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Abstract

Decidability of de�nitional equality and conversion of terms into canonical form play a central role

in the meta-theory of a type-theoretic logical framework. Most studies of de�nitional equality are

based on a conuent, strongly-normalizing notion of reduction. Coquand has considered a di�erent

approach, directly proving the correctness of a practical equivalence algorithm based on the shape

of terms. Neither approach appears to scale well to richer languages with unit types or subtyping,

and neither directly addresses the problem of conversion to canonical form.

In this paper we present a new, type-directed equivalence algorithm for the LF type theory that

overcomes the weaknesses of previous approaches. The algorithm is practical, scales to more ex-

pressive languages, and yields a new notion of canonical form su�cient for adequate encodings of

logical systems. The algorithm is proved complete by a Kripke-style logical relations argument

similar to that suggested by Coquand. Crucially, both the algorithm itself and the logical relations

rely only on the shapes of types, ignoring dependencies on terms.
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1 Introduction

At present the mechanization of constructive reasoning relies almost entirely on type theories of

various forms. The principal reason is that the computational meaning of constructive proofs is an

integral part of the type theory itself. The main computational mechanism in such type theories is

reduction, which has therefore been studied extensively.

For logical frameworks the case for type theoretic meta-languages is also compelling, since

they allow us to internalize deductions as objects. The validity of a deduction is then veri�ed

by type-checking in the meta-language. To ensure that proof checking remains decidable under

this representation, the type checking problem for the meta-language must also be decidable. To

support deductive systems of practical interest, the type theory must support dependent types, that

is, types that depend on objects.

The correctness of the representation of a logic in type theory is given by an adequacy theorem

that correlates the syntax and deductions of the logic with canonical forms of suitable type. To

establish a precise correspondence, canonical forms are taken to be �-normal, �-long forms. In

particular, it is important that canonical forms enjoy the property that constants and variables of

higher type are \fully applied" | that is, each occurrence is applied to enough arguments to reach

a base type.

Thus we see that the methodology of logical frameworks relies on two fundamental meta-

theoretic results: the decidability of type checking, and the existence of canonical forms. For

many type theories the decidability of type checking is easily seen to reduce to the decidability of

de�nitional equality of types and terms. Therefore we focus attention on the decision problem for

de�nitional equality and on the conversion of terms to canonical form.

Traditionally, both problems have been treated by considering normal forms for �, and possibly

�, reduction. If we take de�nitional equality to be conversion, then its decidability follows from

conuence and strong normalization for the corresponding notion of reduction. In the case of

�-reduction this approach to deciding de�nitional equality works well, but for ��-reduction the

situation is much more complex. In particular, ��-reduction is conuent only for well-typed terms,

and subject reduction depends on strengthening, which is di�cult to prove directly.

These technical problems with ��-reduction have been addressed in work by Salvesen [Sal90],

Geuvers [Geu92] and later with a di�erent method by Goguen [Gog99], but nevertheless several

problems remain. First, canonical forms are not ��-normal forms and so conversion to canonical

form must be handled separately. Second, the algorithms implicit in the reduction-based accounts

are not practical; if two terms are not de�nitionally equal, we can hope to discover this without

reducing both to normal form. Third, the approach does not appear to scale to richer theories such

as those including unit types or subtyping.

These problems were side-stepped in the original paper on the LF logical framework [HHP93]

by restricting attention to �-conversion for de�nitional equality. This is su�cient if we also restrict

attention to �-long forms [FM90, Cer96]. This restriction is somewhat unsatisfactory, especially in

linear variants of LF [CP98].

More recently, �-expansion has been studied in its own right, using modi�cation of standard

techniques from rewriting theory to overcome the lack of strong normalization when expansion is

not restricted [JG95, Gha97]. In the dependently typed case, even the de�nition of long normal

form is not obvious [DHW93] and the technical development is fraught with di�culties. We have

not been able to reconstruct the proofs in [Gha97] and the development in [Vir99] relies on a

complex intermediate system with annotated terms.

To address the problems of practicality, Coquand suggested abandoning reduction-based treat-
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ments of de�nitional equality in favor of a direct presentation of a practical equivalence algo-

rithm [Coq91]. Coquand's approach is based on analyzing the \shapes" of terms, building in the

principle of extensionality instead of relying on �-reduction or expansion. This algorithm improves

on reduction-based approaches by avoiding explicit computation of normal forms, and allowing for

early termination in the case that two terms are determined to be inequivalent. However, Co-

quand's approach does not address the problem of computing canonical forms, nor can it be easily

extended to richer type theories such as those with unit types. In both cases the problem can be

traced to the reliance on the shape of terms, rather than on their classifying types, to guide the

algorithm. For example, if x and y are two variables of unit type, they are de�nitionally equal, but

are structurally distinct; moreover, their canonical forms would be the sole element of unit type.

In this paper we present a new type-directed algorithm for testing equality for a dependent type

theory in the presence of � and �-conversion, which generalizes the algorithm for the simply-typed

case in [Pfe92]. We prove its correctness directly via logical relations. The essential idea is that we

can erase dependencies when de�ning the logical relation, even though the domain of the relation

contains dependently typed terms. This makes the de�nition obviously well-founded. Moreover,

it means that the type-directed equality-testing algorithm on dependently typed terms requires

only simple types. Consequently, transitivity of the algorithm is an easy property, which we were

unable to obtain without this simplifying step. Soundness and completeness of the equality-testing

algorithm yields the decidability of the type theory rather directly.

Another advantage of our approach is that it can be easily adapted to support adequacy proofs

using a new notion of quasi-canonical forms, that is, canonical forms without type labels on �-

abstractions. We show that quasi-canonical forms of a given type are su�cient to determine the

meaning of an object, since the type labels can be reconstructed (up to de�nitional equality) from

the classifying type. Interestingly, recent research on dependently typed rewriting [Vir99] has also

isolated equivalence classes of terms modulo conversion of the type labels as a critical concept.

While it is beyond the scope of this paper, we believe our construction is robust with respect

to extension of the type theory with products, unit, linearity, subtyping and similar complicating

factors. The reason is the exibility of type-directed equality in the simply-typed case and the

harmony between the de�nition of the logical relation and the algorithm, both of which are based

on the erased types.

2 A Variant of the LF Type Theory

Syntactically, our formulation of the LF type theory follows the original proposal by Harper, Honsell

and Plotkin [HHP93], except that we omit type-level �-abstraction. This simpli�es the proof of

the soundness theorem considerably, since we can prove the injectivity of products (Lemma 11)

at an early stage. In practice, this restriction has no impact since types in normal form never

contain type-level �-abstractions. In compensation for the omission of type-level �-abstractions,

we augment the type theory with a functionality rule stating that families respect equality in

their free variables. The functionality rule for families is derivable in the presence of family-level

abstractions, but appears to be essential in their absence.
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2.1 Syntax

Kinds K ::= type j �x:A: K

Families A ::= a j AM j �x:A1: A2

Objects M ::= c j x j �x:A: M jM1M2

Signatures � ::= � j �; a:K j �; c:A

Contexts � ::= � j �; x:A

We use K for kinds, A;B;C for type families, M;N;O for objects, �;	 for contexts and � for

signatures. We also use the symbol \kind" to classify the valid kinds. We consider terms that di�er

only in the names of their bound variables as identical. We write [N=x]M , [N=x]A and [N=x]K for

capture-avoiding substitution. Signatures and contexts may declare each constant and variable at

most once. For example, when we write �; x:A we assume that x is not already declared in �. If

necessary, we tacitly rename x before adding it to the context �.

2.2 Substitutions

In the logical relations argument, we require a notion of simultaneous substitution.

Substitutions � ::= � j �;M=x

We assume that no variable is de�ned more than once in any substitution which can be achieved

by appropriate renaming where necessary. We do not develop a notion and theory of well-typed

substitutions, since it is unnecessary for our purposes. However, when applying a substitution �

to a term M we maintain the invariant that all free variables in M occur in the domain of �, and

similarly for families and kinds.

We write id� for the identity substitution on the context �. We use the notation M [�], A[�]

and K[�] for the simultaneous substitution by � into an object, family, or kind. It is de�ned by

simultaneous induction on the structure of objects, families, and kinds.

x[�] = M where M=x in �

c[�] = c

(�x:A: M)[�] = �x:A[�]: M [�; x=x]

(M N)[�] = M [�]N [�]

a[�] = a

(AM)[�] = A[�]M [�]

(�x:A: B)[�] = �x:A[�]: B[�; x=x]

type[�] = type

(�x:A: K)[�] = �x:A[�]: K[�; x=x]

Extending the substitution � to (�; x=x) may require some prior renaming of the variable x in order

to satisfy our assumption on substitutions.
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2.3 Judgments

The LF type theory is de�ned by the following judgments.

` � sig � is a valid signature

�̀ � ctx � is a valid context

� �̀ M : A M has type A

� �̀ A : K A has type K

� �̀ K : kind K is a valid kind

� �̀ M = N : A M equals N at type A

� �̀ A = B : K A equals B at kind K

� �̀ K = L : kind K equals L

For the judgment �̀ � ctx we presuppose that � is a valid signature. For the remaining

judgments of the form � �̀ J we presuppose that � is a valid signature and that � is valid in �.

For the sake of brevity we omit the signature � from all judgments but the �rst, since it does not

change throughout a derivation.

If J is a typing or equality judgment, then we write J [�] for the obvious substitution of J by

�. For example, if J is M : A, then J [�] stands for the judgment M [�] : A[�].

2.4 Typing Rules

Our formulation of the typing rules is similar to the second version given in [HHP93]. In preparation

for the various algorithms we presuppose and inductively preserve the validity of contexts involved

in the judgments, instead of checking these properties at the leaves. This is a matter of expediency

rather than necessity.

