures how words in gists
produce the words in a web page. ocelot also makesuse of an articial null addedto
position zero of every gist, whosepurposeis to generatethose words in the web page not
strongly correlated with any other word in the gist.

Using a, p(d j g) decompsesin a by-now familiar way:

X X
pdjg)= p(d;ajg)= p(dja;g)p(ajg) (4.6)

a a
Making the simplifying assumptionthat to ead word in d correspondsexactly one\parent"
word in g (possibly the null word), one can write

y
p(d ja;g) = (di j Ga) (4.7)
i=1

Here g, is the gist word aligned with the ith web pageword. Figure 4.3 illustrates a sample
alignment betweena small web pageand its summary.

If d contains m words and g contains n + 1 words (including the null word), there are
(n+ 1)™ alignmerts betweeng and d. By assumingthat all thesealignments are equally
likely allows usto write

. _ pmjg)y x ™
ocelot views the Open Directory dataset as a collection of web pagesand their sum-

maries,C= f(d1;01);(d2;92);(ds;g3) :::. The likelihood method suggeststhat one should



Figure 4.3: One of the exponertially many alignments between this imaginary docu-
ment/gist pair. Calculating the scorep(d j g) of a documert/gist pair involves,implicitly ,
a sum over all possibleways of aligning the words. This diagram is analogousto Figure 3.3,
though now the righthand column correspondsto a summary, rather than a query.

adjust the parameters of (4.8) in such a way that the model assignsas high a probabil-
ity as possibleto C. This maximization must be performed subject to the constraints
4 (djg) = 1for all wordsg. Using Lagrange multipliers,

djg)=2 p(diajg)  (did) (6 ) (4.9)

a J:_‘]_
where Z is a normalizing factor and is the Kronecker delta function.

The parameter (d | g) appearsexplicitly in the left-hand side of (4.9), and implicitly
in the right. By repeatedly solving this equation for all pairs d;g (in other words, applying
the EM algorithm), one eventually readesa stationary point of the likelihood.

Equation (4.9) cortains a sum over alignmerts, which is exponertial and suggeststhat
the computing the parametersin this way is infeasible. In fact, just aswith (3.11), we can
rewrite the expressionin a way that leadsto a more e cien t calculation:

X _ MU' _
(di  Ga) = (dijg) (4.10)
a i=1 i=1j=0
P
This rearranging meansthat computing ,p(d;aj g) requiresonly ( mn) work, rather
than ( n™).



Figure 4.4: Decreasein perplexity of the training set during the six iterations of the EM
algorithm

45.2 Estimating a language model

ocelot attempts to ensurethat its hypothesized gists are readable with the help of a
trigram model of the form (4.3). For a W -word vocabulary, such a model is characterized
by W3 parameters: p(w j u; V) is the probability that the word w follows the bigram u; v.

Constructing sud a model involved calculating p(w j u; v) valuesfrom the full training
set of Open Directory gists. Building the languagemodel consistedof the following steps:

1. Construct a vocabulary of active words from those words appearing at least twice
within the collection of summaries. This amourted to 37; 863 unique words.

2. Build a trigram word model from this data using maximume-likelihood estimation.

3. \Smooth" this model (by assigningsomeprobability massto unseentrigrams) using
the Good-Turing estimate [35].

To accomplishthe nal two steps, ocelot usesthe publicly-available CMU-Cambridge
LanguageModelling Toolkit [21].



4.6 Evaluation 109
job job 0.194 jobs 0.098 career 0.028 employment 0.028
wilderness wilderness 0.123 the 0.061 national 0.032 forest 0.028
associations associations 0.083 association 0.063 oov 0.020 members.013
ibm ibm 0.130 business 0.035 solutions 0.019 support 0.017
camera camera0.137 cameras 0.045 photo 0.020 photography 0.014
investments investments 0.049 investment 0.046 fund 0.033 financial 0.025
contractor contractor 0.080 contractors 0.030 construction 0.027 our 0.016
quilts quilts 0.141 quilt 0.074 i 0.036 quilting  0.034
exhibitions exhibitions  0.059 oov 0.056 art 0.048 museun®.041
ranches ranches 0.089 springs 0.034 colorado 0.032 ranch 0.030

Table 4.1: Word-relatednessmodels ( j w) for selectedwords w, computed in an unsuper-
vised manner from the Open Directory training data.

4.6 Evaluation

Summarization researt has grappled for yearswith the issueof how to perform a rigorous
evaluation of a summarization system [34, 38, 44, 71]. One can categorize summarization
evaluations as

extrinsic: evaluating the summary with respect to how useful it is when embeddedin
someapplication;

intrinsic : adjuticating the merits of the summary on its own terms, without regard
to its intended purp ose.

This sectionreports on one extrinsic and two intrinsic evaluations, using Algorithm 9.

4.6.1 Intrinsic: evaluating the language model

Since ocelot usesboth a language model and a word-relatednessmodel to calculate a
gist of a web page, isolating the contribution of the language model to the performance
of ocelot is a dicult task. But the speet recognition literature suggesta strategy:
gaugethe performance of a language model in isolation from the rest of the summarizer
by measuring how well it predicts a previously-unseencollection G of actual summaries.
Speci cally, one can calculate the probability which the languagemodel assignsto a set of

unseenOpen Directory gists; the higher the probability, the better the model.



) ) Open Dir ectory gist: to advocate the
Open Dir ectory gist: a chapter of the

. i , rights of independent music artists
national audubon society serving the

N and raise public awareness of artists
communities of savannah chatham county o ] o
. distributing their music directly to the
and the surrounding areas , , ,
) public via the internet
ocelot gist: audubon society atlanta area . ] )
, o ocelot gist: the music business and
savannah georgia chatham and local birding ) i )
industry artists raise awareness rock and
savannah keepers chapter of the audubon

. . jazz
georgia and leasing

Figure 4.5: Selectedoutput from ocelot . The original web pageis showvn above with the
actual and hypothesizedgists below.

