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Abstract

Packet Fair Queueing (PFQ) algorithms are the most popular and well studied scheduling algo-

rithms for integrated services networks for two reasons: (1) With reservation, they can provide

per-flow end-to-end delay guarantees for real-time traffic flows. (2) Without reservation, they can

provide protection among competing best-effort flows while allowing dynamic bandwidth shar-

ing. However, PFQ algorithms have two important limitations. The first one is that, since only

one parameter (a weight) is used to allocate resource for each flow, there is a coupling between

delay and bandwidth allocation. This can result in network under-utilization when real-time flows

have diverse delay and bandwidth requirements. The second and less well known limitation is

that, due to the instantaneous fairness property of PFQ algorithms, when used for best-effort ser-

vice, PFQ algorithms favor continuously-backlogged throughput-oriented applications such as

FTP over bursty applications such as WWW and telnet.

In a previous study [21], we proposed the Fair Service Curve (FSC) algorithm which enables

more flexible delay and bandwidth allocation for real-time traffic through the use of non-linear

service curves. In this paper, we show that, when used for best-effort traffic, FSC can improve

performance of delay-sensitive bursty applications without negatively affecting the performance

of throughput-oriented applications.



1 Introduction

With the rapid growth of the Internet and the advancement of router technologies, we see two

important trends. On one hand, best-effort data traffic continues to account for the majority

of the Internet’s traffic. On the other hand, advanced routers with sophisticated queue and buffer

management capabilities are becoming available. While there is a huge body of literature on using

advanced buffer management and packet scheduling algorithms to support real-time continuous

media traffic, there is relatively less work on how to exploit these algorithms to better support

best-effort data traffic. This paper is aimed to address the latter issue.

Packet Fair Queueing (PFQ) algorithms (i.e., Weighted Fair Queueing [5, 14] and its many

variants [1, 7, 8, 18, 16, 20, 23]) have become the most popular algorithms implemented in today’s

advanced switches and routers [19, 9] because these algorithms provide support for both real-time

and best-effort traffic. With bandwidth reservation, PFQ algorithms are able to provide end-to-

end delay guarantees. Without reservation, these algorithms can provide best-effort service since

they can allocate bandwidth fairly among competing flows, protecting well-behaved flows against

ill-behaved ones.

A well known limitation of PFQ is that it couples delay and bandwidth allocation, as there is

only one parameter, a weight, that specifies the resource allocated to a flow. This weight affects

both the delay and bandwidth properties of the flow. Consequently, under PFQ, it is not possible

to differentiate between two flows that have the same bandwidth but different delay requirements

without over-reservation. This may result in low network utilization when real-time flows have

diverse delay and bandwidth requirements. To address this problem, we proposed the Fair Service

Curve (FSC) [21] algorithm which has the ability to decouple delay and bandwidth allocation.

This is achieved by properly assigning service curves of different shapes to different flows –

concave curves for flows with tight per-packet delay bounds and convex curves for flows with

less stringent per-packet delay bounds. This flexibility allows FSC to achieve higher resource

utilization for real-time traffic than PFQ.

When used for best-effort service, PFQ favors continuously backlogged traffic over short

lived bursty traffic. This is because PFQ is designed to achieve instantaneous bandwidth fairness

for all flows, irrespective of their delay requirements. In reality, different types of best-effort

data traffic, such as Telnet, FTP, and WWW, have different characteristics and thus performance
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Figure 1: Improving burst delays

objectives. For example, while the burst delay is the performance index for interactive services,

the average throughput is the performance index for bulk transfer applications such as FTP. The

key observation is that, since the performance index of bulk-transfer applications is determined

over relatively long time scales, we may be able to exploit these applications’ insensitivity to

short term service variations to improve the performance of delay sensitive bursty applications.

To illustrate how this may be realized, consider a 2 Mbps link shared by one long flow that

transfers 1 MB, and several short flows that transfer 50 KB each. Assume that the link is managed

by PFQ and each flow has a weight of one. For simplicity, assume that all flows are continuously

backlogged, and that once a short flow finishes, another short flow starts immediately. Thus, there

are exactly two flows, the long flow and a short flow, backlogged at any given time. As a result

each backlogged flow is allocated 1 Mbps. Therefore, as shown in Figure 1 (a), the long flow

takes8 seconds to finish, while a short flow takes0:4 seconds to complete. Now consider the case

where all short flows are assigned three times the weight of the long flow. Each short flow now

receives1:5 Mbps, which consequently reduces its latency by33% to 0:27 seconds. At the same

time, the transfer time of the long flow doesnotchange. Thus, by assigning different weights, it

is possible to significantly speed-up short transfers without affecting the longer flow.

In order to achieve this performance, a system would either need to estimate the length of a

flow when it becomes backlogged, or dynamically reduce the flow’s weight after the length of

the transfer exceeds a certain threshold. While it is unclear how this could be implemented in a

system based on PFQ, the service curve framework in an FSC system enables us to clearly specify

the burst threshold and the higher relative share that these bursts should receive. This enables FSC

to provide better performance for delay-oriented bursty flows than PFQ, while maintaining the

same long term throughput for persistent flows.

In this paper, we show that FSC can out-perform PFQ in supporting best-effort traffic, even
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in the case when we assign thesameservice curve toall flows.1 We begin with simplified traffic

sources in order to more easily illustrate the parameter selection for FSC when used for best

effort traffic. We then show that these basic results remain applicable when the sources are

more diverse, as is the case in actual data networks. In order to quantify the impact on long-

lived throughout-oriented traffic sources, we use an experiment where the short bursty traffic

sources are specifically designed to extract the maximal benefit from FSC. Finally, we use a

synthetic workload of FTP flows whose lengths are drawn to model the AT&T Internet traffic

distributions [6] in order to analyze the tradeoffs in parameter selection for realistic data traffic.

The rest of this paper is organized as follows. In Section 2, we give an overview of PFQ algo-

rithms, the service curve model, and the FSC algorithm, and discuss the use of FSC for best-effort

service. We present and discuss our simulation results in Section 3, and expose some implemen-

tation issues in Section 4. Related work is discussed in Section 5, and finally we summarize our

findings in Section 6.

