On Equivalence and Canonical Forms in the LF Type Theory

Robert Harper and Frank Pfenning
September 1999
CMU-CS-99-159

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Decidability of definitional equality and conversion of terms into canonical form play a central role in the meta-theory of a type-theoretic logical framework. Most studies of definitional equality are based on a confluent, strongly-normalizing notion of reduction. Coquand has considered a different approach, directly proving the correctness of a practical equivalence algorithm based on the shape of terms. Neither approach appears to scale well to richer languages with unit types or subtyping, and neither directly addresses the problem of conversion to canonical form. In this paper we present a new, type-directed equivalence algorithm for the LF type theory that overcomes the weaknesses of previous approaches. The algorithm is practical, scales to more expressive languages, and yields a new notion of canonical form sufficient for adequate encodings of logical systems. The algorithm is proved complete by a Kripke-style logical relations argument similar to that suggested by Coquand. Crucially, both the algorithm itself and the logical relations rely only on the shapes of types, ignoring dependencies on terms.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of NSF or the U.S. Government.

Keywords: Logical Frameworks, Type Theory

Contents

1 Introduction 2
2 A Variant of the LF Type Theory 3
2.1 Syntax 4
2.2 Substitutions 4
2.3 Judgments 5
2.4 Typing Rules 5
2.5 Definitional Equality 6
2.6 Elementary Properties of Typing and Definitional Equality 9
3 Algorithmic Equality 14
4 Completeness of Algorithmic Equality 20
4.1 A Kripke Logical Relation 20
4.2 Logically Related Terms are Algorithmically Equal 21
4.3 Definitionally Equal Terms are Logically Related 23
5 Soundness of Algorithmic Equality 28
6 Decidability of Definitional Equality and Type-Checking 32
7 Quasi-Canonical Forms 35
8 Conclusions 37

1 Introduction

At present the mechanization of constructive reasoning relies almost entirely on type theories of various forms. The principal reason is that the computational meaning of constructive proofs is an integral part of the type theory itself. The main computational mechanism in such type theories is reduction, which has therefore been studied extensively.

For logical frameworks the case for type theoretic meta-languages is also compelling, since they allow us to internalize deductions as objects. The validity of a deduction is then verified by type-checking in the meta-language. To ensure that proof checking remains decidable under this representation, the type checking problem for the meta-language must also be decidable. To support deductive systems of practical interest, the type theory must support dependent types, that is, types that depend on objects.

The correctness of the representation of a logic in type theory is given by an adequacy theorem that correlates the syntax and deductions of the logic with canonical forms of suitable type. To establish a precise correspondence, canonical forms are taken to be β-normal, η-long forms. In particular, it is important that canonical forms enjoy the property that constants and variables of higher type are "fully applied" - that is, each occurrence is applied to enough arguments to reach a base type.

Thus we see that the methodology of logical frameworks relies on two fundamental metatheoretic results: the decidability of type checking, and the existence of canonical forms. For many type theories the decidability of type checking is easily seen to reduce to the decidability of definitional equality of types and terms. Therefore we focus attention on the decision problem for definitional equality and on the conversion of terms to canonical form.

Traditionally, both problems have been treated by considering normal forms for β, and possibly η, reduction. If we take definitional equality to be conversion, then its decidability follows from confluence and strong normalization for the corresponding notion of reduction. In the case of β-reduction this approach to deciding definitional equality works well, but for $\beta \eta$-reduction the situation is much more complex. In particular, $\beta \eta$-reduction is confluent only for well-typed terms, and subject reduction depends on strengthening, which is difficult to prove directly.

These technical problems with $\beta \eta$-reduction have been addressed in work by Salvesen [Sal90], Geuvers [Geu92] and later with a different method by Goguen [Gog99], but nevertheless several problems remain. First, canonical forms are not $\beta \eta$-normal forms and so conversion to canonical form must be handled separately. Second, the algorithms implicit in the reduction-based accounts are not practical; if two terms are not definitionally equal, we can hope to discover this without reducing both to normal form. Third, the approach does not appear to scale to richer theories such as those including unit types or subtyping.

These problems were side-stepped in the original paper on the LF logical framework [HHP93] by restricting attention to β-conversion for definitional equality. This is sufficient if we also restrict attention to η-long forms [FM90, Cer96]. This restriction is somewhat unsatisfactory, especially in linear variants of LF [CP98].

More recently, η-expansion has been studied in its own right, using modification of standard techniques from rewriting theory to overcome the lack of strong normalization when expansion is not restricted [JG95, Gha97]. In the dependently typed case, even the definition of long normal form is not obvious [DHW93] and the technical development is fraught with difficulties. We have not been able to reconstruct the proofs in [Gha97] and the development in [Vir99] relies on a complex intermediate system with annotated terms.

To address the problems of practicality, Coquand suggested abandoning reduction-based treat-
ments of definitional equality in favor of a direct presentation of a practical equivalence algorithm [Coq91]. Coquand's approach is based on analyzing the "shapes" of terms, building in the principle of extensionality instead of relying on η-reduction or expansion. This algorithm improves on reduction-based approaches by avoiding explicit computation of normal forms, and allowing for early termination in the case that two terms are determined to be inequivalent. However, Coquand's approach does not address the problem of computing canonical forms, nor can it be easily extended to richer type theories such as those with unit types. In both cases the problem can be traced to the reliance on the shape of terms, rather than on their classifying types, to guide the algorithm. For example, if x and y are two variables of unit type, they are definitionally equal, but are structurally distinct; moreover, their canonical forms would be the sole element of unit type.

In this paper we present a new type-directed algorithm for testing equality for a dependent type theory in the presence of β and η-conversion, which generalizes the algorithm for the simply-typed case in [Pfe92]. We prove its correctness directly via logical relations. The essential idea is that we can erase dependencies when defining the logical relation, even though the domain of the relation contains dependently typed terms. This makes the definition obviously well-founded. Moreover, it means that the type-directed equality-testing algorithm on dependently typed terms requires only simple types. Consequently, transitivity of the algorithm is an easy property, which we were unable to obtain without this simplifying step. Soundness and completeness of the equality-testing algorithm yields the decidability of the type theory rather directly.

Another advantage of our approach is that it can be easily adapted to support adequacy proofs using a new notion of quasi-canonical forms, that is, canonical forms without type labels on λ abstractions. We show that quasi-canonical forms of a given type are sufficient to determine the meaning of an object, since the type labels can be reconstructed (up to definitional equality) from the classifying type. Interestingly, recent research on dependently typed rewriting [Vir99] has also isolated equivalence classes of terms modulo conversion of the type labels as a critical concept.

While it is beyond the scope of this paper, we believe our construction is robust with respect to extension of the type theory with products, unit, linearity, subtyping and similar complicating factors. The reason is the flexibility of type-directed equality in the simply-typed case and the harmony between the definition of the logical relation and the algorithm, both of which are based on the erased types.

2 A Variant of the LF Type Theory

Syntactically, our formulation of the LF type theory follows the original proposal by Harper, Honsell and Plotkin [HHP93], except that we omit type-level λ-abstraction. This simplifies the proof of the soundness theorem considerably, since we can prove the injectivity of products (Lemma 11) at an early stage. In practice, this restriction has no impact since types in normal form never contain type-level λ-abstractions. In compensation for the omission of type-level λ-abstractions, we augment the type theory with a functionality rule stating that families respect equality in their free variables. The functionality rule for families is derivable in the presence of family-level abstractions, but appears to be essential in their absence.

2.1 Syntax

$$
\begin{array}{rcl}
\text { Kinds } & K & ::=\text { type } \mid \Pi x: A . K \\
\text { Families } & A & ::=a|A M| \Pi x: A_{1} \cdot A_{2} \\
\text { Objects } & M & ::=c|x| \lambda x: A . M \mid M_{1} M_{2} \\
\text { Signatures } & \Sigma & ::=\cdot|\Sigma, a: K| \Sigma, c: A \\
\text { Contexts } & , & ::= \\
& \cdot \mid,, x: A
\end{array}
$$

We use K for kinds, A, B, C for type families, M, N, O for objects, , , Ψ for contexts and Σ for signatures. We also use the symbol "kind" to classify the valid kinds. We consider terms that differ only in the names of their bound variables as identical. We write $[N / x] M,[N / x] A$ and $[N / x] K$ for capture-avoiding substitution. Signatures and contexts may declare each constant and variable at most once. For example, when we write, , $x: A$ we assume that x is not already declared in, . If necessary, we tacitly rename x before adding it to the context, .

2.2 Substitutions

In the logical relations argument, we require a notion of simultaneous substitution.

$$
\text { Substitutions } \sigma::=\cdot \mid \sigma, M / x
$$

We assume that no variable is defined more than once in any substitution which can be achieved by appropriate renaming where necessary. We do not develop a notion and theory of well-typed substitutions, since it is unnecessary for our purposes. However, when applying a substitution σ to a term M we maintain the invariant that all free variables in M occur in the domain of σ, and similarly for families and kinds.

We write id_{Γ} for the identity substitution on the context, . We use the notation $M[\sigma], A[\sigma]$ and $K[\sigma]$ for the simultaneous substitution by σ into an object, family, or kind. It is defined by simultaneous induction on the structure of objects, families, and kinds.

$$
\begin{aligned}
x[\sigma] & =M \quad \text { where } M / x \text { in } \sigma \\
c[\sigma] & =c \\
(\lambda x: A . M)[\sigma] & =\lambda x: A[\sigma] . M[\sigma, x / x] \\
(M N)[\sigma] & =M[\sigma] N[\sigma] \\
a[\sigma] & =a \\
(A M)[\sigma] & =A[\sigma] M[\sigma] \\
(\Pi x: A . B)[\sigma] & =\Pi x: A[\sigma] \cdot B[\sigma, x / x] \\
\operatorname{type}[\sigma] & =\text { type } \\
(\Pi x: A . K)[\sigma] & =\Pi x: A[\sigma] . K[\sigma, x / x]
\end{aligned}
$$

Extending the substitution σ to $(\sigma, x / x)$ may require some prior renaming of the variable x in order to satisfy our assumption on substitutions.

2.3 Judgments

The LF type theory is defined by the following judgments.

$\vdash \Sigma \operatorname{sig}$	Σ is a valid signature
$\vdash_{\Sigma}, \operatorname{ctx}$, is a valid context
$, \vdash_{\Sigma} M: A$	M has type A
$, \vdash_{\Sigma} A: K$	A has type K
$, \vdash_{\Sigma} K:$ kind	K is a valid kind
$, \vdash_{\Sigma} M=N: A$	M equals N at type A
$, \vdash_{\Sigma} A=B: K$	A equals B at kind K
$, \vdash_{\Sigma} K=L:$ kind	K equals L

For the judgment \vdash_{Σ}, ctx we presuppose that Σ is a valid signature. For the remaining judgments of the form,$\vdash_{\Sigma} J$ we presuppose that Σ is a valid signature and that, is valid in Σ. For the sake of brevity we omit the signature Σ from all judgments but the first, since it does not change throughout a derivation.

If J is a typing or equality judgment, then we write $J[\sigma]$ for the obvious substitution of J by σ. For example, if J is $M: A$, then $J[\sigma]$ stands for the judgment $M[\sigma]: A[\sigma]$.

2.4 Typing Rules

Our formulation of the typing rules is similar to the second version given in [HHP93]. In preparation for the various algorithms we presuppose and inductively preserve the validity of contexts involved in the judgments, instead of checking these properties at the leaves. This is a matter of expediency rather than necessity.

Signatures

$$
\overline{\vdash \cdot \operatorname{sig}} \quad \frac{\vdash \Sigma \operatorname{sig} \cdot \vdash_{\Sigma} K: \text { kind }}{\vdash \Sigma, a: K \operatorname{sig}} \quad \frac{\vdash \Sigma \operatorname{sig} \cdot \vdash_{\Sigma} A: \text { type }}{\vdash \Sigma, c: A \operatorname{sig}}
$$

From now on we fix a valid signature Σ and omit it from the judgments.

Contexts

$$
\overline{\vdash, \text { ctx }} \quad \frac{\vdash, \text { ctx } \quad, \vdash A: \text { type }}{\vdash,, x: A \operatorname{ctx}}
$$

From now on we presuppose that all contexts in judgments are valid, instead of checking it explicitly. This means, for example, that we have to verify the validity of the type labels in λ abstractions before adding them to the context.

Objects

$$
\begin{gathered}
\frac{x: A \text { in },}{, \vdash x: A \quad} \quad \frac{c: A \text { in } \Sigma}{\vdash c: A} \\
\frac{\vdash M_{1}: \Pi x: A_{2} \cdot A_{1} \quad, \vdash M_{2}: A_{2}}{, \vdash M_{1} M_{2}:\left[M_{2} / x\right] A_{1}} \\
\frac{, \vdash A_{1}: \text { type } \quad,, x: A_{1} \vdash M_{2}: A_{2}}{, \vdash \lambda x: A_{1} \cdot M_{2}: \Pi x: A_{1} \cdot A_{2}} \\
\frac{, \vdash M: A \quad, \vdash A=B: \text { type }}{, \vdash M: B}
\end{gathered}
$$

Families

$$
\begin{gathered}
\frac{a: K \text { in } \Sigma}{, \vdash a: K} \quad \frac{, \vdash A: \Pi x: B \cdot K \quad, \vdash M: B}{, \vdash A M:[M / x] K} \\
\frac{, \vdash A_{1}: \text { type } \quad,, x: A_{1} \vdash A_{2}: \text { type }}{, \vdash \Pi x: A_{1} \cdot A_{2}: \text { type }} \\
\frac{, \vdash A: K \quad, \vdash K=L: \text { kind }}{, \vdash A: L}
\end{gathered}
$$

Kinds

$$
\frac{, \vdash A: \text { type } \quad,, x: A \vdash K: \text { kind }}{, \vdash \Pi x: A . K: \text { kind }}
$$

2.5 Definitional Equality

The rules for definitional equality are written with the presupposition that a valid signature Σ is fixed and that all contexts, are valid. The intent is that equality implies validity of the objects, families, or kinds involved (see Lemma 7). In contrast to the original formulation in [HHP93], equality is based on a notion of parallel conversion plus extensionality, rather then $\beta \eta$-conversion. We believe this is a robust foundation, easily transferred to richer and more complicated type theories.

Characteristically for parallel conversion, reflexivity is admissible (Lemma 2) which significantly simplifies the completeness proof for the algorithm to check equality. Similarly, the somewhat unwieldy congruence rule for λ-abstraction can be derived from the general extensionality principle, once validity has been established (Lemma 8). We enclose the admissible rules are in [brackets]. Some of the typing premises in the rules are redundant, but for technical reasons we cannot prove this until validity has been established. Such premises are enclosed in \{braces\}. Alternatively, it may be sufficient to check validity of the contexts at the leaves of the derivations (the cases for variables and constants), a technique used both in the original presentation of LF [HHP93] and Pure Type Systems [Bar92].

The main departure from standard presentations is an explicit rule of functionality at the level of type families. It expresses that if $M=N$ and $B=C$ with a free variable x then $[M / x] B=[N / x] C$
(taking equality here as definitional equality). In the presence of a family-level λ-abstraction, this can be derived from β-conversion and congruence: $[M / x] B=(\lambda x . B) M=(\lambda x . C) N=[N / x] C$. It seems to be difficult to recover this property when no type-level λ-abstractions are present. Adding the rule as a primitive does not disturb the completeness proof (the rule is easily validated by the logical relations) and makes the soundness proof direct, since we can prove validity (Lemma 7) by syntactic means.

Adding a family-level λ-abstraction is another choice. However, we were then unable to prove the injectivity of products (Lemma 11) before the soundness theorem (Theorem 27) in whose proof it is required.