Signatures

` � sig

` � sig � �̀ K : kind

` �; a:K sig

` � sig � �̀ A : type

` �; c:A sig

From now on we �x a valid signature � and omit it from the judgments.

Contexts

` � ctx

` � ctx � ` A : type

` �; x:A ctx

From now on we presuppose that all contexts in judgments are valid, instead of checking it

explicitly. This means, for example, that we have to verify the validity of the type labels in �-

abstractions before adding them to the context.
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Objects

x:A in �

� ` x : A

c:A in �

� ` c : A

� `M1 : �x:A2: A1 � `M2 : A2

� `M1M2 : [M2=x]A1

� ` A1 : type �; x:A1 `M2 : A2

� ` �x:A1: M2 : �x:A1: A2

� `M : A � ` A = B : type

� `M : B

Families

a:K in �

� ` a : K

� ` A : �x:B: K � `M : B

� ` AM : [M=x]K

� ` A1 : type �; x:A1 ` A2 : type

� ` �x:A1: A2 : type

� ` A : K � ` K = L : kind

� ` A : L

Kinds

� ` type : kind

� ` A : type �; x:A ` K : kind

� ` �x:A: K : kind

2.5 De�nitional Equality

The rules for de�nitional equality are written with the presupposition that a valid signature � is

�xed and that all contexts � are valid. The intent is that equality implies validity of the objects,

families, or kinds involved (see Lemma 7). In contrast to the original formulation in [HHP93],

equality is based on a notion of parallel conversion plus extensionality, rather then ��-conversion.

We believe this is a robust foundation, easily transferred to richer and more complicated type

theories.

Characteristically for parallel conversion, reexivity is admissible (Lemma 2) which signi�cantly

simpli�es the completeness proof for the algorithm to check equality. Similarly, the somewhat

unwieldy congruence rule for �-abstraction can be derived from the general extensionality principle,

once validity has been established (Lemma 8). We enclose the admissible rules are in [brackets].

Some of the typing premises in the rules are redundant, but for technical reasons we cannot prove

this until validity has been established. Such premises are enclosed in fbracesg. Alternatively, it

may be su�cient to check validity of the contexts at the leaves of the derivations (the cases for

variables and constants), a technique used both in the original presentation of LF [HHP93] and

Pure Type Systems [Bar92].

The main departure from standard presentations is an explicit rule of functionality at the level of

type families. It expresses that ifM = N and B = C with a free variable x then [M=x]B = [N=x]C
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(taking equality here as de�nitional equality). In the presence of a family-level �-abstraction, this

can be derived from �-conversion and congruence: [M=x]B = (�x: B)M = (�x: C)N = [N=x]C. It

seems to be di�cult to recover this property when no type-level �-abstractions are present. Adding

the rule as a primitive does not disturb the completeness proof (the rule is easily validated by the

logical relations) and makes the soundness proof direct, since we can prove validity (Lemma 7) by

syntactic means.

Adding a family-level �-abstraction is another choice. However, we were then unable to prove

the injectivity of products (Lemma 11) before the soundness theorem (Theorem 27) in whose proof

it is required.

Simultaneous Congruence

x:A in �

� ` x = x : A

c:A in �

� ` c = c : A

� `M1 = N1 : �x:A2: A1 � `M2 = N2 : A2

� `M1M2 = N1N2 : [M2=x]A1"
� ` A0

1
= A1 : type � ` A00

1
= A1 : type �; x:A1 `M2 = N2 : A2

� ` �x:A0

1
: M2 = �x:A00

1
: N2 : �x:A1: A2

#

Extensionality

� ` A1 : type f� `M : �x:A1: A2g f� ` N : �x:A1: A2g �; x:A1 `M x = N x : A2

� `M = N : �x:A1: A2

Parallel Conversion

f� ` A1 : typeg �; x:A1 `M2 = N2 : A2 � `M1 = N1 : A1

� ` (�x:A1: M2)M1 = [N1=x]N2 : [M1=x]A2

Equivalence

� `M = N : A

� ` N =M : A

� `M = N : A � ` N = O : A

� `M = O : A�
� `M : A

� `M =M : A

�

Type Conversion

� `M = N : A � ` A = B : type

� `M = N : B
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Family Congruence

a:K in �

� ` a = a : K

� ` A = B : �x:C: K � `M = N : C

� ` AM = BN : [M=x]K

� ` A1 = B1 : type f� ` A1 : typeg �; x:A1 ` A2 = B2 : type

� ` �x:A1: A2 = �x:B1: B2 : type

Family Equivalence

� ` A = B : K

� ` B = A : K

� ` A = B : K � ` B = C : K

� ` A = C : K�
� ` A : K

� ` A = A : K

�

Family Functionality

� `M = N : A ` �; x:A;�0 ctx �; x:A;�0 ` B = C : K

�; [M=x]�0 ` [M=x]B = [N=x]C : [M=x]K

Kind Conversion

� ` A = B : K � ` K = L : kind

� ` A = B : L

Kind Congruence

� ` type = type : kind

� ` A = B : type f� ` A : typeg �; x:A ` K = L : kind

� ` �x:A: K = �x:B: L : kind

Kind Equivalence

� ` K = L : kind

� ` L = K : kind

� ` K = L : kind � ` L = L0 : kind

� ` K = L0 : kind�
� ` K : kind

� ` K = K : kind

�
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2.6 Elementary Properties of Typing and De�nitional Equality

We establish some elementary properties of the judgments pertaining to the interpretation of con-

texts. There is an alternative route to these properties by �rst introducing a notion of substitution

and well-typed substitution.

First we establish weakening for all judgments of the type theory. We use J to stand for any of

the relevant judgments of the type theory in order to avoid repetitive statements. We extend the

notation of substitution to all judgments of the type theory in the obvious way. For example, if J

is N : B then [M=x]J is [M=x]N : [M=x]J .

Lemma 1 (Weakening) If �;�0 ` J then �; x:A;�0 ` J .

Proof: By straightforward induction over the structure of the given derivation. 2

Note that exchange for independent hypotheses and contraction are also admissible, but we

elide the statement of these properties here since they are not needed for the results in this paper.

Next we show that reexivity is admissible.

Lemma 2 (Reexivity)

1. If � `M : A then � `M =M : A.

2. If � ` A : K then � ` A = A : K.

3. If � ` K : kind then � ` K = K : kind.

Proof: By inductions over the structure of the given derivations. In each case the result follows im-

mediately from the available induction hypotheses, except for �-abstraction since no corresponding

congruence rule is available. We only show this case.

Case:

� ` A1 : type �; x:A1 `M2 : A2

� ` �x:A1: M2 : �x:A1: A2

�; x:A1 `M2 =M2 : A2 By ind. hyp.

�; x0:A1 ` [x
0=x]M2 = [x0=x]M2 : [x

0=x]A2 By renaming

�; x:A1; x
0:A1 ` [x

0=x]M2 = [x0=x]M2 : [x
0=x]A2 By weakening

�; x:A1 ` x = x By rule (variable equality)

�; x:A1 ` (�x
0:A1: [x

0=x]M2)x = [x=x0][x0=x]M2 : [x=x
0][x0=x]A2 By rule (parallel conversion)

�; x:A1 ` (�x
0:A1: [x

0=x]M2)x =M2 : A2 By de�nition of substitution

�; x:A1 `M2 = (�x0:A1: [x
0=x]M2)x : A2 By rule (symmetry)

�; x:A1 ` (�x
0:A1: [x

0=x]M2)x = (�x0:A1: [x
0=x]M2)x : A2 By rule (transitivity)

� ` A1 : type Assumption

� ` (�x0:A1: [x
0=x]M2) : �x:A1: A2 By renaming from assumption

� ` (�x0:A1: [x
0=x]M2) = (�x0:A1: [x

0=x]M2) : �x:A1: A2 By rule (extensionality)

� ` (�x:A1: M2) = (�x:A1: M2) : �x:A1: A2 By renaming

2
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Next we prove the substitution property. Normally, this is an entirely straightforward induction

over the structure of the given derivations. However, in our case the functionality rule upsets this

strategy at level of families. Instead we use this rule directly together with reexivity to prove the

substitution property for families.

Lemma 3 (Substitution Property for Typing and De�nitional Equality)

Assume �; x:A;�0 is a valid context. If � `M : A and �; x:A;�0 ` J then �; [M=x]�0 ` [M=x]J .

Proof: By straightforward inductions over the structure of the given derivations, with the exception

of substitution into family-level equality rules. This case follows immediately by reexivity and the

rule of functionality at the level of families.

Case: The judgment J has the form B = C : K.

� `M : A Assumption

� `M =M : A By reexivity

` (�; x:A;�0) ctx Assumption

� ` A : type and

�; x:A ` �0 ctx By inversion on ` � ctx

�; x:A;�0 ` B = C : K Assumption

�; [M=x]�0 ` [M=x]B = [M=x]C : [M=x]K By rule (family functionality)

2

The next lemma applies in a number of the proofs in the remainder of this section.

Lemma 4 (Context Conversion) Assume �; x:A is a valid context and � ` B : type.

If �; x:A ` J and � ` A = B : type then �; x:B ` J .

Proof: Direct, taking advantage of the structural properties.

�; x:B ` x : B By rule (variable)

� ` B = A : type By symmetry from assumption

�; x:B ` x : A By rule (type conversion)

�; x0:A ` [x0=x]J By renaming from assumption

�; x:B; x0:A ` [x0=x]J By weakening

�; x:B ` [x=x0][x0=x]J By substitution property

�; x:B ` J By de�nition of substitution

2

Lemma 5 (Typing Inversion)

1. If � ` x : A then x:B in � and � ` A = B : type for some B.

2. If � ` c : A then c:B in � and � ` A = B : type for some B.

3. If � ` M1M2 : A then � ` M1 : �x:A2: A1, � ` M2 : A2 and � ` [M2=x]A1 = A : type for

some A1 and A2.