2 Packet Fair Queueing (PFQ) and Fair Service Curve (FSC)

Algorithms

In this section, we first explain the central ideas behind various PFQ algorithms. Then we present

the concepts behind service curve based algorithms and describe the Fair Service Curve (FSC)

algorithm we use in this paper for supporting best-effort traffic.

2.1 PFQ Algorithms

Packet Fair Queueing (PFQ) algorithms are based on the GPS model [15]. In GPS, each flowi

is characterized by its weight,�i. During any time interval when there are exactlyn non-empty

queues, the server serves then packets at the head of the queues simultaneously, in proportion to

their weights.

Each PFQ algorithm maintains a system virtual timevs(�) which represents the normalized

fair amount of service that each flow should have received by timet. In addition, it associates to

1Although this requires per flow queueing, it does not require the scheduler to distinguish between different types

of flows.
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each flowi a virtual start timevi(�), and a virtual finish timefi(�). Intuitively, vi(t) represents

the normalized amount of service that flowi has received by timet, andfi(t) represents the sum

betweenvi(t) and the normalized service that flowi should receive for serving the packet at the

head of its queue (determined by the flow’s weight�i). The goal of all PFQ algorithms is then

to minimize the discrepancies amongvi(t)’s andvs(t). This is usually achieved by selecting for

service the packet with the smallestvi(t) or fi(t). The system virtual time is primarily used to

resetvi(t) whenever an unbacklogged flowi becomes backlogged again. More precisely,

vi(t) =

8><
>:

max(vs(t); vi(t�)) i becomes backlogged

vi(t�) +
lk
i

�i
pki finishes

(1)

fi(t) = vi(t) +
lk+1i

�i

(2)

wheret� is the time instant before timet, pki represents thek-th packet of flowi, andlki represents

its length. An example of a system virtual time functionvs(t) is the minimum virtual finish time

among all backlogged flows [7]. Various PFQ algorithms differ mainly in their computation of

the system virtual time function and the packet selection policy.

Intuitively, PFQ allocates to each backlogged flow a share of service in proportion to its

weight. This way PFQ achieves instantaneous fairness for backlogged flows. In addition, if a

flow previously received service beyond its (weighted) fair share, it will not be punished in the

future. For real-time traffic using reservation, this enables PFQ to provide a bandwidth guarantee

to these flows. For best-effort traffic, this enables PFQ to provide fair service among the flows

while protecting them against potentially malicious flows.

While the instantaneous fairness property is the basis of how PFQ provides these features, it

directly couples the delay and bandwidth allocation of the flows PFQ schedules among. More

precisely, if flowi is assigned a rate�i, then it can be shown that the worst case queueing delay

incurred by a packetpki is

lki
�i

+
lmax

C
; (3)

wherelmax represents the maximum size of a packet, andC represents the capacity of the output

link. Thus, the only way to reduce the worst case delay is to increase the reservation�i. However,

this may lead to inefficient resource utilization in the presence of low-bandwidth low-delay flows.
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Figure 2: Sample service curves.

As an example, consider a 64 Kbps audio flow with 160 byte packets. To achieve a worst case

delay of 5 ms, according to Eq. (3), one should reserve2 256 Kbps, which is four times more than

the flow’s bandwidth requirements!

2.2 Service Curve Model

To address this problem, Cruz has proposed a new service model, called service curve (SC) [2, 3],

in the context of real-time guaranteed traffic. In this model, each flow is associated with a service

curveSi, which is a continuous non-decreasing function. A flowi is said to be guaranteed a

service curveSi(�), if for any timet2 when the flow is backlogged, there exists a timet1 < t2,

which is the beginning of one of flowi’s backlogged periods (not necessarily includingt2), such

that the following holds

Si(t2 � t1) � wi(t1; t2); (4)

wherewi(t1; t2) is the amount of service received by flowi during the time interval(t1; t2]. For

packet systems, we restrictt2 to be packet departure times. One algorithm that supports service

curve guarantees is the Service Curve Earliest Deadline first (SCED) algorithm [17]. SCED can

guarantee all the service curves in a system if and only if
P

i Si(t) � C � t holds for anyt � 0,

whereC is the output link capacity.

Even though any continuous non-decreasing function can be used as a service curve, for

simplicity, usually only two types of non-linear service curves are considered: two-piece linear

concave curves (Figure 2(a)), and two-piece linear convex curves (Figure 2(b)). A two-piece

2Note that here we ignore the second termlmax
C

, asC is usually very large.
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Figure 3: Measured bandwidth of two TCP sessions, startup 2 seconds apart under SCED.

linear service curve is characterized by four parameters:m1, the slope of the first segment;m2,

the slope of the second segment;�, the y-projection of the intersection point of the two segments;

d, the x-projection of the intersection point of the two segments. Intuitively,m2 specifies the long

term throughput guaranteed to a flow, whilem1 specifies the rate at which a burst of size� is

served. Note that a real-time flow served by PFQ can be thought of as having a straight-line

service curve that passes through the origin and have a slope of the guaranteed rateri.

By using two-piece linear service curves, both delay and bandwidth allocation are taken into

account in anintegratedfashion, yet the allocation policies for these two resources are decou-

pled. This increases the resource management flexibility and the resource utilization inside the

network. To illustrate, consider again the example described in Section 2.1. In SCED, the audio

flow can be assigned a service curve with the following parameters:m1 = 256 Kbps,m2 = 64

Kbps,� = 160 bytes, andd = 5 ms. If the packet arrival process is periodic, then it can be shown

by using Eq. (4) that this service curve guarantees a worst case delay of 5 ms. However, unlike

PFQ which requires 256 Kbps of bandwidth to be reserved to achieve the same delay, with SCED

the long term reserved bandwidth is only 64 Kbps. This creates the opportunity to allocate the

remaining bandwidth to other delay-tolerant traffic, such as FTP.