The log-likelihood assignedby to an n-word collection G is

xn
logp(G) = logp(gi j G 20 1)
i=1

As described in Chapter 2, the perplexity of G accordingto the trigram model is related to
logp(G) by
( )

1 X .
(G =-exp - logp(gi j O 20 1)

i=1

Roughly speaking, perplexity can be thought of as the average number of \guesses" the
language model must make to identify the next word in a string of text comprising a gist
drawn from the test data. An upper bound in this setting isj W j= 37, 863: the number of
di erent words which could appear in any single position in a gist. To the test collection
of 1046 gists consisting of 20; 775 words, the languagemodel assigneda perplexity of 362.
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This is to be compared with the perplexity of the sametext as measuredby the weaker
bigram and unigram models: 536 and 2185, respectively. The messagehereis that, at least
in an information theoretic senseusing a trigram model to enforce uency on the generated
summary is superior to using a bigram or unigram model (the latter is what is usedin \bag
of words" gisting).

4.6.2 Intrinsic: gisted web pages

Figure 4.5 shaws two examplesof the behavior of ocelot on web pagesselectedfrom the
evaluation set of Open Directory pages|w eb pages,in other words, which ocelot did not
obsene during the learning process.

The generated summaries do leave something to be desired. While they capture the
essenceof the sourcedocumen, they are not very uent. The performanceof the system
could clearly bene t from more sophisticated cortent selectionand surfacerealization mod-
els. For instance, even though Algorithm 9 strivesto produce well-formed summarieswith
the help of a trigram model of language,the model makesno e ort to presere word order
betweendocumert and summary. ocelot hasno medanism, for example, for distinguish-
ing betweenthe documerts Dog bites manand Manbites dog. A goal for future work is
to considersomewhatmore sophisticated stochastic models of language,investigating more
complex approadiessud aslonger range Markov models, or even more structured syntactic
models, such asthe onesproposedby Chelba and Jelinek [19, 20]. Another paossibility is to
considera hybrid extractive/non-extractive system: a summarizer which builds a gist form
ertire phrasesfrom the sourcedocumert where possible,rather than just words.

4.6.3 Extrinsic: text categorization

For an extrinsic ewaluation of automatic summarization, we deweloped a user study to
assesow well the automatically-generated summary of a documert helps a user classify a
documernt into one of a xed number of categories.

Speci cally, we collected a set of 629 web pagesalong with their human-generatedsum-
maries, made available by the OpenDirectory project. The pageswere roughly equally
distributed acrossthe following categories:

Spor ts/Mar tial Arts Society/Philosophy
Spor ts/Motorspor  ts  Society/Milit  ary
Spor ts/Equestrian Home/Gardens

For eath page,we generatedsix di erent \views":
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1. the text of the web page

2. the title of the page

3. an automatically-generated summary of the page

4. the OpenDirectory-provided, human-authored summary of the page

5. a set of words, equal in sizeto the automatically-generated summary, selecteduni-
formly at random from the words in the original page

6. the leading sequenceof words in the page, equal in length to the automatically-
generatedsummary.

Taking an information theoretic perspective, one could imagine eat of these views as
the result of passingthe original documert through a di erent noisy channel. For instance,
the title view results from passingthe original documert through a lter which distills a
documert into its title. With this perspective, the question addressedin this user study is
this: how much information is lost through ead of these lters? A better represeration of
a documert, of course,loseslessinformation.

To assesghe information quality of a view, we ask a userto try to guessthe proper
(OpenDirectory-assigned)classi cation of the original page, using only the information in
that view. For concretenessTable 4.6.3 displays a single entry from among those collected
for this study. Only very lightweight text normalization was performed: lowercasing all
words, removing lenames and urls, and mapping numbers cortaining two or more digits
to the canonical token [num].

Table 4.6.3 contains the results of the user study. The results were collected from
six di erent participants, ead of whom classi ed approximately 120 views. The records
assignedto ead userwere selecteduniformly at random from the full collection of records,
and the view for eat record was randomly selectedfrom among the six possibleviews.

Perhapsthe most intriguing aspect of theseresults is how the human-provided summary
was actually more useful to the users, on average,than the full web page. This isn't too
surprising; after all, the human-authored summary was designedto distill the essenceof
the original page,which often contains extraneousinformation of tangenial relevance. The
synthesized summary performed approximately as well as the title of the page, placing
it signi cantly higher than a randomly-generated summary but also inferior to both the
original pageand the human-generatedsummary:.
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full  page: davidcoulthard comdavid coulthard driving the [num] mclaren mercedes
benz formula 1 racing car click here to enter copyright [num] [num] davidcoulthard
comall rights reserved privacy policy davidcoulthard comis not affiliated with
david coulthard or mclaren

tittle : david coulthard
OpenDirectory human summary : website on mclaren david coulthard the scottish
formula 1 racing driver includes a biography racing history photos quotes a

message board

automatically-generated summary : criminal driving teams automobiles formula 1
racing more issues shift af railings crash teams

Randomly-selected words : davidcoulthard policy click david mclaren driving to
[num] comreserved with [num] copyright or

Leading words: davidcoulthard comdavid coulthard driving the [num] mclaren
mercedes benz formula 1 racing car

Table 4.2: A singlerecord from the user study, containing the six di erent views of a single
web page. This documert was from the topic Spor ts/Motorspor  ts.

4.7 Translingual gisting

With essetially no adaptation, ocelot could seneasatranslingual summarization system:
a system for producing the gist of a documert in another language. The only necessary
ingredient is a collection of documerts in onelanguagewith summariesin another: the word-

relatednessmatrix would then automatically becomea matrix of translation probabilities.

Experts in the eld of information retrieval consider translingual summarization to be a
key ingediert in enabling universal accessto electronic information|-in  other words, the

internationalization of the Internet [65].