4. If � ` �x:A: M : B, then � ` B = �x:A: A0 : type, � ` A : type, and �; x:A `M : A0.
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5. If � ` �x:A1: A2 : type then � ` A1 : type and �; x:A1 ` A2 : type.

6. If � ` a : K, then a:L in � and � ` K = L : kind for some L.

7. If � ` AM : K, then � ` A : �x:A1: K2, � `M : A1, and � ` K = [M=x]K2 : kind.

8. If � ` �x:A1: K2 : kind, then � ` A1 : type and �; x:A1 ` K2 : kind.

Proof: By a straightforward induction on typing derivations. 2

Besides typing inversion, we require functionality at the level of kinds, which is easily seen to

be admissible.

Lemma 6 (Kind Functionality) Assume ` �; x:A;�0 ctx.

If � `M = N : A and �; x:A;�0 ` K = L : kind then �; [M=x]�0 ` [M=x]K = [N=x]L : kind.

Proof: By a straightforward induction on the derivation of �; x:A;�0 ` K = L : kind, appealing

to the rule of functionality for families in the congruence case for dependent product kinds. 2

For the statement of validity, recall our general assumption that all signatures are valid.

Lemma 7 (Validity) Assume � is a valid context.

1. If � `M : A then � ` A : type.

2. If � `M = N : A, then � `M : A, � ` N : A, and � ` A : type.

3. If � ` A : K, then � ` K : kind.

4. If � ` A = B : K, then � ` A : K, � ` B : K, and � ` K : kind.

5. If � ` K = L : kind, then � ` K : kind and � ` L : kind.

Proof: By a straightforward simultaneous induction on derivations. The family functionality rule

is required to handle the case of applications of objects to objects, the kind functionality lemma

for the applications of families to objects. The typing premises on the rule of extensionality ensure

that strengthening is not required.

Case:

E =

E1
� `M1 = N1 : �x:A2: A1

E2
� `M2 = N2 : A2

� `M1M2 = N1N2 : [M2=x]A1

� `M1 : �x:A2: A1

� ` N1 : �x:A2: A1

� ` �x:A2: A1 : type by i.h. on E1
� `M2 : A2

� ` N2 : A2

� ` A2 : type by i.h. on E2
�; x:A2 ` A1 : type by inversion

� ` [M2=x]A1 : type by substitution

11



� `M1M2 : [M2=x]A1 by rule

� ` N1N2 : [N2=x]A1 by rule

� ` [M2=x]A1 = [N2=x]A1 : type by functionality

� ` N1N2 : [M2=x]A1 by symmetry and type conversion

2

With the central validity property, we can show a few other syntactic results. The �rst of these

is that the natural congruence rule for �-abstraction is admissible. We do not need this property

later.

Lemma 8 (Functional Congruence) The rule

� ` A0

1
= A1 : type � ` A00

1
= A1 : type �; x:A1 `M2 = N2 : A2

� ` �x:A0

1
: M2 = �x:A00

1
: N2 : �x:A1: A2

is admissible.

Proof: Direct, using extensionality and parallel conversion. The validity lemma is required in

order to assemble the typing premises of extensionality and parallel conversion. 2

We can now show that some of the typing premises in the inference rules are redundant.

Lemma 9 (Redundancy of Typing Premises) The indicated typing premises in the rules of

parallel conversion, family congruence, and type congruence are redundant.

Proof: Straightforward from validity. 2

Lemma 10 (Equality Inversion) Assume � is a valid context.

1. If � ` K = type : kind or � ` type = K : kind then K = type.

2. If � ` K = �x:B1: L2 : kind or � ` �x:B1: L2 = K : kind then K = �x:A1: K2 such that

� ` A1 = B1 : type and �; x:A1 ` K2 = L2 : kind.

3. If � ` A = �x:B1: B2 : type or � ` �x:B1: B2 = A : type then A = �x:A1: A2 for some A1

and A2 such that � ` A1 = B1 : type and �; x:A1 ` A2 = B2 : type.

Proof: By induction on the given equality derivations. There are some subtle points in the proof

of part 3, so we show three cases. Note that adding a family-level � would prevent proving this

result at such an early stage. The case where the last inference was family functionality shows that

we cannot restrict this rule to an empty inner context �0.

Case:

E =

E1
� ` A = C : type

E2
� ` C = �x:B1: B2 : type

� ` A = �x:B1: B2 : type

12



C = �x:C1: C2 for some C1 and C2 such that

� ` C1 = B1 : type and

�; x:C1 ` C2 = B2 : type By i.h. (3) on E2
A = �x:A1: A2 for some A1 and A2 such that

� ` A1 = C1 : type and

�; x:A1 ` A2 = C2 : type By i.h. (3) on E1
� ` A1 = B1 : type By rule (transitivity)

�; x:A1 ` C2 = B2 : type By context conversion (Lemma 4)

�; x:A1 ` A2 = B2 : type By rule (transitivity)

Case:

E =

E1
� ` A = �x:B1: B2 : K

E2
� ` K = type : kind

� ` A = �x:B1: B2 : type

K = type By i.h. (1) on E2
A = �x:A1: A2 for some A1 and A2 such that

� ` A1 = B1 : type and

�; x:A1 ` A2 = B2 : type By i.h. (3) on E1

Case:

E =

E1
�0 `M = N : C

T 00

` �0; x:C;�00 ctx

E2
�0; y:C;�00 ` A0 = B0 : type

�0; [M=y]�00 ` [M=y]A0 = [N=y]B0 : type

� = �0; [M=y]�00,

A = [M=y]A0, and

�x:B1: B2 = [N=y]B0 Assumption

B0 = �x:B0

1
: B0

2
where B1 = [N=y]B0

1
and B2 = [N=y]B0

2
By defn. of substitution

A0 = �x:A0

1
: A0

2
,

�0; y:C;�00 ` A0

1
= B0

1
: type, and

�0; y:C;�00; x:A0

1
` A0

2
= B0

2
: type By i.h. (3) on E2

A = �x:[M=y]A0

1
: [M=y]A0

2
By defn. of substitution

�0; y:C ` (�00; x:A0

1
) ctx By validity (Lemma 7)

�0; [M=y]�00 ` [M=y]A0

1
= [N=y]B0

1
: type By rule (functionality)

�0; [M=y]�00; x:[M=y]A0

1
` [M=y]A0

2
= [N=y]B0

2
: type By rule (functionality)

2

Lemma 11 (Injectivity of Products)

1. If � ` �x:A1: A2 = �x:B1: B2 : type then � ` A1 = B1 : type and �; x:A1 ` A2 = B2 : type.

2. If � ` �x:A1: K2 = �x:B1: L2 : kind then � ` A1 = B1 : type and �; x:A1 ` K2 = L2 : kind.

Proof: Immediate by equality inversion (Lemma 10). 2

13



3 Algorithmic Equality

The algorithm for deciding equality can be summarized as follows:

1. When comparing objects at function type, apply extensionality.

2. When comparing objects at base type, reduce both sides to weak head-normal form and then

compare heads directly and, if they are equal, each corresponding pair of arguments according

to their type.

Since this algorithm is type-directed in case (1) we need to carry types. Unfortunately, this makes

it di�cult to prove correctness of the algorithm in the presence of dependent types, because tran-

sitivity is not an obvious property. The informal description above already contains a clue to the

solution: we do not need to know the precise type of the objects we are comparing, as long as we

know that they are functions.

We therefore de�ne a calculus of simple types and an erasure function ()� that eliminates

dependencies for the purpose of this algorithm. The same idea is used later in the de�nition of the

Kripke logical relation to prove completeness of the algorithm.

We write � to stands for simple base types and we have two special type constants, type� and

kind�, for the equality judgments at the level of types and kinds.

Simple Kinds � ::= type� j � ! �

Simple Types � ::= � j �1 ! �2
Simple Contexts � ::= � j �; x:�

We use �; �; � for simple types and �;� for contexts declaring simple types for variables. We

also use kind� in a similar role to kind in the LF type theory.

We write A� for the simple type that results from erasing dependencies in A, and similarlyK�.

We translate each constant type family a to a base type a� and extend this to all type families.

We extend it further to contexts by applying it to each declaration.

(a)� = a�

(AM)� = A�

(�x:A1: A2)
� = A�

1
! A�

2

(type)� = type�

(�x:A: K)� = A� ! K�

(kind)� = kind�

(�)� = �

(�; x:A)� = ��; x:A�

We need the property that the erasure of a type or kind remains invariant under equality and

substitution.

Lemma 12 (Erasure Preservation)

1. If � ` A = B : K then A� = B�.

2. If � ` K = L : kind then K� = L�.
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3. If �; x:A ` B : K then B� = [M=x]B�.

4. If �; x:A ` K : kind then K� = [M=x]K�.

Proof: By induction over the structure of the given derivations. 2

We now present the algorithm in the form of three judgments.

M
whr

�!M 0 (M weak head reduces to M 0) Algorithmically, we assume M is given and compute M 0

(if M is head reducible) or fail.

� `M () N : � (M is equal to N at simple type �) Algorithmically, we assume �, M , N , and �

are given and we simply succeed or fail. We only apply this judgment if M and N have the

same type A and � = A�.

� `M  ! N : � (M is structurally equal to N) Algorithmically, we assume that �, M and N

are given and we compute � or fail. If successful, � will be the approximate type of M and

N .