Simultaneous Congruence

$$
\left.\begin{array}{cc}
\frac{x: A \text { in },}{, \vdash x=x: A} & \frac{c: A \text { in } \Sigma}{, \vdash c=c: A} \\
\frac{\vdash M_{1}=N_{1}: \Pi x: A_{2} \cdot A_{1}}{, \vdash M_{1} M_{2}=N_{1} N_{2}:\left[M_{2} / x\right] A_{1}} \\
{\left[\frac{, \vdash A_{1}^{\prime}=A_{1}: \text { type } \quad, \vdash A_{1}^{\prime \prime}=A_{1}: \text { type } \quad,, x: A_{1} \vdash M_{2}=N_{2}: A_{2}}{, \vdash \lambda x: A_{1}^{\prime} \cdot M_{2}=\lambda x: A_{1}^{\prime \prime} \cdot N_{2}: \Pi x: A_{1} \cdot A_{2}}\right.}
\end{array}\right]
$$

Extensionality

$$
\frac{, \vdash A_{1}: \text { type } \quad\left\{, \vdash M: \Pi x: A_{1} \cdot A_{2}\right\} \quad\left\{, \vdash N: \Pi x: A_{1} \cdot A_{2}\right\} \quad,, x: A_{1} \vdash M x=N x: A_{2}}{, \vdash M=N: \Pi x: A_{1} \cdot A_{2}}
$$

Parallel Conversion

$$
\frac{\left\{, \vdash A_{1}: \text { type }\right\} \quad,, x: A_{1} \vdash M_{2}=N_{2}: A_{2} \quad, \vdash M_{1}=N_{1}: A_{1}}{, \vdash\left(\lambda x: A_{1} \cdot M_{2}\right) M_{1}=\left[N_{1} / x\right] N_{2}:\left[M_{1} / x\right] A_{2}}
$$

Equivalence

$$
\begin{gathered}
\frac{, \vdash M=N: A}{, \vdash N=M: A} \quad \frac{, \vdash M=N: A \quad, \vdash N=O: A}{, \vdash M=O: A} \\
{\left[\frac{, \vdash M: A}{, \vdash M=M: A}\right]}
\end{gathered}
$$

Type Conversion

$$
\frac{, \vdash M=N: A \quad, \vdash A=B: \text { type }}{, \vdash M=N: B}
$$

Family Congruence

$$
\begin{gathered}
\frac{a: K \text { in } \Sigma}{\vdash} \vdash a=a: K \\
\frac{, \vdash A=B: \Pi x: C . K \quad, \vdash M=N: C}{\vdash A M=B N:[M / x] K} \\
\frac{, \vdash A_{1}=B_{1}: \text { type } \quad\left\{, \vdash A_{1}: \text { type }\right\} \quad,, x: A_{1} \vdash A_{2}=B_{2}: \text { type }}{, \vdash \Pi x: A_{1} \cdot A_{2}=\Pi x: B_{1} \cdot B_{2}: \text { type }}
\end{gathered}
$$

Family Equivalence

$$
\begin{array}{cc}
\frac{, \vdash A=B: K}{, \vdash B=A: K} & \frac{, \vdash A=B: K \quad, \vdash B=C: K}{, \vdash A=C: K} \\
& {\left[\frac{, \vdash A: K}{, \vdash A=A: K}\right]}
\end{array}
$$

Family Functionality

$$
\frac{, \vdash M=N: A \quad \vdash,, x: A,,^{\prime} \text { ctx } \quad,, x: A,,^{\prime} \vdash B=C: K}{,,[M / x],{ }^{\prime} \vdash[M / x] B=[N / x] C:[M / x] K}
$$

Kind Conversion

$$
\frac{, \vdash A=B: K \quad, \vdash K=L: \text { kind }}{, \vdash A=B: L}
$$

Kind Congruence

$$
\frac{, \vdash \vdash \text { type }=\text { type }: \text { kind }}{} \begin{gathered}
, \vdash A=B: \text { type } \quad\{, \vdash A: \text { type }\} \quad,, x: A \vdash K=L: \text { kind } \\
, \vdash \Pi x: A . K=\Pi x: B . L: \text { kind }
\end{gathered}
$$

Kind Equivalence

$$
\begin{array}{cc}
\frac{, \vdash K=L: \text { kind }}{, \vdash L=K: \text { kind }} & \frac{, \vdash K=L: \text { kind } \quad, \vdash L=L^{\prime}: \text { kind }}{, \vdash K=L^{\prime}: \text { kind }} \\
& {\left[\frac{, \vdash K: \text { kind }}{, \vdash K=K: \text { kind }}\right]}
\end{array}
$$

2.6 Elementary Properties of Typing and Definitional Equality

We establish some elementary properties of the judgments pertaining to the interpretation of contexts. There is an alternative route to these properties by first introducing a notion of substitution and well-typed substitution.

First we establish weakening for all judgments of the type theory. We use J to stand for any of the relevant judgments of the type theory in order to avoid repetitive statements. We extend the notation of substitution to all judgments of the type theory in the obvious way. For example, if J is $N: B$ then $[M / x] J$ is $[M / x] N:[M / x] J$.

Lemma 1 (Weakening) If, ,,' $\vdash J$ then $,, x: A,,^{\prime} \vdash J$.
Proof: By straightforward induction over the structure of the given derivation.
Note that exchange for independent hypotheses and contraction are also admissible, but we elide the statement of these properties here since they are not needed for the results in this paper. Next we show that reflexivity is admissible.

Lemma 2 (Reflexivity)

1. If $, \vdash M: A$ then $, \vdash M=M: A$.
2. If $, \vdash A: K$ then, $\vdash A=A: K$.
3. If,$\vdash K$: kind then, $\vdash K=K$: kind.

Proof: By inductions over the structure of the given derivations. In each case the result follows immediately from the available induction hypotheses, except for λ-abstraction since no corresponding congruence rule is available. We only show this case.

Case:

$$
\frac{, \vdash A_{1}: \text { type } \quad,, x: A_{1} \vdash M_{2}: A_{2}}{, \vdash \lambda x: A_{1} \cdot M_{2}: \Pi x: A_{1} \cdot A_{2}}
$$

$$
\begin{array}{rr}
,, x: A_{1} \vdash M_{2}=M_{2}: A_{2} & \text { By ind. hyp. } \\
,, x^{\prime}: A_{1} \vdash\left[x^{\prime} / x\right] M_{2}=\left[x^{\prime} / x\right] M_{2}:\left[x^{\prime} / x\right] A_{2} & \text { By renaming } \\
,, x: A_{1}, x^{\prime}: A_{1} \vdash\left[x^{\prime} / x\right] M_{2}=\left[x^{\prime} / x\right] M_{2}:\left[x^{\prime} / x\right] A_{2} & \text { By weakening } \\
,, x: A_{1} \vdash x=x & \text { By rule (variable equality) } \\
,, x: A_{1} \vdash\left(\lambda x^{\prime}: A_{1} \cdot\left[x^{\prime} / x\right] M_{2}\right) x=\left[x / x^{\prime}\right]\left[x^{\prime} / x\right] M_{2}:\left[x / x^{\prime}\right]\left[x^{\prime} / x\right] A_{2} & \text { By rule (parallel conversion) } \\
,, x: A_{1} \vdash\left(\lambda x^{\prime}: A_{1} \cdot\left[x^{\prime} / x\right] M_{2}\right) x=M_{2}: A_{2} & \text { By definition of substitution } \\
,, x: A_{1} \vdash M_{2}\left(\lambda x^{\prime}: A_{1} \cdot\left[x^{\prime} / x\right] M_{2}\right) x: A_{2} & \text { By rule (symmetry) } \\
,, x: A_{1} \vdash\left(\lambda x^{\prime}: A_{1} \cdot\left[x^{\prime} / x\right] M_{2}\right) x=\left(\lambda x^{\prime}: A_{1} \cdot\left[x^{\prime} / x\right] M_{2}\right) x: A_{2} & \text { By rule (transitivity) } \\
, \vdash A_{1}: \text { type } & \text { Assumption } \\
, \vdash\left(\lambda x^{\prime}: A_{1} \cdot\left[x^{\prime} / x\right] M_{2}\right): \Pi x: A_{1} \cdot A_{2} & \text { By renaming from assumption } \\
, \vdash\left(\lambda x^{\prime}: A_{1} \cdot\left[x^{\prime} / x\right] M_{2}\right)=\left(\lambda x^{\prime}: A_{1} \cdot\left[x^{\prime} / x\right] M_{2}\right): \Pi x: A_{1} \cdot A_{2} & \text { By rule (extensionality) } \\
, \vdash\left(\lambda x: A_{1} \cdot M_{2}\right)=\left(\lambda x: A_{1} \cdot M_{2}\right): \Pi x: A_{1} \cdot A_{2} & \text { By renaming }
\end{array}
$$

Next we prove the substitution property. Normally, this is an entirely straightforward induction over the structure of the given derivations. However, in our case the functionality rule upsets this strategy at level of families. Instead we use this rule directly together with reflexivity to prove the substitution property for families.

Lemma 3 (Substitution Property for Typing and Definitional Equality)

Assume, , $x: A,,^{\prime}$ is a valid context. If $, \vdash M: A$ and, $, x: A,{ }^{\prime} \vdash J$ then, , $[M / x],{ }^{\prime} \vdash[M / x] J$.
Proof: By straightforward inductions over the structure of the given derivations, with the exception of substitution into family-level equality rules. This case follows immediately by reflexivity and the rule of functionality at the level of families.

Case: The judgment J has the form $B=C: K$.

$$
\begin{aligned}
& , \vdash M: A \\
& , \vdash M=M: A \\
& \vdash\left(,, x: A,,^{\prime}\right) \mathrm{ctx} \\
& , \vdash A: \text { type and } \\
& ,, x: A \vdash,{ }^{\prime} \text { ctx } \\
& ,, x: A,{ }^{\prime} \vdash B=C: K \\
& ,,[M / x],{ }^{\prime} \vdash[M / x] B=[M / x] C:[M / x] K
\end{aligned}
$$

Assumption By reflexivity
Assumption

$$
,, x: A \vdash,{ }^{\prime} \text { ctx } \quad \text { By inversion on } \vdash-\text { ctx }
$$

Assumption
By rule (family functionality)

The next lemma applies in a number of the proofs in the remainder of this section.
Lemma 4 (Context Conversion) Assume, , $x: A$ is a valid context and, $\vdash B$: type. If , ,x:A $\vdash J$ and $, \vdash A=B:$ type then $,, x: B \vdash J$.

Proof: Direct, taking advantage of the structural properties.
, , $x: B \vdash x: B$
, $\vdash B=A$: type
, , $x: B \vdash x: A$
, , $x^{\prime}: A \vdash\left[x^{\prime} / x\right] J$
, , $x: B, x^{\prime}: A \vdash\left[x^{\prime} / x\right] J$
, , $x: B \vdash\left[x / x^{\prime}\right]\left[x^{\prime} / x\right] J$
, $, x: B \vdash J$

By rule (variable)
By symmetry from assumption
By rule (type conversion)
By renaming from assumption
By weakening
By substitution property
By definition of substitution

Lemma 5 (Typing Inversion)

1. If $, \vdash x: A$ then $x: B$ in, and $, \vdash A=B:$ type for some B.
2. If, $\vdash c: A$ then $c: B$ in, and,$\vdash A=B$: type for some B.
3. If , $\vdash M_{1} M_{2}: A$ then, $\vdash M_{1}: \Pi x: A_{2} . A_{1}$, $\vdash M_{2}: A_{2}$ and, $\vdash\left[M_{2} / x\right] A_{1}=A:$ type for some A_{1} and A_{2}.
4. If, $\vdash \lambda x: A . M: B$, then, $\vdash B=\Pi x: A . A^{\prime}:$ type, $, \vdash A:$ type, and, $, x: A \vdash M: A^{\prime}$.
5. If $, \vdash \Pi x: A_{1} . A_{2}:$ type then, $\vdash A_{1}:$ type and $,, x: A_{1} \vdash A_{2}:$ type.
6. If $, \vdash a: K$, then $a: L$ in Σ and,$\vdash K=L$: kind for some L.
7. If $, \vdash A M: K$, then, $\vdash A: \Pi x: A_{1} \cdot K_{2}$, $, \vdash M: A_{1}$, and, $\vdash K=[M / x] K_{2}:$ kind.
8. If $, \vdash \Pi x: A_{1} . K_{2}:$ kind, then $, \vdash A_{1}:$ type and, $, x: A_{1} \vdash K_{2}:$ kind.

Proof: By a straightforward induction on typing derivations.
Besides typing inversion, we require functionality at the level of kinds, which is easily seen to be admissible.

Lemma 6 (Kind Functionality) Assume $\vdash,, x: A,,^{\prime}$ ctx.
If , $\vdash M=N: A$ and $,, x: A,,^{\prime} \vdash K=L$: kind then, , $[M / x],{ }^{\prime} \vdash[M / x] K=[N / x] L:$ kind.
Proof: By a straightforward induction on the derivation of , , $x: A,,^{\prime} \vdash K=L$: kind, appealing to the rule of functionality for families in the congruence case for dependent product kinds.

For the statement of validity, recall our general assumption that all signatures are valid.
Lemma 7 (Validity) Assume, is a valid context.

1. If $, \vdash M: A$ then,$\vdash A$: type.
2. If $, \vdash M=N: A$, then, $\vdash M: A, \stackrel{N}{ }$, A, and,$\vdash A$: type.
3. If $, \vdash A: K$, then,$\vdash K$: kind.
4. If $, \vdash A=B: K$, then, $\vdash A: K$, $, \vdash B: K$, and, $\vdash K:$ kind.
5. If,$\vdash K=L$: kind, then,$\vdash K$: kind and, $\vdash L:$ kind.

Proof: By a straightforward simultaneous induction on derivations. The family functionality rule is required to handle the case of applications of objects to objects, the kind functionality lemma for the applications of families to objects. The typing premises on the rule of extensionality ensure that strengthening is not required.

Case:

$$
\mathcal{E}=\frac{\mathcal{E}_{1}}{, \vdash M_{1}=N_{1}: \Pi x: A_{2} \cdot A_{1}} \begin{gathered}
\mathcal{E}_{2} \\
, \vdash M_{1} M_{2}=N_{1} N_{2}:\left[M_{2} / x\right] A_{1}
\end{gathered}
$$

$$
, \vdash M_{1}: \Pi x: A_{2} . A_{1}
$$

$$
, \vdash N_{1}: \Pi x: A_{2} \cdot A_{1}
$$

$$
, \vdash \Pi x: A_{2} . A_{1}: \text { type }
$$

by i.h. on \mathcal{E}_{1}
, $\vdash M_{2}: A_{2}$
$, \vdash N_{2}: A_{2}$
$, \vdash A_{2}:$ type \quad by i.h. on \mathcal{E}_{2}
, , $x: A_{2} \vdash A_{1}$: type
,$\vdash\left[M_{2} / x\right] A_{1}$: type by substitution

$$
\begin{aligned}
, & \vdash M_{1} M_{2}:\left[M_{2} / x\right] A_{1} \\
& \vdash N_{1} N_{2}:\left[N_{2} / x\right] A_{1} \\
, & \vdash\left[M_{2} / x\right] A_{1}=\left[N_{2} / x\right] A_{1}: \text { type } \\
, & \vdash N_{1} N_{2}:\left[M_{2} / x\right] A_{1}
\end{aligned}
$$

$, \vdash M_{1} M_{2}:\left[M_{2} / x\right] A_{1} \quad$ by rule
by rule
by functionality
by symmetry and type conversion

With the central validity property, we can show a few other syntactic results. The first of these is that the natural congruence rule for λ-abstraction is admissible. We do not need this property later.