The main drawback of SCED is that it punishes a flow that has received service beyond its

service curve. While the SCED algorithm can guarantee all the service curves simultaneously, it

does not have the fairness property. As an example, consider two TCP sessions sharing a 10Mbps

link scheduled by SCED which start up two seconds apart. Both sessions are assigned the same

service curve withm1 four times larger thanm2 and the inflection point occurs at� = 6000 bytes.
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Figure 4: Measured bandwidth of two TCP sessions, startup 2 seconds apart under FSC.

Figure 3 plots the bandwidth received by these two sessions under SCED. Under SCED, once the

second session starts up, the first session is denied any service for approximately 2 seconds.

Such behavior clearly discourages adaptive flows from sharing the available link capacity. This

is the same type of behavior as that exhibited by the well known Virtual Clock (VC) service

discipline [24]. In fact, ifm1 = m2, SCED reduces to VC.

A related problem is that, in SCED, the service curve is defined in terms ofabsoluterates

and real time. This makes sense only in a system that employs admission control. In a best

effort system, what matters isrelative performance. However, in SCED, the relation between

two service curves does not uniquely determine the service received by each flow. Thus, given

the same arrival process, scaling the service curves of the flows will result in different service

schedules. As a result the absolute values of the weights or reservations cannot be arbitrarily

set. Furthermore, the fact that these values have no special meaning in the context of best effort

traffic makes their choice particularly difficult. In contrast, in PFQ and Fair Service Curve (FSC),

scaling the parameters of each flow by the same amount doesnotchange the service received by

each flow. This characteristic simplifies significantly the process of assigning service curves for

best effort traffic.

2.3 Fair Service Curve Algorithm

To address these problems, we proposed a new service discipline, called Fair Service Curve (FSC)

in [21]. The main difference between FSC and SCED is that under FSC a flow that has received

excess service is not punished when other flows become backlogged. As noted above, this is
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receivepacket(i; p) =� flow i has received packet p�=

enqueue(queuei; p);

if (i 62 A) =� if i was not backlogged�=

update v(i; p); =� updateV (�) for i �=

A = A [ fig; =� marki backlogged�=

get packet() =� get next packet to send�=

i = minvi A; =� select backlogged flow with minimum virtual time�=

p =dequeue(i);

update v(i; p)

if (queuei = ;)

A = A n fig;

send packet(p);

Figure 5: The Fair Service Curve (FSC) algorithm. Thereceivepacket function is executed

every time a packet arrives; theget packet function is executed every time a packet departs (to

select the next packet to send).

also what differentiates PFQ and VC algorithms.3 To illustrate the difference in fairness between

SCED and FSC, consider again the scenario of two TCP with staggered start times sharing a

10Mbps link. Figure 4 plots the bandwidth received by these two sessions under FSC. Contrasted

with SCED (Figure 3), FSC fairly allocates bandwidth to both sessions once the second session

has started up.

The pseudocode for FSC is shown in Figure 5 and 6. Overall, FSC is very similar to PFQ

in that it also uses the concept of virtual time and a set of virtual start and finish times for each

flow. FSC uses the smallest virtual start time (vi(t)) as the selection criterion, andvs(t) =

(vi;min(t) + vi;max(t))=2 as the system virtual time function, wherevi;min(t) andvi;max(t) are the

minimum and maximum virtual start times among all backlogged flows at timet.

However, the difference between FSC and PFQ is in the computation of the time stamps. In

3However, note that while both PFQ and VC can provide the same real-time guarantees, this is not true for FSC

and SCED. A detailed discussion and a variant of FSC that is able to provide the same real-time guarantees as SCED

is given in [21].
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update v(i; p)

if (i 62 A) =� is flow i backlogged ?�=

vi = max(vi; v
s)

update VC(i);

if (backlogged(i) = TRUE)

return ;

else

wi = wi + length(p);

vi = V �1i (wi);

Figure 6: The function which updates the virtual time curves and the virtual times in FSC.

PFQ,�i can be viewed as the slope of a straight line service curve. In FSC, however, since service

curves can be non-linear, we cannot compute the timestamps based on the slope of a service curve

only. To compute the timestamps, we need to remember what part of the service curve was used

to compute the timestamp of the previous packet. We call the remainder of the service curve the

virtual curveVi(�), it is defined such thatvi(t) = V �1i (wi(t)), wherewi(t) is the total amount of

service received by flowi by timet. When a flowi first becomes backlogged,Vi(v) is initialized

to the service curveSi(t). Thereafter, every time a flow becomes backlogged, theupdate VC

function is called in whichVi(v) is updated as follows:

Vi(v) = min(Vi(v); Si(v � vs(t)) + wi(t)); 8 v � vs(t); (5)

This update process is illustrated graphically in Figure 7. Note that when the service curve

Si(t) is a straight line with slope�i, from Eq. (5) we haveVi(v) = �iv. Then, the virtual timevi(t)

is simplyV �1(wi(t)) = wi(t)=�i, which is exactly the virtual time of flowi in PFQ algorithms.

2.4 Fair Service Curve for Best-Effort Service

The service curve model can easily be extended for best-effort service when no reservation or

admission control is used. In this case, the absolute values ofm1 andm2 are not important, as

they specify only the relative service priorities between bursts of size less than� and the continu-
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ously backlogged traffic in the system. We denote the ratiom1=m2 as theBurst Preference Ratio

(BPR) and� as thePreferred Burst Size(PBS).

Since admission control is not necessary for best effort service, we can assign every flow in

the system thesameservice curveS(t), a concave curve similar to the one in Figure 2(a). The key

performance tuning parameters are the burst preference ratio (BPR)m1=m2, and the preferred

burst size (PBS)�. Intuitively, if a flow has idled for a long enough period of time, when it

becomes backlogged again its first� bytes are served at a rate proportional tom1. However,

if the flow remains backlogged for more than� bytes, its remaining bytes are served at a rate

proportional tom2, i.e., BPR times lower thanm1. Thus, if we set� to accommodate the most

common burst sizes generated by applications such as WWW, we can provide a significantly

lower delay for these applications than it is possible with PFQ.