Someinitial proof-of-conceptexperiments to generateEnglish summariesof French web
pagessuggestthat ocelot may indeed be useful in this setting. For this purpose,one
can usethe samelanguagemodel on (English) summariesasin Section4.6. Sincelocating
a suitably large parallel corpus of French web pagesand English summaries from which
to estimate is dicult, we were forcedto usea pre-built translation model, constructed
from the proceedingsof the Canadian parliament|the Hansardsdescribed in Chapter 1.
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view # of samples # correct accuracy
OpenDirectory human-provided summary 109 94 0.862
Words in original page 131 108 0.824
First n words in page 98 75 0.765
Title of page 112 80 0.714
Synthesized summary 115 80 0.695
Words randomly-selectedfrom page 122 76 0.622

Table 4.3: Results of an extrinsic user study to assessthe quality of the automati-
cally-generatedweb page summaries.

The subsetof the Hansard corpus usedto estimate this model contained two million par-
allel English/French sertences,comprising approximately 43 million words. Using a model
trained on parliamentary discourseon the domain of web pagegisting hasits shortcomings:
words may sometimeshave quite di erent statistics in the Hansardsthan in the average
web page. One potential line of future work involves using a web spidering tool to identify
and download web pagespublished in di erent languages[73].

Figure 4.6 givesan example of French web pagegisted into English.

4.8 Chapter summary

This chapter has described the philosophy, architecture, and performance of ocelot , a
prototype web-pagesummarization system. ocelot is designedto generatenon-extractive
summaries of a source documert; in fact, the generated summaries are likely to cortain
words not even appearing in the original documert. This approac to summarization ap-
pearsparticularly well-suited to web pages,which are often disjointed lists of phrasesand
links not amenableto traditional extraction-basedtechniques.

As it stands, ocelot represerts but an initial foray into automating the processof
web page gisting. Considerably more sophisticated models will be required to produce
useful, readable summaries. As mertioned, considerably more e ort will have to go into
evaluation|via userstudies, most probably|in order to assesghe relative extrinsic quality
of competing summarization techniques.

Asked to summarize a web page, a reasonablyintelligent personwould no doubt make
use of information that ocelot ignores. For instance, text often appearsin web pages
in the form of bitmapped images, but this information is lost without a front-end OCR
module to extract this text. Also, the systemdoesnot exploit structural cluesabout what's



ocelot gist: health protection branch of the protection of health anti inflation
guidelines health of animals in volume maytable of contents of our children in
central canada review of u.s beginning at page volume final vote day may

Figure 4.6: Selectedoutput from a French-English version of ocelot

important on the page. For instance, the text within the <title> ::: </itle> regionis
likely to be relatively important, while text within a <small> ::: </small> is probably less
important.

Algorithm 9 is too resource-iriensive to be a real-time procedure. In fact, on the work-
station usedin the experiments here, calculating a gist using this algorithm could take as
long asa few minutes. An important next stepis to devisean e cien t, approximate version
of this algorithm, in the spirit of the FastRank proceduredescribedin the previous chapter.

Another next step, as mertioned earlier, is to consider using phrasesextracted from
the source documert as atomic units|just like individual words|in piecing together a
summary. That is, the candidate constituents of a summary of a documert are all the words
known to the system, plus a set of phrasesappearing in the sourcedocumert. Perhapsthis
strategy is a step badk towards extractive summarization, but consideringphrasesfrom the
sourcedocumert might increasethe chancefor a uent summary.
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Chapter 5

Query-relev ant summarization

This chapter addressesthe problemof query-relevant summarization: suainctly
characterizing the relevane of a document to a query. Learning parameter val-
uesfor the proposel statistical models requires a large collection of summarized
documents, which is dicult to obtain. In its place, we propose the use of a
collection of FAQ (frequently-aské question) documents. Taking a learning ap-
proach enablesa principled, quantitative evaluation of the proposal system, and
the resultsof someinitial experimentsjon a collection of UsenetFAQs and on a
FAQ-like set of customer-submittel questionsto seveal large retail companies|
suggestthe plausibility of learning for summarization.

5.1 Intro duction

An important distinction in documert summarization is betweengeneric summaries which
capture the certral ideas of the documert in much the sameway that the abstract above
was designedto distill this chapter's saliert points, and query-relevant summaries which
re ect the relevanceof a documert to a user-speci ed query. Chapter 4 described a method
for generating genericsummariesof a documert, while the focus hereis on query-relevant
summarization, sometimescalled \user-focused" summarization [55].

Query-relevant summariesare especially important in the \needle(s) in a haystadk" doc-
umert retrieval problem tackled in Chapter 3: a userhas an information needexpressedas
a query (“"What countries export smokedsalmon?" or maybe just “export smoked
salmon" ), and a retrieval systemmust locate within a large collection of documerts those
documerts most likely to fulll this need. Many interactive retrieval systems|commercial
web seard engines,for instance|present the user with a small set of candidate relevant
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Figure 5.1: One promising setting for query-relevant summarization is large-scaledocumert
retrieval. Starting from a user-speci ed query g, seard enginestypically rst (a) identify
a set of documerts which appear potentially relevant to the query, and then (b) produce a
short characterization (d;q) of eadh documert's relevanceto q. The purposeof (d;q) is
to help the user decidewhich of the documerts merits a more detailed inspection.

As with almost all previous work on summarization (excluding the previous chapter, of
course),this chapter focuseson the task of extractive summarization: selectingassummaries
text spans|either complete sertencesor paragraphs|from the original documert.

5.1.1 Statistical models for summarization

From a documert d and query q, the task of query-relevant summarization is to extract a
portion s from d which best reveals how the documert relatesto the query. To begin, we
start with a collection C of fd; q; sg triplets, wheres is a human-constructed summary of d
relative to the query q. From sud a collection of data, we t the bestfunction :(qg;d)! s
mapping documert/query pairs to summaries.

