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Abstract

A distributed interactive application spawns resilient real-time tasks with known resource
requirements in response to aperiodic user actions. When running in a shared computing envi-
ronment that supports neither reservations nor globally-respected priorities, such an application
must carefully choose which host runs a task in order to increase the chances that the task’s
deadline will be met.

A real-time scheduling advisor is a middleware service that the application can use to find
the most appropriate host for the task. In addition to recommending a host, the advisor also
predicts the running time of the task on that host. The application uses this feedback to modify
the task’s resource requirements or deadline until a host is found where the task will meet its
deadline with sufficiently high probability.

This dissertation recommends basing real-time scheduling advisors on the explicit predic-
tion of resource signals, which are easily measured, time-varying, scalar quantities that are
strongly correlated with resource availability. This resource-oriented approach has numerous
advantages over the competing application-oriented approach, which I also studied. It scales
well, makes decisions based on up-to-date information, can support other forms of adaptation
advisors, and can easily leverage advances in statistical signal prediction techniques. How-
ever, resource signal predictions exist at considerable remove from predictions of application
performance.

To show that this gap can be spanned, this dissertation describes the design, implementa-
tion, and performance evaluation of a prototype real-time scheduling advisor that is based on
the prediction of host load signals. I have found that, despite its complex properties, which
include self-similarity and epochal behavior, host load can be usefully predicted using linear
time series models. These models have sufficiently low overhead to be used in practice, and
I have developed a toolkit to make it easy to do so. Furthermore, I have devised an algorithm
that uses host load predictions to compute a confidence interval for the running time of a task
on a particular host. My real-time scheduling advisor uses these confidence intervals to provide
useful recommendations to applications. Each layer of this online system has been evaluated
using real host load signals and workloads.

Being able to predict the running time of a task is vital to controlling many different adapta-
tion mechanisms in pursuit of goals other than simply those of the real-time scheduling advisor.
For this reason, I also expose the running time advisor, the part of my system that computes a
confidence interval for the running time of a task.
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Chapter 1

Introduction

Users demand responsiveness from interactive applications such as scientific visualization tools, image ed-
itors, modeling tools based on physical simulations, and games. Such applications react to aperiodically
arriving messages that arise from user actions. In response to each message, the application program exe-
cutes a task whose computation creates visual and aural feedback for the user. This feedback helps determine
the subsequent actions of the user, and thus subsequent tasks. The aperiodicity in message arrival is a result
of having a “human in the control loop.” To be responsive, the application must execute the task induced by
each message as quickly as the user reasonably expects. This timeliness requirement can be easily expressed
as a deadline for the task. We assume that the application is resilient in the face of missed deadlines.

At one point, creating applications that were responsive in this sense was relatively easy since the user’s
machine was very predictable from the point of view of the programmer. Today, however, the user’s machine
is becoming increasingly less predictable due to operating system jobs, daemons, other users’ jobs, and the
like. These external factors make the actual computation rate the programmer can expect vary in complex
ways. Further, the user’s machine may simply not be fast enough or have enough memory to perform some
computations responsively.

On the other hand, the user’s machine is no longer alone—there are many other hosts on the local area
network which it can talk to. As the overheads of remote execution facilities such as remote procedure call
(RPC) systems, object request brokers (ORBs), and distributed shared memory (DSM) systems decline, it
becomes more appealing to execute tasks remotely to achieve the responsiveness that interactive applica-
tions require. Interactive applications are thus becoming distributed interactive applications. Unfortunately,
the overwhelming majority of networks and hosts do not provide any sort of resource reservations, or even
priority-based scheduling that a programmer could build upon to make a group of hosts behave in a more
predictable fashion than an individual host. However, these shared, unreserved environments can be mea-
sured with increasingly sophisticated tools.

The ability to run a task on any host in the environment greatly increases theopportunityfor the task
to meet its deadline. However, to exploit this opportunity, the application mustchoosean appropriate host,
which can be difficult. A real-time scheduling advisor is a middleware service that advises the application
as to the host where the task’s deadline is most likely to be met. It may also provide additional information,
such as the predicted running time of the task on the proffered host, which the application can use to adapt
in other ways.

A real-time scheduling advisor bases its advice on resource measurements, the application’s character-
ization of the task’s resource demands, and the required deadline. Because reservations are unavailable in
the computing environment, this advice comes with no guarantees—a real-time scheduling advisor operates
on a best-effort basis. The usefulness of this service then depends on its measured performance. This dis-
sertation shows that the measured performance of a real-time scheduling advisor running in real computing
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environments can be quite impressive. The real-time scheduling advisors we developed can greatly increase
the probability that a task’s deadline is met. Furthermore, they canaccurately predict the performance of
tasksbeforethey are run, thus giving the application a chance to adapt in different ways when insufficient re-
sources are available to meet the original deadline. Finally, they can introduce appropriate randomness into
their scheduling decisions, thus allowing advisors to operate obliviouslyof each other with a low probability
of disastrous interaction due to unforeseen feedback loops.

The design space for real-time scheduling advisors is vast, but most designs involve predicting the per-
formance, either explicitly or implicitly, of the task oneach of the prospective hosts. The performance is
determined predominantly by resource availability. Designs that use explicit prediction are sub-divided into
resource-oriented prediction approaches and application-oriented prediction approaches. Resource-oriented
approaches predict future resource availability using information available about the resource. These pre-
dictions of resource availability, and the task’s resource demands are then supplied to a model that estimates
the task’s performance. Application-oriented approaches predict task performance directly using application
information such as the performance of previous tasks.

This dissertation argues for basing real-time scheduling advisors on explicit resource-oriented predic-
tion, specifically on the prediction of resource signals. This approach has much to recommend it over the
application-oriented prediction approach:

� It scales better.

� Multiple applications or nodes of a single application can easily share the same predictions.

� It operates independently of application execution and thus can always provide the latest information
about any resource.

� It can provide the basis for other kinds of scheduling advisors and quality of service predictors.

� It can more easily leverage advances in the statistical signal processing and time series analysis com-
munities.

In contrast to the application-oriented approach, the resource-oriented approach predicts quantities that
are at some remove from those that concern the application. This dissertation demonstrates that it is pos-
sible to span this gap between resource predictions and task performance. This enables effective real-time
scheduling advisors based on explicit resource-oriented prediction.

The core of the dissertation describes the design, implementation, and evaluation of a real-time schedul-
ing advisor for compute-bound tasks. The advisor is based on explicit resource-oriented prediction using
the techniques of linear time series analysis to predict available CPU time. The resource signal is host
load (specifically, the Digital Unix five second load average), which we found to correlate very well with
available CPU time.

Our explicit resource-oriented prediction approach is based on statistical signal processing of resource
signals. Resource signals are sequences of periodic measurements that are strongly correlated with the avail-
ability of some underlying resource. We exploit linear time series analysis (for the most part) to characterize
resource signals and find appropriate predictors for them. We developed a methodology for the process and
a toolkit that facilitates carrying out the methodology and implementing on-line resource prediction systems
for new resource signals.

The main contribution of this dissertation is to show that the resource-oriented prediction approach can
work—that the application of the resource signal methodology to host load results in useful predictions
that can be projected up to the application in a manner that is sufficient to drive adaptation decisions. The
projection takes the form of a query interface through which an application can request a qualified prediction
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(in the form of a confidence interval) for the running time of a task. This fundamental information is useful
for controlling many different adaptation mechanisms to pursue many different goals. We show that it
is sufficient to control one particular mechanism (choice of host) to achieve one particular goal (meeting
a deadline). Effectively, we show that real-time scheduling advisors based on explicit resource-oriented
prediction using statistical signal processing are both feasible and powerful.

In the remainder of this chapter, we first describe the application domain for which real-time schedul-
ing advisors are intended and provide examples of applications from this domain. Next, we describe the
characteristics of the computing environment we target, and the scheduling problem induced by running our
applications in such environments. After this, we outline the design space for real-time scheduling advi-
sors, illustrating the advantages and disadvantages of both the resource-oriented and application-oriented
approaches. The main observation is that the resource-oriented approach—specifically, an approach based
on resource signal prediction—is preferable to the application-oriented approach provided that the gap from
resource signal predictions to application-level predictions can be spanned. We then outline the prototype
real-time scheduling advisor that forms the core of the dissertation, and describe the resource signal method-
ology we used to develop it, and which we shall apply to signals other than host load in the future. Finally,
we outline the remaining chapters of the dissertation.

1.1 Applications

A real-time scheduling advisor operates on the behalf of a distributed interactive application. In such appli-
cations, computation takes the form of tasks that are initiated by aperiodic user actions. Each task produces
feedback for the user which helps determine his next action. For this reason, the task must be completed in
timely manner soon after it has been initiated. The application expresses this timeliness requirement in the
form of a deadline for each task. The application is resilient in the face of a missed deadline. The real-time
scheduling advisor suggests which of a set of hosts is most appropriate to run the task. In addition to this re-
quired form of adaptation, the application may also be able to adapt by changing the compute requirements
of the task or the required deadline.

The remainder of this section describes the characteristics of the applications that this thesis targets
and their execution model in more detail. In addition, we present four applications that conform to the
characteristics and the model.

1.1.1 Characteristics

The applications we are interested in supporting have the following characteristics.

Interactivity

The application is interactive—computation takes the form of tasks that are initiated or guided by a human
being who desires responsiveness. Achieving responsiveness amounts to providing timely, consistent, and
predictable feedback to individual user actions. If the feedback arrives too late or there is too much jitter for
a series of similar actions, the utility of the program is degraded, perhaps severely. Research has shown that
people have difficulty using an interactive application that does not respond in this manner [41, 72]. Our
mechanism for specifying timely, consistent, predictable feedback is the task deadline.

Aperiodicity

The application’s tasks arise from aperiodic user actions. The aperiodicity is due to from the variable
“think time” humans need to decide their next action [42]. Aperiodicity precludes such traditional real-time



4 CHAPTER 1. INTRODUCTION

approaches as rate monotonic algorithms [81].

Sequentiality

The application has only a single task outstanding at any time. The user needs the feedback produced by
that task to determine his next action and its resulting task. We discuss ways of loosening this restriction in
the concluding chapter.

Resilience

The application is resilient in the face of missed deadlines to the degree that it does not require either
statistical or deterministic guarantees from the real-time system. The inability to meet a deadline does not
make the application unusable, but merely results in lowered utility. For example, occasional missing frames
in playing back video do not make the video performance unacceptable. Consistently missing or irregular
frames, however, result in unacceptable playback. Resilience is the characteristic that enables the best-effort
semantics of real-time scheduling advisors as opposed to traditional “soft” (statistically guaranteed) [136,
19, 68] semantics and “hard” (deterministically guaranteed) real-times semantics [128, 119].

Distributability

The application has been developed with distributed, possibly parallel, operation in mind. We assume that
it is possible to execute its tasks on any of the available hosts using, for example, mechanisms such as
CORBA [98] or Java RMI [129]. Tasks need not be replicable (stateless), but any data movement required
to execute a task on a particular host must be exposed, for example, through CORBA’s Object By Value
mechanism [98, Chapter 5], or by Java’s serialization and reflection mechanisms. The core of this disserta-
tion concentrates on compute-bound tasks.

Adaptability

In addition to the adaptability provided by being able to choose on which of a set of hosts a task will execute,
our target applications may also be able to indirectly adjust the amount of computation and communication
resources a task requires. Adjustments such as changing resolution, image quality, frame rate, and deadline
may be needed in order to deal with situations where a task’s deadline cannot be met by choosing the
appropriate host to run it, or when longer term changes in the available resources result in many tasks
missing their deadlines.

Compute-bound tasks

In the core of this dissertation we restrict ourselves to compute-bound tasks. This is because the proof-
of-concept system that we develop focuses only on CPU time. The restriction is not inherent to real-time
scheduling advisors based on explicit resource-oriented prediction using statistical signal processing. Our
RPS toolkit already includes facilities for network resource prediction based on Remos [82] network mea-
surements, and in the concluding chapter we present our current work in evaluating the prospects for network
prediction.

1.1.2 Execution model

Our model interactive application has a very simple main loop that waits for aperiodically arriving user input
and then issues an appropriate task. The task runs to completion, producing feedback to the user. After the
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Symbol Explanation
tnow Arrival time of the task
tnom Compute requirements of the task (nominal running time)
slack Permitted expansion factor of the task
tnow + (1 + slack)tnom Deadline of the task
tact The actual running time of the task
tnow + tact The actual completion time of the task

Table 1.1: Elements of the task execution model.

task completes and the feedback is delivered, the user may produce other input, resulting in a new task being
initiated. Table 1.1 summarizes the symbols we use in this section to describe the execution model.

From the perspective of the real-time scheduling advisor, a task arrives at the current time,tnow . The
application specifies the compute requirements of the task in terms of its nominal running time,tnom. The
nominal running time is the time the task would take to run on a host with no other extant work. We
assume that the task is compute-bound and that the communication time required to start the task running
on a particular host is negligible compared to the nominal time of the task. In the concluding chapter, we
consider how to extend the resource-oriented approach to include communication costs where this is not the
case. The application expresses the deadline of the task in the form of theslack, or the maximum additional
expansion of the running time of the task. Because the task must be immediately executed, the deadline is
thentnow+(1+slack)tnom. The actual running time of the task, istact, so its completion time istnow+tact.
Thus, the deadline is met iftact � (1 + slack)tnom.

1.1.3 Examples

In this section, we introduce four examples of applications which exhibit the characteristics we described
earlier and which could be executed according the execution model. The examples include QuakeViz, a
scientific visualization tool, OpenMap, a geographic information services tool, an acoustic modeling tool,
and an image editor. Of these, we consider QuakeViz in the most detail, including measurements of the
compute requirements of two QuakeViz applications and a description of the active frame execution envi-
ronment which we have helped to develop for such applications. OpenMap is representative of applications
which use replicated servers. Other examples include the mirroring and anycast of web content [93], and
distributed database systems [53, 56]. The acoustic modeling application is a computer aided design appli-
cation based on a physical simulation and can also be seen as a computational steering application. Image
editing is typical of the large document editing applications common on personal computers.

The purpose of this section is to illustrate applications in which a real-time scheduling advisor can
provide benefits. The focus of the thesis, however, is not on any particular application, but rather using
an explicit resource-oriented prediction-based approach to solving the general scheduling problem posed
by real-time scheduling advisors. Our evaluation does not focus on any particular application, but is based
on randomized tasks whose nominal compute times are chosen to be within the range of interest for the
QuakeViz tasks we describe here.

QuakeViz

The Quake project developed tools to perform detailed simulations of large geographic areas during strong
earthquakes [9] and then applied those tools to simulate earthquakes in various earthquake prone areas.
These simulations produce vast amounts of output data. For example, to simulate the response of the San
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Figure 1.1: Example QuakeViz applications: (a) Volume visualization using a structured grid. (b) Isosurface
visualization using an unstructured grid.

Fernando Valley to an aftershock of the 1994 Northridge Earthquake required a data representation contain-
ing 77 million tetrahedrons, produced over 40 million unknowns per time step, and resulted in over 6 TB of
output data.

Interactive scientific visualization [58] is a necessary prerequisite in order for humans to make use of
these colossal datasets. Unfortunately, current visualization systems for such datasets either require ex-
tremely expensive hardware, or are batch-oriented. To remedy this situation, the Dv group, a part of the
Quake project which includes this author, is designing and building a framework for constructing interactive
scientific visualizations of large datasets that can run on shared, unreserved distributed computing environ-
ments [3]. Visualizations of datasets produced by the Quake Project, or QuakeViz applications, are the first
target of the Dv framework.

The Dv framework is based on the active frame model. Active frames are a form of active messages [135]
in that they contain both data and a program for transforming that data. A QuakeViz application can be
expressed as a flowgraph whose nodes represent computationally expensive data transformations and whose
edges represent communication. The flowgraph source is the server which provides the Quake dataset and its
sink is the user’s workstation. Typically, the flowgraph is linear. The user initiates computation by sending
an active frame to the server. The active frame contains the flowgraph of the computation the user requires,
a specification of the region of the dataset the user is interested in, and a deadline for when the result must
be displayed. The first node of the flowgraph executes on the server and copies the necessary data into
the active frame. The frame then sends itself to the most appropriate host to execute the next node in the
flowgraph. The frame uses the real-time scheduling advisor to decide which host is the most appropriate.
This continues until the last node of the flowgraph has been executed and the result has been displayed on
the user’s workstation.

Figure 1.1 shows the flowgraphs of two simple QuakeViz applications. More complex flowgraphs are
discussed elsewhere [3, 29]. In both applications, the dataset produced by the simulation contains values
whose coordinates are based on irregular mesh. A QuakeViz application can maintain this unstructured
representation throughout its flowgraph, or it can interpolate the data onto a regular grid in order to make
down-stream processing faster and reduce the volume of communication. Figure 1.1(a) shows a simple
volume visualization that shows the data in the region of interest as a 3-dimensional image. The data is
interpolated to a regular grid in order to make the rendering computation faster. Figure 1.1(b) shows a
visualization in which isosurfaces corresponding to various response intensities in the region of interest are
displayed. In this case, the data is left in its unstructured form.

Figure 1.2 shows the compute requirements for the flowgraph shown in Figure 1.1(a) as a function of
the size of the structured grid. The computation here is measured as the user time for a sequential version of
the visualization written in vtk [118] and running on a 500 MHz Alpha 21164 machine under Digital Unix
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Figure 1.2: Compute requirements of the volume visualization code of Figure 1.1(a).
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Figure 1.3: Compute requirements versus timestep of the isosurface visualization code of Figure 1.1(b).

4.0D. As we can see, the computation involved at each stage of the flowgraph is significant and is usually
dominated by the interpolation step, which the active frame model permits us to locate on any host. The
read and interpolation steps must be sited at the server machine and the user’s machine, respectively.

The amount of computation performed by the isosurface visualization code depends not only on the
spatial region of interest, but also on the time step. Figure 1.3 shows how the compute requirements of the
(a) isosurface extraction and (b) rendering steps of the isosurface visualization code in Figure 1.1(b) vary
with the time step for different problem sizes. The measured code is a sequential version written in vtk and
running on a 200 MHz Pentium Pro machine under Microsoft Windows NT 4.0. Measurements are of the
user time. Again, we can see a computation (isosurface extraction) which requires significant CPU time and
which can potentially be run on any host in the environment. It is also interesting to note that the compute
requirements are quite predictable from time step to time step.

OpenMap

BBN’s OpenMap is a architecture for combining geographical information from a variety of different, sepa-
rately developed sources in order to present a unified coherent visual representation, in the form of a multi-
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layered map, to the end user [13, 70]. OpemMap-based applications have been used to help coordinate U.S.
military actions in the former Yugoslavia.

OpenMap consists of four different kinds of components. Geographical information is provided by third
partydata sources, which have unique interfaces. Aspecialistencapsulates a specific data source, hiding the
details of accessing it behind a uniform CORBA interface. The interface is based on sequences of objects to
be drawn. A specialist has a correspondinglayer that draws an individual map based on the drawing objects.
Finally, amap beanmanages a group of layers, overlaying their maps to produce a single combined map for
the user. Map beans and layers are Java Beans, which can be conveniently embedded into Java applications.

In Figure 1.4, we show the structure of an example OpenMap application where information from sep-
arate terrain and political boundary data sources are combined to present the user with a map of the Boston
area. While the structure shown in Figure 1.4 appears at first glance to be a pipeline, it is important to note
that it actually operates in a request-response manner. Computation happens only when the user decides to
change theprojectionof the map (the set of layers and the region of the planet that is being viewed).

OpenMap is thus interactive—computation happens as a direct result of a projection change. To provide
a good user experience, the time from a projection change to the resulting map display should be short,
consistent, and predictable. A good abstraction for this requirement is a deadline placed on the computa-
tion initiated by a projection change. Achieving such deadlines is challenging because specialists and data
sources may be located at distant sites and run on shared, unreserved hosts communicating via the Internet.
However, missing OpenMap deadlines only degrades the user’s experience—OpenMap is resilient.

The components of OpenMap were designed from the start to be physically distributed using CORBA
communication mechanisms. We can use this enabler to build replicated specialists and data sources, as we
highlight in gray in Figure 1.4. This provides a choice of which specialist is used to satisfy a projection
change for a given layer. The real-time scheduling advisor can be used to decide which replica should be
used. This functionality can even be hidden from the application by incorporating it into an object quality
of service framework such as BBN’s QuO [145]. In fact, as a proof of concept, we incorporated the host
load prediction system described in this thesis into QuO as a system condition object and then developed
QuO contracts that effectively represent a real-time scheduling advisor. This was then used to select the
appropriate replica of an image server.
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Acoustic CAD

Acoustic CAD involves designing a space (a room, or a loudspeaker enclosure, for example) using a CAD
tool and being able to hear what such that space will sound like from different positions within it. For
a given room configuration (room geometry and material properties, listener positions, and loudspeaker
positions), we compute an impulse response function for each listener/loudspeaker pair. For a particular
listener/loudspeaker pair, we convolve the music signal coming from the loudspeaker with the impulse
response function, giving the room-filtered signal the listener would hear from that loudspeaker. By doing
this for each loudspeaker and summing the resulting room-filtered signals, we simulate what the listener
would hear given the room configuration1.

The impulse responses are computed by simulating the wave equation using a finite difference
method [125]. In steady state, periodic convolution and summation occurs to compute the sound output.
When the user changes the room configuration by moving a loudspeaker, wall, or himself, the (expensive)
computation of the impulse responses is repeated. It is these expensive user-initiated physical simulations
that form the tasks for the real-time scheduling advisor.

As an alternative to sound, the user can view the impulse response functions directly, or can view the
frequency response characteristics of the room computed from them. The user repeatedly adjusts the model
parameters (furniture position and composition), simulates the physical system, and views the results. The
goal is find a set of parameters that result in a flat response.

Image editor

Image editing gives the user tools to manipulate an in-memory visual image as a whole and in part. Some
tools involve image-processing operations such as boxcar convolution on large regions of the image, while
others involve emulating real-world tools such as pens, brushes, or spray paint cans. It is important to point
out that image sizes are rapidly growing, and the limits imposed by photographic film, drum scanners, and
digital cameras imply that truly vast (hundreds of megabytes to gigabytes) images will need to be edited. At
the same time, the functionality of image editing software, in terms of the sophistication of image filters and
how they can be applied is rapidly advancing.

The typical resolution of color reversal film is 100 lines per millimeter, which corresponds to 200 pixels
per millimeter. With this information density, a 35mm slide contains 34.6 million pixels, or about 138
megabytes of information at 32 bits per pixel. A medium format 6 cm by 7 cm slide contains 168 million
pixels or 672 megabytes, and the smallest large format slide, 4 inches by 5 inches, contains 516 million pixels
or two gigabytes. These vast image sizes mean that even simple transformations result in large amounts of
computation. However, the resolution at the user’s workstation is limited by the screen resolution, which is
much lower. This results in large computational requirements combined with potentially low communication
requirements, which encourages a distributed implementation of image editing.

1.2 Shared, unreserved computing environment

Our machine model corresponds to the real world computing environments that most people have access to.
In particular, we assume host computers interconnected by a local area network. The host computers have
no centralized scheduler or coordinated scheduling mechanism and their local schedulers do not support
reservations or real-time scheduling. Similarly, the network does not support any sort of reservation scheme.
The hosts execute independent tasks that generate traffic on the network. This is, of course, a description of

1Ignoring the listener’s Head Related Transfer Function, Doppler effects during movement, and other issues that are beyond the
scope of this document. Interested parties should look at [14].
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any modern group of workstations or PCs. The specific environments we studied are Digital Alpha-based
workstations running Digital Unix 3.2 and 4.0. The software we developed has been ported to a variety of
other Unix systems and Microsoft Windows NT.

In addition to these commonplace features, we also assume that it is possible to measure the system.
In particular, it must be possible to acquire all the necessary permissions to record resource signals. In the
case of the host load signal we use in this work, the baseline permission required is to run the Unix uptime
command. On the Digital Unix machines we use, the permissions of a typical user permit the use of a much
faster system call to measure the load, however. It is also necessary to have access to a real-time clock,
through the Unix gettimeofday call, for example.

1.3 Scheduling problem

The scheduling problem that a real-time scheduling advisor attempts to solve is stated as follows. The real-
time scheduling advisor operates on the behalf of a single application. The application needs to run tasks
in response to aperiodically arriving user input. A task must run to completion before another task arrives,
and the application can run the task on any of a set of shared, unreserved hosts. Suppose that a task arrives
at the current time,tnow , and its compute requirement, expressed as a nominal running time on a quiescent
host, istnom. The application wants the task to finish before the deadlinetnow+(1+slack)tnom, where the
slack is the maximum expansion factor that the application can allow. The problem the real-time scheduling
advisor must solve is to choose the host from among the set of available hosts where the deadline is most
likely to be met.

Ideally, the advisor will also inform the application whether it believes the deadline can be met on the
chosen host. It may be the case that there are insufficient resources available on any host to meet the deadline.
If this is the case, a prediction of the task’s running time or whether it will meet its deadline or not enables
the application to try a different form of adaptation or to change the deadline. One of the powerful aspects
of the resource-oriented prediction approach described here is that it can provide this additional feedback.

It is also important to note that the predictions of running time that underly this approach are useful
in achieving goals other than meeting deadlines. This is also an important feature of the resource-oriented
approach.

1.4 Design space

The design space for real-time scheduling advisors that address the scheduling problem posed in Section 1.3
is vast. However, one characteristic that most designs necessarily share is the use of prediction, in that the
advisor picks a host for the task based on some prediction of what the task’s performancewill be on each
of the prospective hosts. This prediction can either be implicit or explicit. Explicit approaches attempt
to directly predict some task performance metric—the task’s running time, for example—for each of the
hosts and then choose a host whose predicted performance is appropriate. In contrast, implicit approaches
simply assume that the task’s performance on each of the prospective hosts will be ordered according to
some task-independent metric on the hosts, and then choose a host from early in the ordering.

Explicit prediction approaches are generally preferable to implicit approaches for a number of reasons.
For one, they can provide additional value to the application. In particular, some explicit approaches, such
as the one that forms the core of this dissertation, can inform the application as to whether the deadline is
likely to be met, which provides the application with a chance to modify the task’s requirements. Another
advantage of explicit prediction is that it makes it possible to apply the prediction technology developed in
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the statistics, signal processing, and artificial intelligence communities to the problem. The drawback is the
explicit prediction approach is potentially much more complex than the implicit prediction approach.

Within the explicit prediction approach, there remain a vast number of design choices: What quan-
tity will be predicted? What measurements will be used as the basis of the predictions? What prediction
algorithm will be used? When will predictions happen? When will measurements be made? How will
scheduling decisions be made using the predictions?

Although there are many possible answers to these questions, the primary distinction among explicit
approaches is whether they are application-oriented or resource-oriented. In the application-oriented ap-
proach, the application measures the performance of each task it runs and provides this performance data
to the advisor. The advisor predicts the performance of the next task on each of the hosts based on this
history and then chooses an appropriate host based on the predictions. In the resource-oriented approach,
each resource (eg, host) is conceptually responsible for measuring and predicting its own availability. When
asked to schedule a task, the advisor collects the latest predictions of resource availability, uses them to
compute predictions of some task performance metric (eg, running time) for each host, and then chooses the
appropriate host based on those performance predictions.

The explicit application-oriented and resource-oriented prediction approaches are complementary in
their potential advantages and disadvantages. The application-oriented approach has the advantage of oper-
ating directly on the performance metrics (whether deadlines are met, running time) that the application (and
advisor) ultimately care about. However, the measurements and predictions made using this approach are
entangled with application specifics and so are not useful to other applications. This leads to a duplication
of effort, where each application is predicting, in part, the availability of the same resources. Furthermore,
because a measurement corresponds to a task, the advisor “sees” only a small subset of the computing en-
vironment. If the task requires multiple resources, the measurement conflates their individual availabilities,
making it even harder to share measurements. Even when it is possible to untangle the effects of applica-
tion specifics and the availability of other resources, the resulting measurements of an individual resource
are aperiodic and perhaps infrequent. In contrast, the resource-oriented approach measures and predicts
resources independently of the application and measures each resource periodically. A resource-oriented
advisor can thus make decisions based on up-to-the-minute predictions for all of the available resources.
Furthermore, different applications can share these resource predictions just as they share the resources.
However, unlike in the application-oriented approach, the advisor must transform these resource predictions
into task performance predictions, and this increases the chance of error.

In the explicit resource-oriented prediction approach it is easy and powerful to base prediction on
(discrete-time) resource signals, periodic measurements of resource availability. Periodic measurement is
easy because measurement is decoupled from the application and instead coupled to the resource. Prediction
of a resource signal involves mapping from past values of the signal to future values. This general prediction
problem has been and continues to be extensively studied in a number of different fields including statistical
signal processing, time series analysis, and chaotic dynamics. By casting the core of the explicit resource-
oriented prediction approach as a signal prediction problem, we can bring all of this powerful existing and
future machinery to the bear on our scheduling problem. In addition to helping us predict resource signals,
these tools also provide a framework for understanding resource availability and for generating meaningful
workloads.

Resource signal predictions are not, in themselves, sufficient to solve the scheduling problem posed
by real-time scheduling advisors. Such predictions must be reconciled with the resource demands of the
task in order to compute a prediction of the running time on which to base scheduling decisions. Our
work shows not only that at least one resource signal (CPU availability as measured by host load) can be
usefully predicted using statistical signal processing, but also that the gap between these predictions and
useful scheduling can indeed be spanned.
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Figure 1.5: Dependencies in a real-time scheduling advisor

1.4.1 Implicit versus explicit prediction

In a design that uses implicit prediction, past measurements of some quantity oneach of the prospective
hosts are used to order the hosts. The ordering of the hosts with respect to the future performance of the task
is assumed to be the same. For example, consider a real-time scheduling advisor based purely on the latest
measurement of host load, which we use for comparison purposes in Chapter 6. When the task arrives, the
advisor measures the current load on each of the hosts, orders the hosts according to their load, and then
assigns the task to the host with the least load, assuming that its running time will be minimized on that host
and thus most likely to meet the deadline.

In a design that uses explicit prediction, past measurements are explicitly transformed into predictions
of the task’s performance and then scheduling decisions are made on the basis of these predictions. The
design that forms the core of this dissertation is based on explicit prediction. The system uses statistical
signal processing to continuously predict future CPU availability oneach of the hosts. The advisor uses
these predictions to form statistical estimates of the running time of the task on each of the hosts, and then
chooses one of the hosts where the task is likely to meet its deadline with high probability. The measure of
task performance need not be the running time. In Appendix A, for example, we look at approaches that use
a history of previous successes and failures or a history of previous running times and deadlines to predict
whether a deadline can be met on a particular host.

The advantage of implicit approaches is an intrinsic simplicity, since the hosts are merely ordered. In
contrast, explicit approaches require computing a prediction of some metric of task performance. However,
this value is not only useful to the advisor, but can also be of use to the application, especially if it indicates
that the deadline can not be met because insufficient resources are available. In such a case, the application
can adjust the resource demands of the task or its deadline to a more realistic level. Another advantage of
explicit approaches is that by clearly specifying a prediction problem, the vast machinery of the statistics,
signal processing, and artificial intelligence communities becomes available to answer it.

1.4.2 Application-oriented versus resource-oriented prediction

To understand the difference between the explicit application-oriented and resource-oriented prediction ap-
proaches, it is useful to consider the dependencies involved in choosing the appropriate host to run a task,
as shown in Figure 1.5. The appropriate host depends on the deadline (tnow + (1 + slack)tnom) and the
running time of the task on each of the hosts. The running time of a task on a particular host depends in turn
on the resource demand of the task (tnom) and the availability of the resources needed to run the task on that
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host (the predicted host load).
Conceptually, the real-time scheduling advisor wants to compute the “host selection” node of the tree

before the “resource availability” node is available. In order to do so, it introduces prediction into some
node of the dependence tree. The predictive node uses its previous values to predict its current value. This
predicted value is then propagated to all its dependencies, and so on. For example, we could introduce
prediction at the “resource availability” node by keeping a history of the availability of some host. We
would then propagate this prediction upwards to compute a predicted running time on that host, and then
use that running time prediction to choose an appropriate host. The other extreme possibility would be to
predict at the “host selection” node, basing our choices on how previous host selections fared.

Introducing prediction becomes increasingly difficult the further down the tree we go. The problem
is that to propagate a predicted value upwards through tree requires that we be able to model each of the
transformations along the way. For example, if we predict at the “host selection” level, we can use our
predictions directly. On the other hand, if we predict at the “resource availability” level, we must transform
these resource predictions into running time predictions, and then use the predicted running times to predict
which host is the most appropriate.

There are several advantages to predicting lower in the tree. First of all, the prediction provides more
detail to the application. For example, predicting at the “running time” level or below tells us not only which
host is most appropriate for the task, but also what the running time will likely be. This gives the application
the opportunity to modify the task’s resource demand or deadline before the task is even started. Another
advantage is that as we go lower in the tree, the predictions become useful to an increasingly broad range
of tools. Predictions at the “host selection” level are only interesting to real-time scheduling advisors. On
the other hand, predictions of running time are interesting to scheduling advisors with other goals than real-
time. Of course, one could imagine transforming predictions high in the tree into values lower in the tree in
order to provide such information. However, notice that each transformation as we move upwards in the tree
reduces the amount of information. This means that the transformations can not be uniquely reversible and
so information gained by by reversing them can not be as accurate as when measured or predicted directly.
Avoiding entanglements by predicting deeper in the tree extends down to individual resources. Predictions
of individual resources are easiest to share among applications. The likelihood that two applications will
be interested in the same individual resource is much higher than that of them being interested in the same
group of resources. A third advantage is that measurements deeper in the tree have the potential to be fresher.

The most important distinction to be made on the basis of Figure 1.5 is between application-orientedand
resource-oriented prediction. In application-oriented prediction, which corresponds to the host selection and
running time levels, each task execution contributes a single measurement about a single set of resources to
the prediction system. This means that the number of sets of resources that are measured, and the frequency
with which they are measured is limited by the application and the user. Furthermore, unless each task uses
only a single resource, the measurement entangles the availability of multiple resources. Even ifeach task
only uses a single resource or if it is possible to untangle multiple resources, from the point of view of a
single resource, measurements would not be periodic, This complicates considerably the use of statistical
machinery such as linear time series models. The primary advantage of the application-oriented approach is
that the measurements are of quantities that are closer to the metrics that the application is actually concerned
about.

In contrast, in resource-oriented prediction, prediction happens at a considerable remove from the appli-
cation, requiring the development of substantial transformations to predict application-level quantities. In
return, however, measurement and prediction can happen independently of applications and the results can
be easily shared by multiple applications. Furthermore, resources can be measured and predicted periodi-
cally, which easily permits the use of most prediction techniques. Finally, the resource-oriented real-time
scheduling advisor has current information available for each of the resources it considers using.
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Although this dissertation focuses on the resource-oriented approach, we started our research focused
on the application-oriented approach. The results of some of that work are presented in Appendix A. With
the appropriate prediction algorithm, we found that application-oriented prediction can be very effective in
limited cases, namely those where the nominal time of the tasks is fixed and thus implicitly untangled from
CPU availability.

Several issues induced our switch to the resource-oriented approach. Consider the compute-bound case,
where a task corresponds to the measurement of a single resource, CPU availability on one host. The
first issue was scalability in terms of measurement histories. ConsiderN applications running on anM
host environment. In the application-oriented approach, each application would maintain its own shared
measurement history for every host. This means that the amount of measurement history in the system
scales asO(NM). When the advisor is run in a system with such a shared measurement history, it needs
to collect these measurement histories, resulting in a large amount of communication. Of course,each node
could maintain its own local set of histories to avoid the communication, but then the amount of history
scales asO(NM2), which is even worse. In contrast, in the resource-oriented approach the measurement
history in the system scales asO(M).

A second issue that argues against the application-oriented approach is entanglement. As we noted
earlier, information is reduced as we climb the dependence tree. Consider the running time level. The
running time entangles the resource availability (eg, host load), which is a quantity we could share between
applications, with the resource demand (eg, nominal time). The result is that if we measure the running time
of a task which has some nominal time, this value is only directly applicable to other tasks with the same
nominal time. To make it applicable to other tasks requires that we “factor out” the effect of the nominal
time. We found this to be non-trivial in practice. With entanglement, the size of the history grows once
again. In contrast, the resource-oriented approach never requires this sort of reverse computation, and we
found that the forward computations were possible to do accurately.

A third issue is that the lack of periodicity in the measurements of the application-oriented approach
severely restricted the kinds of statistical machinery that we could apply to prediction. At the same time,
we discovered that host load, measured as a periodically sampled signal, exhibited properties that strongly
suggested the use of techniques that rely on periodic measurements. By assuming the periodic measurements
possible in the resource-oriented approach, we were able to develop a methodology, called the resource
signal methodology (Section 1.6), that we were able to apply not only to host load, but also to network
flow bandwidth (Section 7.3). The resource signal abstration lets us leverage old and new work in the
fields of time series analysis [23], statistical signal processing [106, 143], chaotic dynamics [1], artificial
intelligence [90], and others.

Of course, signal-based resource prediction is not in itself sufficient to implement a real-time scheduling
advisor, because it is necessary to model the running time and host selection portions of Figure 1.5. We
found that these elements of the explicit resource-oriented prediction approach were indeed feasible and can
perform well.

1.5 Prototype real-time scheduling advisor

The core of this dissertation describes the design, implementation, and evaluation of a prototype real-time
scheduling advisor. The prototype advisor schedules compute-bound tasks using explicit prediction ofhost
load signals, specifically, the Digital Unix five second load average. The low overhead and high performance
of this system demonstrate the power of the explicit resource-oriented prediction approach.

Figure 1.6 shows the architecture of the system. At the highest level, the system is divided into two
parts: a library, which is bound to a single application, and a daemon, one of which runs indendently on
each host and can serve multiple applications. The library and the daemon can be further decomposed into
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Figure 1.6: The structure of the resource-prediction-based real-time scheduling advisor

independent components that can communicate in a number of ways. In the figure, a dashed arrow represents
stream-oriented communication between components, while a symmetric pair of arrows represents request-
response communication.

The daemon consists of a host load measurement system, which periodically measures host load, and a
host load prediction system, which transforms each new measurement into a qualified prediction of future
measurements. Each of the values in the prediction is qualified by an estimate of its error and how it
correlates with the error of the other values. The prediction system uses linear time series models to predict
host load. It continuously monitors the prediction accuracy, refitting the model when theaccuracy drops
below a threshold. The daemon stores a short history of the predictions and makes them available via a
request-response protocol. This matches the periodic nature of the measurement and prediction systems
with the aperiodic nature of application requests.

The library is easiest to describe from the perspective of an application request. A request consists of a
nominal running time (tnom) , a maximum slack (slack), a confidence level, and a list of hosts. The confi-
dence level, which ranges from zero to one, tells the real-time scheduling advisor the minimum probability
of meeting the deadline that the application requires. The real-time scheduling advisor transforms this sin-
gle application request into requests for predictions of the task’s running time on each of the hosts. Each of
these requests consists of the nominal time and the confidence level. To answer a request, the running time
advisor acquires the latest host load prediction from the host’s daemon. It then uses a statistical model of
the host’s scheduler to transform the host load prediction, the nominal time of the task, and the confidence
level into a prediction of the running time of the task on the host. The prediction contains both an expected
running time and a confidence interval for the running time. After acquiring running time predictions for
each of the hosts, the real-time scheduling advisor chooses a host at random from among those hosts whose
running time predictions are less than the deadline. If no such host exists, it chooses the host with the mini-
mum expected running time. The chosen host and the prediction of the running time of the task on that host
are returned to the application. The application can then choose whether to accept the solution or to pose a
different request.

The application or other middleware services can also use the system at lower levels. For example, other
kinds of schedulers can be based on the running time advisor, or can use host load predictions directly. The
system is also extensible in a number of ways. It is easy to construct prediction systems for other kinds of
resources, and it is easy to add support for new predictive models. The components of the system can also
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be arranged differently, using various transports to communicate over the network.

1.6 Resource signal methodology

In addition to arguing for basing real-time scheduling advisors on explicit resource-oriented prediction,
this dissertation also recommends a methodology for investigating and implementing such prediction. The
methodology, which is described in more detail in Chapter 2, and used in Chapters 3—4, is essentially to
transform a specific resource prediction problem into a general time series prediction problem as early as
possible, and then to apply the substantial statistical machinery that already exists to address such problems.

The resource signal methodology consists of six steps. First, the investigator finds an easily measured
resource signal that correlates with the availability of the resource in question. Second, he uses sampling
theory to determine how often the signal needs to be sampled to capture its behavior. Third, he collects
representative traces of the sampled signal. These steps require the expertise of a domain expert—a systems
researcher. However, the collected traces represent a general time series analysis and prediction problem,
for which a large base of expertise and numerous experts already exists. The fourth step is to use the traces
to determine the salient statistical properties of the resource signal. This leads to the selection of a set of
prospective modeling and prediction techniques. A large number of tools are commercially available to assist
with this step. In the fifth step, the investigator performs a randomized evaluation of the prospective models
on his traces to determine which model is indeed the most appropriate. In the sixth step, the appropriate
model is incorporated into an on-line prediction system for the resource. Few tools are available to help
with these latter two steps. We contribute the RPS Toolkit (Chapter 2) to facilitate them. RPS provides tools
for carrying out the randomized evaluation, and for rapidly implementing a prediction system based on the
appropriate predictive model.

1.7 Outline of dissertation

The flow of the dissertation essentially follows the architecture shown in Figure 1.6, from bottom to top.
Chapter 2 describes the design, implementation, and performance evaluation of the RPS Toolkit, which

forms the basis of the host load measurement and prediction systems. RPS provides extensible sensor,
prediction, and communication libraries for building resource prediction systems, and a set of components
that can be composed at run-time to form resource prediction systems. For the predictive models that we later
find appropriate for host load prediction, RPS has extremely low overhead. We also describe an RPS-based
parallel evaluation system that we use later to determine the appropriate models for host load prediction.
The combination of a powerful off-line evaluation tool and tools for quickly constructing on-line prediction
systems based on the evaluation results helps to carry out the resource signal methodology.

Chapter 3 motivates the choice of host load as our resource signal, shows how to appropriately sample
it, and describes the statistical characteristics of this resource signal. This knowledge forms the basis for
the host load measurement system in Figure 1.6. The interesting and new statistical results are a strong
autocorrelation structure, self-similarity, and epochal behavior. These findings suggest that some form of
linear model should be appropriate for prediction, but that more complex models that capture long-range
dependence may be necessary. Furthermore, they suggest that such models may need to be refitted at epoch
boundaries.

Chapter 4 describes a large scale study that evaluated linear models to determine which are most appro-
priate for host load prediction. The study was based on running randomized testcases using the load traces
described in Chapter 3, and data-mining the results. We found that despite the complex behavior of host load
signals, relatively simple and computationally inexpensive autoregressive models, of sufficiently high order,
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are appropriate for host load prediction. This new knowledge forms the basis for the host load prediction
system in Figure 1.6. It was simple to construct this component using RPS once the choice of model became
clear.

Chapter 5 describes the design, implementation, and evaluation of the running time advisor component
of Figure 1.6. Surprisingly, this component is non-trivial, but we were able to develop an algorithm for
computing confidence intervals for the running time. The algorithm relies on two new techniques: account-
ing for the correlation of prediction errors, and load discounting. We evaluate an implementation of the
algorithm by running randomized testcases on real hosts whose workloads are provided by our load traces
using a new technique called load trace playback. Essentially, this evaluation tests the bottom three stages
shown in Figure 1.6. The results are that the algorithm performs quite well using the autoregressive model
we found appropriate for host load prediction. The confidence intervals computed using that model have
nearly the desired coverage and are usually far narrower than those computed using other predictive models.

Chapter 6 describes the design, implementation, and evaluation of the real-time scheduling advisor
component in Figure 1.6. This component was relatively easy to implement given a functional running
time advisor. We evaluate it by running randomized testcases on real hosts whose workloads are generated
using load trace playback. We compare our system with simple approaches such as random scheduling
and scheduling a task on the host with minimum measured load. Both our system and the measurement
approach are vastly superior to random scheduling in terms of the fraction of deadlines that are met. Our
system always performs at least as well as the measurement approach and significantly outperforms it in
several important regions of operation. Furthermore, unlike the measurement approach, our system is able
to tell the application, with very high accuracy, whether the deadline can actually be met on the selected host.
This makes it possible for the application to modify the task’s requirements until its deadline can be met.
Finally, our system is able to introduce appropriate randomness into its scheduling decisions, reducing the
chance of synchronization among multiple independent scheduling advisors. Given that these advantages
come at very little additional cost over the measurement approach, the superiority of our system is clear.

Chapter 7 concludes the dissertation by describing how our work relates to other work in this area. It
also describes the future directions of our work. One direction is to statistically characterize and predict
other resources. To this end, we describe an RPS-based prediction system we have developed for network
bandwidth, measured using the Remos system, and we present some initial results on evaluating linear mod-
els for network bandwidth prediction. Another direction is to develop and incorporate more sophisticated
predictive models, which seem to be needed for resource signals such as network bandwidth. We present
some initial results on applying a non-linear modeling technique to network bandwidth prediction. Improved
modeling of different resource schedulers is another of the directions we contemplate.

Appendix A describes an evaluation of application-oriented prediction approaches.



18 CHAPTER 1. INTRODUCTION



Chapter 2

Resource Signal Methodology and RPS
Toolkit

This dissertation argues for basing real-time scheduling advisors on explicit resource-oriented prediction,
specifically on the prediction of resource signals. Implementing such prediction requires a methodology
and tools for finding appropriate predictive models and for constructing fast, low overhead on-line predic-
tion systems using the models. This chapter describes our resource signal methodology, and the design,
implementation, and performance evaluation of the RPS Toolkit which we have developed to help carry it
out. Subsequent chapters apply the methodology and RPS to host load prediction, and show how to use the
use the resulting predictions to predict the running time of tasks, resulting in the running time advisor. The
predictions of this system then form the basis for our real-time scheduling advisor.

To understand the role RPS plays, consider the process of building a prediction system for a new kind
of resource. Once a sensor mechanism has been chosen, this entails essentially two steps. The first is an
off-line process consisting of analyzing representative measurement traces, choosing candidate predictive
models based on the analysis, and evaluating these models using the traces. The second step is to build
an on-line prediction system that implements the most appropriate model with minimal overhead. There
are a wide variety of statistical and signal processing tools for interactive analysis of measurement traces
that work very well for performing most of the first step. However, tools for doing large scale trace-based
model evaluation are usually ad hoc and do not take advantage of the available parallelism. With regard to
the second step, building an on-line predictive system using the appropriate model, RPS provides tools for
quickly building a on-line resource prediction system out of communicating components.

RPS is designed to be generic, extensible, distributable, portable, and efficient. The basic abstraction
is the prediction of periodically sampled, scalar-valued measurement streams, or resource signals. Many
such signals arise in a typical distributed system. RPS can easily be extended with new classes of predictive
models and new components can be easily implemented using RPS. These components inherit the ability
to run on any host in the network and can communicate in powerful ways. The only tool needed to build
RPS is a C++ compiler, and it has been ported to four different Unix systems and Windows NT. For typical
measurement stream sample rates and predictive models, the additional load that an RPS-based prediction
system places on a host is in the noise, while the maximum sample rates possible on a typical machine are
as high as 2.7 KHz.

Our experience shows that it is possible to use RPS to find and evaluate appropriate predictive models
for a measure of resource availability, and then implement a low overhead prediction system that provides
timely and useful predictions for that resource. In Chapter 4, we describe how we used an RPS-based
off-line parallel evaluation system to evaluate linear models for host load prediction. Finding that AR(16)
models or better are appropriate, we implemented an on-line host load prediction system using this model.

19
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The running time and real-time scheduling advisors we describe and evaluate in Chapter 5 and 6 are based
on the predictions provided by this system. In this chapter, we evaluate the performance and overheads of
this host load prediction system. We have also used RPS to evaluate linear models for network bandwidth
prediction, which we describe in Chapter 7. These systems have been used in the CMU Remos [82] resource
measurement system, the BBN QuO distributed object quality of service system [145], and are currently
being integrated in to the Dv distributed visualization framework [3]. Parts of RPS have also been used to
explore the relationship between SNMP network measurements and application-level bandwidth [83].

2.1 Resource signal methodology

To understand the role of RPS, it is useful to consider the task of a systems researcher interested in predicting
the availabilityof a new kind of resource. Many methodologies to attack this problem are possible. However,
we are generally interested in how resource availability changesover time. It is natural, then, to think
in terms of a signal that is related to the resource’s availability. In doing so, we recast the problem of
predicting resource availability as an abstract signal analysis and prediction problem, which lets us leverage
the vast body of research that focuses on such problems. The goal of RPS is to simplify two aspects of
this process: the off-line evaluation of predictive models and the construction of on-line systems using
appropriate models.

The resource signal methodology that we recommend for our intrepid systems researcher consists of the
following steps:

1. Construct asensorfor the resource. The sensor generates a periodically sampled, scalar-valuedmea-
surement streamor resource signal.

2. Collectmeasurement tracesfrom representative environments.

3. Analyze these traces using various statistical tools.

4. Choose candidate models based on that analysis.

5. Evaluate the models in an unbiased off-line evaluation study based on the traces to find which of the
candidate models are indeed appropriate.

6. Implement an on-line prediction system based on the appropriate models.

The first two steps generally require the researcher to implement custom tools using his domain-specific
knowledge of the resource in question. When carrying out the third step, the researcher is aided by powerful,
commonly available tools. This step, as well as the fourth step, also relies heavily on the statistical expertise
of the researcher. The final two steps can benefit considerably from automated and reusable tools. However,
such tools are scarce. The goal of RPS is to provide tools for these last two steps. The researcher should
be able to use RPS to conduct off-line model evaluation, and then construct an on-line resource prediction
system based on the appropriate models.

The first step requires domain-specific knowledge. There are myriad ways in which interesting signals
in a distributed environment can be captured. For example, Section 2.4 describes the OS-specific mech-
anisms we use to retrieve Unix load averages (average run queue lengths. The Network Weather Service
uses benchmarking to measure network bandwidths and latencies between hosts [140] and load average
and accounting-based sensors for host load [141]. Remos uses SNMP queries to measure bandwidths and
latencies on supported LANs [82].

Two issues that arise in the first step are universal. The sensor implements a sampling process which
converts a continuous-time signal into a discrete-time signal. The sampling rate of such a process must be at
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least twice the bandwidth of the signal in order to correctly capture it. If a lower sampling rate is desired, the
underlying signal must be low-pass filtered to eliminate frequencies greater than half the sampling rate [100,
pp. 519]. The second issue is how to achieve periodicity. Aperiodic sampling is simply unavoidable in
measuring some resource signals. For example, it is unlikely that networking benchmarks on the wide area
can be made to sample periodically. It is necessary to resample such signals to periodicity.

Once the issues involved in the sensor are resolved, the researcher must use his expertise to choose a
representative set of environments and capture traces from them using the sensor implementation. This sec-
ond step is also highly dependent on the particulars of the signal and the environments of interest. Chapter 3
describes how we collected traces for one resource signal: host load.

The appropriately sampled traces that result from the second step pose an abstract signal analysis and
prediction problem. The next two steps of the methodology attack this problem. These steps, analyzing
the collected traces and choosing candidate models based on the analysis, require far less domain-specific
knowledge and more general purpose statistical knowledge. Consequently, there are a number of tools
available to help the researcher perform these steps. For example, our study of the properties of host load,
which we describe in Chapter 3, made extensive use of the exploratory data analysis and time series analysis
tools available in S-Plus [84], and in Matlab’s [86] System Identification Toolbox [85]. Steps three and four
are labor intensive—finding appropriate predictive models requires human expertise at this point in time.
However, because the signal analysis and prediction problem is abstract, it can also be “tossed over the
wall” to other researchers with the appropriate expertise.

Surprisingly, there are few tools to simplify the fifth step, evaluating the candidate models in an unbiased
manner. Time series analysis methodologies, such as that of Box and Jenkins [23], do generally have an
evaluation step, but it is very interactive and primarily concerned with the fit of the model and not its
predictive power, which is really what is of interest to the distributed computing community. Furthermore,
these methodologies often assume that computational resources are scarce, when, in fact, they are currently
widely available.

We believe that the appropriate way to to evaluate prospective models is to study their predictive perfor-
mance when confronted by many randomly selected testcases. Running this plethora of testcases requires
considerable computational resources. While it is possible to script tools such as Matlab and S-Plus to do
the job, it would be considerably more efficient to have a more specialized tool that could exploit the em-
barrassing parallelism available here. Furthermore, it would be desirable for the tool to use the same model
implementations that would ultimately be used in the on-line prediction system. Section 2.5.4 describes a
parallelized RPS-based tool that does just that. Chapter 4 uses this tool to evaluate linear models for host
load prediction.

The final step, implementing an on-line prediction system for the signal, requires implementing, or
reusing, the model or models that survived the evaluation step and enabling them to communicate with sen-
sors and the applications or middleware that may be interested in the predictions. In addition, mechanisms
to evaluate and control a prediction system must be provided. In Section 2.8.1 we show how we use RPS to
implement an on-line host load prediction system using the same models we evaluated earlier. The running
time and real-time scheduling advisors described in Chapter 5 and 6 are based on this system.

2.2 Requirements

The goal of RPS is to provide a toolkit that simplifies the final two steps of the resource signal methodology,
as described above. We also required that our design would provide genericity, extensibility, distributabil-
ity, portability, and efficiency. These requirements were intended to make RPS as flexible as possible for
future research into resource prediction. We address each of these requirements below, noting how our
implementation addresses these requirements.
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Genericity: Nothing in the system should be tied to a specific kind of signal or measurement approach.
RPS should be able to operate on periodically sampled, scalar-valued measurement streams from any source.
Genericity is important in a research system such as RPS because there are a plethora of different signals in a
distributed system whose predictability we would like to study. While our research has focused primarily on
the prediction of host load as measured by the load average, we have also used RPS to study the predictability
of network bandwidth as measured by Remos and through commonly available traces.