Note that, unlike PFQ, FSC has “memory” in the sense that it can differentiate between flows

that have previously idled and flows that are continuously backlogged and treat them differently.

Also, when the system is congested, the long term rate of a flow, bursty or not, is still bounded

by the fair share rate because in the long run every flow is serviced at a rate proportional to

m2. Thus, while packet delay for bulk transfer type applications such as FTP may be increased

momentarily, they always receive at least their fair share in the long run. Finally, it is interesting

to note that when BPR = 1, or when PBS = 0, FSC degenerates to PFQ.

To give some intuition on how FSC behaves, consider a link shared by 15 constant-bit-rate

UDP flows and one ON-OFF flow with a burst size of 32 packets. Figure 8 plots the arrival and

departure times for each packet belonging to two consecutive burst periods of the ON-OFF flow.

The plot shows the impact of the preferred burst size (PBS) in packets on the departure times,
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Figure 8: The packet arrival and departure times of a flow, with of 32 packet bursts, for various

service curves.

and implicitly on the packet queueing delay, which is given by the horizontal distance between a

packet’s arrival time and its departure time. We associate to all flows the same service curve. In

all cases the burst preference ratio (BPR) is 5. As expected, the delay decreases as PBS increases.

Note that the packet departure times follow accurately the shape of the service curve associated

with the flows.

3 Simulation Results

In this section we evaluate the FSC algorithm through extensive simulations. All simulations are

performed in ns-2 [13], which provides accurate packet-level implementation of various network

protocols, buffer management and scheduling algorithms. We examine the behavior of FSC

under a taxonomy of transport protocol and traffic model combinations. For transport protocols,

we use both TCP4 and UDP. For traffic models, we use periodic ON-OFF sources, exponentially

distributed ON-OFF sources, pseudo WWW traffic sources (a periodic ON-OFF source feeding

into TCP), pseudo video (an ns-2 packet trace generated from a MPEG-1 video stream), Telnet,

FTP and continuously backlogged UDP sources. The ON-OFF sources are based on our own

4Specifically, we use ns-2’s implementation of TCP Reno without any protocol hand-shake.
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implementation. We have extended ns-2 to support arbitrary traffic sources on top of TCP, and to

dynamically create and destroy flows.

Different traffic sources have different performance indices. We measure the performance of

ON-OFF sources and Telnet using average burst delay, which is define as the difference between

the time when the last packet of the burst arrives at the destination and the time when the first

packet of the burst is sent by the source. For continuously backlogged sources we use the overall

throughput to measure performance, and for video traffic we use the frame delay distribution.

A potential problem when measuring the burst delay under UDP is that some packets may be

dropped. For this reason, in the case of UDP sources we report both the average burst delay and

the packet dropping rate.

In all simulations, we distinguish between foreground flows which are bursty, and background

flows which are persistent. The actual number of foreground and background flows may vary.

Unless otherwise specified, the following parameters are used in all simulations. The capacity of

each link is 10 Mbps with a latency of 10 ms, and the output buffer size is 128 KB. We use a per-

flow buffer management scheme which drops the second packet from the longest queue when the

buffer overflows [22]. In addition, the size of all packets is 1000 bytes except for Telnet, which

uses 64 byte packets. The simulation time is 20 seconds.

Each set of the results presented in the following sub-sections is aimed to illustrate certain

aspects of the FSC algorithm. First, to illustrate the behavior of FSC and to show how variations

in the system parameters affect its performance, we use a simple network topology consisting

of one link, and traffic sources such as ON-OFF, FTP, and continuously backlogged UDP. In

these simulations we also draw comparisons between FSC and PFQ. Next, to show how FSC

performs under more realistic load, we use more complex network topologies and traffic sources,

such as exponentially distributed ON-OFF, pseudo video, and Telnet. To quantify the impact

on long lived throughout oriented traffic sources, we use an experiment where the short bursty

traffic sources are specifically designed to extract the maximal benefit from FSC. To explain the

tradeoffs in optimizing FSC’s parameters for realistic network traffic, we generate a synthetic

workload of FTP flows using data from AT&T Labs’ recent Internet traffic analysis [6].
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Figure 9: The average burst delay vs PBS for four simulation scenarios, each having 16 flows.

Note that the average delay decreases as the PBS increases, up to the burst size of 16 packets.

3.1 Basic Demonstrations

All simulations presented in this sub-section use periodic ON-OFF foreground sources with a

period of one second and a peak rate of 4 Mbps. Since the packet size is 1000 bytes, the inter-

packet arrival time is 2 ms. All flows within the same simulation have the same burst size and

the bursts occur at the beginning of each period. The average burst delay is used as the perfor-

mance index. To introduce some randomness, the starting times of the flows are drawn from an

exponential distribution. Although such a simplistic traffic pattern might not be an accurate sim-

ulation of Internet traffic, it makes it easier to understand and analyze the interactions between

various parameters, such as the preferred burst size (PBS), the burst preference ratio (BPR), and
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the percentage of the background persistent traffic. In Sections 3.3, 3.4 and 3.7, we show that the

results obtained by using simple periodic ON-OFF traffic are consistent with the ones obtained

by using more realistic traffic sources.

3.1.1 Impact of Preferred Burst Size (PBS)

In this section we study the impact of the preferred burst size (PBS) and the number of back-

ground flows on the behavior of FSC. Note that when PBS is zero, FSC is equivalent to PFQ,

as the service curve reduces to a straight line intersecting the origin. We consider 16 flows shar-

ing a congested link. The number of persistent background flows varies from 1 to 8. Figure 9

plots the average burst delay as a function of PBS in four different scenarios using all possible

combinations of foreground TCP and UDP ON-OFF traffic, and background FTP and constant

bit rate UDP traffic. In the scenarios where UDP background is used, the aggregate rate of the

background flows is set at twice the link capacity in order to create congestion. In all cases the

burst size is 16 packets, and the burst preference ratio (BPR) is 5. As a baseline comparison, in

each figure we also plot the average burst delay of an ON-OFF flow that uses an unloaded link.