The mapping used here is a probabilistic one, meaning the system assignsa value



Figure 5.2: Learning to perform query-relevant summarization requires a set of documerts
summarizedwith respect to queries. The diagram shows three imaginary triplets fd;q; sg,
though the statistical learning techniquesdescribed in Section 5.2 require many thousands

of examples.

p(sjd;q) to eat candidate summary s of (d;q). The QRS systemwill summarizea (d; Q)
pair by selecting

(d;q) € argmaxp(sjd;q)
S

There are at least two ways to interpret p(sjd;q). First, one could view p(sjd;q) as
a \degree of belief' that the correct summary of d relative to q is s. Of course, what
constitutes a good summary in any setting is subjective: any two people performing the
same summarization task will likely disagreeon which part of the documert to extract.
One could, in principle, ask a large number of peopleto perform the sametask. Doing
so would impose a distribution p( jd;q) over candidate summaries. Under the second,
or \frequentist” interpretation, p(sjd;q) is the fraction of people who would select s|

equivalently, the probability that a personselectedat random would prefers asthe summary.
(This frequertist interpretation is similar to the interpretation of p(g j d) in Section4.3.)

The statistical model p( jd;q) is parametric, the valuesof which are learned by inspec-
tion of the fd;q;sg triplets. The learning processinvolves maximum-likelihood estimation
of probabilistic languagemodels and the statistical technique of shrinkage[81].

This probabilistic approac easily generalizesto the generic summarization setting,
where there is no query. In that case,the training data consistsof fd;sg pairs, where
s is a summary of the documert d. The goal, in this case,is to learn and apply a mapping
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:d ! sfrom documerts to summaries. That is, nd

def

(d) = argmaxp(sjd)
S

5.1.2 Using FAQ data for summarization

This chapter has proposedusing statistical learning to construct a summarization system,
but has not yet discussedthe one crucial ingrediert of any learning procedure: training

data. The ideal training data would contain a large number of heterogeneousiocumerts, a
large number of queries,and summariesof ead documert relative to ead query. We know
of no sud publicly-available collections. Many studies on text summarization have focused
on the task of summarizing newswiretext, but there is no obvious way to usenewsarticles
for query-relevant summarization within the framework proposedhere.

This chapter proposesa novel data collection for training a QRS model: frequertly-
asked question documerts. Ead frequerly-asked question documert (FAQ) is comprised
of questions and answers about a speci ¢ topic. One can view ead answer in a FAQ as
a summary of the documen relative to the question which precededit. That is, an FAQ
with N question/answer pairs comesequippedwith N di erent queriesand summaries: the
answer to the kth questionis a summary of the documert relative to the kth question. While
a somewhatunorthodox perspective, this insight allows usto enlist FAQs aslabeledtraining
data for the purp oseof learning the parametersof a statistical QRS model. (Sato and Sato
alsousedFAQs asa sourceof summarization corpora, but their approad wasquite di erent
from that preserted here,and did not useeither statistical modelsor macdine learning [77].)

FAQ data has someproperties that make it particularly attractiv e for text learning:

There exist a large number of Usenet FAQs|sev eral thousand documerts|publicly
available on the Web'. Moreover, many large companiesmaintain their own FAQs to
streamline the customer-respnseprocess.

FAQs are generally well-structured documerts, so the task of extracting the con-
stituent parts (queries and answers) is amenableto automation. There have even
been proposals for standardized FAQ formats, sucdh as RFC1153 and the Minimal
Digest Format [85].

Usenet FAQs cover an astonishingly wide variety of topics, ranging from extraterres-
trial visitors to mutual-fund investing. If there's an online community of peoplewith
a common interest, there's likely to be a Usenet FAQ on that subject.

Two online sourcesfor FAQ data are www.fags.org and rtfm.mit.edu



Figure 5.3: FAQs consist of a list of questions and answers on a single topic; the FAQ
depicted here is part of an informational documert on amniocertesis. This chapter views
answersin a FAQ asdi erent summariesof the FAQ: the answer to the kth questionis a
summary of the FAQ relative to that question.

5.2 A probabilistic model of summarization

Given a query q and documert d, the query-relevant summarization task is to nd
s’ argmaxp(sjd;q);
S

the a posteriori most probable summary for (d; g). Using Bayes'rule, one can rewrite this
expressionas

?

S arggnaXP(qjs:d)p(sjd):

o P4y gLy 6

relevane delity
where the last line follows by dropping the dependenceon d in p(gjs;d).

Equation (5.1) is a seard problem: nd the summary s” which maximizesthe product
of two factors:

1. The relevance p(qjs) of the query to the summary: A documert may cortain some
portions directly relevant to the query, and other sectionsbearing little or no relation
to the query. Consider, for instance, the problem of summarizing a survey on the
history of organizedsports relative to the query \ Who was Lou Gehrig?' A summary
mertioning Lou Gehrig is probably more relevant to this query than one describing
the rules of volleyball, evenif two-thirds of the survey happensto be about volleyball.
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2. The delit y p(sjd) of the summary to the documert: Among a set of candidate
summarieswhoserelevance scoresare comparable, we should prefer that summary s
which is most represerativ e of the documert as a whole. Summariesof documens
relative to a query can often mislead a reader into overestimating the relevance of an
unrelated documert. In particular, very long documerts are likely (by sheerluck) to
contain someportion which appearsrelated to the query. A documert having nothing
to do with Lou Gehrig may include a mertion of his name in passing,perhapsin the
context of amyotropic lateral sclerosisthe diseasefrom which he su ered. The delit y
term guardsagainst this occurrenceby rewarding or penalizing candidate summaries,
depending on whether they are germaneto the main theme of the documen.

More generally the delit y term represerts a prior, query-independert distribution
over candidate summaries. In addition to enforcing delit y, this term could sene
to distinguish betweenmore and less uent candidate summaries,in much the same
way (as the previous chapter described) the trigram language model steersocelot
towards a more uent summary.