Note that the structural and type-directed equality are mutually recursive, while weak head reduc-

tion does not depend on the other two judgments.

Weak Head Reduction

(�x:A1: M2)M1

whr

�! [M1=x]M2

M1

whr

�!M 0

1

M1M2

whr

�!M 0

1
M2

Type-Directed Object Equality

M
whr

�!M 0 � `M 0 () N : �

� `M () N : �

N
whr

�! N 0 � `M () N 0 : �

� `M () N : �

� `M  ! N : �

� `M () N : �

�; x:�1 `M x() N x : �2

� `M () N : �1 ! �2

Structural Object Equality

x:� in �

� ` x ! x : �

c:A in �

� ` c ! c : A�

� `M1  ! N1 : �2 ! �1 � `M2 () N2 : �2

� `M1M2  ! N1N2 : �1

15



Structural Family Equality

a:K in �

� ` a ! a : K�

� ` A ! B : � ! � � `M () N : �

� ` AM  ! AN : �

� ` A1  ! B1 : type
� �; x:A�

1
` A2  ! B2 : type

�

� ` �x:A1: A2  ! �x:B1: B2 : type
�

Structural Kind Equality

� ` type ! type : kind�

� ` A ! B : type� �; x:A� ` K  ! L : kind�

� ` �x:A: K  ! �x:B: L : kind�

The algorithmic equality satis�es some straightforward structural properties. Weakening is

required in the proof of its correctness. It does not appear that exchange or contraction are needed

in our particular argument, but these properties can all be easily proven. Note that versions of the

logical relations proofs nonetheless apply in the linear, strict, and a�ne �-calculi.

Lemma 13 (Structural Properties of Algorithmic Equality)

For each type-directed and structural equality judgment J the following hold:

1. [Exchange] If �; x1:�1; x2:�2;�
0 ` J then �; x2:�2; x1:�1;�

0 ` J .

2. (Weakening) If �;�0 ` J then �; x:�;�0 ` J .

3. [Contraction] If �; x1:�; x2:�;�
0 ` J then �; x:�;�0 ` [x=x1][x=x2]J .

4. (Strengthening) If �; x:�;�0 ` J and x =2 FV (J), then �;�0 ` J .

Proof: By straightforward inductions over the structure of the given derivations. 2

The algorithm is essentially deterministic in the sense that when comparing terms at base type

we have to weakly head-normalize both sides and compare the results structurally. This is because

terms that are weakly head reducible will never be considered structurally equal.

Lemma 14 (Determinacy of Algorithmic Equality)

1. If M
whr

�!M 0 and M
whr

�!M 00 then M 0 =M 00.

2. If � `M  ! N : � then there is no M 0 such that M
whr

�!M 0.

3. If � `M  ! N : � then there is no N 0 such that N
whr

�! N 0.

4. If � `M  ! N : � and � `M  ! N : � 0 then � = � 0.

5. If � ` A ! B : � and � `M  ! N : �0 then � = �0.
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Proof: The �rst part and parts four and �ve are immediate by structural induction. We only show

the second part, since the third part is symmetric. Assume

S

� `M  ! N : � and

W

M
whr

�!M 0

for some M 0. We now show by simultaneous induction over S and W that these assumptions are

contradictory. Whenever we have constructed a judgment such there is no rule that could conclude

this judgment, we say we obtain a contradiction by inversion.

Case:

S =
x:� in �

� ` x ! x : �

x
whr

�!M 0 Assumption (W)

Contradiction By inversion

Case: Structurally equality of constants is impossible as in the case for variables.

Case:

S =

S1
� `M1  ! N1 : �2 ! �1

T2
� `M2 () N2 : �2

� `M1M2  ! N1N2 : �1

Here we distinguish two subcases for the derivation W of M1M2

whr

�!M 0.

Subcase:

W =
(�x:A1: M

0

1
)M2

whr

�! [M2=x]M
0

1

M1 = (�x:A1: M
0

1
) Assumption

� `M1  ! N1 : �2 ! �1 Assumption (S1)

Contradiction By inversion

Subcase:

W =

W1

M1

whr

�!M 0

1

M1M2

whr

�!M 0

1
M2

� `M1  ! N1 : �2 ! �1 Assumption (S1)

Contradiction By ind. hyp. on W1 and S1

2
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The completeness proof requires symmetry and transitivity of the algorithm. This would intro-

duce some di�culty if the algorithm employed precise instead of approximate types. This is one

reason why both the algorithm and later the logical relation are de�ned using approximate types

only.

Lemma 15 (Symmetry of Algorithmic Equality)

1. If � `M () N : � then � ` N ()M : � .

2. If � `M  ! N : � then � ` N  !M : � .

3. If � ` A ! B : � then � ` B  ! A : �.

4. If � ` K  ! L : kind� then � ` L ! K : kind�.

Proof: By simultaneous induction on the given derivations. 2

Lemma 16 (Transitivity of Algorithmic Equality)

1. If � `M () N : � and � ` N () O : � then � `M () O : � .

2. If � `M  ! N : � and � ` N  ! O : � then � `M  ! O : � .

3. If � ` A ! B : � and � ` B  ! C : � then � ` A ! C : �.

4. If � ` K  ! L : kind� and � ` L ! L0 : kind� then � ` K  ! L0 : kind�.

Proof: By simultaneous inductions on the structure of the given derivations. In each case, we may

appeal to the induction hypothesis if one of the two derivations is strictly smaller, while the other

is either smaller or the same. The proof requires determinacy (Lemma 14). We only show some

cases in the proof of property (1); others are direct. Assume we are given

TL
� `M () N : � and

TR
� ` N () O : �

We have to construct a derivation of � ` M () O : � . We distinguish cases for TL and TR. In

case one of them is the extensionality rule, the other must be, too, and the result follows easily

from the induction hypothesis. We show the remaining cases.

Case:

TL = M
whr

�!M 0

T 0L
� `M 0 () N : �

� `M () N : �

where TR is arbitrary.

� `M 0 () O : � By ind. hyp. (1) on T 0L and TR
� `M () O : � By rule (whr left)

18



Case:

TR = O
whr

�! O0

T 0R
� ` N () O0 : �

� ` N () O : �

where TL arbitrary.

� `M () O0 : � By ind. hyp. (1) on TL and T 0R
� `M () O : � By rule (whr right)

Case:

TL = N
whr

�! N 0

T 0L
� `M () N 0 : �

� `M () N : �

and TR = N
whr

�! N 00

T 0R
� ` N 00 () O : �

� ` N () O : �

N 0 = N 00 By determinacy of weak head reduction (Lemma 14(1))

� `M () O : � By ind. hyp. (1) on T 0L and T 0R.

Case:

TL = N
whr

�! N 0

T 0L
� `M () N 0 : �

� `M () N : �

and TR =

SR
� ` N  ! O : �

� ` N () O : �

This case is impossible by determinacy of algorithmic equality (Lemma 14(2)).

Case:

TL =

SL
� `M  ! N : �

� `M () N : �

and TR = N
whr

�! N 0

T 0R
� ` N 0 () O : �

� ` N () O : �

This case is impossible by determinacy of algorithmic equality (Lemma 14(3)).

Case:

TL =

SL
� `M  ! N : �

� `M () N : �

and TR =

SR
� ` N  ! O : �

� ` N () O : �

� `M  ! O : � By ind. hyp. (2) on SL and SR
� `M () O : � By rule

2
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4 Completeness of Algorithmic Equality

In this section we develop the completeness theorem for the type-directed equality algorithm. That

is, if two terms are de�nitionally equal, the algorithm will succeed. The goal is to present a exible

and modular technique which can be adapted easily to related type theories, such as the one

underlying the linear logical framework [CP98], one based on non-commutative linear logic [PP99],

or one including subtyping [Pfe93]. Other techniques presented in the literature, particularly those

based on a notion of �-reduction, do not seem to adapt well to these richer theories.

The central idea is to proceed by an argument via logical relations de�ned inductively on the

approximate type of an object, where the approximate type arises from erasing all dependencies in

an LF type.

The completeness direction of the correctness proof for type-directed equality states:

If � `M = N : A then �� `M () N : A�.

One would like to prove this by induction on the structure of the derivation for the given equality.

However, such a proof attempt fails at the case for application. Instead we de�ne a logical relation

� `M = N 2 [[� ]] that provides a stronger induction hypothesis so that both

1. if � `M = N : A then �� `M = N 2 [[A�]], and

2. if �� `M = N 2 [[A�]] then �� `M () N 2 A�,

can be proved.

4.1 A Kripke Logical Relation

We de�ne a Kripke logical relation inductively on simple types. At base type we require the property

we eventually would like to prove. At higher types we reduce the property to those for simpler

types. We also extend it further to include substitutions, where it is de�ned by induction over the

structure of the matching context.

We say that a context �0 extends � (written �0 � �) if �0 contains all declarations in � and

possibly more.

1. � `M = N 2 [[�]] i� � `M () N : �.

2. � ` M = N 2 [[�1 ! �2]] i� for every �0 extending � and for all M1 and N1 such that

�0 `M1 = N1 2 [[�1]] we have �
0 `MM1 = N N1 2 [[�2]].

3. � ` A = B 2 [[type�]] i� � ` A ! B : type�.

4. � ` A = B 2 [[� ! �]] i� for every �0 extending � and for all M and N such that

�0 `M = N 2 [[� ]] we have �0 ` AM = BN 2 [[�]].

5. � ` � = � 2 [[�]] i� � = � and � = �.

6. � ` � = � 2 [[�; x:� ]] i� � = (�0;M=x) and � = (�0; N=x) where � ` �0 = �0 2 [[�]] and

� `M = N 2 [[� ]].

