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Abstract

Recently developed techniques have made it possible to quickly learn ac-

curate probability density functions from data in low-dimensional continu-

ous spaces. In particular, mixtures of Gaussians can be �tted to data very

quickly using an accelerated EM algorithm that employs multiresolution kd-

trees (Moore, 1999). In this paper, we propose a kind of Bayesian network

in which low-dimensional mixtures of Gaussians over di�erent subsets of the

domain's variables are combined into a coherent joint probability model over

the entire domain. The network is also capable of modelling complex depen-

dencies between discrete variables and continuous variables without requiring

discretization of the continuous variables. We present eÆcient heuristic al-

gorithms for automatically learning these networks from data, and perform

comparative experiments illustrating how well these networks model real sci-

enti�c data and synthetic data. We also brie
y discuss some possible im-

provements to the networks, as well as their possible application to anomaly

detection, classi�cation, probabilistic inference, and compression.



1 Introduction

Bayesian networks (otherwise known as belief networks) are a popular

method for representing joint probability distributions over many variables.

(See, e.g., (Pearl, 1988).) A Bayesian network contains a directed acyclic

graph G with one vertex Vi in the graph for each variable Xi in the domain.

The directed edges in the graph specify a set of independence relationships

between the variables. De�ne ~�i to be the set of variables whose nodes in

the graph are \parents" of Vi. The set of independence relationships speci-

�ed by a given graph is then as follows: given the values of ~�i but no other

information,Xi is conditionally independent of all variables corresponding to

nodes that are not Vi's descendants in the graph. This set of independence

relationships allows us to decompose the joint probability distribution P ( ~X)

in the following manner:

P ( ~X) =
NY
i=1

P (Xij ~�i);

where N is the number of variables in the domain. Thus, if in addition to

G we also specify P (Xij ~�i) for every variable Xi, then we have speci�ed a

valid probability distribution P ( ~X) over the entire domain.

Bayesian networks are most commonly used in situations where all the

variables are discrete, largely because it is diÆcult to model complex proba-

bility densities over continuous variables, and diÆcult to model interactions

between continuous and discrete variables. When Bayesian networks with

continuous variables are used, the continuous variables are usually modeled

with simple parametric forms such as multidimensional Gaussians. Some

researchers have recently investigated the use of more complicated contin-

uous distributions within Bayesian networks; for example, weighted sums

of Gaussians have been used to approximate conditional probability density

functions (Driver & Morrell, 1995). Unfortunately, such complex distribu-

tions over continuous variables are usually quite computationally expensive

to learn. If an appropriate Bayesian network structure is known beforehand,

then this expense may not be too problematic, since only N conditional dis-

tributions must be learned. On the other hand, if the dependencies between

variables are not known a priori and the structure must be learned from the

data, then the number of conditional distributions that must be learned and

tested while a structure-learning algorithm searches for a good network can

become unmanageably large.
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However, very fast algorithms for generating complex joint probability

densities over small sets of continuous variables have recently been devel-

oped (Moore, 1999). This paper investigates how these algorithms can be

employed to learn Bayesian networks over many variables, each of which can

be either continuous or discrete. In section 2, we describe the type of param-

eterizations employed in our networks' nodes, and how they are learned from

data given a �xed Bayesian network structure. In section 3, we describe an

algorithm for automatically learning the structures of our Bayesian networks

from data. In section 4, we provide experimental results illustrating the ef-

fectiveness of our methods on two real scienti�c datasets and two synthetic

datasets. In section 5 we discuss possible applications, and �nally in section 6

we discuss a few possible lines of future research.

2 Mix-nets

2.1 General methodology

Suppose that we have a very fast, black-box algorithm A geared not towards

�nding accurate conditional models of the form Pi(Xij ~�i), but rather towards

�nding accurate joint probability models Pi(~Si) over subsets of variables ~Si,

such as Pi(Xi; ~�i). Furthermore, suppose it is only capable of generating

joint models for relatively small subsets of the variables, and that the mod-

els returned for di�erent subsets of variables are not necessarily consistent.

For example, if we were to ask A for two di�erent models P1(X5; X17) and

P2(X5; X24), the marginal distributions P1(X5) and P2(X5) of these models

may be inconsistent. Can we still combine many di�erent models generated

by A into a valid probability distribution over the entire space?

Fortunately, the answer is yes, as long as the models returned by A can be

marginalized exactly. If for any given Pi(Xi; ~�i) we can compute a marginal

distribution Pi( ~�i) that is consistent with it, then we can employ Pi as a

conditional distribution Pi(Xij ~�i) trivially as follows:

Pi(Xij ~�i) = Pi(Xi; ~�i)=Pi( ~�i):

In this case, given a directed acyclic graph G specifying a Bayesian net-

work structure over N variables, we can simply use A to acquire N models

Pi(Xi; ~�i), marginalize these models, and string them together to form a
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probability distribution over the entire space:

P ( ~X) =
NY
i=1

Pi(Xi; ~�i)=Pi( ~�i)

A simple but key observation is that even though the marginals of di�erent

Pi's may be inconsistent with each other, the Pi's are only used conditionally,

and in a manner that prevents these inconsistencies from actually causing the

overall model to become inconsistent. Of course, the fact that there are incon-

sistencies at all | suppressed or not | means that there is a certain amount

of redundancy in the overall model. However, if allowing such redundancy

lets us employ a particularly fast and e�ective model-learning algorithm A,

it may be worth it.

Previous research has similarly conditionalized joint models over subsets

of variables in order to use them within Bayesian networks. For example, the

conditional distribution of each variable in the network given its parents can

be modeled by conditionalizing another \embedded" Bayesian network that

speci�es the joint between the variable and its parents (Heckerman & Meek,

1997a). (Some theoretical issues concerning the interdependence of parame-

ters in such models appear in (Heckerman & Meek, 1997a) and (Heckerman

& Meek, 1997b).) Joint distributions formed by convolving a Gaussian kernel

function with each of the datapoints have also been conditionalized for use

in Bayesian networks over continuous variables (Hofmann & Tresp, 1995).