Lemma 8 (Functional Congruence) The rule

$$
\frac{, \vdash A_{1}^{\prime}=A_{1}: \text { type } \quad, \vdash A_{1}^{\prime \prime}=A_{1}: \text { type } \quad,, x: A_{1} \vdash M_{2}=N_{2}: A_{2}}{, \vdash \lambda x: A_{1}^{\prime} \cdot M_{2}=\lambda x: A_{1}^{\prime \prime} \cdot N_{2}: \Pi x: A_{1} \cdot A_{2}}
$$

is admissible.
Proof: Direct, using extensionality and parallel conversion. The validity lemma is required in order to assemble the typing premises of extensionality and parallel conversion.

We can now show that some of the typing premises in the inference rules are redundant.
Lemma 9 (Redundancy of Typing Premises) The indicated typing premises in the rules of parallel conversion, family congruence, and type congruence are redundant.

Proof: Straightforward from validity.
Lemma 10 (Equality Inversion) Assume, is a valid context.

1. If,$\vdash K=$ type : kind or,\vdash type $=K$: kind then $K=$ type.
2. If , $\vdash K=\Pi x: B_{1} . L_{2}:$ kind or, $\vdash \Pi x: B_{1} . L_{2}=K:$ kind then $K=\Pi x: A_{1} . K_{2}$ such that , $\vdash A_{1}=B_{1}$: type and, , $x: A_{1} \vdash K_{2}=L_{2}:$ kind.
3. If , $\vdash A=\Pi x: B_{1} . B_{2}:$ type or, $\vdash \Pi x: B_{1} . B_{2}=A$: type then $A=\Pi x: A_{1}$. A_{2} for some A_{1} and A_{2} such that, $\vdash A_{1}=B_{1}$: type and, $, x: A_{1} \vdash A_{2}=B_{2}:$ type.

Proof: By induction on the given equality derivations. There are some subtle points in the proof of part 3, so we show three cases. Note that adding a family-level λ would prevent proving this result at such an early stage. The case where the last inference was family functionality shows that we cannot restrict this rule to an empty inner context , ${ }^{\prime}$.

Case:

$$
\mathcal{E}=\frac{\mathcal{E}_{1}}{, \vdash A=C: \text { type }}, \begin{gathered}
\mathcal{E}_{2} \\
, \vdash A=\Pi x: B_{1} \cdot B_{2}: \text { type }
\end{gathered}
$$

$C=\Pi x: C_{1} . C_{2}$ for some C_{1} and C_{2} such that
, $\vdash C_{1}=B_{1}$: type and
, , $x: C_{1} \vdash C_{2}=B_{2}:$ type \quad By i.h. (3) on \mathcal{E}_{2}
$A=\Pi x: A_{1} . A_{2}$ for some A_{1} and A_{2} such that
, $\vdash A_{1}=C_{1}$: type and
,, $x: A_{1} \vdash A_{2}=C_{2}:$ type
, $\vdash A_{1}=B_{1}:$ type
By i.h. (3) on \mathcal{E}_{1}
$, x: A_{1} \vdash C_{2}=B_{2}$: type By context conven (Lemm 4)
, ,x:A1 $\vdash A_{2}=B_{2}:$ type
By rule (transitivity)
By rule (transitivity)

Case:

$$
\mathcal{E}=\frac{\begin{array}{c}
\mathcal{E}_{1} \\
, \vdash A=\Pi x: B_{1} \cdot B_{2}: K
\end{array}}{, \vdash A=\Pi x: B_{1} \cdot B_{2}: \text { type }}
$$

$K=$ type
By i.h. (1) on \mathcal{E}_{2}
$A=\Pi x: A_{1} . A_{2}$ for some A_{1} and A_{2} such that
, $\vdash A_{1}=B_{1}:$ type and
, ,x:A $A_{1} \vdash A_{2}=B_{2}:$ type \quad By i.h. (3) on \mathcal{E}_{1}

Case:

$$
\mathcal{E}=\frac{\begin{array}{c}
\mathcal{E}_{1} \\
,^{\prime} \vdash M=N: C
\end{array} \stackrel{\mathcal{T}^{\prime \prime}}{ } \stackrel{{ }^{\prime}}{ }{ }^{\prime}, x: C,,^{\prime \prime} \text { ctx }}{,^{\prime},[M / y],{ }^{\prime \prime} \vdash[M / y] A^{\prime}=[N / y] B^{\prime}: \text { type }}
$$

$$
,=,{ }^{\prime},[M / y],{ }^{\prime \prime},
$$

$$
A=[M / y] A^{\prime} \text {, and }
$$

$$
\Pi x: B_{1} \cdot B_{2}=[N / y] B^{\prime} \quad \text { Assumption }
$$

$$
B^{\prime}=\Pi x: B_{1}^{\prime} \cdot B_{2}^{\prime} \text { where } B_{1}=[N / y] B_{1}^{\prime} \text { and } B_{2}=[N / y] B_{2}^{\prime} \quad \text { By defn. of substitution }
$$

$$
A^{\prime}=\Pi x: A_{1}^{\prime} \cdot A_{2}^{\prime},
$$

$$
,^{\prime}, y: C,,^{\prime \prime} \vdash A_{1}^{\prime}=B_{1}^{\prime}: \text { type, and }
$$

$$
,^{\prime}, y: C,{ }^{\prime \prime}, x: A_{1}^{\prime} \vdash A_{2}^{\prime}=B_{2}^{\prime}: \text { type } \quad \text { By i.h. (3) on } \mathcal{E}_{2}
$$

$$
A=\Pi x:[M / y] A_{1}^{\prime} \cdot[M / y] A_{2}^{\prime} \quad \text { By defn. of substitution }
$$

$$
,^{\prime}, y: C \vdash\left(,{ }^{\prime \prime}, x: A_{1}^{\prime}\right) \text { ctx } \quad \text { By validity (Lemma 7) }
$$

$$
,^{\prime},[M / y], \prime \prime \vdash[M / y] A_{1}^{\prime}=[N / y] B_{1}^{\prime}: \text { type } \quad \text { By rule (functionality) }
$$

$$
,^{\prime},[M / y],,^{\prime \prime}, x:[M / y] A_{1}^{\prime} \vdash[M / y] A_{2}^{\prime}=[N / y] B_{2}^{\prime}: \text { type } \quad \text { By rule (functionality) }
$$

Lemma 11 (Injectivity of Products)

1. If $, \vdash \Pi x: A_{1} . A_{2}=\Pi x: B_{1} . B_{2}:$ type then, $\vdash A_{1}=B_{1}:$ type and, $, x: A_{1} \vdash A_{2}=B_{2}:$ type.
2. If , $\vdash \Pi x: A_{1} . K_{2}=\Pi x: B_{1}$. L_{2} : kind then, $\vdash A_{1}=B_{1}:$ type and, , $x: A_{1} \vdash K_{2}=L_{2}:$ kind.

Proof: Immediate by equality inversion (Lemma 10).

3 Algorithmic Equality

The algorithm for deciding equality can be summarized as follows:

1. When comparing objects at function type, apply extensionality.
2. When comparing objects at base type, reduce both sides to weak head-normal form and then compare heads directly and, if they are equal, each corresponding pair of arguments according to their type.

Since this algorithm is type-directed in case (1) we need to carry types. Unfortunately, this makes it difficult to prove correctness of the algorithm in the presence of dependent types, because transitivity is not an obvious property. The informal description above already contains a clue to the solution: we do not need to know the precise type of the objects we are comparing, as long as we know that they are functions.

We therefore define a calculus of simple types and an erasure function ($)^{-}$that eliminates dependencies for the purpose of this algorithm. The same idea is used later in the definition of the Kripke logical relation to prove completeness of the algorithm.

We write α to stands for simple base types and we have two special type constants, type ${ }^{-}$and kind $^{-}$, for the equality judgments at the level of types and kinds.

$$
\begin{array}{rcl}
\text { Simple Kinds } & \kappa::=\text { type }^{-} \mid \tau \rightarrow \kappa \\
\text { Simple Types } & \tau::=\alpha \mid \tau_{1} \rightarrow \tau_{2} \\
\text { Simple Contexts } & \Delta & ::=\quad \mid \Delta, x: \tau
\end{array}
$$

We use τ, θ, δ for simple types and Δ, Θ for contexts declaring simple types for variables. We also use kind ${ }^{-}$in a similar role to kind in the LF type theory.

We write A^{-}for the simple type that results from erasing dependencies in A, and similarly K^{-}. We translate each constant type family a to a base type a^{-}and extend this to all type families. We extend it further to contexts by applying it to each declaration.

$$
\begin{aligned}
(a)^{-} & =a^{-} \\
(A M)^{-} & =A^{-} \\
\left(\Pi x: A_{1} \cdot A_{2}\right)^{-} & =A_{1}^{-} \rightarrow A_{2}^{-} \\
(\text {type })^{-} & =\text {type }^{-} \\
(\Pi x: A \cdot K)^{-} & =A^{-} \rightarrow K^{-} \\
(\text {kind })^{-} & =\text {kind }^{-} \\
(\cdot)^{-} & =\cdot \\
(,, x: A)^{-} & =,{ }^{-}, x: A^{-}
\end{aligned}
$$

We need the property that the erasure of a type or kind remains invariant under equality and substitution.

Lemma 12 (Erasure Preservation)

1. If $, \vdash A=B: K$ then $A^{-}=B^{-}$.
2. If $, \vdash K=L:$ kind then $K^{-}=L^{-}$.
3. If , $, x: A \vdash B: K$ then $B^{-}=[M / x] B^{-}$.
4. If , $x: A \vdash K$: kind then $K^{-}=[M / x] K^{-}$.

Proof: By induction over the structure of the given derivations.
We now present the algorithm in the form of three judgments.
$M \xrightarrow{\text { whr }} M^{\prime}\left(M\right.$ weak head reduces to $\left.M^{\prime}\right)$ Algorithmically, we assume M is given and compute M^{\prime} (if M is head reducible) or fail.
$\Delta \vdash M \Longleftrightarrow N: \tau$ (M is equal to N at simple type τ) Algorithmically, we assume Δ, M, N, and τ are given and we simply succeed or fail. We only apply this judgment if M and N have the same type A and $\tau=A^{-}$.
$\Delta \vdash M \longleftrightarrow N: \tau$ (M is structurally equal to N) Algorithmically, we assume that Δ, M and N are given and we compute τ or fail. If successful, τ will be the approximate type of M and N.

Note that the structural and type-directed equality are mutually recursive, while weak head reduction does not depend on the other two judgments.

Weak Head Reduction

$$
\overline{\left(\lambda x: A_{1} \cdot M_{2}\right) M_{1} \xrightarrow{\text { whr }}\left[M_{1} / x\right] M_{2}} \quad \overline{M_{1} M_{2} \xrightarrow{\text { whr }} M_{1}^{\prime} M_{2}}
$$

Type-Directed Object Equality

$$
\begin{array}{cc}
M \xrightarrow{\text { whr }} M^{\prime} \quad \Delta \vdash M^{\prime} \Longleftrightarrow N: \alpha \\
\Delta \vdash M \Longleftrightarrow N: \alpha & \frac{N \xrightarrow{\mathrm{whr}} N^{\prime} \quad \Delta \vdash M \Longleftrightarrow N^{\prime}: \alpha}{\Delta \vdash M \Longleftrightarrow N: \alpha} \\
\frac{\Delta \vdash M \longleftrightarrow N: \alpha}{\Delta \vdash M \Longleftrightarrow N: \alpha} & \frac{\Delta, x: \tau_{1} \vdash M x \Longleftrightarrow N x: \tau_{2}}{\Delta \vdash M \Longleftrightarrow N: \tau_{1} \rightarrow \tau_{2}}
\end{array}
$$

Structural Object Equality

$$
\begin{array}{cc}
\frac{x: \tau \text { in } \Delta}{\Delta \vdash x \longleftrightarrow x: \tau} & \frac{c: A \text { in } \Sigma}{\Delta \vdash c \longleftrightarrow c: A^{-}} \\
\frac{\Delta \vdash M_{1} \longleftrightarrow N_{1}: \tau_{2} \rightarrow \tau_{1}}{\Delta \vdash M_{1} M_{2} \longleftrightarrow N_{1} N_{2}: \tau_{1}}
\end{array}
$$

Structural Family Equality

$$
\begin{gathered}
\frac{a: K \text { in } \Sigma}{\Delta \vdash a \longleftrightarrow a: K^{-}} \\
\frac{\Delta \vdash A \longleftrightarrow B: \tau \rightarrow \kappa \quad \Delta \vdash M \Longleftrightarrow N: \tau}{\Delta \vdash A M \longleftrightarrow A N: \kappa} \\
\frac{\Delta \vdash A_{1} \longleftrightarrow B_{1}: \operatorname{type}^{-} \quad \Delta, x: A_{1}^{-} \vdash A_{2} \longleftrightarrow B_{2}: \text { type }^{-}}{\Delta \vdash \Pi x: A_{1} \cdot A_{2} \longleftrightarrow \Pi x: B_{1} \cdot B_{2}: \text { type }^{-}}
\end{gathered}
$$

Structural Kind Equality

$$
\Delta \vdash \text { type } \longleftrightarrow \text { type }: \text { kind }^{-}
$$

$$
\frac{\Delta \vdash A \longleftrightarrow B: \text { type }^{-} \quad \Delta, x: A^{-} \vdash K \longleftrightarrow L: \mathrm{kind}^{-}}{\Delta \vdash \Pi x: A . K \longleftrightarrow \Pi x: B . L: \text { kind }^{-}}
$$

The algorithmic equality satisfies some straightforward structural properties. Weakening is required in the proof of its correctness. It does not appear that exchange or contraction are needed in our particular argument, but these properties can all be easily proven. Note that versions of the logical relations proofs nonetheless apply in the linear, strict, and affine λ-calculi.

Lemma 13 (Structural Properties of Algorithmic Equality)

For each type-directed and structural equality judgment J the following hold:

1. [Exchange] If $\Delta, x_{1}: \tau_{1}, x_{2}: \tau_{2}, \Delta^{\prime} \vdash J$ then $\Delta, x_{2}: \tau_{2}, x_{1}: \tau_{1}, \Delta^{\prime} \vdash J$.
2. (Weakening) If $\Delta, \Delta^{\prime} \vdash J$ then $\Delta, x: \tau, \Delta^{\prime} \vdash J$.
3. [Contraction] If $\Delta, x_{1}: \tau, x_{2}: \tau, \Delta^{\prime} \vdash J$ then $\Delta, x: \tau, \Delta^{\prime} \vdash\left[x / x_{1}\right]\left[x / x_{2}\right] J$.
4. (Strengthening) If $\Delta, x: \tau, \Delta^{\prime} \vdash J$ and $x \notin \mathrm{~F} V(J)$, then $\Delta, \Delta^{\prime} \vdash J$.

Proof: By straightforward inductions over the structure of the given derivations.
The algorithm is essentially deterministic in the sense that when comparing terms at base type we have to weakly head-normalize both sides and compare the results structurally. This is because terms that are weakly head reducible will never be considered structurally equal.