Three general structural properties of the logical relations that we can show directly by induction

are exchange, weakening, and contraction. We will use only weakening.
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Lemma 17 (Structural Properties of the Logical Relations) For all logical relations R the

following hold:

1. [Exchange] If �; x1:�1; x2:�2;�
0 ` R then �; x2:�2; x1:�1;�

0 ` R.

2. (Weakening) If �;�0 ` R then �; x:�;�0 ` R.

3. [Contraction] If �; x1:�; x2:�;�
0 ` R then �; x:�;�0 ` [x=x1][x=x2]R.

4. [Strengthening] If �; x:�;�0 ` R and x =2 FV (R), then �;�0 ` R.

Proof: By induction on the structure of the de�nition of R (either simple type, kind, or context).

For contraction and strengthening, it is easiest to take advantage of weakening in the case for

function types. We show only the proof for weakening, that is, if �;�0 `M 2 [[� ]] then �; x:�;�0 `

M = N 2 [[� ]].

Case: � = �.

�;�0 `M = N 2 [[�]] Assumption

�;�0 `M () N : � By de�nition of [[�]]

�; x:�;�0 `M () N : � By weakening (Lemma 1)

�; x:�;�0 `M = N 2 [[�]] By de�nition of [[�]]

Case: � = �1 ! �2.

�;�0 `M = N 2 [[�1 ! �2]] Assumption

�+; x:�;�
0

+
`M1 = N1 2 [[�1]]

for arbitrary �+ � � and �0

+
� �0 New assumption

(�+; x:�;�
0

+
) � (�;�0) By de�nition of �

�+; x:�;�
0

+
`MM1 = N N1 2 [[�2]] By de�nition of [[�1 ! �2]] and assumption

�; x:�;�0 `M = N 2 [[�1 ! �2]] By de�nition of [[�1 ! �2]]

2

4.2 Logically Related Terms are Algorithmically Equal

It is straightforward to show that logically related terms are considered identical by the algorithm.

This proof always proceeds by induction on the structure of the type. A small insight may be

required to arrive at the necessary generalization of the induction hypothesis. Here, this involves

the statement that structurally equal terms are logically related. This has an important consequence

we will need later on, namely that variables and constants are logically related to themselves.

Theorem 18 (Logically Related Terms are Algorithmically Equal)

1. If � `M = N 2 [[� ]] then � `M () N : � .

2. If � ` A = B 2 [[�]], then � ` A ! B : �.

3. If � `M  ! N : � then � `M = N 2 [[� ]].

4. If � ` A ! B : � then � ` A = B 2 [[�]].
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Proof: By simultaneous induction on the structure of � .

Case: � = �, part 1.

� `M = N 2 [[�]] Assumption

� `M () N : � By de�nition of [[�]]

Case: � = type�, part 2.

� `M = N 2 [[type�]] Assumption

� `M  ! N : type� By de�nition of [[type�]]

Case: � = �, part 3.

� `M  ! N : � Assumption

� `M () N : � By rule

� `M = N 2 [[�]] By de�nition of [[�]]

Case: � = type�, part 4.

� ` A ! B : type� Assumption

� ` A = B 2 [[type�]] By de�nition of [[type�]]

Case: � = �1 ! �2, part 1.

� `M = N 2 [[�1 ! �2]] Assumption

�; x:�1 ` x ! x : �1 By rule

�; x:�1 ` x = x 2 [[�1]] By i.h. 3 on �1
�; x:�1 `M x = N x 2 [[�2]] By de�nition of [[�1 ! �2]]

�; x:�1 `M x() N x : �2 By i.h. 1 on �2
� `M () N : �1 ! �2 By rule

Case: � = �1 ! �2, part 2.

� ` A = B 2 [[�1 ! �2]] Assumption

�; x:�1 ` x ! x : �1 By rule

�; x:�1 ` x = x 2 [[�1]] By i.h. 3 on �1
�; x:�1 ` Ax = B x 2 [[�2]] By de�nition of [[�1 ! �2]]

�; x:�1 ` Ax ! B x : �2 By i.h. 2 on �2
�; x:�1 ` A ! B : � 0

1
! �2 By inversion

� ` A ! B : � 0
1
! �2 By strengthening (Lemma 13)

� ` A ! B : �1 ! �2 By determinacy (Lemma 14(5))

Case: � = �1 ! �2, part 3.
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� `M  ! N : �1 ! �2 Assumption

�+ `M1 = N1 2 [[�1]] for an arbitrary �+ � � New assumption

�+ `M1 () N1 2 �1 By i.h. 1 on �1
�+ `M  ! N : �1 ! �2 By weakening (Lemma 13)

�+ `MM1  ! N N1 2 �2 By rule

�+ `MM1 = N N1 2 [[�2]] By i.h. 3 on �2
� `M = N 2 [[�1 ! �2]] By de�nition of [[�1 ! �2]]

Case: � = �1 ! �2, part 4.

� ` A ! B : �1 ! �2 Assumption

�+ `M1 = N1 2 [[�1]] for an arbitrary �+ � � New assumption

�+ `M1 () N1 2 �1 By i.h. 1 on �1
�+ ` A ! B : �1 ! �2 By weakening (Lemma 13)

�+ ` AM1  ! BN1 2 �2 By rule

�+ ` AM1 = BN1 2 [[�2]] By i.h. 4 on �2
� ` A = B 2 [[�1 ! �2]] By de�nition of [[�1 ! �2]]

2

4.3 De�nitionally Equal Terms are Logically Related

The other part of the logical relations argument states that two equal terms are logically related.

This requires a sequence of lemmas regarding algorithmic equality and the logical relation.

Lemma 19 (Closure under Head Expansion)

1. If M
whr

�!M 0 and � `M 0 = N 2 [[� ]] then � `M = N 2 [[� ]].

2. If N
whr

�! N 0 and � `M = N 0 2 [[� ]] then � `M = N 2 [[� ]].

Proof: Each part follows by induction on the structure of � . We show only the �rst, since the

second is symmetric.

Case: � = �.

M
whr

�!M 0 Assumption

� `M 0 = N 2 [[�]] Assumption

� `M 0 () N : � By de�nition of [[�]]

� `M () N : � By rule (whr)

� `M = N 2 [[�]] By de�nition of [[�]]

Case: � = �1 ! �2.

M
whr

�!M 0 Assumption

� `M 0 = N 2 [[�1 ! �2]] Assumption

�+ `M1 = N1 2 [[�1]] for �+ � � New assumption

�+ `M
0M1 = N N1 2 [[�2]] By de�nition of [[�1 ! �2]]

MM1

whr

�!M 0M1 By rule

�+ `MM1 = N N1 2 [[�2]] By i.h. on �2
� `M = N 2 [[�1 ! �2]] By de�nition of [[�1 ! �2]]
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2

Lemma 20 (Symmetry of the Logical Relations)

1. If � `M = N 2 [[� ]] then � ` N =M 2 [[� ]].

2. If � ` A = B 2 [[�]] then � ` B = A 2 [[�]].

3. If � ` � = � 2 [[�]] then � ` � = � 2 [[�]].

Proof: By induction on the structure of � , �, and �, using Lemma 15. We show some represen-

tative cases.

Case: � = �.

� `M = N 2 [[�]] Assumption

� `M () N : � By de�nition of [[�]]

� ` N ()M : � By symmetry of type-directed equality (Lemma 15)

� ` N =M 2 [[�]] By de�nition of [[�]]

Case: � = �.

� `M = N 2 [[�1 ! �2]] Assumption

�+ ` N1 =M1 2 [[�1]] for �+ � � New assumption

�+ `M1 = N1 2 [[�1]] By i.h. on �1
�+ `MM1 = N N1 2 [[�2]] By de�nition of [[�1 ! �2]]

�+ ` N N1 =MM1 2 [[�2]] By i.h. on �2
� ` N =M 2 [[�1]] By de�nition of [[�1 ! �2]]

2

Lemma 21 (Transitivity of the Logical Relations)

1. If � `M = N 2 [[� ]] and � ` N = O 2 [[� ]] then � `M = O 2 [[� ]].

2. If � ` A = B 2 [[�]] and � ` B = C 2 [[�]] then � ` A = C 2 [[�]].

3. If � ` � = � 2 [[�]] and � ` � = � 2 [[�]] then � ` � = � 2 [[�]].

Proof: By induction on the structure of � , �, and �, using Lemma 16. We show some represen-

tative cases.

Case: � = �. Then the properties follows from the de�nition of [[�]] and the symmetry of type-

directed equality (Lemma 16).

� `M = N 2 [[�]] Assumption

� ` N = O 2 [[�]] Assumption

� `M () N : � By de�nition of [[�]]

� ` N () O : � By de�nition of [[�]]

� `M () O : � By transitivity of type-directed equality (Lemma 16)

� `M = O 2 [[�]] By de�nition of [[�]]
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Case: � = �1 ! �2.

� `M = N 2 [[�1 ! �2]] Assumption

� ` N = O 2 [[�1 ! �2]] Assumption

�+ `M1 = O1 2 [[�1]] for �+ � � New assumption

�+ `MM1 = N O1 2 [[�2]] By de�nition of [[�1 ! �2]]

�+ ` O1 =M1 2 [[�1]] By symmetry (Lemma 20)

�+ ` O1 = O1 2 [[�1]] By i.h. on �1
�+ ` N O1 = OO1 2 [[�2]] By de�nition of [[�1 ! �2]]

�+ `MM1 = OO1 2 [[�2]] By i.h. on �2
� `M = O 2 [[�1 ! �2]] By de�nition of [[�1 ! �2]]

2

Lemma 22 (De�nitionally Equal Terms are Logically Related under Substitutions)

1. If � `M = N : A and � ` � = � 2 [[��]] then � `M [�] = N [�] 2 [[A�]].

2. If � ` A = B : K and � ` � = � 2 [[��]] then � ` A[�] = B[�] 2 [[K�]].

Proof: By induction on the derivation D of de�nitional equality, using the prior lemmas in this

section. For this argument, some subderivations of the equality judgment are unnecessary (in

particular, those establishing the validity of certain types). We elide those premises and write : : :

instead.