2.2 Handling continuous variables

Suppose for the moment that ~X contains only continuous values. What
sorts of models might we want A to return? One powerful type of model
for representing probability density functions over small sets of variables is
a Gaussian mixture model (see e.g. (Duda & Hart, 1973)). Let ~sj represent
the values that the jth datapoint in the dataset D assigns to a variable set

of interest ~S. In a Gaussian mixture model over ~S, we assume that the data
are generated independently through the following process: for each ~sj in
turn, nature begins by randomly picking a class, ck, from a discrete set of
classes c1; : : : ; cM . Then nature draws ~sj from a multidimensional Gaussian
whose mean vector ~�k and covariance matrix �k depend on the class. This
produces a distribution of the following mathematical form:

P (~Sj~�) =
MX

k=1

�k(2�jj�kjj)
� 1

2 exp(�
1

2
(~S � ~�k)

T��1
k (~S � ~�k))
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where �k represents the probability of a point coming from the kth class,

and
~�T = f�1; : : : ; �M ; ~�1; : : : ; ~�M ;�1; : : : ;�Mg

denotes the entire set of the mixture's parameters. It is possible to model

any continuous probability distribution with arbitrary accuracy by using a

Gaussian mixture with a suÆciently large M .

Given a Gaussian mixture model Pi(Xi; ~�i), it is easy to compute the

marginalization Pi( ~�i): the marginal mixture has the same number of Gaus-

sians as the original mixture, with the same �'s. The means and covariances

of the marginal mixture are simply the means and covariances of the orig-

inal mixture with all elements corresponding to the variable Xi removed.

Thus, Gaussian mixture models are suitable for combining into global joint

probability density functions using the methodology described in section 2.1,

assuming all variables in the domain are continuous. This is the class of mod-

els we employ for continuous variables in this paper, although many other

classes may be used in an analogous fashion.

Note that while the functional form of each Pi(Xij ~�i) is expressible as a

mixture of Gaussians over Xi for any speci�c set of values assigned to ~�i,

it is not generally expressible as a �nite mixture of Gaussians over Xi [ ~�i.

For example, a two-variable mixture P (X;�) composed of two axis-aligned

Gaussians is shown in Figure 1, along with the corresponding P (Xj�). For
any �xed value � of �, P (Xj�) is a mixture of two Gaussians, but P (Xj�)
as a function of both X and � cannot be expressed as a �nite mixture of

Gaussians. (To see this, note that each of the two \ridges" in the bottom

half of the plot for P (Xj�) extends to in�nity in one direction | one in the

�� direction and one in the +� direction.)

The functional form of the conditional distribution we use is similar

to that employed in previous research by conditionalizing a joint distribu-

tion formed by convolving a Gaussian kernel function with all the data-

points (Hofmann & Tresp, 1995). The di�erences are that our distributions

use fewer Gaussians, but these Gaussians have varying weights and varying

non-diagonal covariance matrices. The use of fewer Gaussians makes our

method more suitable for some applications such as compression, and may

speed up inference. (Our method may also yield more accurate models in

many situations, but we have yet to verify this experimentally.)
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Figure 1: Contour plots for a simple Gaussian mixture P (X;�) (on the left)

and the corresponding conditional distribution P (Xj�) (on the right). X is

the vertical axis and � is the horizontal axis.

2.2.1 Learning Gaussian mixtures from data

The EM algorithm is a popular method for learning mixture models from data

(see, e.g., (Dempster et al., 1977)). The algorithm is an iterative algorithm

with two steps per iteration. The Expectation or \E" step calculates the

distribution over the unobserved mixture component variables, using the

current estimates for the model's parameters. The Maximization or \M"

step then re-estimates the model's parameters to maximize the likelihood

of both the observed data and the unobserved mixture component variables,

assuming the distribution over mixture components calculated in the previous

\E" step is correct. For Gaussian mixture models, the steps of the EM

algorithm work as follows:

� E step: Given the current network parameters ~�, for each datapoint ~sj
and each class ck, calculate the extent wjk to which class ck \owns" ~sj:

wjk = P (ckjsj; ~�).

� M step: Adjust ~� as follows:

�k =
swk

R
; ~�k =

1

swk

RX
j=1

wjk~sj;

�j =
1

swk

RX
j=1

wjk(~sj � ~�k)(~sj � ~�k)
T
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where R is the number of datapoints in the dataset and swk =
PR

j=1wjk.

Each iteration of the EM algorithm increases the likelihood of the ob-

served data or leaves it unchanged; if it leaves it unchanged, this usually

indicates that the likelihood is at a local maximum. Unfortunately, each

iteration of the basic algorithm described above is slow, since it requires a

entire pass through the data. Instead, we use an accelerated EM algorithm in

which multiresolution kd-trees (Moore et al., 1997) are used to dramatically

reduce the computational cost of each iteration (Moore, 1999). We refer the

interested reader to this previous paper (Moore, 1999) for details.

An important remaining issue is how to choose the appropriate number of

Gaussians, M , for the mixture. If we restrict ourselves to too few Gaussians,

we will fail to model the data accurately; on the other hand, if we allow

ourselves too many, then we may \over�t" the data and our model may

generalize poorly. A popular way of dealing with this tradeo� is to choose the

model maximizing a scoring function that includes penalty terms related to

the number of parameters in the model. We employ the Bayesian Information

Criterion (Schwarz, 1978), or BIC, to choose between mixtures with di�erent

numbers of Gaussians. The BIC score for a given probability model P 0(~S) is

as follows:

BIC(P 0) = logP 0(DS)�
logR

2
jP 0j

where DS is the dataset D restricted to the variables of interest ~S, R is the

number of datapoints in the dataset, and jP 0j is the number of parameters
in P 0.

Rather than re-run the EM algorithm to convergence for many di�erent

choices of M and choosing the resulting mixture that maximizes the BIC

score, we use a heuristic algorithm that starts with a small number of Gaus-

sians and stochastically tries adding or deleting Gaussians as it progresses.

Gaussians with high overall probabilities are sometimes each split into two

Gaussians, and Gaussians with low overall probabilities are sometimes elimi-

nated. After the number of Gaussians is changed in this fashion, the EM al-

gorithm is run for a few more iterations. If the resulting mixture has a higher

BIC score than the BIC score of the mixture with the previous number of

Gaussians, then the algorithm continues; otherwise it resets its distribution

back to the mixture with the previous number of Gaussians, runs the EM

algorithm for a few more iterations, and then continues stochastically from
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there. The details of this algorithm are described in a separate forthcoming

paper (Sand & Moore, 2000).