Extensibility: It should be easy to add new models to RPS and to write new RPS-based prediction com-
ponents. Being able to add new models is important because the statistical study of a signal can point to
their appropriateness. For example, we added an implementation of the fractional ARIMA model to RPS
after we noted that host load traces exhibited self-similarity. An obvious example of the need for easily
constructible components is implementing new sensors. For example, we added a Remos-based network
bandwidth sensor many months after writing a host load sensor.

Distributability: It should be possible to place RPS-based prediction components in different places on
the network and have them communicate using various transports. On-line prediction places computational
load on the distributed system and it should be possible to distribute this load across the hosts as desired.
Similarly, it should be possible to adjust the communication load and performance by using different trans-
ports. For example, many applications may be interested in host load predictions, so it should be easy to
multicast them. If two communicating components are located on the same machine, they should be able
to use a faster transport. RPS-based components are distributable and can communicate using TCP, UDP,
Unix domain sockets, pipes, and files.

Portability: It should be easy to port RPS to new platforms, including those without threads, such as
FreeBSD, and non-Unix systems, such as NT. FreeBSD and NetBSD are important target platforms for
Remos and RPS. Some of the potential users of RPS such as organizations like the ARPA Quorum project,
are increasingly interested in NT-based software. RPS requires only a modern C++ compiler to build and
has been ported to Linux, Digital Unix, Solaris, FreeBSD, NetBSD, and Windows NT.

Efficiency: An on-line prediction system implemented using RPS components should be able to operate
at reasonably high measurement rates, and place only minor computational and communication loads on
the system when operating at typical sampling rates. Obviously, what is reasonable depends on the signal
and the model being used to predict it. The idea here is not to achieve near-optimal performance, but rather
to achieve sufficient performance to make an RPS-based resource prediction system usable in practice.
Ultimately, something like a host load prediction system would probably be implemented as a single, hand-
coded daemon which would be considerably faster than a system composed out of communicating RPS
prediction components, such as we measure later. However, the latter RPS-based system can operate at
over 700 Hz and offers noise-floor level load at appropriate rates with median prediction latencies in the 2
millisecond range. A comparable monolithic system, composed at compile-time using RPS, can sustain a
rate of 2.7 KHz.

2.3 Overall system design

Here we describe the structure of RPS as it relates to the construction of an on-line resource prediction
system (step 6 of Section 2.1). In addition, RPS can also be used to implement off-line evaluation systems
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Figure 2.1: Overview of an on-line resource prediction system.

as per step 5 of Section 2.1. In the following, we focus on on-line prediction, pointing out the particulars of
off-line prediction only in passing. Section 2.5.4 presents more details about a parallel off-line system.

Figure 2.1 presents an overview of an on-line time series prediction system. In the system, asensor
produces ameasurement stream(we also refer to this as asignal) by periodically sampling some attribute
of the distributed system and presenting it as a scalar. The measurement stream is the input of apredictor,
which, for each individual measurement produces a vector-valued prediction. The vector contains predic-
tions for the nextm values of the measurement stream, wherem is configurable. Each of the predictions in a
vector is annotated with an estimate of its error. Consecutive vectors form aprediction stream, which is the
output of the predictor.Applications(including other middleware) can subscribe directly to the prediction
stream. The prediction stream also flows into abuffer, which keeps short history of the prediction stream
and permits applications to access these predictions asynchronously, via a request/response mechanism. The
measurement and prediction streams also feed an optionalevaluator, which continuously monitors the per-
formance of the predictor by comparing the predictor’s actual prediction error with a maximum permitted
error and by comparing the predictor’s estimates of its error with another maximum permitted error level.
If either maximum is exceeded—the predictor is either making too many errors or is misestimating its own
error—the evaluator calls back to the predictor to tell it to refit its model. The user can exert control of the
system by an asynchronous request/response mechanism. For example, he might change the sampling rate
of the sensor, the model the predictor is using, or the size of the buffer’s history.

The implementation of Figure 2.1 relies on several functionally distinct pieces of software: the sen-
sor libraries, the time series prediction library, the mirror communication template library, the prediction
components, and scripts and other ancillary codes.

Sensor libraries implement function calls that measure some underlying signal and return a scalar.
Section 2.4 provides more information about host load and flow bandwidth libraries that we provide.

The time series prediction library provides an extensible, object-oriented C++ abstraction for time
series prediction software as well as implementations of a variety of useful linear models. Section 2.5
provides a detailed description of this library and a study of the stand-alone performance of the various
models we implemented.

Themirror communication template library provides C++ template classes that implement the com-
munication represented by arrows in Figure 2.1. It makes it very easy to create a component, such as predic-
tor, or any of the other boxes in the figure, which has a large amount of flexibility. In particular, the library
provides run-time configurability, the ability to handle multiple data sources and targets, request/response
interactions, and the ability to operate over a variety of transports. Section 2.6 describes the mirror library
in detail.

Prediction componentsare programs that we implemented using the preceding libraries. They realize
the boxes of Figure 2.1 and can be connected as desired when they are run. Section 2.7 describes the
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prediction components we implemented. Section 2.8 describes the performance and overhead of an on-line
host load prediction system composed from these components and communicating using TCP.

Ancillary software includes scripts to instantiate prediction systems on machines, tools for replaying
host load traces, and tools for testing host load prediction-based schedulers. We don’t describe this software
in any further detail in this chapter. One piece of software that has not been implemented is a system for
keeping track of instantiated prediction systems and their underlying data streams. Currently, the client
middleware or the user must instantiate prediction components and manage them.

2.4 Sensor libraries

Currently, two sensor libraries have been implemented. The first library,GetLoadAvgprovides a function
that retrieves the load averages (ie, average run queue length) of the Unix system it is running on. On some
systems, such as Digital Unix, these are 5, 30, and 60 second averages, while on others, such as Linux, these
are 1, 5, and 15 minute averages. As we shall show in Chapter 3, the running time of a compute-bound task
on a Digital Unix system is strongly related to the average load it experiences during execution.

The GetLoadAvg code was borrowed from Xemacs and considerably modified. It uses efficient OS-
specific mechanisms to retrieve the numbers where possible. When such mechanisms are not available, or
when the user’s permissions are inadequate, it runs the Unix uptime utility and parses its output. Because
NT does not have an equivalent to the load average, it gracefully fails on that platform. Additional code is
available from us for directly sampling the run-queue length on an NT system using the registry interface.
On a 500 MHz Digital Unix machine, approximately 640,000 GetLoadAvg calls can be made per second.
The maximum observed latency is about 10 milliseconds. We normally operate at about 1 call per second.

The second library,GetFlowBW, provides a function that measures the bandwidth that a prospective
new flow between two IP addresses would receive, assuming no change in other flows. The implementation
is based on Remos [82], which uses SNMP queries to estimate this value on LANs and benchmarking to
estimate it on WANs. For SNMP queries on a private LAN, about 14 calls can be made per second.

2.5 Time series prediction library

The time series prediction library is an extensible set of C++ classes that cooperate to fit models to data, cre-
ate predictors from fitted models, and then evaluate those predictors as they are used. While the abstractions
of the library are designed to facilitate on-line prediction, we have also implemented several off-line predic-
tion tools using the library, including a parallelized cross-validation tool. Currently, the library implements
the Box-Jenkins linear time series models (AR, MA, ARMA, ARIMA), a fractionally integrated ARIMA
model which is useful for modeling long-range dependence dependence such as arises from self-similar
signals, a “last value” model, a windowed average model, and a long term average model. In addition, we
implemented a template-based utility model which can be parameterized with another model resulting in a
version of the underlying model that periodically refits itself to data.

2.5.1 Abstractions

The abstractions of the time series prediction library are illustrated in Figure 2.2. The resource signal
consists of the valueshzti = hzt�1; : : : ; zt�1; zt; zt+1; : : : ; zt+1i, wheret is the current time. The user
begins with ameasurement sequence, hzt�N ; : : : ; zt�2; zt�1i, which is a sequence ofN previous scalar
values that were collected at periodic intervals, and amodel templatewhich contains information about the
structure of the desired model. Although the user can create a model template himself, a function is also
provided to create a model template by parsing a sequence of strings such as command-line arguments.
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Figure 2.2: Abstractions of the time series prediction library.

The measurement sequence and model template are supplied to amodelerwhich will fit a modelof the
appropriate structure to the sequence and return the model to the user. The user can select the appropriate
modeler himself or use a provided function which chooses it based on the model template. The returned
model represents a fit of the model structure described in the model template to the measurement sequence.

To predict future values of the resource signal, the model creates apredictor.A predictor is a filter which
operates on a scalar-valuedmeasurement streamof signal samples as they arrive,zt; zt+1; : : :, producing
a vector-valuedprediction stream, [ẑt;t+1; ẑt;t+2; : : : ; ẑt;t+m]; [ẑt+1;t+2; ẑt+1;t+3; : : : ; ẑt+1;t+1+m]; : : :Each
new measurement generates predictions for what the nextm measurements will be, conditioned on the
fitted model and on all the measurements up to and including the new measurement.m can be different
for each step and the predictor can be asked for any arbitrary nextm values at any point. The predictor
can also produceerror estimatesfor its 1; 2; : : : ; m-step ahead predictions. For the linear models used in
this dissertation, an error estimate is a covariance matrix of the expected prediction errors. Capturing the
relationship between the different prediction errors is important, as we discuss in Chapter 5. Ideally, the
prediction errors will be normally distributed and so these estimates can serve to compute a confidence
interval for the prediction.

The measurement and prediction streams can also be supplied to anevaluator, which evaluates the
actual quality of the predictions independent of any particular predictor, producingerror metrics.The user
can compare the evaluator’s error metrics and the predictor’s error estimates to determine whether a new
model needs to be fitted.

2.5.2 Implementation

The time series prediction library is implemented in C++. To extend the basic framework shown in Fig-
ure 2.2 to implement a new model, one creates subclasses of model template, modeler, model and predictor,
and updates several helper functions. We implemented the nine different predictive Models and their corre-
sponding Modelers. Most of these models share a single Predictor implementation. All the models share a
single Evaluator implementation.

Models and modelers

The models we implemented are different kinds of linear time series models. The main idea behind linear
time series models is to treat the signal,hzti, as a realization of a stochastic process that can be modeled as
a white noise source driving a linear filter. The filter coefficients can be estimated from past observations of
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Figure 2.3: Linear time series model.

Model Notes
Simple Models

MEAN Long-range mean
LAST Last-value
BM(p) Mean over “best” window

Box-Jenkins Models
AR(p) Uses Yule-Walker
MA(q) Uses Powell

ARMA(p,q) Uses Powell
ARIMA(p,d,q) Captures non-stationarity, uses Powell

Self-similar Models
ARFIMA(p,d,q) Captures long-range dependence

Utility Models
REFIT<T> Auto-refitting model

Table 2.1: Currently implemented predictive models.

the signal, namely the measurement sequencehzt�N ; : : : ; zt�2; zt�1i of Figure 2.2. If most of the variability
of the signal results from the action of the filter, we can use its coefficients to estimate future signal values
with low mean squared error.

Figure 2.3 illustrates this decomposition. In keeping with the relatively standard Box-Jenkins nota-
tion [23], we represent the input white noise signal ashati and the output signal ashzti. On the right of
Figure 2.3 we see our partially predictable signalhzti, which exhibits some mean� and variance�2z . On the
left, we see our utterly unpredictable white noise signalhati, which exhibits a zero mean and a variance�2a.
In the middle, we have our fixed linear filter with coefficientsh ji. Each output valuezt is the sum of the
current noise inputat and all previous noise inputs, weighted by theh ji coefficients.

Given an observed output signalhzti, the optimum values for the coefficients j are those that minimize
�2a, the variance of the driving white noise signalhati. Notice that the one-step-ahead prediction given all the
data up to and including timet is ẑt;t+1 =

P1
j=0 jat�j , since the expected value ofat+1 = 0). The noise

signal consists simply of the one-step-ahead prediction errors and the optimal coefficient values minimize
the sum of squares of these prediction errors. In practice, the coefficients of the linear model are estimated
from a subset of the signal, namely the measurement sequence of figure 2.2. If the characteristics of the
signal change over time, then it will become necessary to refit the model.

The general form of the linear time series model is, of course, impractical, since it involves an infinite
summation using an infinite number of completely independent weights. Practical linear time series models
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use a small number of coefficients to represent infinite summations with restrictions on the weights, as well
as special casing the mean value of the signal,�. To understand these models, it is easiest to represent
the weighted summation as a ratio of polynomials inB, the backshift operator, whereBdzt = zt�d. For
example, we can writezt =

P1
j=1  jat�j +at aszt =  (B)at where (B) = 1+ 1B+ 2B+ : : :Using

this scheme, the models we examine in this chapter can be represented as

zt =
�(B)

�(B)(1� B)d
at + � (2.1)

where the different classes of models we examine in this chapter (AR, MA, ARMA, ARIMA, ARFIMA,
BM, and MEAN) constrain�(B), �(B) andd in different ways. In the signal processing domain, this kind
of filter is known as a pole-zero filter. The roots of�(B) are the zeros and the roots of�(B)(1 � B)d are
the poles. In general, such a filter can be unstable in that its outputs can rapidly diverge from the input
signal. This instability is extremely important from the point of view of the implementor of a resource
prediction system. Such a system will generally fit a model (choose the�(B) and�(B) coefficients, and
d) using somen previous observations. The model will then be “fed” the nextm observations and asked to
make predictions in the process. If coefficients are such that the filter is unstable, then it may explain then

observations very well, yet fail miserably and even diverge (and crash!) when used on them observations
after the fitting.

MEAN model: The MEAN model haszt = �, so all future values of the signal are predicted to be
the mean. This is the best predictor, in terms of minimum mean squared error, for a signal which has no
correlation over time—in other words, it is best if the signal is entirely white noise. The MEAN modeler
and model classes essentially do no work, while the MEAN predictor class maintains a running estimate of
the mean and variance of the signal.

LAST model: LAST models havezt = 1
�(B)at where�(B) has one coefficient, set to one. In other words,

zt = zt�1, so all future values are predicted to be the same as the last measured value. LAST is implemented
as a BM(1) model, which we describe next.

BM(p) models: BM(p) models havezt = 1
�(B)at where the�(B) hasN , N � p, coefficients, each set

to 1=N . This simply predicts the next signal value to be the average of the previousN values, a simple
windowed mean. The BM(p) modeler choosesN to minimize the one-step-ahead prediction error for the
measurement sequence. The BM(p) model simply keeps track of thisN and the BM(p) predictor implements
the windowed average.

AR(p) models: AR(p) models (purely autoregressive models) havezt =
1

�(B)at + � where�(B) hasp
coefficients. Intuitively, the output value is a�-weighted sum of thep previous output values. Thet + 1

prediction for a signal is the�-weighted sum of thep previous measurements. Thet + 2 prediction is the
�-weighted sum of thet + 1 prediction and thep� 1 previous measurements, and so on.

From the point of view of a system designer, AR(p) models are highly desirable since they can be fit
to data in a deterministic amount of time. In the Yule-Walker technique that we used, the autocorrelation
function is computed to a maximum lag ofp and then ap-wide Toeplitz system of linear equations is solved.
Even for relatively large values ofp, this can be done almost instantaneously.

MA( q) models: MA(q) models (purely moving average models) havezt = �(B)at where�(B) hasq
coefficients. Intuitively, the output value is the�-weighted sum of the current and theq previous input
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values. Thet+ 1 prediction of a signal is the�-weighted sum of theq previoust+ 1 prediction errors. The
t + 2 prediction is the�-weighted sum of the predictedt + 1 prediction error (zero) and theq � 1 previous
t + 1 prediction errors, and so on.

MA(q) models are a much more difficult proposition for a system designer since fitting them takes a
nondeterministic amount of time. Instead of a linear system, fitting a MA(q) model presents us with a
quadratic system. Our implementation, which is nonparametric (ie, it assumes no specific distribution for
the white noise source), uses the Powell procedure [105, 406–413] to minimize the sum of squares of thet+1

prediction errors. The number of iterations necessary to converge is nondeterministic and data dependent.

ARMA( p,q) models: ARMA(p,q) models (autoregressive moving average models) havezt =
�(B)
�(B)

at+ �

where�(B) hasp coefficients and�(B) hasq coefficients. Intuitively, the output value is the�-weighted
sum of thep previous output values plus the�-weighted sum of the current andq previous input values. The
t+1 prediction for a signal is the�-weighted sum of thep previous measurements plus the�-weighted sum
of theq previoust+ 1 prediction errors. Thet+ 2 prediction is the�-weighted sum of thet+ 1 prediction
and thep� 1 previous measurements plus the�-weighted sum of the predictedt+ 1 prediction error (zero)
and theq � 1 previous prediction errors, and so on.

By combining the AR(p) and MA(q) models, ARMA(p,q) models hope to achieve greater parsimony—
using fewer coefficients to explain the same signal. From a system designer’s point of view, this may be
important, at least in so far as it may be possible to fit a more parsimonious model more quickly. Like MA(q)
models, however, ARMA(p,q) models take a nondeterministic amount of time to fit to data, and we use the
same Powell minimization procedure to fit them.

ARIMA( p,d,q) models: ARIMA( p,d,q) models (autoregressive integrated moving average models) im-
plement Equation 2.1 ford = 1; 2; : : : Intuitively, the(1� B)d component amounts to ad-fold integration
of the output of an ARMA(p,q) model. Although this makes the filter inherently unstable, it allows for
modeling nonstationary signals if they change smoothly. Such signals can vary over an infinite range and
have no natural mean. Although most resource signals can not vary infinitely, they often don’t have a natural
mean, either.

ARIMA( p,d,q) models are fit by differencing the measurement sequenced times and fitting an
ARMA(p,q) model as above to the result.

ARFIMA( p,d,q) models: ARFIMA(p,d,q) models (autoregressive fractionally integrated moving average
models) implement Equation 2.1 for fractional values ofd, 0 < d < 0:5. By analogy to ARIMA(p,d,q)
models, ARFIMAs are fractionally integrated ARMA(p,q) models. The details of fractional integration [63,
55] are not important here other than to note that(1 � B)d for fractionald is an infinite sequence whose
coefficients are functions ofd. The idea is that this infinite sequence captures long range dependence while
the ARMA coefficients capture short range dependence [15]. As we note in Chapter 3, host load exhibits
long-range dependence, even after differencing, thus ARFIMAs may prove to be beneficial models.

To fit ARFIMA models, we use Fraley’s Fortran 77 code [49], which does maximum likelihood estima-
tion of ARFIMA models following Haslett and Raftery [61]. This implementation is also used by commer-
cial packages such as S-Plus. We truncate(1�B)d at 300 coefficients and use the same representation and
prediction engine as with the other models.

REFIT<T> model: The REFIT<T> modeler, model, and predictor are C++ template classes that are
parameterized by some modeler class and produce models of the underlying type that will automatically
refit themselves at regular, user-specified, intervals. For example,
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RefittingModeler<ARModeler>::Fit(seq,seqlen,modeltemplate,interval)

will return an AR model whose predictor will automatically fit a new AR model and update itself after every
interval new samples.

Note on Powell’s method: The choice of Powell’s method, which we use in our implementations of the
MA, ARMA and ARIMA models is a compromise. Powell’s method does not require derivatives of the
function being minimized, but operates more slowly than other methods which can make use of derivatives.

We use this method because we want to minimize�2a (the sum of squared prediction errors) directly.
Other, faster methods to fit MA, ARMA, and ARIMA models exist. Instead of minimizing�2a, these methods
maximize the likelihood,which is a function of�2a whose form is determined by the distributionof the errors.
By assuming a particular distribution, a function with known derivatives is produced and this allows the use
of faster function minimization methods. However, we found that assuming a particular error distribution
was rarely valid for host load and network flow bandwidth, two signals that were of considerable interest to
us. The prediction errors of linear time series models on real signals are rarely distributed according to a
convenient analytic distribution, although they usually are quite white (uncorrelated) and have low�2a.

Predictors

As we noted earlier, the MEAN, LAST, and BM(p) models have corresponding simple predictors. The AR,
MA, ARMA, ARIMA, and ARFIMA models share a single predictor implementation, called the eta-theta
predictor. This predictor maintains a copy of the model coefficients�(B) = �(B)(1�B)d, �(B) as before,
�, and�2a. In addition, it maintains prediction state in the form of the predicted next signal value, a queue
that holds the lastp + d (d = 300 for ARFIMA models) measurements, and a queue the holds the last
q prediction errors. When the next measurement becomes available, it is pushed onto the measurement
queue, its corresponding predicted value’s error is pushed onto the error queue, and the model is evaluated
(O(p + d + q) operations) to produce a new predicted next signal value. We refer to this assteppingthe
predictor. At any point, any predictor can be queried for the predicted nextk values of the signal, along with
their expected mean squared errors (O(k(p+ d+ q) operations)). The user can request the expected mean
squared errors for individual predictions (eg,ẑt+1), or for the covariance matrix or autocovariance sequence
of a sequence of predictions. The covariances are needed if the final result is to be some function of the
individual predictions in the sequence.

Evaluator

The evaluator we implemented measures the following error metrics of a predictor. For each lead time,
the minimum, median, maximum, mean, mean absolute, and mean squared prediction errors are computed.
Of these, the mean squared prediction errors are especially useful, since they can be compared against the
predictor’s own estimates to determine whether a new model needs to be fitted. Of course, a new model can
also be fitted if the prediction error is simply too high, or for any reason, at any time.

The one-step-ahead prediction errors (ie,a1t+i, i = 1; 2; : : : ; n) are also subject to IID and normality tests
as described by Brockwell and Davis [25, pp. 34–37]. IID tests include the fraction of the autocorrelations
that are significant, the Portmanteau Q statistic (the power of the autocorrelation function), the turning point
test, and the sign test. Recall that with an adequate model, the prediction errors should be uncorrelated
(white) noise. If an IID test finds significant correlation in the errors, then a new model can be fitted
to attempt to capture this correlation. The evaluator also tests if the errors are distributed normally by
computing theR2 value of a least-squares fit to a quantile-quantile plot of the errors versus a sequence of
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normals of the same mean and variance. If theR2 is high, then using the simplifying assumption that the
errors are normally distributed is well founded.

2.5.3 Example

The following is a code fragment to show how the time series prediction library can be used. In the code,
we fit an ARMA(2,2) model to the first half of the sequence.seq and then do 8-step-ahead predictions on
the second half of the sequence.

ModelTemplate *template;
Model *model;
Predictor *predictor;
Evaluator *evaluator;
double predictions[8], errorestimates[8];

// fit model to 1st half and create predictor
template = ParseModel(3,{"ARMA","2","2"});
model = FitThis(&(seq[0]),seqlen/2,*template);
predictor = model->MakePredictor();
eval = new Evaluator;

// bring predictor state up to date
Prime(predictor,&(seq[0]),seqlen/2);

evaluator->Initialize(8);

// 8-ahead predictions for rest of sequence
for (i=seqlen/2+1;i<seqlen;i++) {

// Step the new observation into the predictor - this
// returns the current one step ahead prediction, but
// we’re just ignoring it here.
predictor->Step(seq[i]);
// Ask for predictions + errors from 1 to 8 steps into the future
// given the state in the predictor at this point
predictor->Predict(8,predictions);
predictor->ComputeVariances(8,errorestimates);
// Send output to evaluator
evaluator->Step(seq[i],predictions);
// do something useful with predictions here

}

// Get final stats from evaluator
evaluator->Drain();
PredictionStats *predstats = evaluator->GetStats();

To use a different model, all that is needed is to change the arguments to theParseModel call, which could
just as easily come from the command line.ParseModel andFitThis are helper functions to simplify
dealing with the large and extensible set of available model templates, modelers, models, and predictors. It
is also possible to invoke modelers directly, with or without model templates.

2.5.4 Parallel cross-validation system

Using the time series prediction library, we implemented a parallel cross-validation system for studying the
predictive power of models on traces of measurement data. The user supplies a measurement trace and a file
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containing a sequence of testcase templates. A testcase template contains ranges of valid values for model
classes, numbers of model parameters, lengths of sequences to fit models to, and lengths of subsequent
sequences to test the fitted models on.

As the system runs, testcases are randomly generated by a master program using the template’s limits
on valid values and parceled out to worker processes using PVM [51]. The workers run code similar to that
of Section 2.5.3 to evaluate a testcase. Essentially, the result is a set of error metrics for a randomly chosen
model fit to a random section of the trace and tested on a subsequent random section of the trace. When
a worker finishes evaluating a testcase, it sends the resulting set of error metrics back to the master, which
prints them in a form suitable for importing into a database table for further study.

Because the testcases are randomly generated, the database of testcases can be used to draw unbiased
conclusions about the absolute and relative performance of particular prediction models on particular kinds
of measurement sequences.

2.5.5 Performance

In implementing an on-line resource prediction system, it is obviously important to know the costs involved
in using the various models supported by the time series prediction library. For example, if the measurement
stream produces data at a 10 Hz rate and the predictor requires 200 ms to produce a prediction, then it will
fall further and further behind, producing “predictions” for times that are increasingly further in the past.
Clearly, such a predictor is useless. Another predictor that requires 100 ms will give up-to-date predictions,
but at the cost of saturating the CPU of the machine where it is running. A predictor that requires 1 ms or
less would clearly be desirable since it would consume only 1% of the CPU. Similarly, the cost of fitting a
model and the measurement rate determines how often we can refit the model. At the 10 Hz rate, a model
that takes 10 seconds to fit cannot be fit any more often than every 100 measurements, and only then if we
are willing to saturate the CPU.

We measured the costs, in terms of system and user time required to (1) fit a model and create a predictor
and (2) step one measurement into the predictor producing one set of 30-step-ahead predictions. The ma-
chine we used is a 500 MHz Alpha 21164-based DEC personal workstation. Because the time to fit a model
is dependent on the length of the measurement sequence, while the prediction time is not, we measured the
costs for two different measurement sequence lengths, 600 samples and 2000 samples. The measurement
sequence used was a representative host load trace from among those described in Chapter 3.

The results are shown in Figures 2.4 and 2.5. Each figure contains six plots, one for the (a) MEAN,
LAST, and AR models, and one each for the remaining (b) BM, (c) MA, (d) ARMA, (e) ARIMA, and (f)
ARFIMA models. The REFIT<T> variants were not measured, although their performance can certainly
be derived from the measurements we did take. For each model, we plot several different and interesting
combinations of parameter values. For each combination, we plot two bars. The first bar (Fit/Init) plots
the time to fit the model and produce a predictor, while the second bar (Step/Predict) plots the time to step
that predictor. Each bar is the average of 30 trials, each of which consists of one Fit/Init step and a large
number of Step/Predict steps. The y axis on each plot is logarithmic. We replicate some of the bars from
graph to graph to simplify comparing models across graphs, and we also draw horizontal lines at roughly 1
ms and 100 ms, which are the Fit/Init times of AR(16) and AR(512) models, respectively. 1 ms is also the
Step/Predict time of an AR(512) predictor.

There are several important things to note when examining Figures 2.4 and 2.5. First, the inclusion of
LAST and MEAN on the (a) plots provide measures of the overhead of the predictor and modeler abstrac-
tions, since LAST’s predictor and MEAN’s modeler do hardly any work. As we can see, the overhead of
the abstractions are quite low and on par with virtual function calls, as we might expect.

The second important observation from the figures is that AR models, even with very high order, are
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(a) AR Models (b) BM Models

(c) MA Models (d) ARMA Models

(e) ARIMA Models (f) ARFIMA Models

Figure 2.4: Timing of various prediction models, 600 sample fits.

quite inexpensive to fit. An AR(512) fit on a 2000 element sequence takes about 100 ms. In fact, ignoring
LAST and MEAN, the only real competition to even the AR(512) comes from very low order versions of
the other models. The downside of high order AR models is that the Step/Predict time tends to be much
higher than that of lower order versions of the more complex models. For example, the predictor for an
ARIMA(8,3,8) model operates in 1/100 the time of an AR(512). This is because the number of operations
an eta-theta predictor performs is linear in the number of model parameters. If very high measurement rates
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(a) AR Models (b) BM Models

(c) MA Models (d) ARMA Models

(e) ARIMA Models (f) ARFIMA Models

Figure 2.5: Timing of various prediction models, 2000 sample fits.

are important, these more parsimonious models may be preferable. Interestingly, the ARFIMA models also
have very expensive predictors. This is because, although the model captures long-range dependence very
parsimoniously in the form of thed parameter, we multiply out the(1�B)d term to generate 300 coefficients
in the eta-theta predictor. It is not clear how to avoid this.

A final observation is that the MA, ARMA, and ARIMA models, quite surprisingly, are considerably
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Figure 2.6: The mirror abstraction (a) and implementation (b).

more expensive to fit than the much more complex ARFIMA models. This is because we use a highly-
tuned maximum likelihood code that assumes a normal error distribution to fit the ARFIMA model. The
MA, ARMA, and ARIMA models are fit without making this assumption using a function optimizer which
does not require derivatives. We used this approach because experimentation with Matlab, which uses a
maximum likelihood approach, showed that the assumption was rarely valid for traces we were interested
in. Maximum likelihood based modelers for MA, ARMA, and ARIMA models would reduce their Fit/Init
times to a bit below those of the ARFIMA models. However, fitting even high-order AR models should still
be cheaper because AR(p) models are fit by solving ap-diagonal Toeplitz while the other models require
some form of function optimization over their parameters.

2.6 Mirror communication template library

As we began to implement an on-line resource prediction service for host load and contemplated implement-
ing another for network bandwidth, we discovered that we were often rewriting the same communication
code in each new program. As the number of such prediction components began to grow and we sought
to incorporate more sophisticated communication transports such as multicast IP, the situation became un-
tenable. Stepping back, we factored out the communication requirements of the prediction components and
decided to implement support for them separately.

2.6.1 Motivation

Consider Figure 2.1, which shows a high level view of how the components of an on-line prediction ser-
vice communicate. Notice that each component can is roughly similar in how it communicates with other
components. It receives data from one or more inputdata streamsand sends data to one or more output
data streams. When a new data item becomes available on some input data stream, the component performs
computation on it and forwards it to all of the output data streams. In addition to this data path the compo-
nent also providesrequest-response controlwhich operates asynchronously. We refer to this abstraction as a
mirror (with no computation, input data is “reflected” to all of the outputs) and illustrate it in Figure 2.6(a).

We wanted to be able to implement the communication a mirror performs in different ways depending
on where the components are situated and how many there are. For example, the predictor component in
Figure 2.1 accepts a stream of measurements from a sensor and produces a stream of predictions which
are consumed by the buffer and the evaluator. In addition, the evaluator and the user can asynchronously
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request that the predictor refit its model. Applications may connect at any time to receive the prediction
stream. If we colocate all of the components on a single machine, Unix domain sockets or even pipes
might be the fastest communication mechanism to use. If the components are on different machines—for
example, it may be impossible to locate any components other than the sensor on a network router—TCP-
based communication may be preferable. If a large number of applications are interested in the prediction
stream, it may be necessary to use multicast IP to keep network traffic low. This is the kind of flexibility we
expected from our mirror implementation.

2.6.2 Implementation

Our mirror implementation, illustrated in Figure 2.6(b), is a C++ template class which is parameterized at
compile-time by handlers for stream input and for request/response input. Additionally, it is parameterized
by handlers for new connection arrivals for streams and for request/response traffic, although the default
handlers are usually used for this functionality. Parameterized stream input and request-response handlers
are also supplied for serializable objects, which can be used to hide all the details of communication from
the computation that a mirror performs for data or control. Beyond this, there are other template classes and
default handler implementations to simplify using a mirror. For example, our prediction mirror implemen-
tation uses one of these templates,FilterWithControl<> , to simplify its design:

class Measurement : public SerializableInfo {...};
class PredictionResponse : public SerializableInfo {...};
class PredictionReconfigurationRequest : public SerializableInfo {...};
class PredictionReconfigurationReply : public SerializableInfo {...};

class Prediction {
...
public:

static int Compute(Measurement &measure,
PredictionResponse &pred);

...
}

class Reconfiguration {
...
public:

static int Compute(PredictionReconfigurationRequest &req,
PredictionReconfigurationResponse &resp);

...
}

typedef FilterWithControl<
Measurement,
Prediction,
PredictionResponse,
PredictionReconfigurationRequest,
Reconfiguration,
PredictionReconfigurationResponse

> PredictionMirror;

To implement serialization, the classes descended fromSerializeableInfo implement methods for
getting their packed size and for packing and unpacking their data to and from a buffer object. The im-
plementer of the prediction mirror does not write any communication code, which is all provided in the
FilterWithControl template which ultimately expands into a mirror template.
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As shown in Figure 2.6(b), the heart of a mirror is a select statement that waits for activity on the file
descriptors associated with the various input streams, request/response ports, and ports where new connec-
tions arrive. Streams can also originate from in-process sources, and so the select includes a timeout for
periodically calling back to these local sources to get input stream data.

When the select falls through, all local callbacks that are past due are executed and their corresponding
stream handler is executed on the new data item. Next, each open file descriptor that has a read pending
on it is passed to its corresponding stream, request/response, or new connection handler. A stream handler
will unserialize an input data item from the stream, perform computation on it yielding an output data item,
which it passes to the mirror’s data forwarder component.

The data forwarder will then serialize the item to all the open output streams. If a particular output stream
is not writable, it will buffer the write and register a handler with the selector to be called when the stream
is once again writable. This guarantees that the mirror’s operation will not block due to an uncooperative
communication target.

A request/response handler will unserialize the input data item from the file descriptor, perform compu-
tation yielding an output data item, and then serialize that output data item onto the same file descriptor. A
new connection handler will simply accept the new connection, instantiate the appropriate handler for it (ie,
stream or request response) and then register the handler with the connection manager.

The mirror class knows about a variety of different transport mechanisms, in particular, TCP, UDP
(including multicast IP), Unix domain sockets, and pipes or file-like entities. The user asks the mirror to
begin listening at a particular port for data or control messages either through an explicit mirror interface or
by usingEndPoint s, which are objects that encapsulate all of a mirror’s available transport mechanisms
and can parse a string into an internal representation of a particular transport mechanism.

2.6.3 Example

Here is how the prediction server instantiates a prediction mirror that will receive measurements from a host
named “pyramid” using TCP at port 5009, support reconfiguration requests via TCP at port 5010, and send
predictions to all parties that connect via TCP at port 5011 or listen via multicast IP at address 239.99.99.99,
port 5012, and also to standard out:

PredictionMirror mirror;
EndPoint tcpsource, tcpserver, tcpconnect
EndPoint multicasttarget, stdouttarget;

tcpsource.Parse("source:tcp:pyramid:5009");
tcpserver.Parse("server:tcp:5010");
tcpconnect.Parse("connect:tcp:5011");
multicasttarget.Parse("target:udp:239.99.99.99:5012");
stdouttarget.Parse("target:stdio:stdout");

mirror.AddEndPoint(tcpsource);
mirror.AddEndPoint(tcpserver);
mirror.AddEndPoint(tcpconnect);
mirror.AddEndPoint(multicasttarget);
mirror.AddEndPoint(stdouttarget);

mirror.Run();

In order to simplify writing clients for mirrors, we also implemented 3 reference classes, one for stream-
ing input, one for streaming output, and one for request/response transactions. Here is how a client would
begin to receive the multicasted prediction stream produced by the mirror code above:
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EndPoint source;
StreamingInputReference<PredictionResponse> ref;
PredictionResponse pred;

source.Parse("source:udp:239.99.99.99:5012");
ref.ConnectTo(source);
while (...) {

ref.GetNextItem(pred);
pred.Print();

}
ref.Disconnect();

Similarly, here is the code that a client might use to reconfigure the prediction mirror via its TCP re-
quest/response interface, assuming the mirror is running on mojave:

EndPoint source;
Reference<PredictionReconfigurationRequest,

PredictionReconfigurationResponse> ref;
PredictionReconfigurationRequest req(...);
PredictionReconfigurationResponse resp;

source.Parse("source:tcp:mojave:5010");
ref.ConnectTo(source);
ref.Call(req,resp);
resp.Print();

2.7 Prediction components

Using the functionality implemented in the sensor libraries of Section 2.4, the time series prediction li-
brary of Section 2.5, and the mirror communication template library of Section 2.6, we implemented a set
of prediction components. Each component is a program that implements a specific RPS function. On-line
resource prediction systems are implemented by composing these components. The communication connec-
tivity of a component is specified via command-line arguments, which means the location of the components
and what transport any two components use to communicate can be determined at startup time. In addition,
the components also support transient connections to allow run-time reconfiguration and to permit multiple
applications to use their services. In Section 2.8.1 we compose an on-line host load prediction system out
of the components we describe in this section.

We implemented a large set of prediction components, which are shown in Table 2.2. They fit into five
basic groups: host load measurement, flow bandwidth measurement, measurement management, stream-
based prediction, and request/response prediction.

The host load measurement and flow bandwidth measurement groups implement sensors and tools for
working with them. In each group, the sensor component (eg, loadserver, flowbwserver) generates a stream
of sensor-specific measurements, while the other components provide mechanisms to control the sensor, read
the measurement streams, buffer the measurement streams to provide asynchronous request/response access
to the measurements, and, finally, to convert sensor-specific measurements into a generic measurement type.
The remainder of the components use these generic measurement streams.

The measurement management group provides tools for receiving generic measurement streams, buffer-
ing generic measurements, and accessing such buffers.
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Component Function
Host Load Measurement

loadserver Generates stream of host load measurements
loadclient Prints loadserver’s stream
loadreconfig Changes a loadserver’s host load measurement rate
loadbuffer Buffers measurements with request/responseaccess
loadbufferclient Provides access to a loadbuffer
load2measure Converts a load measurement stream to generic measurement stream

Flow Bandwidth Measurement
flowbwserver Generates stream of flow bandwidth measurements using Remos
flowbwclient Prints flowbwserver’s stream
flowbwreconfig Reconfigures a running flowbwserver
flowbwbuffer Buffers a flow bandwidth measurement stream with request/responseaccess
flowbwbufferclient Provides access to a flowbwbuffer
flowbw2measure Converts a flow bandwidth measurement stream to generic measurement stream

Measurement Management
measureclient Prints a generic measurement stream
measurebuffer Buffers generic measurements with request/responseaccess
measurebufferclient Provides access to a measurebuffer

Stream-based Prediction
predserver Computes predictions for a generic measurement stream
predservercore Performs actual computations to contain failures
predreconfig Reconfigures a running predserver
evalfit Evaluates a running predserver and reconfigures it when necessary
predclient Prints a prediction stream
predbuffer Buffers a prediction stream with request/responseaccess
predbufferclient Provides access to a predbuffer

Request/Response Prediction
pred reqrespserver Computes “one-off” predictions for request/response clients
pred reqrespclient Makes “one-off” prediction requests on a predreqrespserver

Table 2.2: Prediction components implemented using RPS libraries.

The stream-oriented prediction group provides continuous prediction services for generic measurement
streams. Predserver is the main component in this group. When started up, it retrieves a measurement se-
quence from a measurebuffer, fits the desired model to it, and then creates a predictor. As new measurements
arrive in the stream, they are passed through the predictor to formm-step-ahead predictions and correspond-
ing estimates of prediction error. These operations are similar to those described in Section 2.5.3. The actual
work is done by a subprocess, predservercore. This limits the impact of a crash caused by a bad model fit.
If predservercore crashes, predserver simply starts a new copy.

Predserver also provides a request/response control interface for changing the type of model, the length
of the sequence to which the model is fit, and the number,m, of predictions it will make. This interface can
be used by the user through the predreconfig program. Alternatively, and even at the same time, evalfit can
use the interface. Evalfit receives a generic measurement stream and a prediction stream, and continuously
evaluates the quality of the predictions using an evaluator as discussed in Section 2.5.2. When the prediction
quality exceeds limits set by the user, evalfit will force the predserver it is monitoring to refit the model.

The remaining components in the stream-oriented prediction services group simply provide buffering
and client functionality for prediction streams.

The request/response prediction group provides classic client/server access to the time series prediction
library. Predreqrespclient sends a measurement sequence and a model template to predreqrespserver,



2.8. PERFORMANCE 39

which fits a model and return predictions for the nextm values of the sequence.
It is important to note that the set of of prediction components is not fixed. It is quite easy to construct

new components using the libraries we described earlier. Indeed, we constructed additional components for
the performance evaluation we describe in the next section.

2.8 Performance

The RPS-based prediction components described in the previous section are composed at startup time to
form on-line prediction systems. To evaluate the performance of RPS for constructing such systems, we
measured the RPS-based host load prediction system that is used in Chapters 5 and 6. We measured this
representative system’s performance in terms of the timeliness of its predictions, the maximum measure-
ment rates that can be achieved, and the additional computational and communication load it places on the
distributed system. In addition to the composed system, we also constructed a monolithic system using the
RPS libraries directly and measured the maximum measurement rates it could support.

The conclusion of our study is that, for interesting measurement rates, both the composed and the mono-
lithic systems can provide timely predictions using only tiny amounts of CPU time and network bandwidth.
In addition, the maximum achievable measurement rates are 2 to 3 orders of magnitude higher than we
currently need.

It is important to note that RPS is a toolkit for resource prediction, and, because of the inherent flexi-
bility of such a design, it is difficult to measure RPS’s performance for creating on-line resource prediction
systems in a vacuum. Prediction components can be composed in many different ways to construct on-
line resource prediction systems and the RPS libraries enable the construction of additional components or
increased integration of functionality. Furthermore, prediction components can communicate in different
ways. Finally, different resources require different measurement rates and predictive models. More com-
plex predictive models require more computational resources while higher measurement rates require more
computational and communication resources.

Because of the intractability of attempting to characterize this space, we instead focused on measuring
the performance of the RPS-based on-line host load prediction system used in this thesis. The system is
representative of RPS-based systems in the sense that it implements the functionality of Figure 2.1 using
the prediction components. Furthermore, it is also a realistic system. It uses a predictive model that we
have found appropriate for host load prediction, as discussed in Chapter 4. Finally, it is a fairly widely used
system which has been distributed with Remos [82], and is currently used in QuO [145].

2.8.1 Host load prediction system

Figure 2.7 shows the configuration of prediction components used for host load prediction. The boxes in
the figure represent prediction components while dark arrows represent stream communication between
components, and symmetric arrows represent request/response communication between components. The
arrows are annotated with communication volumes per cycle of operation of the system for streams and per
call for request/response communication.s is the number of measurements being requested asynchronously
from the measurebuffer whilem is the number of steps ahead for which predictions are made andw is
the number of predictions being requested from the predbuffer. Notice the similarity of this system to the
high-level view of Figure 2.1.

The system works as follows. The loadserver component periodically measures the load on the host
on which it is running using the GetLoadAvg library described in Section 2.4. Each new measurement is
forwarded to any attached loadclients and also to load2measure, which converts it to a generic measurement
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Figure 2.7: Online host load prediction system composed out of the RPS prediction components described
in Section 2.7.

form and forwards it to measurebuffer. Measurebuffer buffers the lastN measurements and provides re-
quest/responseaccess to them. It also forwards the current measurement to predserver and evalfit. Predserver
consumes the measurement and produces anm-step-ahead prediction using its subprocess, predservercore.
It forwards the prediction to predbuffer and to evalfit. Evalfit continuously compares predserver’s predic-
tions with the measurements it receives from measurebuffer and computes its own assessment of the quality
of the predictions. For each new measurement, it compares its assessment with the requirements the user
has specified as well as with the predictor’s own estimates of their quality. When quality limits are ex-
ceeded it calls predserver to refit the model. Predserver’s predictions also flow to predbuffer, which provides
request/response access to some number of previous predictions and also forwards the predictions to any
attached predclients. Predbufferclients can asynchronously request predictions from predbuffer. Of course,
applications can decide, at any time, to access the prediction stream or the buffered predictions in the manner
of predclient and predbufferclient.

Each measurement that loadserver produces is timestamped. This timestamp is passed along as the
measurement makes its way through the system and is joined with a timestamp for when the corresponding
prediction is completed, and for when the prediction finally arrives at an attached predclient. We shall
use these timestamps to measure the latency from when a measurement is made to when its corresponding
prediction is available for applications.

The system can be controlled in various ways. For example, the user can change loadserver’s mea-
surement rate, the predictive model that predserver uses, and the time horizon for predictions. We used
the control over loadserver’s measurement rate to help determine the computational and communication
resources the system uses.

So far, we have not specified where each of the components runs or how the components communicate.
As we discussed in the previous section, RPS lets us defer these decisions until startup time and even run-
time. In the study we describe in this section, we ran all of the components on the same machine and arrange
for them to communicate using TCP. The machine we used is a 500 MHz Alpha 21164-based DEC personal
workstation.

This configuration of prediction components is an interesting one to measure. It is reasonable to run all
the components on a single machine since relatively low measurement rates and reasonably simple predictive
models are sufficient for host load prediction, as we will show in Chapters 3 and 4, respectively. It would
be more efficient to use a local IPC mechanism such as pipes or Unix domain sockets to communicate
between components. Indeed, a production host load prediction system might very well be implemented
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as a single process. We briefly discuss the performance of such an implementation in Section 2.8.3. TCP
is interesting to look at because it gives us some idea of how well an RPS-based system might perform
running on multiple hosts, which might be desirable, for, say, network bandwidth prediction. Furthermore,
if RPS can achieve reasonable performance levels in such a flexible configuration, it is surely the case that a
performance-optimized RPS-based system would do at least as well.

The predictive model that is used is an AR(16) fit to 600 samples and evalfit is configured so that model
refitting does not occur. Predictions are made 30 steps into the future. The default measurement rate is 1
Hz. This model and rate is appropriate for host load prediction, as we discuss in Chapters 3 and 4.

The following illustrates how the various prediction components are started:

% loadserver 1000000 server:tcp:5000 connect:tcp:5001 &
% loadclient source:tcp:‘hostname‘:5001 &
% load2measure 0 source:tcp:‘hostname‘:5001 connect:tcp:5002 &
% measurebuffer 1000 source:tcp:‘hostname‘:5002

server:tcp:5003 connect:tcp:5004 &
% predserver source:tcp:‘hostname‘:5004

source:tcp:‘hostname‘:5003 server:tcp:5005 connect:tcp:5006 &
% evalfit source:tcp:‘hostname‘:5004 source:tcp:‘hostname‘:5006

source:tcp:‘hostname‘:5005
30 999999999 1000.0 999999999 600 30 AR 16 &

% predbuffer 100 source:tcp:‘hostname‘:5006 server:tcp:5007
connect:tcp:5008 &

% predclient source:tcp:‘hostname‘:5008 &

The use of measurebufferclient and predbufferclient are not shown above since these are run only intermit-
tently.

2.8.2 Limits

Before we present the details of the performance of the host load prediction system, it is a good idea to
understand the limits of achievable performance on this machine. Recall from Section 2.4 that the host
load sensor library requires only about 1.6�s to acquire a sample. As for the cost of prediction, Figure 2.4
indicates that fitting and initializing an AR(16) model on 600 data points requires about 1 ms of CPU time,
with a step/predict time of about 100�s. The computation involved in evalfit, load2measure, and the various
buffers amounts to about 50�s, thus the total computation time per cycle is151:6 �s. If no communication
was involved, we would expect the prediction system to operate at a rate no higher than 6.6 KHz.

However, the prediction system also performs communication. Examination of Figure 2.7 indicates
that, for 30-step-ahead (m = 30) predictions, eight messages are sent for each cycle. There are 3 28 byte
messages, 2 52 byte messages, and 3 536 byte messages. The measured bandwidths of the host for messages
of this size are 2.4 MB/s (28 bytes), 4.2 MB/s (52 bytes), and 15.1 MB/s (536 bytes). Therefore the lower
bound transfer times for these messages are 11.7�s (28 bytes), 12.4�s (52 bytes), and 35.5�s (536 bytes).
The total communication time per cycle is therefore at least(3)11:7+ (2)12:4+ (3)35:5 = 166:4 �s, and
the total time per cycle is at least151:6+ 166:4 = 318 �s, which suggests a corresponding upper bound on
system’s rate of about 3.1 KHz.

It is important to note that these rates are far in excess of the 1 Hz rate we expect from a host load
prediction system, or even the 14 Hz peak rate for our Remos-based network sensor. What these high rates
suggest, however, is that, for rates of interest to us, we can expect the prediction system to use only a tiny
percentage of the CPU. In terms of communication load, we will only place(3)28+(2)52+(3)536 = 1796

bytes onto the network per cycle. At a rate of 14 Hz, this amounts to about 25 KB/s of traffic.
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(a) (b)

Figure 2.8: Prediction latency as a function of measurement rate: (a) 95% confidence interval of mean
latency, (b) Minimum, median, maximum latency

Of course, these are the upper limits of what is possible. We would expect that overheads of the mirror
communication template library and the data copying implied by the TCP communication we use to result
in lower performance levels.

The host we evaluated the system on has a timer interrupt rate of 1024 Hz, which means the all mea-
surement rates in excess of this amount to “as fast as possible.” This rate also results in a clock accuracy of
approximately one millisecond.

2.8.3 Evaluation

We configured the host load prediction system so that the model will be fit only once, and thus measured the
system in steady state. We measured the prediction latency, communication bandwidth, and the CPU load
as functions of the measurement rate, which we swept from 1 Hz to 1024 Hz in powers of 2. We found that
the host load prediction system can sustain measurement rates of 730 Hz with mean and median prediction
latencies of around 2 ms. For measurement rates that are of interest to us, such as the 1 Hz rate for load and
the 14 Hz for flow bandwidth, the additional load the system places on the machine is minimal.

Prediction latency

In an on-line prediction system, the timeliness of the predictions is paramount. No matter how good a
prediction is, it is useless if if it does not arrive sufficiently earlier than the measurement it predicts. We
measured this timeliness in the host load prediction system as the latency from when a measurement be-
comes available to when the prediction it generates becomes available to applications that are interested in
it. This is the latency from the loadserver component to the predclient component in Figure 2.7.

The prediction latency should be independent of the measurement rate until the prediction system’s
computational or communication resource demands saturate the CPU or the network. Figure 2.8 shows that
this is indeed the case. Figure 2.8(a) plots the 95% confidence interval for the mean prediction latency as
a function of increasing measurement rates. We do not plot the latency for the 1024 Hz rate since at this
point the CPU is saturated and the latency increases with backlogged predictions. Up to this point, the mean
prediction latency is roughly 2 ms.

Figure 2.8(b) plots the minimum, median, and maximum prediction latencies as a function of increasing



2.8. PERFORMANCE 43

(a) (b)

(c) (d)

Figure 2.9: CPU load produced by system. The measurement rate is swept from 1 Hz to 1024 Hz. (a) shows
total percentage of CPU used over time, (b) is the same as (a) but includes operational details, (c) shows
user and system time, (d) shows load average.

measurement rate. Once again, we have elided the 1024 Hz rate since latency begins to grow with backlog.
The median latency is 2 ms, while the minimum latency is at 1 ms, which is the resolution of the timer we
used. The highest latency we saw was 33 ms.

Resource usage

In addition to providing timely predictions, an on-line resource prediction system should also make minimal
resource demands. After all, the purpose of the system is to predict resource availability for applications,
not to consume the resources for itself.

To measure the CPU usage of our representative host load prediction system, we did the following.
First, we started two resource monitors, vmstat and our own host load sensor. Vmstat is run every second
and prints the percentage of the last second that has been charged to system and user time. Our host load
sensor measures the average run queue length every second. After the sensors were started, we started the
prediction system at its default rate of 1 Hz and let it quiesce. Next, we started a predclient and let the
system quiesce. Then, we swept the measurement rate from 1 Hz to 1024 Hz in powers of 2. For each of
the 10 rates, we let the system quiesce. Finally, we reset the rate to 1 Hz. Figure 2.9 shows plots of what the
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Rate (Hz) Bytes/sec
1 1796
2 3592
4 7184
8 14368
16 28736
32 57472
64 114944
128 229888
256 459776
512 919552
1024 1839104

Table 2.3: Bandwidth requirements as a function of measurement rate.

sensors recorded over time.
Figure 2.9(a) shows the percentage of the CPU that was in use over time, as measured by vmstat.

Figure 2.9(b) is the same graph, annotated with the operational details described above. Figure 2.9(c) breaks
down the CPU usage into its system and user components. The system component is essentially the time
spent doing TCP-based IPC between the different components. Figure 2.9(d) shows the output of the load
average sensor. When the load measured by this sensor exceeds one, we have saturated the CPU.

There are several important things to notice about Figure 2.9. First, we can sustain a measurement rate
of between 512 Hz and 1024 Hz on this machine. Interpolating, it seems that we can sustain about a 730 Hz
rate using TCP-based IPC, or about 850 Hz ignoring the system-side cost of IPC. While this is nowhere near
the upper bound of 3.1 KHz that we arrived at in Section 2.8.2 , it is still much faster than we actually need
for the purposes of host load prediction (1 Hz) and than the limits of our network flow bandwidth sensor (14
Hz).

In Section 2.8.3, we compare the maximum rate achievable by this composed host load prediction system
to a monolithic system. The monolithic system achieves much higher rates overall, and those rates are closer
to the upper bound.

A second observation is that for these interesting 1 and 14 Hz rates, CPU usage is quite low. At 1 Hz, it
is around 2% while at 16 Hz (closest rate to 14 Hz) it is about 5%. For comparison, the “background” CPU
usage measured when only running the vmstat probe is itself around 1.5%. Figure 2.9(d) shows that this is
also the case when measured by load average.