In words, (5.1) says that the bestsummary of a documert relative to a query is relevant
to the query (exhibits a large p(qjs) value) and also represenativ e of the documert from
which it was extracted (exhibits a large p(sjd) value). What follows is a description of the
parametric form of thesemodels, and how to determine optimal valuesfor theseparameters
using maximum-likelihood estimation.

5.2.1 Language modeling

One reasonablestatistical model for both p(qjs) and p(sjd) is a unigram probability
distribution over words; in other words, a languagemodel.

The delit y model p(sjd)

One simple statistical characterization of an n-word documert d = fdq;dy;:::dng is the
frequency of ead word in d|in  other words, a marginal distribution over words. That is,
if word w appearsk times in d, then pq(w) = k=n. This is not only intuitiv e, but also the
maximume-likelihood estimate for pg(w).

Now imagine that, when asked to summarize d relative to ¢, a person generatesa
summary from d in the following way:
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1. Selecta length m for the summary accordingto somedistribu-
tion lq.
2. Dofori=12:::m:
- Selecta word w at random according to the distribution pgq.
(That is, throw all the wordsin d into a bag, pull one out, and
then replaceit.)
3. Sets; w
In following this procedure, the personwill generatethe summary s = fs1;S,;:::5nQ
with probability

] hd
p(sjd) = la(m)  pa(si) (5.2)
i=1

Denoting by W the set of all known words, and by c(w 2 d) the number of times that
word w appearsin d, one can alsowrite (5.2) asa multinomial distribution:

Y
p(sjd) = lg(m) p(w) %2 D). (5.3)
w2 W

This characterization of d amounts to a bag of words model, sincethe distribution pgy
does not take accourt of the order of the words within the documert d, but rather views
d as an unordered set. Of course, ignoring word order (an approximation which should
be familiar to the reader by now) amourts to discarding potentially valuable information.
In Figure 5.3, for instance, the secondquestion contains an anaphoric referenceto the
preceding question: a sophisticated context-sensitive model of language might be able to
detect that it in this context refersto amniocentesis , but a context-free model will not.

The relevance model p(gjs)

In principle, one could proceedanalogouslyto (5.2), and take

p(ajs) = ls(k)vn Ps(G): (5.4)
i=1
for a length-k query q = fou; G :: Q. But this strategy su ers from a sparseestimation
problem. In contrast to a document, which will typically cortain a few hundred words, a
normal-sized summary contains just a handful of words. What this meansis that pg will
assignzeroprobability to most words, and any query cortaining a word not in the summary
will receiwe a relevance scoreof zero.

(The delit y model doesn't su er from zero-probabilities, at least not in the extractive
summarization setting. Since a summary s is part of its corntaining documert d, ewery
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word in s also appearsin d, and therefore pq(s) > 0 for every word s2 s. But we have no
guarartee, for the relevance model, that a summary contains all the words in the query.)

One way to addressthis zero-probability problem is by interpolating or \smoothing"
the ps model with four more robustly estimated unigram word models. Listed in order of
decreasingvariance but increasingbias away from ps, they are:

pn : a probability distribution constructed using not only s, but also all words within
the six summaries(answers) surrounding s in d. Sincepy is calculated using more
text than just s alone, its parameter estimates should be more robust that those of
ps. On the other hand, the py model is, by construction, biasedaway from pg, and
therefore provides only indirect evidencefor the relation betweenq and s.

pg: a probability distribution constructed over the erntire documernt d containing s.
This model has even lessvariance than py , but is even more biased away from ps.

pc: a probability distribution constructed over all documerts d.

pu: the uniform distribution over all words.

Figure 5.4 is a hierarchical depiction of the various language models which come into
play in calculating p(qjs). Each summary model ps livesat a leaf node, and the relevance
p(qjs) of a query to that summary is a convex combination of the distributions at ead
node along a path from the leaf to the root?:

p(ajs) = sps(d)+ ~npn(Q)+ gpda(d) + cpc(d) + upu(q) (5.5)

Calculating the weighting coecients =1 g, N; 4; ¢ ugis a fairly straightforward
matter using the statistical technique known as shrinkage [81], a simple form of the EM
algorithm. Intuitiv ely, the goal of this algorithm in this corntext is to calculate the relative
\reliabilit y" (predictive accuracy) of eat of the constituent models, and assigna weight to
ead model in accordwith its reliability.

As a practical matter, assumingthe | model assignsprobabilities independertly of s
allows us to drop the | term when ranking candidate summaries,sincethe scoreof all can-
didate summarieswill receive an identical cortribution from the |5 term. The experimens
reported in the following section make this simplifying assumption.

2By incorporating a ps model into the relevance model, equation (5.5) has implicitly resurrected the
dependenceon d which was dropped, for the sake of simplicity, in deriving (5.1).
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Figure 5.4: The relevancep(qjsj ) of a query to the jth answerin documert i is a convex
combination of v e distributions: (1) a uniform model py. (2) a corpus-widemodel p¢; (3)
a model pgy; constructed from the documert containing s; ; (4) a model py; constructed
from s; and the neighboring sertencesin d;; (3) a model ps; constructed from s; alone.
(The py distribution is omitted for clarity.)

5.3 Experiments

To gaugehow well our proposedsummarization technique performs, we applied it to two
di erent real-world collections of answered questions:

Usenet FAQs: A collection of 201 frequertly-asked question documerts from the
comp.* Usenet hierarchy. The documerts cortained 1800 questions/answer pairs in
total.

Call-cen ter data: A collection of questionssubmitted by customersto the compa-
niesAir Canada,Ben and Jerry, lomagic, and Mylex, along with the answerssupplied
by compary represettatives. Among them, the four documerts contain 10; 395 ques-
tion/fanswer pairs. This is a supersetof the dataset usedin Chapter 3.8.

These datasets made an appearancein Section 3.8, in the corntext of answer- nding
using statistical retrieval.