2.3 Handling discrete variables

Suppose now that a set of variables ~Si we wish to model includes discrete

variables as well as continuous variables. Let ~Qi be the discrete variables in
~Si, and ~Ci the continuous variables in ~Si. One simple model for Pi( ~Qi; ~Ci) is a

lookup table with an entry for each possible set ~qi of assignments to ~Qi. The

entry in the table corresponding to a particular ~qi contains two things: the

marginal probability Pi(~qi), and a Gaussian mixture modeling the conditional

distribution Pi( ~Cij~qi). Let us refer to tables of this form as mixture tables.

We obtain the mixture table's estimate for each Pi(~qi) directly from the

data: it is simply the fraction of the records in the dataset that assigns the

values ~qi to ~Qi. Given an algorithm A for learning Gaussian mixtures from

continuous data, we use it to generate each conditional distribution Pi( ~Cij~qi)
in the mixture table by calling it with the subset of the dataset D that is

consistent with the values speci�ed by ~qi.

Suppose now that we are given a Bayesian network structure over the

entire set of variables, and for each variable Xi we are given a mixture table

for Pi(~Si) = Pi(Xi; ~�i). We must now calculate new mixture tables for

each of the marginal distributions Pi( ~�i) so that we can use them for the

conditional distributions Pi(Xij ~�i) = Pi(Xi; ~�i)=Pi( ~�i). Let ~Ci represent

the continuous variables in fXig [ ~�i; ~Qi represent the discrete variables in

fXig [ ~�i; ~C�i
represent the continuous variables in ~�i; and ~Q�i

represent

the discrete variables in ~�i. (Either ~Q�i
= ~Qi or ~C�i

= ~Ci, depending on

whether Xi is continuous or discrete.)

If Xi is continuous, then the marginalized mixture table for Pi( ~�i) has

the same number of entries as the original table for Pi(Xi; ~�i), and the es-

timates for P ( ~Qi) in the marginalized table are the same as in the original

table. For each combination of assignments to ~Qi, we simply marginalize the

appropriate Gaussian mixture Pi( ~Cij ~Qi) = Pi( ~Cij ~Q�i
) in the original table to

a new mixture Pi( ~C�i
j ~Q�i

), and use this new mixture in the corresponding

spot in the marginalized table.

If Xi is discrete, then for each combination of assignments to ~Q�i
, we

combine several di�erent Gaussian mixtures for various Pi( ~C�i
j ~Qi)'s into a

new Gaussian mixture for Pi( ~C�i
j ~Q�i

). First, the values of Pi( ~Q�i
) in the
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marginalized table are computed trivially from the original table as Pi( ~Q�i
) =P

Xi
Pi(Xi; ~Q�i

). Pi(Xij ~Q�i
) is then calculated as Pi(Xi; ~Q�i

)=Pi( ~Q�i
). Fi-

nally, we combine the Gaussian mixtures corresponding to di�erent values of

Xi according to the relationship

Pi( ~C�i
j ~Q�i

) =
X
Xi

Pi(Xij ~Q�i
)Pi( ~C�i

j ~Qi):

We have now described the steps necessary to use mixture tables in order

to parameterize Bayesian networks over domains with both discrete and con-

tinuous variables. Note that mixture tables are not particularly well-suited

for dealing with discrete variables that can take on many possible values,

or for scenarios involving many dependent discrete variables | in such sit-

uations, the continuous data will be shattered into many separate Gaussian

mixtures, each of which will have little support. Better ways of dealing with

discrete variables are undoubtedly possible, but we leave them for future

research (see section 6.3). (We will brie
y discuss how we currently han-

dle mixture tables' potential problems with sparse data in our experimental

results section.)

3 Learning mix-net structures

Given a Bayesian network structure over a domain with both discrete and

continuous variables, we now know how to learn mixture tables describ-

ing the joint probability of each variable and its parent variables, and how

to marginalize these mixture tables to obtain the conditional distributions

needed to compute a coherent probability function over the entire domain.

But what if we don't know a priori what dependencies exist between the

variables in the domain | can we learn these dependencies automatically

and �nd the best Bayesian network structure on our own, or at least �nd a

\good" network structure?

In general, �nding the optimal Bayesian network structure with which

to model a given dataset is NP-complete (Chickering, 1996), even when all

the data is discrete and there are no missing values or hidden variables. A

popular heuristic approach to �nding networks that model discrete data well

is to hillclimb over network structures, using a scoring function such as the

BIC as the criterion to maximize. (See, e.g., (Heckerman et al., 1995).)

Unfortunately, hillclimbing usually requires scoring a very large number of
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networks. While our algorithm for learning Gaussian mixtures from data is

comparatively fast for the complex task it performs, it is still too expensive to

re-run on the hundreds of thousands of di�erent variable subsets that would

be necessary to parameterize all the networks tested over an extensive hill-

climbing run. (Such a hillclimbing algorithm has previously been used to �nd

Bayesian networks suitable for modeling continuous data with complex dis-

tributions (Hofmann & Tresp, 1995), but in practice this method is restricted

to datasets with relatively small numbers of variables and datapoints.)

However, there are other heuristic algorithms that often �nd networks

very close in quality to those found by hillclimbing but with much less com-

putation. A frequently used class of algorithms involves measuring all pair-

wise interactions between the variables, and then constructing a network that

models the strongest of these pairwise interactions (e.g. (Chow & Liu, 1968),

(Sahami, 1996), (Friedman et al., 1999)). We use such an algorithm in this

paper to automatically learn the structures of our Bayesian networks.

In order to measure the pairwise interactions between the variables, we

start with an empty Bayesian network B� in which there are no arcs | i.e.,

in which all variables are assumed to be independent. We use our mixture-

learning algorithm to calculate the parameters in this empty network, and

then calculate this network's BIC score. The BIC score of a given Bayesian

network B is simply the log-likelihood of the dataset D given the network,

minus a penalty term proportional to the number of parameters in the net-

work:

BIC(B) = logP (DjB)�
logR

2
jBj;

where jBj is the number of parameters in the entire network B. The num-

ber of parameters in the network is equal to the sum of the parameters in

each network node, where the parameters of a node for variable Xi are the

parameters of Pi(Xi;�).