Table 2.3 shows the bandwidth requirements of the system at the different measurement rates. To un-
derstand how small these requirements are, consider a 1 Hz host load prediction system running on each
host in the network and multicasting its predictions to each of the other hosts. Approximately 583 hosts
could multicast their prediction streams in 1 MB/s of sustained traffic, with each host using only 0.5% of
its CPU to run its prediction system. Alternatively, 42 network flows measured at the maximum rate could
be predicted. If each host or flow only used the network to provided asynchronous request/response ac-
cess to its predictions, many more hosts and flows could be predicted. For example, if prediction requests
from applications arrived at a rate of one per host per second, introducing 552 bytes of traffic per prediction
request/response transaction, 1900 hosts could operate in 1 MB/s.

A monolithic system

The composed host load prediction system we have described so far can operate at a rate 52–730 times higher
than we need and uses negligible CPU and communication resources at the rates at which we actually desire
to operate it. However, the maximum rate it can sustain is only 24% of the upper bound we determined in
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System Transport Optimal Rate Measured Rate Percent of Optimal
Monolithic In-process 6.6 KHz 5.3 KHz 80 %
Monolithic Unix domain socket 5.5 KHz 3.6 KHz 65 %
Monolithic TCP 5.3 KHz 2.7 KHz 51 %
Composed TCP 3.1 KHz 720 Hz 24 %

Table 2.4: Maximum measurement rates achieved by monolithic and composed host load prediction systems.

Section 2.8.2. To determine if higher rates are indeed possible, we implemented a monolithic, single process
host load prediction system using the RPS libraries directly. This design can sustain a peak rate of 2.7 KHz
when configured to use TCP, which is almost four times higher than the composed system.

Table 2.4 shows the maximum rates the monolithic system achieved for three transports: in process,
where the client is in the same process; Unix domain socket, where the (local) client listens to the prediction
stream through a Unix domain socket; and TCP, where the client operates as with the earlier system. For
comparison, it also includes the maximum rate of the composed system described earlier. In each case, we
also show the optimal rate, which is derived in a manner similar to Section 2.8.2. The in-process case shows
us the overhead of using the mirror communication template library, which enables considerable flexibility.
That overhead is approximately 20%. The domain socket and TCP cases include additional, unmodeled
overheads that are specific to these transports.

2.9 Conclusion

We have developed a resource signal methodology which researchers can use to attack resource availability
prediction problems using signal analysis and prediction techniques. Finding a scarcity of tools to carry out
the latter steps of the methodology, we designed, implemented, and evaluated RPS, an extensible toolkit for
constructing on-line and off-line resource prediction systems in which resources are represented by indepen-
dent, periodically sampled, scalar-valued measurement streams. RPS consists of resource sensor libraries,
an extensive time series prediction library, a sophisticated communication library, and a set of prediction
components out of which resource prediction systems can be readily composed. The performance of RPS
is quite good. The host load prediction system that we advocate later in this dissertation provides timely
predictions with minimal CPU and network load at reasonable measurement rates. These results support
the feasibility of resource prediction in general, and of using RPS-based systems for resource prediction in
particular.

In the next two chapters, we put the resource signal methodology and RPS to work to understand and
predict host load. The RPS-based host load prediction system we develop is then used as the basis of the
running time and real-time scheduling advisors of Chapters 5 and 6.
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Chapter 3

Statistical Properties of Host Load

This dissertation argues for basing real-time scheduling advisors on explicit resource-oriented prediction,
specifically on the prediction of resource signals. In the last chapter, we presented a methodology for under-
standing and predicting such resource signals and described our toolkit for carrying out the methodology.
This chapter applies the first four steps of our resource signal methodology, as described in Section 2.1, to
host load, a signal that tracks CPU availability. The essence of these steps is to choose an appropriate re-
source signal, determine how to sample it, collect representative traces of the signal to form a signal analysis
and prediction problem, and then analyze the traces to find appropriate predictive models. The next chapter
carries out the final two steps of the methodology, resulting in an appropriate predictive model for host load,
and an on-line host load prediction system.

We ultimately want to predict the running time of tasks, which varies as a result of changing CPU
availability. CPU availability is well measured by the host load signal we study in this chapter. The running
time of a compute-bound task is directly related to the average load it encounters during execution. What,
then, are the qualitative and quantitative properties of load on real systems, and what are the implications
of these properties for host load prediction? Since we are interested in scheduling short tasks as well as
long ones, the answers to these questions should extend to correspondingly short timescales. Unfortunately,
to date there has been little work on characterizing the properties of load at fine resolutions. The available
studies concentrate on understanding functions of load, such as availability [92] or job durations [40, 77, 60].
Furthermore, they deal with the coarse grain behavior of load—how it changes over minutes, hours and days.

To understand the properties of host load on real systems at fine resolutions, we collected week-long, 1
Hz resolution traces of the Digital Unix load average (specifically, an exponential average with a five second
time constant) on over 35 different machines that we classify as production and research cluster machines,
compute servers, or desktop workstations. We collected two sets of such traces at different times of the
year. The 1 Hz sample rate is sufficient to capture all of the dynamic load information that is available to
user-level programs running on these machines. This chapter presents a detailed statistical analysis of both
sets of traces and their implications for prediction. The subsequent chapters use these traces to evaluate the
host load prediction system, the running time advisor, and the real-time scheduling advisor.

The basic question is whether load traces that might seem at first glance to be random and unpredictable
might have structure that could be exploited for prediction. Our results suggest that host load signals do
indeed have some structure in the form of clearly identifiable properties. In essence, our results characterize
how load varies, which should be of interest not only to developers of prediction algorithms, but also to
those who need to generate realistic synthetic loads in simulators or to those doing analytic work. The traces
can also be used to reconstruct real background workloads using host load trace playback, as described in
Chapter 5.

We found that host load is a resource signal with high absolute and relative variability, leading to widely
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Figure 3.1: Relationship between average load during execution and running time

varying running times. While this is distressing, host load signals are not random. Time series analysis
shows that there is strong correlation over time. This suggests that linear time series models, which attempt
to capture this autocorrelation parsimoniously, may be appropriate for predicting host load. However, host
load signals are also self-similar, which suggests that complex predictive models, such as the ARFIMA
models described in the previous chapter, may be necessary to predict them. Finally, host load exhibits
what we term epochal behavior—the signal remains stationary for an extended period of time, and then
abruptly transitions to another stationary regime. Linear time series models, even those that explicitly model
nonstationarity, cannot model such abrupt transitions. The implication is that a linear model would have to
be refit whenever such a transition occurred. Such transitions might be explicitly detected using changepoint
detection techniques or implicitly detected by suddenly large prediction errors. The latter is the method used
by the system described in this dissertation.

3.1 Host load and running time

We chose to study the host load signal because, for compute-bound tasks, there is an intuitive relationship
between host load and running time. Consider Figure 3.1, which plots running time versus average load
experienced during execution for tasks consisting of simple wait loops. The data was generated by running
variable numbers of these tasks together, at identical priority levels, on an otherwise unloaded Digital Unix
machine. Each of these tasks sampled the Digital Unix five-second load average at roughly one second
intervals during their execution and at termination printed the average of these samples as well as their
running time. It is these pairs that make up the 42,000 points in the figure. Notice that the relationship
between the measured load during execution and the running time is almost perfectly linear (R2 > 0:99).

If load were presented as a continuous signal, we would summarize this relationship between running
time and load as

texec

1 + 1
texec

R texec
0 z(t)dt

= tnom (3.1)

wheretnom is the running time of the task on a completely unloaded machine,1 + 1
texec

R texec
0 z(t)dt is the

average load experienced during execution (z(t) is the continuous “background” load), andtexec is the task’s
running time. In practice, we can only sample the load with some noninfinitesimal sample period� so we
can only approximate the integral by summing over the values in the sample sequence. For these machines,
� = 1 second is appropriate, as we show in the next section. We will write a sequence of load samples,
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which we will also refer to as aload signal, ashzti = : : : ; zt�1; zt; zt+1; : : :

3.2 Measurement methodology

Having decided that host load is a useful signal, we next developed a sensor for it, and determined how
quickly to sample it. The load on a Unix system at any given instant is the number of processes that are
running or are ready to run, which is the length of the ready queue maintained by the scheduler. The kernel
samples the length of the the ready queue at some rate and exponentially averages some number of previous
samples to produce a load average which can be accessed from a user program. The specific Unix system
we used was Digital Unix (DUX).

Unlike many Unix implementations, which exponentially average with a time constant of one minute
at the finest, DUX uses a time constant of five seconds. This small time constant allows us to capture
considerably more of the dynamics of load than would have been possible on other Unix implementations,
and it minimizes the effect of phantom correlations due to the exponential filter. Interestingly, directly
sampling the length of the ready queue, which we tried on Windows NT, does not provide much useful
information because it is impossible to sample the queue fast enough from a user process.

We developed a small tool to sample the DUX load average at one second intervals and log the resulting
time series to a data file. The tool is based on the host load sensor described in the previous chapter. The
1 Hz sample rate was arrived at by subjecting DUX systems to varying loads and sampling at progressively
higher rates to determine the rate at which DUX actually updated the value. DUX updates the value at a rate
of 1=2 Hz, thus we chose a 1 Hz sample rate by the Nyquist criterion. This choice of sample rate means we
capture all of the dynamic load information the operating system makes available to user programs.

3.3 Description of traces

Having chosen an appropriate resource signal and sampling rate, we next carried out the second step of the
resource signal methodology: collecting traces. We ran our trace collection tool on 39 hosts belonging to the
Computing, Media, and Communication Laboratory (CMCL) at CMU and the Pittsburgh Supercomputing
Center (PSC) for slightly more than one week in late August, 1997. A second set of week-long traces was
acquired on almost exactly the same set of machines (35 machines total) in late February and early March,
1998. The results of the statistical analysis were similar for the two sets of traces.

All of the hosts in the August, 1997 set were DEC Alpha DUX machines, running either DUX 3.2 or
4.0 and they form four classes:

� Production Cluster: 13 hosts of the PSC’s “Supercluster”, including two front-end machines (axpfea,
axpfeb), four interactive machines (axp0 through axp3), and seven batch machines scheduled by a
DQS [69] variant (axp4 through axp10).

� Research Cluster: eight machines in an experimental cluster in the CMCL
(manchester-1 through manchester-8).

� Compute servers: two high performance large memory machines used by the CMCL group as com-
pute servers for simulations and the like (mojave and sahara).

� Desktops: 16 desktop workstations owned by members of the CMCL (aphrodite through zeno).

The same hosts were used for the March, 1998 traces, with the following exceptions:

� Production Cluster: axp9 was replaced by axp11 due to hardware failures.
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Hostname Start Time Days Samples
Production Cluster

axp0.psc Tue Aug 12 21:29:12 EDT 1997 15.00 1296000
axp1.psc Tue Aug 12 21:30:09 EDT 1997 14.00 1209600
axp2.psc Tue Aug 12 21:30:53 EDT 1997 14.00 1209600
axp3.psc Tue Aug 12 21:31:13 EDT 1997 14.00 1209600
axp4.psc Tue Aug 12 21:31:12 EDT 1997 14.00 1209600
axp5.psc Tue Aug 12 21:31:47 EDT 1997 14.00 1209600
axp6.psc Tue Aug 12 21:31:15 EDT 1997 15.00 1296000
axp7.psc Tue Aug 12 20:51:19 EDT 1997 13.00 1123200
axp8.psc Tue Aug 12 21:31:19 EDT 1997 14.00 1209600
axp9.psc Tue Aug 12 21:31:45 EDT 1997 14.00 1209600
axp10.psc Tue Aug 12 21:31:21 EDT 1997 14.00 1209600
axpfea.psc Sat Aug 16 14:44:29 EDT 1997 13.00 1123200
axpfeb.psc Sat Aug 16 14:44:55 EDT 1997 12.00 1036800

Research Cluster
manchester-1.cmcl Sun Aug 17 19:41:10 EDT 1997 3.92 338400
manchester-2.cmcl Sun Aug 17 19:41:09 EDT 1997 4.00 345600
manchester-3.cmcl Sun Aug 17 19:41:13 EDT 1997 3.96 342000
manchester-4.cmcl Sun Aug 17 19:41:10 EDT 1997 4.00 345600
manchester-5.cmcl Sun Aug 17 19:41:09 EDT 1997 4.04 349200
manchester-6.cmcl Sun Aug 17 19:41:09 EDT 1997 4.08 352800
manchester-7.cmcl Sun Aug 17 19:41:10 EDT 1997 4.00 345600
manchester-8.cmcl Sun Aug 17 19:41:10 EDT 1997 4.00 345600

Compute Servers
mojave.cmcl Sun Aug 17 19:41:11 EDT 1997 4.04 349200
sahara.cmcl Sun Aug 17 19:41:11 EDT 1997 4.00 345600

Desktops
aphrodite.nectar Sun Aug 17 19:41:12 EDT 1997 4.00 345600
argus.nectar Sun Aug 17 19:41:17 EDT 1997 4.04 349200
asbury-park.nectar Sun Aug 17 19:41:11 EDT 1997 4.00 345600
asclepius.nectar Sun Aug 17 19:41:07 EDT 1997 4.08 352800
bruce.nectar Sun Aug 17 19:41:10 EDT 1997 3.92 338400
cobain.nectar Sun Aug 17 19:41:12 EDT 1997 4.04 349200
darryl.nectar Sun Aug 17 19:41:32 EDT 1997 1.71 147600
hawaii.cmcl Sun Aug 17 19:41:11 EDT 1997 2.63 226800
hestia.nectar Sun Aug 17 19:41:12 EDT 1997 4.00 345600
newark.cmcl Sun Aug 17 19:41:13 EDT 1997 4.00 345600
pryor.nectar Sun Aug 17 19:41:13 EDT 1997 1.71 147600
rhea.nectar Sun Aug 17 19:41:11 EDT 1997 4.00 345600
rubix.mc Sun Aug 17 19:41:13 EDT 1997 4.00 345600
themis.nectar Sun Aug 17 19:41:09 EDT 1997 4.00 345600
uranus.nectar Sun Aug 17 19:41:13 EDT 1997 4.00 345600
zeno.nectar Sun Aug 17 19:41:13 EDT 1997 4.08 352800

Table 3.1: Details of the August, 1997 traces.

� Desktops: argus, asclepius, bruce, cobain, darryl, and hestia were replaced by belushi and loman due
to hardware upgrades.

Tables 3.1 and 3.2 provide additional details of the individual August, 1997 and March, 1998 traces.
The author will be happy to provide the traces to any interested readers.
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Hostname Start Time Days Samples
Production Cluster

axp0.psc Wed Feb 25 17:34:26 EST 1998 12.08 1043400
axp1.psc Wed Feb 25 17:34:25 EST 1998 12.08 1043400
axp2.psc Wed Feb 25 17:34:25 EST 1998 12.08 1043400
axp3.psc Wed Feb 25 17:34:26 EST 1998 12.03 1039400
axp4.psc Wed Feb 25 17:34:27 EST 1998 12.06 1041900
axp5.psc Wed Feb 25 17:34:27 EST 1998 12.03 1039700
axp6.psc Wed Feb 25 17:34:27 EST 1998 12.08 1043400
axp7.psc Wed Feb 25 17:34:27 EST 1998 12.01 1037700
axp8.psc Wed Feb 25 17:34:28 EST 1998 12.06 1041800
axp10.psc Wed Feb 25 17:34:28 EST 1998 12.03 1039700
axp11.psc Wed Feb 25 17:16:20 EST 1998 12.03 1039800
axpfea.psc Wed Feb 25 17:18:01 EST 1998 12.08 1043800
axpfeb.psc Wed Feb 25 17:23:34 EST 1998 12.0 1043400

Research Cluster
manchester-1.cmcl Wed Feb 25 20:42:30 EST 1998 8.36 721900
manchester-2.cmcl Wed Feb 25 20:42:23 EST 1998 8.36 721900
manchester-3.cmcl Wed Feb 25 20:42:23 EST 1998 8.36 721900
manchester-4.cmcl Wed Feb 25 20:42:29 EST 1998 8.35 721300
manchester-5.cmcl Wed Feb 25 20:42:27 EST 1998 8.36 721900
manchester-6.cmcl Wed Feb 25 20:42:30 EST 1998 8.36 721900
manchester-7.cmcl Wed Feb 25 20:42:24 EST 1998 8.35 721800
manchester-8.cmcl Wed Feb 25 20:42:26 EST 1998 8.35 721800

Compute Servers
mojave.cmcl Wed Feb 25 20:42:31 EST 1998 5.31 458800
sahara.cmcl Wed Feb 25 20:42:34 EST 1998 8.34 721300

Desktops
aphrodite Wed Feb 25 20:42:17 EST 1998 8.36 722000
asbury-park Wed Feb 25 20:42:23 EST 1998 5.90 509400
belushi Wed Feb 25 20:42:28 EST 1998 7.77 671400
hawaii Wed Feb 25 20:42:18 EST 1998 8.36 722000
loman Wed Feb 25 20:42:34 EST 1998 8.36 721900
newark.cmcl Wed Feb 25 20:42:29 EST 1998 8.36 722200
pryor.nectar Wed Feb 25 20:42:24 EST 1998 8.36 722100
rhea.nectar Wed Feb 25 21:12:17 EST 1998 10.19 880600
rubix.mc Wed Feb 25 20:42:24 EST 1998 1.81 156400
themis.nectar Wed Feb 25 20:42:29 EST 1998 4.94 426900
uranus.nectar Wed Feb 25 20:42:33 EST 1998 8.36 722000
zeno.nectar Wed Feb 25 20:42:26 EST 1998 6.23 537900

Table 3.2: Details of the March, 1998 traces.

3.4 Statistical analysis

We analyzed the individual load traces using summary statistics, histograms, fitting of analytic distributions,
and time series analysis. The picture that emerges is that load varies over a wide range in very complex
ways. Load distributions are rough and frequently multi-modal. Even traces with unimodal histograms are
not well fitted by common analytic distributions, which have tails that are either too short or too long. Time
series analysis shows that load is strongly correlated over time, but also has complex, almost noise-like
frequency domain behavior.

We summarized each of our load traces in terms of our statistical measures and computed their corre-



52 CHAPTER 3. STATISTICAL PROPERTIES OF HOST LOAD

Mean
Load

Sdev
Load

COV
Load

Max
Load

Max/Mean
Load

Mean
Epoch

Sdev
Epoch

COV
Epoch

Hurst
Param

Entropy

Mean Load 1.00
Sdev Load 0.53 1.00
COV Load -0.49 -0.22 1.00
Max Load 0.60 0.18 -0.32 1.00
Max/Mean Load -0.36 -0.39 0.51 0.03 1.00
Mean Epoch -0.04 -0.10 -0.19 0.08 -0.05 1.00
Sdev Epoch -0.02 -0.10 -0.20 0.09 -0.06 0.99 1.00
COV Epoch 0.07 -0.11 -0.23 0.15 -0.02 0.95 0.96 1.00
Hurst Param 0.45 0.58 -0.21 0.03 -0.49 0.08 0.10 0.18 1.00
Entropy 0.42 0.51 -0.10 0.40 -0.36 -0.27 -0.25 -0.30 0.24 1.00

(a) Correlations for August, 1997 traces
Mean
Load

Sdev
Load

COV
Load

Max
Load

Max/Mean
Load

Mean
Epoch

Sdev
Epoch

COV
Epoch

Hurst
Param

Entropy

Mean Load 1.00
Sdev Load 0.72 1.00
COV Load -0.64 -0.48 1.00
Max Load 0.43 0.11 -0.25 1.00
Max/Mean Load -0.48 -0.49 0.93 -0.07 1.00
Mean Epoch -0.12 -0.23 -0.08 0.17 -0.05 1.00
Sdev Epoch -0.13 -0.22 -0.09 0.15 -0.06 0.99 1.00
COV Epoch -0.03 -0.12 -0.15 0.23 -0.11 0.88 0.93 1.00
Hurst Param -0.30 -0.41 0.29 0.15 0.36 0.92 0.90 0.78 1.00
Entropy 0.05 0.27 -0.19 -0.05 -0.27 -0.19 -0.18 -0.17 -0.29 1.00

(b) Correlations for March, 1998 traces

Figure 3.2: Correlation coefficients (CCs) between all of the discussed statistical properties.

lations to determine how the measures are related. Figure 3.2(a) contains the correlations for the August,
1997 set while Figure 3.2(b) contains the correlations for the March, 1998 set. Unless otherwise noted, the
remaining figures in the chapter similarly present independent results for the two sets of traces. Each cell of
the tables in Figure 3.2 is the correlation coefficient (CC) between the row measure and the column measure,
computed over the the load traces in the set. We will refer back to the highlighted cells (where the absolute
correlations are greater than 0.31) throughout the chapter. It is important to note that these cross correlations
can serve as a basis for clustering load traces into rough equivalence classes. Note that the correlations in
several cases (eg, Hurst parameter vs. mean load) are significantly different between the two sets of traces.
We shall point out and attempt to explain these differences when we encounter them.

3.4.1 Summary statistics

Summarizing each load trace in terms of its mean, standard deviation, and maximum and minimumillus-
trates the extent to which load varies. Figure 3.3 shows the mean load and the +/- one standard deviation
points for each of the traces. As we might expect, the mean load on desktop machines is significantly lower
than on other machines. However, we can also see a lack of uniformity within each class, despite the long
duration of the traces. This is most clear among the Production Cluster machines, where fewer than half of
the machines seem to be doing most of the work. This lack of uniformity even over long time scales shows
clear opportunity for load balancing or resource management systems.

From Figure 3.3 we can also see that desktop machines have smaller standard deviations than the other
machines. Indeed, the standard deviation, which shows how much load varies inabsoluteterms, grows with
increasing mean load (Figure 3.2 shows CC=0.53 for the 1997 traces and CC=0.72 for the 1998 traces).
However, inrelative terms, variance shrinks with increasing mean load. This can be seen in Figure 3.4,

1This cutoff was chosen to select only those correlations different from zero with high significance.
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Figure 3.3: Mean load +/- one standard deviation: (a) August, 1997 traces, (b) March, 1998 traces.
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Figure 3.4: COV of load and mean load: (a) August, 1997 traces, (b) March, 1998 traces.

which plots the coefficient of variation (the standard deviation divided by the mean, abbreviated as the
COV) and the mean load for each of the load traces. Here we can see that desktop machines, with their
smaller mean loads, have large COVs compared to the other classes of machines. The CC between mean
load and the COV of load is -0.49 for the 1997 traces and -0.64 for the 1998 traces. It is clear that as load
increases, it varieslessin relative terms andmorein absolute terms.

This difference between absolute and relative behavior also holds true for the maximum load. Figure 3.5
shows the minimum, maximum, and mean load for each of the traces. The minimum load is, not surprisingly,
zero in almost every case. The maximum load is positively correlated with the mean load (CC=0.60 for the
1997 traces and CC=0.43 for the 1998 traces in Figure 3.2). Figure 3.6 plots the ratio max/mean and the
mean load for each of the traces. It is clear that this relative measure is inversely related to mean load, and
Figure 3.2 shows that the CC is -0.36 for the 1997 traces and -0.48 for the 1998 traces. It is also important
to notice that while the differences in maximum load between the hosts are rather small (Figure 3.5), the
differences in the max/mean ratio can be quite large (Figure 3.6). Desktops are more surprising machines in
relative terms.

With respect to scheduling tasks, the implication of the differences between relative and absolute mea-
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Figure 3.5: Minimum, maximum, and mean load: (a) August, 1997 traces, (b) March, 1998 traces.
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Figure 3.6: Maximum to mean load ratios and mean load: (a) August, 1997 traces, (b) March, 1998 traces.

sures of variability is that lightly loaded (low mean load) hosts are not always preferable over heavily loaded
hosts. For example, if the performance metric is itself a relative one (that the running time not vary much
relative to the mean running time, say), then a more heavily loaded host may be preferable.

3.4.2 Distributions

We next treated each trace as a realization of an independent, identically distributed (IID) stochastic process.
Such a process is completely described by its probability distribution function (pdf), which does not change
over time. Since we have a vast number of data points for each trace, histograms closely approximate this
underlying pdf. We examined the histograms of each of our load traces and fitted normal and exponential
distributions to them. To illustrate the following discussion, Figure 3.7 shows the histograms of load mea-
surements on (a) axp0 and (b) axp7 on August 19, 1997 (86400 samples each). Axp0 has a high mean load,
while axp7 is much more lightly loaded.

Some of the traces, especially those with high mean loads, have multi-modal histograms. Figure 3.7(a) is
an example of such a multi-modal distribution while Figure 3.7(b) shows a unimodal distribution. Typically,



3.4. STATISTICAL ANALYSIS 55

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3
x 10

4

Load

N
um

be
r 

of
 o

bs
er

va
tio

ns

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Load

N
um

be
r 

of
 o

cc
ur

an
ce

s

(a) axp0 (b) axp7

Figure 3.7: Histograms for load on axp0 and axp7 on August 19, 1997.
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Figure 3.8: Quantile-quantile plots for axp7 trace of August 19, 1997.

the modes are integer multiples of 1.0 (and occasionally 0.5). One explanation for this behavior is that jobs
on these machines are for the most part compute bound and thus the ready queue length corresponds to the
number of jobs. This seems plausible for the cluster machines, which run scientific workloads for the most
part. However, such multi-modal distributions were also noticed on the some of the other machines.

The rough appearance of the histograms (consider Figure 3.7(b)) is due to the fact that the underlying
quantity being measured (ready queue length) is discrete. Load typically takes on 600-3000 unique values
in these traces. Shannon’s entropy measure [121] indicates that the load traces can be encoded in 1.4 to 8.5
bits per value, depending on the trace. These observations and the histograms suggest that load spends most
of its time in one of a small number of levels.

The histograms share very few common characteristics and did not conform well to the analytic dis-
tributions we fit to them. Quantile-quantile plots are a powerful way to assess how a distribution fits data
(cf. [66, pp. 196–200]) The quantiles (the� quantile of a pdf (or histogram) is the valuex at which100�
% of the probability (or data) falls to the left ofx) of the data set are plotted against the quantiles of the
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hypothetical analytic distribution. Regardless of the choice of parameters, the plot will be linear if the data
fits the distribution.

We fitted normal and exponential distributions to each of the load traces. The fits are atrocious for
the multimodal traces, and we do not discuss them here. For the unimodal traces, the fits are slightly
better. Figure 3.8 shows quantile-quantile plots for (a) normal and (b) exponential distributions fitted to the
unimodal axp7 load trace of Figure 3.7(b). Neither the normal or exponential distribution correctly captures
the tails of the load traces. This can be seen in the figure. The quantiles of the data grow faster than those
of the normal distribution toward the right sides of Figure 3.8(a). This indicates that the data has a longer or
heavier tail than the normal distribution. Conversely, the quantiles of the data grow more slowly than those
of the exponential distribution, as can be seen in Figures 3.8(b). This indicates that the data has a shorter
tail than the exponential distribution. Notice that the exponential distribution goes ase�x while the normal
distribution goes ase�x

2

.
There are two implications of these complex distributions. First, simulation studies and analytic results

predicated on simple, analytic distributions may produce erroneous results. Clearly, trace-driven simulation
studies are to be preferred. The second implication is that prediction algorithms should not only reduce the
overall variance of the load signal, but also produce errors that are better fit an analytic distribution. One
reason for this is to make confidence intervals easier to compute.

3.4.3 Time series analysis

We examined the autocorrelation function, partial autocorrelation function, and periodogram of each of the
load traces. These time series analysis tools show that past load values have a strong influence on future
load values. For illustration, Figure 3.9 shows (a) the axp7 load trace collected on August 19, 1997, (b) its
autocorrelation function to a lag of 600, (c) its periodogram, and (d) its partial autocorrelation function to a
lag of 600. The analysis of this trace is representative of our results.

The autocorrelation function, which ranges from -1 to 1, shows how well a load value at timet is linearly
correlated with its corresponding load value at timet + �—in effect, how well the value at timet linearly
predicts the value at timet+�. Autocorrelation is a function of�, and in Figure 3.9(b) we show the results
for 0 � � � 600. Notice that even at� = 600 seconds, values are still strongly correlated. This very
strong, long range correlation is common to each of the load traces.

The partial autocorrelation function shows how well purely autoregressive linear models capture the
correlation structure of a sequence [23, pp. 64–69]. The square of the value of the function at a lagk

indicates the benefit of advancing from ak � 1-th order model to ak-th order model. Intuitively, if a
k-th order model were sufficient, then the partial autocorrelation function would be zero beyond a lag of
k and the autocorrelation function would be infinite. In a dual manner, if ak-th order purely moving
average model were sufficient, then the autocorrelation function would be zero beyond a lag ofk and the
partial autocorrelation function would be infinite. As we can see from Figure 3.9(b) and (d), both functions
have extremely large extents. This suggests that mixed models, which combine autoregressive and moving
average components are appropriate for modelling host load.

The periodogram of a load trace is the magnitude of the Fourier transform of the load data, which we plot
on a log scale (Figure 3.9(c)). The periodogram shows the contribution of different frequencies (horizontal
axis) to the signal. What is clear in the figure, and is true of all of the load traces, is that there are significant
contributions from all frequencies—the signal looks much like noise. We believe the two noticeable peaks
to be artifacts of the kernel sample rate—the kernel is not sampling the length of the ready queue frequently
enough to avoid aliasing. Only a few of the other traces exhibit the smaller peaks, but they all share the
broad noise-like appearance of this trace.

There are several implications of this time series analysis. First, the existence of such strong autocorre-
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Figure 3.9: Time series analysis of axp7 load trace collected on August 19, 1997: (a) Load trace, (b)
Autocorrelation function to lag 600 (10 minutes), (c) Partial autocorrelation function to lag 600 (10 minutes),
(d) Periodogram.

lation implies that load prediction based on past load values is feasible. Furthermore, it suggests that linear
time series models may be appropriate for this prediction. Such models attempt to parsimoniously capture
non-zero autocorrelation functions. The existence of the strong autocorrelation also suggests that simulation
models and analytical work that eschews this very clear dependence may be in error. Finally, the almost
noise-like periodograms suggest that quite complex, possibly nonlinear models will be necessary to produce
or predict load.

3.5 Self-similarity

The key observation discussed in this section is that each of the load traces exhibits a high degree of self-
similarity. This is significant for two reasons. First, it means that load varies significantly across all time-
scales—it is not the case that increasing smoothing of the load quickly tames its variance. A job will have
a great deal of variance in its running time regardless of how long it is. Second, it suggests that load is
difficult to model and predict well. In particular, self-similarity is indicative of long memory, possibly non-
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Figure 3.10: Visual representation of self-similarity. Each graph plots load versus time and “zooms in” on
the middle quarter
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Figure 3.11: Meaning of the Hurst parameter: (a) Frequency domain interpretation using power spectral
analysis, (b) Effect of increased smoothing using dispersional analysis.

stationary stochastic processes such as fractional ARIMA models [63, 55, 15], and fitting such models to
data and evaluating them can be quite expensive.

Figure 3.10 visually demonstrates the self similarity of the axp7 load trace. The top left graph in the
figure plots the load on this machine versus time for 10 days. Each subsequent graph “zooms in” on the
highlighted central 25% of the previous graph, until we reach the bottom right graph, which shows the
central 60 seconds of the trace. The plots are scaled to make the behavior on each time scale obvious. In
particular, over longer time scales, wider scales are necessary. Intuitively, a self-similar signal is one that
looks similar on different time scales given this rescaling. Although the behavior on the different graphs is
not identical, we can clearly see that there is significant variation on all time scales.

An important point is that as we smooth the signal (as we do visually as we “zoom out” toward the
top of the page in Figure 3.10), the load signal strongly resists becoming uniform. This suggests that low
frequency components are significant in the overall mix of the signal, or, equivalently, that there is significant
long range dependence. It is this property of self-similar signals that most strongly differentiates them and
causes significant modeling difficulty.

Self-similarity is more than intuition—it is a well defined mathematical statement about the relationship
of the autocorrelation functions of increasingly smoothed versions of certain kinds of long-memory stochas-
tic processes. These stochastic processes model the sort of the mechanisms that give rise to self-similar
signals. We shall avoid a mathematical treatment here, but interested readers may want to consult [78]
or [91] for a treatment in the context of networking or [11] for its connection to fractal geometry, or [15] for
a treatment from a linear time series point of view. Interestingly, self-similarity has revolutionized network
traffic modelling in the 1990s [50, 78, 91, 138].

The degree and nature of the self-similarity of a sequence is summarized by the Hurst parameter,H [65].
Intuitively,H describes the relative contribution of low and high frequency components to the signal. Con-
sider Figure 3.11(a), which plots the periodogram (the magnitude of the Fourier transform) of the axp7 load
trace of August 19, 1997 on a log-log scale. In this transformed form, we can describe the trend with a
line of slope�� (meaning that the periodogram decays hyperbolically with frequency! as!�� . The Hurst
parameterH is then defined asH = (1 + �)=2. As we can see in Figure 3.11(a),H = 0:5 corresponds to
a line of zero slope. This is the uncorrelated noise case, where all frequencies make a roughly equal con-
tribution. AsH increases beyond0:5, we see that low frequencies make more of a contribution. Similarly,
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Figure 3.12: Hurst parameter estimates (mean of four point estimates and standard deviation) : (a) August,
1997 traces, (b) March, 1998 traces.

asH decreases below0:5, low frequencies make less of a contribution.H > 0:5 indicates self-similarity
with positive near neighbor correlation, whileH < 0:5 indicates self-similarity with negative near neighbor
correlation. Figure 3.11(a) shows that the axp7 trace is indeed self-similar withH = 0:875. This method of
determining the Hurst parameter is known as power spectral analysis.

Figure 3.11(b) illustrates another way to think about the Hurst parameterH . To create the figure, we
binned the load trace with increasingly larger, non-overlapping bins and then plotted the relative dispersion
(the standard deviation normalized by the mean) of the binned series versus the size of the bins. For example,
at a bin size of 8 we averaged the first 8 samples of the original series to form the first sample of the binned
series, the next 8 to form the second sample, and so on. The figure shows that the relative dispersion of this
new 8-binned series is slightly less than one. If the original load trace is self-similar, the relative dispersion
should decline hyperbolically with increasing bin size. On a log-log scale such we use in the figure this
relationship would appear to be linear with a slope ofH � 1. We see that this is indeed the case for the
axp7 trace. Notice that this method for estimatingH , which is called dispersional analysis, gives a slightly
differentH (0.95) than power spectral analysis. What is important is that in both figures we see a hyperbolic
relationship, and that both estimates forH are much larger than 0.5.

We examined each of the load traces for self-similarity and estimated each one’s Hurst parameter. There
are many different estimators for the Hurst parameter [130], but there is no consensus on how to best estimate
the Hurst parameter of a measured series. The most common technique is to use several Hurst parameter
estimators and try to find agreement among them. The four Hurst parameter estimators we used were R/S
analysis, the variance-time method, dispersional analysis, and power spectral analysis. A description of
these estimators as well as several others may be found in [11]. The advantage of these estimators is that
they make no assumptions about the stochastic process that generated the sequence. However, they also
cannot provide confidence intervals for their estimates. Estimators such as the Whittle estimator [15] can
provide confidence intervals, but a stochastic process model must be assumed over which anH can be found
that maximizes its likelihood.

We implemented the estimators using Matlab and validated each one by examining degenerate series
with knownH and series with specificH generated using the random midpoint displacement method. The
dispersional analysis method was found to be rather weak forH values less than about0:8 and the power
spectral analysis method gave the most consistent results.
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Figure 3.13: Hurst parameter point estimates: (a) August, 1997 traces, (b) March, 1998 traces.

Figure 3.12 presents our estimates of the Hurst parameters of each of load traces. In the graph, each
central point is the mean of the four estimates, while the outlying points are at +/- one standard deviation.
Figure 3.13 shows the four actual point estimates for each trace. Notice that for smallH values, the standard
deviation is high due to the inaccuracy of dispersional analysis. The important point is that the mean Hurst
estimates are all significantly above theH = 0:5 line and their +/- one standard deviation points are also
above the line.

The traces exhibit self-similarity Hurst parameters ranging from 0.73 to 0.99, with a strong bias toward
the top of that range. An examination of the correlation coefficients (CCs) in Figure 3.2 shows some sur-
prising results. For the August, 1997 traces, the Hurst parameter is positively correlated with mean load
(CC=0.45) and the standard deviation of load (CC=0.58), but is negatively correlated with the max/mean
load ratio (CC=-0.49). On the other hand, for the March, 1998 traces, the Hurst parameter is negatively
correlated with mean load (CC=-0.30) and the standard deviation of load (CC=-0.41), but is positively cor-
related with the max/mean ratio (CC=0.36). Furthermore, in the March, 1998 traces, we find the Hurst
parameter is strongly positively correlated with the epoch statistics, which is not the case at all for the
August, 1997 traces. It is not clear what the cause for this difference between the traces is.

As we discussed above, self-similarity has implications for load modeling and for load smoothing. The
long memory stochastic process models that can capture self-similarity tend to be expensive to fit to data and
evaluate. Smoothing the load (by mapping large units of computations instead of small units, for example)
may be misguided since variance may not decline with increasing smoothing intervals as quickly as quickly
as expected. Consider smoothing load by averaging over an interval of lengthm. Without long range
dependence (H = 0:5), variance would decay withm asm�1:0, while with long range dependence, as
m2H�2 orm�0:54 andm�0:02 for the range of Hurst parameters we measured.

3.6 Epochal behavior

The key observation discussed in this section is that while load varies in complex ways, the manner in which
it changes remains relatively constant for relatively long periods of time. We refer to a period of time in
which this stability holds true as an epoch. For example, the load signal could be a 0.25 Hz Sin wave for
a minute and a 0.125 Hz sawtooth wave the next minute—each minute is an epoch. That these epochs
exist and are long is significant because it suggests that modeling load can be simplified by modeling epochs
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separately from modeling the behavior within an epoch. Similarly, it suggests a two stage prediction process.
The spectrogram representation of a load trace immediately highlights the epochal behavior we discuss

in this section. A spectrogram combines the frequency domain and time domain representations of a time
series. It shows how the frequency domain changes locally (for a small segment of the signal) over time. For
our purposes, this local frequency domain information is the “manner in which [the load] changes” to which
we referred earlier. To form a spectrogram, we slide a window of lengthw over the series, and at each offset
k, we Fourier-transform thew elements in the window to give usw complex Fourier coefficients. Since
our load series is real-valued, only the firstw=2 of these coefficients are needed. We form a plot where the
x coordinate is the offsetk, they coordinate is the coefficient number,1; 2; : : : ; w=2 and thez coordinate
is the magnitude of the coefficient. To simplify presentation, we collapse to two dimensions by mapping
the logarithm of thez coordinate (the magnitude of the coefficient) to color. The spectrogram is basically
a midpoint in the tradeoff between purely time-domain or frequency-domain representations. Along thex

axis we see the effects of time and along they axis we see the effects of frequency.
Figure 3.14 shows a representative case, a 24 hour trace from the PSC host axp7, taken on August 19,

1997. The top graph shows the time domain representation, while the bottom graph shows the corresponding
spectrogram representation. What is important to note (and which occurs in all the spectrograms of all the
traces) are the relatively wide vertical bands. These indicate that the frequency domain of the underlying
signal stays relatively stable for long periods of time. We refer to the width of a band as the duration of that
frequency epoch.

That these epochs exist can be explained by programs executing different phases, programs being started
and shut down, and the like. The frequency content within an epoch contains energy at higher frequencies
because of events that happen on smaller time-frames, such as user input, device driver execution, and
daemon execution.

We can algorithmically find the edges of these epochs by computing the difference in adjacent spectra
in the spectrogram and then looking for those offsets where the differences exceed a threshold. Specifically,
we compute the sum of mean squared errors for each pair of adjacent spectra. The elements of this error
vector are compared to an epsilon (5% here) times the mean of the vector. Where this threshold is exceeded,
a new epoch is considered to begin. Having found the epochs, we can examine their statistics. Figure 3.15
shows the mean epoch length and the +/- one standard deviation levels for each of the load traces. The
mean epoch length ranges from about 150 seconds to over 450 seconds, depending on which trace. The
standard deviations are also relatively high (80 seconds to over 600 seconds). It is the Production Cluster
class which is clearly different when it comes to epoch length. The machines in this class tend to have
much higher means and standard deviations than the other machines. One explanation might be that most
of the machines run batch-scheduled scientific jobs which may well have longer computation phases and
running times. However, two of the interactive machines also exhibit high means and standard deviations.
Interestingly, there is no correlation of the mean epoch length and standard deviation to the mean load for
either set of traces (Figure 3.2). However, for the March, 1998 traces, we find correlations between the
epoch length statistics and the Hurst parameter that are particularly strong. It is not clear why this difference
exists between the traces.

The standard deviations of epoch length in Figure 3.15 give us an absolute measure of the variance of
epoch length. Figure 3.16 shows the coefficient of variance (COV) of epoch length and mean epoch length
for each trace. The COV is our relative measure of epoch length variance. Unlike with load (Section 3.4),
these absolute and relative measures of epoch length variance arebothpositively correlated with the mean
epoch length. In addition, the correlation is especially strong (the CCs are at least 0.88). As epoch length
increases, it varies more in both absolute and relative terms. The statistical properties of epoch lengths are
independent of the statistical properties of load.

The implication of long epoch lengths is that the problem of predicting load may be able to be decom-
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Figure 3.14: Time domain and spectrogram representations of load for host axp7 on August 19, 1997.

posed into a segmentation problem (finding the epochs) and a sequence of smaller prediction subproblems
(predicting load within each epoch).

Strictly speaking, epochal behavior means that load is not stationary. However, it is also not free to
wander at will—clearly load cannot rise to infinite levels or fall below zero. This is compatible with the
“borderline stationarity” implied by self-similarity. It is also important to note that the nonstationarity is not
“smooth” and therefore is difficult to model with an integration process, such as in an ARIMA or ARFIMA
model.
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Figure 3.15: Mean epoch length +/- one standard deviation: (a) August, 1997 traces, (b) March, 1998 traces.
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Figure 3.16: COV of epoch length and mean epoch length: (a) August, 1997 traces, (b) March, 1998 traces.

3.6.1 Lack of seasonality

The epochal behavior that the load traces exhibit is not the same thing as seasonality in the time series
analysis sense [25, 23]. Seasonality means that there are dominant (or at least visible) underlying periodic
signals on top of which are layered other signals. It is not unreasonable to expect seasonality given that
other studies [92] have found that availability of compute resources to change regularly over the hours of
the working day and the days of the working week. However, examination of the power spectrums and
autocorrelations of the load traces suggests that load doesnot exhibit seasonality. We feel this does not
contradict the earlier results—the fluctuation of resources simply is not sufficiently periodic to qualify as
seasonality in the strict time series sense.
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3.7 Conclusions

This chapter has applied the first four steps of the resource signal methodology to host load signals. We
identified host load as a powerful way to measure CPU availability, developed a sensor for this signal, and
determined an appropriate sample rate. We collected long, fine grain load measurements on a wide variety
of machines at two different times of the year. The results of an extensive statistical analysis of these traces
and their implications are the following:

(1) The traces exhibit low means but very high standard deviations and maximums. Relatively few of the
traces had mean loads of 1.0 or more. The standard deviation is typically at least as large as the mean, while
the maximums can be as much as two orders of magnitude larger. The implication is that these machines
have plenty of cycles to spare to execute jobs, but the running time of these jobs will vary drastically.

(2) Standard deviation and maximum, which are absolute measures of variation, are positively correlated
with the mean, so a machine with a high mean load will also tend to have a large standard deviation and
maximum. However, these measures do not grow as quickly as the mean, so their corresponding relative
measures actuallyshrinkas the mean increases. The implication is that if the goal in scheduling a task is to
optimize a relative performance metric, it may not be unreasonable to use the host with higher mean load.

(3) The traces have complex, rough, and often multi-modal distributions that are not well fitted by
analytic distributions such as the normal or exponential distributions. Even for the traces which exhibit
unimodally distributed load, the normal distribution’s tail is too short while the exponential distribution’s
tail is too long. The implication is that modeling and simulation that assumes convenient analytical load
distributions may be flawed.

(4) Time series analysis of the traces shows that load is strongly correlated over time. The autocorrelation
function typically decays very slowly while the periodogram shows a broad, almost noise-like combination
of all frequency components. An important implication is that history-based load prediction schemes, such
as linear time series models, seem very feasible. However, the complex frequency domain behavior suggests
that linear modeling schemes may have difficulty. From a modeling point of view, it is clearly important
that these dependencies between successive load measurements are captured.

(5) The traces are self-similar. Their Hurst parameters range from 0.73 to 0.99, with a strong bias
toward the top of that range. This tells us that load varies in complex ways on all time scales and is long
term dependent. This has several important implications. First, smoothing load by averaging over an interval
results in much smaller decreases in variance than if load were not long range dependent. This suggests that
task migration in the face of adverse load conditions may be preferable to waiting for the adversity to be
ameliorated over the long term. The self-similarity result also suggests certain modeling approaches, such
as fractional ARIMA models [63, 55, 15] which can capture this property.

(6) The traces display epochal behavior. The local frequency content of the load signal remains quite
stable for long periods of time (150-450 seconds mean) and changes abruptly at the boundaries of such
epochs. This suggests that the problem of predicting load may be able to be decomposed into a sequence
of smaller subproblems. In particular, when using linear models, none of which can capture this sort of
“rough” nonstationarity, it may be necessary to refit the models at epoch boundaries.

Given these properties, we decided to study the performance of Box-Jenkins linear time series mod-
els [23] and fractional ARFIMA models [55, 63, 15] for short range prediction of host load. The next
chapter describes how we applied the fifth step of the resource signal methodology to find which of these
models was most appropriate. The final step, implementing an on-line host load prediction system based on
the appropriate model was easy using the RPS Toolkit.
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Chapter 4

Host Load Prediction

This dissertation argues for basing real-time scheduling advisors on explicit resource-oriented prediction,
specifically on the prediction of resource signals. The signal we focus on is host load. In the last chapter,
we studied the statistical properties of a large collection of host load traces and came to the conclusion that
linear time series models might be appropriate for predicting host load. This carried out the first four steps
of our resource signal methodology, as presented in Section 2.1. This chapter carries out the final two steps
of the methodology. We use the RPS Toolkit to evaluate many different linear models on the load traces we
described in the previous chapter and come to the conclusion that autoregressive models of order 16 or better
are appropriate for predicting the host load signal. Having decided on a model, implementing an RPS-based
on-line host load prediction system that uses it is trivial, but the evaluation of that system is not, as we shall
see in the subsequent chapters.

It is important to note that a prediction consists not only of the expected future values of the discrete-time
host load signal, but also the expected variance (or mean squared error) of their prediction errors and the
covariance of the errors with each other. In other words, each prediction is qualified with an estimate of how
erroneous it can be. These measures of prediction quality provide the basis of statistical reasoning using
the predictions. In the next chapter, we use the predictions and the estimates of their quality to compute
confidence intervals for running times of tasks.

Intuitively, the expected mean squared error and the covariances are measures of the “surprise” the user
of the predictions is likely to encounter. The mean squared error is directly comparable to the variance of
the signal itself, while the covariances can be compared to the autocorrelation of the load signal. If we want
to predict a future value of the signal, then the mean squared error is sufficient to qualify the prediction.
If the goal is to predict some function of a number of future values (the average over an interval of time,
for example), then the covariances are needed because the prediction errors of the individual values are not
necessarily independent. This chapter focuses on the measured mean squared error of the predictors. Ideally,
the prediction errors will be less surprising (have lower mean square error) than the signal itself.

The estimates of the mean squared error of the predictions are derived from the fit of the predictive
model to some region of the signal. However, in prediction, we are concerned with the measured mean
square error of the model on the signal subsequent to where it was fit. In other words, we don’t care how
well the model fits the signal, but in how well the fitted model, when used in practice, predicts the signal.
For this reason, this chapter concentrates on the measured mean square error of the different predictors.

In a system such as RPS, predictive models are likely to be refit at arbitrary times whenever monitoring
software decides that their performance has degraded. Because of this, it is important to consider, in as
unbiased a fashion as possible, the performance of the models in different situations. Our evaluation of the
predictive models is randomized in order to avoid bias. Another important point is that we are interested
in models that not only have a low measured mean squared error on average, but whose measured mean
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squared error is consistently low. What this requirement for consistent predictability means is that we desire
that, regardless of when we fit the model, we can expect it to provide good results.

We find that load is, in fact, consistently predictable to a very useful degree from past behavior, and
that simple linear time series models, especially AR(16)s or better, are sufficiently powerful load predictors.
These results are surprising given the complex behavior of host load that we identified in the previous
chapter. As far as we are aware, this is the first study to identify these properties of host load and then to
evaluate the practical predictive power of linear time series models that both can and cannot capture them.
It is also unique in focusing on predictability on the scale of seconds as opposed to minutes or longer time
scales.

4.1 Prediction

Recall from the previous chapter that we write the host load signal ashzti = : : : ; zt�1; zt; zt+1; : : :, where
t is the current time andzt+j denotes a sample of the signalj steps into the future. Thepredictionof any
particular load sample will be written with a hat. For example,ẑt+1 denotes a prediction of the valuezt+1
(the one-step-ahead prediction) using all previous values of the signal. Such predictions use all available
data up to and including timet. We will also writeẑt+i;t+j to denote the prediction ofzt+j using all values
up to and includingzt+i.

An RPS-based resource prediction system provides one-step-ahead tom-step-ahead predictions, where
m is user-specified. At timet + i, the valuezt+i is measured and pushed to RPS, which responds with the
vector[ẑt+i;t+i+1; ẑt+i;t+i+2; : : : ; ẑt+i;t+i+m]. Whenzt+i+1 becomes available, we measure its one-step-
ahead prediction error asat+i;t+i+1 = zt+i+1 � ẑt+i;t+i+1. Similarly, whenzt+i+2 becomes available, we
can compute the two-step-ahead prediction error asat+i;t+i+2 = zt+i+2 � ẑt+i;t+i+2. Taken over alli,
we summarize the set of one-step-ahead prediction errors by its variance, which is commonly called the
one-step-aheadmean squared error. The 2-step-ahead mean squared error is computed similarly. There is a
mean squared error associated with everylead timek. We shall study the one- to 30-step-ahead (or one- to
30-second-ahead, given our sample rate of 1 Hz) mean squared errors.

It is important to note that the meank-step-ahead prediction error should be zero (which it is in this
study). A non-zero mean would indicate that the predictor has an unhealthy systematic bias. The mean
squared error is the important quantity to examine, since it measures how far a particular prediction error
is likely to vary from zero. With a good predictor, the sequence ofk-step-ahead prediction errors should
be IID. If the error distribution is normal, then thek-step-ahead mean squared error is sufficient to place
confidence intervals on the predictions. We found that the prediction errors are indeed independent, but not
normally distributed. In the next chapter we show that making the normality assumption nonetheless leads
to good results in predicting the running time of tasks.

While the sequence ofk-step-ahead prediction errors are independent, thek + 1-step-ahead prediction
error is dependent on thek-step-ahead prediction error. As we show in the next chapter, this becomes
important when it is necessary to sum over a number of predictions, say over a time horizon from now to 10
seconds from now. We do not evaluate the covariance of the prediction errors in this chapter. It is unclear
what the figure of merit should be. The more predictable a signal is, the greater the covariances typically
are.

4.2 Predictive models

For the simplest prediction, the long-term mean of the signal, the mean squared error (for any lead time) is
simply the variance of the load signal. As we saw in the previous chapter, load has quite high variance and
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exhibits other complex properties. The hope is that more sophisticated prediction schemes will have much
better mean squared errors.

On the one hand, the analysis of the last chapter suggested that linear time series models such as those in
the Box-Jenkins [23] AR, MA, ARMA, and ARIMA classes might be appropriate for predicting load. On the
other hand, the existence of self-similarity induced long-range dependence suggested that such models might
require an impractical number of parameters or that the much more expensive ARFIMA model class, which
explicitly captures long-range dependence, might be more appropriate. Since it is not obvious which model
is best, we empirically evaluated the predictive power of the AR, MA, ARMA, ARIMA, and ARFIMA
model classes, as well as a simple ad hoc windowed-mean predictor called BM and a long-term mean
predictor called MEAN. We also looked at the performance of BM(1) models, in which the last measured
value of the signal is used as the prediction of all future values. We call this the LAST model class. These
model classes, their implementations, and their overheads are described in Chapter 2.

It is important to note that host load is an exponentially smoothed signal—an AR(1) with�1 = 0:8187.
The benefits of higher order linear models, as well as the clear benefits of the linear models over LAST and
BM show that there is significant predictability in the load signal beyond that introduced by this exponential
smoothing. Furthermore, the better models show significantly better performance for long lead times than
would be expected from simply the exponential smoothing. Also, if we factor out the exponential smooth-
ing, we still see significant predictability. Finally, as we show in the next chapter, our predictions of the
unmolested load signal work well to estimate good confidence intervals for the running time of tasks.

4.3 Evaluation methodology

Our methodology is designed to determine whether there are consistent differences in thepractical predic-
tive powerof the different model classes. Other goals are also possible. For example, one could determine
theexplanatory powerof the models by evaluating how well they fit data, or thegenerative powerof the
model by generating new load traces from fitted models and evaluating how well their statistical properties
match the original traces. We have touched on these other goals, but do not discuss them here. To assess
the practical predictive power of the different model classes, we designed a randomized, trace-driven sim-
ulation methodology that fits randomly selected models to subsequences of a load trace and tests them on
immediately following subsequences.

In essence, a host load prediction system has one thread of control of the following form:

do forever {
get new load measurement;
update history;
if (some criteria) {

refit model to history;
make new predictor;

}
step predictor;
sleep for sample interval;

}

wherehistory is a window of previous load values. Fitting the model to the history is an expensive
operation. Once a model is fitted, a predictor can be produced from it.Steppingthis predictor means
informing it of a new load measurement so that it can modify its internal state. This is an inexpensive
operation. Prediction requests arrive asynchronously and are serviced using the current state of the pre-
dictor. A prediction request that arrives at timet + i includes a lead timek. The predicted load values
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Load Trace 
~one week

345,000 to >1M
samples at 1Hz

Fit Interval
5 min...3 hours

(m=600 to 10800 samples)

Test Interval
5 min...3 hours

(n=600 to 10800 samples)

Crossover Point
3 hours, trace length - 3 hours

crosstzmtcross
z − 1−+ntcross

z

Model class Number of parameters
MEAN none
BM(p) (inc. LAST) p=1..32, chosen by fit
AR(p) p=1..32
MA(q) q=1..8
ARMA(p,q) p=1..4, q=1..4
ARIMA(p,d,q) p=1..4, d=1..2, q=1..4
ARFIMA(p,d,q) p=1..4, d by fit, q=1..4

Table 4.1: Testcase generation.