Case:

D =
x:A in �

� ` x = x : A

� ` � = � 2 [[��]]

� `M = N 2 [[A�]] for M=x in � and N=x in � By de�nition of [[��]]

� ` x[�] = x[�] 2 [[A�]] By de�nition of substitution

Case:

D =
c:A in �

� ` c = c : A

� ` c ! c 2 [[A�]] By rule

� ` c = c 2 [[A�]] By Theorem 18(3)

� ` c[�] = c[�] 2 [[A�]] By de�nition of substitution

Case:

D =

D1
� `M1 = N1 : �x:A2: A1

D2
� `M1 = N2 : A2

� `M1M2 = N1N2 : [M2=x]A1
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� `M1[�] = N1[�] 2 [[A
�

2
! A�

1
]] By i.h. on D1

� `M2[�] = N2[�] 2 [[A
�

2
]] By i.h. on D2

� ` (M1[�])(M2[�]) = (N1[�])(N2[�]) 2 [[A
�

1
]] By de�nition of [[�2 ! �1]]

� ` (M1M2)[�] = (N1N2)[�] 2 [[A
�

1
]] By de�nition of substitution

Case:

D = : : :

D2
�; x:A1 `M x = N x : A2

� `M = N : �x:A1: A2

�+ `M1 = N1 2 [[A
�

1
]] New assumption

�+ ` � = � 2 [[��]] By weakening (Lemma 17)

�+ ` (�;M1=x) = (�;N1=x) 2 [[�
�; x:A�

1
]] By de�nition of [[�; x:� ]]

�+ ` (M x)[�;M1=x] = (N x)[�;N1=x] 2 [[A
�

2
]] By i.h. on D2

�+ `M [�]M1 = N [�]N1 2 [[A
�

2
]] By properties of substitution

� `M = N 2 [[A�

1
! A�

2
]] By de�nition of [[�1 ! �2]]

Case:

D = : : :

D2
�; x:A1 `M2 = N2 : A2

D1
� `M1 = N1 : A1

� ` (�x:A1: M2)M1 = [N1=x]N2 : [M1=x]A2

� ` � = � 2 [[��]] Assumption

� `M1[�] = N1[�] 2 [[A
�

1
]] By i.h. on D1

� ` (�;M1[�]=x) = (�;N1[�]=x) 2 [[�
�; x:A�

1
]] By de�nition of [[�; x:�1]]

� `M2[�;M1[�]=x] = N2[�;N1[�]=x] 2 [[A
�

2
]] By i.h. on D2

� ` [M1[�]=x](M2[�; x=x]) = N2[�;N1[�]=x] 2 [[A
�

2
]] By properties of substitution

� ` (�x:A1: M2[�; x=x])(M1[�]) = N1[�;N1[�]=x] 2 [[A
�

2
]]

By closure under head expansion (Lemma 19)

� ` ((�x:A1: M2)M1)[�] = ([N1=x]N2)[�] 2 [[A
�

2
]] By properties of substitution

� ` ((�x:A1: M2)M1)[�] = ([N1=x]N2)[�] 2 [[[M1=x]A
�

2
]] By erasure preservation (Lemma 12)

Case:

D =

D0

� ` N =M : A

� `M = N : A

� ` � = � 2 [[��]] Assumption

� ` � = � 2 [[��]] By symmetry (Lemma 20)

� ` N [�] =M [�] 2 [[A�]] By i.h. on D0

� `M [�] = N [�] 2 [[A�]] By symmetry (Lemma 20)

Case:

D =

D1
� `M = O : A

D2
� ` O = N : A

� `M = N : A
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� ` � = � 2 [[��]] Assumption

� ` � = � 2 [[��]] By symmetry (Lemma 20)

� ` � = � 2 [[��]] By transitivity (Lemma 21)

� `M [�] = O[�] 2 [[A�]] By i.h. on D1
� ` O[�] = N [�] 2 [[A�]] By i.h. on D2
� `M [�] = N [�] 2 [[A�]] By transitivity (Lemma 21)

Case:

D =

D1
� `M = N : B � ` B = A : type

� `M = N : A

� `M [�] = N [�] 2 B� By i.h. on D1
� `M [�] = N [�] 2 A� By erasure preservation (Lemma 12)

Case: � ` a = a : K. As for constants c.

Case: � ` A1M2 = B1N2 : [M2=x]K1. As for applications M1M2.

Case:

D =

D1
� ` A1 = B1 : type

D2
�; x:A1 ` A2 = B2 : type

� ` �x:A1: A1 = �x:B1: B2 : type

� ` A1[�] = B1[�] 2 [[type
�]] By i.h. on D1

� ` A1[�] ! B1[�] : type
� By de�nition of [[type�]]

�; x:A�

1
` x ! x : A�

1
By rule

�; x:A�

1
` x = x 2 [[A�

1
]] By Theorem 18

�; x:A�

1
` (�; x=x) = (�; x=x) 2 [[��; x:A�

1
]] By de�nition of [[�x:�1]]

�; x:A�

1
` A2[�; x=x] = B2[�; x=x] 2 [[type

�]] By i.h. on D2
�; x:A�

1
` A2[�; x=x] ! B2[�; x=x] : type

� By de�nition of [[type�]]

� ` �x:A1[�]: A2[�; x=x] ! �x:B1[�]: B2[�; x=x] : type
� By rule

� ` �x:A1[�]: A2[�; x=x] ! �x:B1[�]: B2[�; x=x] 2 [[type
�]] By de�nition of [[type�]]

� ` (�x:A1: A2)[�] ! (�x:B1: B2)[�] 2 [[type
�]] By de�nition of substitution

Case: Family symmetry rule. As for the object-level symmetry.

Case: Family transitivity rule. As for the object-level transitivity.

Case:

D =

D1
�1 `M = N : C : : :

D2
�1; x:C;�2 ` A

0 = B0 : type

�1; [M=x]�2 ` [M=x]A0 = [N=x]B0 : type
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� ` � = � 2 [[��
1
; ([M=x]�2)

�]] Assumption

� = �0; �00 and � = �0; �00 where

� ` �0 = �0 2 [[��
1
]] and

� ` �00 = �00 2 [[��
2
]] By de�nition of [[��]] and erasure preservation

� `M [�0] = N [�0] 2 [[C�]] By i.h. on D1
� ` (�0;M [�0]=x; �00) = (�0; N [�0]=x; �00) 2 [[��

1
; x:C�;��

2
]] By de�nition of [[�]]

� ` A0[�0;M [�0]=x; �00] = B0[�0; N [�0]=x; �00] 2 [[type�]] By i.h. on D2
� ` ([M=x]A0)[�0; �00] = ([N=x]B0)[�0; �00] 2 [[type�]] By properties of substitution

Case: Kind conversion rule. As for type conversion rule.

2

Lemma 23 (Identity Substitutions are Logically Related)

�� ` id� = id� 2 [[�
�]].

Proof: By de�nition of [[��]] and part (3) of Lemma 18. 2

Theorem 24 (De�nitionally Equal Terms are Logically Related)

1. If � `M = N : A then �� `M = N 2 [[A�]].

2. If � ` A = B : K then �� ` A = B 2 [[K�]].

Proof: Directly by Lemmas 22 and 23. 2

Corollary 25 (Completeness of Algorithmic Equality)

1. If � `M = N : A then �� `M () N : A�.

2. If � ` A = B : K then �� ` A ! B : K�.

Proof: Directly by Theorem 24 and Theorem 18. 2

5 Soundness of Algorithmic Equality

In general, the algorithm for type-directed equality is not sound. However, when applied to valid

objects of the same type, it is sound and relates only equal terms. This direction requires a number

of lemmas established in Section 2.6, but is otherwise mostly straightforward.

Lemma 26 (Subject Reduction)

If M
whr

�!M 0 and � `M : A then � `M 0 : A and � `M =M 0 : A.

Proof: By induction on the de�nition of weak head reduction, making use of the inversion and

substitution lemmas.

Case:

(�x:A1: M2)M1

whr

�! [M1=x]M2
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� ` (�x:A1: M2)M1 : A Assumption

� ` �x:A1: M2 : �x:B1: B2

� `M1 : B1

� ` [M1=x]B2 = A : type By inversion (Lemma 5)

� ` A1 : type

�; x:A1 `M2 : A2

� ` �x:A1: A2 = �x:B1: B2 : type By inversion (Lemma 5)

� ` A1 = B1 : type

�; x:A1 ` A2 = B2 : type By injectivity of products (Lemma 11)

� ` [M1=x]M2 : [M1=x]A2 By substitution (Lemma 3)

� ` [M1=x]A2 = [M1=x]B2 : type By substitution (Lemma 3)

� ` [M1=x]A2 = A : type By transitivity

� ` [M1=x]M2 : A By rule (type conversion)

� ` A1 : type By above

�; x:A1 `M2 =M2 : A2 By reexivity

� `M1 =M1 : A1 By reexivity

� ` (�x:A1:M2)M1 = [M1=x]M2 : [M1=x]A2 By rule (parallel conversion)

� ` (�x:A1:M2)M1 = [M1=x]M2 : A By rule (type conversion)

Case:

M1

whr

�!M 0

1

M1M2

whr

�!M 0

1
M2

� `M1M2 : A Assumption

� `M1 : �x:A2: A1

� `M2 : A2

� ` [M2=x]A1 = A : type By inversion (Lemma 5)

� `M 0

1
: �x:A2: A1 By inductive hypothesis

� `M 0

1
M2 : [M2=x]A1 By rule (application)

� `M 0

1
M2 : A By rule (type conversion)

� `M1 =M 0

1
: �x:A2: A1 By inductive hypothesis

� `M2 =M2 : A2 By reexivity

� `M1M2 =M 0

1
M2 : [M2=x]A1 By rule (simultaneous congruence)

� `M1M2 =M 0

1
M2 : A By rule (type conversion)

2

For the soundness of algorithmic equality we need subject reduction and validity (Lemma 7).