Lemma 14 (Determinacy of Algorithmic Equality)

1. If $M \xrightarrow{\mathrm{whr}} M^{\prime}$ and $M \xrightarrow{\mathrm{whr}} M^{\prime \prime}$ then $M^{\prime}=M^{\prime \prime}$.
2. If $\Delta \vdash M \longleftrightarrow N: \tau$ then there is no M^{\prime} such that $M \xrightarrow{\text { whr }} M^{\prime}$.
3. If $\Delta \vdash M \longleftrightarrow N: \tau$ then there is no N^{\prime} such that $N \xrightarrow{\text { whr }} N^{\prime}$.
4. If $\Delta \vdash M \longleftrightarrow N: \tau$ and $\Delta \vdash M \longleftrightarrow N: \tau^{\prime}$ then $\tau=\tau^{\prime}$.
5. If $\Delta \vdash A \longleftrightarrow B: \kappa$ and $\Delta \vdash M \longleftrightarrow N: \kappa^{\prime}$ then $\kappa=\kappa^{\prime}$.

Proof: The first part and parts four and five are immediate by structural induction. We only show the second part, since the third part is symmetric. Assume

for some M^{\prime}. We now show by simultaneous induction over \mathcal{S} and \mathcal{W} that these assumptions are contradictory. Whenever we have constructed a judgment such there is no rule that could conclude this judgment, we say we obtain a contradiction by inversion.

Case:

$$
\mathcal{S}=\frac{x: \tau \text { in } \Delta}{\Delta \vdash x \longleftrightarrow x: \tau}
$$

$$
x \xrightarrow{\mathrm{whr}} M^{\prime}
$$

Assumption (\mathcal{W})
Contradiction
By inversion

Case: Structurally equality of constants is impossible as in the case for variables.

Case:

$$
\mathcal{S}=\frac{\Delta \vdash M_{1} \longleftrightarrow N_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Delta \vdash M_{2} \stackrel{\mathcal{T}_{2}}{\Longleftrightarrow} N_{2}: \tau_{2}}{\Delta \vdash M_{1} M_{2} \longleftrightarrow N_{1} N_{2}: \tau_{1}}
$$

Here we distinguish two subcases for the derivation \mathcal{W} of $M_{1} M_{2} \xrightarrow{\text { whr }} M^{\prime}$.
Subcase:

$$
\mathcal{W}=\overline{\left(\lambda x: A_{1} . M_{1}^{\prime}\right) M_{2} \xrightarrow{\mathrm{whr}}\left[M_{2} / x\right] M_{1}^{\prime}}
$$

$M_{1}=\left(\lambda x: A_{1} . M_{1}^{\prime}\right)$
Assumption
$\Delta \vdash M_{1} \longleftrightarrow N_{1}: \tau_{2} \rightarrow \tau_{1}$
Assumption $\left(\mathcal{S}_{1}\right)$
Contradiction
By inversion

Subcase:

$$
\mathcal{W}=\frac{M_{1} \xrightarrow{\mathcal{W}_{1}} \xrightarrow{\text { whr }} M_{1}^{\prime}}{M_{1} M_{2} \xrightarrow{\text { whr }} M_{1}^{\prime} M_{2}}
$$

$\Delta \vdash M_{1} \longleftrightarrow N_{1}: \tau_{2} \rightarrow \tau_{1}$
Contradiction

Assumption $\left(\mathcal{S}_{1}\right)$
By ind. hyp. on \mathcal{W}_{1} and \mathcal{S}_{1}

The completeness proof requires symmetry and transitivity of the algorithm. This would introduce some difficulty if the algorithm employed precise instead of approximate types. This is one reason why both the algorithm and later the logical relation are defined using approximate types only.

Lemma 15 (Symmetry of Algorithmic Equality)

1. If $\Delta \vdash M \Longleftrightarrow N: \tau$ then $\Delta \vdash N \Longleftrightarrow M: \tau$.
2. If $\Delta \vdash M \longleftrightarrow N: \tau$ then $\Delta \vdash N \longleftrightarrow M: \tau$.
3. If $\Delta \vdash A \longleftrightarrow B: \kappa$ then $\Delta \vdash B \longleftrightarrow A: \kappa$.
4. If $\Delta \vdash K \longleftrightarrow L:$ kind $^{-}$then $\Delta \vdash L \longleftrightarrow K$: kind $^{-}$.

Proof: By simultaneous induction on the given derivations.

Lemma 16 (Transitivity of Algorithmic Equality)

1. If $\Delta \vdash M \Longleftrightarrow N: \tau$ and $\Delta \vdash N \Longleftrightarrow O: \tau$ then $\Delta \vdash M \Longleftrightarrow O: \tau$.
2. If $\Delta \vdash M \longleftrightarrow N: \tau$ and $\Delta \vdash N \longleftrightarrow O: \tau$ then $\Delta \vdash M \longleftrightarrow O: \tau$.
3. If $\Delta \vdash A \longleftrightarrow B: \kappa$ and $\Delta \vdash B \longleftrightarrow C: \kappa$ then $\Delta \vdash A \longleftrightarrow C: \kappa$.
4. If $\Delta \vdash K \longleftrightarrow L:$ kind $^{-}$and $\Delta \vdash L \longleftrightarrow L^{\prime}:$ kind $^{-}$then $\Delta \vdash K \longleftrightarrow L^{\prime}:$ kind $^{-}$.

Proof: By simultaneous inductions on the structure of the given derivations. In each case, we may appeal to the induction hypothesis if one of the two derivations is strictly smaller, while the other is either smaller or the same. The proof requires determinacy (Lemma 14). We only show some cases in the proof of property (1); others are direct. Assume we are given

$$
\Delta \vdash M \stackrel{\mathcal{T}_{L}}{\Longleftrightarrow} N: \tau \quad \text { and } \quad \Delta \vdash N \stackrel{\mathcal{T}_{R}}{\Longleftrightarrow} O: \tau
$$

We have to construct a derivation of $\Delta \vdash M \Longleftrightarrow O: \tau$. We distinguish cases for \mathcal{T}_{L} and \mathcal{T}_{R}. In case one of them is the extensionality rule, the other must be, too, and the result follows easily from the induction hypothesis. We show the remaining cases.

Case:

$$
\mathcal{T}_{L}=\frac{M \stackrel{\text { whr }}{\longrightarrow} M^{\prime} \quad \Delta \vdash M^{\prime} \stackrel{\mathcal{T}_{L}^{\prime}}{\Longleftrightarrow} N: \alpha}{\Delta \vdash M \Longleftrightarrow N: \alpha}
$$

where \mathcal{T}_{R} is arbitrary.
$\begin{array}{lr}\Delta \vdash M^{\prime} \Longleftrightarrow O: \alpha & \text { By ind. hyp. (1) on } \mathcal{T}_{L}^{\prime} \text { and } \mathcal{T}_{R} \\ \Delta \vdash M \Longleftrightarrow O: \alpha & \text { By rule (whr left) }\end{array}$

Case:

$$
\mathcal{T}_{R}=\frac{O \stackrel{\text { whr }}{\longrightarrow} O^{\prime} \quad \Delta \vdash N \stackrel{\mathcal{T}_{R}^{\prime}}{\Longleftrightarrow} O^{\prime}: \alpha}{\Delta \vdash N \Longleftrightarrow O: \alpha}
$$

where \mathcal{T}_{L} arbitrary.
$\Delta \vdash M \Longleftrightarrow O^{\prime}: \alpha$
$\Delta \vdash M \Longleftrightarrow O: \alpha$
By ind. hyp. (1) on \mathcal{T}_{L} and \mathcal{T}_{R}^{\prime}
By rule (whr right)

Case:

$$
\mathcal{T}_{L}=\frac{N \stackrel{\text { whr }}{\longrightarrow} N^{\prime} \quad \Delta \vdash M \stackrel{\mathcal{T}_{L}^{\prime}}{\Longleftrightarrow} N^{\prime}: \alpha}{\Delta \vdash M \Longleftrightarrow N: \alpha} \quad \text { and } \quad \mathcal{T}_{R}=\frac{N \stackrel{\text { whr }}{\longrightarrow} N^{\prime \prime} \quad \Delta \vdash N^{\prime \prime} \stackrel{\mathcal{T}_{R}^{\prime}}{\Longleftrightarrow} O: \alpha}{\Delta \vdash N \Longleftrightarrow O: \alpha}
$$

$N^{\prime}=N^{\prime \prime} \quad$ By determinacy of weak head reduction (Lemma 14(1))
$\Delta \vdash M \Longleftrightarrow O: \alpha \quad$ By ind. hyp. (1) on \mathcal{T}_{L}^{\prime} and \mathcal{T}_{R}^{\prime}.

Case:

$$
\mathcal{T}_{L}=\frac{N \stackrel{\text { whr }}{\longrightarrow} N^{\prime} \quad \Delta \vdash M \stackrel{\mathcal{T}_{L}^{\prime}}{\Longleftrightarrow} N^{\prime}: \alpha}{\Delta \vdash M \Longleftrightarrow N: \alpha} \quad \text { and } \quad \mathcal{T}_{R}=\frac{\Delta \vdash N \stackrel{\mathcal{S}_{R}}{\longleftrightarrow} O: \alpha}{\Delta \vdash N \Longleftrightarrow O: \alpha}
$$

This case is impossible by determinacy of algorithmic equality (Lemma 14(2)).

Case:

$$
\mathcal{T}_{L}=\frac{\Delta \vdash M \stackrel{\mathcal{S}_{L}}{\longleftrightarrow} N: \alpha}{\Delta \vdash M \Longleftrightarrow N: \alpha} \quad \text { and } \quad \mathcal{T}_{R}=\frac{N \xrightarrow{\text { whr }} N^{\prime} \quad \Delta \vdash N^{\prime} \Longleftrightarrow O: \alpha}{\Delta \vdash N \Longleftrightarrow O: \alpha}
$$

This case is impossible by determinacy of algorithmic equality (Lemma 14(3)).

Case:

$$
\mathcal{T}_{L}=\frac{\Delta \vdash M \stackrel{\mathcal{S}_{L}}{\longleftrightarrow} N: \alpha}{\Delta \vdash M \Longleftrightarrow N: \alpha} \quad \text { and } \quad \mathcal{T}_{R}=\frac{\Delta \vdash N \stackrel{\mathcal{S}_{R}}{\longleftrightarrow}}{\Delta \vdash N: \alpha}
$$

$\Delta \vdash M \longleftrightarrow O: \alpha$
By ind. hyp. (2) on \mathcal{S}_{L} and \mathcal{S}_{R} $\Delta \vdash M \Longleftrightarrow O: \alpha$

By rule

4 Completeness of Algorithmic Equality

In this section we develop the completeness theorem for the type-directed equality algorithm. That is, if two terms are definitionally equal, the algorithm will succeed. The goal is to present a flexible and modular technique which can be adapted easily to related type theories, such as the one underlying the linear logical framework [CP98], one based on non-commutative linear logic [PP99], or one including subtyping [Pfe93]. Other techniques presented in the literature, particularly those based on a notion of η-reduction, do not seem to adapt well to these richer theories.

The central idea is to proceed by an argument via logical relations defined inductively on the approximate type of an object, where the approximate type arises from erasing all dependencies in an LF type.

The completeness direction of the correctness proof for type-directed equality states:

$$
\text { If }, \vdash M=N: A \text { then },-\vdash M \Longleftrightarrow N: A^{-} \text {. }
$$

One would like to prove this by induction on the structure of the derivation for the given equality. However, such a proof attempt fails at the case for application. Instead we define a logical relation $\Delta \vdash M=N \in \llbracket \tau \rrbracket$ that provides a stronger induction hypothesis so that both

1. if $, \vdash M=N: A$ then,$-\vdash M=N \in \llbracket A^{-} \rrbracket$, and
2. if , $-\vdash M=N \in \llbracket A^{-} \rrbracket$ then,$-\vdash M \Longleftrightarrow N \in A^{-}$,
can be proved.

4.1 A Kripke Logical Relation

We define a Kripke logical relation inductively on simple types. At base type we require the property we eventually would like to prove. At higher types we reduce the property to those for simpler types. We also extend it further to include substitutions, where it is defined by induction over the structure of the matching context.

We say that a context Δ^{\prime} extends Δ (written $\Delta^{\prime} \geq \Delta$) if Δ^{\prime} contains all declarations in Δ and possibly more.

1. $\Delta \vdash M=N \in \llbracket \alpha \rrbracket$ iff $\Delta \vdash M \Longleftrightarrow N: \alpha$.
2. $\Delta \vdash M=N \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$ iff for every Δ^{\prime} extending Δ and for all M_{1} and N_{1} such that $\Delta^{\prime} \vdash M_{1}=N_{1} \in \llbracket \tau_{1} \rrbracket$ we have $\Delta^{\prime} \vdash M M_{1}=N N_{1} \in \llbracket \tau_{2} \rrbracket$.
3. $\Delta \vdash A=B \in \llbracket \mathrm{type}^{-} \rrbracket$ iff $\Delta \vdash A \longleftrightarrow B:$ type $^{-}$.
4. $\Delta \vdash A=B \in \llbracket \tau \rightarrow \kappa \rrbracket$ iff for every Δ^{\prime} extending Δ and for all M and N such that $\Delta^{\prime} \vdash M=N \in \llbracket \tau \rrbracket$ we have $\Delta^{\prime} \vdash A M=B N \in \llbracket \kappa \rrbracket$.
5. $\Delta \vdash \sigma=\theta \in \llbracket \rrbracket$ iff $\sigma=\cdot$ and $\theta=$.
6. $\Delta \vdash \sigma=\theta \in \llbracket \Theta, x: \tau \rrbracket$ iff $\sigma=\left(\sigma^{\prime}, M / x\right)$ and $\theta=\left(\theta^{\prime}, N / x\right)$ where $\Delta \vdash \sigma^{\prime}=\theta^{\prime} \in \llbracket \Theta \rrbracket$ and $\Delta \vdash M=N \in \llbracket \tau \rrbracket$.

Three general structural properties of the logical relations that we can show directly by induction are exchange, weakening, and contraction. We will use only weakening.

Lemma 17 (Structural Properties of the Logical Relations) For all logical relations R the following hold:

1. [Exchange] If $\Delta, x_{1}: \tau_{1}, x_{2}: \tau_{2}, \Delta^{\prime} \vdash R$ then $\Delta, x_{2}: \tau_{2}, x_{1}: \tau_{1}, \Delta^{\prime} \vdash R$.
2. (Weakening) If $\Delta, \Delta^{\prime} \vdash R$ then $\Delta, x: \tau, \Delta^{\prime} \vdash R$.
3. [Contraction] If $\Delta, x_{1}: \tau, x_{2}: \tau, \Delta^{\prime} \vdash R$ then $\Delta, x: \tau, \Delta^{\prime} \vdash\left[x / x_{1}\right]\left[x / x_{2}\right] R$.
4. [Strengthening] If $\Delta, x: \tau, \Delta^{\prime} \vdash R$ and $x \notin \mathrm{~F} V(R)$, then $\Delta, \Delta^{\prime} \vdash R$.

Proof: By induction on the structure of the definition of R (either simple type, kind, or context). For contraction and strengthening, it is easiest to take advantage of weakening in the case for function types. We show only the proof for weakening, that is, if $\Delta, \Delta^{\prime} \vdash M \in \llbracket \tau \rrbracket$ then $\Delta, x: \theta, \Delta^{\prime} \vdash$ $M=N \in \llbracket \tau \rrbracket$.