ẑt+i;t+i+1; ẑt+i;t+i+2; : : : ; ẑt+i;t+i+k are returned along with model-based estimates of the mean squared
prediction error for each prediction.

Evaluating the predictive power of the different model classes in such a context is complicated because
there is such a vast space of configuration parameters to explore. These parameters include: the trace, the
model class, the number of parameters we allow the model and how they are distributed, the lead time, the
length of the history to which the model is fit, the length of the interval during which the model is used to
predict, and at what points the model is refit. We also want to avoid biases due to favoring particular regions
of traces.

To explore this space in a reasonably unbiased way, we ran a large number of randomized testcases on
each of the traces. Table 4.1illustrates the parameter space from which testcase parameters are chosen. A
testcase is generated and evaluated using the following steps.

1. Choose a randomcrossover point, tcross, from within the trace.

2. Choose a random number of samples,m, from 600; 601; : : : ; 10800 (5 minutes to three hours). The
m samples preceding the crossover point,ztcross�m; ztcross�m+1; : : : ; ztcross�1 are in thefit interval.

3. Choose a random number of samples,n from 600; 601; : : : ; 10800 (5 minutes to three hours). Then
samples including and following the crossover point,ztcross; ztcross+1; : : : ; ztcross+n�1,are in thetest
interval.

4. Choose a random AR, MA, ARMA, ARIMA, or ARFIMAtest modelfrom the table in Table 4.1, fit
it to the samples in the fit interval, and generate a predictor from the fitted test model.

5. Fori = m to 1, step the predictor withztcross�i (the values in the fit interval) to initialize its internal
state. After this step, the predictor is ready to be tested.

6. Fori = 0 to n� 1 do the following:

(a) Step the predictor withztcross+i (the next value in the test interval).

(b) For each lead timek = 1; 2; : : : ; 30 seconds, produce the predictions
ẑtcross+i;tcross+i+k . ẑtcross+i;tcross+i+k is the prediction ofztcross+i+k given the samples
ztcross�m; ztcross�m+1; : : : ; ztcross+i. Compute the prediction errors
atcross+i;tcross+i+k = ẑtcross+i;tcross+i+k � ztcross+i+k .
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7. For each lead timek = 1; 2; : : : ; 30 seconds, analyze thek-step-ahead prediction errors
atcross+i;tcross+i+k , i = 0; 1; : : : ; n� 1.

8. Output the testcase parameters and the analysis of the prediction errors.

For clarity in the above, we focused on the linear time series model under test. Each testcase also includes a
parallel evaluation of the BM and MEAN models to facilitate direct comparison with the simple BM model
and the raw signal variance.

The lower limit we place on the length of the fit and test intervals is purely prosaic—the ARFIMA
model needs about this much data to be successfully fit. The upper limit is chosen to be greater than most
epoch lengths so that we can see the effect of crossing epoch boundaries. The models are limited to eight
parameters because fitting larger MA, ARMA, ARIMA, or ARFIMA models is prohibitively expensive in a
real system. We did also explore larger AR models, up to order 32.

The analysis of the prediction errors includes the following. For each lead time, the minimum, median,
maximum, mean, mean absolute, and mean squared prediction errors are computed. The one-step-ahead
prediction errors (ie,atcross+i;tcross+i+1, i = 1; 2; : : : ; n) are also subject to IID and normality tests as
described by Brockwell and Davis [25, pp. 34–37]. IID tests included the fraction of the autocorrelations
that are significant, the Portmanteau Q statistic (the power of the autocorrelation function), the turning point
test, and the sign test. Normality was tested by computing theR2 value of a least-squares fit to a quantile-
quantile plot of the values or errors versus a sequence of normals of the same mean and variance.

Because the properties of the two sets of traces are so similar, our study focused on the August, 1997 set.
We implemented the randomized evaluation using the parallelized RPS-based tool described in Chapter 2.
We ran approximately 152,000 testcases, which amounted to about 4000 testcases per trace, or about 1000
per model class and parameter set, or about 30 per trace, model class and parameter set. We ran an additional
38,000 testcases explicitly to compare AR(16) models with the LAST model (1000 testcases per trace). It
is these testcases that we discuss in the remainder of this chapter. We also ran an additional 152,000 fully
randomized testcases on the traces where we separately removed the exponential averaging. Our parallelized
simulation discarded testcases in which an unstable model “blew up,” (less than 5%, almost always ARIMA
or ARFIMA models) either detectably or due to a floating point exception. The results of the accepted
testcases were committed to a SQL database to simplify the analysis discussed in the following section.

4.4 Results

The section addresses the following questions: Is load consistently predictable? If so, what are the consistent
differences between the different model classes, and which class is preferable? To answer these questions
we analyze the database of randomized testcases from Section 4.3. For the most part we will address only
the mean squared error results, although we will touch on the other results as well.

4.4.1 Load is consistently predictable

For a model to provide consistent predictability of load, it must satisfy two requirements. First, for the
average testcase, the model must have a considerably lower expected mean squared error than the expected
raw variance of the load signal (ie, the expected mean squared error of the MEAN model). The second
requirement is that this expectation is also very likely, or that there is little variability from testcase to
testcase. Intuitively, the first requirement says that the model provides better predictions on average, while
the second says that most predictions are close to that average.

Figure 4.1 suggests that load is indeed consistently predictable in this sense. The figure is a Box plot
that shows the distribution of one-step-ahead mean squared error measures for 8 parameter models on all
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Figure 4.1: All traces, 1 second lead, 8 parameters
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Figure 4.2: All traces, 15 second lead, 8 parameters.

of the traces. In the figure, each category is a specific class of model and is annotated with the number
of samples for that class. For each class, the circle indicates the expected mean squared error, while the
triangles indicated the 2.5th and 97.5th percentiles assuming a normal distribution. The center line ofeach
box shows the median while the lower and upper limits of the box show the 25th and 75th percentiles and
the lower and upper whiskers show the actual 2.5th and 97.5th percentiles.

Notice that the expected raw variance (MEAN) of a testcase is approximately 0.05, while the expected
mean squared error forall of the model classes is nearly zero. The figure also shows that our second re-
quirement for consistent predictability is met. We see that the variability around the expected mean squared
error is much lower for the predictive models than for MEAN. For example, the 97.5th percentile of the raw
variance is almost 0.3, while it is about 0.02 for the predictive models.

Figures 4.2 and 4.3 show the results for 15 second predictions and 30 second predictions. Notice that,
except for the MA models, the predictive models are consistently better than the raw load variance, even
with 30 second ahead predictions. We also see that MA models perform quite badly, especially at higher
lead times. This was also the case when we considered the traces individually and broadened the number of
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Figure 4.3: All traces, 30 second lead, 8 parameters.
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Figure 4.4: Axp0, 1 second lead, 8 parameters

parameters. MA models are clearly ineffective for load prediction.

4.4.2 Successful models have similar performance

Surprisingly, Figures 4.1 – 4.3 also show that the differences between the successful models are actually
quite small. This is also the case if we expand to include testcases with 2 to 8 parameters instead of just 8
parameters. With longer lead times, the differences do slowly increase.

For more heavily loaded machines, the differences can be much more dramatic. For example, Fig-
ure 4.4 shows the distribution of one-step-ahead mean squared error measures for 8 parameter models on
the axp0.psc trace. Here we see an expected raw variance (MEAN) of almost 0.3 reduced to about 0.02 by
nearly all of the models. Furthermore, the mean squared errors for the different model classes are tightly
clustered around the expected 0.02 value, quite unlike with MEAN, where we can see a broad range of
values and the 97.5th percentile is almost 0.5. The axp0.psc trace and others are also quite amenable to
prediction with long lead times. For example, Figures 4.5 and 4.6 show 15 and 30 second ahead predictions
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Figure 4.5: Axp0, 15 second lead, 8 parameters
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Figure 4.6: Axp0, 30 second lead, 8 parameters

for 8 parameter models on the axp0.psc trace. With the exception of the MA models, even 30 second ahead
predictions are consistently much better than the raw signal variance. These figures remain essentially the
same if we include testcases with 2 to 8 parameters instead of just 8 parameters.

Although the differences in performance between the successful models are somewhat small, they are
generally statistically significant. We can algorithmically compare the expected mean squared error of the
models using the unpaired t-test [66, pp. 209–212], and do ANOVA procedures to verify that the differences
we detect are significantly above the noise floor. For each pair of model classes, the t-test tells us, with 95%
confidence, whether the first model is better, the same, or worse than the second. We do the comparisons for
the cross product of the models at a number of different lead times. We consider the traces both in aggregate
and individually, and we use several different constraints on the number of parameters.

Table 4.2 shows the results of such a t-test comparison for the aggregated traces, a lead time of 1, and
8 parameters. In the figure, the row class is being compared to the column class. For example, at the
intersection of the AR row and MA column, there is a ’<’, which indicates that, with 95% confidence, the
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MEAN BM AR MA ARMA ARIMA ARFIMA
MEAN = > > > > > >

BM < = = < = = =

AR < = = < = = =

MA < > > = > = >

ARMA < = = < = = =

ARIMA < = = < = = =

ARFIMA < = = < = = =

Table 4.2: T-test comparisons - all traces aggregated, lead 1, 8 parameters. Longer leads are essentially the
same except MA is always worse.

MEAN BM AR MA ARMA ARIMA ARFIMA
MEAN = > > = > > >

BM < = > < = = >

AR < < = < = < =

MA = > > = > > >

ARMA < = = < = = >

ARIMA < = > < = = >

ARFIMA < < = < < < =

Table 4.3: T-test comparisons - axp0, lead 16, 8 parameters.

expected mean squared error of the AR models is less than that of MA models, thus the AR models are
better than MA models for this set of constraints. For longer lead times, we found that the results remained
essentially the same, except that MA became consistently worse.

The message of Table 4.2 is that, for the typical trace and a sufficient number of parameters, there are
essentially no differences in the predictive powers of the BM, AR, ARMA, ARIMA, and ARFIMA models,
even with high lead times. Further, with the exception of the MA models, all of the models are better than
the raw variance of the signal (MEAN model).

For machines with higher mean loads, there are more statistically significant differences between the
models. For example, Table 4.3 shows a t-test comparison for the axp0.psc trace at a lead time of 16 seconds
for 8 parameter models. Clearly, there is more differentiation here, and we also see that the ARFIMA models
do particularly well, as we might expect given the self-similarity result of Section 3.5. However, notice that
the AR models are doing about as well.

The results of these t-test comparisons can be summarized as follows: (1) Except for the MA models,
the models we tested are significantly better (in a statistical sense) than the raw variance of the trace and
the difference in expected performance is significant from a systems point of view. (2) The AR, ARMA,
ARIMA, and ARFIMA models perform at least as well as the BM model, and perform better on more
heavily loaded hosts. (3) The AR, ARMA, ARIMA, and ARFIMA models generally have similar expected
performance.

4.4.3 AR models are better than BM and LAST models

Since the AR, ARMA, ARIMA, and ARFIMA models have similar performance when evaluated using
the methods of the previous sections, the inclination is to prefer the AR models because of their much
lower overhead (Chapter 2.5.5). However, should we prefer AR models over BM models, or over their
degenerate case, the LAST model? After all, these latter models also have low overhead and are much
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(a) AR(1) and BM(32) (b) AR(2) and BM(32)

(c) AR(4) and BM(32) (d) AR(8) and BM(32)

(e) AR(16) and BM(32) (f) AR(32) and BM(32)

Figure 4.7: Paired comparisons of AR and BM models by lead time.

easier to understand and build.
To address this issue, we performed paired comparisons of testcases that used these models. Recall from
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Figure 4.8: Paired comparisons of AR(16) and LAST models by lead time.

Section 4.3 that each testcase is run both with a randomly chosen model and with a BM model. For each
testcase and lead time, we can directly compare the variance of the test interval (as measured by the MEAN
model), the mean squared error of the randomly chosen model, and mean square error of the BM model.
Further, we can normalize the reduction of variance each model provides at a particular lead time to the
variance of the test interval itself (ie, (variance� mean squared error)/variance). Finally, we can aggregate
these normalized reductions in variance across testcases.

Figure 4.7 uses this process to compare AR models of different orders to BM models. Each graph in the
figure plots the average percentage reduction in variance as a function of the lead time for AR models of a
given order and their corresponding BM models. The performance of the MEAN model is 0% in all cases.
Each point on a graph encodes approximately 1000 testcases.

As the figure makes clear, AR models of sufficiently high order outperform BM models, especially at
high lead times. Notice that for predictions as far ahead as 30 seconds, the AR(16) and AR(32) models
provide lower variance than the raw load signal, while the BM models produce prediction errors that are
actually more surprising than the signal itself. Indeed, the BM models only seem useful at lead times of 10
seconds or less. Where they shine as well as the AR models is at extremely short prediction horizons.

Figure 4.7 also shows that the performance of the AR models generally increases as their order increases.
There are diminishing returns with higher order models, however. Notice that the gain from the AR(16)
model to the AR(32) model is marginal. For very low order models, rather odd effects can occur, such as
with AR(2) models (Figure 4.7(b)), which buck the overall trend of improving on lower order models. We
noticed that AR models of order less than 5 have highly variable behavior, while AR models of order greater
than 16 don’t significantly improve performance.

Figure 4.7(a) shows the performance of an AR(1) model. If the only source of predictability of the host
load signal was the exponential smoothing done in the kernel, we would expect that AR models of higher
order would not provide better predictability. As we can see, however, higher order models do result in
lower mean squared prediction errors.

It is interesting to compare AR(16) models to the simplest possible predictor, the LAST model. We ran
an additional set of testcases comparing AR(16) and LAST models to do this. It is possible, of course, to
mine the testcases in the original set to do the comparison. However, the testcases we would look at would
not be random, but rather those where the BM model had selected LAST as being most appropriate. By
running a separate set of testcases, we were able to eliminate this bias.

Figure 4.8 compares the average percentage reduction in variance, computed as before, of the AR(16)
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model and the LAST model as a function of the lead time. As we can see, the AR(16) model significantly
outperforms the LAST model, especially for lead times greater than five seconds. The AR(16) curve of
Figure 4.8 is different from that of Figure 4.7(e) because of the use of a different random set of testcases.

4.4.4 AR(16) models or better are appropriate

Clearly, using one of the model classes, other than MA, for load prediction is beneficial. Further, using
an AR, ARMA, ARIMA, or ARFIMA model is preferable to the BM model. In paired comparisons, AR
models of sufficiently high order considerably outperform BM and LAST models, especially at longer lead
times. Of this group of models, we found in Section 2.5.5 that the AR models are much less expensive to
fit than the ARMA, ARIMA, or ARFIMA models and are of similar or lesser cost to use. In addition, AR
models can be fitted in a deterministic amount of time. Because of this combination of high performance
and low overhead, AR models are the most appropriate for host load prediction. AR models of order 5 or
higher seem to work fine. However, we found the knee in the performance of the AR models to be around
order 16. Since fitting AR models of this order, or even considerably higher, is quite fast, we recommend
using AR(16)s or better for load prediction.

4.4.5 Prediction errors are not IID normal

As we described in Section 4.3, our evaluation of each testcase includes tests for the independence and
normality of prediction errors. Intuitively, we want the errors to be independent so that they can be charac-
terized with probability distribution function, and we want the distribution function to be normal to simplify
computing confidence intervals from it.

For the most part, the errors we see with the different models are not independent or normal to any
confidence level. However, from a practical point of view, the errors are much less correlated over time
than the raw signal. For example, for AR(8) models, the Portmanteau Q statistic tends to be reduced by
an order of magnitude or more, which suggests that those autocorrelations that are large enough to be
significant are only marginally so. Furthermore, assuming normality for computing confidence intervals for
high confidence levels, such as 95%, seems to be reasonable. Furthermore, if we want to predict the average
host load over an interval of time, we will sum individual predictions. By the central limit theorem, the
distribution of this sum should converge to normality, although it may do so slowly. In the next chapter, we
successfully rely on this convergence.

4.5 Implementation of on-line host load prediction system

Using RPS, we were able to quickly implement an on-line host load prediction system based on the AR(16)
model. Indeed, the initial implementation was simply to compose the prediction components described in
Section 2.7. The predserver component can have its predictive model changed at run-time, and so it is trivial
to configure it to use the AR(16) model. Later, we constructed a monolithic system with identical features.
Both systems are described in Section 2.8, which also evaluates their performance and the added load they
place on the host. To reiterate the conclusions, both the composed and monolithic systems have virtually
unmeasurable overheads when used to predict the 1 Hz load signal with AR(16) models. Furthermore, they
can be used at measurement rates 2-3 orders of magnitude higher than we require before saturating the CPU.

In the following chapters, we use the monolithic host load prediction system with the MEAN, LAST,
and AR(16) models. This set of models lets us compare performance for the raw signal variance, an ad hoc
predictor, and the formal predictor that we have found to be most appropriate. For each of these models,
the system supplies predictions, mean squared error estimates, and the estimates of the covariances of the
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prediction errors. In the case of the MEAN model, the mean squared error estimates are simply the measured
variance of the signal, while the covariances correspond to the measured autocorrelation structure of the
host load signal. For the LAST and AR(16) models, the mean squared error estimates and covariances are
computed from the fitted model (LAST is treated as an AR(1)).

4.6 Conclusions

In this chapter, we applied the final two steps of the resource signal methodology of Section 2.1 to host
load signals, specifically the 1 Hz Digital Unix five-second load average. The last chapter studied traces
of such signals and concluded that linear models such as the Box-Jenkins models (AR, MA, ARMA, and
ARIMA) might be appropriate for predicting them. However, it also found that host load was self-similar,
which suggested that the more complex ARFIMA model might be needed. In addition, we found that host
load exhibits epochal behavior, which could rule out linear models altogether.

To determine which, if any, of these models is truly appropriate, we studied their performance by running
almost 200,000 randomized testcases on the August, 1997 set of load traces and then analyzing the results.
We looked at predictions from 1 to 30 second into the future. In addition to the AR, MA, ARMA, ARIMA,
and ARFIMA models, we also looked at the more intuitive BM and LAST models.

The main contribution of our evaluation is to show, in a rigorous manner, that host load on real systems is
predictable to a very useful degree from past behavior by using linear time series techniques. In addition, we
discovered that, while there are statistically significant differences between the different classes of models
we studied, the marginal benefits of the more complex models do not warrant their much higher run-time
costs. This is a somewhat surprising result given the complex properties we identified in the last chapter.
Finally, we reached the conclusion that AR models of order 16 or higher are sufficient for predicting the
host load signal up to 30 seconds in the future. These models work very well and are very inexpensive to fit
to data and to use.

Using RPS, we implemented an on-line host load prediction system that uses the AR(16) model. This
extremely low overhead system is described and evaluated in Section 2.8. In the next chapter, we will use
the predictions of this system as the basis for predicting the running time of a task.
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Chapter 5

Running Time Advisor

This dissertation argues for basing real-time scheduling advisors on explicit resource-oriented prediction,
specifically on the prediction of resource signals. In the previous chapters, we presented a methodology
and tools for understanding such signals and developing prediction systems for them. We then applied the
approach to host load to develop an appropriate host load prediction system. In this chapter, we concentrate
on how to use these resource-level predictions to provide application-level predictions, predictions of task
running time.

When deciding on which host to run a task, applications and adaptation advisors such as the real-time
scheduling advisor need to know the likely running time of the task on each of the available hosts. If they
can modify the CPU demand of a task, perhaps by adjusting a quality parameter such as resolution, they
may also be interested in the likely available processor time on each of the hosts. This chapter defines an
interface for this purpose, describes an algorithm that uses host load predictions to implement the interface,
and evaluates the performance of an implementation of that algorithm using a large variety of experimental
environments. We refer to that implementation as the running time advisor.

To use the system, the application supplies the prospective host, the CPU demand of the task (expressed
as the nominal running time on an unloaded host), and a confidence level. The system then collects the latest
host load predictions and their estimated mean squared errors and correlations from the prospective host’s
load prediction system. It then uses the algorithm to compute an estimate of the running time of the task on
that host.

The estimate the system reports contains two values. The first is the expected running time of the task
on the host. The second is a confidence interval (as per the user’s supplied confidence level) for the running
time. For the purposes of the real-time scheduling advisor, we are most concerned about the confidence
intervals that the system computes.

We evaluated the system using a real environment where the background load on a host is supplied by
playing back a load trace. Using this technique, we can (re)construct a realistic repeatable workload on a real
machine without limiting ourselves to synthetic workloads that may not capture the higher order behavior
that host load prediction depends on, and which real load signals exhibit.

The host load predictions used to evaluate the system are provided by the on-line host load prediction
system described in Chapter 2. The study described in Chapter 4 concluded that the most appropriate
predictor to use for host load prediction was based on an AR(16) model or better. In evaluating the algorithm
developed in this chapter, we use predictors based on the MEAN, LAST, and AR(16) models, which provide
a measure of how well the algorithm works given (respectively) the raw variance of the load signal, the
considerably lower mean squared errors of a simple predictor, and the mean squared error of the most
appropriate predictor.

The evaluation consists of 114,000 randomized testcases run against each of our August, 1997 traces.

81
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To understand the performance of the running time advisor, we data-mined these testcases.
We draw a considerable number of conclusions from our examination of the testcases. The main result is

that our system, using a strong host load predictor such as the AR(16) predictor, indeed computes reasonable
and useful confidence intervals for the running time of tasks. The expected running times that are computed
are also quite accurate. The benefits of more sophisticated predictors depend on the how heavily loaded the
host is and on the nominal time of the task. The 39 traces in the evaluation fit into five classes as far as
the performance of our system is concerned. For most of these classes, and more than 90% of traces, the
AR(16) predictor produces the best results.

5.1 Programming interface

When an application or application scheduler considers running a task on a particular host, it wants to know
what the running time of the task on that host will be given the task’s CPU demand. Alternatively, it may
want to know the available CPU time during a given interval extending into the future.

The API we provide allows the application to ask these questions and get qualified answers. The running
time advisor will use the host load predictions that the host makes available to compute the answers. The
answers are qualified in the sense that they are expressed both as expected values and as confidence intervals.
The confidence interval captures the uncertainty associated with prediction and modelling errors. The API
has the following form:

int PredictRunningTime(Host &host,
RunningTimePredictionRequest &req,
RunningTimePredictionResponse &resp);

struct RunningTimePredictionRequest {
double conf;
double tnom;

};

struct RunningTimePredictionResponse {
double tnom;
double conf;
double texp;
double tlb;
double tub;

};

int PredictAvailableTime(Host &host,
AvailableTimePredictionRequest &req,
AvailableTimePredictionResponse &resp);

struct AvailableTimePredictionRequest {
double conf;
double interval;

};

struct AvailableTimePredictionResponse {
double conf;
double interval;
double texp;
double tlb;
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double tub;
};

The first function,PredictRunningTime , is used to determine the running time of a task of nominal
time tnom (tnom) on the host. The request also includes a confidence level,conf , to describe how accurate
the prediction needs to be. These components of the query are fields of the
RunningTimePredictionRequest structure. The response returns in the
RunningTimePredictionResponse structure. In addition to a copy of the request’s fields, it includes
the expected running time of the task,tnom (texp), as well as the upper and lower bounds of theconf
confidence interval for the running time, [tlb , tub ] ([tlb; tub]). texp is a point estimate which represents
the most likely running time. The actual running time,tact, will likely be different fromtexp but be near it.
The confidence interval represents a range of values aroundtexp such thattact will be in the range a fraction
conf of the time.

The second function,PredictAvailableTime , is used to ask how much time is the available on the
host during the nextinterval seconds. The request and response structures are similar to those already
described. The differences are that the query contains the interval instead of the nominal task time, and that
the response’s estimates are of the available time.

5.2 Predicting running times

In this section, we describe the algorithm we developed for transforming from host load predictions and a
task’s nominal time to a prediction of the task’s running time. We begin by describing the core algorithm,
first illustrating how it works in continuous time, then discretizing it, and finally incorporating host load
predictions. To compute confidence intervals using the algorithm, we must determine the variance of a sum
of host load predictions, which turns out to be somewhat subtle because the prediction errors are themselves
correlated. Next, we discover that the algorithm’s predictions are erroneous because it does not model an
important aspect of typical Unix schedulers. We introduce load discounting to repair the algorithm. Finally,
we summarize the steps of the algorithm.

5.2.1 Core algorithm

In Chapter 3, we showed experimental results that related the running time of a task,texec, to the average
load it experiences while it runs using the following continuous time model:

texec

1 + 1
texec

R texec
0 z(t)dt

= tnom :

Herez(t) is the load signal, shifted such thatz(0) is the value of the signal at the current time,tnow . We
introduce this shift to simplify the presentation of our algorithm, and to conform to the Box-Jenkins notation
for time series prediction that we used in the previous chapter. This simplification does not affect the results.
tnom is the nominal running time of the task, which quantifies the CPU demand of the task as its running
time on an unloaded machine.

This continuous time equation is basically a fluid model of a priority-less host scheduler. We will use
this simple model to describe our estimation procedure. However, real schedulers incorporate priorities that
can change over time. We assume that the majority of the workload runs at similar priorities. In particular,
we assume that there are no processes whose priorities have been drastically increased or decreased, such
as with the Unix “nice” facility. Ultimately, we will relax this assumption slightly and model the temporary
priority boosts that most Unix implementations give processes immediately after they become unblocked.
Given this extension, the procedure we outline in this section works quite well.
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Continuous time

The above equation is somewhat unwieldy to discretize and use, so, before we continue, let’s define the
available time function

at(t) =
t

1 + al(t)
; t > 0 (5.1)

which depends on theaverage load function

al(t) =
1

t

Z t

0
z(�)d� ; t > 0 : (5.2)

at(t) represents the available CPU time over the nextt seconds, which is inversely related to the average
load during that interval,al(t). As the average load increases, the available time decreases.texec is then the
minimum t for whichat(t) = tnom : Using this available time function makes it easier to explain how our
algorithm estimates the running time of a task, and, of course, the available time function is offered directly
through the API described in Section 5.1.

Discrete time

In our system,z is not a continuous-time signal, but rather it is a discrete-time1=� Hz sampling of that
signal,hzt+ii, zt+i = z(i�) for i = 1; 2; : : : ;1. Note the intentional similarity of this notation to that of
the1; 2; : : : ;1-step-ahead predictions introduced in Chapter 3. We will indeed later replace these values
with predictions.zt+1 representsz(t) for 0 < t � �, and so on. We approximatez(t) asz(t) = zdt=�e.
This lets us write a discrete time approximation ofat(t) andal(t):

ati =

(
0 i = 0
i�

1+ali
i > 0

(5.3)

ali =
1

i

iX
j=1

zt+j ; i > 0 (5.4)

ati is the time available during the nexti� seconds andali is the average load that will be encountered over
the nexti� seconds. We then estimate the available timeat(t) by linear interpolation:

at(t) = atbt=�c +
t � bt=�c

�
(atdt=�e � atbt=�c) (5.5)

Host load predictions

Given these definitions, we substitute the predicted load signalbzt+i for zt+is resulting in the predicted
average loadbali, and then continue substituting back to give the predicted available timebati and its corre-
sponding continuous time approximation:

bati =
(

0 i = 0
i�

1+bali i > 0 (5.6)

bali = 1

i

iX
j=1

bzt+j ; i > 0 (5.7)

bat(t) = batbt=�c +
t � bt=�c

�
( batdt=�e � batbt=�c) (5.8)

Then, the expected running time of the task,texp, is simply the smallestt for which bat(t) = tnom.



5.2. PREDICTING RUNNING TIMES 85

Confidence intervals

Because host load predictions are not perfect, we also report the running time or available time as a confi-
dence interval, computed to a user-specified confidence level. The better the predictions are, the narrower
the confidence interval is.

The predicted load signal isbzt+i = zt+i + at+i, wherezt+i is the real value of the signal andat+i is the
i-step-ahead prediction error term which we summarize with a variance�2a;i. Our uncertainty in estimating
the available timeati is due to our uncertainty in estimating the average loadali, which is due in turn to
these error terms and their variance. To represent this uncertainty in the form of a confidence interval, we
must push the underlying error variances through the equations above to arrive at a variance for the average
loadali.

Notice that the average load (Equation 5.7) sums the estimatesbzt+i. Rewriting the equation, we can see
that

bali = ali +
1

i

iX
j=1

at+j (5.9)

By the central limit theorem, then,bali will become increasingly normally distributed with increasingi.
Given that the errorsat+i are of zero mean,bali has a mean (expected) value ofali and a variance that
depends on the sum of the prediction errorsat+i:

bali � N

0
@ali; V ar

8<
:1

i

iX
j=1

at+j

9=
;
1
A (5.10)

It is important to note that for short jobs or large�, this normality assumption may be invalid. We will
evaluate the system later and determine whether the results of the assumption are reasonable.

Suppose the user requests a confidence interval at 95% confidence. We can then compute a confidence
interval forali (for i > 0):

[allowi ; al
high
i ] =Min

0
B@0; bali � 1:96p

i

vuuutV ar
8<
:

iX
j=1

at+j

9=
;
1
CA (5.11)

What this means is that we predict thatali will be in the range[allowi ; al
high
i ] with 95% probability. The

1:96 is the number of standard deviations of a standard normal needed to capture42:5% of values. TheMin

is important because the average load cannot drop below zero, although the prediction errors can make that
appear to be the case.

We can now back-substitute these upper and lower bounds of the confidence interval intoat(t) (Equa-
tion 5.5), resulting in upper and lower confidence intervals forat(t) = [atlow(t); athigh(t)]. Then the
confidence interval on the running time is[tlb; tub], wheretlb is the minimumt for whichathigh(t) = tnom
andtub is the minimumt for whichatlow(t) = tnom.

5.2.2 Correlated prediction errors

Given the discussion of the previous section, we must still determine the variance of a sum of consecu-
tive predictions in Equation 5.11 to compute the confidence interval. This is one of the subtler issues in
converting from load predictions to running time predictions.

In essence, we are summing the one, two,i-step-ahead prediction errors, which are the random variables
at+1; at+2; : : : ; at+i. Each of these random variables has a corresponding variance:�2a;1; �

2
a;2; : : : ; �

2
a;i.
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These variances are simply the mean squared error estimates produced by the predictor. We want to know
the variance of their sum. By the central limit theorem, the distributionof such a sum converges to normality.
It is tempting, but wrong, to compute the variance of the sum as

V ar

8<
:

iX
j=1

at+j

9=
; =

iX
j=1

V arfat+jg =
iX

j=1

�2a;j (5.12)

This would be valid if the prediction errors were independent, but it turns out that they are not. Almost by
their very nature, linear models produce prediction errors which are correlated over time. The two-step-
ahead prediction is not independent of the one-step-ahead prediction. Computing the variance of the sum in
the above manner understates the variance, producing confidence intervals that are too small.

To see that the prediction errors are correlated, consider an AR(1) model,zt+1 = �0zt + at+1. At time
t, the remaining values will be:

zt+1 = �0zt + at+1
zt+2 = �0zt+1 + at+2 = �20zt + �0at+1 + at+2
zt+3 = �0zt+2 + at+3 = �30zt + �20at+1 + �0at+2 + at+3

zt+n = �0zt+n�1 + at+n = �n0zt +
Pn�1

j=0 �
j
0at+n�j

The predictions at timet must assume that all the white noise termsat+k are their expected values, which
are zero, and thus bzt+1 = �0ztbzt+2 = �0bzt+1 = �20ztbzt+3 = �0bzt+2 = �30ztbzt+n = �0bzt+n�1 = �n0zt

Now then, the one-step-ahead prediction error isat+1. The two-step-ahead prediction error is�0at+1 +
at+2, the value of which is clearly dependent on the one-step-ahead prediction error. The three-step-ahead
prediction error is�20at+1+�0at+2+at+3, which depends on the one- and two-step-ahead prediction errors,
and so on.

To correctly compute the variance of the sum of load predictions, we must compute the covariance
of each of the prediction errors with each of the other prediction errors and then sum alli2 terms of this
covariance matrix. Entryj; k of this matrix isCoV arfat+jat+kg = �a;j�a;k and is the covariance of the
j-step-ahead prediction with thek-step-ahead prediction. Notice that variances of the individual predictions
are simply the diagonal elements of the matrix.

The prediction errors’ correlation over lead time is akin to a signal’s autocorrelation over time. Recall
that an autocorrelation sequence is simply a normalized autocovariance sequence. The covariances are easily
computed from the autocovariance sequence.
In particular,CoV arfat+j ; at+kg = AutoCoV arfat; ajj�kjg.

The host load prediction system uses the algorithm of Box, et al to compute the autocovariance sequence
for any linear model [23, pp. 159–160]. Since the LAST predictor is simply an AR(1) model with�0 = 1,
its autocovariances can also be computed using Box, et al’s method. In the case of the MEAN predictor, the
autocovariances are simply the autocovariances of the signal itself.

The client can request that the host load prediction system summarize the prediction errors either by the
individual variances (the diagonal of the covariance matrix), the covariances of all the predictions (the entire
covariance matrix), or the variance of the sum of the first1; 2; : : : ; i predictions (the sum of the firsti rows
and columns of the covariance matrix). The variance of the sum of the firsti predictions, which we will



5.2. PREDICTING RUNNING TIMES 87

Figure 5.1: Relative errors of predictions as a function of nominal time without load discounting

write as�2s;i is then computed as

�2s;i = V ar
nPi

j=1 at+j

o
= SumV arfhat+1; at+2; : : : ; at+iig
=

Pi
j=1

Pi
k=1 CoV arfat+j ; at+kg

=
Pi

j=1

Pi
k=1 �a;j�a;k

(5.13)

The sum is computed by the host load prediction system to avoid communicating the whole covariance
matrix.

Typically, the non-diagonal elements of the covariance matrix are larger than zero. This results in
Equation 5.13 being larger than Equation 5.12. This increased variance of the sum widens the confidence
interval forali and, correspondingly, for the available timeat(t) and for the running timetexec.

5.2.3 Load discounting

After we implemented the algorithm for computing the expected task running time (texp) of a task and its
confidence interval ([tlb; tub]) as described thus far in this section, we found that our results were somewhat
dependent on the nominal running time of the task,tnom . We will describe our evaluation methodology
in detail in Section 5.3, but, for now, consider running, at a random time, a task with a randomly chosen
nominal timetnom on a host with an interesting background load. Before the task is run, we compute its
expected running time,texp. Then we run the task and record its actual running time,tact.

Figure 5.1 shows the result of running many such tasks. The figure plots the relative error ((texp �
tact)=texp) of the predictions versus the nominal time of the task. The figure plots 3000 tasks with nominal
times chosen from a uniform distribution between 0.1 to 10 seconds. The interval between task arrivals was
chosen from a uniform distribution between 5 to 15 seconds. The background load was the August, 1997
axp0 trace and the predictor used was an AR(16).

Notice that relative error is always positive and increases markedly as nominal time decreases. For
one second tasks, the running time is over-predicted by as much as 80%. The confidence intervals are
correspondingly skewed, with far too many points falling below the lower bounds of the intervals.

The problem is due to the Digital Unix scheduler, which is priority-based and which gives an “I/O boost”
to processes (increases their priority) when a blocking I/O operation completes. For example, a process
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Figure 5.2: Relative errors of predictions as a function of�discount, and derivation of�discount by linear fit.

(such as a CORBA ORB, an active frame server, or the spin server we use in our evaluation (Section 5.3.2))
that is blocked in a read on a network socket will have its priority boosted when the read completes. Over
time, the process’s priority will “age” to its baseline level. The result of this is that the awakened process
will get more than its fair share of the CPU until its priority has degraded. The shorter the task, the more
this mechanism will benefit it, and the more inaccurate our running time estimate will be, just as shown in
Figure 5.1

Although we had originally intended to avoid modeling priority scheduling, leaving the modeling of a
full priority-based scheduler for later, it was clear that we had to capture this priority boost effect.

Our solution is load discounting. Conceptually, when a task begins to run, its priority boost means that
the background load on the system will effect it only slightly. As it continues to run, its priority drops and
the background load becomes more and more important. We model this by exponentially decaying the load
predictionsbzt+j , the discounted loadczdt+j being

czdt+j = (1� e�j�=�discount)bzt+j (5.14)

How quickly the initial load discounting decays depends on the setting of �discount.
We determined the value of�discount empirically by again running a large number of randomized test-

cases as described above. For this set of testcases, we used load discounting and chose�discount randomly
from the range 0 to 10 seconds. Figure 5.2 plots the relative error of these testcases as a function of�discount .
Although there is plenty of dispersion (recall that these are point estimatestexp, not confidence intervals) a
linear trend clearly exists. We fitted a line to the points and determined that it crossed zero relative error at
�discount = 4:5 seconds.

Next, we ran a further large number of testcases with load discounting and�discount = 4:5. The results
are plotted in Figure 5.3. The figure plots the relative error as a function of the nominal time and is suitable
for direct comparison with Figure 5.1. As can be seen, the appropriate�discount value has eliminated the
dependence of the relative error on the nominal time and has further reduced the average relative error to
almost exactly zero, which we would also expect from these point estimates.

Load discounting is an effective solution to the priority boosts that most Unix schedulers give to pro-
cesses that have become unblocked. It is important to note, however, that other priority problems remain.
For example, a background process which has had its priority significantly reduced (eg, a process which
has has been “reniced”) but which remains compute bound will result in artificially exaggerated predictions.
Similarly, a background process with high priority will result in predictions that are too low.
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Figure 5.3: Relative errors of predictions as a function of nominal time with load discountingand appropriate
�discount value.

5.2.4 Implementation

The following summarizes how the implementation implements thePredictRunningTime call.

1. Set a prediction horizonn = 3dtnom=�e.

2. Collect the latest predictions,bzt+1; bzt+2; : : : ; bzt+n, and the cumulative variances of their sums,�2s;1; �
2
s;2; : : : ; �

2
s;n, from the host

load prediction system running on the host. The variances are computed as per Equation 5.13.

3. Generate the discounted load predictions,czdt+1;czdt+2; : : : ;czdt+n, as per Equation 5.14.

4. Using the discounted load predictions, compute the discrete time expected available time,bat1; bat2; : : : ; batn using the technique of Section 5.2.1, and the discrete time confidence intervals on the
available time,[atlow1 ; at

high
1 ]; [atlow2 ; at

high
2 ]; : : : ; [atlown ; athighn ] using the technique of Section 5.2.1.

5. If the lower bound on the maximum available time,atlown , is less than the nominal time,tnom, increase
the prediction horizonn and go to step 2.

6. To find the expected running time,texp, do binary search to find the smallesti for whichati > tnom ,
interpolateat(t) aroundi� using Equation 5.8, and findt such thatat(t) = tnow . This istexp.

7. Repeat the previous step with theatlowi andathighi sequences to find the upper and lower bounds of
the confidence interval,[tlb; tub].

ThePredictAvailableTime call is implemented similarly.

5.3 Experimental infrastructure

The most appropriate way to evaluate the running time advisor is to actually run it on a host, submit tasks
to that host, and measure how well the predicted times match the actual times. This section describes the
infrastructure that we used to do this. We also used this infrastructure to evaluate the real-time scheduling
advisor. The next chapter describes that evaluation.
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The running time advisor is a composite whose errors are due to inaccurate host load predictions as well
as modeling errors in transforming from the host load predictions and task CPU demand to task running
time. We are interested in how this composite performs as a whole. The essential comparison to make
when evaluating the system is the comparison between predicted and actual running times. To make such
a comparison in a simulation would require a method for realistically estimating the actual running time,
but that is a part of the system we want to evaluate! The measurement-based approach avoids this problem
because the actual running time is measured directly.

The goal of our experimental infrastructure is to provide a realistic, repeatable environment for evaluat-
ing the running time advisor, and, in the next chapter, the real-time scheduling advisor). The infrastructure
hardware consists of two Alphastation 255 hosts connected with a private network. Both machines run Dig-
ital Unix 4.0D. One host is referred to as the measurement host while the other is called the recording host.
The hosts have no other load on them.

The recording host runs software that interrogates the components running on the measurement host and
submits tasks to it. The measurement host runs the following components:

� A load playback tool operating on some load trace

� A host load sensor

� One or more host load prediction systems

� A spin server

The load playback tool, described in the next section, performs work that replicates the workload captured
in the load trace. The choice of load trace is experiment-specific. The host load sensor provides an interface
for the recording host to request the latest load measurement on the host. The host load prediction systems
are described in Section 2.8.1 and provide an interface for the recording host to request the latest load
predictions using some experiment-specific prediction model. The spin server runs tasks—it takes requests
to compute (using a busy loop) for some number of CPU-seconds and then returns the wall-clock time that
the task took to complete.

The remainder of this section describes the load playback tool and the spin server in more detail.

5.3.1 Load trace playback

To evaluate the running time advisor, a realistic background workload is necessary. The load signal produced
by running this workload should have a realistic correlation structure, since it is precisely this that a predictor
attempts to model.

To meet these requirements, our infrastructure usesload trace playback, a new technique in which a
workload is generated according to a load trace. With no other work on the host, this background load
results in the host’s load signal repeating that of the load trace. Furthermore, we can repeatedly play back
the same load and explore the prediction system’s behavior using the traces from many different hosts.
Because the workload reflects the trace, which certainly records the real behavior of a host, it is suitable for
evaluating prediction-based systems.

Playback may seem like overkill, but it is not. As we discovered in Chapter 3, host load signals typically
have complex behaviors. They typically have long, complex autocorrelation structures which can change
abruptly. Our prediction systems exploit the autocorrelation structure to increase predictability and treat
abrupt changes as points at which models need to be refit. Any synthetic load generator would have to
reproduce these properties, and that is difficult. Furthermore, there may be other properties of the signals
that we do not yet understand, but which may be important for prediction. For these reasons, playing back
actual load behavior is most appropriate.
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Figure 5.4: Example of host load trace playback.

Figure 5.4 is an example of load trace playback. In this case, the trace collected on the host axp0.psc
on August 23, 1997 is being played back. Figure 5.4 plots (a) the target load signal, (b) the measured load
signal, (c) the histogram of playback errors, and (d) the autocorrelation function of the playback error for
playback of the first hour of the trace. As can be seen, the measured load tracks the target load with low and
largely uncorrelated error. There is a slight cumulative delay in the playback process because work-based
playback (explained later) is being used. Another extraneous source of playback error is the modicum of
other work on the machine. The histogram shows us that most of the errors are quite small. The histogram
also slightly overstates the actual error in terms of the work performed. This is due to other extraneous load
on the system, sampling issues, and the effects of the kernel’s smoothing filter, which we discuss later in
this section. More details on host load playback, including its performance on platforms other than DUX,
can be found elsewhere [33].
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The playback algorithm

To describe the operation of the system, we’ll focus on a periodically sampled trace. The load playback tool
can also operate with nonperiodically sampled traces.

The load average is an exponential average of the number of processes in the system’s ready-to-run
queue. Conceptually, the length of the ready queue is periodically sampled, these samplesxi flow through
an exponential filter

zi+1 = (e��=�record)zi + (1� e��=�record)xi (5.15)

where� is the sampling interval and the application-visible load average is thezi series. A load trace is
gathered by periodically sampling the load average and recording the time-stamped samples to a file. The
sample rate should be at least twice is high as the sample rate of the in-kernel process, so we rewrite the
above equation like this:

tracei+1 = (e��=2�record)tracei + (1� e��=2�record)x0i (5.16)

In load trace playback, we want the measured load average to track the load average samples in the trace
file. To do this, we treat thex0i in the above equation is the expected run-queue length during the last�=2

seconds. To determine thex0i, we “deconvolve out” the smoothing function using the method described
by Arndt, et al [7]. All that is necessary to do this is knowledge of the smoothing constant�record for the
machine on which the trace was taken. For Digital Unix,�record is 5 seconds. On most other Unix systems,
�record is 60 seconds. A larger�record value indicates that the load average will behave more smoothly.

A valuex0i represents the amount of contention the CPU saw for the time interval. To reproduce this
contention, we split the interval into smaller subintervals, each of which is larger than the scheduler quantum,
and then stochastically assign subprocesses to either work or sleep during the subintervals. For example,
supposex0i = 1:5. We would assign subprocess 0 to work during a subinterval with probability 1, and
subprocess 1 to work during a subinterval with probability 0.5.

After each individualx0i value has been played, the load average on the system is measured. This
measurement,measurei, is compared against the load traceas it would have appeared given the�playback
of the playback machine, trace0i. trace0i is determined by smoothing thex0i series with an exponential
averaging filter having the playback machine’s�playback .

Interacting with other load

Most likely, there will be other processes producing load on the system—the tasks we will run during the
evaluation, for example. It is important to understand how the load introduced by the load playback tool
reacts to this other load. Two modes of operation are possible, time-based and work-based. In our evaluation
we use work-based playback.

In the time-based mode of operation, the contention probabilities implied by thex0i value last only till
the end ofx0i’s interval in real time. Essentially, this means that the other load on the machine can only
amplitude modulate the played back load. For example, suppose there is a uniform 1.0 load on the machine
and the load trace dictates a 1.0 load from 0 to 1 second and zero elsewhere. Then, the measured load will
(ideally) be 2.0 from 0 to 1 second and 1.0 elsewhere.

In the work-based mode of operation, the load is interpreted as work that must always be done, but
which may be slowed down by other load. This means that the other load on the system can also frequency
modulate the played load. Using the same example as the previous paragraph, the measured load would be
2.0 from 0 to 2 seconds and 1.0 elsewhere.

The load playback tool also supports a negative feedback mechanism. Using this mechanism, it can
sometimes more accurately track the load average in the trace. However, the feedback mechanism will also
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try to correct for other load on the system, trying to make the total load track the trace load. Because of this
obvious flaw, we do not use it in our evaluation.

Imperfections

The measured load during playback tracks the desired load only approximately in some cases. This is mainly
because because the OS’s scheduler is functioning both as a sampling processes and as part of the sampled
process.

The sampling process that produces thexis in the Equation 5.15 is the OS’s scheduler, which sees only
integral numbers of processes on the ready queue. We treat our approximation ofxi, x0i, as the expected
value ofxi, E[xi]. In playing backx0i we contrive to make the value the scheduler samples this expected
value. However, the second moment,E[x2i ] is nonzero, so the actual value sampled may be different even
if the playback is dead on. Consider the following contrived example. Supposex0i = 0:5, we have a
subprocess spend 50% of its time sleeping and 50% working, and we alternate randomly between these
extremes. The expected run queue length the scheduler would see is thenE[xi] = (0:5)(1) + (0:5)(0) =

0:5. However, the scheduler will really sample either 1 or 0. The effect on the load average in either
case will be drastically different than the expected value resulting in error. Furthermore, because the load
is an exponential average, that error will persist over some amount of time (it will decline to 33% after
�record seconds). Another way of thinking about this is to consider the second moment,E[x2i ]. For this
example,E[x2i ] = (0:5)(1)2 + (0:5)(0)2 = 0:5, so the standard deviation of the distribution ofE[xi] isq
E[x2i ]�E[xi]2 =

p
0:5� 0:25 = 0:5 which explains the variability in what the scheduler will actually

sample.
Even if the sample rate of the trace is low compared to the sample rate of the scheduler, resulting in

thex0i’s corresponding measurements being derived from more than one observation by the scheduler, any
extant error is still propagated by the exponential filter.

Another source of error is that an actual process on the ready queue may not consume its full quantum.

Real traces versus synthetic traces

In almost all cases, when a real load trace that has been sampled at a sufficiently high rate is played, the
x0is are close to integers. Intuitively, this makes sense - the scheduler can only observe integral numbers of
processes on the ready queue, and if our estimates of its observations (thex0is) are accurate, they should also
mostly be integers.

It’s easy to construct synthetic traces that are actually not sensible in terms of short term behavior. One
such trace is the continuous 0.5 example discussed in the previous section. Deconvolving the trace produces
x0is slightly above 0.5. Load playback reasonably produces a situationwhere the expected ready queue length
is 0.5 by having a process spend half of its time working and half sleeping. However, the observations the
kernel (thexis) will make will be either 0 or 1. Thus the measured load trace will vary widely. The average
load average will match the 0.5 we desire, but the short term behavior will not. It’s important to note that
load playback tool is doing what the user probably wants (keeping the CPU 50% busy), but that the load
average fails to be a good measure for how well the generated load conforms.

Another way a synthetic trace can fail is to have very abrupt changes. For example, a square wave will
be reproduced with lots of overshoot and error. In order for the abrupt swings of a square wave to have been
the output of the exponential smoothing, the inputxi must have been much more abrupt, and the estimatex0i
will also be quite large. This means load playback has to have many processes try to contend for the CPU at
once, which raises the variability considerably.

The best way to produce synthetic traces is to create a string of integer valuedxis and smooth them with
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the appropriate�record. Another possibility is to present thesexis directly to load playback with a very small
�record trace value.

5.3.2 Spin server

The spin server runs submitted tasks and measures how long they take to complete. A task consists of the
number of CPU seconds that should be run. The spin server uses a busy loop that periodically checks the
accounted system and user time (using the getrusage system call) that the process has consumed. The loop
exits when the requested amount of CPU seconds have been consumed and reports the wall clock time used.
At startup, the spin server calibrates itself with respect to the host’s running rate and the overhead of the
getrusage call. This permits the loop to be extremely precise about the amount of computation it does using
a minimal number of getrusage calls. The relative absolute error is much less than 1%.

5.4 Evaluation

To evaluate the running time advisor, we ran 114,000 randomized testcases using the infrastructure and
studied the results. The testcases were randomized with respect to their starting time, their nominal running
time (0.1 to 10 seconds), the underlying host load predictor that was used (MEAN, LAST, and AR(16)), and
the load trace used to generate the background load (all of the August, 1997 traces). We characterized the
quality of the expected running times and confidence intervals produced by the system using three metrics.
We evaluated the effect on these metrics of the different traces, load predictors, and nominal running time.

The main conclusion is that the running time advisor does indeed produce high quality predictions for
task running times. Performance depends most strongly on the choice of host load predictor. There is
a marked increase in performance in moving from the MEAN predictor (where prediction errors are due
the raw signal variance) to the LAST predictor (which is the simplest predictor to take advantage of the
autocorrelation of load signals). There is a smaller, but important, gain in moving from the LAST predictor
to the AR(16) predictor (which is the predictor that we found most appropriate for host load prediction in
the previous chapter). The nature of these gains depends on how heavily loaded the host is. Performance
also depends on the running time of the task and generally improves as running time increases.

5.4.1 Methodology

To evaluate the running time advisor given a particular traced host, we start up the experimental infrastruc-
ture described in Section 5.3 on the measurement and recording hosts. The load playback tool is set to replay
the selected trace. The host load sensor is configured to run at 1 Hz. Three host load prediction systems are
started: MEAN, LAST, and AR(16). The systems are configured to fit to 300 measurements (5 minutes) and
to refit themselves when the absolute error for a one-step-ahead prediction exceeds 0.01 or the measured
one-step-ahead mean squared error exceeds the estimated one-step-ahead mean squared error by more than
5%. The minimum interval between refits is 30 seconds and maximum interval before the measured mean
squared error is tested is 300 seconds.

The prediction and measurement software are permitted to quiesce for at least 600 seconds. Then 3000
consecutive testcases are run on the recording host, each according to this procedure:

1. Wait for a delay interval,tinterval, selected from a uniform distribution from 5 to 15 seconds.

2. Get the current timetnow .

3. Select the task’s nominal time,tnom, randomly selected from a uniform distribution from 100 ms to
10 seconds.
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4. Select a random host load prediction system from among MEAN, LAST, AR(16).

5. Use thePredictRunningTime API to compute the expected running timetexp and the 95% con-
fidence interval[tlb; tub] using the latest available predictions available from the selected host load
prediction system.

6. Run the task on the spin server and measure its actual running time,tact.

7. Record the timestamptnow , the prediction system used, the nominal timetnom, the expected running
time texp, the confidence interval[tlb; tub].

After all 3000 testcases have been run, their records are imported into a database table corresponding to the
trace.

It takes approximately 13 hours to complete 3000 testcases. To evaluate the running time advisor, we
then mined the database.

5.4.2 Metrics

The PredictRunningTime function predicts the running time of a task in two ways: as an expected
value and as a confidence interval. Because the lower bound of the confidence interval is artificially limited
due to the fact that load cannot drop below zero, the expected time is not necessarily in the middle of the
confidence interval.

Evaluating the quality of the confidence interval,[tlb; tub], is a somewhat complex endeavor. Suppose we
generate run a wide variety of testcases with a specified confidence, say 95%. If we used the ideal algorithm
for computing confidence intervals and the best possible predictor, the lengths of the tasks’ confidence
intervals would be the minimum possible such that 95% of the tasks would have running times in their
predicted intervals. An imperfect algorithm, such as ours, will compute confidence intervals that were larger
or smaller than ideal where more or fewer than 95% of the tasks complete in their intervals. The important
point is that to evaluate a confidence interval algorithm, we must measure the lengths of the confidence
intervals it produces, and the number of tasks which complete within these confidence intervals. We used
following two metrics:

� Coverage: the fraction of tasks which complete with their predicted confidence intervals

� Span : the average width of the confidence interval width in seconds

The ideal system will have the minimum possible span such that the coverage is 95%.
To evaluate the quality of the expected running time,texp, we are interested in how strongly the actual

time, tact, correlates with it. Imagine plotting the actual times versus the expected times for all the tasks.
With an perfect predictor, the result would be a perfect 45 degree line starting at 0. An imperfect predictor,
such as ours, will approximate the line but with points scattered around it. The degree of this scatter is
measured by theR2 value of the linear fit.R2 = 1 would correspond to a perfect predictor whileR2 = 0

corresponds to randomness. We will evaluate the quality of the expected times using thisR2 value, which
we will simply refer to as theR2 value. This is not the entire story. We also care about the slope and
intercept of the line. We discuss this further in Section 5.4.3.