Once we have calculated the BIC score of the empty network B�, we

calculate the BIC score of every possible Bayesian network containing exactly

one arc. With N variables, there are
�
N

2

�
or O(N2) such networks. Let Bij

denote the network with a single arc from Xi to Xj. Note that to compute

the BIC score of Bij, we need not recompute the mixture tables for any

variable other than Xj, since the others can simply be copied from B�. Now,

de�ne I(Xi; Xj), the \importance" of the dependency between variable Xi
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and Xj, as follows:

I(Xi; Xj) = BIC(Bij)� BIC(B�):

After computing all the I(Xi; Xj)'s, we initialize our current working

network B to the empty network B�, and then greedily add arcs to B using

the I(Xi; Xj)'s as hints for what arcs to try adding next. At any given point

in the algorithm, the set of variables is split into two mutually exclusive

subsets, DONE and PENDING. All variables begin in the PENDING set.

Our algorithm proceeds by selecting a variable in the PENDING set, adding

arcs to that variable from other variables in the DONE set, moving the

variable to the DONE set, and repeating until all variables are in DONE.

High-level pseudo-code for the algorithm appears in Figure 2.

The algorithm generates and tests O(N2) mixture tables containing two

variables each in order to calculate all the pairwise dependency strengths

I(Xi; Xj), and then O(N � K) more tables containing MAXPARS + 1 or

fewer variables each during the greedy network construction. K is a user-

de�ned parameter that determines the maximum number of potential parents

evaluated for each variable during the greedy network construction.

Note that as the algorithm is described above, the step in the algorithm

labeled with a \y" might appear to take O(N2) time, thus bumping the

overall time of the algorithm up to O(N3). By caching information between

iterations, the cost of this step per iteration could be reduced to O(N logK),

for a total cost of O(N2 logK). However, this savings is largely irrelevant;

the real cost of the structure-learning algorithm lies in the O(N2) calls to

the mixture-table learning algorithm. Each of these calls typically takes at

least O(R) time, where R is the number of records in the dataset, and R is

typically much larger than N .

If MAXPARS is set to 1 and I(Xi; Xj) is symmetric, then our heuristic

algorithm reduces to a maximum spanning tree algorithm (or to a maximum-

weight forest algorithm if some of the I's are negative). Out of all possible

Bayesian networks in which each variable has at most one parent, this maxi-

mum spanning tree is the Bayesian network B1

opt that maximizes the scoring

function. (This is a trivial generalization of the well-known algorithm (Chow

& Liu, 1968) for the case where the unpenalized log-likelihood is the objec-

tive criteria being maximized.) If MAXPARS is set above 1, our heuristic

algorithm will always model a superset of the dependencies in B1

opt, and will

always �nd a network with at least as high a BIC score as B1

opt's.
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� B := B�, PENDING := the set of all variables, DONE := fg

� While there are still variables in PENDING:

{ Consider all pairs of variablesXd and Xp such that Xd is in DONE

and Xp is in PENDING:
y Of these, let Xmax

d and Xmax
p be the

pair of variables that maximizes I(Xd; Xp). Our algorithm se-

lects Xmax
p as the next variable to consider adding arcs to. (Ties

are handled arbitrarily, as is the case where DONE is currently

empty.)

{ Let K 0 = min(K; jDONEj), where K is a user-de�ned parameter.

Let X1

d ; X
2

d ; : : :X
K0

d denote the K 0 variables in DONE with the

highest values of I(X i
d; X

max
p ), in descending order of I(X i

d; X
max
p ).

{ For i = 1 to K 0:

� If Xmax
p now has MAXPARS parents in B, or if I(X i

d; X
max
p )

is less than zero, break out of the for loop over i and do not

consider adding any more parents to Xmax
p .

� Let B0 be a network identical to B except with an additional

arc from X i
d to X

max
p . Call our mixture-learning algorithm to

update the parameters for Xmax
p 's node in B0, and compute

BIC(B0).

� If BIC(B0) > BIC(B); B := B0.

{ Move Xmax
p from PENDING to DONE.

Figure 2: Our greedy network structure learning algorithm.
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There are a few details that prevent our I(Xi; Xj)'s from being perfectly

symmetric. Because the mixtures we use have redundant parameters, the

number of parameters in Bij and Bji are not necessarily equal, and so the

two networks' BIC scores may be di�erent even if the distributions they

model are identical. Furthermore, the distributions modeled by the two

networks will not generally be identical, since our mixture-learning algorithm

is stochastic and will not usually �nd distributions with the truly highest

possible likelihoods. Also, even in scenarios in which all the variables are

discrete, the two distributions may not be identical because of the slight

adjustments we make in our models' parameters in order to handle sparse

data (as described in the experimental results section). In practice, however,

I is close enough to symmetric that it's often worth pretending that it is

symmetric, since this cuts down the number of calls we need to make to our

mixture-learning algorithm in order to calculate the I(Xi; Xj)'s by roughly

a factor of 2.

Since learning joint distributions involving real variables is expensive,

calling our mixture table generator even just O(N2) times to measure all of

the I(Xi; Xj)'s can take a prohibitive amount of time. We note that the

I(Xi; Xj)'s are only used to choose the order in which the algorithm selects

variables to move from PENDING to DONE, and to select which arcs to try

adding to the graph. The actual values of I(Xi; Xj) are irrelevant | the

only things that matter are their ranks and whether they are greater than

zero. Thus, in order to reduce the expense of computing the I(Xi; Xj)'s, we

can try computing them on a discretized version of the dataset rather than

the original dataset that includes continuous values. The resulting ranks of

I(Xi; Xj) will not generally be the same as they would if they were computed

from the original dataset, but we would expect them to be highly correlated

in many practical circumstances.

Our structure-learning algorithm is similar to the \Limited Dependence

Bayesian Classi�ers" previously employed to learn networks for classi�ca-

tion (Sahami, 1996), except that our networks have no special target vari-

able, and we add the potential parents to a given node one at a time to

ensure that each actually increases the network's score. Alternatively, our

learning algorithm can be viewed as a restriction of the \Sparse Candidate"

algorithm (Friedman et al., 1999) in which only one set of candidate parents

is generated for each node, and in which the search over network structures

restricted to those candidate parents is performed greedily. (We have also

previously used a very similar algorithm for learning networks with which to
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compress discrete datasets (Davies & Moore, 1999).)

4 Experiments

In this section, we compare the performance of the network-learning algo-

rithm described above to the performance of four other algorithms. Each of

the four other algorithms is designed to be similar to our network-learning

algorithm except in one important respect. First we describe a few details

about how our primary network-learning algorithm is used in our experi-

ments, and then we describe the four alternative algorithms.