Case: $\tau=\alpha$.

$$
\begin{aligned}
& \Delta, \Delta^{\prime} \vdash M=N \in \llbracket \alpha \rrbracket \\
& \Delta, \Delta^{\prime} \vdash M \Longleftrightarrow N: \alpha \\
& \Delta, x: \theta, \Delta^{\prime} \vdash M \Longleftrightarrow N: \alpha \\
& \Delta, x: \theta, \Delta^{\prime} \vdash M=N \in \llbracket \alpha \rrbracket
\end{aligned}
$$

Assumption
By definition of $\llbracket \alpha \rrbracket$ By weakening (Lemma 1)

By definition of $\llbracket \alpha \rrbracket$
Case: $\tau=\tau_{1} \rightarrow \tau_{2}$.

$$
\begin{array}{lr}
\Delta, \Delta^{\prime} \vdash M=N \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & \text { Assumption } \\
\Delta_{+}, x: \theta, \Delta_{+}^{\prime} \vdash M_{1}=N_{1} \in \llbracket \tau_{1} \rrbracket & \text { New assumption } \\
\quad \text { for arbitrary } \Delta_{+} \geq \Delta \text { and } \Delta_{+}^{\prime} \geq \Delta^{\prime} & \text { By definition of } \geq \\
\left(\Delta_{+}, x: \theta, \Delta_{+}^{\prime}\right) \geq\left(\Delta, \Delta^{\prime}\right) & \text { By definition of } \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket \text { and assumption } \\
\Delta_{+}, x: \theta, \Delta_{+}^{\prime} \vdash M M_{1}=N N_{1} \in \llbracket \tau_{2} \rrbracket & \text { By definition of } \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket \\
\Delta, x: \theta, \Delta^{\prime} \vdash M=N \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket &
\end{array}
$$

4.2 Logically Related Terms are Algorithmically Equal

It is straightforward to show that logically related terms are considered identical by the algorithm. This proof always proceeds by induction on the structure of the type. A small insight may be required to arrive at the necessary generalization of the induction hypothesis. Here, this involves the statement that structurally equal terms are logically related. This has an important consequence we will need later on, namely that variables and constants are logically related to themselves.

Theorem 18 (Logically Related Terms are Algorithmically Equal)

1. If $\Delta \vdash M=N \in \llbracket \tau \rrbracket$ then $\Delta \vdash M \Longleftrightarrow N: \tau$.
2. If $\Delta \vdash A=B \in \llbracket \kappa \rrbracket$, then $\Delta \vdash A \longleftrightarrow B: \kappa$.
3. If $\Delta \vdash M \longleftrightarrow N: \tau$ then $\Delta \vdash M=N \in \llbracket \tau \rrbracket$.
4. If $\Delta \vdash A \longleftrightarrow B: \kappa$ then $\Delta \vdash A=B \in \llbracket \kappa \rrbracket$.

Proof: By simultaneous induction on the structure of τ.
Case: $\tau=\alpha$, part 1 .

$$
\begin{aligned}
& \Delta \vdash M=N \in \llbracket \alpha \rrbracket \\
& \Delta \vdash M \Longleftrightarrow N: \alpha
\end{aligned}
$$

Case: $\kappa=$ type $^{-}$, part 2.

$$
\begin{aligned}
& \Delta \vdash M=N \in \llbracket \text { type }^{-\rrbracket} \\
& \Delta \vdash M \longleftrightarrow N: \text { type }^{-}
\end{aligned}
$$

Case: $\tau=\alpha$, part 3 .

$$
\begin{aligned}
& \Delta \vdash M \longleftrightarrow N: \alpha \\
& \Delta \vdash M \Longleftrightarrow N: \alpha \\
& \Delta \vdash M=N \in \llbracket \alpha \rrbracket
\end{aligned}
$$

Case: $\kappa=$ type $^{-}$, part 4.

$$
\Delta \vdash A \longleftrightarrow B: \text { type }^{-}
$$

$\Delta \vdash A=B \in \llbracket \mathrm{type}^{-\rrbracket}$

Case: $\tau=\tau_{1} \rightarrow \tau_{2}$, part 1.
$\Delta \vdash M=N \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$
$\Delta, x: \tau_{1} \vdash x \longleftrightarrow x: \tau_{1}$
$\Delta, x: \tau_{1} \vdash x=x \in \llbracket \tau_{1} \rrbracket$
$\Delta, x: \tau_{1} \vdash M x=N x \in \llbracket \tau_{2} \rrbracket$
$\Delta, x: \tau_{1} \vdash M x \Longleftrightarrow N x: \tau_{2}$
$\Delta \vdash M \Longleftrightarrow N: \tau_{1} \rightarrow \tau_{2}$

Case: $\kappa=\tau_{1} \rightarrow \kappa_{2}$, part 2.

$$
\begin{aligned}
& \Delta \vdash A=B \in \llbracket \tau_{1} \rightarrow \kappa_{2} \rrbracket \\
& \Delta, x: \tau_{1} \vdash x \longleftrightarrow x: \tau_{1} \\
& \Delta, x: \tau_{1} \vdash x=x \in \llbracket \tau_{1} \rrbracket \\
& \Delta, x: \tau_{1} \vdash A x=B x \in \llbracket \kappa_{2} \rrbracket \\
& \Delta, x: \tau_{1} \vdash A x \longleftrightarrow B x: \kappa_{2} \\
& \Delta, x: \tau_{1} \vdash A \longleftrightarrow B: \tau_{1}^{\prime} \rightarrow \kappa_{2} \\
& \Delta \vdash A \longleftrightarrow B: \tau_{1}^{\prime} \rightarrow \kappa_{2} \\
& \Delta \vdash A \longleftrightarrow B: \tau_{1} \rightarrow \kappa_{2}
\end{aligned}
$$

Assumption By definition of \llbracket type $^{-\rrbracket}$

Assumption
By rule
By i.h. 3 on τ_{1}
By definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$
By i.h. 1 on τ_{2}
By rule

Assumption
By rule
By i.h. 3 on τ_{1}
By definition of $\llbracket \tau_{1} \rightarrow \kappa_{2} \rrbracket$
By i.h. 2 on κ_{2}
By inversion
By strengthening (Lemma 13)
By determinacy (Lemma 14(5))

Case: $\tau=\tau_{1} \rightarrow \tau_{2}$, part 3.

$$
\begin{aligned}
& \Delta \vdash M \longleftrightarrow N: \tau_{1} \rightarrow \tau_{2} \\
& \Delta_{+} \vdash M_{1}=N_{1} \in \llbracket \tau_{1} \rrbracket \text { for an arbitrary } \Delta_{+} \geq \Delta \\
& \Delta_{+} \vdash M_{1} \Longleftrightarrow N_{1} \in \tau_{1} \\
& \Delta_{+} \vdash M \longleftrightarrow N: \tau_{1} \rightarrow \tau_{2} \\
& \Delta_{+} \vdash M M_{1} \longleftrightarrow N N_{1} \in \tau_{2} \\
& \Delta_{+} \vdash M M_{1}=N N_{1} \in \llbracket \tau_{2} \rrbracket \\
& \Delta \vdash M=N \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket
\end{aligned}
$$

Assumption
New assumption
By i.h. 1 on τ_{1} By weakening (Lemma 13)

By rule
By i.h. 3 on τ_{2}

Case: $\kappa=\tau_{1} \rightarrow \kappa_{2}$, part 4.
$\Delta \vdash A \longleftrightarrow B: \tau_{1} \rightarrow \kappa_{2}$
$\Delta_{+} \vdash M_{1}=N_{1} \in \llbracket \tau_{1} \rrbracket$ for an arbitrary $\Delta_{+} \geq \Delta$
$\Delta_{+} \vdash M_{1} \Longleftrightarrow N_{1} \in \tau_{1}$
$\Delta_{+} \vdash A \longleftrightarrow B: \tau_{1} \rightarrow \kappa_{2}$
$\Delta_{+} \vdash A M_{1} \longleftrightarrow B N_{1} \in \kappa_{2}$
$\Delta_{+} \vdash A M_{1}=B N_{1} \in \llbracket \kappa_{2} \rrbracket$
$\Delta \vdash A=B \in \llbracket \tau_{1} \rightarrow \kappa_{2} \rrbracket$
Assumption
New assumption
By i.h. 1 on τ_{1}
By weakening (Lemma 13)
By rule
By i.h. 4 on κ_{2}
By definition of $\llbracket \tau_{1} \rightarrow \kappa_{2} \rrbracket$

4.3 Definitionally Equal Terms are Logically Related

The other part of the logical relations argument states that two equal terms are logically related. This requires a sequence of lemmas regarding algorithmic equality and the logical relation.

Lemma 19 (Closure under Head Expansion)

1. If $M \xrightarrow{\mathrm{whr}} M^{\prime}$ and $\Delta \vdash M^{\prime}=N \in \llbracket \tau \rrbracket$ then $\Delta \vdash M=N \in \llbracket \tau \rrbracket$.
2. If $N \xrightarrow{\mathrm{whr}} N^{\prime}$ and $\Delta \vdash M=N^{\prime} \in \llbracket \tau \rrbracket$ then $\Delta \vdash M=N \in \llbracket \tau \rrbracket$.

Proof: Each part follows by induction on the structure of τ. We show only the first, since the second is symmetric.

Case: $\tau=\alpha$.

$$
\begin{aligned}
& M \xrightarrow{\mathrm{whr}} M^{\prime} \\
& \Delta \vdash M^{\prime}=N \in \llbracket \alpha \rrbracket \\
& \Delta \vdash M^{\prime} \Longleftrightarrow N: \alpha \\
& \Delta \vdash M \Longleftrightarrow N: \alpha \\
& \Delta \vdash M=N \in \llbracket \alpha \rrbracket
\end{aligned}
$$

Assumption
Assumption
By definition of $\llbracket \alpha \rrbracket$
By rule (whr)
By definition of $\llbracket \alpha \rrbracket$
Case: $\tau=\tau_{1} \rightarrow \tau_{2}$.

$$
\begin{aligned}
& M \xrightarrow{\text { whr }} M^{\prime} \\
& \Delta \vdash M^{\prime}=N \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket \\
& \Delta_{+} \vdash M_{1}=N_{1} \in \llbracket \tau_{1} \rrbracket \text { for } \Delta_{+} \geq \Delta \\
& \Delta_{+} \vdash M^{\prime} M_{1}=N N_{1} \in \llbracket \tau_{2} \rrbracket \\
& M M_{1} \xrightarrow{\text { whr }} M^{\prime} M_{1} \\
& \Delta_{+} \vdash M M_{1}=N N_{1} \in \llbracket \tau_{2} \rrbracket \\
& \Delta \vdash M=N \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket
\end{aligned}
$$

Assumption
Assumption
New assumption By definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$

By rule
By i.h. on τ_{2} By definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$

Lemma 20 (Symmetry of the Logical Relations)

1. If $\Delta \vdash M=N \in \llbracket \tau \rrbracket$ then $\Delta \vdash N=M \in \llbracket \tau \rrbracket$.
2. If $\Delta \vdash A=B \in \llbracket \kappa \rrbracket$ then $\Delta \vdash B=A \in \llbracket \kappa \rrbracket$.
3. If $\Delta \vdash \sigma=\theta \in \llbracket \Theta \rrbracket$ then $\Delta \vdash \theta=\sigma \in \llbracket \Theta \rrbracket$.

Proof: By induction on the structure of τ, κ, and Θ, using Lemma 15. We show some representative cases.

Case: $\tau=\alpha$.

$$
\begin{aligned}
& \Delta \vdash M=N \in \llbracket \alpha \rrbracket \\
& \Delta \vdash M \Longleftrightarrow N: \alpha \\
& \Delta \vdash N \Longleftrightarrow M: \alpha \\
& \Delta \vdash N=M \in \llbracket \alpha \rrbracket
\end{aligned}
$$

Assumption
By definition of $\llbracket \alpha \rrbracket$
By symmetry of type-directed equality (Lemma 15)
By definition of $\llbracket \alpha \rrbracket$
Case: $\tau=\alpha$.

$$
\begin{aligned}
& \Delta \vdash M=N \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket \\
& \Delta_{+} \vdash N_{1}=M_{1} \in \llbracket \tau_{1} \rrbracket \text { for } \Delta_{+} \geq \Delta \\
& \Delta_{+} \vdash M_{1}=N_{1} \in \llbracket \tau_{1} \rrbracket \\
& \Delta_{+} \vdash M M_{1}=N N_{1} \in \llbracket \tau_{2} \rrbracket \\
& \Delta_{+} \vdash N N_{1}=M M_{1} \in \llbracket \tau_{2} \rrbracket \\
& \Delta \vdash N=M \in \llbracket \tau_{1} \rrbracket
\end{aligned}
$$

Assumption New assumption

By i.h. on τ_{1} By definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$

By i.h. on τ_{2}
By definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$

Lemma 21 (Transitivity of the Logical Relations)

1. If $\Delta \vdash M=N \in \llbracket \tau \rrbracket$ and $\Delta \vdash N=O \in \llbracket \tau \rrbracket$ then $\Delta \vdash M=O \in \llbracket \tau \rrbracket$.
2. If $\Delta \vdash A=B \in \llbracket \kappa \rrbracket$ and $\Delta \vdash B=C \in \llbracket \kappa \rrbracket$ then $\Delta \vdash A=C \in \llbracket \kappa \rrbracket$.
3. If $\Delta \vdash \sigma=\theta \in \llbracket \Theta \rrbracket$ and $\Delta \vdash \theta=\delta \in \llbracket \Theta \rrbracket$ then $\Delta \vdash \sigma=\delta \in \llbracket \Theta \rrbracket$.

Proof: By induction on the structure of τ, κ, and Θ, using Lemma 16. We show some representative cases.

Case: $\tau=\alpha$. Then the properties follows from the definition of $\llbracket \alpha \rrbracket$ and the symmetry of typedirected equality (Lemma 16).
$\Delta \vdash M=N \in \llbracket \alpha \rrbracket$
Assumption
$\Delta \vdash N=O \in \llbracket \alpha \rrbracket$
Assumption
$\Delta \vdash M \Longleftrightarrow N: \alpha$
By definition of $\llbracket \alpha \rrbracket$
$\Delta \vdash N \Longleftrightarrow O: \alpha$
$\Delta \vdash M \Longleftrightarrow O: \alpha$
By transitivity of type-directed equality (Lemma 16)
$\Delta \vdash M=O \in \llbracket \alpha \rrbracket$
By definition of $\llbracket \alpha \rrbracket$

Case: $\tau=\tau_{1} \rightarrow \tau_{2}$.

$$
\begin{aligned}
& \Delta \vdash M=N \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket \\
& \Delta \vdash N=O \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket \\
& \Delta_{+} \vdash M_{1}=O_{1} \in \llbracket \tau_{1} \rrbracket \text { for } \Delta_{+} \geq \Delta \\
& \Delta_{+} \vdash M M_{1}=N O_{1} \in \llbracket \tau_{2} \rrbracket \\
& \Delta_{+} \vdash O_{1}=M_{1} \in \llbracket \tau_{1} \rrbracket \\
& \Delta_{+} \vdash O_{1}=O_{1} \in \llbracket \tau_{1} \rrbracket \\
& \Delta_{+} \vdash N O_{1}=O O_{1} \in \llbracket \tau_{2} \rrbracket \\
& \Delta_{+} \vdash M M_{1}=O O_{1} \in \llbracket \tau_{2} \rrbracket \\
& \Delta \vdash M=O \in \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket
\end{aligned}
$$

Assumption

Assumption
New assumption
By definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$ By symmetry (Lemma 20)

By i.h. on τ_{1}
By definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$
By i.h. on τ_{2}
By definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$

Lemma 22 (Definitionally Equal Terms are Logically Related under Substitutions)

1. If , $\vdash M=N: A$ and $\Delta \vdash \sigma=\theta \in \llbracket$, \rrbracket then $\Delta \vdash M[\sigma]=N[\theta] \in \llbracket A^{-} \rrbracket$.
2. If , $\vdash A=B: K$ and $\Delta \vdash \sigma=\theta \in \llbracket$, \rrbracket then $\Delta \vdash A[\sigma]=B[\theta] \in \llbracket K^{-} \rrbracket$.