5.4.3 Results

Running 3000 randomized testcases on each of the 39 traces in our August, 1997 set of traces resulted in
114,000 testcases to mine. This plethora of testcases allows us to characterize the performance of the running
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time advisor in a wide variety of ways. Furthermore, because the testcases are randomized, our results
generalize to hosts for which our set of traces are representative, which we believe to be a considerable
portion of hosts.

We want to answer several questions. The most important of these is whether our system does indeed
provide useful predictions of task running times, both in terms of the expected running time and in terms of
the confidence interval for the running time. We are most interested in the confidence intervals because these
are the predictions that we will use in the next chapter to make real-time scheduling decisions. In addition
we want to understand how the choice of underlying host load predictor affects prediction performance, and
how that performance depends on the nominal time of the task.

To address these questions, we looked at the testcases in five ways. First, we measured the quality
of the confidence intervals independently of the nominal time of the task. For each trace, we computed
the confidence interval metrics of coverage and span. Then we compared the different predictors based on
these per-trace metrics. Next, we conditioned this comparison on the nominal time of the task, dividing the
range in to small, medium, and large tasks. The third and fourth steps repeat this approach but using the
R2 metric for the expected running time. Finally, we hand-classified each trace based on the relationship
of the performance metrics and the nominal time. This resulted in five classes. We then developed a
recommendation for each class.

The overall conclusion is that the system does indeed predict reasonable point estimates and confidence
intervals for task running times. Using the AR(16) predictor, we found that there were only five traces
(out of 39) in which fewer than 90% of the tasks completed in their confidence interval, and only one
host where fewer than 90% were within their computed confidence intervals. The relationships between
MEAN, LAST, and AR(16) depend on whether the host is heavily loaded or not. On hosts with high load,
the more sophisticated predictors were able to produce significantly better coverage by estimating wider
spans. On hosts with low load, they achieved appropriate coverage with much smaller spans. The AR(16)
predictor generally produced better results than LAST, and much better than MEAN. Performance generally
improved as nominal time was increased. In terms of predicting the expected running time, although there
were significant differences between the predictors, none of them could be considered to have the “best”
performance. Interestingly, unlike with confidence intervals, the expected running time predictions grew
worse with increasing nominal time.

Nominal time independent evaluation of confidence interval quality

Consider mapping a task with a nominal time of 0.1 to 10 seconds on a randomly selected host. Will the
PredictRunningTime function produce an accurate confidence interval for its running time? How will
the accuracy depend on which underlying host load predictor is used?

Figures 5.5, 5.6, and 5.7 provide answers to these questions. These figures present the same information,
but arranged in different forms to more clearly illustrate different observations. For example, Figure 5.5
plots the (a) coverage, and (b) span for each of the load traces in our study. Consider Figure 5.5(a). The
coverage of trace axp1 using the MEAN predictor is approximately 0.62. This point is the result of running
3000 testcases (Section 5.4.1) on the axp1 trace, selecting the approximately 1000 of these that used the
MEAN predictor, counting the number of those testcases in which the deadline was met, and dividing by
the total number of MEAN testcases. Recall that our goal is a 95% confidence interval, so MEAN is clearly
inappropriate. We can see, however, that for the same trace, the AR(16) predictor provides much better
coverage, about 92%, while the LAST predictor does slightly better at about 98%. If we look at the axp1’s
span metric in Figure 5.5(b), we can begin to understand why. To produce the point for the MEAN metric,
the confidence interval widths for the approximately 1000 MEAN testcases were averaged. We see that the
span is about 3.4 seconds. The AR(16) predictor’s span, computed similarly, is a slightly higher (worse) 4
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(a) Coverage (b) Span

Figure 5.5: Confidence interval metrics for 0.1 to 10 second tasks on all hosts, independent of nominal time.

(a) Coverage (b) Span

Figure 5.6: Confidence interval metrics showing LAST and AR(16) versus MEAN for 0.1 to 10 second
tasks on all hosts, independent of nominal time.

seconds, while the LAST predictor’s span is a huge 6.4 seconds. The small increase in span going from the
MEAN to the AR(16) predictor brings the coverage from 0.62 to 0.92, which is very close to the target of
0.95. The much greater increase in span going from AR(16) to LAST overshoots the target coverage, going
as far as 0.98.

As can be seen from Figure 5.5(a), for almost every trace in our study, there is some predictor that
provides a coverage that is near our target 95%. This is an important result that supports our claim of being
able to compute accurate confidence intervals. However, perhaps the predictors are producing inordinately
wide spans, reducing their usefulness. The spans in Figure 5.5(b) are difficult to interpret. There is clearly
a differencebetween the predictors, and the span of the MEAN predictor seems to usually be much wider
than that of the LAST and AR(16) predictors. However, there are some traces where the more sophisticated
predictors seem to run aground, resulting in larger spans than MEAN.

Figure 5.5 is powerful for making observations about individual hosts, but it is somewhat difficult to
compare predictor performance between hosts using it. Figure 5.6 rearranges the data to make such com-
parisons easier. We plot the performance metrics’ values for LAST and AR(16) for each trace versus the
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(a) Coverage (b) Span

Figure 5.7: Confidence interval metrics showing AR(16) versus LAST for 0.1 to 10 second tasks on all
hosts, independent of nominal time.

metrics values for the MEAN predictor. This helps to answer the question: What is the benefit of using
a more sophisticated predictor than MEAN? For example, consider Figure 5.6(a). For each trace, a dot is
plotted at (coverage of MEAN testcases, coverage of LAST testcases), and a triangle is plotted at (coverage
of MEAN testcases, coverage of AR(16) testcases). On the graph, a 45 degree line separates the regions
where the coverage is better than MEAN from that where it is worse. Figure 5.6(b) is arrived at with exactly
the same methodology, except using the span metric.

Figure 5.6(a) and (b) make it clear what the LAST and AR(16) predictors generally provide quite dif-
ferent performance results than the simple MEAN predictor. For nine of the traces, the more sophisticated
predictors provide significantly better coverage than the MEAN predictor. For the remainder of the traces,
the more sophisticated predictors have slightly lower coverage. In terms of the span metric, nine of the
traces show significantly wider spans than MEAN, while the remainder are much narrower.

The nine traces on which the LAST and AR(16) produce better coverage performance are the same
traces in which they produce worse span performance than MEAN. These nine traces correspond to the
hosts that exhibit greater mean load (and correspondingly, greater variability in load (Chapter 3)). The
LAST and AR(16) predictors are better able to “understand” such hosts and compute appropriately wider
confidence intervals compared to MEAN. These wider confidence intervals result in a far greater chance of
a task’s actual running time falling within its computed confidence interval. This is precisely the behavior
that we want. Our goal is that 95% of tasks fall within their confidence intervals. With the AR(16) predictor,
only 5 cases are less than 90% and only one less that 85%, whereas with the MEAN predictor, only one of
the high load traces is better than 85%. The gain from MEAN to AR(16) can be as much as 30%, and it is
typically around 15%.

Two effects are at work here. First, the predictions of the LAST and AR(16) predictors depend most
strongly on recent measurements. The MEAN predictor, on the other hand, always presents the long term
mean of the signal. As a result, the LAST and AR(16) predictors will respond much more quickly during the
period after an epoch transition (Chapter 3) before a model refit happens. This means that their predictions,
and thus the center point of the confidence interval will much more likely be in the right place. The second
effect results from how the confidence interval length is computed. Recall that with the MEAN predictor
the autocovariance of the signal is used to compute the confidence interval, while for the LAST and AR(16)
predictors it is the autocovariance of their prediction errors that is used. On a high load, high variability
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host, an epoch transition is more likely than on a low load, low variability host to make the autocovariance
of the signal fail to characterize the new epoch well. In contrast, the structure of the autocovariance of the
prediction errors will probably change considerably less drastically.

For those hosts which have lower load and variability, the LAST and AR(16) predictors produce signif-
icantly narrower confidence intervals than MEAN while still capturing a reasonable number of tasks within
their computed confidence intervals. On average, the confidence intervals are shrunk by 2-3 seconds while
the fraction of tasks within their confidence intervals shrinks by about 5%. Since for these lightly loaded
hosts, the MEAN predictor results in coverages that are larger than the target 95%, this is not an unreason-
able tradeoff. Essentially, for these low load hosts, moving from MEAN to AR(16) reduces coverage by
about 5% while decreasing the span by 2-3 seconds (about 33%).

At this point, we have shown that our algorithm does indeed compute reasonable confidence intervals
for task running times and that it does so more accurately when using a more sophisticated predictor than
MEAN. Now we would like to know whether we should prefer the LAST predictor or the AR(16) predictor.
We have already pointed out some of the differences between these two. To continue, it is useful to plot
the data differently once again. Figure 5.7 plots the performance of the AR(16) predictor versus the LAST
predictor. From Figure 5.7(a), we can see that the confidence intervals computed using AR(16) generally
include more of their tasks than those computed using LAST. Using the AR(16) predictor, only four of the
cases are at less than 90% and only one less than 85%. Using LAST, 9 are less than 90%, while four are
less than 85%. This gain is due to AR(16) predictors producing slightly wider confidence intervals, as can
be seen from Figure 5.7(b). The span increases by 0.5 to 1 second in moving from LAST to AR(16).

On heavily loaded hosts, the gain in moving from LAST to AR(16) is more significant—either we see
a large increase in coverage, on the order of 10% or more, or there is a slight decline of 5% or significantly
less. Correspondingly, the span either grows on the order of 2-3 seconds or it shrinks by 1-2 seconds.

To summarize, the benefit of using the LAST or AR(16) predictor over MEAN is two fold. For heavily
loaded hosts, the more sophisticated predictors compute wider confidence intervals which lead to a much
larger fraction of the tasks running within their confidence intervals. For lightly loaded hosts, LAST and
AR(16) produce much narrower confidence intervals than MEAN at a small, reasonable cost to coverage.

The benefit of using the AR(16) predictor over the LAST predictor is also two fold. For heavily loaded
hosts, on about half of these traces it generally produces wider confidence intervals that significantly increase
coverage, driving it much closer to the target of 95%. On the other half it, shrinks their confidence intervals
at small cost to coverage. For almost all lightly loaded hosts, the span increases slightly, driving the coverage
slightly closer to the target level.

In essence, the MEAN predictor typically produces confidence intervals with larger than needed spans,
resulting in more coverage than is requested. In contrast, the LAST predictor typically produces insuffi-
ciently large spans, resulting in smaller than requested coverage. The AR(16) predictor typically operates
between these two extremes, producing appropriate coverage with small span. On some high load machines,
the behaviors of MEAN and LAST are reversed, but AR(16) still produces the best results.

Effect of nominal time on confidence interval quality

The performance of the running time advisor depends on the nominal time of the task,tnom. To illustrate
this dependence, we use the same methodology to mine the testcases as described in the previous section,
but we condition the results based ontnom. Recall that the range oftnom is from 0.1 to 10 seconds. In the
previous section, to produce a point on a graph, we used testcases from this entire range. In this section, we
divide the range oftnom into three subranges: 0.1 to 3 seconds (“small tasks”), 3 to 6 seconds (“medium
tasks”), and 6 to 10 seconds (“large tasks”). Then, for each of these subranges we produce a graph. Where
previously we had one graph where each point represented the average of approximately 1000 testcases, we
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(e) Coverage, 6 to 10 second tasks (f) Span, 6 to 10 second tasks

Figure 5.8: Effect of nominal time on confidence interval metrics, all hosts.
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(a) Coverage, 0.1 to 3 second tasks (b) Span, 0.1 to 3 second tasks

(c) Coverage, 3 to 6 second tasks (d) Span, 3 to 6 second tasks

(e) Coverage, 6 to 10 second tasks (f) Span, 6 to 10 second tasks

Figure 5.9: Effect of nominal time on confidence interval metrics, all hosts, LAST and AR(16) compared to
MEAN.
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(a) Coverage, 0.1 to 3 second tasks (b) Span, 0.1 to 3 second tasks

(c) Coverage, 3 to 6 second tasks (d) Span, 3 to 6 second tasks

(e) Coverage, 6 to 10 second tasks (f) Span, 6 to 10 second tasks

Figure 5.10: Effect of nominal time on confidence interval metrics, all hosts, AR(16) compared to LAST.
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now will have three graphs and a point on a graph represents the average of approximately 333 testcases in
the appropriate range. The semantics of the graphs are as before. In the next section, we will delve deeper,
dividing the hosts into five classes and illustrating how performance depends on nominal time for individual
representative hosts.

Figures 5.8, 5.9, and 5.10 illustrate how the coverage and span of confidence intervals depend on the
nominal time. The first figure presents the performance metrics of the three predictors on each of the traces
for each of the three sizes of tasks. Figures 5.8(a) and (b) show the coverage and span for tasks of 0.1 to 3
second nominal times, (c) and (d) for 3 to 6 second tasks, and (e) and (f) for 6 to 10 second tasks.

In terms of the coverage, Figure 5.8 appears to show that all of the predictors do better as the nominal
time increases. For short 0.1 to 3 second tasks (Figure 5.8(a)), there are a number of cases where none of
the predictors provide better than 90% coverage, while for 6 to 10 second tasks (Figure 5.8(e)), there is
almost always some predictor which provides a span of over 95%. In terms of the span, there appears to be
a relative decrease in the gain of the more sophisticated predictors.

Figure 5.9 replots the data to compare the LAST and AR(16) predictors to the MEAN predictor while
Figure 5.10 compares the AR(16) predictor with the LAST predictor. This illustrates the benefits of moving
to the more sophisticated predictors. The benefit clearly increases as the nominal time increases. For
example, at 0.1 to 3 seconds (Figure 5.9(a) and (b)) we can see that the more sophisticated predictors
actually have worse coverage than the simple MEAN predictor because their spans are too narrow. In
general, however, we can see that the AR(16) predictor does better than LAST (Figure 5.10(a) and (b)),
producing wider spans that result in better coverage. However, this is clearly a difficult case, since even with
AR(16), the coverage on half of the traces is less than 80%.

As the nominal time increases (Figure 5.9(c)–(f), Figure 5.10(c)–(f)) we begin to see a picture that is
more similar to the overall picture of Section 5.4.3. On the heavily loaded hosts, the more sophisticated
predictors produce wider spans which result in much better (and more appropriate) coverage. On the lightly
loaded hosts, the coverage is similar between the different predictors, but LAST and AR(16) produce much
narrower spans. In comparing LAST and AR(16), we can see that as the nominal time increases the rela-
tionship between these two predictors becomes more complex. For medium sized tasks (Figure 5.10(c)-(d)),
AR(16) produces large gains in coverage over LAST, bringing coverage to the target 95% levels in many
cases. The cost is a typically small increase in span, although the difference is larger for more heavily loaded
hosts. For large tasks (Figure 5.10(e)-(f)), LAST and AR(16) seem to be in a dead heat.

Nominal time independent evaluation of quality of expected running times

This section evaluates how well the expected running time,texp, provided by our algorithm predicts the
actual running time,tact, encountered when running the task. We will begin by using the same methodology
as the previous sections, but with theR2 metric. We will also discuss certain important characteristics that
are not measured byR2

Figure 5.11 shows theR2 values measured on each of the traces using each of the predictors. Each point
represents approximately 1000 testcases. As we can see, in almost all cases, some predictor provides an
R2 > 0:9—Our task running time predictions explain over 90% of the variability in the running time. There
seems to be little distinction between the different predictors, however.

Figure 5.12 plots theR2 values of the LAST and AR(16) predictors versus their corresponding values for
the MEAN predictor. Roughly half of the hosts benefit from the more sophisticated predictors. Among these
are the more heavily loaded hosts. The other half of the hosts do not benefit from the more sophisticated
predictors, but their loss is not as significant as the gains of the half that do. It is also clear that the AR(16)
predictors generally have very little loss compared to MEAN.

Figure 5.13 compares theR2 values of the LAST and AR(16) predictors. About 2/3 of the hosts see
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Figure 5.11:R2 metric for 0.1 to 10 second tasks on all hosts, independent of nominal time.

Figure 5.12:R2 metric showing LAST and AR(16) versus MEAN for 0.1 to 10 second tasks on all hosts,
independent of nominal time.

Figure 5.13:R2 metric showing AR(16) versus LAST for 0.1 to 10 second tasks on all hosts, independent
of nominal time.
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(a) tnom predictor (b) LAST predictor

Figure 5.14: Actual versus expected running times for lightly loaded host with intermittent load.

some benefit from the move to the AR(16) predictor, while the rest see some detriment. The gain or decline
is on the order of 0.05 or so.

It turns out that most of the variation in the running time of tasks can be explained by the nominal time
of the task itself. Typically, theR2 using the nominal time of as predictor is on the order of 0.8, meaning
that 80% of the variation in the running time can be explained simply by the nominal time of the task,tnom .
Because of this there islittle room for improvement by the predictor, which is why the predictors have
similar performance.

This is not to say that the nominal time is a good overall predictor, because it can be very sensitive to
transient behavior that a predictor based on host load can more appropriately deal with. Furthermore, theR2

value shows how much of a linear relationship there is between the actual running time and the prediction,
but it does not give any insight into what the slope and intercept of this relationship are. Ideally, a good
predictor would havetact = mtexp + b + noise wherem = 1 andb = 0. Intuitively, the value ofm is
determined by how well the predictor captures the contribution of the load to the running time.

Figure 5.14 illustrates how a more sophisticated predictor can avoid transient behavior, resulting in
significantly higherR2. Each of the graphs plots 1000 tasks chosen from 0.1 to 30 seconds, plotting their
actual running time versus the predicted running time, determined either as (a) the nominal timetnom or
(b) by using the LAST predictor. We have also plotted a 50% error region around the predictions. Because
the host had a background process that ran at infrequent times, thetnom predictor turned out to be wildly
inaccurate for about 10% of the tasks, under-predicting running times by a factor of 2. The LAST predictor,
which incorporates the most recent host load measurements, was able to detect when the background process
ran, offering higher predicted running times when this was the case. Because of this, theR2 rose from 0.79
to 0.99. More importantly, the linear fit has improved fromm = 1:1 andb = 0:02 tom = 1 andb = �0:03.

Figure 5.15 shows another typical behavior. In this case we have run approximately 3000 tasks ranging
from 0.1 to 10 seconds and have plotted them as per the previous figure. The host was playing back the high
load axp0 trace. In Figure 5.15(a) we see that over 74% of thetnom predictions are wrong by more than
50%. On the other hand, using the AR(16) predictor (Figure 5.15(b)) only 3% of the predictions are wrong
by more than 50%. However, note that theR2 value has changed only marginally, from 0.82 to 0.87—the
linear fit to thetnom graph is not much worse than that of the AR(16) predictor. However, the structure of
the fit has improved fromm = 2:15 andb = 0:82 tom = 0:95 andb = 0:06.
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(a) tnom predictor (b) LAST predictor

Figure 5.15: Actual versus expected running times for heavily loaded host (axp0 trace).

Effect of nominal time on quality of expected running times

TheR2 of a prediction is strongly dependent on the nominal time of the task, but is somewhat independent
of which host load predictor is used. Figure 5.16 illustrates how the averageR2 value measured for each of
the load traces depends on the nominal time. As can be seen from the figure,R2 values decline significantly
as tasks grow in size. For small tasks (Figure 5.16(a)), there is generally some predictor which provides
R2 > 0:9, while for large tasks (Figure 5.16(c)), mostR2 values are significantly below 0.8. Furthermore,
as tasks increase in size, there seems to be greater variability in the performance of the different predictors.

This variability in performance among the predictors is not, alas, evidence that one of the predictors
is consistently better than the others for all, or even a large group of, hosts. Indeed, Figure 5.17, which
compares theR2 of the LAST and AR(16) predictors to that of the MEAN predictor, and Figure 5.18, which
compares theR2 of the LAST and AR(16) predictors, show that there are no clear favorites. As running
times increase,R2 values decline precipitously and no clear pattern of difference among the hosts becomes
clear—no one predictor is preferable. IfR2 is the desired figure of merit, then a multiple expert approach,
where different predictors are used simultaneously, and the predictor with the best recent predictions is the
one whose value is reported to the user.

Host classes

For each individual load trace, we plotted our three performance metrics (coverage, span, andR2) versus
the nominal timetnom . When we did this, we found that an interesting pattern emerged. By visual inspec-
tion, the results for the 39 traces could be placed into five classes. At present, we make no use of these
categorizations, and we certainly have not automated the characterization process. Nonetheless, examining
representatives of each of the classes is enlightening and permits us to make recommendations for each of
the classes.

Class I : Class I, which we also call the “typical low load host” class represents the most common
behavior by far that we have encountered. The class consists of 29 of the 39 hosts (76%): axp2, axp3, axp6,
axp7, axp8, axp9, axpfea, axpfeb, manchester-1, manchester-2, manchester-5, manchester-6, manchester-
7, manchester-8, mojave, sahara, aphrodite, asbury-park, asclepius, cobain, darryl, hestia, hawaii, newark,
pryor, rhea, rubix, uranus, and zeno.

Class I is exemplified by trace axp2, whose metrics we plot as functions of the nominal time in Fig-



5.4. EVALUATION 107

Production Cluster
Research
Cluster C

om
pu

te
 S

er
ve

rs

Desktops

(a)R2, 0.1 to 3 second tasks

Production Cluster
Research
Cluster C

om
pu

te
 S

er
ve

rs

Desktops

(b)R2, 3 to 6 second tasks

Production Cluster
Research
Cluster C

om
pu

te
 S

er
ve

rs

Desktops

(c)R2, 6 to 10 second tasks

Figure 5.16: Effect of nominal time onR2 metric, all hosts.
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(a)R2, 0.1 to 3 second tasks

(b)R2, 3 to 6 second tasks

(c)R2, 6 to 10 second tasks

Figure 5.17: Effect of nominal time onR2 metric, all hosts, LAST and AR(16) compared to MEAN.
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(a)R2, 0.1 to 3 second tasks

(b)R2, 3 to 6 second tasks

(c)R2, 6 to 10 second tasks

Figure 5.18: Effect of nominal time onR2 metric, all hosts, AR(16) compared to LAST.
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(a) Coverage (b) Span

c)R2

Figure 5.19: Performance metrics as function of time for Class I (“typical low load host”) host axp2.

ure 5.19. Each point in the graph represents the average of about 200 testcases and represents a 2 second
span of nominal time, extending from one second before the point’s x-coordinate to one second after. The
main characteristics of the class are the following. The coverage is only slightly dependent on the nominal
time, increasing slightly for all predictors as the nominal time increases. The MEAN predictor typically
has almost 100% coverage and is closely followed by the AR(16) and then the LAST predictor. The LAST
and AR(16) predictors have significantly narrower spans than the MEAN predictor, with AR(16) producing
slightly wider spans than LAST. TheR2 drops precipitously with increasing nominal time, especially for
MEAN. The drop is less precipitous for LAST and AR(16), and LAST is usually slightly better than AR(16)
in terms ofR2. For this particular trace, there is a slight upturn for LAST and AR(16) with increasingR2,
while in in other cases the decline is monotonic.

Our primary concern is producing accurate confidence intervals. For this reason, we believe that the
AR(16) is the best predictor for this class of host. The coverage is nearly as good as MEAN and is typically
near the target 95% point, while LAST tends to lag behind, especially for smaller tasks. Furthermore, the
span of AR(16) is typically half that of MEAN and only slightly wider than LAST. In most hosts, then, a
better predictor produces much narrower accurate confidence intervals.

Class II : Class II hosts, which we refer to as being in the “atypical low load host” class, present the
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(a) Coverage (b) Span

c)R2

Figure 5.20: Performance metrics as function of time for Class II (“atypical low load host”) host axp1.

second most common behavior among our traces. The class consists of 4 of the 39 hosts (10%): axp1,
manchester-3, manchester-4, and bruce.

An exemplar of Class II is the trace axp1. We have plotted the metrics of axp1 in Figure 5.20. The
methodology behind the graphs is identical to that of Class I. An important distinguishing feature of this
class is that the coverage of the MEAN predictor drops precipitously with increasing nominal time because
the span of its confidence interval is not sufficiently large. In contrast, LAST and AR(16) compute slightly
larger confidence intervals which result in excellent coverage that increases with increasing nominal time.
LAST and AR(16) have similar coverage (in this case LAST is slightly ahead, in other cases AR(16) is
slightly ahead). TheR2 of MEAN also decays quickly with increasing nominal time, while those of LAST
and AR(16) decay much more slowly. Again, in some cases, AR(16) is slightly ahead, in others LAST is
slightly ahead by this metric.

In terms of computing confidence intervals, either AR(16) or LAST seems adequate for producing con-
fidence intervals for this class of host. Compared to MEAN, both produce significantly larger spans that
result in much better coverage. In terms of the expected time, AR(16) and LAST are also to be strongly
preferred over the MEAN predictor, while there is no clear advantage to recommending one over the other.

Class III : The remainder of the five host classes all contain high load hosts. There does not seem to
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(c)R2

Figure 5.21: Performance metrics as function of time for typical class III (“high load 1”) host axp4.

be a “typical” behavior on a high load host, so we will simply enumerate these classes. Class III, which we
also call “high load 1”, consists of a 3 of the 39 hosts (8%) : axp4, axp5, and argus.

Using the same methodology as before, Figure 5.21 plots the performance metrics as a function of the
nominal time for an exemplar, axp4. Compared to the low load hosts, this high load 1 host displays much
more complex behavior. The predictor with the best coverage depends strongly on the nominal time. For
very short tasks, MEAN is slightly better than AR(16), which is much better than LAST, although the
coverage is quite poor with all three predictors. For medium size tasks, AR(16) provides the best coverage,
followed at a distance by MEAN and LAST, which become interchangeable. For large tasks, AR(16) and
LAST have similar coverage, with AR(16) lagging slightly, while MEAN’s coverage is far behind. In terms
of the span, AR(16) and LAST both compute much wider confidence intervals than MEAN, which explains
why their coverage is so much better. MEAN is unable to understand the dynamicity of this kind of host.
Predictably, for the nominal times where AR(16) is preferable to LAST, it has a larger span. In terms of
theR2, AR(16) and LAST are clearly preferable to MEAN since their performance declines much more
gradually with increasing nominal time. They are interchangeable.

In terms of computing accurate expected running times for this class of hosts, either AR(16) or LAST are
appropriate since their similarR2 metrics are significantly better than that of MEAN. In terms of computing
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(a) Coverage (b) Span

(c)R2

Figure 5.22: Performance metrics as function of time for typical class IV (“high load 2”) host axp10.

accurate confidence intervals, the best predictor is highly dependent on the nominal time. For very short
tasks, MEAN or AR(16) is preferable, but either has rather poor coverage. For medium tasks, AR(16)
produces the best performance. For large tasks, LAST is best.

Class IV : This class, which we also refer to as the “high load 2” class, contains two hosts: axp10 and
themis.

Figure 5.22 plots the performance of the predictors on a representative trace, axp10, using the same
methodology as before. We can see that the coverage of LAST and AR(16) are virtually identical here
and increase slowly with nominal time. MEAN has similar coverage for small tasks, but then behaves
increasingly poorly, with coverage decreasing rapidly with nominal time. In terms of the span, LAST grows
much more quickly than MEAN with increasing nominal time, while AR(16) is almost exactly in between
them. For very short nominal times the spans are all identical. TheR2 of MEAN drops in step with
increasing nominal time, while theR2 of LAST and AR(16), which remain virtually identical, drop much
more slowly.

In terms of computing confidence intervals, AR(16) clearly produces the best results for this class of
hosts, getting coverage identical to that of LAST with a span that is often half as wide. In terms of computing
expected times, AR(16) and LAST are nearly identical, and significantly better than MEAN.
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Figure 5.23: Performance metrics as function of time for typical class V (“high load 3”) host axp0.

Class V : Class V, which we also refer to as the “high load 3” class, consists of a single host, axp0.
Figure 5.23 plots the performance of the predictors on axp0 using the same methodology as before. In

terms of coverage, AR(16) is clearly the winner here, especially for medium sized tasks. It achieves its
reasonable coverage (the goal is 95%) by computing slightly larger confidence intervals than MEAN. LAST
computes confidence intervals that are far too small, resulting in abysmal coverage. In terms ofR2, LAST
and AR(16) provide nearly identical performance that drops much more gradually with increasing nominal
time than that of MEAN.

AR(16) is clearly the preferable predictor for this class of hosts in terms of computing confidence inter-
vals. For the expected time, AR(16) and LAST are interchangeable here.

5.5 Conclusion

We began this chapter with a resource prediction service capable of providing accurate host load predictions.
However, applications and application schedulers are interested in application-level predictions. In partic-
ular, the real-time scheduling advisor needs predictions of task running time. To provide these predictions,
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we developed an algorithm for transforming from host load predictions and a task’s nominal time, a measure
of the CPU demand of the task, into a prediction of the task’s running time. The prediction is expressed both
as a point estimate (the expected running time) and a confidence interval for the running time.

We implemented the algorithm to provide a new service, the running time advisor, on top of the existing
host load prediction service. We constructed a sophisticated run-time evaluation infrastructure based on the
new technique of load trace playback and evaluated our implementation using it. The main result is that the
system works well when combined with an appropriate host load predictor, such as the AR(16) predictor
that we found most appropriate when we evaluated host load prediction in the previous chapter.
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Chapter 6

Real-time Scheduling Advisor

This dissertation argues for basing real-time scheduling advisors on explicit resource-oriented prediction,
specifically on the prediction of resource signals. In the previous chapters, we presented a methodology
and tools for understanding such signals and developing prediction systems for them. We then applied the
approach to host load and developed an appropriate host load prediction system. In the last chapter, we
demonstrated how to estimate the running time of a task using these host load predictions, and implemented
and evaluated a tool, the running time advisor, that does so. The running time advisor provides information
that can be used in many forms of application-level scheduling. This chapter addresses one such form:
real-time scheduling for interactive applications.

The real-time scheduling advisor is straightforwardly implemented on top of the running time advisor.
We implemented prediction-based strategies based on the MEAN, LAST and AR(16) predictors of the
last chapter. The prediction-based strategies choose randomly from among the hosts whose running time
predictions are appropriate for meeting the deadline with the confidence that the application desires. In
addition to advising the application to run the task on a particular host, the prediction-based strategies also
specify whether they believe the deadline can actually be met on that host. This allows the application to
negotiate with the advisor to find a combination of CPU demand and deadline such that the deadline can
confidently be met.

We also considered, for comparison purposes, two strategies that are not based on prediction. The first,
RANDOM, randomly assigns tasks to hosts, and is clearly of lowest overhead. The second, MEASURE,
assigns tasks to the host whose current load measurement is minimum. Compared to MEASURE, the
prediction-based strategies have minimal additional overhead. Like the prediction-based strategies, RAN-
DOM and MEASURE recommend a host to the application. However, unlike the prediction-based strategies,
they can not determine whether or not the task is likely to meet its deadline on that host. Additionally, the
MEASURE strategy is unable to introduce any randomness into its scheduling decisions, which increases
the chance of disastrous synchronization among MEASURE-based advisors.

While the real-time scheduling advisor is simple, its evaluation is complex. We evaluated the perfor-
mance of the five scheduling strategies using three different metrics that measure how likely a deadline is
to be met, how trustworthy the advice of an advisor is, and how much randomness an advisor can introduce
into its decisions. These metrics, especially the first, depend not only on the quality of predictions, but also
on the characteristics of the set of available hosts, and how much slack the deadline allows. In particular, a
missed deadline can be due to either a lack of resources (which is not the fault of the real-time advisor) or
to prediction error (which is). To aid in understanding the results of our empirical evaluation, we developed
an analytic model that relates the characteristics of the available hosts and the slack to the scheduling feasi-
bility (the probability that there is a host on which the deadline can be met) and the predictor sensitivity (the
probability that a deadline is missed due to a bad prediction). While the model is not predictive, it is useful
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to help explain the sometimes counter-intuitive empirical results.

The evaluation of the scheduling strategies is based on running randomized testcases using a simple
extension to the experimental infrastructure described in the previous chapter. In the evaluation, the hosts to
which tasks can be assigned each play back one of the August, 1997 load traces. We evaluated the scheduling
strategies using several different sets of traces, orscenarios, which were derived in part by clustering the
traces by their statistics (ie, trying to explore the “basis” of the space of observed traces) and in part by
approximating scenarios that might be seen in practice. Using the randomized testcases, we then can then
measure the performance metrics of the different strategies and see how they vary with the scenario, the
CPU demand of the task, and the slack.

The results of the evaluation show the clear benefits of using a prediction-based strategy, and the AR(16)-
based strategy in particular. These strategies are the most trustworthy from the point of view of the appli-
cation in that when they assert that a deadline can be met by using the recommended host, there is a high
probability that it will actually be met. For the AR(16) strategy, this probability is maximal, reasonably
independent of the nominal time, slack, and scenario, and is usually close to the confidence level that the
application requested. In other words, when it is possible to find a host that can meet the deadline, AR(16)
is best able to do so.

The probability that a deadline will be met, irrespective of whether the strategy thinks it can be met,
depends strongly on scenario, nominal time, and slack. An important observation is that near the “critical
slack” of a scenario, the prediction-based strategies, particularly AR(16), significantly increase the chance
of meeting the deadline. The critical slack corresponds to where the deadline is just large enough so that a
task’s deadline can be met in expectation. At slack values that are low (tight deadline) or high (loose dead-
line) compared to the critical slack, performance is insensitive to prediction and the better prediction-based
strategies (AR(16)) do only as well as the MEASURE approach. The MEASURE approach significantly
outperforms the RANDOM approach in almost all cases.

The prediction-based strategies introduce a degree of randomness into their scheduling decisions that
is between the extremes of the MEASURE strategy (no randomness) and RANDOM (pure randomness).
Essentially, they are able to transform slack (and low nominal times) into randomness in their host selec-
tions while also increasing the chances of meeting the deadline and increasing trustworthiness from the
application’s point of view. This randomness is important because it makes it difficult for different advisors,
which are oblivious of each other, to become synchronized and thus simultaneously provide bad advice to
their applications. The AR(16) strategy is generally able to introduce the most randomness. In a separate
experiment, we studied multiple advisors scheduling to the same group of hosts and found no evidence of
contention problems.

In summary, the prediction-based strategies, particularly AR(16), are able to increase the probability
that a deadline will be met over the pure MEASURE strategy, especially near the critical slack. The MEA-
SURE approach is in turn clearly preferable, in almost all cases, to the RANDOM strategy. Furthermore, the
prediction-based strategies are able to quite accurately inform the application whether the deadline can be
met, which makes them more trustworthy than either MEASURE or RANDOM, and enables the application
to find a fulfillable combination of CPU demand and deadline. Also, the prediction-based approaches are
able to introduce randomness into their scheduling decisions to avoid unintended and disastrous synchro-
nization with other scheduling advisors. Given that all of these benefits are purchased at only a marginal
overhead over the MEASURE strategy, the case for using a prediction-based strategy in real-time scheduling
advisors is clear. Finally, because the AR(16) strategy provides the best overall performance of all of the
these strategies, we recommend basing real-time scheduling advisors on this strategy.



6.1. REAL-TIME SCHEDULING ADVISOR INTERFACE 119

6.1 Real-time scheduling advisor interface

The interface that the real-time scheduling advisor provides to applications and application schedulers is
very simple. The application provides the CPU demand of the task it seeks to schedule at the current time,
the deadline of the task, the confidence with which it wants that deadline to be met, and a list of prospective
hosts on which the task could be scheduled. The scheduling advisor then returns the host on which the task
should be scheduled, as well as an estimate of its running time. The application can then use this information
to schedule the task. The interface is as follows:

int RTAdviseTask(RTSchedulingAdvisorRequest &req,
RTSchedulingAdvisorResponse &resp);

struct RTSchedulingAdvisorRequest {
double tnom;
double slack;
double conf;
Host hosts[];

}

struct RTSchedulingAdvisorResponse {
double tnom;
double slack;
double conf;
Host host;
RunningTimePredictionResponse runningtime;

}

RTSchedulingAdvisorRequest expresses the scheduling problem: Choose a host fromhosts
such that a task with nominal running timetnom (tnom), if started now, will complete in time(1 +

slack)tnom or less with confidenceconf . The real-time scheduling advisor’s response consists of a copy
of the request’stnom, slack, andconf values, the selected host, and an estimate of the task’s running time,
expressed as described in the previous chapter.

It is important to note that the scheduling problem may not have a solution because of a (predicted) lack
of resources. If this is the case, the advisor will select the host which minimizes the running time of the
task. It is the application’s responsibility to verify, by using therunningtime field, whether the task is
predicted to meet its deadline or not.

6.2 Implementing the interface

The implementation of the real-time scheduling advisor relies heavily on the running time advisor described
in the previous chapter. Because the running time advisor does most of the work, the implementation of the
real-time scheduling advisor’sRTAdviseTask call is simple:

1. Construct aRunningTimePredictionRequest from the confidence level and nominal time in
theRTSchedulingAdvisorRequest .

2. Use thePredictRunningTime interface to predict the running time
(RunningTimePredictionResponse) for the task on each of the hosts. Note that this step can
be done in parallel, since the majority of the computation happens in the host load prediction systems
running on the individual hosts.
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3. Find the subset of the hosts whose upper bound on the confidence interval for the running time of
the task is less than the deadline, ortub � (1 + slack)tnom. We refer to these as thepossible hosts,
because they are the hosts on which it is possible to meet the deadline with the desired confidence.

4. If there are no possible hosts add the host with the minimum expected running time (texp) to the set
of possible hosts. At the end of this step, the number of possible hosts is always at least one.

5. Select a host at random from the set of possible hosts and return it and its corresponding
RunningTimePredictionResponse to the caller via the
RTSchedulingAdvisorResponse .

The advisor attempts to select a host which meets the user’s goal of having the task meet its deadline
while also attempting to limit the amount of contention with other advisors. In situations where most hosts
have little load, the set of possible hosts will be large and it will be unlikely that two advisors choose the same
host from it. When loads increase, the set of possible hosts will shrink and conflict will become more likely.
As load increases further, the number of possible hosts will shrink to one and contention will become even
more likely. We are able to introduce this randomness into the scheduler because the application expresses
the slack it can tolerate. Simply put, there may be several hosts on which the application’s deadline can be
met, but only one on which the running time of the task is minimized.

As load increases further, the number of possible hosts will shrink to one, and, eventually, the advisor
will also begin reporting to the application that the deadline cannot be met on that host. At this point, we
expect that the application will begin to back off, either by increasing slack, or by changing the amount of
work it wants to do.

The number of possible hosts depends not only on the load in the system and its variability, but also
on how well the host load prediction systems can predict it, and how well the running time advisor can
transform these predictions into confidence intervals for the running time. Better host load predictors and
better modeling in the running time advisor will increase the likelihood that a host is marked possible, which
will increase the number of deadlines that are met and lower the amount of contention between different
real-time scheduling advisors.

6.3 Performance metrics

Evaluating the real-time scheduling advisor is considerably more complex than evaluating the running time
advisor because many measures of its performance depend strongly on properties of the set of hosts (the
scenario), and on properties of the application requests. The most intuitive measure of performance, the
probability that a deadline will be met by following the advisor’s advice, which we can measure as the
fraction of some set of randomized tasks that meet their deadlines, has a number of problems. Consider the
following examples. If a request has a very large slack, then almost any scheduling decision will result in
the deadline being met. If two hosts have drastically different long term mean loads and little variability,
then even a low quality load predictor will probably suffice to meet the deadline. If slack is very low and all
of the hosts are heavily loaded, then no scheduler may be able to meet the deadline.

Of course, if we knew theoptimalfraction of deadlines that could be met, we could compare against that
value. As we discussed in Section 5.3, using a simulation approach to this problem would require a model
to estimate running times on each of the hosts, but that model is a part of the system we are evaluating. This
led us to a measurement-based approach. In this approach, we could conceivably submit each task to all of
the available hosts and then determine the optimal fraction. However, this would perturb hosts that would
not have been perturbed if an application were running the tasks, and thus the answer would be different.
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Simply put, forn hosts, the evaluation system would putn times as much load on the hosts as an application
would.

Another possibility is to use our load playback system to, foreach task, reconstruct the environment and
individually test each host. However, the environment depends not only on the background load, but also
on the load placed on the system by previous tasks, thus we would have to reconstruct every possible set of
task mappings, which grows exponentially in the number of tasks. Even if we were willing to ignore the
effect of previous tasks, we would increase the time to run the evaluation by at least a factor of the number
of hosts in the scenario. Currently, even with running the task only once, the evaluation requires about 1.5
days per scenario, during which time then hosts are dedicated. Increasing this considerably is not practical
at this time. Because of these complexities, we decided to introduce two additional metrics.

In addition to suggesting which host is most appropriate for running the task, the real-time scheduling
advisor also provides a prediction of the running time of the task on that host. This prediction is expressed
as a confidence interval, as discussed in the previous chapter. If the upper bound of that interval is greater
than the deadline ((1 + slack)tnom), then the advisor is informing the application that although this is
the recommended host for the task, the advisor does not believe that the task will meet the deadline with
the confidence the user requested. If the task then does not meet the deadline, is it the fault of the real-
time advisor or the application? After all, the use of the real-time advisor has given the application the
opportunity to change the task’s compute requirements or slack such that the deadline can be met.

In order to capture failures to meet deadlines that are attributable solely to mistakes by the advisor, we
also measure the fraction of deadlines met when the advisor believes it is possible. Ideally, this number
should be identical to the confidence level requested by the user. Notice that it does not count situations
where the advisor erroneously believes the deadline can not be met when it can. To measure this error
would require being able to determine whether an individual testcase’s deadline could have been met, which
is difficult for exactly the same reasons that finding the optimal fractions of deadlines that could be met is
difficult.

If multiple real-time scheduling advisors are active on the same distributed environment, contention is
a concern. If all of the advisors target the same host—the one with minimum load, for example—thenall
of their tasks are more likely to miss their deadlines. Furthermore, if the schedulers then notice the vastly
increased load on the targeted host, they may move, en masse, to target one other host. This sort of synchro-
nized behavior would result in uniformly bad performance, even when plenty of resources are available to
meet the tasks’ deadlines. Randomness is a powerful way to break synchronization, and our implementation
(Section 6.2) introduces randomness in its recommendations. That degree of that randomness depends on
the number of hosts on which the deadline could be met. Thus, we will include the average number of
possible hosts as a metric. Notice that a purely random scheduler is optimal with regard to this metric, while
a scheduler based on minimizing expected time or host load is pessimal. Prediction-based schedulers have
the potential to operate between these extremes.

The performance metrics that we shall use in this chapter are summarized below.

� Fraction of deadlines met: The fraction of testcases whose deadlines were met.

� Fraction of deadlines met when possible: The fraction of testcases where the deadline was met
given that the predictor’s estimate suggested that the deadline would be met.

� Number of possible hosts: The average, over the testcases, of the number of hosts on which task
deadlines could be met.
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6.4 Scheduling strategies

A scheduling strategy is an algorithm for deciding which host is most appropriate for running a task. Sec-
tion 6.2 described a strategy based on the host load prediction-based running time advisor and randomness.
The primary variable in such a system is which host load predictor is used. In keeping with the evaluations
of host load prediction systems in Chapter 4 and of the running time advisor in Chapter 5, we studied the
performance of scheduling strategies based on the MEAN, LAST, and AR(16) predictors. These running
time advisor-based systems can tell the application not only which host to use, but also whether the task is
likely to meet its deadline or not. Furthermore, they introduce randomness into their advice, which reduces
the probability of contention between different scheduling advisors.

Simpler, but more limited scheduling strategies are also possible. We would like to assure ourselves
that the additional complexity of the prediction-based strategies does indeed provide benefits over simpler
approaches. To this end, we studied two additional scheduling strategies: RANDOM and MEASURE.
The RANDOM strategy simply recommends a randomly selected host. This approach requires absolutely
no infrastructure such as host load measurement or prediction systems and has no overhead. Furthermore,
there is little chance of contention among RANDOM-based advisors. The MEASURE strategy measures the
current load on each of the available hosts and then selects the host with the minimum load. Obviously, it is
very prone to contention. MEASURE uses a host load sensor running on each of the hosts which introduces
overhead. As we showed in Chapter 2, the overhead of a full-fledged host load prediction system based on
an appropriate prediction model such as AR(16) is, in absolute terms, only marginally higher than that of a
host load sensor. The benefit purchased with this miniscule extra overhead is the ability not only to choose
an appropriate host, but also to predict what the actual running time will be on that host and thus whether
the deadline is likely to be met or not.

In summary, the scheduling strategies that we evaluated are:

� RANDOM : Assigns the task to a randomly selected host. This strategy requires no external infras-
tructure, has zero overhead, and clearly provides the highest number of possible hosts. The fraction
of deadlines met when possible metric is identical to the fraction of deadlines met metric because
RANDOM has no way to tell if the host it chooses can actually meet the deadline.

� MEASURE: Assigns the task to the host with the lowest load. The number of possible hosts metric is
almost always one. As with RANDOM, the fraction of deadlines met when possible metric is identical
to the fraction of deadlines met metric.

� MEAN : The strategy described in Section 6.2 using MEAN as the host load predictor.

� LAST : The strategy described in Section 6.2 using LAST as the host load predictor.

� AR(16) : The strategy described in Section 6.2 using AR(16) as the host load predictor. AR(16) is the
preferred host load predictor.

6.5 Modeling to gain intuition

Evaluating a prediction-based real-time scheduling advisor is a complex endeavor, because the performance
of such systems depends not only on the quality of its predictions, but also on various properties of the set of
hosts (the scenario) to which it assigns tasks and on properties of the requests the application makes. These
dependencies are often counter-intuitive.

To gain an intuition to guide us in interpreting the empirical evaluation of our system (Section 6.6),
we developed a simple analytic model of prediction-based real-time scheduling. The model shows how the
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scheduling feasibility, which is the probability that there exists a host where a task can meet its deadline, and
thepredictor sensitivity, which is the probability that a deadline will be missed because of prediction error,
depend on the number of hosts in the scenario, the mean slowdown of the hosts, the variability of slowdown
across the hosts, the variability of slowdown over time foreach host, the slack of the scheduling request,
and the prediction error.

For a given scenario, there is acritical slack which is related to the mean slowdown. Intuitively, as
the number of hosts in the scenario grows, the scheduling feasibility rapidly increases. Similarly, as slack
increases, scheduling feasibility grows. The effect of both interhost and intrahost slowdown variability,
however, depends on the relationship of the slack with the critical slack. At slack levels greater than the
critical slack, increases in variability decrease the scheduling feasibility. However, for slack levels less than
the critical slack, increases in variability lead to increases in scheduling feasibility.

The predictor sensitivity is independent of the number of hosts in the scenario for prediction-based
strategies such as ours, and it decreases as slack and variability increase. The critical slack is also a turning
point for the predictor sensitivity. Generally, below the critical slack, predictor sensitivity becomes extreme
for low variability situations. However, tasks such as these are incredibly rare. Most tasks for which predic-
tion sensitivity is high are those where the slack is near the critical slack and where variability is low. The
4LS scenario described in Section 6.6.4, for slacks from 0.75 to 1.0, is an example of this kind of situation.

6.5.1 Scheduling feasibility and predictor sensitivity

Consider scheduling a task of nominal timetnom seconds on a pool ofn hosts to maximize the probability
that it will finish in (1+slack)tnom seconds or less,slack � 0. If executed on hosti, the task will encounter
a slowdownSi such that its execution time,texeci = Sitnom. If texeci � (1 + slack)tnom, or, equivalently,
Si � (1 + slack), the deadline has been met.

Because the slowdown that the task encounters depends on the host on which it is executed as well as the
time when it is executed, it is impossible to say deterministically whether or not a specific task’s deadline
can be met. Instead, we shall consider the probability that the deadline is met. TheSis are the random
variables whose distributions will affect this probability. We shall refer to this probability as thescheduling
feasibilityof the scheduling problem. If the scheduling feasibility is high, then it is easy to find a host on
which the task will meet its deadline.

Intuitively, we would expect the scheduling feasibility to increase (scheduling the task become easier)
asslack is increased and also as the number of hosts is increased. In both cases the number of hosts where
the deadline could be met increases. It important to note that theSi have variability. EachSi changes
over time. We would expect that the less dynamic each specificSi is, the more feasible the scheduling
problem is. For low levels of slack, the result should be opposite, with increases in variability increasing the
scheduling feasibility. In addition toeach host’s individual variability, the variability of the group of hosts as
a whole also should affect the scheduling feasibility. Counter-intuitively, when slack is tight, increased group
dynamicity can actually increase the feasibility. For example, it is easier to schedule in a tight slack situation
when oneSi is consistently lower than others. Some authors have referred to the benefit of “unbalancing”
load in traditional distributed real-time systems [18].

Prediction enables the selection of an appropriate host—one where the deadline can be expected to be
met. The predictor returns an estimated execution time (and confidence interval) for each of the hosts,t̂execi .
If this value is less than the deadline, then we may chose hosti to execute the task. If we do and it turns out
thattexeci > (1+ slack)tnom, then the deadline has been missed due to predictor error. The probability that
this occurs ispredictor sensitivityof the scenario.

An analytic model of prediction-based real-time scheduling should allow us to understand how schedul-
ing feasibility and predictor sensitivity depend on the properties of the hosts on which we will schedule



124 CHAPTER 6. REAL-TIME SCHEDULING ADVISOR

and the quality of the predictions provided by the prediction system. Intuitively, prediction-based real-time
scheduling is interesting in scenarios where the scheduling feasibility is reasonably high, and the choice of
predictor matters most in scenarios where the predictor sensitivity is high.

6.5.2 Analytic model

In our model, we treatSi as a random variable. The variability ofSi is attributable to two factors: theinter-
host variabilityof slowdown and theintrahost variabilityof slowdown. To capture interhost and intrahost
variability, we writeSi = Xi + Yi, and thus

texeci = (Xi + Yi)tnom (6.1)

where the random variableXi represents the contribution of interhost variability and the random variableYi
represents the contribution of intrahost variability.

Predictions introduce an additional source of variability: prediction error. We model this as an additional
random variable,Zi, and have

t̂execi = Ŝitnom = (Xi + Yi + Zi)tnom (6.2)

We assume thatXi, Yi, andZi are independent of each other, and thus theSis are also independent of
each other. We also assume that all random variables are IID. Finally, in the interest of tractability, we shall
assume that they are all normally distributed:

Xi � N(�s; �
2
s)

Yi � N(0; �2sli)

Zi � N(0; �2predi)

Si � N(�s; �
2
s + �2sli)

(6.3)

�s represents themean slowdown, the average slowdown encountered by tasks on this set of hosts. For
example, on a 2 host system where host A has a mean load of 1 and host B has a mean load of 3,�s =

((1 + 1) + (1 + 3))=2 = 3. �2s represents the interhost variability. In the 2 host example,�2s = (((1 + 1)�
�s)

2 + ((1 + 3) � �s)
2)=1 = 2. �2sli represents the intrahost variability on hosti, while �2predi represents

the prediction error variability on hosti. To simplify the analysis later, we shall assume all of the hosts
have the same intrahost variability and prediction error, thus we have�2sl

1

= �2sl
2

= : : : = �2sln = �2sl and
�2pred1 = �2pred

2

= : : : = �2predn = �2pred.
It is important to point out that these are quite drastic assumptions. However, the purpose behind our

modeling effort is not quantitative, but qualitative. We want to identify the attributes of interesting scenarios
and explain the performance results of particular scenarios by appealing to particular attributes of the model.
Our assumptions depart from reality in the following ways. As we discovered in Chapters 4 and 5,Si is
actually correlated over time and thus predictable. However, we are modeling that predictability by making
t̂execi identical totexec except for an additional prediction error termZitnom. As we showed in Chapter 5,
the prediction error does indeed grow somewhat linearly withtnom . A more critical assumption is that
the interhost variability and the prediction error areeach modeled as a single random variable. There is
nothing in our analysis that requires this other than tractability. However, it is a weak point. The normality
assumption for prediction error is reasonable for reasonably largetnom since multiple (non-normal) errors
are averaged.

Using this model, we can now express the scheduling feasibility as

P [minni=1texeci � tnom(1 + slack)]
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or
P [minni=1f(Xi � �s) + Yig � (1 + slack � �s)] (6.4)

For a single host,X1 = �s, and we have a scheduling difficulty of

P [Y1 � (1 + slack � �s)] (6.5)

which is simply the CDF ofN(0; �2sl) evaluated at1 + slack � �s. �s � 1 is thecritical slack for the
scenario—it is smallest level of slack for which 50% of the tasks will meet their deadlines. For slacks less
than the critical slack, fewer tasks will meet their deadlines, and for higher slacks, more tasks will meet their
deadlines.