This sectionreports on an identical, parallel set of cross-walidated experiments on both
datasets. The rst stepwasto usearandomly-selectedsubsetof 70% of the question/answer
pairs to calculate the language models ps; pn ;P4d;Pcla simple matter of counting word
frequencies. The secondstep was to use this same set of data to estimate the model
weighs =1 s; N d; ¢ u0 usingshrinkage,reservingthe remaining 30% of the ques-
tion/answer pairs to ewvaluate the performanceof the system, in a manner described below.

Figure 5.5 shaws the progressof the EM algorithm in calculating maximum-likelihood
valuesfor the smoothing coe cien ts , for the rst of the three runs on the Usenetdata. The
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Algorithm  10: Shrinkagefor ~ estimation

Input: Distributions Ps;Pd;PciPuU,
H =1fd;q;sg (not used to estimate ps;pq;Pc;PuU)
Output Model weights ~=f ¢ N; 45 ¢ ud

1. Set o N d c u 1=5

2. Repeat until ~ converges:

3. Set countg = county = countyg = countc = county = 0
4, Dofor all fd;qg;sg2H

5. (E-step) courts counts+ —<Ps(d)

p(ajs)

(similarly for county ;county, courtc, county)

6. (M-step) Set ¢ B&Ms_ (gimilarly for N 4 ¢ u)

; count;

quick corvergenceand the nal  valueswere essetially identical for the other partitions
of this dataset.

The call-certer data's corvergencebehavior wassimilar, although the nal  valueswere
quite di erent. Figure 5.6shonsthe nal model weights for the rst of the three experiments
on both datasets. For the UsenetFAQ data, the corpuslanguagemodel is the best predictor
of the query and thus receivesthe highestweight. This may seemcourterintuitiv e; onemight
suspect that answer to the query (s, that is) would be most similar to, and therefore the
best predictor of, the query. But the corpus model, while certainly biased away from the
distribution of words found in the query, cortains (by construction) no zeros,whereasead
summary model is typically very sparse.

In the call-certer data, the corpus model weight is lower at the expenseof a higher
documernt model weight. This might arise from the fact that the documerts in the Usenet
data were all quite similar to one another in lexical content, in cortrast to the call-certer
documerns. As aresult, in the call-certer data the documert containing s will appear much
more relevant than the corpusasa whole.

Evaluating the performance of the trained QRS model involved the previously-unseen
portion of the FAQ data asfollows: For ead test (d; q) pair, record how highly the system
ranked the correct summary s’|the answer to ¢ in d|relativ e to the other answersin d.



Figure 5.5: Estimating the weights of the v e constituent models in (5.5) using the EM
algorithm. The values here were computed using a single, randomly-selected 70% portion
of the Usenet FAQ dataset. Left: The weights for the models are initialized to 1=5, but
within a few iterations settle to their nal values. Right: The progressionof the likelihood of
the training data during the execution of the EM algorithm; almost all of the improvemert
comesin the rst v eiterations.

Repeat this entire sequencehree times for both the Usenetand the call-certer data.

For thesedatasets, it turns out that using a uniform delit y term in placeof the p(sj d)
model described above yields essetially the sameresult. This is not surprising: while the
delit y term is an important componert of a real summarization system, the evaluation
described here was conducted in an answer-locating framework, and in this cortext the
delit y term|enforcing that the summary be similar to the entire documert from which it
was drawnlis not soimportant.

Table 5.1 shaows the inverse harmonic mean rank on the two collections. The third
column of Table 5.1 shows the result of a QRS system using a uniform delit y model, the
fourth corresponds to a standard t df -basedranking method [67], and the last column

re ects the performanceof randomly guessingthe correct summary from all answersin the
documert.



Figure 5.6: Maximum-lik elihood weights for the various componerts of the relevancemodel
p(qjs). Left: Weights assignedto the constituent models from the Usenet FAQ data.
Right: Corresponding breakdown for the call-certer data. These weights were calculated
using shrinkage.

5.4 Extensions

5.4.1 Answ er- nding

The readermay by now have realizedthat the QRS approacd described hereis applicable to
the answer- nding task describedin Section3.8: automatically extracting from a potentially
lengthy documert (or set of documerts) the answer to a user-sgeci ed question.

That section described how to usetechniques from statistical translation to bridge the
\lexical chasm" between questionsand answers. This chapter, while focusing on the QRS
problem, hasincidentally madestwo additional cortributions to the answer- nding problem:

1. Dispensingwith the simplifying assumptionthat the candidate answers are indepen-
dent of one another by using a model which explicitly accouris for the correlation
betweentext blocks|candidate answers|within a single documert.

2. Proposing the use of FAQ documerts as a proxy for query-summarized documerts,
which are dicult to comeby.

Answer- nding and query-relevant summarization are, of course,not one and the same.
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trial # questions LM tdf random

1 554 141 229 4.20
UsenetFAQ data | 2 549 1.38 242 425

3 535 140 230 4.19

1 1020 48 38.7 1335
Call-certer data | 2 1055 40 226 1335

3 1037 42 26.0 1321

Table 5.1: Performance of query-relevant extractive summarization on the Usenet and
call-certer datasets. The numbers reported in the three rightmost columns are inverse
harmonic meanranks: lower is better.

For one, the criterion of containing an answer to a question is rather stricter than mere
relevance. Put another way, only a small number of documerts actually contain the answer
to a given query, while every documert canin principle be summarizedwith respectto that
query. Second,it would seemthat the p(sjd) term, which acts asa prior on summariesin
(5.1), is lessappropriate in a question-ansvering session:who caresif a candidate answer
to a query doesn't bear much resenblance to the documert containing it?