As can be seen in Figure 9, in all scenarios the average burst delay decreases as PBS increases.

This is to be expected since a larger PBS results in a larger percentage of the burst of each flow

being served at a higher priority. This is because the packets’ deadlines are computed based on

the first slopem1 of their service curves. Moreover, in all four graphs, the data points for PBS

equals zero is the corresponding performance points of PFQ under the same scenarios. Clearly,

FSC out-performs PFQ in providing low burst delay.

There are three other points worth noting. First, the average delay does not decrease after

PBS exceeds the burst size of 16 packets. This is because when PBS reaches the burst size, all

packets are already served at the highest priority. We defer a discussion of the implications of

setting the PBS toolarge to Section 3.7.

Second, as the number of background flows increases, the relative amount of improvements

in the average burst delay also increases. This is because the background flows are continuously

backlogged and therefore the deadlines of their packets are computed based on the second slope

m2 of their service curves most of the time. This increases the relative priority of the ON-

OFF flows as the deadlines of their packets are computed based on the first slopem1 of their

service curves, which is greater thanm2. Intuitively, as the percentage of background traffic
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Figure 10: The average burst delay of eight ON-OFF TCP/UDP flows as a function of PBS for

various burst sizes.

increases, there are more “opportunities” to shift the delay from the ON-OFF traffic towards the

continuously backlogged traffic.

Third, the relative amount of improvements in the average burst delay is larger when the

foreground traffic uses UDP (see Figure 9(c),(d)) than when it uses TCP (see Figure 9(a),(b)).

This is because the TCP protocol makes use of acknowledgements, which add a fixed overhead,

in terms of round-trip-time, to the burst delay. This is evident from the “baseline” plots, where

only one flow is backlogged. It takes roughly three times longer to send the same burst under

TCP than under UDP.

Since the simulation scenarios that employ the same foreground traffic exhibit similar trends,

in the remaining of this section we will limit our study to two scenarios: ON-OFF TCP fore-

ground with UDP background, and ON-OFF UDP foreground with UDP background. The rea-

son for choosing UDP over FTP as the background traffic is to factor out the variations due to

FTP dynamics. Finally, unless otherwise specified, we only consider the 8 foreground flows / 8

background flows case.

The next experiment illustrates the impact of the burst size on the behavior of FSC (see

Figure 10). As a general trend the average burst delay decreases as PBS increases. As shown

in Figure 10(a), when the ON-OFF traffic is TCP, the decrease in the average burst delay is

more significant for larger bursts. When the burst size is small, the burst delay is dominated

by the round-trip-time as the sender waits for acknowledgements, thus a reduction in the packet
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Figure 11: The average burst delay versus BPR for eight flows when the ON-OFF traffic is (a)

TCP, and (b) UDP, respectively.

queueing delay due to FSC does not translate into a significant reduction of the overall burst delay.

When the ON-OFF traffic is UDP, it is interesting to note that for a burst size of 32 packets, there

is little improvement in the average burst delay between PBS= 0 and PBS= 4 packets (see

Figure 10(b)). The reason is that, when PBS= 0, 32.5% of the packets are dropped, while

when PBS= 4 packets, only 15 % of the packets are dropped. Thus, although the average burst

delay does not change between PBS= 0 and PBS= 4 packets, there are actually more packets

delivered when PBS= 4 packets. The percentage of dropped packets reduces to 1.5 % for PBS

= 8 packets, and no packet is dropped when PBS� 16 packets.

3.1.2 Impact of Burst Preference Ratio (BPR)

In this section we study the effects of the Burst Preference Ratio (BPR) on the behavior of FSC.

We consider two simulation scenarios: UDP foreground with UDP background, and TCP fore-

ground with UDP background. For each experiment we set PBS to be the same as the burst size

of the flows and vary the BPR. As shown in Figure 11, in both cases the average burst delay

decreases as the BPR increases. This is expected since increasing BPR results in an increase of

the relative priority of the bursty traffic. Also, similar to the previous experiment (see Figure 10),

FSC is more effective for larger burst sizes, especially when the ON-OFF traffic is TCP. Again,

notice that the data points for BPR= 0 are the corresponding performance points of PFQ under

the same scenarios. The advantage of FSC over PFQ can be seen clearly.
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Figure 12: The average burst delay versus PBS for eight flows, with burst sizes between 4 and 32

packets, when the ON-OFF traffic is (a) TCP, and (b) UDP, respectively.

3.2 Non-homogeneous ON-OFF Sources

Now that we have demonstrated the basic features of FSC, we begin to consider more complex

traffic sources. In this section, we consider again a congested link shared by eight ON-OFF

flows and eight background UDP flows. However, unlike the previous experiments in which all

flows have bursts of the same size, in this experiment each flow has a different burst size. More

precisely, the burst size of flowi is 4 � i packets, where1 � i � 8. Our goal is to study how

the average burst delay of each flow is affected by the preferred burst size (PBS). The results for

both TCP and UDP ON-OFF foreground traffic are shown in Figure 12.

In the first scenario (see Figure 12(a)) the average burst delay of each flow decreases as

PBS increases. As expected, the average burst delay of a flow no longer decreases once PBS

exceeds the flow’s burst size. However, in the second scenario when all flows are UDPs (see

Figure 12(b)), the average burst delay for flows with large burst sizes actually increases initially

as PBS increases. This is because more packets are being transmitted as PBS increases. For

example, when PBS= 0, 33.5% of the packets of flow 8 are being dropped, when PBS= 8

packets, the dropping rate reduces to 15%. Finally, for PBS� 16 packets, no packet is dropped.
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Figure 13: The average burst delay versus burst size for eight ON-OFF TCP flows, which have

burst sizes exponentially distributed with a mean of 16 packets. The flows compete with other

eight constant-bit-rate UDP flows.