4.1 Algorithms

4.1.1 Mix-net learner

This is our primary network-learning algorithm. For our experiments on both

datasets, we set MAXPARS to 3 and K to 6. When generating any given

Gaussian mixture, we give our accelerated EM algorithm thirty seconds to

�nd the best mixture it can. In order to make the most of these thirty-second

intervals, we also limit our overall training algorithm to using a sample of at

most 10,000 datapoints from the training set. Rather than computing the

I(Xi; Xj)'s with the original dataset, we compute them with a version of the

dataset in which each continuous variable has been discretized to 16 di�erent

values. The boundaries of the 16 bins for each variable's discretization are

chosen so that the number of datapoints in each bin is approximately equal.

Mixture tables containing many discrete variables (or a few discrete vari-

ables each of which can take on many values) can severely over�t data, since

some combinations of the discrete variables may occur rarely in the data.

For now, we attempt to address this problem as follows:

� The estimates for the distribution Pi( ~Qi) over the discrete variables

in any given mixture table are smoothed by adding half a datapoint's

worth of probability mass to each possible combination and renormal-

izing accordingly.

� In addition to the Gaussian components, each mixture over continu-

ous variables contains a uniform component. This uniform component

represents a constant density over a hypervolume bounding the entire
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dataset. We �x this uniform component's total probability mass at half

a datapoint's worth, and renormalize the distribution accordingly. If

there are too few datapoints in the mixture to �t even a single Gaus-

sian, then the mixture contains only this uniform component, which is

assigned a total probability mass of one in this special case.

Whenever Gaussian mixtures are learned, there is a possibility that a

Gaussian will become ill-conditioned and further mathematical operations

will fail due to roundo� error. Even worse, a Gaussian may shrink to an

arbitrarily small size around a single datapoint and thus contribute an ar-

bitrarily large amount to the log-likelihood of the training data. We help

prevent these conditions from occurring by adding a small constant to the

diagonal elements of all Gaussians' covariance matrices. (A more principled

but slightly more complex approach would be to use a prior over the Gaus-

sians' parameters, such as a normal-Wishart distribution.)

4.1.2 Independent Mixtures

This algorithm will help us illustrate how much leverage our mix-net learning

algorithm gets by modeling any dependencies between variables at all. It is

identical to our mix-net learning algorithm in almost all respects; the main

di�erence is that here the MAXPARS parameter has been set to zero, thus

forcing all variables to be modeled independently. We also give this algorithm

more time to learn each individual Gaussian mixture, so that it is given a

total amount of computational time at least as great as that used by our

mix-net learning algorithm.

4.1.3 Trees

This algorithm will help us illustrate how much leverage our mix-net learning

algorithm gets by generating models more complex than the optimal tree-

shaped (or forest-shaped) network. It is identical to our primary network-

learning algorithm in all respects except that the MAXPARS parameter has

been set to one, and we give it more time to learn each individual Gaussian

mixture (as we did for the Independent Mixtures algorithm).
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4.1.4 Single-Gaussian Mixtures

This algorithm will help us illustrate how much leverage our mix-net learn-

ing algorithm gets by using mixtures containing multiple Gaussians. It is

identical to our primary network-learning algorithm except for the following

di�erences. When learning a given Gaussian mixture Pi( ~Cij ~Qi), we use a sin-

gle multidimensional Gaussian rather than a mixture. (Note, however, that

some of the marginal distributions Pi( ~C�i
j ~Q�i

) may contain multiple Gaus-

sians when the variable marginalized away is discrete.) Since single Gaussians

are much easier to learn in high-dimensional spaces than mixtures are, we

allow this single-Gaussian algorithm much more freedom in creating large

mixtures. We set both MAXPARS and K to the total number of variables

in the domain minus one. We also allow the algorithm to use all datapoints

in the training set rather than restrict it to a sample of 10,000. Finally, we

use the original real-valued dataset rather than a discretized version of the

dataset when computing each pairwise interaction I(Xi; Xj).

Disclaimer: when modeling a set of N continuous variables (and no dis-

crete variables) with this type of mix-net, the overall distribution modeled is

simply a N-dimensional Gaussian. Unfortunately, a multidimensional Gaus-

sian with a full covariance matrix would take O(N3) (mostly redundant)

parameters to model with a mix-net rather than the usual O(N2). (See sec-

tion 6.1 for one possible partial workaround to this problem.) On the other

hand, mix-nets do have the added 
exibility of being able to model some

important dependencies between N continuous variables without modeling

all O(N2) of them, and of being able to model interactions between discrete

and continuous variables.

4.1.5 Pseudo-Discrete Bayesian Networks

This algorithm is similar to our primary network-learning algorithm in that

it uses the same sort of greedy algorithm to select which arcs to try adding to

the network. However, the networks this algorithm produces do not employ

Gaussian mixtures. Instead, the distributions it uses are closely related to

the distributions that would be modeled by a Bayesian network for a com-

pletely discretized version of the dataset. For each continuous variable Xi

in the domain, we break Xi's range into F buckets. The boundaries of the

buckets are chosen so that the number of datapoints lying within each bucket

is approximately equal. The conditional distribution for Xi is modeled with
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a table containing one entry for every combination of its parent variables,

where each continuous parent variable's value is discretized according to the

F buckets we have selected for that parent variable. Each entry in the table

contains a histogram for Xi recording the conditional probability that Xi's

value lies within the boundaries of each of Xi's F buckets. We then translate

the conditional probability associated with each bucket into a conditional

probability density spread uniformly throughout the range of that bucket.

(Discrete variables are handled in a similar manner, except the translation

from conditional probabilities to conditional probability densities is not per-

formed.)

When performing experiments with this algorithm, we re-run it for several

di�erent choices of F : 2, 4, 8, 16, 32, and 64. Of the resulting networks, we

pick the one that maximizes the BIC. When the algorithm uses a particular

value for F , the variable interactions I(Xi; Xj) are computed using a version

of the dataset that has been discretized accordingly, and then arcs are added

greedily as in our mix-net learning algorithm. The networks produced by

this algorithm do not have redundant parameters as our mix-nets do, as

each node contains only a model of its variable's conditional distribution

given its parents rather than a joint distribution.