5.4.2 Generic extractiv e summarization

Although this chapter focuseson the task of query-relevant summarization, the coreideas|

formulating a probabilistic model of the problem and learning the values of this model
automatically from FAQ-like datajare equally applicable to generic summarization. In
this case,one seeksthe summary which best typi es the documert. Applying Bayes' rule
asin (5.1),

¥ argmaxp(sjd)
S

= oo pgyg pfg 6

geneative prior

The rst term on the right is a generative model of documerts from summaries, and the
secondis a prior distribution over summaries. One can think of this factorization in terms
of a dialogue. Alice, a newspayer editor, hasan ideas for a story, which sherelatesto Bob.
Bob researties and writes the story d, which one can view as a \corruption” of Alice's
original idea s. The task of genericsummarization is to recover s, given only the generated
documert d, a model p(djs) of how the Alice generatessummariesfrom documerts, and
a prior distribution p(s) onideass.
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The certral problem in information theory is reliable communication through an unre-
liable channel. In this setting, Alice's ideas is the original signal, and the processby which
Bob turns this ideainto a documert d is the channel, which corrupts the original message.
The summarizer'stask is to \decode" the original, condensedmessagdrom the documert.
This is exactly the approad described in the last chapter, exceptthat the summarization
technique described there was non-extractive.

The factorization in (5.6) is super cially similar to (5.1), but there is an important
di erence: p(djs) is a geneative, from a summary to a larger documert, whereasp(qjs)
is compressive from a summary to a smaller query.

5.5 Chapter summary

The task of summarization is di cult to de ne and even more di cult to automate. Histor-
ically, a rewarding line of attack for automating language-relatedproblemshasbeento take
a madine learning perspective: let a computer learn how to perform the task by \w atch-
ing" a human perform it many times. This is the strategy adopted in this and the previous
chapter.

In dewveloping the QRS framework, this chapter has more or lessadheredto the four-
step strategy described in Chapter 1. Section5.1 described how one can use FAQs to solve
the problem of data collection. Section 5.2 introduced a family of statistical models for
guery-relevant summarization, thus covering the secondstep of model seletion. Section5.2
also covered the issue of parameter estimation in describing an EM-based technique for
calculating the maximume-likelihood menber of this family. Unlike in Chapter 4, searh
wasn't adicult issuein this chapter|all that is requiredisto compute p(sjd;q) according
to (5.1) for ead candidate summary s of a documert d.

There has been somework on learning a probabilistic model of summarization from
text; someof the earliest work on this was due to Kupiec et al. [49], who useda collection
of manually-summarized text to learn the weights for a set of features usedin a generic
summarization system. Hovy and Lin [40] presert another systemthat learned how the po-
sition of a sertence a ects its suitability for inclusion in a summary of the documen. More
recenly, there has beenwork on building more complex, structured models|probabilistic
syntax trees|to compresssingle sertences[47]. Mani and Bloedorn [55] have recerily pro-
poseda method for automatically constructing decisiontreesto predict whether a sertence
should or should not be included in a documert's summary. These previous approades
focus mainly on the genericsummarization task, not query relevant summarization.

The languagemodelling approac described heredoessu er from a common aw within
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text processingsystems: the problem of word relatedness. A candidate answer containing
the term Constantinople is likely to be relevant to a question about Istanbul, but recog-
nizing this correspondencerequires a step beyond word frequency histograms. A natural
extension of this work would be to integrate a word-replacemen model as described in
Section 3.8.

This chapter hasproposedthe useof two novel datasetsfor summarization: the frequertly-
asked questions(FAQs) from Usenetarchivesand question/answer pairs from the call cen-
ters of retail companies. Clearly this data isn't a perfect t for the task of building a
QRS system: after all, answersare not summaries. Howewer, the FAQs appear to represent
a reasonablesource of query-related document condensations. Furthermore, using FAQs
allows us to assesghe e ectivenessof applying standard statistical learning maadinery|
maximume-likelihood estimation, the EM algorithm, and soon|to the QRS problem. More
importantly, it allows for a rigorous, non-heuristic evaluation of the system's performance.
Although this work is meart as an opening salvo in the battle to conquer summarization
with quartitativ e, statistical weapons, future work will likely enlist linguistic, semaric, and
other non-statistical tools which have shovn promisein condensingtext.
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Chapter 6

Conclusion

6.1 The four step pro cess

Assessingrelevance of a documernt to a query, producing a gist of a documernt, extracting
a summary of a documert relative to a query, and nding the answer to a question within
a documert: on the faceof it, these appear to be a widely disparate group of problemsin
information managememn The certral purposeof this work, however, wasto intro duce and
experimertally validate an approad, basedon statistical macine learning, which applies
to all of these problems.

The approad is the four-step processto statistical macdine learning described in Chap-
ter 1. With the full body of the thesisnow behind us, it is worthwhile to recapitulate those
steps:

Data collection : One signi cant hurdle in using machine learning techniques to
learn parametric modelsis nding a suitable dataset from which to estimate model
parameters. It hasbeenthis author's experiencethat the data collection e ort involves
some amourt of both imagination (to realize how a dataset can ful ll a particular
need)and diplomacy (to obtain permissionfrom the owner of the datasetto useit for
a purposeit almost certainly wasn't originally intended for.)

Chapters 3, 4 and 5 proposed novel datasets for learning to rank documerts, sum-
marize documerts, and locate answers within documerts. Thesedatasetsare, respec-
tively, web portal \clickthrough" data, human-summarizedweb pages, and lists of
frequertly-asked question/answer pairs.

Mo del selection : A commonthread throughout this work is the idea of using para-
metric models adapted from those usedin statistical translation to capture the word-
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relatednesse ects in natural language. These models are essetially two-dimensional
matrices of word-word \substitution" probabilities. Chapter 3 shaved how this model
can be thought of as an extension of two recertly popular techniquesin IR: language
modeling and Hidden Markov Models (HMMs).

Parameter estimation : From a large dataset of examples(of gisted documerts, for
instance), one can usethe EM algorithm to compute the maximum-likelihood set of
parameter estimatesfor that model.