Proof: By induction on the derivation \mathcal{D} of definitional equality, using the prior lemmas in this section. For this argument, some subderivations of the equality judgment are unnecessary (in particular, those establishing the validity of certain types). We elide those premises and write ... instead.

Case:

$$
\mathcal{D}=\frac{x: A \text { in },}{, \vdash x=x: A}
$$

$$
\begin{aligned}
& \Delta \vdash \sigma=\theta \in \llbracket,-\rrbracket \\
& \Delta \vdash M=N \in \llbracket A^{-} \rrbracket \text { for } M / x \text { in } \sigma \text { and } N / x \text { in } \theta \\
& \Delta \vdash x[\sigma]=x[\theta] \in \llbracket A^{-} \rrbracket
\end{aligned}
$$

By definition of 【, -】 By definition of substitution

Case:

$$
\mathcal{D}=\frac{c: A \text { in } \Sigma}{, \vdash c=c: A}
$$

$$
\begin{aligned}
& \Delta \vdash c \longleftrightarrow c \in \llbracket A^{-} \rrbracket \\
& \Delta \vdash c=c \in \llbracket A^{-} \rrbracket \\
& \Delta \vdash c[\sigma]=c[\theta] \in \llbracket A^{-} \rrbracket
\end{aligned}
$$

By rule
By Theorem 18(3)

Case:

$$
\mathcal{D}=\frac{\mathcal{D}_{1}}{\substack{\mathcal{D}_{2} \\
\hline \\
, ~ \vdash M_{1}=N_{1}: \Pi x: A_{2} . A_{1}}} \begin{aligned}
& \vdash M_{1} M_{2}=N_{1} N_{2}:\left[M_{2} / x\right] A_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \vdash M_{1}[\sigma]=N_{1}[\theta] \in \llbracket A_{2}^{-} \rightarrow A_{1}^{-} \rrbracket \\
& \Delta \vdash M_{2}[\sigma]=N_{2}[\theta] \in \llbracket A_{2}^{-} \rrbracket \\
& \Delta \vdash\left(M_{1}[\sigma]\right)\left(M_{2}[\sigma]\right)=\left(N_{1}[\theta]\right)\left(N_{2}[\theta]\right) \in \llbracket A_{1}^{-} \rrbracket \\
& \Delta \vdash\left(M_{1} M_{2}\right)[\sigma]=\left(N_{1} N_{2}\right)[\theta] \in \llbracket A_{1}^{-} \rrbracket
\end{aligned}
$$

By i.h. on \mathcal{D}_{1}
By i.h. on \mathcal{D}_{2}
By definition of $\llbracket \tau_{2} \rightarrow \tau_{1} \rrbracket$
By definition of substitution
Case:

$$
\mathcal{D}=\frac{\mathcal{D}_{2}}{} \begin{array}{ll}
\cdots & ,, x: A_{1} \vdash M x=N x: A_{2} \\
& , \vdash M=N: \Pi x: A_{1} \cdot A_{2}
\end{array}
$$

$\Delta_{+} \vdash M_{1}=N_{1} \in \llbracket A_{1}^{-} \rrbracket$
$\Delta_{+} \vdash \sigma=\theta \in \mathbb{\square},-\rrbracket$
$\Delta_{+} \vdash\left(\sigma, M_{1} / x\right)=\left(\theta, N_{1} / x\right) \in \llbracket,{ }^{-}, x: A_{1}^{-} \rrbracket$
$\Delta_{+} \vdash(M x)\left[\sigma, M_{1} / x\right]=(N x)\left[\theta, N_{1} / x\right] \in \llbracket A_{2}^{-} \rrbracket$
$\Delta_{+} \vdash M[\sigma] M_{1}=N[\theta] N_{1} \in \llbracket A_{2}^{-} \rrbracket$
$\Delta \vdash M=N \in \llbracket A_{1}^{-} \rightarrow A_{2}^{-} \rrbracket$

New assumption By weakening (Lemma 17)

By definition of $\llbracket \Delta, x: \tau \rrbracket$
By i.h. on \mathcal{D}_{2}
By properties of substitution
By definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$

Case:

$$
\mathcal{D}=\frac{\mathcal{D}_{2}}{} \begin{array}{ccc}
& \mathcal{D}_{1} \\
& ,, x: A_{1} \vdash M_{2}=N_{2}: A_{2} & , \vdash M_{1}=N_{1}: A_{1} \\
\hline, \vdash\left(\lambda x: A_{1} \cdot M_{2}\right) M_{1}=\left[N_{1} / x\right] N_{2}:\left[M_{1} / x\right] A_{2}
\end{array}
$$

$\Delta \vdash \sigma=\theta \in \llbracket,-\rrbracket$
Assumption
$\Delta \vdash M_{1}[\sigma]=N_{1}[\theta] \in \llbracket A_{1}^{-} \rrbracket$
By i.h. on \mathcal{D}_{1}
$\Delta \vdash\left(\sigma, M_{1}[\sigma] / x\right)=\left(\theta, N_{1}[\theta] / x\right) \in \llbracket,{ }^{-}, x: A_{1}^{-} \rrbracket \quad$ By definition of $\llbracket \Theta, x: \tau_{1} \rrbracket$
$\Delta \vdash M_{2}\left[\sigma, M_{1}[\sigma] / x\right]=N_{2}\left[\theta, N_{1}[\theta] / x\right] \in \llbracket A_{2}^{-} \rrbracket \quad$ By i.h. on \mathcal{D}_{2}
$\Delta \vdash\left[M_{1}[\sigma] / x\right]\left(M_{2}[\sigma, x / x]\right)=N_{2}\left[\theta, N_{1}[\theta] / x\right] \in \llbracket A_{2}^{-} \rrbracket \quad$ By properties of substitution
$\Delta \vdash\left(\lambda x: A_{1} \cdot M_{2}[\sigma, x / x]\right)\left(M_{1}[\sigma]\right)=N_{1}\left[\theta, N_{1}[\theta] / x\right] \in \llbracket A_{2}^{-} \rrbracket$
By closure under head expansion (Lemma 19)
$\Delta \vdash\left(\left(\lambda x: A_{1} . M_{2}\right) M_{1}\right)[\sigma]=\left(\left[N_{1} / x\right] N_{2}\right)[\theta] \in \llbracket A_{2}^{-} \rrbracket$
By properties of substitution
$\Delta \vdash\left(\left(\lambda x: A_{1} . M_{2}\right) M_{1}\right)[\sigma]=\left(\left[N_{1} / x\right] N_{2}\right)[\theta] \in \llbracket\left[M_{1} / x\right] A_{2}^{-} \rrbracket$ By erasure preservation (Lemma 12)

Case:

$$
\mathcal{D}=\frac{, \vdash \mathcal{D}^{\prime}}{, \vdash M: A}
$$

$\Delta \vdash \sigma=\theta \in \llbracket,-\rrbracket$
Assumption
$\Delta \vdash \theta=\sigma \in \llbracket,-\rrbracket$
$\Delta \vdash N[\theta]=M[\sigma] \in \llbracket A^{-} \rrbracket$
By symmetry (Lemma 20)
By i.h. on \mathcal{D}^{\prime}
$\Delta \vdash M[\sigma]=N[\theta] \in \llbracket A^{-} \rrbracket$
By symmetry (Lemma 20)

Case:

$$
\mathcal{D}=\frac{\begin{array}{c}
\mathcal{D}_{1} \\
, \vdash M=O: A
\end{array} \begin{array}{c}
\mathcal{D}_{2} \\
, \vdash M=N: A
\end{array}, \vdash O=N: A}{\qquad M^{\circ}}
$$

By i.h. on \mathcal{D}_{1}
By i.h. on \mathcal{D}_{2}
$\Delta \vdash M[\sigma]=N[\theta] \in \llbracket A^{-} \rrbracket$
By transitivity (Lemma 21)

Case:

$$
\mathcal{D}=\frac{\mathcal{D}_{1}}{, \vdash M=N: B \quad, \vdash B=A: \text { type }}
$$

$$
\Delta \vdash M[\sigma]=N[\theta] \in B^{-}
$$

By i.h. on \mathcal{D}_{1}

$$
\Delta \vdash M[\sigma]=N[\theta] \in A^{-}
$$

By erasure preservation (Lemma 12)
Case: , $\vdash a=a: K$. As for constants c.
Case: , $\vdash A_{1} M_{2}=B_{1} N_{2}:\left[M_{2} / x\right] K_{1}$. As for applications $M_{1} M_{2}$.

Case:

$$
\mathcal{D}=\frac{\mathcal{D}_{1}}{, \vdash A_{1}=B_{1}: \text { type }} \begin{gathered}
\mathcal{D}_{2} \\
, \vdash \Pi x: A_{1} \cdot A_{1}=\Pi x: B_{1} \cdot B_{2}: \text { type }
\end{gathered}
$$

Case: Family symmetry rule. As for the object-level symmetry.
Case: Family transitivity rule. As for the object-level transitivity.

Case:

$$
\mathcal{D}=\frac{\mathcal{D}_{1}}{\substack{ \\{ }_{1} \vdash M=N: C} \cdots \quad,{ }_{1}, x: C,{ }_{2} \vdash A^{\prime}=B^{\prime}: \text { type }}
$$

$$
\begin{aligned}
& \Delta \vdash A_{1}[\sigma]=B_{1}[\theta] \in \llbracket \mathrm{type}^{-} \rrbracket \\
& \text { By i.h. on } \mathcal{D}_{1} \\
& \Delta \vdash A_{1}[\sigma] \longleftrightarrow B_{1}[\theta]: \text { type }^{-} \quad \text { By definition of } \llbracket \text { type }{ }^{-} \rrbracket \\
& \Delta, x: A_{1}^{-} \vdash x \longleftrightarrow x: A_{1}^{-} \\
& \Delta, x: A_{1}^{-} \vdash x=x \in \llbracket A_{1}^{-} \rrbracket \\
& \Delta, x: A_{1}^{-} \vdash(\sigma, x / x)=(\theta, x / x) \in \llbracket,{ }^{-}, x: A_{1}^{-} \rrbracket \\
& \Delta, x: A_{1}^{-} \vdash A_{2}[\sigma, x / x]=B_{2}[\theta, x / x] \in \llbracket t y p e^{-} \rrbracket \\
& \text { By Theorem } 18 \\
& \Delta, x: A_{1}^{-} \vdash A_{2}[\sigma, x / x] \longleftrightarrow B_{2}[\theta, x / x]: \text { type }^{-} \\
& \Delta \vdash \Pi x: A_{1}[\sigma] . A_{2}[\sigma, x / x] \longleftrightarrow \Pi x: B_{1}[\theta] . B_{2}[\theta, x / x]: \text { type }^{-} \\
& \Delta \vdash \Pi x: A_{1}[\sigma] . A_{2}[\sigma, x / x] \longleftrightarrow \Pi x: B_{1}[\theta] . B_{2}[\theta, x / x] \in \llbracket \mathrm{type}^{-} \rrbracket \\
& \Delta \vdash\left(\Pi x: A_{1} . A_{2}\right)[\sigma] \longleftrightarrow\left(\Pi x: B_{1} . B_{2}\right)[\theta] \in \llbracket \mathrm{type}{ }^{-} \rrbracket \\
& \begin{array}{r}
\text { By definition of } \llbracket \Theta x: \tau_{1} \rrbracket \\
\text { By i.h. on } \mathcal{D}_{2} \\
\text { By definition of } \llbracket \text { type }^{-\rrbracket}
\end{array} \\
& \text { By rule }
\end{aligned}
$$

$$
\Delta \vdash \sigma=\theta \in \llbracket,{ }_{1}^{-},\left([M / x],{ }_{2}\right)^{-\rrbracket}
$$

Case: Kind conversion rule. As for type conversion rule.

Lemma 23 (Identity Substitutions are Logically Related)

$,-\vdash \mathrm{id}_{\Gamma}=\mathrm{id}_{\Gamma} \in \llbracket,-\rrbracket$.
Proof: By definition of $\llbracket,-\rrbracket$ and part (3) of Lemma 18.
Theorem 24 (Definitionally Equal Terms are Logically Related)

1. If $, \vdash M=N:$ A then,$-\vdash M=N \in \llbracket A^{-} \rrbracket$.
2. If $, \vdash A=B: K$ then,$-\vdash A=B \in \llbracket K^{-} \rrbracket$.

Proof: Directly by Lemmas 22 and 23 .

Corollary 25 (Completeness of Algorithmic Equality)

1. If $, \vdash M=N:$ A then $,{ }^{-} \vdash M \Longleftrightarrow N: A^{-}$.
2. If $, \vdash A=B: K$ then $,-\vdash A \longleftrightarrow B: K^{-}$.

Proof: Directly by Theorem 24 and Theorem 18.

5 Soundness of Algorithmic Equality

In general, the algorithm for type-directed equality is not sound. However, when applied to valid objects of the same type, it is sound and relates only equal terms. This direction requires a number of lemmas established in Section 2.6, but is otherwise mostly straightforward.

Lemma 26 (Subject Reduction)

$$
\text { If } M \xrightarrow{\mathrm{whr}} M^{\prime} \text { and }, \vdash M: A \text { then }, \vdash M^{\prime}: A \text { and }, \vdash M=M^{\prime}: A .
$$

Proof: By induction on the definition of weak head reduction, making use of the inversion and substitution lemmas.

Case:

$$
\left(\lambda x: A_{1} \cdot M_{2}\right) M_{1} \xrightarrow{\text { whr }}\left[M_{1} / x\right] M_{2}
$$

$, \vdash \Pi x: A_{1} \cdot A_{2}=\Pi x: B_{1} . B_{2}:$ type \quad By inversion (Lemma 5)
, $\vdash A_{1}=B_{1}$: type
, , $x: A_{1} \vdash A_{2}=B_{2}$: type
$, \vdash\left[M_{1} / x\right] M_{2}:\left[M_{1} / x\right] A_{2}$
, $\vdash\left[M_{1} / x\right] A_{2}=\left[M_{1} / x\right] B_{2}$: type
, $\vdash\left[M_{1} / x\right] A_{2}=A$: type
, $\vdash\left[M_{1} / x\right] M_{2}: A$
, $\vdash A_{1}$: type
, , $x: A_{1} \vdash M_{2}=M_{2}: A_{2}$
, $\vdash M_{1}=M_{1}: A_{1}$
$, \vdash\left(\lambda x: A_{1} \cdot M_{2}\right) M_{1}=\left[M_{1} / x\right] M_{2}:\left[M_{1} / x\right] A_{2}$
$, \vdash\left(\lambda x: A_{1} \cdot M_{2}\right) M_{1}=\left[M_{1} / x\right] M_{2}: A$

By injectivity of products (Lemma 11)
By substitution (Lemma 3)
By substitution (Lemma 3)
By transitivity
By rule (type conversion)
By above
By reflexivity
By reflexivity
By rule (parallel conversion)
By rule (type conversion)

Case:

$$
\frac{M_{1} \xrightarrow{\text { whr }} M_{1}^{\prime}}{M_{1} M_{2} \xrightarrow{\text { whr }} M_{1}^{\prime} M_{2}}
$$

, $\vdash M_{1} M_{2}: A$
Assumption
$, \vdash M_{1}: \Pi x: A_{2} . A_{1}$
, $\vdash M_{2}: A_{2}$
, $\vdash\left[M_{2} / x\right] A_{1}=A$: type
By inversion (Lemma 5)
, $\vdash M_{1}^{\prime}: \Pi x: A_{2} . A_{1}$
, $\vdash M_{1}^{\prime} M_{2}:\left[M_{2} / x\right] A_{1}$
, $\vdash M_{1}^{\prime} M_{2}: A$
By inductive hypothesis
By rule (application)
$, \vdash M_{1}=M_{1}^{\prime}: \Pi x: A_{2} . A_{1}$
, $\vdash M_{2}=M_{2}: A_{2}$
$, \vdash M_{1} M_{2}=M_{1}^{\prime} M_{2}:\left[M_{2} / x\right] A_{1}$
$, \vdash M_{1} M_{2}=M_{1}^{\prime} M_{2}: A$
By rule (type conversion)
By inductive hypothesis
By reflexivity

By rule (simultaneous congruence)
By rule (type conversion)

For the soundness of algorithmic equality we need subject reduction and validity (Lemma 7).
Theorem 27 (Soundness of Algorithmic Equality)

1. If $, \vdash M: A$ and $, \vdash N: A$ and $,-\vdash M \Longleftrightarrow N: A^{-}$, then $, \vdash M=N: A$.
2. If, $\vdash M: A$ and, $\vdash N: B$ and, $-\vdash M \longleftrightarrow N: \tau$, then, $\vdash M=N: A$, , $\vdash A=B$: type and $A^{-}=B^{-}=\tau$.
3. If , $\vdash A: K$ and, $\vdash B: L$ and, $, \vdash A \longleftrightarrow B: \kappa$, then, $\vdash A=B: K, \vdash K=L$: kind and $K^{-}=L^{-}=\kappa$.
4. If,$\vdash K$: kind and $, \vdash L:$ kind and $,-\vdash K \longleftrightarrow L:$ kind $^{-}$then,$\vdash K=L$: kind.

