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Abstract

The problem of maximizing system utility by allocating a single finite resource to satisfy discrete
Quality of Service (QoS) requirements of multiple applications along multiple QoS dimensions was
studied in [6]. In this paper, we consider the more complex problem of apportioning multiple
finite resources to satisfy the QoS needs of multiple applications along multiple QoS dimensions.
In other words, each application, such as video-conferencing, needs multiple resources to satisfy
its QoS requirements. We evaluate and compare three strategies to solve this provably NP-hard
problem. We show that dynamic programming and mixed integer programming compute optimal
solutions to this problem but exhibits very high running times. We then adapt the mixed integer
programming problem to yield near-optimal results with smaller running times. Finally, we present
an approximation algorithm based on a local search technique that is less than 5% away from the
optimal solution but which is more than two orders of magnitude faster. Perhaps more significantly,
the local search technique turns out to be very scalable and robust as the number of resources
required by each application increases.
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1 Introduction

1.1 Motivation

Consider a video-conferencing application. The audio streams in this application have multiple QoS
considerations: the sampling rate of the audio data, the resolution (number of bits) of each audio
sample and the end-to-end latency of the audio stream. Similarly, the video streams must deal
with multiple QoS dimensions: the video frame rate, the size of the video window, the number
of bits per pixel and so on. Given an operating point along each of these QoS dimensions, the
application requires processing and network bandwidth resources at the application end-hosts and
all intermediate links that the audio/video streams traverse.

We envision an environment where many such time-critical, real-time and non-real-time
applications each with multiple QoS dimensions co-exist in a system with a finite set of resources.
During loaded periods, the system may not have sufficient resources to deliver the maximum quality
possible to every application along each of its QoS dimensions. Hence, decisions must be made by
the underlying resource manager to apportion available resources to these applications such that a
global objective is maximized.

1.2 Our Approach

The QoS architecture [6] we consider consists of a QoS specification interface, a quality trade-off
specification model, and a unified QoS-based admission control and resource allocation model. The
QoS specification interface allows multiple QoS requirements to be specified, and is semantically rich
both in terms of expressiveness and customizability. The QoS trade-off model allows applications
and users to assign (utility) values to different levels of service that a system can provide. Finally,
a QoS resource manager, taking QoS operating parameters of arriving applications as its inputs,
makes resource allocations to these applications so as to maximize the global utility derived by these
systems. A set of profiles that map QoS requirements to resource usage is used by the QoS resource
manager during this allocation step.

In [6], we presented a QoS (Quality of Service) management framework that enabled system
and application developers to quantitatively measure QoS, and to analytically plan and allocate
resources. In the model, end users’ quality preferences are elicited when system resources are
apportioned across multiple applications such that the net utility that accrues to the end-users is
maximized.

Using this QoS architecture as the foundation, we studied in [6] the problem of maximizing
system utility by allocating a single finite resource to satisfy the QoS requirements of multiple
applications along multiple QoS dimensions. We presented two near optimal algorithms to solve
this problem. The first yielded a resource allocation which was within a known bounded distance
from the optimal solution, and the second yielded an allocation whose distance from the optimal
solution can be explicitly controlled by a QoS manager.

In this paper, we consider the more complex problem of apportioning multiple finite resources
to satisfy the QoS needs of multiple applications along multiple QoS dimensions. Each application
in this context must satisfy requirements along multiple QoS dimensions and also requires the use
of multiple resources. We provide a proof that an optimal solution to this problem is NP-hard. We
then present and compare three solutions to this problem. These solutions comprise of a dynamic
programming solution, a mixed integer programming solution and an approximation based on a
local search technique.
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1.3 Related Work

It must be noted that utility functions have been used by economists for several decades in attempts
to model human behavior. Value-function scheduling was first applied by Jensen et al. [4] in the
context of real-time systems. Liu et al. have used a similar notion in their use of “imprecise”
computations [7]. They considered the problem of optimally allocating CPU cycles to applications
which must satisfy minimum CPU requirements, but can produce better results with additional
CPU cycles. The frequency of each application remains constant, while the computation time per
instance of an application can be varied. The results were generally assumed to improve linearly
with additional resources. Liu et al., as part of the Open Systems project at the University of
Illinois at Urbana-Champaign, have also been studying an end-to-end QoS model that allows a
stream spanning multiple nodes to have the same (or appropriately transformed) QoS parameters.
Seto et al. [15] studied the problem of the optimal allocation of CPU cycles to feedback control
applications, whose control quality improves in concave fashion with higher frequencies of operation.
The computation time per instance of an application also remained constant in their model. In our
model, the allocation decision is made with respect to the utilization available on a single resource,
and not with respect to either the computation time or the period. Our model also deals with
multiple resources and multiple QoS dimensions.

Prior to [6], the work reported in [12, 13] primarily dealt with continuous QoS dimensions,
and assumed that the utility gained by improvements along a QoS dimension were always repre-
sentable by concave functions. In [6], both of these assumptions were relaxed by supporting discrete
QoS operating points, and making no assumptions about the concavity of the utility functions. In
this paper, we relax the assumption of allocating a single resource made in [6].

1.4 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we describe the QoS model and formulate
the QoS optimization problem being solved. In Section 3, we present an alternative formulation of the
problem both to demonstrate its computational complexity and to serve as a basis for an algorithm
to be presented in Section 4. In Section 4, we present three optimization algorithms for solving the
multi-resource QoS problem. In Section 5, we present a detailed performance evaluation of the three
algorithms. We show that our approximation solution based on a local search technique yields high
quality results (better than 95% of the optimal result) at speeds that are orders of magnitude faster.
Finally, we draw some conclusions and discuss future work in Section 6.