The predictor sensitivity is considerably more complex. A major issue is what the scheduling strategy
is—ie, which host will be chosen when more than one can meet the deadline. It is difficult to model the
precise policy that our prediction-based strategies use (Section 6.2), but we shall look at two variants and
show that they are similar. The basis of our policy is to find the set of hosts where the predicted running time
is less than the deadline and then choose randomly from among those hosts. For this strategy, the predictor
sensitivity is independent of the number of hosts because each host can be treated individually, so we can
simply look at one host, say host 1:

P [texec1 > tnom(1 + slack) j t̂exec1 � tnom(1 + slack)]

or
P [(X1 � �s) + Y1 > (1 + slack � �s) j (X1 � �s) + Y1 + Z1 � (1 + slack � �s)] (6.6)

For one host,X1 = �s and we have a prediction sensitivity of

P [Y1 > (1 + slack � �s) j Y1 + Z1 � (1 + slack� �s)] (6.7)

In our scheduler, if the set of hosts for which the predicted running time is less than the deadline is
empty, an aggressive choice of host is made, namely the one with the minimum predicted running time.
Now we’ll consider a similar aggressive scheduler, where the host with minimum predicted running time is
always returned. The predictor sensitivity for that scheduler is

P [texec
argminn

i=1
^texeci

> tnom(1 + slack) j minni=1t̂execi � tnom(1 + slack)]

The meaning of this expression is the following. Suppose we look at the predicted running time of all the
hosts and pick host where that time in minimum. Suppose that the time is less than the deadline. What now
is the probability that the deadline is missed? Expanding the equation we get

P [(Xargminn
i=1

(Xi+Yi+Zi) � �s) + Yargminn
i=1

(Xi+Yi+Zi) > (1 + slack � �s)

j minni=1(Xi + Yi + Zi)� �s � (1 + slack � �s)]
(6.8)

Unfortunately, forn > 1, we found this probability to be too difficult to get into a form to be computed. For
a particularn, the decomposition into cases is automatic, but the integrals required foreach case contain so
many dimensions (2n dimensions) that it is extremely difficult to determine what their bounds should be.
For a single host, For a single host,X1 = �s and this simplifies to

P [Y1 > (1 + slack � �s) j (Y1 + Z1) � (1 + slack � �s)] (6.9)

Notice that this is identical to Equation 6.7. Furthermore, notice that the non-aggressive scheduler’s predic-
tor sensitivity with multiple hosts (Equation 6.6) is of similar form. Essentially all three of these equations
are of the form

P [W1 > (1 + slack � �s) j (W1 + Z1) � (1 + slack� �s)] (6.10)
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whereW1 andZ1 are both normally distributed random variables.W1 has mean�s and some variance that
depends on the intrahost and interhost variability andZ1 is as before. Later we will examine this expression
to characterize the predictor sensitivity of the non-aggressive scheduler for multiple hosts and the aggressive
scheduler for a single host.

6.5.3 Intuition from the model

The model described in Section 6.5.2 is unfortunately not analytically tractable. However, we can use
symbolic math software to study the relationship between the scheduling feasibility and predictor sensitivity
and the parameters of the model:n, �s, �s, �sl, and�pred. In particular, we will study Equation 6.4
(scheduling feasibility) and Equation 6.10 (prediction sensitivity).
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Figure 6.1: Scheduling feasibility as a function of number of hostsn, interhost variability�s, intrahost variability�sl andslack for mean slowdown

�s = 2 for slack values greater than the critical slack.
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Scheduling feasibility

Figure 6.1 shows how scheduling feasibility variesaccording to the number of hostsn, the interhost variabil-
ity �s, and the intrahost variability�sl. The scheduling feasibility is plotted in separate graphs forn = 1; 2; 4

� �s = 0:0; 0:5; 1:0. The number of hosts increases from left to right (eg, (a), (b), (c)) while the interhost
variability increases from top to bottom (eg, (a), (d), (g)). The mean slowdown�s is set to 2.0, which cor-
responds to a mean load of 1.0. Each individual graph plots the scheduling feasibility as a function of the
intrahost variability�sl for �sl = 0:1 to 1:0. Each curve corresponds to a particular slack, which ranges
from 1.1 (the bottom curve on each graph) to 2.0 (the top curve on each graph). All of the slack values are
greater than the critical slack for this situation (slack � �s � 1 = 1).

Increasing the number of hosts the scheduler can schedule on dramatically increases the scheduling
feasibility. The benefit of increasing the number of hosts increases with the the intrahost variability. The
more dynamic the individual hosts are, the more of them that are desirable. As we can see from Figure 6.1(c),
with four hosts, it is still> 90 % probable that the deadline can be met even with very dynamic hosts
(�sl = 1) and very little slack (1:1). With one host (Figure 6.1(a)), that probability is only60 %.

Increasing the slack also increases the scheduling feasibility. The benefit increases as the intrahost
variability decreases. For example, in the single host scenario (Figure 6.1(a)), with an intrahost variability
�sl = 0:1, increasing the slack from1:1 to 1:2 increases the scheduling feasibility from about 85 % to about
97 %, while the same increase at�sl = 1:0 only increases the scheduling feasibility from 60 % to 65 %.

As the number of hosts increases, the benefit of increasing slack becomes much less important. With
one host (Figure 6.1(a)), increasing the slack from1:1 to 2:0 increases the scheduling feasibility from60 %
to about85 %. The gain from the corresponding increase in the 4 host case (Figure 6.1(c)) is negligible.

Increasing the interhost variability�s has two effects. First, it decreases the scheduling feasibility over-
all. This is simply because we are introducing additional variability into the system. The more interesting
effect is that that it flattens all of the curves. This is due also the increased variability.
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Figure 6.2: Scheduling feasibility as a function of number of hostsn, interhost variability�s, intrahost variability�sl andslack for mean slowdown

�s = 3 for slack values less than the critical slack.
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When slacks below the critical slack are considered, the scheduling feasibility’s relationship with the
scenario parameters and slack changes rather drastically. The parameters and explanation for Figure 6.2 are
identical to those of Figure 6.1, which was discussed earlier. The only difference is that the mean slowdown
�s has been increased to 3.0. This makes the critical slack 2.0 and now all of the slack levels considered in
the figure are less than the critical slack.

In some respects, the behavior of the scheduling feasibility is the same as before. For example, it still
grows with the number of available hosts. More hosts seem to always be a good thing. Also as before,
the scheduling feasibility increases as the slack is increased—foreach graph in the figure, the slack curves
represent increasing slack from bottom to top.

The major difference between being above or below the critical slack is the effect of variability. Above
the critical slack (Figure 6.1), additional variability,whether it is due to increasing interhost or intrahost
variance or both, decreases the scheduling feasibility . In contrast, below the critical slack, increases in
variability from either source increases the scheduling feasibility. To understand this counter-intuitive result,
consider a one host case. Suppose that�s = 2 and�sl = 1. The slowdown that a task will see is then
normally distributed around 2.0 with a variance 1.0. Now consider a slack of 2, which is above the critical
slack by one standard deviation. The probability that the deadline can be met with this slack is then the CDF
of the slowdown evaluated at 3, which is considerably to the right of the normal distribution’s maximum.
Furthermore, it is is one standard deviation to the right, and thus the feasibility is about 84%. Suppose the
variance doubles. The normal is now much flatter and more probability has moved to the right of 3. In fact,
the feasibility has declined to about 76%. Clearly the increase in variability has hurt the feasibility. Now
repeat the above steps with a slack of zero, which is one standard deviation to below of the original normal.
The scheduling feasibility is the CDF of the normal evaluated at 1.0, which is about 16%—it is unlikely that
the deadline can be met. If we increase the variance as before, the normal flattens and now more probability
is to theleft of 1.0, which raises the scheduling feasibility to about 24%.



6.5.
M

O
D

E
LIN

G
T

O
G

A
IN

IN
T

U
IT

IO
N

1
3

1

0.2 0.4 0.6 0.8 1
predstd

0.2

0.4

0.6

0.8

1

probprobmissedduetobadpred slack=1, tnom=1, mean=2, intra=0.1,0.2:2, pred=0..1

0.2 0.4 0.6 0.8 1
predstd

0.2

0.4

0.6

0.8

1

probprobmissedduetobadpred slack=1.05, tnom=1, mean=2, intra=0.1,0.2:2, pred=0..1

0.2 0.4 0.6 0.8 1
predstd

0.2

0.4

0.6

0.8

1

probprobmissedduetobadpred slack=1.1, tnom=1, mean=2, intra=0.1,0.2:2, pred=0..1

(a) slack = 1 (b) slack = 1:05 (c) slack = 1:1

0.2 0.4 0.6 0.8 1
predstd

0.2

0.4

0.6

0.8

1

probprobmissedduetobadpred slack=1.2, tnom=1, mean=2, intra=0.1,0.2:2, pred=0..1

0.2 0.4 0.6 0.8 1
predstd

0.2

0.4

0.6

0.8

1

probprobmissedduetobadpred slack=1.3, tnom=1, mean=2, intra=0.1,0.2:2, pred=0..1

0.2 0.4 0.6 0.8 1
predstd

0.2

0.4

0.6

0.8

1

probprobmissedduetobadpred slack=1.4, tnom=1, mean=2, intra=0.1,0.2:2, pred=0..1

(d) slack = 1:2 (e) slack = 1:3 (f) slack = 1:4

0.2 0.4 0.6 0.8 1
predstd

0.2

0.4

0.6

0.8

1

probprobmissedduetobadpred slack=1.6, tnom=1, mean=2, intra=0.1,0.2:2, pred=0..1

0.2 0.4 0.6 0.8 1
predstd

0.2

0.4

0.6

0.8

1

probprobmissedduetobadpred slack=1.8, tnom=1, mean=2, intra=0.1,0.2:2, pred=0..1

0.2 0.4 0.6 0.8 1
predstd

0.2

0.4

0.6

0.8

1

probprobmissedduetobadpred slack=2.0, tnom=1, mean=2, intra=0.1,0.2:2, pred=0..1

(g) slack = 1:6 (h) slack = 1:8 (i) slack = 2

Figure 6.3: Predictor sensitivity as a function ofslack, intrahost and interhost variance (�s + �sl), and prediction error�pred on 1 host for�s = 2

for slack values greater than the critical slack.



132 CHAPTER 6. REAL-TIME SCHEDULING ADVISOR

Predictor sensitivity

Figure 6.3 shows how the predictor sensitivity varies with the slack, prediction error, and intra/interhost
variability for slacks that are greater than the critical slack. The figure plots Equation 6.10 with�s =

2. In the figure, each graph shows a different slack value, ranging from 1.0 (Figure 6.3(a)) through 2.0
(Figure 6.3(b)). Each individual graph plots the predictor sensitivity as a function of the prediction error
variance (�pred) for a family of different values for the sum of intrahost and interhost variability. For a
particular graph the curves are arranged in decreasing order of variability from bottom to top.

Not surprisingly, we see that the predictor sensitivity declines as the slack increases. As this happens,
more and more prediction errors are moot simply because there is a greater “cushion” of time to cover the
slowdown variability. For large slack levels, it doesn’t really matter what predictor is used. However, as
slack is decreased and comes close to the critical slack, the predictor sensitivity sky-rockets. Consider what
happens at the critical slack on a single host. At this point the scheduling feasibility is precisely 0.5—there is
a 50% chance of meeting the deadline. Suppose the intrahost variability is small compared to the prediction
error variance. Then, if the predictor claims that a deadline can be met, the chance that it is wrong can
actually outweigh the chance that the deadline can be met. At this point at the critical slack, there are lots of
tasks that could meet their deadlines (50% of them!), but only if the prediction error variance is considerably
lower than the variance in slowdowns.

As the interhost and intrahost slowdown variance increases, the predictor sensitivity decreases. The
closer we are to the critical slack, the more quickly it decreases with increasing slowdown variance. Essen-
tially, as the slowdown variance increases, the chance that a deadline is missed due to a lack of resources is
increasing while the chance that it is missed due to a miss-prediction is decreasing.
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Figure 6.4: Predictor sensitivity as a function ofslack, intrahost and interhost variance (�s + �sl), and prediction error�pred on 1 host for�s = 3

for slack values less than the critical slack.



134 CHAPTER 6. REAL-TIME SCHEDULING ADVISOR

Unlike the scheduling feasibility, the predictor sensitivity’s relationship to slack, intrahost and interhost
variance, and prediction error remains the same as we transition from slack values greater than the critical
slack to slack values less than the critical slack. Figure 6.4 was computed using the same parameters as
Figure 6.3, except that the mean slowdown�s was set to 3.0. This makes all the slack values less than the
critical slack.

If we look at decreasing slack values from 2.0 (Figure 6.4(i)) down to 1.0 ( Figure 6.4(a)), we can see
that predictor sensitivity continues to grow with decreasing slack. However, the figures do not tell the whole
story. The scheduling feasibility is also declining precipitously as as we decrease the slack (see Figure 6.2),
so for the fewer and fewer tasks that can have their deadlines satisfied, the predictor is increasingly important.
However, since the tasks are so very few, we would not expect this additional sensitivity to greatly affect the
overall probability that a deadline can be met, even if we upgraded to a remarkably prescient predictor. As
we saw earlier, on the other side of the critical slack, the predictor sensitivity rapidly drops as we increase
slack, but the scheduling feasibility insures that more tasks can have their deadlines met and thus a better
predictor will not significantly change the overall probability that a task will be met. The region where
improving the predictor has the greatest impact is near the critical slack. This is precisely what we see in
our evaluation of the 4LS scenario (Section 6.6.4).

6.6 Evaluation

We evaluated the five different strategies for implementing the real-time scheduling advisor by using an
experimental infrastructure similar to that of the last chapter to run large numbers of testcases that were
randomized with respect to their starting time, the slack level, the nominal time, and the strategy used. For
every testcase, the advice proffered by the advisor was followed, the testcase’s task was run on the suggested
host, and the results logged. Using the testcases produced by applying this methodology, we then estimated
the values for the three performance metrics under different constraints on the slack level and nominal time.

The performance metrics depend not only on these randomly selected parameters but also on the set
of hosts on which the advisor can schedule tasks (the scenario) that the advisor faces. As we argued in
Section 6.5, the properties of the scenario, along with the slack, should affect the scheduling feasibility and
the predictor sensitivity. Using the statistics that best cluster the hosts (Chapter 3), we constructed several
representative scenarios based on the August, 1997 traces. We also introduced two additional scenarios that
seemed intuitively interesting. We evaluated the performance of the different scheduling strategies on each
individual scenario as described above.

In the following, we will first give a detailed description of the experimental infrastructure, the method-
ology, and the scenarios we evaluated. Next, we will examine one of the scenarios, 4LS, in considerable
detail. The main findings are summarized in the following three paragraphs.

The MEASURE and prediction-based strategies significantly outperform the RANDOM strategy at all
slack levels and all nominal times in terms of the fraction of deadlines met. The AR(16) strategy is the
best of the prediction-based strategies, it always performs at least as well as the MEASURE strategy, and
considerably improves on its performance at “near-critical” levels of slack, where it is just feasible to meet
deadlines and where predictor sensitivity should be highest according to model we developed in Section 6.5.
The fraction of deadlines met declines for all the strategies as the nominal time of the task increases. Along
this dimension, we see a similar relationship between RANDOM, MEASURE, and the prediction-based
strategies: MEASURE is very preferable to RANDOM, and AR(16) improves on its performance in some
cases, particularly at near-critical slacks.

Unlike the RANDOM and MEASURE strategies, the prediction-based strategies are able not only to
choose an appropriate host for a task, but they can also tell the application whether they believe the deadline
can be met on that host. This allows us to differentiate between deadlines that are missed because the strat-



6.6. EVALUATION 135

egy incorrectly predicted there were sufficient resources and deadlines that are missed because there simply
weren’t sufficient resources. The fraction of deadlines met when possible metric is essentially the probabil-
ity that a deadline will be met given that the predictor believes it can be met. In terms of this metric, for
the 4LS scenario, the prediction-based strategies considerably outperform the MEASURE and RANDOM
strategies, and the AR(16) strategy considerably outperforms the other prediction-based strategies. Further-
more, AR(16)’s performance is relatively independent of slack and nominal time, dipping only slightly at
the critical slack level and for medium-sized tasks. Consider what this means. Suppose an application asks
the advisor for a host on which its task will meet its deadline with 95% probability. If the advisor claims
that the deadline can be met on the host it chooses, then the application can be quite certain that if it sends
the task to that host, it will indeed meet its deadline with 95% probability.

The prediction-based strategies are able to convert excess slack, or temporarily low load, into random-
ness in their scheduling decisions. This randomness is useful because it can keep different advisors from
synchronizing their choices, resulting in uniformly bad performance. Such a catastrophic synchronization
could conceivably occur with the MEASURE strategy, for example. For the 4LS scenario, this randomness,
as measured by the average number of possible hosts metric, increases with slack and decreases with nomi-
nal time. Even at low slack levels and long nominal times, however, the prediction-based strategies are able
to introduce some randomness. All three prediction-based strategies produce similar results.

The overall conclusion about the 4LS scenario is that using the AR(16) strategy produces the best results
in terms of all three metrics. It is clear that RANDOM is insufficient—a MEASURE strategy, at least, is
indicated. As we showed in Chapter 2, AR(16) has little additional overhead over a MEASURE strategy,
and, as we show here, it has a number of benefits:

� AR(16) can meet at least as many deadlines as MEASURE, and, at near-critical slack values, AR(16)
can meet considerably more.

� Unlike MEASURE, AR(16) can assert that it thinks the deadline can be met by using the host it
recommends, and the application can be extremely confident that the assertion will be true.

� Unlike MEASURE, AR(16) can introduce significant amounts of randomness into its scheduling de-
cisions, which reduces the risk of catastrophic synchronization with other advisors.

The results for the other scenarios are, for the most part, similar to those of 4LS, and we present them in
an abbreviated form that makes it easy to compare all of the scenarios, including 4LS. We show how the per-
formance metrics for each scenario vary with slack, nominal time, and jointly with slack and nominal time.
One scenario, 2CS, behaves differently from the others. On 2CS, RANDOM performs better than MEA-
SURE, and the simpler prediction strategies perform better than the more complex ones (although AR(16)
still performs at least as well as MEASURE). This odd-man-out argues, although mildly, for a multiple-
expert system, where several prediction-based strategies run simultaneously, and the best-performing one is
the one used.

The final part of our evaluation attempts to characterize advisor contention by having multiple advisors
schedule tasks on a small, 2 host scenario. We don’t see any occurrence of synchronization, and all of the
advisors see roughly the same performance. This suggests that the combination of randomness introduced
by the prediction-based strategies, as well as the unsynchronized task submission times (which are charac-
teristic of multiple interactive applications) is sufficient to avoid this potential problem with our approach to
resource prediction-based real-time scheduling advisors. Although the advisors are oblivious of each other,
there is sufficient randomness in their actions that they rarely contend for long. Despite this, they are able to
produce much better performance for the applications than a purely RANDOM strategy.
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6.6.1 Experimental infrastructure

Our evaluation of the real-time scheduling advisor relies on essentially the same infrastructure as the evalu-
ation of the running time advisor (Section 5.3). That infrastructure consisted of one recording host and one
measurement host. We extend this to include more than one measurement host and have the recording host
choose which host a task is sent to based on the real-time scheduling advisor.

The measurement hosts are reserved Alphastation 255s on a private network as before. Each host runs
the same software as described in Section 5.3, but each plays back a different host load trace. The set of
load traces being played back defines the scenario that is being studied.

The biggest change in the infrastructure is the behavior of the recording host. To evaluate the running
time advisor, the recording host used that advisor’s interface to predict the running time of a task on the
measurement host, measured the actual running time by executing the task on the measurement host, and
finally recorded the prediction and the measurement to a file. To evaluate the real-time scheduling advisor,
the recording host used the interface of Section 6.1 to select the most appropriate host in the scenario, runs
the task on that host and measures its running time, and records the selected host, the predicted running
time, and the actual running time.

6.6.2 Methodology

To evaluate the real-time scheduling advisor given a particular scenario, we started up the infrastructure
described in Section 6.6.1. Each of the measurement hosts was set to play back one of the load traces in
the scenario. Each measurement host also ran a host load sensor at 1 Hz, three host load prediction systems
(MEAN, LAST, and AR(16)). The systems were configured to fit to 300 measurements (5 minutes) and
to refit themselves when the absolute error for a one-step-ahead prediction exceeded 0.01 or the average
measured one-step-ahead mean squared error exceeded the estimated one-step-ahead mean squared error
by more than 5%. The minimum interval between refits was 30 seconds, and maximum interval before the
measured mean squared error was tested was 300 seconds. This setup was identical to that of Section 5.4.1,
except that it ran on multiple measurement hosts.

The prediction and measurement software were permitted to quiesce for at least 600 seconds and then
8000 consecutive testcases were run on the recording host, each according to this procedure:

1. Wait for a delay interval,tinterval, selected from a uniform distribution from 5 to 15 seconds.

2. Get the current time,tnow .

3. Select the task’s nominal time,tnom, randomly from a uniform distributionfrom 100 ms to 10 seconds.

4. Select the task’s slack,slack, randomly from a uniform distribution from 0 to 1.

5. Select a scheduling strategy randomly from among RANDOM, MEASURE, MEAN, LAST, and
AR(16).

6. Depending on the scheduling strategy chosen in step 4, choose the target host for the task in one of
the following ways:

� RANDOM : Select one of the hosts in the scenario at random.

� MEASURE : Request load measurements from each of the hosts in the scenario. Select a host
at random from among those with the minimum load.

� MEAN, LAST, AR(16) : Use theRTAdviseTask API’s (Section 6.1) implementation (Sec-
tion 6.2) to select the host using the chosen host load predictor.
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7. Run the task on the spin server of the chosen host and retrieve its actual running time,tact.

8. Record the timestamptnow , the scheduling strategy used, the nominal timetnom, the slackslack, the
expected running timetexp, the confidence interval[tlb; tub], and the number of possible hosts.

After all 8000 testcases were run, their records were imported into a database table corresponding to the
scenario. In the case of the 4LS scenario (see below), we looked at slack values in the range zero to two
and completed 16000 testcases. It takes approximately 36 hours to complete 8000 testcases. To evaluate the
real-time scheduling advisor, the database is mined.

6.6.3 Scenarios

When invoked, the real-time scheduling advisor chooses which of the available hosts is most appropriate
for running the task such that it meets its deadline. In part, the performance of the advisor depends on the
properties of this group of these hosts (the scenario). To evaluate the advisor, it is important to consider
several different scenarios that are likely to be seen in practice. We will now introduce the scenarios that we
used in our evaluation.

For the most part, we based the construction of our scenarios on how our load traces are clustered by their
statistics. We then added several additional scenarios based on other environments in which we could see
real-time advisors operating. Our scenarios are also connected to the parameters of the model we developed
in Section 6.5. Obviously, we did not attempt to explore the space of those parameters. Nonetheless, the
scenarios (and hopefully our results!) can be interpreted in the framework of that explanatory model.

In our experimental environment, scenarios are represented by a group of host load traces. We used
the August, 1997 set of traces. In clustering the traces by their statistics, the most significant statistics
are the mean load and the mean epoch length. We classified each trace as having “low” or “high” mean
load, and “small” or “large” mean epoch lengths. For most of the scenarios that we constructed, these
formed the basis of the construction. The traces in a scenario could all be of low mean load, high mean
load, or a “mixed” combination. Similarly, the scenario’s traces could all be of small epochs, large epochs,
or a mixed combination. This forms nine classes. Unfortunately, because we have no traces which are
simultaneously of high mean load and long mean epoch length, only six of the classes were realizable. Of
these six combinations, we will report on four particularly interesting ones here. These are:

� 4LS : These four traces (axp0, axp4, axp5, and axp10) all exhibit high mean load and small epochs.

� 4SL : These four traces (axp3, axp7, axp8, and axp9) all exhibit low mean load and large epochs.

� 4MM : These four traces (axp0, axp4, axp7, and axp8) exhibit mixed load and epochs. axp0 and axp4
have high mean load and small epochs, while axp7 and axp8 have low mean load and large epochs.

� 5SS: These five traces (axp1, axp2, axp6, axpfea, and axpfeb) exhibit low load and small epochs.

The two combinations that we do not report on here are the 4MS scenario (axp0, axp1, axp2, and axp4),
which represents mixed loads and small epochs, and 4SM (axp1, axp2, axp7, and axp8), which represents
low loads and mixed epochs. The results for these two scenarios are similar to those we report here. We also
chose to add an additional scenario based on a compute server environment:

� 2CS: These are the traces of the two compute server machines (mojave and sahara).

Finally, we added a scenario that we perceived as highly predictable in order to determine how multiple
real-time advisors might interact. The thinking was that for a highly predictable scenario (one where the
predictor sensitivity is low), performance degradation due to contention would be more noticeable. This
scenario is
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� 2MP : Two of the more predictable traces (axp8, and axpfea).

In Section 6.5 we derived a simple analytic model for the real-time advisor in order to help us under-
stand how the difficulty of finding an appropriate host (scheduling feasibility) and the importance of good
predictions (predictor sensitivity) depend on the scenario, the prediction quality, and the slack. The model
characterized the scenario by the number of hosts it contained (n), its mean slowdown (�s), its interhost
variance in slowdown (�2s ) and its intrahost variance in slowdown (�2sl).

In terms of that analytic model, our scenarios represent different combinations of the parametersn, �s,
�2s , and�2sl. The number of hosts in the scenarios (n) range from two to five. As we discovered in Chapter 3,
load variability is strongly correlated with mean load. Load variability, in turn, is the source of the intrahost
variability in slowdown (�2sl). The high load scenario 4LS represents a high mean slowdown�s because all
of the hosts have high mean load. Correspondingly, the intrahost variability (�2sl) of 4LS is also high. In
contrast, the interhost variability (�2s ) is low because all the hosts have similar mean loads. The low load
scenarios 4SL and 5SS have low�s, �2s , and�2sl. Because the correlation of mean load and the variance
of load suggests that�s and�2sl are also correlated, scenarios with low�s coupled with high�2sl or high
�s coupled with low�2sl are impossible to construct using our traces. The “mixed” scenario, 4MM has�s
and�2sl levels between those of 4LS and 4SL/5SS, while it has considerable interhost variability (�2s ). The
smaller scenarios 2CS and 2MP represent low�s, �2s , and�2sl situations combined with smalln.

6.6.4 4LS scenario in detail

The performance of the real-time scheduling advisor depends on the scenario, the nominal running time of
the task, and the slack level. In this section, we present the 4LS scenario in detail. The overall behavior of
the performance metrics with respect to the nominal time and the slack are similar for all the scenarios. This
section allows us to illustrate that behavior in detail. 4LS is also interesting because in it we see the greatest
differentiation between the different scheduling strategies. Unlike the other scenarios, however, the study
of 4LS included slack values from 0 to 2, resulting in 16000 testcases. This was necessary because even
with a slack value of 1, a large number of tasks did not meet their deadlines. Because we wanted to see how
the different strategies performed in situations ranging from very low to very high scheduling feasibility,
increasing the slack was necessary. In the subsequent sections we will show aggregated results for 4LS as
well as the other scenarios, all for slacks ranging from 0 to 1.

Performance versus slack

Figure 6.5 illustrates how the performance metrics vary with slack foreach of the scheduling strategies
using the 4LS scenario. A point represents the interval of slack times between it and the preceding point.
For example, the fraction of deadlines met for slacks from 0 to 0.25 using the LAST strategy is plotted as a
disc at (0.25, 0.2) in Figure 6.5(a).

The fraction of deadlines met is a function of both the quality of the scheduling strategy and the schedul-
ing feasibility. When slack is very low, we are in a regime with low scheduling feasibility where encoun-
tering a host on which a task can be successfully scheduled is unlikely. In such a situation, even if one
strategy is far superior to another, its fraction of deadlines metric will not be very different because it will
be dominated by failures that are due to a lack of resources. In other words, the predictor sensitivity will be
low. Figure 6.5(a) shows that this is indeed that case. At very low slack levels such as 0 to 0.25, all but the
RANDOM strategy perform similarly, while RANDOM is considerable inferior.

As the slack increases, scheduling feasibility and predictor sensitivity both increase resulting in both
a larger fraction of deadlines being met and a greater differentiation between scheduling strategies. For
the 4LS scenario, as slack increases from 0.25 to 1.25, we can see from Figure 6.5(a) that this is indeed
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Figure 6.5: Dependence of metrics on slack, 4LS scenario, 0 to 10 second tasks.
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what is happening. For slacks from 0.25 to 1.0, the prediction-based strategies prove to meet 10-15% more
deadlines than the MEASURE strategy and about 10-30% more than the simplistic RANDOM strategy. At
slacks from 0.5 to 0.75, the AR(16) strategy results in 5-10% more deadlines being met than its closest
competitor.

Beyond the critical slack, which is in the range 0.75–1 for the 4LS scenario, the scheduling feasibility
continues to increase, but the predictor sensitivitybegins to decline. Encountering a host on which a deadline
can be met is becoming so likely that even a simple strategy is able to choose an appropriate host. For
example, at slacks from 1.25 to 2.0 we can see from Figure 6.5(a) that the simple MEASURE predictor is
performing as well as all the other strategies. The performance of MEASURE is always considerably better
than that of RANDOM. As slack increases in that range, the AR(16) reaches its target level of 95% and
the MEASURE strategy, which has no such level, surpasses it. It is important to note, however, that even
at such high slack levels, the RANDOM strategy lags behind the other strategies by 20%. It is clear that
even for such agreeable regimes, it is necessary to at least measure host load in order to achieve reasonable
performance. The additional overhead to introduce prediction into a measurement based strategy is trivial
and makes it much more resilient when slack declines.

The fraction of deadlines met is the metric that applications care about, and we have seen that prediction-
based strategies, particularly AR(16), can improve that metric. However, it is the combination of the schedul-
ing strategy, the requested slack, and the environment which determine the fraction of deadlines met. Our
second metric, the fraction of deadlines met when possible, is determined solely by the strategy. For the
prediction-based strategies, the advice of the real-time scheduling advisor includes a predicted running time
for the task. If the advisor predicts that the deadline will be met and it is not, that is clearly the fault of the
advisor and not the environment.

Figure 6.5(b) shows how the fraction of deadlines met when possible metric depends on the slack. Be-
cause the RANDOM and MEASURE strategies do not report a predicted running time to the application,
their curves are identical to their fraction of deadlines met curves—we assume they always tell us the dead-
line could be met. Except for the fact that the greatest differentiation between the prediction-based strategies
occurs at roughly the same slack as before, the trends here are remarkably different than before.

At low slacks, for the prediction-based strategies, the fraction of deadlines met when possible is high.
Because the scheduling feasibility is low, it is rare to find a host on which the deadline can be met. However,
the predictor sensitivity is low and so when such a host is encountered, it is easily discovered. Of course, the
non-predictive MEASURE strategy will also likely discover it, but that strategy can not tag it specifically
as being a situation where the deadline can be met because it has no idea what the execution time may be.
From the point of view of the application, MEASURE and RANDOM always claim that the deadline can be
met, while MEAN, LAST, and AR(16) make this claim only when they have good reason to believe that it is
the case. Because they are able to report that majority of cases where the deadline cannot be met due to low
slack, and prediction is easy (due to low predictor sensitivity) in that minority of cases where the deadline
can be met, the fraction of deadlines that are met when they believe it is possible is quite high. This is what
we see at low slack values in Figure 6.5(b).

As slack increases, scheduling feasibility and predictor sensitivity increases. This produces two effects.
First, prediction error becomes an increasingly important cause of missing a deadline. Prediction error is
independent of slack (recall that the running time advisor is unaware of slack), so this implies that the
prediction strategies are increasingly prone to reporting that they can meet a deadline when they cannot.
The second effect is that differences in prediction error lead to more differentiation between the different
predictive strategies as slack increases. Figure 6.5(b) shows both of these effects. There is a dip in the
performance of the predictive strategies as slack increases from 0 to 1, and their performance becomes
increasingly different. Notice that the AR(16) strategy has the best overall performance by the fraction of
deadlines met when possible metric. Even better prediction-based strategies would lead to even less of a dip
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in performance around the critical slack.
Beyond the critical slack, further slack increases lead to decreasing predictor sensitivity, while the

scheduling feasibility continues to increase. This results in a turn-around for the predictive strategies be-
cause failures to meet deadlines become less dependent on prediction error and thus they are less likely to
report that a deadline can be met when it in fact can not. Furthermore, there is less differentiation between
the different predictive strategies because the predictor sensitivity is declining. Figure 6.5(b) at slack levels
from 1 to 2 illustrate these effects.

The prediction-based strategies can trade slack for randomness in their scheduling advice. Higher slacks
mean that more hosts can be identified on which a task can meet its deadline. The prediction-based strategies
then chose randomly from among the possible hosts, decreasing the change of collision with other advisors.
In contrast, the RANDOM and MEASURE strategy represent extremes in the amount of randomness intro-
duced. RANDOM introduces the maximum randomness, completely disregarding the task deadline, while
MEASURE (in almost all cases) thinks there is only one possible host for the task. The prediction-based
strategies represent a useful middle ground, then, introducing as much randomness as is possible given the
slack, while still attempting to meet the individual task’s goals. Furthermore, the prediction-based strate-
gies, especially AR(16) are usually better at meeting the individual task’s deadline than the randomness-
squandering MEASURE.

Figure 6.5(c) shows how the degree of randomness in the advisor’s advice varies with nominal time for
the five strategies. The metric is the average number of possible hosts the strategy chooses from. At low
slack levels, the randomness of the prediction-based strategies converges with that of MEASURE, while at
high slack levels, it converges with RANDOM. Notice that even at the critical slack level around 1.0, where
is is just becoming possible, in expectation, to meet the deadlines, the best prediction-based strategy chooses
from approximately two hosts on average, introducing at least that degree of randomness.

Performance versus nominal time

The performance of the different scheduling strategies also depends on the nominal time of the task. For
simplicity, the model of Section 6.5 assumed that the prediction error was independent of the nominal time,
but as we showed in the previous chapter, this is not the case. To assess the effect of nominal time on the
performance metrics, we will consider the 4LS scenario in detail, looking at both all recorded slacks and
at those critical slacks where, according to the model and the results presented in Figure 6.5, the predictor
sensitivity is highest.

Figure 6.6 shows the dependence of the performance metrics on the nominal time for the 4LS scenario.
To produce the figure, testcases of all slacks from 0 to 2 were used. A point represents the interval of
nominal times between it and the preceding point. For example, the fraction of deadlines met for nominal
times from 0.1 to 1 second using the AR(16) strategy is plotted as a triangle at (1, 0.95) in Figure 6.6(a).
Each point on the graph represents approximately 320 testcases.

The I/O boost provided by the OS scheduler benefits shorter tasks more than longer tasks, as we discov-
ered in the previous chapter. The other load on a host, even if it is considerable as with the 4LS hosts, has
little effect on a sub-second task, and thus most of these tasks meet their deadlines, even using very simple
strategies. For longer tasks, the other load becomes increasingly visible, and the chance of a deadline being
met declines. Consider the fraction of deadlines met by the RANDOM strategy as plotted in Figure 6.6(a).
Sub-second tasks have a greater than 80% chance of meeting their deadlines. As the nominal time climbs,
the chance of meeting the deadline declines until, for 4 to 10 second tasks, it bottoms out to about 40%,
roughly half as good.

Even with the I/O boost, small tasks benefit from a more sophisticated strategy. With MEASURE, sub-
second tasks have a 95% chance of meeting their deadlines, which is an improvement of 15% over RAN-
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Figure 6.6: Dependence of metrics on nominal time, 4LS scenario, 0 to 2 slack.
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DOM. However, there is not much additional benefit, by this metric, to using the prediction-based strategies
for these short tasks. As the nominal time increases, however, we can see that the prediction-based strate-
gies, except for the MEAN predictor, perform better than MEASURE. As we can see from Figure 6.6(a),
at nominal times from 3 to 4 seconds, the AR(16) strategy manages to make 68% of its tasks meet their
deadlines, while the MEASURE strategy manages only 62%. Overall, the AR(16) strategy performs at least
as well as the MEASURE strategy and usually has better performance than the LAST strategy. It is clearly
desirable, for any nominal time, to use the MEASURE strategy instead of the RANDOM strategy. The
prediction-based strategies, especially AR(16), make the chance that a deadline will be met even greater at
a very small additional overhead, compared to the MEASURE strategy.

As we discussed earlier, the prediction-based strategies are able not only to suggest an appropriate host
for a task, but are able also to assert whether a deadline can be met on that host or not. Because of this,
we can determine how well these strategies perform when they actually believe that sufficient resources are
available to meet deadlines, which we measure by the fraction of deadlines met when possible metric. This
is a metric of considerable interest to applications because it determines to what extent they should trust
the advisor when it asserts that they can meet the deadline by using a particular host. Figure 6.6(b) shows
how the performance of the different strategies varies with the nominal time of the task on the 4LS scenario.
Because the RANDOM and MEASURE strategies always implicitly assert that the deadline can be met,
their curves are identical to those in Figure 6.6(a).

For the prediction-based strategies, the fraction of deadlines met when possible metric is much less
dependent on the nominal time than the fraction of deadlines met metric (compare Figure 6.6(b) with (a)).
As we noted earlier, it is also much less dependent on the slack. Clearly, the prediction-based strategies go
a good job of determining not only an appropriate host for meeting a task’s deadline, but also whether the
deadline will actually be met on that host.

Although all of the prediction-based strategies consistently outperform RANDOM and MEASURE in
terms of the fraction of deadlines met when possible metric, it is also clear that the LAST and AR(16)-based
strategies perform much better than MEAN for all but the smallest tasks. Furthermore the AR(16) strategy
is at least as good as LAST in all cases, and, for a considerable range of running times (1 to 4 second tasks),
it considerably outperforms LAST. Recall that the case was similar with respect to different slack times.
Clearly, AR(16) is the preferable strategy by this metric.

Figure 6.6(c) shows how the final metric, the average number of possible hosts, varies with the nominal
time. Not surprisingly, because short tasks are essentially oblivious to other load on any host, and because
the running time advisor is able to predict this obliviousness, the real-time scheduling advisor is able to
introduce considerable randomness into its choice of hosts. For very small tasks, the choice is nearly as
random as that of the RANDOM strategy. As tasks increase in size, there are fewer options as to where to
schedule them, and so the advisor constrains the randomness it introduces. However, even for large 9 to 10
second tasks, the advisor can be considerably more random using a prediction-based strategy than using the
MEASURE strategy. We noticed earlier that a similar pattern held true as the slack was reduced.

Clearly, the prediction-based strategies allow us to introduce randomness into scheduling decisions while
still keeping the scheduled task’s best interested at heart. Furthermore, despite introducing this globally
beneficial randomness, the prediction-based strategies, particularly the AR(16) strategy, are better able than
the MEASURE strategy to choose a host to meet the task’s deadline. Finally, the application can trust that
when the prediction-based strategies, particularly AR(16), assert that a deadline can be met, it actually
will be met. This enables the application to negotiate with the real-time scheduling advisor, finding a
combination of nominal time and slack where the deadline can be met with a high degree of certainty.
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Figure 6.7: Dependence of metrics on nominal time at critical slack, 4LS scenario, 0.75 to 1 slack.



6.6. EVALUATION 145

Performance versus nominal time at critical slack

The critical slack is the interval of slack values where the predictor sensitivity is highest and the differen-
tiation among predictors should be maximal. This is effectively where the slack is just large enough that
deadlines can be met in expectation (ie, where one expects slightly more than 50% of deadlines to be met).
From Figure 6.5, the critical slack appears to be 0.75 to 1.0 for the 4LS scenario. It is interesting to consider
how the performance metrics vary with the nominal time for these slacks.

Figure 6.7 shows the dependence of the performance metrics on the nominal time for the 4LS scenario at
the critical slack. To produce the figure, testcases of all slacks from 0.75 to 1 were used. A point represents
the interval of nominal times between it and the preceding point. For example, the fraction of deadlines
met for nominal times from 1 to 2 seconds using the RANDOM strategy is plotted as a circle at (2, 0.5) in
Figure 6.7(a). Each point on the graph represents approximately 40 testcases. It is important to note that
this is a sufficiently small number of testcases that some of the differences we speak about here are only
statistically significant at lower confidence levels than our typical 95%. We will point out the cases where
this is true. For all of the graphs AR(16) is better than RANDOM at a 95% confidence level.

At the critical slack, the prediction-based strategies are much better at meeting deadlines than the RAN-
DOM or MEASURE strategies, and the AR(16) strategy performs best overall. As can be seen from Fig-
ure 6.7(a), the best prediction-based strategy results in 20 to 40% more deadlines being met than the RAN-
DOM strategy, and from 5 to 30% more deadlines being met than the MEASURE strategy. As before, the
fraction of deadlines met declines with increasing nominal time. The largest differentiation between the
predictors occurs at medium sized tasks ranging from 3 to 7 seconds. With this small number of samples,
the expected performance of AR(16) is only clearly better than MEASURE and the other prediction-based
strategies with a lower confidence level of 75%.

Compared to its metrics over all slack levels (Figure 6.6(b)), the dependence of the fraction of deadlines
met when possible metric on the nominal time is considerably different at the critical slack (Figure 6.7(b)).
In particular, the dip in performance for medium-sized tasks is deeper and we see more extreme behavior
on the part of various predictors. At the critical slack, the predictor sensitivity is highest, and so we would
expect to see the greater differentiation among the prediction-based strategies, which we do. The overall dip
in performance is due to the fact that, for very small tasks, the background load is not terribly important in
meeting the deadline. For this reason, the error due to predicting the running time is also not important, and
thus the prediction sensitivity is low.

As the nominal time increases the prediction sensitivity increases and we see more errors. Because we
are at the critical slack, these errors are magnified because even small errors can lead the prediction-based
strategies to erroneously conclude that the deadline can be met. As the nominal time continues to increase,
all of the predictors begin to produce very large confidence intervals because the predictability of the load
signal declines to its variance. With these large confidence intervals there are few cases where the prediction-
based strategies can be met, and those occur when the load is so low that there is a very good chance that
the deadline will be met. In the case of the MEAN strategy with nominal times greater than 4 seconds,
there were no testcases where the strategy believed the deadline could be met, leading to the zero results.
Statistically, AR(16) is better than MEASURE by this metric at a confidence level of 95% for nominal times
of six seconds and better, and at a confidence level of 75% for times of two seconds and better.

Figure 6.7(c) shows how the average number of possible hosts depends on the nominal time at the crit-
ical slack. The graph is similar to the overall dependence presented in Figure 6.6(c) in that the amount of
randomness introduced is very high for small tasks and declines as task size increases. Unlike Figure 6.6(c),
however, there is a greater distinction between the different prediction-based strategies. LAST is the prefer-
able strategy by this metric, although the differences between LAST and AR(16) have only a low statistical
significance. Both AR(16) and LAST are statistically superior to MEASURE at a confidence level of 95%



146 CHAPTER 6. REAL-TIME SCHEDULING ADVISOR

for nominal times less than four seconds, however.

6.6.5 Other scenarios

In the previous section, we detailed how, for the 4LS scenario, the performance of the different strategies
for the real-time scheduling advisor depended on the nominal time and the slack. In this section, we will
report on similar studies for the 4SL, 4MM, 5SS, and 2CS scenarios (For direct comparison, we also include
4LS scenario, restricted to slacks from 0 to 1). The intent here is to illustrate how the performance metrics
vary from scenario to scenario as well as with slack and nominal time. Because this introduces far too much
information when presented in the format of the previous section, we divide the nominal time and slack into
fewer intervals and use a simpler bar graph format in this section.

Overall performance for each scenario

The data from which this section’s graphs and discussion were collected using the 4LS, 4SL, 4MM, 5SS,
and 2CS scenarios. For each scenario, we ran 8000 testcases whose nominal times were selected randomly
from 0.1 to 10 seconds, and whose slacks were selected randomly from 0 to 1. It is interesting to consider the
performance metrics of these testcases irrespective of nominal time and slack to ground our understanding
of how the scenarios differ. Figure 6.8 presents the overall performance metrics for each scenario. Each bar
represents the result of approximately 1600 testcases.

In terms of the fraction of deadlines met metric, plotted in Figure 6.8(a), the most obvious difference
between the scenarios is that the performance of all the strategies is considerably lower for the 4LS scenario
than for the other four scenarios. Recall that the 4LS scenario includes four hosts that all have a mean load
around 1.0 and, as we discussed earlier, the critical slack is in 0.75 to 1.0. Because the upper bound of the
slack values considered here is 1.0, most of the 4LS testcases can be expected to fail. In contrast, the hosts
in the other scenarios either all have much lower load (4SL, 5SS, 2CS) or include a mixture of machines
with high and low load (4MM), and so a much larger fraction of their testcases can be expected to have
their deadlines met. As we might expect, the 4MM scenario is more difficult than the 4SL, 5SS, and 2CS
scenarios because it includes two hosts with higher load.

It is also significant to consider how the fraction of deadlines met metric varies across the scenarios for
the RANDOM strategy. For the 4LS and the 4MM scenarios, RANDOM achieves only slightly more than
half of the performance of the best strategy. In the 4LS scenario, as we argued in the previous section, this
is because a considerable fraction of the testcases occur at slack values that are near the critical slack where
predictor sensitivity is high. In the 4MM case, the explanation is more prosaic: in expectation, two of the
hosts (the ones with high mean load) will be “bad”, while two (the ones with low mean load) will be “good”.
RANDOM will then pick a “bad” host half of the time, often resulting in a failure to meet the deadline.

The ability to distinguish between hosts that differ in such a simple way is why the MEASURE strat-
egy is able almost always to outperform the RANDOM strategy on the fraction of deadlines met metric.
From Figure 6.8(a), we can see that the prediction-based strategies are generally able to improve on this
performance by a small to moderate amount. In particular, the AR(16) strategy is consistently at least as
good as the MEASURE and RANDOM approaches. We will find later that, just as with the study of the
4LS testcase, the differences between the different strategies in terms of the fraction of deadlines met metric
depends on the slack and nominal time. Near the critical slack and for sufficiently large nominal times, the
difference between the prediction-based strategies, particularly AR(16), and MEASURE or RANDOM can
be quite significant.

Figure 6.8(b) shows the fraction of deadlines met when possible metric for each of the scenarios under
each of the strategies. Using this metric, which reflects how much the application can trust the advisor when
it claims that a deadline can be met on a particular host, the prediction-based strategies are clearly superior
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Figure 6.8: Overall scheduling results, 0 to 10 second tasks, 0 to 1 slack.
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to the RANDOM and MEASURE strategies. Furthermore, for the more difficult scenario, 4LS, the AR(16)
strategy is clearly superior to the other prediction-based strategies, while it is at least their equal for the
other scenarios. We will also find that these differences are accentuated with tighter slack times and longer
nominal times.

Figure 6.8(c) shows the number of possible hosts metric for each of the scenarios and strategies. As
we can see, the prediction-based strategies always allow the advisor to introduce more randomness into
its decisions than the MEASURE strategy. Furthermore, the AR(16) strategy is able to introduce the most
randomness in most cases. Remarkably, this extra randomness, which reduces the chance that competing
advisors will contend for the same host, comes at no cost (and often a benefit) in terms of the fraction of
deadlines that are met and almost always a benefit in terms of the fraction of deadlines met when possible,
the application metrics. In other words, using the prediction-based strategies, the real-time advisor can avoid
contending with other real-time advisors while simultaneously providing a real benefit to the application.

Performance versus slack

As we discovered in our in-depth study of the 4LS scenario, the performance of the real-time scheduling
advisor depends strongly on the slack time. As slack nears a critical level, the performance of the prediction-
based strategies becomes significantly better than the MEASURE strategy. Furthermore, we begin to see
greater differences between the predictors because the prediction sensitivity is high. In this section, we show
how the performance metrics vary with slack for all of the scenarios. To avoid an overload of information,
we’ll use the format of Figure 6.9 to present each metric. Graph (a) will contain testcases for slacks in the
range 0.0 to 0.33, graph (b) will cover slacks in the range 0.33 to 0.67, and graph (c) will cover 0.67 to 1.0.
Thus, by looking down the column of graphs, the effect of greater slack times can be seen. A bar represents
approximately 534 testcases.

As we can see from Figure 6.9, the fraction of deadlines met metric for all of the scenarios generally
has the same relationship we discovered in our detailed analysis of the 4LS scenario. The difference is the
location of the critical slack. For all of the other scenarios, the critical slack is clearly somewhere in the
range 0.0 to 0.33. If we look at these scenarios’ testcases at or below this critical slack (Figure 6.9(a)), we
see that the prediction-based strategies generally outperform the MEASURE strategy, and that the AR(16)
strategy is often preferable. However, although the case for the prediction-based strategies is strong for all
the strategies, the AR(16) strategy is not clearly preferable. In fact, for the 2CS scenario, although it is at
least as good as RANDOM, and considerably better than MEASURE, it does not work as well as the long
term MEAN strategy. This suggests that in some scenarios, it may be worthwhile to run multiple strategies
and use a multiple expert style algorithm to decide which the is preferable strategy at any one time. The
multiple expert approach is used in the Network Weather Service prediction system [140], and has theoretical
justification (cf. [21]). It is interesting to note that in the 2CS scenario, MEASURE is actually inferior to
RANDOM. The behavior of these two hosts must be such that short-term behavior is very deceptive of even
short term prospects.

At slacks ranging from 0.33 to 0.67 (Figure 6.9(b)), all of the scenarios other than 4LS have passed
their critical slack level and there is little difference between MEASURE and the prediction-based strate-
gies. However, the RANDOM strategy continues to perform badly, especially for cases which have hosts
of widely differing mean load (4MM and 5SS). In this situation, the prediction-based strategies would
provide the same performance as measure, but would be able to correctly inform applications whether a
deadline could be met. Furthermore, the prediction-based approaches would be able to introduce more ran-
domness into their scheduling decisions. This continues to hold true for slacks ranging from 0.67 to 1.0
(Figure 6.9(c)). Even with considerable slack, the RANDOM strategy is still confused by the very different
hosts in the 4MM scenario. Also, we have now reached the critical slack for the 4LS scenario and we can
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Figure 6.9: Fraction of deadlines met versus slack, 0 to 10 second tasks.
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see the great differentiation between the different strategies which we noted before.
The fraction of deadlines met when possible metric also depends on the slack. Figure 6.10 shows this

dependence for the different values of slack. At low slacks of 0.0 to 0.33 (Figure 6.10(a)), we can see that
the predictive strategies are able to almost always correctly call whether their task to host assignment will in
fact meet its deadline. Furthermore, the AR(16) strategy is usually able to do this best job of this. Recall that
the target level of the predictive strategies here is 95%. The AR(16) strategy is able to achieve that desired
level of accuracy on all the scenarios. The occasional missing bars for the MEAN scenario are due to the
MEAN scenario never encountering a testcase which it believed could have its deadline be met. Clearly,
at these low slack levels (recall that a 0.33 slack represents a deadline of 133% of the nominal time of the
task), the predictive strategies, and AR(16) in particular, can give an application strong piece of mind when
it asserts that a deadline can be met.

Figure 6.10(b) and (c) show how the fraction of deadlines met when possible metric fares for 0.33 to 0.67
and 0.67 to 1.0 slacks, respectively. In the case of 4LS, we are just on the edge of the critical slack, so the
predictive strategies still offer a significant gain over MEASURE and AR(16). For the other scenarios, we
see that MEASURE, and, for some, RANDOM, catch up with the prediction-based scenarios with sufficient
additional slack. The advantage of the prediction-based strategies, and, in particular, AR(16), is that they
deliver a (high) fraction of deadlines met when possible metric relatively independently of slack.

Figure 6.11 shows how the number of available hosts metric varies with the slack. As we showed in
our analysis of the 4LS scenario, the prediction-based strategies use excess slack to introduce contention-
avoiding randomness into the scheduling advice they provide with no detriment to the application. In fact,
the application usually benefits, and even where the application benefits the most (near the critical slack),
considerable randomness can be introduced. Figure 6.11(a) shows the number of possible hosts for 0.0 to
0.33 slacks. At this level, only a tiny amount of extra randomness is introduced, and that mostly by the
AR(16) strategy. At slacks ranging from 0.33 to 0.67 (Figure 6.11(b), considerably more randomness can
be introduced into each of the scenarios, and AR(16) usually introduces the most randomness. At high
slack values ranging from 0.67 to 1.0, AR(16) is often able to introduce almost as much randomness as the
RANDOM strategy while meeting more deadlines (eg, 5SS and 2CS scenarios). Notice that for the 4MM
scenario, AR(16) chooses from roughly two hosts on average. These are most often the two lightly loaded
hosts. If the slack were increased to 2.0, it would choose from all four of them.

Performance versus nominal time

The performance of the different strategies on the different scenarios also varies with the nominal time of
the task to be scheduled. In general, the fraction of deadlines met declines with increasing nominal time,
while the fraction of deadlines met when possible metric remains relatively stable, although it increases
slightly with nominal time. Because smaller tasks “see” less of the background load on hosts due the
disproportionate effect of the I/O boost on them, it is possible to introduce more randomness, measured by
the average number of possible hosts, as nominal time decreases.

Figure 6.12 shows how the fraction of deadlines metric as the nominal time varies from (a) 0.1 to 3
seconds, (b) 3 to 6 seconds, and (c) 6 to 10 seconds. The graphs include slacks from 0 to 1, and each
bar represents approximately 534 testcases. The decline in deadlines met with increasing nominal time is
most marked for the 4LS scenarios because most of the testcases here are gathered for slacks below the
critical slack. For the other scenarios, most of the testcases are above the critical slack, and so the decline
is not as clear, although it is certainly noticeable. It is always easier to schedule short tasks to meet their
deadlines. We can see that in all cases, there is a prediction-based strategy that performs at least as well as
the MEASURE strategy, and that strategy is usually the AR(16) strategy. For the 4LS and 4SL cases, the
performance gain of the AR(16) strategy over the MEASURE strategy is most clear. In the next section,
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Figure 6.10: Fraction of deadlines met when possible versus slack, 0 to 10 second tasks.
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154 CHAPTER 6. REAL-TIME SCHEDULING ADVISOR

we will vary both the slack and the nominal time. This will show that there are more marked differences
between different nominal times when slack is constrained. This is in tune with our in-depth analysis of 4LS
in the previous section.