3.3 Exponential ON-OFF Sources

In the previous section we have assumed that the ON-OFF traffic is periodic and that each flow

has a fixed burst size. While this setting makes it easier to understand the behavior of FSC, it is

not realistic. For this reason, we consider a more realistic ON-OFF traffic source whose burst size

is exponentially distributed. Since we intend to model WWW-like traffic, we assume only TCP

ON-OFF foreground traffic. Again we consider eight foreground and eight background flows

sharing the same link. The mean of the burst size is 16 packets. In order to obtain more data

points we increase the simulation time to 100 seconds.

Figure 13 shows the average burst delay versus burst size. In general, the average burst delay

improves as PBS increases, with the improvements being more significant for larger burst sizes.

These results are consistent with the ones presented in Sections 3.1.1 and 3.2. The prominent

peaks in the delays are likely caused by TCP timeouts as a result of packet loss.

3.4 Mixed Application Traffic

In this section we study how effective FSC is in dealing with a mix of traffic sources. For this

we consider a more complex simulation scenario in which 20 flows share the same link. Out of

these 20, two are MPEG-1 video flows sending at their fair rate, three are Telnet flows, five are

FTP flows, and the last 10 are background UDP flows. The video flows have a maximum frame
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Figure 14: (a) The average frame delay for MPEG-1 video traffic and the average packet delay

for Telnet traffic versus PBS. In this experiment we consider two video flows and three Telnet

flows that share a link with five FTP flows and 10 background UDP flows. (b) The frame delay

distribution for the video traffic for different PBS values.

size of 11 packets. The packet size for all flows is 1000 bytes, except for Telnet which uses 64

byte packets.

Figure 14(a) shows the average burst delay versus preferred burst size. For the video flows,

we assume that a burst consists of one frame, while for the Telnet flows, we assume that a burst

consists of one packet. FSC is able to significantly reduce the average frame delay for the video

traffic. When PBS exceeds the maximum frame size, we obtain up to 50% improvement. How-

ever, PBS does not affect the packet delay of the Telnet traffic. This is because the Telnet sources

are sending at an extremely low rate with very small packet size compared to the other flows.

Therefore their packets are immediately sent regardless of the value of PBS. We expect FSC to

have a more significant impact on Telnet when the fair share rate is closer to the Telnet session’s

rate. Finally, Figure 14(b) shows the distribution of the frame delay for the video traffic. As

expected, the tail of the distribution decreases as PBS increases.

3.5 Multiple Links

In this experiment we study the behavior of FSC when a flow traverses multiple congested links.

We use the topology in Figure 15. Each congested link is traversed by 10 background UDP

flows which send at their fair rate. To reduce the effects of the number of hops on the round-trip
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Figure 15: Topology for analyzing the effects of multiple congested links on the throughput of a

flow. Each congested link is traversed by ten cross flows (all UDPs).
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Figure 16: (a) The average burst delay versus PBS as the number of bottleneck links varies. The

foreground traffic consists of one ON-OFF TCP. (b) The same experiment when the foreground

traffic consists of one ON-OFF UDP.

time we fix the end-to-end propagation delay at 10 ms. The link latencies are then computed

by dividing the end-to-end propagation delay by the number of links. However, note that due to

the queueing delay the round-trip time will still increase with the number of hops. Finally, we

assume a periodic ON-OFF flow with 16 packet bursts that traverses all congested links.

Figure 16 shows the average burst delay of the ON-OFF flow versus PBS for 1, 2, 3 and

4 congested links. We consider two scenarios where the foreground flow is TCP or UDP. In

both cases the average burst delay decreases as PBS increases. However, as we have observed

in previous experiments (see for example Section 3.1.1), the improvements are larger when the

foreground traffic is UDP. Finally, note that the absolute improvements in the average burst delay
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Average burst delay TCP throughput

FSC 21.81 ms 1.66 Mbps

PFQ 54.79 ms 1.67 Mbps

Table 1: Comparison of background TCP throughput using a FSC worst case flow arrival.

are basically independent of the number of congested links.

3.6 Impact on Background Traffic

In the previous experiments, we have shown that FSC is effective in reducing the average burst

delay of bursty traffic. A natural question to ask is, could this improvement in bursty traffic

performance negatively affect the background persistent traffic?

To answer this question, we construct a simulation scenario in which the bursty traffic flows

takemaximaladvantage of the benefit provided by FSC and thus put the persistent background

traffic in the worst possible position under FSC. To achieve maximal benefit in FSC, each bursty

flow should send exactly as much data as the PBS, and the bursty flows should be back-to-back

so that each and every burst is served at the highest priority (along the first slope) under FSC.

In this experiment, we use one persistent background TCP flow and a series of bursty fore-

ground UDP flows, each sending 10 packets of 1000 bytes each. Under FSC, we choose the

PBS to be 10 packets and the BPR to be 5. With a 10 Mbps link, this implies that a burst can

be served at the maximal rate of 8.33 Mbps under FSC. Therefore, to make the bursty flows

back-to-back under FSC, the inter-flow arrival time needs to be 9.6 ms. Using this traffic arrival

pattern, we compare the performance of FSC against PFQ (FSC with PBS = 0). Table 1 shows

the performance of the bursty flows and the TCP flow under the two different algorithms.

Under FSC, the throughput of the TCP flow is exactly as expected (one-sixth of 10 Mbps)

since the UDP bursty flows are always being served at the highest priority and consume 8.33

Mbps. What is somewhat surprising is that the TCP throughput is essentially unchanged under

PFQ even though the bursty flows are served at the same priority as the TCP flow. This seemingly

contradictory result is simple to explain. Under FSC, only one bursty UDP flow is backlogged

at any given time; in contrast, under PFQ, five bursty UDP flows are simultaneously backlogged
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throughout the simulation (except during the very beginning) because the bursty flows are no

longer served at a special high priority and they take five times longer to finish. Therefore, with

5 UDP flows and one TCP flow, the TCP flow simply gets its fair share under PFQ, which is 1.67

Mbps. The reason why this is slightly larger than the TCP throughput under FSC is that during

the beginning of the simulation, there are less than 6 flows simultaneously backlogged. This

result shows that even under a worst case bursty flow arrival scenario, FSC provides virtually the

same performance to a persistent TCP flow as PFQ.