Disclaimer: much research has been performed on better ways of discretiz-

ing real variables in Bayesian networks (e.g. (Kozlov & Koller, 1997), (Monti

& Cooper, 1998a)). The simple discretization algorithm discussed here and

currently implemented for our experiments is certainly not state-of-the-art.

4.2 Datasets and results

We tested the previously described algorithms on two di�erent datasets taken

from real scienti�c experiments. The \Bio" dataset contains data from a

high-throughput biological cell assay. There are 12,671 records and 31 vari-

ables. 26 of the variables are continuous; the other �ve are discrete. Each

discrete variable can take on either two or three di�erent possible values.

The \Astro" dataset contains data taken from the Sloan Digital Sky Sur-

vey, an extensive astronomical survey currently in progress. This dataset

contains 111,456 records and 68 variables. 65 of the variables are continuous;

the other three are discrete, with arities ranging from three to 81.

Two minor adjustments are made to each of the original datasets be-

fore handing them to any of our learning algorithms. First, all continuous

variables are scaled so that all values lie within [0; 1]. This helps put the log-
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Bio Astro

Independent Mixtures 33300 +/- 500 2746000 +/- 5000

Single-Gaussian Mixtures 65700 +/- 200 2436000 +/- 5000

Pseudo-Discrete 59100 +/- 100 3010000 +/- 1000

Tree 74600 +/- 300 3280000 +/- 8000

Mix-Net 80900 +/- 300 3329000 +/- 5000

Figure 3: Mean log-likelihoods (and the standard deviations of the means)

of test sets in a 10-fold cross-validation.

likelihoods we report in context, and possibly helps prevent problems with

limited machine 
oating-point representation. Second, the value of each con-

tinuous value in the dataset is randomly perturbed by adding to it a value

uniformly selected from [-.0005, .0005]. This noise is added to eliminate any

deterministic relationships or delta functions in the data. The log-likelihood

of a continuous dataset exhibiting even a single deterministic relationship

between two variables is in�nite when given the correct model; in such a

situation, it is not clear how meaningful log-likelihood comparisons between

competing learning algorithms would be. We add uniform noise rather than

Gaussian noise in order to prevent the introduction of a bias that favors

Gaussian mixtures.

For each dataset and each algorithm, we performed ten-fold cross-

validation, and recorded the log-likelihoods of the test sets given the resulting

models. Figure 3 shows the mean log-likelihoods of the test sets according

to models generated by our �ve network-learning algorithms, as well as the

standard deviation of the means. (Note that the log-likelihoods are positive

since most of the variables are continuous and bounded within [0; 1], which

implies that the models usually assign probability densities greater than one

to regions of the space containing most of the datapoints. The probability

distributions modeled by the networks are properly normalized, however.)

On the Bio dataset, our primary mix-net learner achieved signi�cantly

higher log-likelihood scores than the other four model learners. The fact

that it signi�cantly outperformed the independent mixture algorithm and the

tree-learning algorithm indicates that it is e�ectively utilizing relationships

between variables, and that it includes useful relationships more complex

than mere pairwise dependencies. The fact that its networks outperformed

the pseudo-discrete networks and the single-Gaussian networks indicates that

the Gaussian mixture models used for the network nodes' parameterizations
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helped the network achieve much better prediction than possible with simpler

parameterizations. Our primary mix-net learning algorithm took about an

hour and a half of CPU time on a 400 MHz Pentium II to generate its model

for each of the ten cross-validation splits for this dataset.

The mix-net learner similarly outperformed the other algorithms on the

Astro dataset. The algorithm took about three hours of CPU time to gener-

ate its model for each of the cross-validation splits for this dataset.

As additional tests of the mix-nets' robustness, we constructed two syn-

thetic datasets from the Bio dataset. For the �rst synthetic dataset, all

real values in the original dataset were discretized in a manner identical to

the manner in which the pseudo-discrete networks discretized them, with

16 buckets per variable. (Out of the many di�erent numbers of buckets we

tried with the pseudo-discrete networks, 16 was the number that worked

best on the Bio dataset.) Each discretized value was then translated back

into a real value by sampling it uniformly from the corresponding bucket's

range. The resulting synthetic dataset is similar in many respects to the

original dataset, but its probability densities are now composed of piece-

wise constant axis-aligned hyperboxes | precisely the kind of distributions

that the pseudo-discrete networks model. This synthetic dataset causes the

pseudo-discrete network learning algorithm to learn a network identical to

the network it learns from the original dataset; the pseudo-discrete network's

test-set log-likelihood performance on this synthetic dataset is also identical

to its test-set log-likelihood performance on the original data. However, we

might expect mix-nets to perform much worse than the pseudo-discrete net-

works on this synthetic dataset, since the synthetic dataset's distributions

may be much harder to represent with mixtures of Gaussians. As it turns

out, the test-set performance of mix-nets on this synthetic dataset is worse

than the performance of pseudo-discrete networks, but not dramatically so:

the mix-net's average test-set log-likelihood on the synthetic drops down to

57600+/-200. This is signi�cantly worse than the pseudo-discrete networks'

log-likelihood, which stayed at 59100+/-100, but this di�erence in scores

is not nearly as large as the di�erence on the original dataset, where the

mix-nets clearly dominated.

For the second synthetic dataset, we generated 12,671 samples from the

network learned by the Independent Mixtures algorithm during one of it

cross-validation runs on the Bio dataset. The test-set log-likelihood of the

models learned by the Independent Mixtures algorithm on this dataset is

32580 +/- 60, while our primary mix-net learning algorithm scored a slightly
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worse 31960 +/- 80. However, the networks learned by the mix-net learning

algorithm did not actually model any spurious dependencies between vari-

ables. The networks learned by the Independent Mixtures algorithm were

better only because the Independent Mixtures algorithm was given more

time to learn each of its Gaussian mixtures.

5 Possible applications for Mix-Nets

5.1 Classi�cation

So far, we have only discussed learning mix-nets in situations where our ob-

jective is to �nd a network that accurately models the distribution over the

entire set of variables. What if our goal is to accurately predict the distribu-

tion of one discrete target variable given the values of all the other variables

in the domain? A network learned by an algorithm optimized to accurately

model the distribution over all the variables is not likely to fare well compared

to networks learned by algorithms that take the speci�c prediction task at

hand into consideration.