Proof: By induction on the structure of the given derivations for algorithmic equality, using validity and inversion on the typing derivations.

Case:

$$
\mathcal{T}=\frac{x: \tau \text { in },-}{,-\vdash x \longleftrightarrow x: \tau}
$$

$$
\begin{aligned}
& , \vdash x: A \\
& , \vdash x: B \\
& x: C \text { in },,, \vdash C=A: \text { type, }, \vdash C=B: \text { type } \\
& , \vdash A=B: \text { type } \\
& , \vdash x=x: C \\
& , \vdash x=x: A \\
& A^{-}=B^{-}=C^{-}=\tau
\end{aligned}
$$

Assumption
Assumption
By inversion (Lemma 5)
By symmetry and transitivity
By rule
By type conversion

Case: \mathcal{T} ends in an equality of constants. Like the previous case.

Case:

$$
\mathcal{T}=\frac{\stackrel{\mathcal{T}_{1}}{\longleftrightarrow} N_{1}: \tau_{2} \rightarrow \tau_{1} \quad, \vdash M_{2} \stackrel{\mathcal{T}_{2}}{\Longleftrightarrow} N_{2}: \tau_{2}}{, \vdash M_{1} M_{2} \longleftrightarrow N_{1} N_{2}: \tau_{1}}
$$

$\vdash M_{1} M_{2}: A$	Assumption
, $\vdash N_{1} N_{2}: B$	Assumption
$\begin{aligned} & \vdash M_{1}: \Pi x: A_{2} . A_{1}, \\ & \vdash M_{2}: A_{2}, \text { and } \end{aligned}$	
,$\vdash\left[M_{2} / x\right] A_{1}=A$: type	By inversion (Lemma 5)
$, \vdash \Pi x: A_{2} . A_{1}$: type	By validity (Lemma 7)
, $\vdash A_{2}$: type	
, , $x: A_{2} \vdash A_{1}:$ type	Inversion
$, \vdash N_{1}: \Pi x: B_{2} . B_{1}$,	
, $\vdash N_{2}: B_{2}$, and	
, $\vdash\left[N_{2} / x\right] B_{1}=B$: type	By inversion (Lemma 5)
, $\vdash \Pi x: B_{2} . B_{2}$: type	By validity (Lemma 7)

, $\mathrm{H}_{1} \cdot \mathrm{~B}_{2} \cdot B_{2}$: type
$\begin{array}{ll},, x: B_{2} \vdash B_{1}: \text { type } & \text { By inversion } \\ , \vdash M_{1}=N_{1}: \Pi x: A_{2} . A_{1}, & \end{array}$
$, \vdash M_{1}=N_{1}: \Pi x: A_{2} . A_{1}$,
, $\vdash \Pi x: A_{2} . A_{1}=\Pi x: B_{2} . B_{1}:$ type, and
$\left(\Pi x: A_{2} \cdot A_{1}\right)^{-}=\left(\Pi x: B_{2} \cdot B_{1}\right)^{-}=\tau_{2} \rightarrow \tau_{1}$
By i.h. on \mathcal{T}_{1}
, $\vdash A_{2}=B_{2}$: type and
, , $x: A_{2} \vdash A_{1}=B_{1}$: type
, $\vdash N_{2}: A_{2}$

By injectivity (Lemma 11 By symmetry and type conversion

$$
\begin{aligned}
& , \vdash M_{2}=N_{2}: A_{2} \\
& , \vdash M_{1} M_{2}=N_{1} N_{2}:\left[M_{2} / x\right] A_{1} \\
& , \vdash M_{1} M_{2}=N_{1} N_{2}: A \\
& , \vdash\left[M_{2} / x\right] A_{1}=\left[N_{2} / x\right] B_{1}: \text { type } \\
& A^{-}=A_{1}^{-}=B_{1}^{-}=B^{-}=\tau_{1}
\end{aligned}
$$

By i.h. on \mathcal{T}_{2}
By rule
By type conversion
By family functionality
By erasure preservation

Case:

$$
\mathcal{T}=\frac{\stackrel{\mathcal{W}}{\mathrm{W}} \mathrm{whr}}{\longrightarrow} M^{\prime} \quad, \vdash M^{\prime} \stackrel{\mathcal{T}^{\prime}}{\Longleftrightarrow} N: P^{-}
$$

$, \vdash M: P$	Assumption
$, \vdash N: P$	Assumption
$, \vdash P:$ type	Validity (Lemma 7)
$, \vdash M^{\prime}: P$	By subject reduction (Lemma 26)
$, \vdash M^{\prime}=N: P$	By i.h. on \mathcal{T}^{\prime}
$, \vdash M=M^{\prime}: P$	By subject reduction (Lemma 26)
$, \vdash M=N: P$	By transitivity

Case: Reduction on the right-hand side follows similarly.

Case:

$$
\mathcal{T}=\frac{\mathcal{T}_{2}}{,, x: \tau_{1} \vdash M x \Longleftrightarrow N x: \tau_{2}} \underset{, \vdash M \Longleftrightarrow N: \tau_{1} \rightarrow \tau_{2}}{\text { 俗 }}
$$

$$
\begin{aligned}
& , \vdash M: \Pi x: A_{1} \cdot A_{2} \\
& , \vdash N: \Pi x: A_{1} \cdot A_{2} \\
& , \vdash \Pi x: A_{1} \cdot A_{2}: \text { type } \\
& , \vdash A_{1}: \text { type } \\
& ,, x: A_{1} \vdash A_{2}: \text { type } \\
& A_{1}^{-}=\tau_{1} \text { and } A_{2}^{-}=\tau_{2} \\
& ,, x: A_{1} \vdash M x: A_{2} \\
& ,, x: A_{1} \vdash N x: A_{2} \\
& ,, x: A_{1} \vdash M x=N x: A_{2} \\
& , \vdash A_{1}: \text { type } \\
& , \\
& , \vdash M=N: \Pi x: A_{1} . A_{2}
\end{aligned}
$$

Assumption Assumption By assumption

Inversion Assumption and definition of ($)^{-}$ By weakening and rule By weakening and rule

By i.h. on \mathcal{T}_{2}
By inversion (Lemma 5)
By extensionality rule

Corollary 28 (Logically Related Terms are Definitionally Equivalent)

Assume, is valid.

1. If $, \vdash M: A,, \vdash N: A$, and,$-\vdash M=N \in \llbracket A^{-} \rrbracket$, then $, \vdash M=N: A$.
2. If $, \vdash A: K, \stackrel{\rightharpoonup}{ }, K$, and, $-\vdash A=B \in \llbracket K^{-} \rrbracket$, then, $\vdash A=B: K$.

Proof: Direct from the assumptions and prior theorems. We show the proof for the first case.

$$
\begin{aligned}
& ,-\vdash M=N \in \llbracket A^{-} \rrbracket \\
& ,-\vdash M \Longleftrightarrow N: A^{-} \\
& , \vdash M=N: A
\end{aligned}
$$

By Theorem 18
By Theorem 27

6 Decidability of Definitional Equality and Type-Checking

In this section we show that the judgment for algorithmic equality constitutes a decision procedure on valid terms of the same type. This result is then lifted to yield decidability of all judgments in the LF type theory.

The first step is to show that equality is decidable for terms that are algorithmically equal to themselves. Note that this property does not depend on the soundness of completeness of algorithmic equality-it is a purely syntactic result. The second step uses completeness of algorithmic equality and reflexivity to show that every well-typed term is algorithmically equal to itself. These two observations, together with soundness and completeness of algorithmic equality, yield the decidability of definitional equality for well-typed terms.

We say an object is normalizing iff it is related to some term by the type-directed equivalence algorithm. More precisely, M is normalizing at simple type τ iff $\Delta \vdash M \Longleftrightarrow M^{\prime}: \tau$ for some term M^{\prime}. Note that by symmetry and transitivity of the algorithms, this implies that $\Delta \vdash M \Longleftrightarrow M: \tau$. A term M is structurally normalizing iff it is related to some term by the structural equivalence algorithm. That is, M is structurally normalizing iff $\Delta \vdash M \longleftrightarrow M^{\prime}: \tau$ for some M^{\prime}. A similar definition applies to families and kinds. Equality is decidable on normalizing terms.

Lemma 29 (Decidability for Normalizing Terms)

1. If $\Delta \vdash M \Longleftrightarrow M^{\prime}: \tau$ and $\Delta \vdash N \Longleftrightarrow N^{\prime}: \tau$ then it is decidable whether $\Delta \vdash M \Longleftrightarrow N: \tau$.
2. If $\Delta \vdash M \longleftrightarrow M^{\prime}: \tau$ and $\Delta \vdash N \longleftrightarrow N^{\prime}: \theta$ then it is decidable whether $\Delta \vdash M \longleftrightarrow N: \delta$ for some δ.
3. If $\Delta \vdash A \longleftrightarrow A^{\prime}: \kappa_{1}$ and $\Delta \vdash B \longleftrightarrow B^{\prime}: \kappa_{2}$ then it is decidable whether $\Delta \vdash A \longleftrightarrow B: \kappa_{3}$ for some κ_{3}.
4. If $\Delta \vdash K \longleftrightarrow K^{\prime}:$ kind $^{-}$and $\Delta \vdash L \longleftrightarrow L^{\prime}:$ kind $^{-}$then it is decidable whether $\Delta \vdash K \longleftrightarrow$ $L:$ kind $^{-}$.

Proof: We only sketch the proof of the first two properties-the others are similar. First note that $\Delta \vdash M \Longleftrightarrow N: \tau$ iff $\Delta \vdash M^{\prime} \Longleftrightarrow N: \tau$ iff $\Delta \vdash M \Longleftrightarrow N^{\prime}: \tau$ iff $\Delta \vdash M^{\prime} \Longleftrightarrow N^{\prime}: \tau$, so decidability of one implies decidability of the others with equal results. Given this observation, we prove parts (1) and (2) by simultaneous structural inductions on the given derivations. The critical lemma is the determinacy of algorithmic equality (Lemma 14).

Now we can show decidability of equality via reflexivity and completeness of algorithmic equality.
Theorem 30 (Decidability of Equality) Assume, is valid.

1. If $, \vdash M: A$ and $, \vdash N: A$ then it is decidable whether, $, \vdash M \Longleftrightarrow N: A^{-}$.
2. If, $\vdash M: A$ and, $\vdash N: A$ then it is decidable whether, $-\vdash M \longleftrightarrow N: \tau$ for some τ. Moreover, if such a τ exists it is unique.
3. If $, \vdash M: A$ and $, \vdash N: A$ then it is decidable whether, $\vdash M=N: A$.

Proof:

1. By reflexivity of definitional equality (Lemma 2) and the completeness of algorithmic equality (Corollary 25), both M and N are normalizing. Hence by Lemma 29, algorithmic equivalence is decidable.
2. As above, both M and N are normalizing. It is easy to check whether or not they are also structurally normalizing by inspection of the shapes of the terms. The result follows by Lemma 29.
3. By soundness and completeness it suffices to check algorithmic equality, which by (1) and (2) is decidable.

We present an algorithmic version of type-checking that uses algorithmic equality as an auxiliary judgment.

Objects

$$
\begin{gathered}
\frac{x: A \text { in },}{, \vdash x \Rightarrow A} \frac{c: A \text { in } \Sigma}{\vdash \vdash \Rightarrow A} \\
\frac{\vdash M_{1} \Rightarrow \Pi x: A_{2}^{\prime} \cdot A_{1} \quad, \vdash M_{2} \Rightarrow A_{2} \quad, \vdash A_{2}^{\prime} \longleftrightarrow A_{2}: \text { type }}{, \vdash M_{1} M_{2} \Rightarrow\left[M_{2} / x\right] A_{1}} \\
\frac{, \vdash A_{1} \Rightarrow \text { type } \quad,, x: A_{1} \vdash M_{2} \Rightarrow A_{2}}{, \vdash \lambda x: A_{1} \cdot M_{2} \Rightarrow \Pi x: A_{1} \cdot A_{2}}
\end{gathered}
$$

Families

$$
\begin{gathered}
\frac{a \Rightarrow K \text { in } \Sigma}{, \vdash a \Rightarrow K} \\
\frac{\vdash A \Rightarrow \Pi x: B^{\prime} . K \quad, \vdash M \Rightarrow B \quad, \vdash B^{\prime} \longleftrightarrow B: \text { type }}{, \vdash A M \Rightarrow[M / x] K} \\
\frac{, \vdash A_{1} \Rightarrow \text { type } \quad, x: A_{1} \vdash A_{2} \Rightarrow \text { type }}{, \vdash \Pi x: A_{1} \cdot A_{2} \Rightarrow \text { type }}
\end{gathered}
$$

Kinds

$$
\frac{, \vdash A \Rightarrow \text { type } \quad,, x: A \vdash K \Rightarrow \text { kind }}{, \vdash \Pi x: A . K \Rightarrow \text { kind }}
$$

Similar rules exist for checking validity of signatures and contexts.

Lemma 31 (Correctness of Algorithmic Type-Checking) Assume, is valid.

1. (Soundness) If, $\vdash M \Rightarrow A$ then, $\vdash M: A$.
2. (Completeness) If $, \vdash M: A$ then,$\vdash M \Rightarrow A^{\prime}$ for some A^{\prime} such that, $\vdash A=A^{\prime}$: type.

Proof: Part 1 follows by induction on the structure of the algorithmic derivation, using validity (Theorem 7), soundness of algorithmic equality (Theorem 27) and the rule of type conversion.

Part 2 follows by induction on the structure of the typing derivation, using transitivity of equality, inversion on type equality, and completeness of algorithmic equality.

Theorem 32 (Decidability of Type-Checking) Assume, is valid.

1. It is decidable if, is valid.
2. Given a valid, , M, and A, it is decidable whether, $\vdash M: A$.
3. Given a valid, , A, and K, it is decidable whether, $\vdash A: K$.
4. Given a valid, and K, it is decidable whether, $\vdash K$: kind.

Proof: Since the algorithmic typing rules are syntax-directed and algorithmic equality is decidable (Theorem 30), there either exists a unique A^{\prime} such that, $\vdash M \Rightarrow A^{\prime}$ or there is no such A^{\prime}. By correctness of algorithmic type-checking we then have $, \vdash M: A$ iff,$\vdash A^{\prime}=A$: type, which can be decided by checking, $-\vdash A^{\prime} \longleftrightarrow A$: type.