Search: In the caseof answer- nding, \search" is a simple brute-force procedure:
evaluate all candidate answers one by one, and take the best candidate. In the caseof
documert ranking, the number of documerts in question and the e ciency required
in an interactive application preclude brute-force evaluation, and so this thesis has
introduced a method for e cien tly locating the most relevant documert to a query
while visiting only a small fraction of all candidate documerts. The technique is
somewhatreminiscert of the traditional IR expediert of using an inverseindex. In the
caseof documert gisting, the seart spaceis exponertial in the size of the generated
summary, and so a bit more sophistication is required. Chapter 4 explains how one
can use seard techniques from arti cial intelligenceto nd a high-scoring candidate
summary quickly.

The promising empirical results reported herein do not indicate that \classic" IR tech-
niques, like re ned term-weighting formulae, query expansion, (pseudo)-relexancefeedbad,
and stopword lists, are unnecessary The opposite may in fact be true. For example,
weaver relies on stemming (certainly a classiclR technique) to keepthe matrix of syn-
onymy probabilities of manageablesize and ensurerobust parameter estimatesin spite of
nitely-sized datasets. More generally, the accunulated wisdom of decadesof researt in
documert ranking is exactly what distinguishesmature documert ranking systemsin TREC
evaluations year after year. One would not expect a systemconstructed ertirely from statis-
tical madhine learning techniquesto outperform these systems. An open averue for future
appliedwork in IR is to discover ways of integrating automatically-learned statistical models
with well-establishedad hoc techniques.

6.2 The context for this work

Piecesof the puzzle assenbled in this documen have beenidenti ed before. As mertioned
above, teams from BBN and the University of Massatwusetts have examined approaces
to documert ranking using languagemodels and Hidden Markov Models [61, 67]. A group
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at Justsystem Researt and Lycos Inc. [87] have examinedautomatic summarization using
statistical translation.

In the caseof documert ranking, this thesis extends the University of Massatusetts
and the BBN groups to intrinsically handle word-relatednesse ects, which play a certral
role in information managememn Chapter 3 includes a set of validating experiments on
a heterogeneouscollection of datasets including email, web pages,and newswire articles,
establishing the broad applicability of documert ranking systems built using statistical
madine learning. Chapter 3 and subsequen chapters broaden the scope of this discovery
to other problems in information processing, namely answer- nding and query-relevant
summarization.

In the caseof non-extractive summarization, Chapter 4 goes beyond previous work in
explicitly factoring the problem into content selectionand languagemodeling subtasks,and
proposinga technique for estimating thesemodelsindependertly and then integrating them
into a summarization algorithm which relieson stac seard to identify an optimal summary.
This work also represeits the rst attempt to apply non-extractive summarization to web
pages,a natural domain becauseof the often disjointed nature of text in such documerts.

6.3 Future directions

Over the courseof this documernt appeareda number of averues for further researt. To
recap, here are three particularly promising directions which apply not just to a single
problem, but to seweral or all of the information processingproblems discussedherein.

Polysemy: weaver and ocelot both attack the problem of word relatedness(or,
loosely \synonymy") through the use of statistical models parametrized by the prob-
ability that word x could appear in the place of word y. Knowing that a documernt
containing the word automobile is relevant to a query cortaining the word car is a
good start. But neither prototype directly addresseghe equally important problem
of polysemywhere a single word can have multiple meanings.

For instance, the word suit has more than one sense,and a documert cortaining
this word is almost certainly relying on one of these senses.By itself, the word gives
no hint as to which senseis most appropriate, but the surrounding words almost
always elucidate the proper meaning. The task of word sensedisambiguation is to
analyze the corntext local to a word to decide which meaning is appropriate. There
is a substartial body of work on automatic word-sensedisambiguation algorithms,
some of which employs statistical learning techniques [10], and it stands to reason
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that such technology could improve the performanceof weaver and ocelot and the
QRS prototype described earlier.

For instance, a \p olyseny-aware" version of weaver could replaceoccurrencesof the
word suit in the legal sensewith the new token suit 1, while replacing the word
suit in the clothing sensewith suit ». The query business suit would then become
business suit », and documerts using suit in the clothing sensewould receive a
high ranking for this query, while those using the word in the legal sensewould not.
A similar line of reasoningsuggestgpolyseny-awarenesscould help in summarization.

Discarding the indep endence assumption : Using local context to disambiguate
the meaning of a word requires lifting the word independenceassumption|the as-
sumption that the order in which words appearsin a documert can be ignored. Of
course, the idea that the order of words in a documert is of no import is quite ludi-
crous. The two phrasesdog bites manand manbites dog contain the samewords,
but have entirely di erent meanings.

By taking accourt of wherewords occur in a documert, a text processingsystemcan
assigna higher priorit y to words appearing earlier in a documert in the sameway that
peopledo. A documert which explainsin the rst paragraph how to make an omelet,
for instance, can be more valuable to a userthan a documert which waits until the
ninth paragraph to do so.

Multilingual ~ pro cessing: Both the weaver and ocelot systemsare naturally
applicable to a multilingual setting, where documerts are in onelanguageand queries
(for weaver ) or summaries (for ocelot ) are in another. This feature isn't pure
serendipity; it exists becausethe architecture of both systemswas inspired by earlier
work in statistical translation. Finding high-quality multilingual text corpora and
tailoring weaver and ocelot for multilingual setting is a natural next step in the
dewvelopmert of thesesystems.

There are compelling reasonsto believe that the coming yearswill cortinue to witness
an increasein the quality and prevalenceof automatically-learned text processingsystems.

For one, as the Internet continuesto grow, sotoo will the data resourcesavailable to
learn intelligent information processingbehavior. For example, as mentioned in Chapter 4,
recert work has described a technique for automatically discovering pairs of web pages
written in two dierent languages|Chinese and English, say [73]. Sud data could be
usedin learning a statistical model of translation. So asthe number of web pageswritten
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in both Chinese and English increases,so too increasesthe raw material for building a
Chinese-Englishtranslation system.

Second,so long as Moore's Law cortinuesto hold true, the latest breed of computers
will be ableto manipulate increasingly sophisticatedstatistical models|larger vocabularies,
more parameters,and more aggressie use of conditioning information.
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