In terms of the fraction of deadlines met when possible metric, which represents the confidence that an
application can have that a task will actually meet its deadline when the advisor says it can, the dependence
on nominal time is much clearer. As Figure 6.13 shows, as the nominal time of the task increases, the
application can be much more confident that the prediction-based strategies will be truthful than if it used
the MEASURE or RANDOM strategies. Even for the 2CS case, where measurement performs worse than
prediction in terms of meeting deadlines and the general ranking of predictors is opposite to that seen in the
other scenarios, the prediction-based strategies are highly accurate when they claim a deadline can be met.
As Figure 6.13(c) shows, for 6 to 10 second tasks, the prediction-based strategies are correct almost 100%
of the time, while the next best strategy is accurate only 85% of the time. As we shall see in the next section,
these distinctions are accentuated when the slack is constrained to be nearer the critical slack. Except for in
the extremely resource-constrained 4LS scenario, the prediction-based strategies maintain a high and stable
accuracy for all the nominal times.

Because short tasks benefit more from I/O boosts, they are easier to schedule. The prediction-based
strategies are able to use this attribute to increase the amount of randomness they introduce into their
scheduling decisions, all with little effect on the benefit that applications derive from the decisions. Fig-
ure 6.14 shows how our measure of that randomness, the average number of possible hosts, increases as the
nominal time decreases. In almost all cases, the predictive strategies are able to introduce more randomness
than the MEASURE strategy, and, for small nominal times, the amount they introduce becomes a signifi-
cant fraction of that which the pure RANDOM strategy can introduce. It is usually the case that the AR(16)
strategy is able to introduce the most additional randomness, although that is not always the case, especially
for the 4LS scenario with short nominal times and for the 2CS case for long nominal times.

Performance versus slack and nominal time

The performance of the different strategies varies jointly by scenario, slack level, and nominal time. Previ-
ously, we looked at two dimensional projections of this dependence, looking at scenario and slack level, and
then scenario and nominal time. Now we will look at the joint relationships, as we measured for our five
scenarios. We shall use precisely the same bar graph technique as previously to graph the results. However,
each bar graph will have both its slack and its nominal time constrained. To avoid generating too many
graphs (with each bar representing too few testcases), we will look at only six combinations of slack level
and nominal time. The slacks we will look at are 0.0 to 0.5 and 0.5 to 1.0. The nominal times will be the
same as before: 0.1 to 3, 3 to 6, and 6 to 10 seconds.

Figure 6.15 shows how the fraction of deadlines met metric varies with nominal time and slack. From
top to bottom, the graphs’ time constraints increase, while from left to right, the graphs’ slack constraints
increase. First, let’s consider the right column of graphs, where the slack levels range from 0.5 to 1.0. The
4LS scenario is clearly the most interesting here, because for the other scenarios slack levels above 0.5 make
the scheduling feasibility sufficiently high and the predictor sensitivity sufficiently low that most tasks meet
their deadlines with even a simple strategy. However, it is important to point out that even with these high
slacks, the RANDOM strategy is often simply not sufficient to result in a large number of tasks meeting their
deadlines. This is especially true for larger tasks—consider Figure 6.15(f), where three of the five scenarios
show abysmal performance with the RANDOM strategy. Except for the 4LS scenario, the MEASURE
strategy is generally sufficient for these higher slack situations, and the prediction-based strategies do not
perform significantly better. For the 4LS scenario, it is also interesting to note that even though the slack is
only near the critical slack, 80% of the deadlines for short tasks can be met.
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Figure 6.13: Fraction of deadlines met when possible versus nominal time, 0 to 1 slack.
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Figure 6.15: Fraction of deadlines met versus nominal time and slack, several scenarios.
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It is when we consider tighter slacks that the benefit of the prediction-based strategies becomes clearer.
The left column of Figure 6.15 shows what happens when the slack is constrained to 0.0 to 0.5. Now the
prediction-based strategies generally out-perform the MEASURE strategy. In the 2CS case the RANDOM
strategy proves to be better than the MEASURE strategy, and even here there always a prediction-based
strategy that out-performs it. We can also see that the fraction of deadlines met declines as the nominal time
increases, just as we showed earlier. The prediction-based approaches clearly provide better performance
with low slacks for all nominal times.

Figure 6.16 shows the dependence of the fraction of deadlines met when possible metric on the nominal
time and the slack. The graphs in the figure are arranged identically to those in Figure 6.15—all that is
changed is the choice of metric. The main observation to make is that the prediction-based strategies, in
particular the AR(16) strategy, are able to predict, with accuracy that remains consistently high irrespective
of the nominal time and the slack level, whether the deadline will be met if the application follows their
advice.

There is very little difference between the strategies at high slacks and short nominal times, other than
that for three of the scenarios RANDOM proves to have inadequate performance. As the slack decreases,
however, the prediction-based strategies maintain their accuracy. Oddly, the difference between the different
predictors and between the predictors as a group and the MEASURE strategy appears to decline with in-
creasing nominal time. This is not an effect that we saw by looking purely at the nominal time, independent
of slack. Nonetheless, it is clear that the predictors are most beneficial, in terms of the fraction of deadlines
met when possible, for low slack situations with short nominal times.

We would expect that the degree of randomness that the prediction-based strategies can introduce, as
measured by the average number of possible hosts, grows as slack increases and nominal time decreases.
Figure 6.17 shows that this is indeed what happens. The figure also shows that the AR(16) strategy is
generally able to introduce the most additional randomness. Indeed, for 0.1 to 3 second tasks at 0.5 to 1
slacks (Figure 6.17(b)), it is able to introduce almost as much randomness as the pure RANDOM strategy in
three of the five scenarios. Again, we point out that this extra randomness comes at no cost in terms of the
application metrics, on which the prediction-based strategies consistently outperform the pure RANDOM
strategy.

6.6.6 Contention between advisors

An important concern facing measurement- or prediction-based real-time scheduling advisors is that of con-
tention between different advisors. In the design of the resource prediction-based real-time advisor system,
as described in Chapter 1, all advisors observe the same predictions of signals that characterize resource
availability (here the signal is host load, which measures CPU availability), but they do not coordinate their
scheduling decisions. In the case of advisors using the MEASURE strategy, each advisor observes the same
host load measurement. This lack of coordination helps to make measurement- or prediction-based real-
time advisors scalable. However, it is conceivable that the advisors might all decide that the same host is
most appropriate for their tasks. Those tasks would then contend for that host, possibly resulting in them all
missing their deadlines. Of course, if this should happen, the load on the host will explode and, presumably,
all the advisors would use different hosts for their next tasks. However, the advisors could all decide to use
the same hostagain. In the case of something like the MEASURE strategy, one could imagine the advisors
becoming synchronized, all choosing the host with the minimum load, beating it to death, then, for their
next tasks, all choosing the same host, the current host with the minimum load.

Two factors ameliorate the chance of this sort of disastrous advisor synchronization occurring. First,
for both kinds of strategies, scheduling requests are not likely to become synchronized or even correlated.
Recall that a particular interactive application’s tasks are generated in response to its user’s actions, which
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Figure 6.16: Fraction of deadlines met when possible versus nominal time and slack.



160 CHAPTER 6. REAL-TIME SCHEDULING ADVISOR

random

measure

mean

last

ar16

random

measure

mean

last

ar16

(a) 0.1 to 3 second tasks, 0 to 0.5 slack (b) 0.1 to 3 second tasks, 0.5 to 1.0 slack

random

measure

mean

last

ar16

random

measure

mean

last

ar16

(c) 3 to 6 second tasks, 0 to 0.5 slack (d) 3 to 6 second tasks, 0.5 to 1.0 slack

random

measure

mean

last

ar16

random

measure

mean

last

ar16

(e) 6 to 10 second tasks, 0 to 0.5 slack (f) 6 to 10 second tasks, 0.5 to 1.0 slack

Figure 6.17: Number of possible hosts versus nominal time and slack, several scenarios.
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arrive asynchronouslyafter the task initiated by the previous user action is completed. Thus, an interactive
application has only a single task outstandingat any one time, and those tasks are not initiated synchronously
with any clock, although their initiations may be correlated. If multiple interactive applications using real-
time scheduling advisors are running, each is responding to a different user, and we would expect that the
users’ actions are not synchronized. These two sources of asynchrony should help to avoid a single collision
of real-time scheduling advisors from synchronizing the advisors and resulting in a cascading chain reaction.

The second factor that limits the chance of disastrousadvisor synchronization is limited to the prediction-
based strategies. Unlike the MEASURE strategy, the prediction-based strategies can convert excess slack
into randomness as to which host a task is sent to. This source of randomness can serve to break any
synchronization that may be starting. Suppose, for example, that two advisors are working in a scenario
that includes two hosts, where one host is always appropriate, while the second host is appropriate 20% of
the time. This results in an average (expected) number of available hosts being 1.2. If the advisor chooses
randomly between the two hosts when they are both appropriate, then it will pick the second host 10%
of the time. Now suppose that the two advisors assign tasks at identical times. The chance that the two
tasks will be both be assigned to the first host is(:9)(:9) = 0:81. The probability that two consecutive sets
of tasks will have both tasks of each set assigned to the first host is(:81)2 = 0:65. For n sets of tasks,
the probability is(:81)n—it declines exponentially with the length of the sequence. If the two hosts have
roughly the same load, then the probability thateach will be included in the set of appropriate hosts when a
scheduling decision is made is0:6 for the same expected number of available hosts (1:2 = (0)(0:4)(0:4)+

(1)(0:4)(0:6)+ (1)(0:6)(0:4)+ (2)(0:6)(0:6)). In this case the probability of assigning both tasks of a set
to the same host is(0:6)(0:6) = 0:36 and the probability of assigningn consecutive tasks to the same host
is (0:36)n.

To see if these two factors prevented repeated collisions in practice, we ran testcases using four compet-
ing scheduling advisors on the two host 2MP scenario. Each client ran 8000 randomized testcases as per the
recipe in Section 6.6.2. The hosts have roughly the same load. Figure 6.18 shows the overall performance
metrics for each client’s testcases. The slacks included are from 0.0 to 1.0 and the nominal times included
are 0.1 to 10 seconds. As we can see from the figure, there was no favored client. In terms of the fraction
of deadlines met, the performance of all the scheduling strategies was similar, although RANDOM did lag
slightly. The point is that the MEASURE and prediction-based strategies were no more prone to catastrophic
synchronization than the pure RANDOM strategy. The fact that the prediction-based strategies didn’t really
do better than the MEASURE strategy here suggests that the primary factor in avoiding contention is that
task submission is not synchronized with time or between clients. In terms of the fraction of deadlines met
when possible, we can see that, as before, the prediction-based strategies are more trustworthy from the
application point of view—when they assert that a deadline can be met, it is likely to be met. Notice that
the AR(16) strategy achieves the target 95% level for all the clients. In terms of the randomness introduced
by the prediction-based strategies, we can once again see that the AR(16) strategy is able to introduce ran-
domness. Although the average number of possible hosts is small, by the reasoning presented above, it
should be sufficient to quickly desynchronize the schedulers if the task submission pattern should happen to
synchronize with time or across clients.

6.7 Conclusion

This chapter described the interface of the real-time scheduling advisor and its implementation using the
prediction-based running time advisor described in the last chapter. In addition to such prediction-based
strategies, we also considered a purely random strategy and a strategy based simply on host load measure-
ment. Because the real-time advisor operates in a shared, unreserved computing environment that it does not
control, deadlines can be missed due both to advisor error and to the whims of the computing environment.
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Figure 6.18: Scheduling results for multiple contending clients, 0 to 1 slack, 0.1 to 10 second tasks.
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In order to better understand the probability of meeting a deadline in a particular environment, and how sen-
sitive that probability is to prediction errors on the part of the advisor, we constructed an analytic model that
helped us gain an intuition for real-time scheduling advisor performance, and to guide our understanding of
the empirical evaluation of the advisor.

The core of our evaluation was based on measuring how the different strategies actually worked in
interesting real (albeit reconstructed) environments. The main conclusion of the evaluation was that the
prediction-based strategies, particularly the AR(16)-based strategy, are superior to purely measurement-
based and random strategies. The AR(16)-based strategy is able to increase the probability that a deadline
will be met over that of the measurement-based strategy. The increase is particularly strong near the critical
slack, where deadlines are just able to be met in expectation. Another observation is that, in contrast to
the random and measurement-based strategies, the prediction-based strategies can tell the application when
they believe the deadline can be met using the host they recommend. AR(16) is the most trustworthy
in this respect. When the AR(16)-based strategy tells the application that the deadline can be met, the
chances it will actually be met are very high, and, in most cases, the same as the confidence level that the
application requested. Finally, unlike the measure-based strategy, the prediction-based strategies are able
to introduce significant randomness into their scheduling decisions, which decreases the chance that two
or more advisors will disastrously synchronize their actions. Given that all of these benefits are purchased
at only a tiny overhead over the measure-based strategy, the case for using the AR(16)-based strategy in
real-time scheduling advisors is clear.
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Chapter 7

Conclusion

This dissertation has introduced the concept of real-time scheduling advisors and has argued for basing them
on explicit resource-oriented prediction, specifically on the prediction of resource signals. To support the
utility of such advisors, we identified the characteristics of a class of applications, distributed interactive ap-
plications, which can benefit from them, and provided examples of applications in this class. To support bas-
ing real-time scheduling advisors on the explicit prediction of resource signals, we showed that, in contrast
to designs which are based on application-oriented prediction, a resource-oriented design is more scalable,
makes decisions based on more up-to-date information, can support other forms of adaptation advisors, and
can easily leverage advances in statistical prediction techniques. However, unlike the application-oriented
approach, the resource-oriented approach produces and uses resource availability information that exists at
considerable remove from the performance of the application. The core of the dissertation shows that it is
nonetheless possible to span this gap.

To show that an effective real-time scheduling advisor can be based on the prediction of resource signals,
we designed, implemented, and evaluated a prototype system that uses host load prediction based on high-
order autoregressive time series models to schedule compute-bound tasks. The design of that system is
illustrated in Figure 7.1. We evaluatedeach layer of the design. We found that the system provides effective
scheduling advice to applications. Furthermore, because the system is resource-oriented and because of the
careful compartmentalization of its functionality, it is not merely a real-time scheduling advisor, but can also
provide several other kinds of useful information to applications, other forms of adaptation advisors, and
other middleware. These include statistical estimates (confidence intervals) for the running time of tasks or
for available time on the processor, predictions of the host load signal along with estimates of prediction
error, and raw measurements of the host load signal, including histories.

We have also introduced a resource signal methodology for attacking the problem of predicting the
availability of a new resource, as well as a toolkit to help carry out the methodology. The ultimate result of
using the methodology and the toolkit is a high performance on-line prediction system for the resource. We
applied the methodology and the toolkit to determine how to predict the host load signal. The resulting host
load prediction system is used as the basis of the real-time scheduling advisor of Figure 7.1 and has also
been incorporated in the CMU Remos resource measurement system [82], and into BBN’s QuO distributed
object quality of service framework [145].

In the remainder of this chapter, we summarize the steps and contributions of this dissertation, discuss
related work, and show how we intend to extend the framework of Figure 7.1 in the future.
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Host Load Measurement System

Host Load Prediction System

Running Time Advisor
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Application
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(confidence interval)

Nominal time, slack,
confidence, host list

Host, running time
estimate

Daemon
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Figure 7.1: The structure of the prototype host load prediction-based real-time scheduling advisor (identical
to Figure 1.6).

7.1 Summary and contributions

The following list summarizes the work described in this dissertation and the insights and contributions that
it has produced.

� We identified the class of distributed interactive applications. In these applications, computation takes
the form of tasks that are initiated by user action, which occurs aperiodically. Tasks are executed
sequentially because they provide feedback that determines the user’s next action. Because of this
interactivity, consistent responsiveness is paramount. This requirement can be expressed in the form
of a real-time deadline on each task’s running time. However, the applications are resilient in the face
of missed deadlines. Furthermore, the applications have been built with distributed operation in mind.
When a task arrives, a distributed interactive application knows its resource demands and its deadline,
and can choose which host to run it. In addition, it may also be able to adapt the resource demands of
the task by changing the computation it performs. (Chapter 1)

� We provided four examples of distributed interactive applications: QuakeViz, OpenMap, Acoustic
CAD, and an image editor. We measured the CPU demands of representative QuakeViz applications,
which we use as the basis of our randomized evaluations in this dissertation. (Chapter 1)

� We focused on running distributed interactive applications on typical shared, unreserved distributed
computing environments. These environments do not provide resource reservations, admissions con-
trol, or a global notion of priority. Because of this lack of infrastructure, which seems likely to persist
into the foreseeable future, traditional distributed soft real-time systems can not satisfy the needs of
these applications. (Chapter 1)

� We introduced the concept of real-time scheduling advisors. A real-time scheduling advisor is a mid-
dleware service that advises the application as to the host where a task’s deadline is most likely to
be met. The advice may be supplemented with additional information, such as the expected running
time of the task. However, it is strictly best-effort. In essence, the real-time scheduling advisor guides
the application in using its adaptation mechanisms (the choice of host, and perhaps also the ability to
change resource demands) to help the task meet its deadline. The combination of these semantics, the
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characteristics of distributed interactive applications, and the shared, unreserved distributed comput-
ing environments we target defines the scheduling problem that real-time scheduling advisors solve.
(Chapter 1)

� We explored the design space for real-time scheduling advisors and concluded that the prediction of
resource availability, either implicit or explicit, is the basis of most designs. Explicit prediction ap-
proaches can furthermore be divided into application-oriented approaches, in which the performance
of the application’s tasks are probes on resource availability, and resource-oriented approaches, in
which resources are monitored separately from the application. (Chapter 1)

� We identified the tradeoffs between the application-oriented approach and the resource-oriented ap-
proach. The resource-oriented approach is more scalable, makes decisions based on more up-to-date
information, can support other forms of adaptation advisors, and can easily leverage advances in statis-
tical prediction techniques. However, unlike the application-oriented approach, the resource-oriented
approach produces and uses resource availability information that exists at considerable remove from
the performance of the application. If this gap between the resources and the application can be
spanned, then the resource-oriented approach is preferable. The core of the thesis shows that it can
indeed be spanned. (Chapter 1)

� We explored the performance of the application-oriented approach, developing a predictive algorithm
that provides near-optimal performance in simulation for a simplified version of the scheduling prob-
lem. The disadvantage of the application-oriented approach is not in its performance, but in its scala-
bility problems. (Appendix A)

� We defined the notion of a resource signal, which is a scalar-valued, discrete-time signal that correlates
with the availability of a resource. The resource we focused on in the thesis is CPU time. The resource
signal we used is host load, specifically, the Digital Unix five second load average. (Chapter 1)

� We designed the framework for a real-time scheduling advisor (Figure 7.1) that is based on the pre-
diction of host load signals. The core of the thesis fills out the structure shown in the figure. The
framework can be extended to include other resources and other forms of advisors, as we describe
later in this chapter. (Chapter 1)

� We developed a methodology for attacking the problem of predicting resource availability. The main
idea behind the methodology is to transform a specific resource prediction problem into a general time
series prediction problem as early as possible, and then to apply the substantial statistical machinery
that already exists to address such problems. We applied this methodology to develop the host load
measurement and prediction systems shown in Figure 7.1. Later in this chapter, we show how we are
beginning to apply it to predicting the bandwidth of network connections. (Chapter 2)

� We designed, implemented, and evaluated the RPS Toolkit, which helps to carry out the latter steps
of the methodology. The early steps of the methodology, which are done off-line and which are
human-intensive, are well served with existing tools. The latter steps, which are concerned with
large scale, machine-intensive evaluation, and building efficient on-line prediction systems, were,
however, not well served. RPS improves this situation greatly. RPS consists of sensor libraries, a
time series prediction library, a communication library, prediction components, and a parallelized
evaluation system. The prediction components are composed at run-time to form on-line resource
prediction systems. The overheads of these systems, when run at the measurement rates we typically
expect to use, are miniscule. Furthermore, they are capable of sustainingmeasurement rates 2-3 orders
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of magnitude higher than we typically need. RPS-based prediction systems have been incorporated
into the CMU Remos [82] and BBN QuO [145] systems. (Chapter 2)

� We identified host load, specifically, the Digital Unix five second load average, as being an appropriate
resource signal for CPU availability. We determined that 1 Hz was the appropriate rate at which to
sample this signal. (Chapter 3)

� At two different times of the year, we collected week-long, 1 Hz traces of host load signals on a large
number of different machines that we classify as production and research cluster machines, compute
servers, or desktop workstations. These traces form the basis of our studies and evaluations in this
dissertation. (Chapter 3)

� We developed a technique called load trace playback which recreates a facsimile of the workload that
a load trace measured. We used this technique to evaluate the running time and real-time scheduling
advisors in Figure 7.1. We have also provided the playback tool and our collection of load traces to
the research community as a way of producing realistic workloads. (Chapter 5).

� We performed a detailed statistical study of the traces to determine the prospects for predicting host
load signals. In particular, we focused on those aspects of the signal that are pertinent to prediction.
This is the first study of this kind of which we are aware. We found that host load signals exhibit
substantial autocorrelation structure, far beyond that which one would expect from merely the expo-
nential smoothing the operating system applies to the signal. This suggested that linear models, which
attempt to model such autocorrelation structures parsimoniously, might be appropriate for host load
prediction. (Chapter 3)

� We found that the host load signal is self-similar. This new result suggested that more complex
and expensive linear models, such as ARFIMA models, might be required to predict these signals.
(Chapter 3).

� We found that the host load signal exhibits epochal behavior—the signal remains stationary for an
extended period of time, and then abruptly transitions to another stationary regime. This new result
argued against linear time series models because even those that explicitly model nonstationarity
cannot model such abrupt transitions. Furthermore, if linear models could be used within an epoch, it
might be necessary to refit such models at epoch transitions. (Chapter 3)

� Having decided, with reservations, that linear models might be appropriate for host load prediction, we
performed a large scale, randomized evaluation based on the traces to determine which kind of linear
model, if any, was most appropriate. The study was unique because of its large scale, randomized
approach, fine grain prediction, and focus on more sophisticated models. The surprising conclusion
is that not only are linear models appropriate, but that relatively simple linear models are sufficient
to provide useful predictions as far as 30 seconds into the future. We concluded that autoregressive
models of order 16 or better (AR(16)) are appropriate for host load prediction. More sophisticated
models have similar predictive power while requiring considerable more CPU time to use. (Chapter 4)

� We implemented and evaluated the performance of an RPS-based host load prediction system that
can be configured to use any predictive model. We use this system to evaluate the running time and
real-time scheduling advisors of Figure 7.1. In addition to AR(16) models, we also used the LAST
model (last sample as the prediction of all future samples), and MEAN model (long-term average of
the signal as the prediction of all future samples) in our evaluations. For each of these models, the
host load prediction system has negligible overhead. (Chapters 4, 2)
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� We developed an algorithm to transform from host load predictions and a task’s CPU demands to
a confidence interval for the task’s running time on the host. This forms the basis for the running
time advisor shown in Figure 7.1. The transformation effectively models the Unix scheduler from the
perspective of a new task. The host load predictions include estimates of prediction quality, namely the
covariance matrix of the prediction errors, which form the basis of computing the confidence interval.
In addition, for small tasks, it is vital to model the priority boost that the scheduler provides processes
that have just finished an I/O operation such as returning from a read on a socket. We introduced a
pre-processing step called load discounting to account for this effect. (Chapter 5)

� We evaluated the running time advisor by running a large number of randomized testcases on hosts
whose workloads were played back from the load traces we collected. The main result is that our sys-
tem, using a strong host load predictor such as the AR(16) predictor, does indeed compute reasonable
and useful confidence intervals for the running time of tasks. In comparison to LAST and MEAN,
the benefits of AR(16) depend on the how heavily loaded the host is and on the nominal time of the
task. On heavily loaded hosts, AR(16) models produce appropriately wider confidence intervals that
correctly capture the increased variability in running time. On lightly loaded hosts, AR(16) models
produce narrower confidence intervals that still cover the desired fraction of tasks. (Chapter 5)

� We developed an algorithm to select an appropriate host for meeting a task’s deadline given confidence
intervals for the running time of the task on different hosts. The algorithm attempts to introduce as
much randomness as possible into the host selection process while still choosing a host on which the
deadline will be met with the user’s specified probability. This algorithm is the basis for the real-time
scheduling advisor component of Figure 7.1. (Chapter 6)

� We developed an analytic model for the performance of prediction-based real-time scheduling which
shows how scheduling feasibility and predictor sensitivity depend on different parameters of the set of
hosts to which tasks can be scheduled (the scenario). This model provides a framework for accounting
for how deadlines are missed, and helps us explain the results of the empirical evaluation of our real-
time scheduling advisor. (Chapter 6)

� We evaluated the performance of the real-time scheduling advisor by running a large number of ran-
domized testcases on hosts whose workloads were played back from the load traces we collected.
We compared the advisor to two other approaches: selecting a host at random, and selecting a host
whose host load was measured to be the lowest. The measurement-based approach performed con-
siderably better than the random approach in terms of the probability that a deadline would be met.
In comparison to measurement, the prediction-based real-time scheduling advisor always performed
at least as well by this metric, and considerably better in resource constrained situations. When there
are just sufficient resources to meet a deadline, the prediction-based advisor significantly increases
the probability that it will be met. In addition, the prediction-based advisor informs the application
of the confidence interval for the task’s running time on the host it has chosen. This means that
the application knows, with considerable confidence, whether the deadline will be metbeforeit runs
the task, enabling it to adapt the task’s CPU demands or deadline, if necessary. This is a capability
that does not exist with the purely measurement-based or random scheduling approaches. Finally,
the prediction-based approach is able to introduce considerable randomness into its scheduling deci-
sions while providing the application with good performance. This means that it is much less likely
to interact badly with other advisors running in the system. The additional benefits over the purely
measurement-based approach come at a miniscule additional cost given the simple and cheap AR(16)
model and the low overheads of RPS. (Chapter 6)
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� The design, implementation, performance, and efficiency of the prototype host load prediction-based
real-time scheduling advisor show that it is feasible to base real-time scheduling advisors on the
explicit prediction of resource signals. Furthermore, we have shown that these advisors can provide a
useful service to distributed interactive applications.

7.2 Related work

The work described in this dissertation is related to work in a number of other areas.

7.2.1 Applications

There is considerable interest in distributed interactive applications for visualizing and steering scientific
computations, accessing replicated remote data, manipulating media, and playing games. These kinds of
applications must provide responsive behavior for their users, a requirement that can easily be expressed as
deadlines on their tasks. The goal of the thesis work is to provide services upon which developers of these
applications can rely to provide responsiveness. The introductory chapter introduced four applications: the
Dv framework for distributed scientific visualizations, BBN’s OpenMap framework for presenting carto-
graphical information, Acoustic CAD, and image editing.

Scientific visualization involves the useful display of large, complex datasets, while computational steer-
ing lets the user use this display to focus a running physical simulation on areas of interest [58]. For
example, the CAVE project [36] involves connecting immersive virtual environment simulators to remote
physical simulations. CAVE has also proven to be a good environment for scientific and engineering collab-
oration [110]. There is increasing interest in developing distributed versions of such systems. The CAVE
researchers have run visualizations over the wide area on dedicated machines and networks. Knittel pre-
sented an algorithm to parallelize volume visualization on a dedicated workstation cluster [71]. The goal of
the Dv project is to build a framework for high performance scientific visualization on common shared, un-
reserved distributed computing environments [3]. Cumulus [52] is a library and run-time system for adding
visualization and computational steering to simulations based on iterative operations on dense matrices. The
Acoustic CAD application we outlined in the first chapter is effectively a computational steering application
which implements auralization [14] through physical simulation instead of geometric approximation. Tele-
operation is related to computational steering, except that the remote physical simulation is replaced with an
actual physical system. Tele-operation systems such as the one discussed in [94], involve operating robots
by remote control over conventional networks.

Popular information sources are often replicated on multiple servers. This introduces a challenge to the
client: which server will provide the best performance? This common problem on the World Wide Web
has seen considerable research and proposals [102, 120, 93]. Outside of the Web context, another example
is BBN’s OpenMap framework [13, 70], which integrates cartographic information from multiple sources,
each of which may be replicated. The problem is obviously very similar to the problem of choosing which
host is most appropriate to run a real-time task, which this dissertation addresses. The primary difference
is that the servers are usually distributed over a wide area, making communication performance much more
important.

While most current distributed multimedia systems involve communicating and synchronizing different
audio and video streams, manipulating media on a distributed system in computationally significant ways
is becoming increasingly important. For example, medical imaging systems [107], involve acquiring, pro-
cessing, storing, and making medical images easily available to physicians no matter where they are. Next
generation stream-oriented systems like the VuSystem [79] filter the streams in computationally intensive
ways, such as extracting titling text from video streams. Image editing programs such as Photoshop [2]
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are also ripe for distributed systems because of the increasingly huge size of photographic images, as we
discussed in the introductory chapter.

Games are becoming increasingly interesting applications for distributed systems. For example, the De-
partment of Defense’s DIS effort is trying to create large scale (100,000 users or more) simulated war games
by connecting different kinds of simulators located all over the world [35]. At least three companies, Silicon
Graphics, Zombie Entertainment, and Military Simulations, Inc., are working on extending the emerging
DIS technology for civilian games, with an example of a DIS-based game being shown at SIGGRAPH ’96.
In addition to multiplayer games, we expect that single player games will increasingly rely on computa-
tionally intensive physical simulations for realism. For example, the use of physically based acoustics and
music [4, 64, 126] in games or design applications such as Acoustic CAD may not be far off.

7.2.2 Remote execution

The purpose of our work is to decide which host is best for a given task. We assume that the application can
run a task on more than one host. This requires a remote execution facility, of which many examples exist.
Examples of remote execution facilities include remote procedure call systems, distributed shared memory
mechanisms, and distributed object systems. Remote procedure call systems [20, 17], such as the one
specified by the DCE [131] standard, provide a procedure call-like abstraction over network communication
with a remote server. Distributed object systems [101, 28], such as CORBA [134, 98, 123], DCOM [26] and
Java RMI [129], extend the RPC abstraction to objects by allowing the association of state with a group of
procedures. Distributed shared memory systems such as Tempest [111], Shasta [116], and TreadMarks [37]
provide the appearance of a global address space shared by some number of private memory hosts. This is
combined with a multithreading model where threads that may be assigned to different hosts communicate
via shared variables. Although today’s common remote execution facilities have relatively high overheads
in the millisecond range [54], our experience is that this is due mostly to the latency of network protocol
stacks and we expect that this latency will improve. With microsecond range application-to-application
communication latencies such as the PAPERS network [62] can provide, the overhead of remote execution
in a system like CORBA or Java RMI could be within a couple of orders of magnitude of the overhead
of a local call. For example, the marshalling/unmarshalling and dispatch overhead of a call in our LDOS
distributed object system is only about 100 times greater than that of a C++ virtual function call. Such
improvements will drastically increase the fraction of tasks in a typical program that could be profitably
executed remotely.

7.2.3 Dynamic load balancing

Dynamic load balancing involves assigning tasks to hosts at run-time or moving tasks from one host to
another at run-time to maximize some performance metric. Common performance metrics include the
throughput of the system, the mean execution time of tasks, or the actual running time of an application. In
contrast, the goal of our work is to maximize the probability that an individual task will meet its deadline.
However, it is important to note that the running time advisor component of our work can be used in pursuit
of other goals, such as those of load balancing. There are both operating system-centric and application-
centric approaches to dynamic load balancing. Our work is wholehearted application-centric—we predict
the behavior of the rest of the system to improve the performance of one specific application. However, we
share an important question with both forms of dynamic load balancing: how can an individual host in a
distributed system be aware and predict the behavior of the system as a whole in a scalable, practical way?

The goal of operating system-centric dynamic load balancing is usually to maximize the throughput
of the distributed system as a whole. The idea is to schedule independent, sequential tasks on a group of
hosts such that each host has approximately the same load. A distinction is sometimes drawn between load
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sharing [27] (also called load distribution and load leveling), which offers only a rough approximation to
equalizing load across the hosts, and load balancing, which attempts more precision [39]. In either case,
the distributed operating system is comprised of host-local schedulers which interact to implement transfer
(should task be moved?) and location (where should task go?) policies [38]. In our work, we assume that
the host-local schedulers act independently and that we have no control over their decisions. We attempt
to predict how they will respond to the task that we desire to introduce. Furthermore, we are unconcerned
about balancing load.

Early work in operating system-centric dynamic load balancing assumed simple, analytically tractable
distributions for job length and other properties. Under these assumptions, simple heuristics and initial
placement were found to be adequate [40, 39]. However, measurement studies [77] have cast doubt on these
assumptions, and more recent work [60] argues strongly for process migration. This is an important result
for our work, since it argues for changing the mapping of the application as it runs, which we do on a task
by task basis.

The goal of application-centric dynamic load balancing is to minimize the execution time of a single,
typically parallel application. For example, in data parallel applications built in DOME [6], neighboring
hosts periodically exchange measurements of execution time and redistribute their data accordingly. The
system described in [124] uses a global approach where one centralized agent makes load balancing deci-
sions based on execution times reported by all of the hosts. Jade [113] load balances unfolding task parallel
computations by dynamically mapping task graph nodes to hosts to minimize communication and overall
execution time. In contrast, our work dynamically maps sequential real-time tasks. However, it important to
point out that the running time advisor component of Figure 7.1 is not specific to real-time tasks and could
be used by an application-centric dynamic load balancer.

To be scalable, a dynamic load balancing system pursues its global policy by making local decisions
based on limited or outdated knowledge of the system as a whole. Based on this limited knowledge, a
local scheduler estimates the current state of the system and makes its decisions based on that estimate. By
exploiting subtle properties of specific distributed systems or application workloads, some systems can put
their limited knowledge to better use. In essence, this is what we do for a specific class of applications.
One example of exploiting such properties is Hailperin’s thesis [59], which takes advantage of the statistical
periodicity of his sensor-driven applications. In contrast our applications present aperiodically arriving
tasks. In [122], the authors present location policies that adapt to system load to avoid instability. Mehra and
Wah [88] use comparator neural networks to predict current workload indices on remote hosts using outdated
information about resource utilization. Mehra’s thesis [87] describes a whole load balancing system based
on automated strategy learning using comparator neural networks. We have also found some success with a
neural networks approach (see Appendix A).

7.2.4 Distributed soft real-time systems

A real-time system allows a programmer to specify a deadline for the execution of a one-time or periodic
task. In this sense, a real-time scheduling advisor is a real-time system. However, while real-time systems
typically provide some form of guarantees, our work is strictly best effort. Furthermore, most real-time
systems require control of the entire computing environment, either via resource reservation or priority-
based scheduling with globally observed priorities. In contrast, we control only the mapping of individual
tasks to hosts. As far as we are aware, the idea of an entirely application-level real-time scheduling advisor
that provides scheduling advice on a best-effort basis is unique to this dissertation. We described the idea of
such a tool and argued for basing it on prediction in an earlier document [29].

A hard real-time system is one which is only correct when every task in the system always meets its
deadlines. These systems are necessary for some applications, but are very difficult to build, place many
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constraints on the hardware, and typically require knowledge of all tasks at design time. The rate-monotonic
scheduling and earliest deadline first scheduling algorithms [81] can be used to produce feasible schedules
for fixed sets of tasks with known characteristics. More recent work has extended queueing theory to reason
about real-time tasks in queueing and queueing network systems [75, 76]. Distributed hard real-time systems
have been built (eg, MARS [119]), but these tend to rely on specialized hardware. In contrast, our work
offers only a best effort service, but the tasks and deadlines are discovered only as the program is executed.

A soft real-time system is one where it is permissible for some tasks to miss their deadlines. What
it means to miss a deadline depends on the system. A common approach is to generalize a deadline into
a utility function of the duration since the task arrival time [68, 67], or as utility function that includes
timeliness as well as additional independent variables [114]. The system then attempts to maximize the
collective or individual utilities of tasks in the system. The functional form of a hard deadline in this kind
of system is a unit step function. While the general case of this scheduling/optimization problem is quite
complex, by constraining the form of the utility function, tractable specialized scheduling algorithms can be
developed.

A common underlying mechanism in soft real-time is a fixed priority scheduler combined with priority
inheritance to address priority inversion. In a fixed priority scheduler, each task is assigned a fixed priority
and the scheduler always runs the highest priority task that is ready to run. Another common mechanism is
that of resource reservation and admission control, such as in resource kernels [108]. Unfortunately, very
few general purpose operating systems actually implement fixed priority scheduling, or provide resource
reservations and admission control. In contrast, we have a very simple performance metric (the fraction of
tasks that meet their deadlines) and our work does not require specific kinds of schedulers or any real control
over the system other than a remote execution facility and the ability to measure.

Achieving soft real-time goals in a distributed system is very difficult since the system is much larger
and more complex. One approach is to create a notion of a global priority, require that all resources in
the system be scheduled by fixed priority schedulers that respect the fixed priority, and require that all
communication delays be bounded. This is the approach taken in [139] and in proposals to the Real-time
CORBA standardization effort [97, 34]. Another approach is to implement resource schedulers that provide
reservation mechanisms, such as those in SONIC [104] or the Resource Kernel [108], and then rely on
end-to-end resource reservations. In contrast, we make no attempt to control the system to meet our goals.
Rather, we monitor and predict the system to adapt the application’s behavior (the mapping of tasks to hosts)
to the system in order to meet our deadlines.

As in dynamic load-balancing, a key challenge in distributed soft real-time systems is how to scalably
coordinate the actions of many local schedulers. Indeed, a distributed real-time system can be viewed
as a load-sharing system with real-time tasks [74]. If a task is submitted at a host where it cannot meet its
deadline, we would like to move it to a host where it is likely to be able to. However, that host’s knowledge of
other hosts is limited and out of date. Bestavros and Spartiotis suggest a scheme in which simple stochastic
models of other hosts’ load conditions are formed based on infrequent, opportunistic information exchanges
and task mappings are chosen probabilistically from among hosts that qualifyaccording to the models [19].
Bestavros extends this work by arguing that load balancing is actually detrimental to real-time performance
and develops an alternative which intentionally tries to keep loads out of balance and makes task mapping
decisions based on the underlying load profile it is trying to maintain [18]. We suspect that Bestavros has
more success with simple stochastic models than we do (in Appendix A) because he is modeling the remote
schedulers that are a part of his system and are therefore a known quantity. In addition to load balancing,
Hailperin’s thesis [59] also takes advantage of the statistical periodicity of his sensor-driven applications
to help place and migrate objects so that method invocations meet their deadlines. We must deal with
aperiodically arriving tasks.
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7.2.5 Quality of service

Quality of service, or QoS, is a fairly generic, but nonetheless widely used term to describe providing a
more predictable environment for applications. In this sense, our work can be seen as a QoS service for
the specific class of distributed interactive applications. In the networking community, QoS has meant
providing deterministic and statistical guarantees of the bandwidth and latency of connections for media
applications [44, 73]. Tenet [45], RSVP [24] and the ATM CBR and VBR service classes are examples of
network QoS systems that are based on reservations and admission control.

Quality of service also includes the notion of adaptive applications [95], or application-level schedul-
ing [16]. The idea is that the application can modulate its behavior in response to changing resource avail-
ability in order to provide graceful degradation of the user experience. Our work relies on one such adap-
tation mechanism: the ability to choose which host will run a task. In addition, the real-time scheduling
advisor can provide estimates of task running time to the application, which enables it to change its resource
demands via other adaptation mechanisms.

Recently, interest has focused on how to expose network and host QoS features to the application pro-
grammer in an understandable fashion. For example, the QuO project at BBN [145] is considering how to
express QoS requirements and guarantees for distributed objects. The challenge is in translating between
the object level and the network and host levels and in providing a clean way for the programmer to identify
different regions of operation and when to switch between them. QuO’s adaptation mechanism is based on
routing and translating CORBA method invocations. We have incorporated our host load prediction system
in QuO. Another example of translation and adaptation involves the Qual language and QosME environment
developed at Columbia [47]. Qual is a language for expressing the quality requirements of program mod-
ules. These specifications can then be compiled into a monitoring agent which switches between different
regions of operation. Compilable specification languages to support binding modules and services have also
been developed in the parallel computing community. DURRA [10] is a well known example. In our work,
the deadline placed on the running time of a task can be seen as a QoS specification, and the choice of host
is an adaptation mechanism.

The distributed soft real-time systems community is exploring QoS as a way of extending the notion of
a utility function on timeliness with other dimensions. For example, utility functions based on precision,
accuracy, and timeliness have been suggested as a more appropriate abstraction [114]. The idea is to expose
the fact that many applications can tradeoff between the tardiness of a computation and the quality of its
results. The Q-RAM model [109] extends these ideas to arbitrary dimensions and provides a way to reconcile
the QoS tradeoffs of a group of applications to maximize a global quality metric. Amaranth [5] incorporates
Q-RAM, real-time queueing theory, and application adaptation to provide probabilistic QoS guarantees.

In mobile computing the QoS challenge is to detect changing wireless network conditions quickly and
adapt to them gracefully. For example, the Odyssey system [95] provides the application with typed data
streams (eg, video) and switches between different quality levels (data rates) as it detects changing available
network bandwidth. When quality strays outside of the range that the application registered initially, an
upcall is made to the application, which decides the course of action.

7.2.6 Resource measurement and prediction systems

RPS is a toolkit for building on-line resource measurement and prediction systems [32]. Several other
resource measurement systems also exist, one of which is also a prediction system. An essential prerequisite
for our work is the ability to sample the resource signals in a distributed computing environment. In addition
the RPS’s sensor libraries, these other resource measurement systems can also produce measurement streams
that RPS-based systems can use.

Remos [82] is an interface by which applications can query for information about the network and the
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hosts attached to it. The answers to application queries are in the form of graphs that reflect the logical
topology of the network. The graphs are annotated with dynamic information such as bandwidth. Appli-
cations can also pose queries about the bandwidth and latency of flows (ie, network connections) through
a graph. The current Remos implementation integrates information about local area networks collected via
SNMP with information about wide area networks collected by measuring the performance of small data
transfers (benchmarking) to answer application queries [89]. The RPS-based host load prediction system
described in this dissertation provides host measurements and predictions for Remos. RPS’s network flow
bandwidth sensor, described in Chapter 2, is based on Remos flow queries. We are currently integrating RPS
more deeply with Remos with the goal of providing prediction services for arbitrary resource signals.

Topology-d [99] is another example of a network measurement system that can provide measurement
streams which could be converted to prediction streams via RPS-based systems. Like Remos, Topology-d
is based on the notion of logical topologies. However, it infers them differently. SPAND [120] passively
observes application traffic in order to evaluate network performance. Bolliger, et al developed software to
monitor the performance of TCP connections at the packet level [22].

The Network Weather Service [142, 141, 140] (NWS) provides measurements of network bandwidth
and latency, as well as of host load. On the host side, NWS includes a unique sensor that incorporates both
the load average signal, which measures the contention for the processor, and the output from the Unix
vmstat utility, which measures the utilization of the processor. The system monitors how welleach signal
correlates with the running time of a sample process and then dynamically chooses the better signal. On the
network side, NWS is based on benchmarking.

The Network Weather Service is the only other example of an on-line resource prediction system we are
aware of. NWS can use windowed mean, median, and AR filters to predict the network and host signals
that it produces. RPS’s repertoire of models is considerably larger. NWS is a production system that tries
to provide a ubiquitous resource prediction service for metacomputing. In contrast, the aim of RPS is to be
a toolkit for constructing such systems and others. The RPS user can commit to as little or as much of RPS
as is desired. We believe NWS and RPS are complementary. For example, RPS-based systems could use
NWS sensors, or NWS could use RPS’s predictive models.

Interactive data analysis tools such as Matlab [86, 85] and S-Plus [84] provide many of the statistical
and signal processing procedures needed to study resource signals and to find appropriate predictive models.
Ideally, large scale, randomized evaluations of such candidate models are then needed. The RPS-based
parallelized evaluation system we used in this thesis helps to efficiently carry out such studies.

7.2.7 Workload characterization

Considerable effort has gone into characterizing workloads of hosts in distributed systems. However, the
study described in Chapter 3 ( [30]) is the first study we are aware of that explores the behavior of the
Unix load average at fine timescales and its implications for prediction. It is also the first to discover that
the host load signal is self-similar and that it displays epochal behavior. Wolski, et al have confirmed the
self-similarity result [141].

Almost all prior work has been from the perspective of operating system-centric dynamic load balancing
and sharing, as described above. The main issue in this context is the distribution of job sizes and its impli-
cations for process migration. Early measurements suggested that job sizes were exponentially distributed,
which implied that process migration was unnecessary [40]. This assumption continued to be used despite
a measurement study by Leland, et al, who found that the distribution actually followed a power law [77].
It was only recently that this result was confirmed and its implications fully explored [60]. An important
implication for our work is that power law distributions suggest that process migration is beneficial, which
we certainly do on a task by task basis. That job size follows a heavy-tailed distribution helps to explain the
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self-similarity of the host load signal.
Mutka and Livny’s study [92] is perhaps closest to the work of Chapter 3. They studied workstation

availability as a binary function of load average and other measures. The point was to determine how much
idle CPU time could be reclaimed by the Condor system [80], and to what extent the intervals during which
Condor could appropriate the CPU could be predicted. The authors developed a simple Markovian model
for their on-off notion of CPU availability which provided a certain degree of predictability. In contrast, our
work observes a continuous measure of CPU contention in order to estimate the slowdown a task will likely
encounter on it.

There has been considerable work in characterizing network workloads. This work has largely been
focused on finding appropriate, analytically tractable models for queueing analysis, and on models to gen-
erate realistic network traffic for simulation work. Interestingly, just like the load balancing community,
the networking community also made the mistake of initially choosing an analytically convenient models
(Poisson arrivals) that ultimately proved to be utterly wrong [103]. In general, the importance of self-
similarity [78, 137, 138] and multifractal properties [43] in local area and wide area network traffic has
become increasingly clear. The existence of these properties meant that network switches needed much
deeper buffers to handle traffic bursts than previous analytic work had suggested. They have also resulted
in new models to generate traffic for simulation work [137, 112]. However, at this point, their implications
for networkpredictionare unclear. On a bright note, Balakrishnan, et al’s study [8] of traffic to an Olympics
web site did find performance correlations that could be beneficial to prediction.

The difficulties that both the load balancing and networkingcommunities have had in finding appropriate
workload characterizations pushed us in the direction of using real workloads to evaluate our system. The
host load trace playback technique we developed is in the spirit of trace modulation, a technique that has
been very useful in the mobile networking community [96].

Bassingthwaighte, et al [11] provide a good intuitive introduction to self-similarity and Beran [15] pro-
vides a good introduction to long-range dependence.

7.2.8 Studies of resource prediction

Although there has been a vast amount of work on studyingand modeling workloads, which we have touched
on in the previous section, very little of this work has focused on prediction from the point of view of
applications. This is changing as application developers increasingly target complex, shared distributed
systems and research continues into building shared computational grids [48].

The earliest work on predicting host load is that of Samadani and Kalthofen [115]. They found that small
ARIMA models were preferable to single-pointpredictors and Bayesian predictors for predicting load. Their
empirical study concentrated on coarse grain prediction (one minute sampling interval) of four traces that
measured load as the number of non-idle processes shown by the Unix “ps” command. In contrast, we
studied finer grain (one second sampling interval) prediction of the Digital Unix five-second load average
on a much larger set of machines using higher order models as well as the ARFIMA class of models.
Additionally, our study was randomized with respect to models instead of using the Box-Jenkins heuristic
identification procedure. Finally, we reached a different conclusion for our regime, namely that AR models
are sufficient.

Wolski, et al have used the Network Weather Service (described above) to study the prediction of net-
work bandwidth and latency [140] and CPU availability [141]. The work on CPU availability, which is
contemporaneous with ours [31], used windowed mean, median, and AR filters to predict various measures
of CPU load, including the load average. Wolski, et al’s finding that simple models such as AR models
worked well agrees with our results. Our study furthers this shared result by showing that more sophisti-
cated predictive models are not necessary. One remarkable finding of Wolski, et al’s study was that, in terms
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of predicting the running time of a probe task using a host load signal (their sensor is different from ours),
the prediction error was actually significantly less than the measurement error. We have also found that
translating from a host load signal to a running time estimate is a surprisingly difficult task. The implication
seems to be that we need more or better measures of CPU availability.

The Network Weather Service was first applied to predict the bandwidth and latency of network con-
nections, using windowed mean, median, and AR filters [140]. The results seem somewhat mixed. On the
one hand, the predictive models seem to be very useful in denoising the latency signal. On the other hand,
the mean square error levels produced by predicting bandwidth are in many cases not significantly lower
than the raw variance of the signal. We have found similar results in a small study of network bandwidth
prediction, reported in Section 7.3. There is plenty of work left to be done in understanding and predicting
network bandwidth. It is important to note that even if the predictability of a resource signal is limited, a
predictive model is extremely useful because it can characterizing the signal’s variability.

In addition to Wolksi, et al’s work, some other results have been reported in modeling network traffic
using linear time series models. Groschwitz and Polyzos attempted to model the long-term growth of traffic
volume on the NSFNet backbone using ARIMA models [57]. Basu, et al explored the statistics of modeling
shorter term traffic using ARIMA models but did not use them to predict behavior [12].

The AR, MA, ARMA, and ARIMA models have long histories dating back to the 19th century. Box,
et al [23] is the standard reference and Brockwell and Davis[25] provide a useful example-driven approach.
ARFIMA models are a relatively recent innovation [63, 55].

7.2.9 Application-level scheduling

The running time and real-time scheduling advisors support a form of application-level scheduling [16], in
which applications schedule themselves, adapting to the availability of resources. This dissertation is the
first attempt to implement application-level real-time scheduling of which we are aware. Other work has
focused on throughput-oriented parallel applications such as gene sequencing on metacomputers [127].

In effect, our running time advisor estimates the amount of contention that a task is likely to encounter
when run on a particular host. The estimate includes the variability of this contention. Figueira and Berman
have studied how to model the effects of contention variability on parallel applications [46].

The running time advisor’s estimate is expressed in the form of a confidence interval, which makes it
appropriate input for stochastic scheduling[117]. Stochastic scheduling is a framework for reasoning about
scheduling parallel computations in environments where resource availability is measured using stochastic
instead of deterministic values. The running time advisor component of our system could provide such
values.

7.3 Future work

The structure of the real-time scheduling advisor, as shown in the Figure 7.1, provides a framework for the
future work described below. This dissertation has developed effective real-time scheduling advisors for
compute-bound tasks. We intend to generalize the system so that it can also support tasks with substantial
communication requirements. The approach is to apply the resource signal methodology to signals that
correspond to the availability of network bandwidth and latency, developing prediction systems for these
signals, and then to incorporate their predictions into the real-time scheduling advisor. Over the longer term,
we want to consider the prediction of other resource signals and the development of other kinds of adaptation
advisors. The following describes our intentions at each of the levels in the figure, from bottom to top.



178 CHAPTER 7. CONCLUSION

0.01

0.02

0.03

0.04

tag: diamondbw lead:1 params: [8,8]

M
ea

n 
S

qu
ar

ed
 E

rr
or

M
E

A
N

:4
95

B
M

:4
95

A
R

:1
04

M
A

:1
00

A
R

M
A

:1
00

A
R

IM
A

:9
9

A
R

F
IM

A
:9

2

Figure 7.2: An evaluation of linear models for one-step-ahead (approximately 16 seconds) prediction of wide
area available network bandwidth measurements between diamond.cs.ucsb.edu and antares.cis.ksu.edu.

7.3.1 Resource signals

We plan to apply the resource signal methodology and RPS to identify, sample, characterize, and discover
ways to predict new resource signals. Signals that seem particularly relevant to applications include a
network connection’s available bandwidth and latency, a host’s available memory, and a disk’s bandwidth.
Being able to predict network bandwidth, for example, would greatly increase the kinds of tasks the real-
time scheduling advisor could schedule. The on-line prediction of such resource signals for the benefit of
applications is a wide open research area.

We have already begun to work with the bandwidth of network connections. While there are a number
of excellent tools, such as Remos [82], for sampling this signal, three interesting problems that have not
yet been fully addressed: how do we determine the band limit of the signal, how do we enforce a band
limit during the sampling process, and how do we match the almost necessarily non-periodic nature of the
sampling process with the periodic requirements that most signal analysis and prediction tools have?

We need to determine the band limit to understand how much of the actual variability of the network
bandwidth is hidden during the sampling process. This hidden variability is measurement error which the
application or prediction system needs to know about. The sampling process needs to be able to enforce
a band limit in order to satisfy Nyquist’s theorem and thus avoid sampling artifacts. Finally, the sampling
process will likely be non-periodic, especially for wide area networks. However, most signal analysis and
prediction tools assume periodic signals. To use them, we will need to determine how to appropriately
resample to periodicity.

While no one knows how to answer these questions yet, we have already applied parts of our resource
methodology to explore the prediction of some extant network bandwidth signals. For example, we have
used RPS to perform small randomized evaluations of the predictive power of linear models on the network
bandwidth traces used to evaluate the Network Weather Service [140] (NWS), as well as on self-similar
Ethernet traces collected at Bellcore [137]. Rich Wolski and Murad Taqqu helpfully provided the three
traces we describe below.

Figure 7.2 shows the results of an evaluation on an NWS trace, which measured the available bandwidth
every 16 seconds on a connection between a machine at the University of California, Santa Barbara and
a machine at Kansas State University for 64K TCP transfers. The 500 testcases, which used 8 parameter
versions of the predictive models for one-step-ahead prediction, are presented using the Box plot format
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Figure 7.3: An evaluation of linear models for one-step-ahead (approximately 13 seconds) prediction of
local area available network bandwidth measurements between gauss and galois, two servers at the San
Diego Supercomputing Center.
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Figure 7.4: An evaluation of linear models for fine-grain one-step-ahead (approximately 100 millisecond)
prediction of consumed network bandwidth on a 10 Mbps ethernet at Bellcore.

described in Chapter 4. Obviously, there is some degree of predictability in this signal that can be exploited.
In contrast, a similar evaluation for a local area trace (also from the NWS traces) shows very different

results. As we can see from Figure 7.3, this trace, taken between two machines on a local area network at
the San Diego Supercomputing Center, does not appear to be predictable with any of the linear models. This
begs an interesting question: Are wide area networks more predictable than local area networks?