A simple, popular and e�ective type of classi�er, the Naive Bayes classi-

�er, assumes that the non-target variables are all independent of each other

given the value of the target variable. This corresponds to using a Bayesian

network in which there is an arc from the target variable to each non-target

variable, but no arcs between the non-target variables. The non-target vari-

ables are usually assumed to be discrete; however, continuous variables have

been handled in the past by using Gaussians or kernel density estimators for

the conditional distributions of continuous variables (e.g., (John & Langley,

1995)).

A recently developed type of classi�er, Tree Augmented Naive Bayes

(TAN) (Friedman et al., 1997), augments the network structure of Naive

Bayes with additional arcs between the non-target variables, where each non-

target variable is conditioned on at most one other non-target variable. This

classi�er has been extended to handle continuous variables by representing

each continuous variable in the network twice: once in a discretized form,

and once in a simple conditional parametric form(Friedman et al., 1998).

Our greedy network-learning algorithm can easily be modi�ed to learn

mix-net classi�ers similar in structure to TAN classi�ers. By raising our

algorithm's MAXPARS parameter, it can also be used to learn classi�ers
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with more complicated network structures. The network structure-learning

algorithm would be very similar to the previously developed \Limited De-

pendence Bayesian Classi�ers" algorithm (Sahami, 1996). The mix-nets'

more 
exible parameterizations would allow these classi�ers to model com-

plex interactions between continuous and discrete variables without requir-

ing discretization of the continuous variables. Furthermore, since mix-nets

can have discrete variables conditioned on continuous variables, the same

network-learning algorithm can be used to learn networks for predicting the

conditional probability density of a continuous variable given the values of

all the other continuous and discrete variables in the domain. (Using these

models may be somewhat computationally expensive, however, since the con-

ditional distribution over the target variable is not obviously expressible in

closed form and one may have to resort to numeric integration, for example.)

5.2 Anomaly detection

One obvious application for accurate joint probability models over large num-

bers of discrete and continuous variables is anomaly detection. The models

can be used online to help detect the presence of abnormally low-probability

situations. Alternatively, they can be used o�ine on the same datasets

from which they are learned in order to rank the datapoints by their log-

likelihoods. If the learned models are accurate, the datapoints assigned low

log-likelihoods are probably unusual in reality as well. For example, we are

currently exploring the use of networks learned from astronomical survey data

to automatically select unusual astronomical objects for further inspection

by human investigators.

5.3 Inference

While it is possible to perform exact inference in some kinds of networks

modeling continuous values (e.g. (Driver & Morrell, 1995), (Alag, 1996)),

exact inference in arbitrarily-structured mix-nets with continuous variables

may not be possible. However, inference in these networks can be performed

via stochastic sampling methods. If we are given a mixture table modeling

P (~Y ; ~X) and speci�c values ~x for ~X, it is possible to compute a conditional

mixture table P (~Y j~x). This conditional mixture table can then be sampled

straightforwardly. Thus, given a mix-net, we can easily employ likelihood

weighting to generate a set of weighted datapoints representing a sample
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from any conditional distribution we desire. Whether likelihood weighting or

other sampling methods will yield acceptably accurate inference results in a

reasonable amount of time remains to be seen. Other approximate inference

methods such as variational inference or discretization-based inference are

also worth investigating.

5.4 Data compression

Many popular and powerful methods for data compression such as arithmetic

coding (see, e.g., (Witten et al., 1987)) rely on explicit probabilistic models

of the data they are compressing. Recent research ((Frey, 1998), (Davies &

Moore, 1999)) has shown that using automatically learned Bayesian networks

for these models can result in compression ratios dramatically better than

those achievable by gzip or bzip2, while maintaining megabyte per second

decoding speeds (Davies & Moore, 1999). Can this approach be extended to

real-valued data?

In order to compress real-valued data, some loss of accuracy must usually

be accepted | after the �rst few signi�cant �gures, real values typically

become impossible to model as anything other than incompressible random

noise. Thus, the question is: how much can the data be compressed if we are

willing to accept some given average loss of accuracy in the reconstruction?

Lossily compressing values using a Gaussian model is a well-studied problem

(see, e.g. (Sayood, 1996)). How do we lossily compress values coming from a

mixture of Gaussians? One obvious approach would be to encode each point

as follows. First, we calculate the likelihood with which it came from each

Gaussian in the mixture. Suppose the maximum likelihood Gaussian is Gm.

We then encode in our compressed dataset the fact that the next datapoint

is generated by Gm, and then encode the datapoint using Gm as our model

distribution.

Unfortunately, this method of coding would be suboptimal when the

Gaussians overlap. However, it is possible for an algorithm to e�ectively

recover the bits wasted in this manner by using a clever \bits-back" method

to encode some extra \side information" in the choice of which Gaussian gets

used for the encoding (Frey, 1998). For example, if two Gaussians are almost

equally likely to have generated the data, then we can e�ectively transmit

about one bit's worth of information (about some other datapoint, for ex-

ample) \for free" in our choice of which of the two Gaussians we use, rather

than always simply picking the Gaussian with the slightly higher likelihood.
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Automatically learned mix-nets may be an e�ective model class with

which to compress large datasets containing both continuous and discrete

values. We are currently investigating this possibility.

6 Conclusions and future research

We have described a practical method for learning Bayesian networks capa-

ble of modeling complex interactions between many continuous and discrete

variables, and have provided experimental results showing that the method

is both feasible and e�ective on scienti�c data with dozens of variables. The

networks learned by this algorithm and related algorithms show considerable

potential for many important applications. However, there are many ways

in which our method can be improved upon. We now brie
y discuss a few of

the more obvious possibilities for improvement.

6.1 Variable grouping

The mixture tables in our network include a certain degree of redundancy,

since the mixture table for each variable models the joint probability of that

variable with its parents rather than just the conditional probability of that

variable given its parents. For example, consider a completely connected

network containing N continuous variables in which the joint probability of

each variable and its parents is modeled as a single multidimensional Gaus-

sian. As mentioned in Section 4.1.4, in this case our network will have O(N3)

parameters, despite the fact that the overall distribution modeled by the net-

work is actually just a single multidimensional Gaussian representable with

O(N2) parameters. This wastes memory and computational time. Perhaps

more importantly, the larger number of parameters may cause a network-

learning algorithm to favor a simpler model with fewer parameters, even if

there is enough data to justify the O(N2) parameters that would be used by

a single multidimensional Gaussian. Naturally, it is possible to eliminate this

redundancy in the special case of single-Gaussian mixtures by falling back

to a representation in which each variable is modeled as a linear function of

its parent variables plus Gaussian noise. Some other techniques have also

been developed for computing nonredundant parameterizations of Bayesian

networks with embedded joint distributions (Heckerman & Meek, 1997a).