Theorem 27 (Soundness of Algorithmic Equality)

1. If � `M : A and � ` N : A and �� `M () N : A�, then � `M = N : A.

2. If � `M : A and � ` N : B and �� `M  ! N : � , then � `M = N : A, � ` A = B : type

and A� = B� = � .
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3. If � ` A : K and � ` B : L and �� ` A  ! B : �, then � ` A = B : K, � ` K = L : kind

and K� = L� = �.

4. If � ` K : kind and � ` L : kind and �� ` K  ! L : kind� then � ` K = L : kind.

Proof: By induction on the structure of the given derivations for algorithmic equality, using validity

and inversion on the typing derivations.

Case:

T =
x:� in ��

�� ` x ! x : �

� ` x : A Assumption

� ` x : B Assumption

x:C in �, � ` C = A : type, � ` C = B : type By inversion (Lemma 5)

� ` A = B : type By symmetry and transitivity

� ` x = x : C By rule

� ` x = x : A By type conversion

A� = B� = C� = � By erasure preservation (Lemma 12)

Case: T ends in an equality of constants. Like the previous case.

Case:

T =

T1
� `M1  ! N1 : �2 ! �1

T2
� `M2 () N2 : �2

� `M1M2  ! N1N2 : �1

� `M1M2 : A Assumption

� ` N1N2 : B Assumption

� `M1 : �x:A2: A1,

� `M2 : A2, and

� ` [M2=x]A1 = A : type By inversion (Lemma 5)

� ` �x:A2: A1 : type By validity (Lemma 7)

� ` A2 : type

�; x:A2 ` A1 : type Inversion

� ` N1 : �x:B2: B1,

� ` N2 : B2, and

� ` [N2=x]B1 = B : type By inversion (Lemma 5)

� ` �x:B2: B2 : type By validity (Lemma 7)

� ` B2 : type

�; x:B2 ` B1 : type By inversion

� `M1 = N1 : �x:A2: A1,

� ` �x:A2: A1 = �x:B2: B1 : type, and

(�x:A2: A1)
� = (�x:B2: B1)

� = �2 ! �1 By i.h. on T1
� ` A2 = B2 : type and

�; x:A2 ` A1 = B1 : type By injectivity (Lemma 11

� ` N2 : A2 By symmetry and type conversion
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� `M2 = N2 : A2 By i.h. on T2
� `M1M2 = N1N2 : [M2=x]A1 By rule

� `M1M2 = N1N2 : A By type conversion

� ` [M2=x]A1 = [N2=x]B1 : type By family functionality

A� = A�

1
= B�

1
= B� = �1 By erasure preservation

Case:

T =

W

M
whr

�!M 0

T 0

� `M 0 () N : P�

� `M () N : P�

� `M : P Assumption

� ` N : P Assumption

� ` P : type Validity (Lemma 7)

� `M 0 : P By subject reduction (Lemma 26)

� `M 0 = N : P By i.h. on T 0

� `M =M 0 : P By subject reduction (Lemma 26)

� `M = N : P By transitivity

Case: Reduction on the right-hand side follows similarly.

Case:

T =

T2
�; x:�1 `M x() N x : �2

� `M () N : �1 ! �2

� `M : �x:A1: A2 Assumption

� ` N : �x:A1: A2 Assumption

� ` �x:A1: A2 : type By assumption

� ` A1 : type

�; x:A1 ` A2 : type Inversion

A�

1
= �1 and A�

2
= �2 Assumption and de�nition of ()�

�; x:A1 `M x : A2 By weakening and rule

�; x:A1 ` N x : A2 By weakening and rule

�; x:A1 `M x = N x : A2 By i.h. on T2
� ` A1 : type By inversion (Lemma 5)

� `M = N : �x:A1: A2 By extensionality rule

2

Corollary 28 (Logically Related Terms are De�nitionally Equivalent)

Assume � is valid.

1. If � `M : A, � ` N : A, and �� `M = N 2 [[A�]], then � `M = N : A.

2. If � ` A : K, � ` B : K, and �� ` A = B 2 [[K�]], then � ` A = B : K.
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Proof: Direct from the assumptions and prior theorems. We show the proof for the �rst case.

�� `M = N 2 [[A�]] Assumption

�� `M () N : A� By Theorem 18

� `M = N : A By Theorem 27

2

6 Decidability of De�nitional Equality and Type-Checking

In this section we show that the judgment for algorithmic equality constitutes a decision procedure

on valid terms of the same type. This result is then lifted to yield decidability of all judgments in

the LF type theory.

The �rst step is to show that equality is decidable for terms that are algorithmically equal to

themselves. Note that this property does not depend on the soundness of completeness of algo-

rithmic equality|it is a purely syntactic result. The second step uses completeness of algorithmic

equality and reexivity to show that every well-typed term is algorithmically equal to itself. These

two observations, together with soundness and completeness of algorithmic equality, yield the de-

cidability of de�nitional equality for well-typed terms.

We say an object is normalizing i� it is related to some term by the type-directed equivalence

algorithm. More precisely, M is normalizing at simple type � i� � `M ()M 0 : � for some term

M 0. Note that by symmetry and transitivity of the algorithms, this implies that � `M ()M : � .

A term M is structurally normalizing i� it is related to some term by the structural equivalence

algorithm. That is, M is structurally normalizing i� � ` M  ! M 0 : � for some M 0. A similar

de�nition applies to families and kinds. Equality is decidable on normalizing terms.

Lemma 29 (Decidability for Normalizing Terms)

1. If � `M ()M 0 : � and � ` N () N 0 : � then it is decidable whether � `M () N : � .

2. If � ` M  ! M 0 : � and � ` N  ! N 0 : � then it is decidable whether � ` M  ! N : �

for some �.

3. If � ` A  ! A0 : �1 and � ` B  ! B0 : �2 then it is decidable whether � ` A ! B : �3
for some �3.

4. If � ` K  ! K 0 : kind� and � ` L ! L0 : kind� then it is decidable whether � ` K  !

L : kind�.

Proof: We only sketch the proof of the �rst two properties|the others are similar. First note

that � ` M () N : � i� � ` M 0 () N : � i� � ` M () N 0 : � i� � ` M 0 () N 0 : � , so

decidability of one implies decidability of the others with equal results. Given this observation, we

prove parts (1) and (2) by simultaneous structural inductions on the given derivations. The critical

lemma is the determinacy of algorithmic equality (Lemma 14). 2

Now we can show decidability of equality via reexivity and completeness of algorithmic equality.

Theorem 30 (Decidability of Equality) Assume � is valid.

1. If � `M : A and � ` N : A then it is decidable whether �� `M () N : A�.
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2. If � ` M : A and � ` N : A then it is decidable whether �� ` M  ! N : � for some � .

Moreover, if such a � exists it is unique.

3. If � `M : A and � ` N : A then it is decidable whether � `M = N : A.

Proof:

1. By reexivity of de�nitional equality (Lemma 2) and the completeness of algorithmic equality

(Corollary 25), bothM and N are normalizing. Hence by Lemma 29, algorithmic equivalence

is decidable.

2. As above, both M and N are normalizing. It is easy to check whether or not they are also

structurally normalizing by inspection of the shapes of the terms. The result follows by

Lemma 29.

3. By soundness and completeness it su�ces to check algorithmic equality, which by (1) and (2)

is decidable.

2

We present an algorithmic version of type-checking that uses algorithmic equality as an auxiliary

judgment.

Objects

x:A in �

� ` x) A

c:A in �

� ` c) A

� `M1 ) �x:A0

2
: A1 � `M2 ) A2 � ` A0

2
 ! A2 : type

� `M1M2 ) [M2=x]A1

� ` A1 ) type �; x:A1 `M2 ) A2

� ` �x:A1: M2 ) �x:A1: A2

Families

a) K in �

� ` a) K

� ` A) �x:B0: K � `M ) B � ` B0  ! B : type

� ` AM ) [M=x]K

� ` A1 ) type �; x:A1 ` A2 ) type

� ` �x:A1: A2 ) type

Kinds

� ` type) kind

� ` A) type �; x:A ` K ) kind

� ` �x:A: K ) kind

Similar rules exist for checking validity of signatures and contexts.
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Lemma 31 (Correctness of Algorithmic Type-Checking) Assume � is valid.

1. (Soundness) If � `M ) A then � `M : A.

2. (Completeness) If � `M : A then � `M ) A0 for some A0 such that � ` A = A0 : type.

Proof: Part 1 follows by induction on the structure of the algorithmic derivation, using validity

(Theorem 7), soundness of algorithmic equality (Theorem 27) and the rule of type conversion.

Part 2 follows by induction on the structure of the typing derivation, using transitivity of

equality, inversion on type equality, and completeness of algorithmic equality. 2

Theorem 32 (Decidability of Type-Checking) Assume � is valid.