Without any adverse effect on the performance of the TCP flow, FSC is again able to bring

the average burst delay of the UDP flows down to 22 ms, of which 10 ms is the link propagation

delay. In other words, the queueing delay is reduced by almost a factor of 4 compared to PFQ.

3.7 Performance for WWW traffic

So far, we have shown that FSC can reduce the average delay of bursty traffic without adversely

affecting the background persistent traffic. The improvements are most pronounced when the

number of background sessions is large and when the PBS corresponds to the burst size of the

sessions in the foreground. However, they leave the question of how to configure FSC for realistic

traffic largely unanswered.

As we increase the preferred burst size (PBS), we increase the percentage of flows and bytes

that will be completely covered by the PBS. The byte-volume of traffic that isnot covered by

the PBS determines the amount of background traffic. As we have shown earlier, the delays

of short bursts are reduced as the amount of background traffic increases. Thus, increasing the

PBS will reach a point of diminishing and then negative returns when less traffic exists in the

“background”. At the limit, if we set the PBS to be greater than or equal to the length of the

longest flow, all data will be serviced along the first slope of the service curve and FSC will again

be equivalent to PFQ. An analogous problem exists for the BPR. As in the limit, if we set the

BPR very large, background traffic could see no service while bursts are being served. Thus,

to maximize the benefit of FSC, we would like to choose a PBS that encompasses a relatively

large percentage of the flows while covering a relatively small percentage of the byte volume and

choose a BPR that can significantly reduce the delays of these bursts without adverely affecting

background traffic.

In order to answer these questions, we employ flow length data from AT&T Labs’ recent
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Figure 17: Cumulative probability distribution of flow lengths and their portion of the total byte

volume.

Internet traffic analysis [6]. Figure 17 shows the probability that a host-level flow has up tox

bytes, and the contribution of these flows to the cumulative byte count. For example, while60%

of the host-level flows are less than5000 bytes in length, these flows constitutes approximately

only 7% of the byte volume of the trace. For this traffic distribution, choosing a PBS ofx bytes

will completely cover all the flows up tox bytes in length, and their corresponding byte volume.

The actual coverage will be larger than this, as longer lived flows that consist of periodic short

bursts may transmit at a low enough sustained rate so that their entire transmission is transmitted

along the first slope.

To determine how to configure FSC’s parameters for WWW traffic, we generate a synthetic

workload of FTP traffic, whose flow lengths are chosen to model this distribution. We divide the

flows into 10 groups, each representing 10 % of the flows, and compute the average flow length

within each group, as shown in Table 2. Based on the average flow length of13; 666 bytes, we

generate a synthetic workload of FTP traffic via a Poisson process with a mean flow arrival rate

corresponding to95% of the link capacity and select among the10 groups uniformly to determine

the flow length. We run these simulations for 1 minute of simulation time over a10Mbps link

with a 2 ms latency while setting the maximum segment size of the TCP sources to576 bytes.

Figure 18 plots the average transfer time experienced by flows in groups7 through10 as we vary

the BPR from 1 to 10 and the PBS from 0 KB to 100KB.

Note that all points with PBS = 0 and/or BPR = 1 correspond to PFQ. Groups0 through3 are
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Group Average Flow Length

0 61

1 239

2 539

3 1349

4 2739

5 4149

6 6358

7 10910

8 19878

9 90439

Table 2: Average flow length per group (bytes).

sufficiently small and short lived that PFQ and FSC have roughly equivalent performance, while

groups4 through6 have analogous improvements to those shown here. While our earlier results

have shown minimal impact on background traffic, Figure 18 (d) shows that Group10 in fact sees

a noticable impact with large PBS settings. The reason is that the buffer resources in this system,

while shared, are finite. In this study, when the buffer resources are depleted, a packet is pushed

out from the longest queue [4]. Thus, the longest flows (Group 10) will incur the losses when the

link becomes congested. As our measurements include all packets required to complete the FTP

transfer, this explains the impact. Because this practical constraint cannot be avoided in actual

systems, this encourages us to configure the system with conservative settings.

While a flow’s delay is minimal when its length corresponds to the PBS, minimal additional

improvements are seen with BPR greater than 4. The larger the PBS, the higher the percentage of

flows that are entirely covered by the first slope and the performance returns to that of PFQ. For

this simulation set, setting BPR = 4 and PBS = 6000 bytes reduces transfer times of most groups

(some by over50%) while only increasing the transfer time of the largest group by1%.
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Figure 18: The average flow transfer time as a function of PBR and PBS for simulated WAN

groups

4 Implementation Issues

The implementation complexity of a per-flow queueing system can be divided into three separate

tasks: classification, buffer management, and the scheduling itself. While these components are

usually discussed in the context of networks that provide performance guarantees to individual

flows, the complexity is significantly reduced when they are applied for best-effort traffic. Traffic

requiring bandwidth and/or delay guarantees need to employ a signaling mechanism to request

resource capacity from the network. In order to identify these guaranteed flows, the classification

module needs to uniquely map traffic into their allocated queues. As individual guaranteed flows

have unique demands for system resources, the scheduling and buffer management options for

the queues need to be individually programmed.
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While this flexibility is required for reserved traffic, best effort applications have much looser

constraints. Since our goal is equal treatment for individual flows, a mechanism should be em-

ployed to persistently map each individual flow into its own queue. Perfect isolation and fairness

between flows, while desirable, is not as critical for best effort applications. McKenney proposed

identifying individual flows by means of a probabilistic hashing algorithm in [12]. If the number

of queues is less than the number of active flows, collisions will occur. The hash key can peri-

odically be changed to alleviate the unfairness caused by these collisions. Content Addressable

Memories (CAMs) or other devices capable of dynamically binding flows to queues could also

be employed. However, it is preferable that the binding be persistent. Otherwise a user could

exploit the fact that bursts up to the PBS receive an increased share when arriving into a newly

assigned queue. We note that these or other mechanisms used for flow identification could also

be used for the FRED [11] scheme, and vice versa.