Perhaps local area networks are simply more predictable on smaller timescales. For example, Figure 7.4
shows the results of an evaluation on a fine-grain trace collected on the Bellcore Ethernet. The original trace
consisted of the timestamps and sizes of individual packets, which we integrated to produce a signal of the
consumed bandwidth on the network, sampled at 100 millisecond intervals. At this granularity, the trace
appears to have some degree of predictability.
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7.3.2 Prediction approaches

Some resource signals are unlikely to be predictable using the linear models that are appropriate for host
load. For example, networks are well known to exhibit self-similar [137], and even multifractal behav-
ior [43]. The best current model for generating (as opposed to predicting) network traffic uses a wavelet-
based model [112]. The combination of this work and our experience with network bandwidth prediction,
described above, suggests that more sophisticated predictive models are necessary.

We plan to explore and invent new approaches to predicting recalcitrant signals such as network band-
width. We are currently considering several interesting approaches that we believe can be adapted for on-line
prediction. The first approach is threshold autoregressive models [132], which are designed to model the
abrupt transitions between different (linearly) predictable regimes that many resource signals exhibit. The
second approach is to model the signal as emerging from a chaotic system of differential equations, an ap-
proach which can recover multiple dimensions of behavior (eg, multiple hosts driving a network) flattened
into a single signal [1]. The third approach we are considering is wavelets, which simultaneously capture
time domain and frequency domain behavior [143]. For example, they would be ideal for capturing the
epochal behavior we identified in host load signals. Although wavelets have been pressed into service for
synthesizingsome resource signals, we are unaware of any work to use them topredictresource signals.

A signal may be predictable not only from its own history, but also from the history of other signals
in the system. We plan to explore how such cointegration can benefit prediction. It may be possible to
drastically reduce the number of measurements needed to maintain a particular level of predictability. For
example, Vetter has shown that dynamic statistical projection pursuit can be used to determine the small
subset of resource signals that are interesting from a performance visualization point of view [133]. Perhaps
this approach, or even simple principle components analysis [66, pp 76–80], can be used to predict one
signal’s behavior using another signal.

Independent of any particular approach to prediction, it is a natural to ask howinherentlypredictable an
arbitrary resource signal is. The effort that we as systems researchers should invest in attempting to predict
it is in direct proportion to the answer. Unfortunately, while there are several theoretical frameworks for
thinking about the question, there is currently no practical method for reducing a resource signal to a scalar
predictability metric. In practice, a person with the appropriate skill set needs to read the tea leaves. We
plan to continue to think about how to automate this process. It seems like it should be possible to create a
useful heuristic procedure for resource signals.

RPS simplifies the final two steps of our resource signal methodology, but the remainder of the method-
ology requires considerable human involvement. In general, much of the process of characterizing signals
and deciding on appropriate predictive models is highly heuristic, but those heuristics are not explicit, and
therefore are difficult to automate. This should not be the case. We should be able to produce a system that
automatically characterizes a new resource signal and then produces a predictor for it. Such a tool would fill
a similar role to that of tools that characterize hardware features [144].

7.3.3 Resource scheduler models

A resource signal emerges when a workload is supplied to a scheduler that coordinates access to an un-
derlying resource. A resource scheduler model, such as the running-time advisor in Figure 7.1, transforms
resource signals (including predictions) into predictions of application-level performance metrics. The more
accurately we can model the resource scheduler, the better the performance predictions are. We plan to im-
prove the Unix scheduler model we developed in Chapter 5, and to develop new models for other resources,
such as one that transforms from network bandwidth to the transfer time of messages. At this point, we are
aware of no model of the Unix scheduler that can handle its priority scheme, for example.

We also need to encourage the developers of resource schedulers such as the Unix scheduler to introduce
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more hooks for measuring their behavior—we need more resource signals, and we need them at a finer
granularity. For example, the Digital Unix scheduler is invoked 1024 times per second by default, but the
load averages are limited to 2 second timescales. The default situation on other operating systems is even
worse.

7.3.4 Adaptation advisors

A real-time scheduling advisor offers one form of adaptation advice (a host recommendation) to achieve one
kind of application goal (a deadline). This is a form of application-level scheduling [16], and many other
such adaptation advisors are possible. The layered structure of Figure 7.1 means that additional kinds of ser-
vices can share underlying layers. Other scheduling or adaptation advisors—load balancers, for example—
can make use of the running time advisor. The running time advisor offers confidence intervals, such as
those used in stochastic scheduling [117] of parallel applications. We plan to explore other kinds of adapta-
tion advisors, although we have no immediate plans other than to improve the real-time scheduling advisor
by incorporating network bandwidth predictions and an advisor for the transfer time of messages.

7.3.5 Application workloads

Few distributed interactive applications currently exist, in large part because developers are unwilling to
commit themselves before being convinced that the furies of distributed computing environments can be
tamed. The resulting dearth of application workloads makes the design of adaptation mechanisms, policies,
and systems very difficult. The situation can be improved in two ways. First, we can better characterize
interactive applications, such as Dv visualizations, that are necessarily already implemented in distributed
form. The research community would benefit considerably from the widespread availability of such charac-
terizations, or, even better, traces of their execution showing resource demands. Second, we can instrument
existing non-distributed applications with the goal of presaging the workloads of their future distributed
versions. Instrumenting commonly used, high level packages such as Vtk [118] seems to offer the most
potential here. Another option is to instrument interactive applications that are based on scripting, such as
GIMP, GNU’s image editor program.
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Appendix A

Application-oriented Prediction

Although this thesis argues for basing real-time scheduling advisors on explicit resource-oriented prediction
using statistical signal processing, we did not discard application-oriented prediction out of hand. In fact, we
began our research using the application-oriented approach. This appendix briefly reports on this work. The
application-oriented approach can actually be made to perform quite well in limited situations if we focus
solely on maximizing the fraction of deadlines met without concern for scalability, sharing of information
among applications, or extensibility to other kinds of advisors. In contrast, the resource-oriented approach
provides both high performance from the point of view of the application and the other benefits described in
Chapter 1.

The design space of the application-oriented approach is vast. We studied a simple variant in which
the advisor essentially uses a history of previous successes and failures or a history of running times and
deadlines to predict which host will most likely meet the deadline at the current time. Unlike the resource-
oriented advisor described in Chapter 6, the interface of the application-oriented advisor requires feedback
from the application. This feedback is recorded in a local history from which predictions are made. Because
this history resides within a specific advisor (indeed, within a specific process of the application), it is
unavailable to other advisors. This is also in strong contrast to the resource-oriented advisor, where each
resource maintains its own history, which is available to all the advisors in the system.

In this appendix, we describe the interface for this application-oriented approach and nine different
algorithms that implement it. We then evaluate these algorithms using a simulation that is based on the load
traces that we describe in Chapter 3. The evaluation focuses on the fraction (percent) of deadlines met as
the sole metric of performance. In Chapter 6, we introduce other appropriate metrics. It is important to note
that this evaluation is not fully randomized and does not approach the scale and depth of the evaluations of
the different stages of the resource-oriented real-time scheduling advisor in Chapters 4–6.

The point of this chapter is simply to touch on the possibilities of the application-oriented approach. The
most significant result is that one of the algorithms we developed is both tractable and near-optimal under
most conditions in the limited situations we studied. There are several other lessons to draw from our results:
(1) There is clearly significant opportunity for an application-oriented or resource-oriented prediction-based
real-time scheduling advisor to exploit; (2) An application-oriented real-time scheduling advisor can make
a significant difference as to whether a task meets its deadline or not; (3) Simple, statistical algorithms,
even with randomization, are insufficient, behave inconsistently, and are inappropriate for the application-
oriented approach; (3) Complex algorithms such as neural networks work reasonably well but are clearly
too expensive to use in practice. Our near optimal algorithm is simple enough to be practical, but is not so
simple that it is useless.
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Complexity Timings�-sec
Name Time Space (4,50,0.1) (8,50,0.1) (16,50,0.1)

Optimal(RC) - - - - -
Constant O(1) O(1) 0.244 0.244 0.244
Random O(1) O(1) 0.498 0.537 0.546
Mean O(N ) O(N ) 0.957 1.532 2.710
WinMean(W) O(N ) O(NW ) 3.318 4.460 7.005
WinVar(W) O(NW ) O(NW ) 7.039 9.580 14.73
RandWinMean(W,P) O(NW ) O(NW ) 7.223 13.166 24.534
RandWinVar(W,P) O(NW ) O(NW ) 17.408 33.58 65.866
Confidence(W) O(NW ) O(NW ) 13.674 21.360 36.775
RandConfidence(W,P) O(NW ) O(NW ) 26.951 52.869 102.423
RangeCounter(W) O(N ) +O(W ) O(NW ) 8.500 9.551 11.960
NeuralNet(W) O(N2W 2) O(N2W 2) 41807.630 175543.700 773379.700

Table A.1: Algorithm complexity and timings. The numbers(N;W; P ) refer to the number of hosts, the
window size, and the randomization probability. Timings were collected on a DEC 3000/400.

A.1 Real-time scheduling advisor interface

The interface to the application-oriented real-time scheduling advisor consists of two functions. The first is
used to ask the advisor to select a host for the task. The second is used to inform the advisor of the results
of that selection. The interface is as follows:

Host RTAdviseTask(Host hosts[],
double tnom,
double slack);

int RTInformTask(Host host,
double tnom,
double slack,
double tact);

The application usesRTAdviseTask to pose the following scheduling problem: Choose a host from
hosts such that a task with nominal running timetnom (tnom), if started now, will complete in(1 +

slack)tnom seconds or less. The real-time scheduling advisor responds with the selected host. The applica-
tion runs the task on the selected host and then reports the results to the advisor through theRTInformTask
call. The application specifies the host on which the task ran, its nominal time, the slack, and the actual run-
ning time,tact (tact).

A.2 Implementing the interface

The interface described in the previous section obviously can be provided by many different algorithms. We
developed nine such algorithms which operate on the history of task executions provided by the
RTInformTask call. Most of the algorithms are the simple statistical algorithms that one is led to when
initially thinking about the problem. A common failing of these is that they fall into modes where they
refuse to “explore” the space of possible task mappings and so can get “stuck” giving unfortunate mappings
repeatedly. We added randomization to these initial algorithms to attempt to avoid this. The two remaining
algorithms include a neural network algorithm and theRangeCounter(W)algorithm, which is nearly opti-
mal most of the time. This section describes each of these algorithms. Table A.1 shows the asymptotic
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complexity and actual running times of all the algorithms. It also includes three other algorithms we use for
comparison purposes,Optimal(RC), which as described in Section A.3,Random, andConstant. Constant
simply always picks the same host whileRandomalways picks a host at random.

The simplest algorithms includeMean, WinMean(W), andWinVar(W). For each hostMeancomputes
the mean running time over the entire history of executions on that host and chooses the host with the
lowest mean.WinMean(W)is similar, except the mean is computed over the lastW executions on the
host. WinVar(W)chooses the host with the lowest variance in running time over the lastW executions.
RandWinMean(W,P)andRandWinVar(W,P)select a random host with probabilityP and act like their non-
randomized counterparts with probability1� P .

Confidence(W)assumes that running times are picked from a normal distribution.1 It computes the sam-
ple mean and variance over the lastW executions on the host and parameterizes a normal distribution with
these values. The host whose normal has the highest cumulative probability over the[�1; (1+slack)tnom]

range is chosen. TheRandConfidence(W,P)algorithm chooses a random host with probabilityP and per-
forms likeConfidence(W)with probability1� P .

The RangeCounter(W)algorithm can be thought of as a non-linearly filtered version of theConfi-
dence(W)algorithm. Each host is assigned a quality value, initially zero. To choose a host, the following
steps are taken: If no host has a quality value significantly higher than zero, a random host is chosen, other-
wise the host with the highest quality value is chosen. Next, the quality values of all hosts are reduced (aged)
by a small amount. If the choice of host is successful, then the chosen host’s quality value is increased by
the inverse of our statistical confidence in it. As with theConfidence(W)algorithm, we compute the sample
mean and variance of the pastW executions, parameterize a normal distribution with them, and compute
the cumulative probability of that distribution over[�1; (1 + slack)tnom]. We increase the host’s quality
value by theinverseof the cumulative probability. If the choice of host is unsuccessful, we divide the chosen
host’s quality value by two.RangeCounter(W)rewards good choices based on how unlikely they appear to
be able to bear fruit and punishes bad choices equally. The idea is to encourage exploration and risk taking,
but to react quickly and decisively to failure. The aging process discourages complacency.

TheNeuralNet(W)algorithm consists of a multilayer feed-forward neural network [90] whereeach host
contributesW inputs, the durations of the lastW executions on that host. ForN hosts, the intermediate layer
hasNW=2 nodes and the output layer hasN nodes. The network is trained to drive the output representing
the best host to the highest output value. To choose a host, the inputs are propagated forward through the
network and the host with the highest corresponding output value is chosen. If the choice is successful, we
reinforce the chosen output to unity and the remaining outputs to their present values and propagate these
outputs back through the network. Similarly, if the choice is unsuccessful, we reinforce the chosen output to
zero and the remaining outputs to their present values and propagate back. Essentially, Each choice/response
pair is an iteration of the BACKPROP neural network training algorithm. We continuously train the network
in operation.

A.3 Simulator and methodology

To develop and evaluate our algorithms, we built a simulator that allows us to simulate executing a task in a
loop:

for (i=0;i<N;i++) {
GetTask(tnom,slack);
host=RTAdviseTask(hosts, tnom, slack);
tnow=GetCurrentTime();

1A variety of other distributions were also examined.
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tact=RunTask(host, tnow, tnom);
RTInformTask(host, tnom, slack, tact);

}

where the nominal running timetnom (tnom) of the task is either constant or chosen from an enumerated
distribution. The nominal running time is the time the task would take to execute under zero-load conditions
on the slowest host. The task begins executing attnow (tnow), which is determined just before the task is
run on the selected host. For the duration of the loop, the algorithm is the same, so time advances according
to the scheduling decisions made by the algorithm under test, just as it would in the real world.

Given the load trace of the host the algorithm has chosen,tnow , andtnom, we use a simple model to
simulate the actual running time,tact, of the task on that host at that time. The running time is computed by
theRunTask function, which bases it on a load trace. Consider a functional form of the load tracehlii so
that load(t) = li for i� � t < (i + 1)�, where� is the sampling interval of the load trace. The actual
running time,tact is the value which satisfies

Z tnow+tact

tnow

�

1 + load(t)
dt = tnom

where� is the raw speedup of the host over the slowest host. We have found that the compute time estimates
given by this model correlate strongly (> 0:99 coefficient of correlation) with the actual computation time.

In addition to being runaccording to the advise of the algorithm under test, the task is also run (in
simulation) according to a randomly chosen host, and according to the optimal choice. The details of each
of these runs are written to a file.

A.3.1 Optimal algorithm

Using the model for computing running times from load traces, the simulator not only executes the task
on the host the algorithm chooses, but on every host. This lets the simulator compute what an optimal
algorithm would do if invoked at this point: it picks a host whose running time is less than the deadline,
if one is available. It is important to note that simulated time evolves according to the algorithm under
test, thus the measured performance of the optimal algorithm depends slightly on the algorithm under test.
In practice, this varies only marginally across the algorithms we test. We present the performance of the
optimal algorithm with respect to our near optimal algorithm,RangeCounter(W). In this incarnation, the
optimal algorithm is referred to asOptimal(RC).

A.4 Scenarios and methodology

We constructed six different configurations of hosts (orscenarios) from the load traces discussed in Chap-
ter 3. The scenarios consist of traces of hosts with different mean loads and different mean epoch lengths. In
Figure A.1 we plot each load trace according to its mean load and its mean epoch length. The six scenarios
we discuss here are then highlighted, labeled, and tabulated. We categorize the load of a scenario by whether
it contains only machines with low (� 0:2) mean loads, only machines with high mean loads (� 1:1), or a
mixed combination of machines in the former categories. Similarly, we categorize the epoch length of a sce-
nario by whether all of its machines have short (150-300 seconds) epochs, long (400-500 seconds) epochs,
or a combination of the former. The labels consist of a number and two letters. The number represents the
number of hosts in the scenario, the first letter represents whether the load category is (S)mall, (M)ixed, or
(L)arge, and the second letter indicates whether the epoch category is (S)hort, (M)ixed, or (L)ong. Notice
that there are nine combinations, but our data limits us to exploring only six of the combinations.
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Figure A.1: Application prediction scenarios.

The scenarios presented here contain only the PSC hosts. We have also done limited simulations using
other scenarios involving the remaining machines, but there is no space to present them here. The advantage
of using the PSC hosts is that they nicely cover most of the space formed by the load and epoch categories.

For each of the six scenarios, we looked at eight different values of the nominal running timetnom, and
twelve different values of the upper timing boundslack, ranging from 0 to 2. This forms 576 different cases
and we simulated 100,000 consecutive tasks for each case, for a total of 57.6 million simulated tasks. In
addition, for each scenario, we simulated what happens whentnom is picked randomly from a set of four
values (25,50,75,100 ms) on each iteration, andslack is varied as before. This forms another 72 cases and
7.2 million tasks.

A.5 Evaluation results

In this section, we present three slices through our simulation results to make presentation tractable. The
first two slices show how the algorithms’ performance varies with nominal running time and with slack.
The third slice shows how the performance varies when the nominal time is permitted to vary, as if different
paths are taken within the task. The performance of an algorithm is the percentage of tasks that meet their
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Figure A.2: The effect of varying nominal running time for the 8MM scenario at a slack of zero.

deadlines ((1 + slack)tnom).
Our discussion covers all of the simulations. However, in order to simplify our presentation, we show

graphs for only two representative scenarios, 8MM and 4LS. As can be seen in Figure A.1, 8MM contains
eight machines with mixed load and epoch lengths, while 4LS contains four machines with high loads and
short epoch lengths. To show the effect of nominal running time, only 8MM is shown since 4LS does not
provide any additional insight. The other scenarios show similar results.

For the algorithms that have parameters, namelyW , the window of previous running times recorded for
a host, andP , the probability of a random assignment (for the randomized algorithms), we have fixed the
parameters toW = 50 (10 for NeuralNet(W)) andP = 0:1. The performance of the algorithms given these
values is representative of how they perform with the other, non-extreme, values we studied. The relative
performance of the algorithms is not very sensitive to the choice of these values.

A.5.1 Performance versus nominal time

Figure A.2 shows how the different algorithms perform when scheduling tasks with different nominal run-
ning times in a representative scenario, 8MM. The other scenarios yield similar results. The nominal times
range from 50 milliseconds to 60 seconds. The x-axis is the nominal time,tnom , ranging from 50 millisec-
onds to 60 seconds, and the y-axis is the percentage of tasks that meet their deadlines. The slack is set to
zero.

Notice that there is a substantial gap between the performance of the optimal algorithm (Optimal(RC))
and the performance of random assignment (Random). Although we have elided the results for clarity, it is
also never the case that always choosing the same host works well. We find similar results for the other five
scenarios, with differences ranging from 40 to 80 percent. This suggests that a good algorithm can make a
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Figure A.3: The effect of slack for the 8MM scenario.tnom = 100ms and the slack varies from 0 to 2.

large difference.
Interestingly, the simple statistics-based algorithms and their randomized variants perform rather badly

for the most part, some worse than evenRandom. Further, they tend to behave inconsistently. For example,
WinVar(W)is about 35% better thanRandomat 50 milliseconds, then abruptly declines with increasingtnom
only to improve later and finally become completely ineffectual at 60 seconds. In another scenario, we find
it near optimal for some nominal times and yet collapsing to worse thanRandomfor nearby times. On
the other hand,NeuralNet(W)andRangeCounter(W)behave consistently well and near-optimally for short
nominal times less than one second. In fact,RangeCounter(W)is the best algorithm for all scenarios and
nominal times except for the 60 second time in the 4LS scenario.

A.5.2 Performance versus slack

The effect of loosening the slack on the performance of the algorithms is quite interesting. In Figure A.3
we show the effect in the 8MM scenario and in Figure A.4 we show the effect in the 4LS scenario. The
x-axis in each graph is the slack value while the y-axis is the percentage of tasks that meet the deadline.
The nominal running time is fixed at 100 milliseconds and the slack varies from 0 to 2. The remaining
four scenarios show effects similar to the 8MM scenario (Figure A.3). Other choices of nominal running
time lead to similar graphs in each of the scenarios. This is different from the behavior we observed in our
evaluation of the resource-oriented real-time scheduling advisor (Chapter 6). The difference is due to the
fact that the simulation approach that we use here does not take into account the priority boost we describe
in Chapter 5.

In Figure A.3, notice that there is great differentiation between the optimal algorithm and random as-
signment as the slack gets tighter. The same holds true in Figure A.4 for slacks greater than one. For this
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Figure A.4: The effect of slack for the 4LS scenario.tnom = 100ms and the slack varies from 0 to 2.

scenario, there are so few machines that can meet the tighter deadlines that the gap betweenOptimal(RC)
andRandomdeclines severely with slack less than one.

In both figures, the simpler algorithms require a reasonably large amount of additional slack before
their performance catches up toRangeCounter(W)andNeuralNet(W). This is also the case for the other
scenarios, although the difference tends to be slightly less for scenarios with only unloaded machines. In
Figure A.3, the simpler algorithms require between 0.25 and and 1.0 of extra slack to get to within an
absolute 10% of the performance ofRangeCounter(W)andNeuralNet(W). This corresponds to deadlines on
the order of twice the running time of the task, which is a significant amount of extra time. For Figure A.4,
we see a great upsurge in performance as the slack is relaxed to around 1.0 (ie, deadlines that are double the
nominal running time). Before this point, there are very few opportunities in which it is possible to meet the
deadlines. However,RangeCounter(W)manages to ferret out these opportunities and manages to closely
approximate the optimal algorithm’s performance across the board. It behaves well even when choices are
very constrained.

A.5.3 Performance with varying nominal times

Figures A.5 (8MM scenario) and A.6 (4LS scenario) show the effect of loosening the deadline (tmax) when
the nominal running time is picked randomly from a set of values. In each graph, the nominal time is ran-
domly picked from 25, 50, 75, and 100 milliseconds foreach call. Intuitively, this can be seen as following
different control paths through the task. The x-axis is the deadline and the y-axis is the performance. We
sweep the deadline from 25 ms to 300 ms. The linear upward trend on the first part of each graph is due
to the varying nominal time. At 50 milliseconds, only about 50% of the calls have a nominal time of 50
milliseconds or less, so even the optimal algorithm can only manage to map 50% of the calls successfully,
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Figure A.5: The effect of different timing constraints for the 8MM scenario.tnom = 100ms and the
constraint is[0; tmax] wheretmax varies from 100ms to 300ms.

Figure A.6: The effect of different timing constraints for the 4LS scenario.tnom = 100ms and the constraint
is [0; tmax] wheretmax varies from 100ms to 300ms.
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even given totally idle machines.
Notice the separation between the optimal algorithm and random mapping, suggesting opportunity for

a mapping algorithm. The separation is smaller than in the previous cases, since at any particular deadline
except for 25 ms, there are some number of calls that have significant slack. For example, at 50 ms, 25% of
the calls have a nominal time of 25 ms and thus have aslack of 1. This also benefits the simple algorithms
and decreases the spread in performance. However, the spread can still be significant. For example, in the
8MM scenario (Figure A.5), the spread is as high as an absolute 40% of the calls.

An important point here is thatRangeCounter(W), although it does well, behaves somewhat erratically
in the face of the varying nominal times and is not clearly superior to the other algorithms until the deadline
has been relaxed to encompass the longest of the different nominal times. That is, when some varying
nominal times exceed the deadline,RangeCounter(W)can behave badly. In some cases, it is as much as
20% down from the optimal algorithm andNeuralNet(W). This presents opportunity for improvement.

A.5.4 Conclusions

There are several conclusions to be drawn from our results. The first conclusion is that there exists significant
opportunity for real-time scheduling advisor. By choosing the right host, an advisor can greatly increase the
chance that a task will meet its deadline. This is true of both application-oriented and resource-oriented
advisors. The second conclusion is that, for advisors that rely on application-oriented prediction, it is the
case that simple summary statistic-based algorithms are insufficient. In some cases, simple algorithms
such asMean, WinMean(W), WinVar(W), andConfidence(W)can actually perform worse thanRandom.
Worse, they can behave erratically in the face of different nominal running times. Adding randomization
to these algorithms smoothes them and improves their overall performance, but it still does not make them
competitive with the best algorithms,NeuralNet(W)andRangeCounter(W).

The load trace results we presented in Chapter 3 can shed some light on why the simple statistical
algorithms perform so badly. Recall that the load traces exhibit both short- and long-range autocorrelation.
Clearly, consecutive load values arenot chosen independently according to some stationary probability
distribution function. However, this is precisely the underlying assumption made by the simple statistical
algorithms! Further, even if, in the long term, some pdf does emerge, it is highly unlikely that this pdf is
applicable over the short term, given the epochal behavior discussed in Section 3.6. Of course, we might
expect that with a sufficiently long nominal time, the simple statistical algorithms might work better, but
even there there is some doubt. Unfortunately, the histograms of the load traces (which we elide for space
reasons) do not appear to be fit any analytic distribution we are aware of.

NeuralNet(W)andRangeCounter(W)appear to be better able to deal with the properties exhibited by the
load traces because they behave non-linearly. This is probably a great benefit when transitioning from one
epoch to the next because it suggests that the internal state of the algorithms will change drastically at these
points, which is, of course, what we desire. Another interesting point is that as the nominal running time
grows, there are fewer and fewer training examples per epoch. This offers a possible explanation for why
NeuralNet(W), which behaves near optimally for short nominal times, quickly declines as the nominal times
grow. Often, as neural networks are trained, they tend to converge only slowly to a good set of weights.
After some large number of training sets, there is an abrupt convergence, beyond which any additional
training tends to make the neural network slowly worse. We suspect that what we are seeing is that with
a long enough nominal time there is simply an insufficient number of training samples in an epoch for
NeuralNet(W)to make that abrupt convergence.

RangeCounter(W)exhibits the best performance in nearly every case, and behaves relatively smoothly.
For nominal times less than one second, it behaves almost optimally, while its performance degrades grad-
ually for longer nominal times. Because it is near optimal even with the tightest slack, it is no surprise that
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it remains so as we relax the slack. Further, whileNeuralNet(W)is also near optimal under conditions of
tight slack and short nominal times, none of the other tractable algorithms are especially close, and some
require considerable loosening of the slack before they become anywhere near optimal. The failings of
RangeCounter(W)are that it behaves suboptimally in the presence of very long nominal times. In some
sense,RangeCounter(W)tends to become specialized too quickly, which is the reverse ofNeuralNet(W)’s
problem.NeuralNet(W)seems to remain sufficiently general to do well with varying nominal times.



194 APPENDIX A. APPLICATION-ORIENTED PREDICTION



Bibliography

[1] Henry Abarbanel.Analysis of Observed Chaotic Data. Institute for Nonlinear Science. Springer,
1996.

[2] Adobe Corporation.Adobe Photoshop 4.0 User’s Guide, 1997.

[3] M. Aeschlimann, P. Dinda, L. Kallivokas, J. Lopez, B. Lowekamp, and D. O’Hallaron. Preliminary
report on the design of a framework for distributed visualization. InProceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’99), pages
1833–1839, Las Vegas, NV, June 1999. CSREA Press.

[4] Jont B. Allen and David A. Berkley. Method for simulating small-room acoustics.Journal of the
Acoustical Society of America, 65(4):943–950, April 1979.

[5] Amaranth Project. Amaranth: Probabilistically guaranteed quality of service for distributed comput-
ing systems. (web page). http://www.cs.cmu.edu/afs/cs/project/ices-amaranth/www/.

[6] J. Arabe, A. Beguelin, B. Lowekamp, M. Starkey E. Seligman, and P. Stephan. Dome: Parallel pro-
gramming in a heterogeneous multi-user environment. Technical Report CMU-CS-95-137, Carnegie
Mellon University, School of Computer Science, April 1995.

[7] Olaf Arndt, Bernd Freisleben, Thilo Kielmann, and Frank Thilo. Dynamic load distribution with the
winner system. InProceedings of Workshop Anwendungsbezogene Lastverteilung (ALV’98), pages
77–88, March 1998. Also available as Technische Universitt Mnchen Technical Report TUM-I9806.

[8] Hari Balakrishnan, Mark Stemm, Srinivasan Seshan, and Randy H. Katz. Analyzing stability in
wide-area network performance. InProceedings of SIGMETRICS’97, pages 2–12. ACM, 1997.

[9] Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F. Kallivokas, David R. O’Hallaron, Jonathan R.
Shewchuk, and Jifeng Xu. Large-scale Simulation of Elastic Wave Propagation in Heterogeneous
Media on Parallel Computers.Computer Methods in Applied Mechanics and Engineering, 152(1–
2):85–102, January 1998.

[10] M. R. Barbacci and J. M. Wing. DURRA: A task-level description language. InProceedings of The
International Conference on Parallel Processing, pages 370–376, August 1987.

[11] James B. Bassingthwaighte, Daniel A. Beard, Donald B. Percival, and Gary M. Raymond. Fractal
structures and processes. In Donald E. Herbert, editor,Chaos and the Changing Nature of Science
and Medicine: An Introduction, number 376 in AIP Conference Proceedings, pages 54–79. American
Institute of Physics, April 1995.

195



196 BIBLIOGRAPHY

[12] Sabyasachi Basu, Amarnath Mukherjee, and Steve Klivansky. Time series models for internet traffic.
Technical Report GIT-CC-95-27, College of Computing, Georgia Institute of Technology, February
1995.

[13] BBN Corporation. Distributed spatial technology laboratories: Openmap. (web page).
http://javamap.bbn.com/.

[14] Durand R. Begault.3-D Sound For Virtual Reality and Multimedia. AP Professional, 1994.

[15] Jan Beran. Statistical methods for data with long-range dependence.Statistical Science, 7(4):404–
427, 1992.

[16] Francine Berman and Richard Wolski. Scheduling from the perspective of the application. InPro-
ceedings of the Fifth IEEE Symposium on High Performance Distributed Computing HPDC96, pages
100–111, August 1996.

[17] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. Lightweight
remote procedure call.ACM Transactions on Computer Systems, 8(1):37–55, February 1990.

[18] Azer Bestavros. Load profiling: A methodology for scheduling real-time tasks in a distributedsystem.
In Proceedings of ICDCS ’97, May 1997.

[19] Azer Bestavros and Dimitrios Spartiotis. Probabilistic job scheduling for distributed real-time appli-
cations. InProceedings of the First IEEE Workshop on Real-Time Applications, May 1993.

[20] Andrew D. Birrel and Bruce Jay Nelson. Implementing remote procedure calls.ACM Transactions
on Computer Systems, 2(1):39–59, February 1984.

[21] Avrim Blum and Carl Burch. On-line learning and the metrical task system problem. InProceedings
of the 10th Annual Conference on Computational Learning Theory (COLT ’97), pages 45–53, 1997.

[22] J. Bolliger, T. Gross, and U. Hengartner. Bandwidth modelling for network-aware applications. In
Proceedings of Infocomm’99, pages 1300–1309, 1999.

[23] George E. P. Box, Gwilym M. Jenkins, and Gregory Reinsel.Time Series Analysis: Forecasting and
Control. Prentice Hall, 3rd edition, 1994.

[24] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation protocol (RSVP)
– version 1 functional specification. Internet RFC 2205, September 1997. ftp://ftp.isi.edu/in-
notes/rfc2205.txt.

[25] Peter J. Brockwell and Richard A. Davis.Introduction to Time Series and Forecasting. Springer-
Verlag, 1996.

[26] Nat Brown and Charlie Kindel. Distributed component object model protocol – dcom/1.0. Technical
report, Microsoft, May 1996. http://ds1.internic.net/internet-drafts/draft-brown-dcom-v1-spec-00.txt.

[27] Kristian Paul Bubendorfer. Resource based policies for load distribution. Master’s thesis, Victoria
University of Wellington, August 1996.

[28] R. Chin and S. Chanson. Distributed object-based programming systems.ACM Computing Surveys,
23(1):91–124, March 1991.



BIBLIOGRAPHY 197

[29] P. Dinda, B. Lowekamp, L. Kallivokas, and D. O’Hallaron. The case for prediction-based best-effort
real-time systems. InProc. of the 7th International Workshop on Parallel and Distributed Real-
Time Systems (WPDRTS 1999), volume 1586 ofLecture Notes in Computer Science, pages 309–318.
Springer-Verlag, San Juan, PR, 1999. Extended version as CMU Technical Report CMU-CS-TR-98-
174.

[30] Peter A. Dinda. The statistical properties of host load.Scientific Programming, 7(3,4), 1999. A
version of this paper is also available as CMU Technical Report CMU-CS-TR-98-175. A much earlier
version appears in LCR ’98 and as CMU-CS-TR-98-143.

[31] Peter A. Dinda and David R. O’Hallaron. An evaluation of linear models for host load prediction. In
Proceedings of the 8th IEEE International Symposium on High Performance Distributed Computing
(HPDC ’99), pages 87–96, August 1999. Extended version available as CMU Technical Report
CMU-CS-TR-98-148.

[32] Peter A. Dinda and David R. O’Hallaron. An extensible toolkit for resource prediction in distributed
systems. Technical Report CMU-CS-99-138, School of Computer Science, Carnegie Mellon Univer-
sity, July 1999.

[33] Peter A. Dinda and David R. O’Hallaron. Realistic CPU workloads through host load trace playback.
In Proc. of 5th Workshop on Languages, Compilers, and Run-time Systems for Scalable Computers
(LCR2000), May 2000. To appear.

[34] Lisa Cingiser DiPippo, Roman Ginis, Michael Squadrito, Steven Wohlever, Victor Fay Wolfe, Igor
Zykh, and Russel Johnston. Expressing and enforcing timing constraints in a CORBA environment.
Technical Report 97-252, Department of Computer Science, University of Rhode Island, February
1997.

[35] DIS Steering Committee. The dis vision: A map to the future of distributed simulation. Technical
Report Version 1, DIS Steering Committee, May 1994.

[36] Terrence L. Disz, Michael E. Papka, Michael Pellegrino, and Rick Stevens. Sharing visualization
experiences among remote virtual environments. InProceedings of the International Workshop on
High Performance Computing for Computer Graphics and Visualization, pages 217–237, 1995.

[37] S. Dwarkadas, A. Cox, and W. Zwaenepoel. An integrated compile-time/run-time software distributed
shared memory system. InProc. Sixth Intl. Conf. on Architectural Support for Prog. Languages and
Operating Systems (ASPLOS VI), Boston, Oct 1996. ACM.

[38] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load sharing in homogeneous distributed
systems.IEEE Transactions on Software Engineering, SE-12(5):662–675, May 1986.

[39] D. L. Eager, E. D. Lazowska, and J. Zahorjan. A comparison of receiver-initiated and sender-initiated
adaptive load sharing.Performance Evaluation, 6:53–68, March 1986.

[40] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. The limited performance benefits of
migrating active processes for load sharing. InSIGMETRICS ’88, pages 63–72, May 1988.

[41] D. W. Embley and G. Nagy. Behavioral aspects of text editors.ACM Computing Surveys, 13(1):33–
70, January 1981.



198 BIBLIOGRAPHY

[42] Yasuhiro Endo, Zheng Wang, J. Bradley Chen, and Margo Seltzer. Using latency to evaluate interac-
tive system performance. InProceedings of the 1996 Symposium on Operating Systems Design and
Implementation, 1996.

[43] Anja Feldman, Anna C. Gilbert, and Walter Willinger. Data networks as cascades: Investigating the
multifractal nature of internet WAN traffic. InProceedings of ACM SIGCOMM ’98, pages 25–38,
1998.

[44] D. Ferrari. Client requirements for real-time communication services.IEEE Communications Mag-
azine, 11(11):65–72, November 1990.

[45] D. Ferrari, A. Banerjea, and H. Zhang. Network support for multimedia - a discussion of the tenet
approach.Computer Networks and ISDN Systems, 26(10):1167–1180, July 1994.

[46] Silvia M. Figueira and Francine Berman. Predicting slowdown for networked workstations. InPro-
ceedings of the Sixth IEEE International Symposium on High Performance Distributed Computing
(HPDC 97), pages 92–101, August 1997.

[47] Patricia Gomes Soares Florissi.QosME: QoS Management Environment. PhD thesis, Columbia
University Computer Science Department, 1996.

[48] Ian Foster and Carl Kesselman, editors.The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

[49] Chris Fraley. Fracdiff: Maximum likelihoodestimation of the parameters of a fractionally differenced
ARIMA( p; d; q) model. Computer Program, 1991. http://www.stat.cmu.edu/general/fracdiff.

[50] M. Garrett and W. Willinger. Analysis, modeling and genreation of self-similar VBR video traffic. In
Proceedings of SIGCOMM ’94, London, September 1994.

[51] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Mancheck, and Vaidy Sunderam.
PVM: Parallel Virtual Machine. MIT Press, Cambridge, Massachusetts, 1994.

[52] G. A. Geist, James Arthur Kohl, and Phillip M. Papadopoulos. CUMULVS: Providing fault-tolerance,
visualization, and steering of parallel applications. Technical report, Oak Ridge National Laboratory,
1996.

[53] D. K. Gifford. Weighted voting for replicated data.ACM Transactions on Database Systems,
16(4):150–159, 1979.

[54] Aniruddha Gokhale and Douglas C. Schmidt. Measuring the performance of communication mid-
dleware on high-speed networks. InProceedings of SIGCOMM 96, August 1996. Extended version
available as TR.

[55] C. W. J. Granger and Roselyne Joyeux. An introduction to long-memory time series models and
fractional differencing.Journal of Time Series Analysis, 1(1):15–29, 1980.

[56] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques. Morgan Kaufman, 1993.

[57] Nancy C. Groschwitz and George C. Polyzos. A time series model of long-term NSFNET backbone
traffic. InProceedings of the IEEE InternationalConference on Communications (ICC’94), volume 3,
pages 1400–4, May 1994.



BIBLIOGRAPHY 199

[58] H. Haggen, H. Mueller, and G. M. Nielson, editors.Focus On Scientific Visualization. Springer-
Verlag, 1993.

[59] Max Hailperin.Load Balancing using Time Series Analysis For Soft Real-Time Systems with Statisti-
cally Periodic Loads. PhD thesis, Stanford University, December 1993.

[60] Mor Harchol-Balter and Allen B. Downey. Exploiting process lifetime distributions for dynamic load
balancing. InProceedings of ACM SIGMETRICS ’96, pages 13–24, May 1996.

[61] John Haslett and Adrian E. Raftery. Space-time modelling with long-memory dependence: Assessing
ireland’s wind power resource.Applied Statistics, 38:1–50, 1989.

[62] R. Hoare, H. G. Dietz, T. Mattox, and S. Kim. Bitwise aggregate networks. InProceedings of the
Eighth IEEE Symposium on Parallel and Distributed Processing, October 1996.

[63] J. R. M. Hosking. Fractional differencing.Biometrika, 68(1):165–176, 1981.

[64] Jyri Huopaniemi, Matti Karjalainen, Vesa Vaelimaeki, and Tommi Houtilainen. Virtual intstruments
in virtual rooms — a real-time binaural room simulation environment for physical models of musical
instruments. InProceedings of the InternationalComputer Music Conference (ICMC ’94), September
1994.

[65] H. E. Hurst. Long-term storage capacity of reservoirs.Transactions of the American Society of Civil
Engineers, 116:770–808, 1951.

[66] Raj Jain.The Art of Computer Systems Performance Analysis. John Wiley and Sons, Inc., 1991.

[67] E. Douglas Jensen. A real-time manifesto. http://www.realtime-os.com, 1996.

[68] E. Douglas Jensen, C Douglass Lock, and Hideyuki Tokuda. A time-driven scheduling model for
real-time operating systems. InProceedings of the Real-Time Systems Symposium, pages 112–122,
Februrary 1985.

[69] Joseph A. Kaplan and Michael L. Nelson. A comparison of queueing, cluster, and distributed com-
puting systems. Technical Report NASA TM 109025 (Revision 1), NASA Langley Research Center,
June 1994.

[70] David A. Karr, David E. Bakken, John A. Zinky, and Thomas F. Lawrence. Towards quality of service
for groupware. BBN Corporation (Submitted to ICDCS ’99).

[71] G. Knittel. A parallel algorithm for scientific visualization. InProceedings of the 1996 International
Conference on Parallel Processing (IPPS ’96), volume 2, pages 116–123. IEEE, August 1996.

[72] A. Komatsubara. Psychological upper and lower limits of system response time and user’s prefer-
ance on skill level. In G. Salvendy, M. J. Smith, and R. J. Koubek, editors,Proceedings of the 7th
International Conference on Human Computer Interaction (HCI International 97), volume 1, pages
829–832. IEE, August 1997.

[73] J. Kurose. Open issues and challenges in providing quality of service guarantees in high speed net-
works. ACM Computer Communication Review, 23(1):6–15, January 1993.

[74] James F. Kurose and Renu Chipalkatti. Load sharing in soft real-time distributed computer systems.
IEEE Transactions on Computers, C-36(8):993–1000, August 1987.



200 BIBLIOGRAPHY

[75] John Lehoczky. Real-time queueing theory. InProceedings of the 17th IEEE Real-Time Systems
Symposium (RTSS ’96), pages 186–195, 1996.

[76] John Lehoczky. Real-time queueing network theory. InProceedings of the 18th IEEE Real-Time
Systems Symposium (RTSS ’97), 1997.

[77] Will E. Leland and Teunis J. Ott. Load-balancing heuristics and process behavior. InProceedings of
Performance and ACM SIGMETRICS, volume 14, pages 54–69, 1986.

[78] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the self-similar nature
of ethernet traffic. InProceedings of ACM SIGCOMM ’93, September 1993.

[79] Christopher J. Lindblad, David J. Wetherall, and David L. Tennenhouse. The VuSystem: A program-
ming system for visual processing of digital video. InProceedings of the ACM Multimedia 94. ACM,
October 1994.

[80] M. Litzkow, M. Livny, and M. W. Mutka. Condor — a hunter of idle workstations. InProceedings
of the 8th International Conference of Distributed Computing Systems (ICDCS ’88), pages 104–111,
June 1988.

[81] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard real-time
environment.Journal of the ACM, 20(1):46–61, January 1973.

[82] Bruce Lowekamp, Nancy Miller, Dean Sutherland, Thomas Gross, Peter Steenkiste, and Jaspal
Subhlok. A resource monitoring system for network-aware applications. InProceedings of the 7th
IEEE International Symposium on High Performance Distributed Computing (HPDC), pages 189–
196. IEEE, July 1998.

[83] Bruce Lowekamp, David O’Hallaron, and Thomas Gross. Direct queries for discovering network
resource properties in a distributed environment. InProceedings of the 8th IEEE International Sym-
posium on High Performance Distributed Computing (HPDC99), pages 38–46, August 1999.

[84] MathSoft, Inc.S-Plus User’s Guide, August 1997. See also http://www.mathsoft.com/splus.

[85] The Mathworks, Inc. MATLAB System Identification Toolbox User’s Guide, 1996. see also
http://www.mathworks.com/products/sysid.

[86] The Mathworks, Inc. MATLAB User’s Guide, 1996. see also
http://www.mathworks.com/products/matlab.

[87] Pankaj Mehra.Automated Learning of Load-BalancingStrategies for a Distributed Computer System.
PhD thesis, University of Illinois at Urbana-Champaign, 1993.

[88] Pankaj Mehra and Benjamin W. Wah. Automated learning of workload measures for load balancing
on a distributed system. InProceedings of IPPS ’93, pages III–263–III–270. CRC Press, August
1993.

[89] Nancy Miller and Peter Steenkiste. Network status information for network-aware applications. In
Proceedings of IEEE Infocom 2000, March 2000. To Appear.

[90] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.



BIBLIOGRAPHY 201

[91] Patrick R. Morin. The impact of self-similarity on network performance analysis. Technical Report
Computer Science 95.495, Carleton University, December 1995.

[92] Matt W. Mutka and Miron Livny. The available capacity of a privately owned workstation environ-
ment.Performance Evaluation, 12(4):269–284, July 1991.

[93] Andy Myers, Peter Dinda, and Hui Zhang. Performance characteristics of mirror servers on the
internet. InProceedings of the Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies (IEEE INFOCOM ’99), pages 304–312. IEEE, March 1999. (Volume I).

[94] Klara Nahrstedt and Jonathan M Smith. An application-driven approach to networked multimedia
systems. InProceedings of the 18th Annual Conference on Local Area Computer Networks, pages
361–368. IEEE, 1993.

[95] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn, and
Kevin R. Walker. Agile application-aware adaptation for mobility. InProceedings of the 16th ACM
Symposium on Operating Systems Principles, 1997. To Appear.

[96] Brian D. Noble, M. Satyanarayanan, Giao T. Nguyen, and Randy H. Katz. Trace-based mobile
network emulation. InProceedings of the ACM SIGCOMM Conference, Cannes, France, September
1997.

[97] Object Management Group. Realtime corba: A white paper. http://www.omg.org, December 1996.
In Progess.

[98] Object Management Group. The common object request broker: Architecture and specification (ver-
sion 2.3.1). Technical report, Object Management Group, 1999.

[99] Katia Obraczka and Grig Gheorghiu. The performance of a service for network-aware applications. In
Proceedings of the ACM SIGMETRICS SPDT’98, October 1997. (also available as USC CS Technical
Report 97-660).

[100] Alan V. Oppenheim, Alan S. Willsky, and Ian T. Young.Signals and Systems. Prentice Hall, 1983.

[101] Robert Orfali, Dan Harkey, and Jeri Edwards.The Essential Distributed Objects Survival Guide.
John Wiley and Sons, Inc., New York, New York, 1996.

[102] C. Partridge, T. Mendez, and W. Milliken. Host anycasting service. IETF RFC 1546, November
1993.

[103] Vern Paxson and Sally Floyd. Wide-area traffic: The failure of poisson modeling.IEEE/ACM Trans-
actions on Networking, 3(3):226–244, June 1995.

[104] Andreas Polze, Gerhard Fohler, and Matthias Werner. Predictable network computing. InProceedings
of the 17th InternationalConference on DistributedComputingSystems (ICDCS ’97), pages 423–431,
May 1997.

[105] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.Numerical Recipes
in Fortran. Cambridge University Press, 1986.

[106] A. Prochazka and Jan Uhlir, editors.Signal Analysis and Prediction. Applied and Numerical Har-
monic Analysis Series. Springer Verlag, June 1998.



202 BIBLIOGRAPHY

[107] Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt. Design and performance of an object-
oriented framework for high-speed electronic medical imaging.Usenix Computing Systems Journal,
9(3), November/December 1996. earlier version appeared in the Usenix COOTS Conference, June,
1996.

[108] Raj Rajkumar, Kanaka Juvva, Anastasio Molano, and Shui Oikawa. Resource kernels: A resource-
centric approach to real-time systems. InProceedings of the SPIE/ACM Conference on Multimedia
Computing and Networking, January 1998.

[109] Raj Rajkumar, Chen Lee, John Lehoczky, and Dan Siewiorek. A resource allocation model for QoS
management. InProceedings of the IEEE Real-Time Systems Symposium, December 1997.

[110] D. Rantzau, U. Lang, R. Lang, H. Nebel, A. Wierse, and R. Ruehle. Collaborative and interactive
visualization in a distributed high performance software environment. InProceedings of the Interna-
tional Workshop on High Performance Computing for Computer Graphics and Visualization, pages
207–216, 1995.

[111] S. Reinhardt, J. Larus, and D. Wood. Tempest and typhoon: User-level shared memory. InProceed-
ings of ISCA ’94, pages 325 – 336. ACM, April 1994.

[112] V. J. Ribeiro, R. H. Riedi, M. S. Crouse, and R. G. Baraniuk. Simulation of non-gaussian long-
range-dependent traffic using wavelets. InProceedings of ACM SIGMETRICS ’99, pages 1–12, May
1999.

[113] M. Rinard, D. Scales, and M. Lam. Jade: A high-level machine-independent language for parallel
programming.IEEE Computer, 26(6):28–38, June 1993.

[114] Bikash Sabata, Saurav Chatterjee, Michael Davis, Jaroslaw J. Sydir, and Thomas F. Lawrence. Taxon-
omy for QoS specifications. InProceedings of the Third International Workshop on Object-Oriented
Real-time Dependable Systems (WORDS ’97), February 1997.

[115] Mehrdad Samadani and Erich Kalthofen. On distributed scheduling using load prediction from past
information. Abstracts published in Proceedings of the 14th annual ACM Symposium on the Prin-
ciples of Distributed Computing (PODC’95, pp. 261) and in the Third Workshop on Languages,
Compilers and Run-time Systems for Scalable Computers (LCR’95, pp. 317–320), 1996.

[116] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A low overhead, software-only approach
for supporting fine-grain shared memory. InProceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems, October 1996.

[117] Jennifer M. Schopf and Francine Berman. Stochastic scheduling. InProceedings of Supercomput-
ing ’99, 1999. Also available as Northwestern University Computer Science Department Technical
Report CS-99-03.

[118] W. Schroeder, K. Martin, and B. Lorensen.The Visualization Toolkit: An Object-oriented Approach
to 3D Graphics. Prentice Hall, second edition edition, 1998.

[119] Wolfgang Schwabl, Johannes Reisinger, and Guenter Gruensteidl. A survey of MARS. Technical
Report 16/89, Technische Universitaet Wien, October 1989.

[120] S. Seshan, M. Stemm, and R. H. Katz. SPAND: Shared passive network performance discovery. In
Proceedings of the 1997 USENIX Symposium on Internet Technologies and System (USITS), 97.



BIBLIOGRAPHY 203

[121] C. E. Shannon. A mathematical theory of communication.Bell System Tech. J., 27:379–423, 623–
656, 1948.

[122] Niranjan G. Shivaratri and Phillip Krueger. Two adaptive location policies for global scheduling
algorithms. InProceedings of ICDCS ’90, pages 502–509, May 1990.

[123] Jon Siegal.CORBA Fundamentals and Programming. John Wiley and Sons, Inc., 1996.

[124] Bruce Siegell and Peter Steenkiste. Automatic generation of parallel programs with dynamic load
balancing. InProceedings of the Third International Symposium on High-Performance Distributed
Computing, pages 166–175, August 1994.

[125] G. D. Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods.
Clarendon Press, 1985.

[126] Julius O. Smith. Physical modeling synthesis update.Computer Music Journal, 20(2):44–56, Sum-
mer 1996.

[127] Neil Spring and Rich Wolski. Application level scheduling of gene sequence comparison on meta-
computers. InProceedings of the 12th ACM International Conference on Supercomputing (ICS ’98),
July 1998.

[128] J. Stankovic and K. Ramamritham.Hard Real-Time Systems. IEEE Computer Society Press, 1988.

[129] Sun Microsystems, Inc. Java remote method invocation specification, 1997. Available via
http://java.sun.com.

[130] Murad S. Taqqu, Vadim Teverovsky, and Walter Willinger. Estimators for long-range dependence:
An empirical study.Fractals, 3(4):785–798, 1995.

[131] The Open Group.DCE 1.2.2: Introduction to OSF DCE. The Open Group, September 1997.
http://www.opengroup.org/pubs/catalog/f201.htm.

[132] Howell Tong.Threshold Models in Non-linear Time Series Analysis. Number 21 in Lecture Notes in
Statistics. Springer-Verlag, 1983.

[133] Jeffrey S. Vetter and Daniel A. Reed. Managing performance analysis with dynamic statistical pro-
jection pursuit. InProceedings of Supercomputing ’99 (SC ’99), November 1999.

[134] Steve Vinoski. Distributed object computing with CORBA.C++ Report, July/August 1993.

[135] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: a Mechanism for
Integrated Communication and Computation. InProc. 19th Intl. Conf.. on Computer Architecture,
May 1992.

[136] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible proportional-share resource
management. InProceedings of the First Symposium on Operating Systems Design and Implementa-
tion. Usenix, 1994.

[137] Walter Willinger, Murad S. Taqqu, Will E. Leland, and Daniel V. Wilson. Self-similarity in high-
speed packet traffic: Analysis and modeling of ethernet traffic measurements.Statistical Science,
10(1):67–85, January 1995.



204 BIBLIOGRAPHY

[138] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wilson. Self-similarity through
high-variability: Statistical analysis of ethernet lan traffic at the source level. InProceedings of ACM
SIGCOMM ’95, pages 100–113, 1995.

[139] Victor Fay Wolfe, John K. Black, Bhavani Thuraisingham, and Peter Krupp. Real-time method
invocations in distributed environments. Technical Report 95-244, Department of Computer Science,
University of Rhode Island, January 1996.

[140] Rich Wolski. Forecasting network performance to support dynamic scheduling using the network
weather service. InProceedings of the 6th High-Performance Distributed Computing Conference
(HPDC97), pages 316–325, August 1997. extended version available as UCSD Technical Report
TR-CS96-494.

[141] Rich Wolski, Neil Spring, and Jim Hayes. Predicting the CPU availability of time-shared unix sys-
tems. InProceedings of the Eighth IEEE Symposium on High Performance Distributed Computing
HPDC99, pages 105–112. IEEE, August 1999. Earlier version available as UCSD Technical Report
Number CS98-602.

[142] Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather service: A distributed resource
performance forecasting system.Journal of Future Generation Computing Systems, 1999. To appear.
A version is also available as UC-San Diego technical report number TR-CS98-599.

[143] Gregory Wornell.Signal Processing with Fractals: A Wavelet-Based Approach. Prentice Hall, 1995.

[144] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes. On-line extraction of SCSI
disk drive parameters. InProceedings of ACM SIGMETRICS ’95, pages 146–156, May 1995.

[145] John A. Zinky, David E. Bakken, and Richard E. Schantz. Architectural support for quality of service
for CORBA objects.Theory and Practice of Object Systems, 3(1):55–73, April 1997.