1. It is decidable if � is valid.

2. Given a valid �, M , and A, it is decidable whether � `M : A.

3. Given a valid �, A, and K, it is decidable whether � ` A : K.

4. Given a valid � and K, it is decidable whether � ` K : kind.

Proof: Since the algorithmic typing rules are syntax-directed and algorithmic equality is decidable

(Theorem 30), there either exists a unique A0 such that � ` M ) A0 or there is no such A0. By

correctness of algorithmic type-checking we then have � ` M : A i� � ` A0 = A : type, which can

be decided by checking �� ` A0  ! A : type. 2

The correctness of algorithmic type-checking also allows us to show strengthening, and a stronger

form of the extensionality rule.

Theorem 33 (Strengthening) For each judgment J of the type theory, if �; x:A;�0 ` J and

x =2 FV (�0) [ FV (J), then �;�0 ` J .

Proof: Strengthening for the algorithmic version of type-checking follows by a simple structural

induction, taking advantage of strengthening for algorithmic equality (Lemma 13). Strengthening

for the original typing rules then follows by soundness and completeness of algorithmic typing.

Strengthening for equality judgments follows from completeness (Corollary 25), soundness (Theo-

rem 27), and strengthening for the typing judgment. 2

Corollary 34 (Strong Extensionality) The typing premises for M and N in the extensionality

rule are redundant. That is, the following strong form of extensionality is admissible:

� ` A1 : type �; x:A1 `M x = N x : A2

� `M = N : �x:A1: A2

Proof: By inversion and strengthening.

�; x:A1 `M x : A2 By validity

�; x:A1 `M : �x:B1: B2,

�; x:A1 ` x : B1, and �; x:A1 ` B2 = A2 : type By inversion (Lemma 5)

� ` A1 = B1 : type By inversion and strengthening

� ` �x:B1: B2 = �x:A1: A2 : type By rule

�; x:A1 `M : �x:A1: A2 By rule (type conversion)

� `M : �x:A1: A2 By strengthening

� ` N : �x:A1: A2 Similarly

� `M = N : �x:A1: A2 By extensionality

2
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7 Quasi-Canonical Forms

The representation techniques of LF mostly rely on compositional bijections between the expressions

(including terms, formulas, deductions, etc.) of the object language and canonical forms in a meta-

language, where canonical forms are �-long and �-normal forms. So if we are presented with an LF

object M of a given type A and we want to know which object-language expression M represents,

we convert it to canonical form and apply the inverse of the representation function.

This leads to the question on how to compute the canonical form of a well-typed objectM of type

A in an appropriate context �. Generally, we would like to extract this information from a derivation

that witnesses that M is normalizing, that is, a derivation that shows that M is algorithmically

equal to itself. This idea cannot be applied directly in our situation, since a derivation �� `M ()

M : A� yields no information on the type labels of the �-abstractions inM . Fortunately, these turn

out to be irrelevant: if we have an object M of a given type A which is in canonical form, possibly

with the exception of some type labels, then the type labels are actually uniquely determined up

to de�nitional equality.

We formalize this intuition by de�ning quasi-canonical forms (and the auxiliary notion of quasi-

atomic forms) in which type-labels have been deleted. A quasi-canonical form can easily be extract

from a derivation that shows that a term is normalizing. Quasi-canonical forms are su�cient to

prove adequacy theorems for the representation, since the global type of a quasi-canonical form is

su�cient to extract an LF object unique up to de�nitional equality applied to type labels. The set

of quasi-canonical (QC) and quasi-atomic (QA) terms are de�ned by the following grammar:

Quasi-canonical objects ��M ::= �M j �x: ��M

Quasi-atomic objects �M ::= x j c j �M ��M

It is a simple matter to instrument the algorithmic equality relations to extra a common quasi-

canonical or quasi-atomic form for the terms being compared. Note that only one quasi-canonical

form need be extracted since two terms are algorithmically equivalent i� they have the same quasi-

canonical form. The instrumented rules are as follows:

Instrumented Type-Directed Object Equality

M
whr

�!M 0 � `M 0 () N : � * ��O

� `M () N : � * ��O

N
whr

�! N 0 � `M () N 0 : � * ��O

� `M () N : � * ��O

M  ! N : � # �O

M () N : � * ��O

�; x:�1 `M x() N x : �2 *
��O

� `M () N : �1 ! �2 * �x:
��O

Instrumented Structural Object Equality

x:� in �

� ` x ! x : � # x

c:A in �

� ` c ! c : A� # c

� `M1  ! N1 : �2 ! �1 # �O1 � `M2 () N2 : �2 *
��O2

� `M1M2  ! N1N2 : �1 # �O1

��O2
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It follows from the foregoing development that every well-formed term has a unique quasi-

canonical form. We now have the following theorem relating quasi-canonical forms to the usual

development of the LF type theory. We write jM j for the result of erasing the type labels from an

object M .

Theorem 35 (Quasi-Canonical and Quasi-Atomic Forms)

1. If � ` M1 : A and � ` M2 : A and �� ` M1 () M2 : A
� * ��O, then there is an N such

that jN j = ��O, � ` N : A, � ` M1 = N : A and � ` M2 = N : A and this N is unique up to

de�nitional equality.

2. If � ` M1 : A1 and � ` M2 : A2 and �� ` M1  ! M1 : � * �O then � ` A1 = A2 : type,

A� = B� = � and there exists an N such that jN j = �O, � ` N : A, � ` M1 = N : A and

� `M2 = N : A and this N is unique up to de�nitional equality.

Proof: By simultaneous induction on the instrumented equality derivations. It is critical that we

have the types of the objects that are compared (and not just the approximate type) so that we

can use this information to �ll in the missing �-labels. 2

Note that the uniqueness of N up to de�nitional equality a�ects only the type labels, since O

determines N in all other respects. This result shows that all adequacy proofs for LF representation

on canonical forms still hold. In fact, they can be carried out directly on quasi-canonical forms.

We can also directly state and prove prove adequacy theorems for encodings of logical systems

in LF using quasi-canonical forms. It is interesting to observe that the type labels on �'s are not

necessary for this purpose; in an adequacy theorem, the type of the bound variable is determined

from context. For example, the following relation sets up a compositional (natural) bijection

between (a) terms and formulas of �rst-order logic over a given �rst-order signature and (b) quasi-

canonical forms of types � and o, respectively, in the signature of �rst-order logic. We only show

an excerpt, illustrating the idea over the signature

cf : �! � � � ! �

c= : �! �! o

c^ : o! o! o

c8 : (�! o)! o

Let � be a context of the form x1:�; : : : ; xn:� for some n � 0. A correspondence relation between

terms and formulas with (free) variables among the x1; : : : ; xn and quasi-canonical objects of type

� and o, respectively, over that signature and context may be de�ned as follows:
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� ` x! x : �

� ` t1!
��M1 : � : : : � ` tn!

��Mn : �

� ` f(t1; : : : ; tn)! cf
��M1 : : :

��Mn : �

� ` t1!
��M1 : � � ` t2!

��M2 : �

� ` t1=t2! c=
��M1

��M2 : o

� ` �1!
��M1 : o � ` �2!

��M2 : o

� ` �1 ^ �2! c^
��M1

��M2 : o

�; x:� ` �! ��M : o

� ` 8x: �! c8 (�x:
��M ) : o

Theorem 36 (Adequacy for Syntax of First-Order Logic) Let � be a context of the form

x1 : �; : : : ; xn : � for some n � 0.

1. The relation � ` t! M : � is a compositional bijection between terms t of �rst-order logic

over variables x1; : : : ; xn and quasi-canonical forms M of type � relative to �.

2. The relation � ` � ! M : o is a compositional bijection between formulas � with free

variables among x1; : : : ; xn and quasi-canonical forms M of type o relative to �.

Proof: We establish by induction over the t and � that for every term t and formula � there exist a

unique M and N and derivations of � ` t! ��M : � and � ` �! ��N : o, respectively. Similarly, we

show that for a quasi-canonical ��M and ��N at type � and o, respectively, there exists unique related

t and �. This establishes a bijection. To see that it is compositional we use an induction over the

structure of terms t and formulas �. 2

Adequacy at the level of derivations can be established by analogous means.

8 Conclusions

We have presented a new, type-directed algorithm for de�nitional equality in the LF type theory.

This algorithm improves on previous accounts by avoiding consideration of reduction and its as-

sociated meta-theory and by providing a practical method for testing de�nitional equality in an

implementation. The algorithm also yields a notion of canonical form, which we call quasi-canonical,

that is suitable for proving the adequacy of encodings in a logical framework. The omission of type

labels presents no di�culties for the methodology of LF, essentially because abstractions arise only

in contexts where the domain type is known. The formulation of the algorithm and its proof of

correctness relies on the \shapes" of types, from which dependencies on terms have been eliminated.

Surprisingly, it was the soundness proof for the algorithm, and not its completeness proof, that

presented some technical di�culties. In particular, we have eliminated family-level �-abstractions

from our formulation of the type theory in order to prove injectivity of products syntactically.

However, this means that it is no longer possible to �-expand a type, convert the argument object

of the resulting application, and substitute the converted object back into the type. As a result we

had to add a primitive family-level rule to simulate the e�ect of this operation. It may be possible
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to adapt the technique of our completeness theorem to other formulations of the type theory and

establish soundness by other means.

The type-directed approach scales to richer languages such as those with unit types, precisely

because it makes use of type information during comparison. For example, one expects that any

two variables of unit type are equal, even though they are structurally distinct head normal forms.

A similar approach is used by Stone and Harper [SH99] to study a dependent type theory with

singleton kinds and subkinding. There it is impossible to eliminate dependencies, resulting in

a substantially more complex correctness proof, largely because of the loss of symmetry in the

presence of dependencies. Nevertheless, the fundamental method is the same, and results in a

practical approach to checking de�nitional equality for a rich type theory.
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