For any per-flow management scheme, there is anO(N) space requirement to maintain the

state for each flow. As noted in [22], with today’s memory prices, and historic trends, it appears

that this is an insignificant factor in the cost of products for the features that can be provided. A

more relevant concern is the amount of computational resources required per-packet to perform

the scheduling. The implementation cost of a scheduling algorithm can be divided into three

components: (1) computation of the system virtual time function, (2) calculation of the session

timestamps used for scheduling, and (3) sorting the timestamps by the specified criteria. The FSC

system virtual time function is simply the average of the largest and smallest start time of any flow

in the system. The timestamps of the sessions in FSC can be sorted using the packet scheduling

architecture presented by Stephens et al [19]. The one remaining issue we must address is the

calculation of the timestamps used for scheduling.

Recall that in both PFQ and FSC, the virtual time of a flow,vi(t), is computed asV �1i (wi(t)),

wherewi(t) is the amount of service received by flowi by time t, andVi is the virtual curve of

flow i. The main difference between PFQ and FSC is that while in PFQ the virtual curve is a

linear function, i.e.,Vi(t) = �i � t, in FSC it is a two-piece linear function given by Eq. (5). As

a result, computing the virtual time in FSC requires an additional comparison to detect whether

wi(t) has exceededVi’s inflection point. Another difference is that in FSC we need to update

the virtual curve according to Eq. (5). The important thing to note here is that this operation is

done only when a flow becomes backlogged, and as shown in [21], it takes constant time. Thus,
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implementing FSC is just marginally more complex than PFQ.

5 Related Work

Scheduling support for providing low burst delay has been studied in the context of ATM VBR

traffic scheduling. In [10], Lam and Xie have proposed burst scheduling, which includes a new

VBR traffic flow model based on bursts. Under this model, each burst is described by the burst

size and the burst rate. This information is then carried in the first packet of a burst to provide

resource requirement hints to the scheduler. Admission is performed at the burst level. In the

event of an admission control failure, the entire burst is discarded. For packets admitted into

the buffer, the scheduler uses a virtual clock server to serve the current admitted bursts at their

burst rates. These mechanisms ensure that admitted bursts experience low delay. In addition, due

to statistical multiplexing, it is possible to maintain the burst drop rate to a minimum. When a

zero loss rate is required, a reservation can be made using the peak burst rate. Although burst

scheduling is aimed to guarantee burst delay for VBR traffic in ATM, the ideas can certainly be

applied to other networking technologies such as IP.

The FSC algorithm differs from burst scheduling in several ways. First of all, burst schedul-

ing was designed for supporting real-time traffic in a connection-oriented network. It utilizes

signaling information carried in packets and performs admission control. In contrast, FSC does

not need explicit signaling to specify the beginning and the end of a burst and can give bursty

traffic a lower burst delay. Secondly, burst-scheduling uses the Virtual Clock service discipline.

While this may be acceptable for video traffic with certain intrinsic rates, Virtual Clock does not

support adaptive bursty data traffic well due to the lack of the fairness property. FSC, on the other

hand, provides long term fairness similar to PFQ algorithms. In this way, it allows statistical

sharing among competing flows, and at the same time provides protection. Thus, FSC is more

suitable for the diverse traffic mix environment in today’s Internet.

Implementing per-flow scheduling in isolation does not necessarily lead to improved perfor-

mance over FIFO forwarding without appropriate buffer management. This is because the sched-

uler can only operate on packets that are stored in the system buffers. If the buffer management is

FCFS, a flow can monopolize the link. To prevent this lockout behaviors, Davin and Heybey [4]

proposed to push-out a packet from the longest queue. A recent simulation study [22] evaluated
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the benefits of per flow scheduling and buffer management. They found that both fair allocation

of buffer and link capacity improve application level fairness. Furthermore, they illustrated that

the benefits were complementary. The buffer management algorithm with the best performance

was a push-out scheme that chose the packet from the front of the longest queue. They picked

the “front” packet in order to improve the TCP feedback and eliminate the possibility of losing

a later acknowledgement. Since dropping the actual first packet from the queue would require

complex interactions with the scheduler, they actually dropped the second packet. We have also

adopted this buffer management scheme in our study.

6 Summary

In this paper we investigate the Fair Service Curve (FSC) algorithm in the context of support-

ing best-effort service. We show that it out-performs PFQ algorithms under a variety of traffic

conditions. In particular, FSC can significantly improve the delay performance for bursty traffic

without negatively affecting the throughput performance for continuously backlogged traffic. We

have conducted extensive simulation experiments that involve a large variety of traffic sources,

such as periodic and exponentially distributed ON-OFF sources, MPEG-1 video sources, FTP,

and Telnet. As a general trend the average burst delay decreases as:

1. the Preferred Burst Size (PBS) increases. This is because the portion of the burst which

is served according to the first slope of the service curve increases. The only exception is

when the bursty traffic is UDP and the number of packets successfully transmitted increases

with PBS. Note that although the average burst delay might not decrease in this case, the

flow still gets better service as fewer packets are being dropped.

2. the Burst Preference Ratio (BPR) increases. This is because the relative priority of the

packets served according to the first slope of the service curve increases.

3. the number of background continuously backlogged traffic flows increases. Since the traffic

of the backlogged flows is served according to the second slope of the service curve, the

larger the number of background flows, the higher the relative priority of the traffic that

is served according to the first slope. Intuitively, more background traffic provides more

“opportunities” to shift the delay from the bursty traffic towards the background traffic.

28



In order to determine practical settings for FSC for best-effort traffic, we generated a synthetic

workload of WWW traffic. This exposed the limitations of setting the PBS and BPR too large for

a given traffic pattern. For this set of web traffic traces, setting BPR = 4 and PBS = 6000 Bytes

provides a significant reduction in the transfer time of the majority of flows without noticable

impact on the background traffic.

Our results show that it is possible to significantly improve the delay of short and bursty flows

without affecting the long term throughput of persistent flows. Since compared to PFQ, the added

complexity to implement FSC is minimal, we conclude that FSC represents a viable alternative

to support best effort traffic in today’s Internet.
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