The correctness of algorithmic type-checking also allows us to show strengthening, and a stronger form of the extensionality rule.
Theorem 33 (Strengthening) For each judgment J of the type theory, if ,, $x: A,,^{\prime} \vdash J$ and $x \notin \mathrm{~F} V\left(,{ }^{\prime}\right) \cup \mathrm{F} V(J)$, then,,${ }^{\prime} \vdash J$.
Proof: Strengthening for the algorithmic version of type-checking follows by a simple structural induction, taking advantage of strengthening for algorithmic equality (Lemma 13). Strengthening for the original typing rules then follows by soundness and completeness of algorithmic typing. Strengthening for equality judgments follows from completeness (Corollary 25), soundness (Theorem 27), and strengthening for the typing judgment.

Corollary 34 (Strong Extensionality) The typing premises for M and N in the extensionality rule are redundant. That is, the following strong form of extensionality is admissible:

$$
\frac{, \vdash A_{1}: \text { type } \quad,, x: A_{1} \vdash M x=N x: A_{2}}{, \vdash M=N: \Pi x: A_{1} \cdot A_{2}}
$$

Proof: By inversion and strengthening.

$,, x: A_{1} \vdash M x: A_{2}$	By validity
$,, x: A_{1} \vdash M: \Pi x: B_{1} \cdot B_{2}$,	
$,, x: A_{1} \vdash x: B_{1}$, and $,, x: A_{1} \vdash B_{2}=A_{2}:$ type	By inversion (Lemma 5$)$
$, \vdash A_{1}=B_{1}:$ type	By inversion and strengthening
$, \vdash \Pi x: B_{1} \cdot B_{2}=\Pi x: A_{1} \cdot A_{2}:$ type	By rule
$,, x: A_{1} \vdash M: \Pi x: A_{1} \cdot A_{2}$	By rule (type conversion)
$, \vdash M: \Pi x: A_{1} \cdot A_{2}$	By strengthening
$, \vdash N: \Pi x: A_{1} \cdot A_{2}$	Similarly
$, \vdash M=N: \Pi x: A_{1} \cdot A_{2}$	By extensionality

7 Quasi-Canonical Forms

The representation techniques of LF mostly rely on compositional bijections between the expressions (including terms, formulas, deductions, etc.) of the object language and canonical forms in a metalanguage, where canonical forms are η-long and β-normal forms. So if we are presented with an LF object M of a given type A and we want to know which object-language expression M represents, we convert it to canonical form and apply the inverse of the representation function.

This leads to the question on how to compute the canonical form of a well-typed object M of type A in an appropriate context , . Generally, we would like to extract this information from a derivation that witnesses that M is normalizing, that is, a derivation that shows that M is algorithmically equal to itself. This idea cannot be applied directly in our situation, since a derivation, $-\vdash M \Longleftrightarrow$ $M: A^{-}$yields no information on the type labels of the λ-abstractions in M. Fortunately, these turn out to be irrelevant: if we have an object M of a given type A which is in canonical form, possibly with the exception of some type labels, then the type labels are actually uniquely determined up to definitional equality.

We formalize this intuition by defining quasi-canonical forms (and the auxiliary notion of quasiatomic forms) in which type-labels have been deleted. A quasi-canonical form can easily be extract from a derivation that shows that a term is normalizing. Quasi-canonical forms are sufficient to prove adequacy theorems for the representation, since the global type of a quasi-canonical form is sufficient to extract an LF object unique up to definitional equality applied to type labels. The set of quasi-canonical ($Q C$) and quasi-atomic ($Q A$) terms are defined by the following grammar:

$$
\text { Quasi-canonical objects } \quad \overline{\bar{M}}::=\bar{M} \mid \lambda x . \overline{\bar{M}}=
$$

$$
\text { Quasi-atomic objects } \quad \bar{M}::=x|c| \bar{M} \overline{\bar{M}}
$$

It is a simple matter to instrument the algorithmic equality relations to extra a common quasicanonical or quasi-atomic form for the terms being compared. Note that only one quasi-canonical form need be extracted since two terms are algorithmically equivalent iff they have the same quasicanonical form. The instrumented rules are as follows:

Instrumented Type-Directed Object Equality

$$
\begin{array}{cc}
\xrightarrow{M \xrightarrow{\mathrm{whr}} M^{\prime}} \begin{array}{c}
\Delta \vdash M^{\prime} \Longleftrightarrow N: \alpha \Uparrow \overline{\bar{O}} \\
\Delta \vdash M \Longleftrightarrow N: \alpha \Uparrow \overline{\bar{O}}
\end{array} \frac{N \stackrel{\text { whr }}{\longrightarrow} N^{\prime} \quad \Delta \vdash M \Longleftrightarrow N^{\prime}: \alpha \Uparrow \bar{O}}{\Delta \vdash M \Longleftrightarrow N: \alpha \Uparrow \overline{\bar{O}}} \\
\frac{M \Longleftrightarrow N: \alpha \downarrow \bar{O}}{M \Longleftrightarrow N: \alpha \Uparrow \overline{\bar{O}}} \quad & \frac{\Delta, x: \tau_{1} \vdash M x \Longleftrightarrow N x: \tau_{2} \Uparrow \overline{\bar{O}}}{\Delta \vdash M \Longleftrightarrow N: \tau_{1} \rightarrow \tau_{2} \Uparrow \lambda x . \overline{\bar{O}}}
\end{array}
$$

Instrumented Structural Object Equality

$$
\begin{array}{cl}
\frac{x: \tau \text { in } \Delta}{\Delta \vdash x \longleftrightarrow x: \tau \downarrow x} & \frac{c: A \text { in } \Sigma}{\Delta \vdash c \longleftrightarrow c: A^{-} \downarrow c} \\
\frac{\Delta \vdash M_{1} \longleftrightarrow N_{1}: \tau_{2} \rightarrow \tau_{1} \downarrow \bar{O}_{1}}{\Delta \vdash M_{1} M_{2} \longleftrightarrow N_{1} N_{2}: \tau_{1} \downarrow \bar{O}_{1} \overline{\bar{O}}_{2}}
\end{array}
$$

It follows from the foregoing development that every well-formed term has a unique quasicanonical form. We now have the following theorem relating quasi-canonical forms to the usual development of the LF type theory. We write $|M|$ for the result of erasing the type labels from an object M.

Theorem 35 (Quasi-Canonical and Quasi-Atomic Forms)

1. If $, \vdash M_{1}: A$ and $, \vdash M_{2}: A$ and, $-\vdash M_{1} \Longleftrightarrow M_{2}: A^{-} \Uparrow \overline{\bar{O}}$, then there is an N such that $|N|=\overline{\bar{O}},, \vdash N: A,, \vdash M_{1}=N: A$ and $, \vdash M_{2}=N: A$ and this N is unique up to definitional equality.
2. If $, \vdash M_{1}: A_{1}$ and $, \vdash M_{2}: A_{2}$ and, $-\vdash M_{1} \longleftrightarrow M_{1}: \tau \Uparrow \bar{O}$ then, $\vdash A_{1}=A_{2}:$ type, $A^{-}=B^{-}=\tau$ and there exists an N such that $|N|=\bar{O},, \vdash N: A,, \vdash M_{1}=N: A$ and , $\vdash M_{2}=N: A$ and this N is unique up to definitional equality.

Proof: By simultaneous induction on the instrumented equality derivations. It is critical that we have the types of the objects that are compared (and not just the approximate type) so that we can use this information to fill in the missing λ-labels.

Note that the uniqueness of N up to definitional equality affects only the type labels, since O determines N in all other respects. This result shows that all adequacy proofs for LF representation on canonical forms still hold. In fact, they can be carried out directly on quasi-canonical forms.

We can also directly state and prove prove adequacy theorems for encodings of logical systems in LF using quasi-canonical forms. It is interesting to observe that the type labels on λ 's are not necessary for this purpose; in an adequacy theorem, the type of the bound variable is determined from context. For example, the following relation sets up a compositional (natural) bijection between (a) terms and formulas of first-order logic over a given first-order signature and (b) quasicanonical forms of types ι and o, respectively, in the signature of first-order logic. We only show an excerpt, illustrating the idea over the signature

$$
\begin{array}{lll}
c_{f} & : & \iota \rightarrow \cdots \rightarrow \iota \\
c_{=} & : \iota \rightarrow \iota \rightarrow o \\
c_{\wedge} & : o \rightarrow o \rightarrow o \\
c_{\forall} & :(\iota \rightarrow o) \rightarrow o
\end{array}
$$

Let, be a context of the form $x_{1}: \iota, \ldots, x_{n}: \iota$ for some $n \geq 0$. A correspondence relation between terms and formulas with (free) variables among the x_{1}, \ldots, x_{n} and quasi-canonical objects of type ι and o, respectively, over that signature and context may be defined as follows:

$$
\begin{aligned}
& \text {, } \vdash x \longleftrightarrow x: \iota
\end{aligned}
$$

$$
\begin{aligned}
& \frac{, \vdash \phi_{1} \leadsto \overline{\bar{M}}_{1}: o \quad, \vdash \phi_{2} \leadsto \overline{\bar{M}}_{2}: o}{, \vdash \phi_{1} \wedge \phi_{2} \text { \& } c_{\wedge} \overline{\bar{M}}_{1} \overline{\bar{M}}_{2}: o} \\
& \text {, , } x: \iota \vdash \phi \text { ค } \overline{\bar{M}: o}
\end{aligned}
$$

Theorem 36 (Adequacy for Syntax of First-Order Logic) Let, be a context of the form $x_{1}: \iota, \ldots, x_{n}: \iota$ for some $n \geq 0$.

1. The relation, $\vdash t$ ¢ $M: \iota$ is a compositional bijection between terms t of first-order logic over variables x_{1}, \ldots, x_{n} and quasi-canonical forms M of type ι relative to,.
2. The relation, $\vdash \phi$ m M : o is a compositional bijection between formulas ϕ with free variables among x_{1}, \ldots, x_{n} and quasi-canonical forms M of type o relative to,.

Proof: We establish by induction over the t and ϕ that for every term t and formula ϕ there exist a unique M and N and derivations of, $\vdash t \rightsquigarrow \overline{\bar{M}}: \iota$ and, $\vdash \phi \longleftrightarrow \overline{\bar{N}}: o$, respectively. Similarly, we show that for a quasi-canonical $\overline{\bar{M}}$ and $\overline{\bar{N}}$ at type ι and o, respectively, there exists unique related t and ϕ. This establishes a bijection. To see that it is compositional we use an induction over the structure of terms t and formulas ϕ.

Adequacy at the level of derivations can be established by analogous means.

8 Conclusions

We have presented a new, type-directed algorithm for definitional equality in the LF type theory. This algorithm improves on previous accounts by avoiding consideration of reduction and its associated meta-theory and by providing a practical method for testing definitional equality in an implementation. The algorithm also yields a notion of canonical form, which we call quasi-canonical, that is suitable for proving the adequacy of encodings in a logical framework. The omission of type labels presents no difficulties for the methodology of LF, essentially because abstractions arise only in contexts where the domain type is known. The formulation of the algorithm and its proof of correctness relies on the "shapes" of types, from which dependencies on terms have been eliminated.

Surprisingly, it was the soundness proof for the algorithm, and not its completeness proof, that presented some technical difficulties. In particular, we have eliminated family-level λ-abstractions from our formulation of the type theory in order to prove injectivity of products syntactically. However, this means that it is no longer possible to β-expand a type, convert the argument object of the resulting application, and substitute the converted object back into the type. As a result we had to add a primitive family-level rule to simulate the effect of this operation. It may be possible
to adapt the technique of our completeness theorem to other formulations of the type theory and establish soundness by other means.

The type-directed approach scales to richer languages such as those with unit types, precisely because it makes use of type information during comparison. For example, one expects that any two variables of unit type are equal, even though they are structurally distinct head normal forms. A similar approach is used by Stone and Harper [SH99] to study a dependent type theory with singleton kinds and subkinding. There it is impossible to eliminate dependencies, resulting in a substantially more complex correctness proof, largely because of the loss of symmetry in the presence of dependencies. Nevertheless, the fundamental method is the same, and results in a practical approach to checking definitional equality for a rich type theory.

References

[Bar92] Henk P. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, chapter 2, pages 117-309. Oxford University Press, 1992.
[Cer96] Iliano Cervesato. A Linear Logical Framework. PhD thesis, Dipartimento di Informatica, Università di Torino, February 1996.
[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 255-279. Cambridge University Press, 1991.
[CP98] Iliano Cervesato and Frank Pfenning. A linear logical framework. Information and Computation, 1998. To appear in a special issue with invited papers from LICS'96, E. Clarke, editor.
[DHW93] Gilles Dowek, Gérard Huet, and Benjamin Werner. On the definition of the eta-long normal form in type systems of the cube. In Herman Geuvers, editor, Informal Proceedings of the Workshop on Types for Proofs and Programs, Nijmegen, The Netherlands, May 1993.
[FM90] Amy Felty and Dale Miller. Encoding a dependent-type λ-calculus in a logic programming language. In M.E. Stickel, editor, 10th International Conference on Automated Deduction, pages 221-235, Kaiserslautern, Germany, July 1990. Springer-Verlag LNCS 449.
[Geu92] Herman Geuvers. The Church-Rosser property for $\beta \eta$-reduction in typed λ-calculi. In A. Scedrov, editor, Seventh Annual IEEE Symposium on Logic in Computer Science, pages 453-460, Santa Cruz, California, June 1992.
[Gha97] Neil Ghani. Eta-expansions in dependent type theory - the calculus of constructions. In P. de Groote and J.R. Hindley, editors, Proceedings of the Third International Conference on Typed Lambda Calculus and Applications (TLCA'97), pages 164-180, Nancy, France, April 1997. Springer-Verlag LNCS 1210.
[Gog99] Healfdene Goguen. Soundness of the logical framework for its typed operational semantics. In Jean-Yves Girard, editor, Proceedings of the 4 th International Conference
on Typed Lambda Calculi and Applications (TLCA'99), pages 177-197, L'Aquila, Italy, April 1999. Springer-Verlag LNCS 1581.
[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the Association for Computing Machinery, 40(1):143-184, January 1993.
[JG95] C. B. Jay and N. Ghani. The virtues of η-expansion. Journal of Functional Programming, 5(2):135-154, 1995.
[Pfe92] Frank Pfenning. Computation and deduction. Unpublished lecture notes, 277 pp. Revised May 1994, April 1996, May 1992.
[Pfe93] Frank Pfenning. Refinement types for logical frameworks. In Herman Geuvers, editor, Informal Proceedings of the Workshop on Types for Proofs and Programs, pages 285-299, Nijmegen, The Netherlands, May 1993.
[PP99] Jeff Polakow and Frank Pfenning. Natural deduction for intuitionistic non-commutative linear logic. In J.-Y. Girard, editor, Proceedings of the 4 th International Conference on Typed Lambda Calculi and Applications (TLCA'99), pages 295-309, L'Aquila, Italy, April 1999. Springer-Verlag LNCS 1581.
[Sal90] Anne Salvesen. The Church-Rosser theorem for LF with $\beta \eta$-reduction. Unpublished notes to a talk given at the First Workshop on Logical Frameworks in Antibes, France, May 1990.
[SH99] Chris Stone and Robert Harper. Decidable equivalence for singleton kinds. Submitted for publication., July 1999.
[Vir99] Roberto Virga. Higher-Order Rewriting with Dependent Types. PhD thesis, Department of Mathematical Sciences, Carnegie Mellon University, 1999. Forthcoming.