However, we know of none that are obviously practically applicable to the
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Figure 4: An example mix-net in which six variables are represented by a

graph with three groups.

type of model employed in this paper.

One possible approach for reducing the amount of redundancy in the

network is to allow each node to represent a group of variables. Each variable

must be represented in exactly one group. A group Gi representing multiple

variables ~Xi simply contains a mixture table modeling Pi( ~Xi; ~�i), where ~�i

is the set of Gi's parent variables. This mixture table can be marginalized

to obtain Pi( ~�i) (and thus Pi( ~Xij ~�i)) just as we did in the case where each

node represented only one variable.
Suppose Xp is a parent variable of group Gi, and that Xp is represented in

some other group Gj that also includes some other variable Xq. It is interest-
ing to note that it is not necessary to include Xq in the distribution modeled
at group Gi. For example, Figure 4 shows a mix-net with three nodes and six
variables. Group 3 contains a mixture table modeling P (X2; X3; X4; X5; X6),
but X1 is not included in this model even though the two other variables
in Group 1 are included. This example network decomposes the probability
distribution over X1; : : : ; X6 as follows:

P (X1; : : : ;X6) = P1(X1;X4;X5)P2(X3)
P3(X2;X3;X4;X5;X6)

P3(X3;X4;X5)

where P1, P2, and P3 are computed from three di�erent mixture tables that

are not necessarily consistent with each other.

Grouping variables together in such a manner allows us to reduce the

number of parameters in the network. For example, a single multidimensional

Gaussian over N variables can now be represented with O(N2) parameters

by simply placing them all in a single group. One possible line of research

would be to design mix-net learning algorithms that automatically group

variables together in order to reduce the amount of redundancy.
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6.2 Alternative structure-learners

So far we have only developed and experimented with variations of one

particular network structure-learning algorithm. There is a wide variety

of structure-learning algorithms for discrete Bayesian networks (see, e.g.,

(Cooper & Herskovits, 1992), (Lam & Bacchus, 1994), (Heckerman et al.,

1995), and (Friedman et al., 1999)), many of which could be employed when

learning mix-nets. The quicker and dirtier of these algorithms might be ap-

plicable directly to learning mix-net structures. The more time-consuming

algorithms such as hillclimbing can be used to learn Bayesian networks on

discretized versions of the datasets; the resulting networks may then be used

as hints for which sets of dependencies might be worth trying in a mix-

net. Such approaches have been previously been shown to work well on real

datasets (Monti & Cooper, 1998b).

6.3 Alternative parameter-learners

While the accelerated EM algorithm we use to learn Gaussians mixtures is

very fast for low-dimensional mixtures and comes up with fairly accurate

models, its e�ectiveness decreases dramatically as the number of variables in

the mixture increases. This is the primary reason we have not yet attempted

to learn mixture networks with more than four variables per mixture. Fur-

ther research is currently being conducted on alternate data structures and

algorithms which with to accelerate EM in the hopes that they will scale

more gracefully to higher dimensions (Moore, 2000). In the meantime, it

would be trivial to allow the use of some high-dimensional single-Gaussian

mixtures within mix-nets as we do for the \competing" algorithm described

in Section 4.1.4.

Other methods for accelerating EM have also been developed in the past,

some of which might be used in our Bayesian network-learning algorithm

instead of or in addition to the accelerated EM algorithm employed in this

paper. The EM algorithm can be viewed as maximizing a single function

whose local maxima correspond to local maxima of the likelihood function;

the E step increases this function by adjusting the datapoints' estimated

class distributions, and the M step increases it by adjusting the model pa-

rameters. This view justi�es many variants of EM that may provide faster

convergence (Neal & Hinton, 1998).

Another approach to accelerating the EM algorithm for Gaussian mix-
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ture models is to take a single pass through the dataset while heuristically

maintaining in memory a limited-size bu�er of datapoints whose class mem-

berships are independently uncertain, and a set of summary statistics for the

other datapoints (Bradley et al., 1998). This method would not provide the

same drastic speed improvements provided by our currently employed acceler-

ation method if used on low-dimensional datasets that �t completely in mem-

ory. However, it may scale more gracefully to very large high-dimensional

datasets. Exploiting this alternative acceleration method might allow us to

learn mix-nets with more parents per variable. (This alternative acceleration

method could also simply be used to learn a Gaussian mixture over the en-

tire set of continuous variables. We suspect that simple Gaussian mixtures in

very large-dimensional spaces will frequently not perform as well as factorized

models such as the ones employed here. However, comparative experiments

testing this hypothesis on real datasets would be useful.)

Our current method of handling discrete variables does not deal very well

with discrete variables that can take on many possible values, or with com-

binations involving many discrete variables. Better methods of dealing with

these situations are also grounds for further research. One possibility would

be to use mixture models in which the hidden class variable determining

which Gaussian each datapoint's continuous values come from also deter-

mines distributions over the datapoint's discrete values, where each discrete

value is assumed to be conditionally independent of the others given the class

variable. Such an approach has been used previously in AutoClass (Cheese-

man & Stutz, 1996). The EM acceleration algorithm exploited in this paper

would have to be generalized to handle this class of models, however. An-

other possibility would be to use decision trees over the discrete variables

rather than full lookup tables, a technique previously explored for Bayesian

networks over discrete domains (Friedman & Goldszmidt, 1996).

The Gaussian mixture learning algorithm we currently employ attempts

to �nd a mixture maximizing the joint likelihood of all the variables in the

mixture rather than a conditional likelihood. Since the mixtures are actu-

ally used to compute conditional probabilities, some of their representational

power may be used ineÆciently. The EM algorithm has recently been gener-

alized to learn joint distributions speci�cally optimized for being used con-

ditionally (Jebara & Pentland, 1999). If this modi�ed EM algorithm can be

accelerated in a manner similar to our current accelerated EM algorithm, it

may result in signi�cantly more accurate networks.

Finally, further comparisons with alternative methods for modeling dis-
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tributions over continuous variables (such as the Gaussian kernel functions

used in (Hofmann & Tresp, 1995)) are warranted.
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