2 System Modeling

In this section, we provide a complete overview of the entities and metrics we use in this paper,
including the Quality of Service and resource allocation model that we employ.

2.1 Tasks and System Resources

We consider a system with multiple resources that services n independent applications denoted
by T1, . . . , Tn. There are m distinct shared system resources which are allocated across the n
applications. We let Ri denote the set of possible allocation choices for the ith shared resource. This
set of possible allocations could be modeled either as a discrete set (e.g. the bandwidth required
to support periodic transmission of fixed sized packets at one of several sampling frequencies) or
as a continuous variable (e.g. processor cycles required to ensure completion of a task’s worst
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case computation requirements). Each of the shared resources has a maximum quantity or size
denoted by rmax = (rmax

1 , . . . , rmax
m ). We also denote the set of possible resource allocation choices

by R = R1 × · · · × Rm.

2.2 Application QoS Requirements

Each application has its own quality-of-service (QoS) requirements, and it contends with many other
applications for system resources. We let Qi1, Qi2, . . . , Qidi be the quality-of-service dimensions
associated with task Ti. Each Qij is a finite set of quality choices for the ith task’s jth quality-of-
service dimension, and we define the set of possible quality vectors by Qi = Qi1 × · · · ×Qidi .

Using the video-conferencing application as an example, the following is a sample list of
quality dimensions (and their dimensional spaces) that might be associated with any particular
application. The list is given to concretely illustrate quality dimensions that might be considered
and is not intended to be exhaustive.

• Cryptographic Security (encryption key-length) : 0(off), 56, 64, 128

• Data Delivery Reliability, which could be

– maximum packet loss : as a percentage of all packets
– expected packet loss : as a percentage of all packets
– packet loss occurrence : as a per packet probability of loss

• Video Related Quality

– picture format1: SQCIF, QCIF, CIF, 4CIF, 16CIF
– color depth(bits): 1, 3, 8, 16, 24, . . .

black/white, grey scale to high color
– video timeliness — frame rate(fps): 1, 2, . . . , 30

low-frame-rate cartoon or animation to high motion picture video

• Audio Related Quality

– sampling rate(kHz): 8, 16, 24, 44, . . .
AM, FM, CD quality to higher fidelity audio

– sample bit(bits): 8, 16, . . .
– audio timeliness — end-to-end delay(ms): . . . , 100, 75, 50, 25, . . .

(Note that we list these in worst-to-best order, not numerically increasing.)

2.3 Application and User Profiles

We associate with each Ti an Application Profile and a User Profile. An Application Profile comes
from an application designer, while a User Profile is a means for a user to provide user-specific quality
requirements associated with a particular session. A user can either instantiate the attributes of the
default application profile, by selecting one of many templates supplied with the application profile,
or the user can supply her own utility values to quantify the quality derived from any particular
choice of a QoS setting.

An Application Profile has two components: a QoS Profile and a Resource Profile. A QoS
Profile for task Ti consists of the following components for each of the quality dimensions:

1The choices listed here come from [3] [14]. Other standards, such as MPEG [9] [5] [14] can be used as well.
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• Quality Space — Qi (e.g. possible picture formats, possible audio sampling rates, etc.)

• Quality Index — for the jth component of Qi we define a bijective function, fij which maps
the elements of Qij into integer valued labels, i.e.

fij : Qij → {1, 2, . . . , |Qij|}

The labels must preserve the quality ordering, i.e., q1 is “better than” q2, if and only if
fij(q1) > fij(q2).

• Dimension-wise Quality Utility — uij : Qij → IR, a numerical assessment of the utility achieve
by setting qij ∈ Qij for application Ti on quality dimension j.

• Application Utility — a utility or quantitative QoS measure associated with application Ti

ui : Qi → IR

The function ui could, for example, be defined as a weighted sum of uij

ui(qi) =
di∑
j=1

wijuij(qij)

We require that ui be non-decreasing in all di arguments and that it be non-negative.

A Resource Profile for Ti defines a relation between R and Qi, r |=i q. This relation is
a list of all resource allocation combinations that can be used to achieve each quality point q. It
is important to recognize that there may be many choices of r which lead to the same value of
q. For example, one might compress files to reduce network bandwidth requirements, while using
more CPU processing cycles to perform the compression/decompression operations. Alternatively,
one could avoid compression which would require more network bandwidth, but would reduce the
processing cycles needed. It is important to note that the two approaches result in different system
resource requirements but identical user quality. On the other hand, a given set of system resource
allocations can be used differently by different applications and hence can result in different quality
levels. For example, CPU processing capacity could be used to give medium levels of audio and
video quality, or the same capacity could be used for high audio quality and low video quality.
Consequently, we can only define a relation between Qi and R, not a function.

2.4 Application QoS Constraints

We allow each application to specify minimum QoS requirements for each of its relevant QoS di-
mensions:

qmin
i = (qmin

i1 , qmin
i2 , . . . , qmin

idi ).

When the minimum requirements cannot be satisfied, the user of task Ti might choose not to run Ti
at all. Alternatively, we could assume that the system is designed for a fixed set of users, and each
user will be entitled to at least its minimum quality levels, even if that means that the quality levels
of other users must be reduced to achieve this. In this paper, we assume that there are sufficient
resources to ensure that the minimum QoS constraints can be satisfied for all applications.

4



2.5 Application Utilities

QoS is usually multi-dimensional, and its measure can be either objective or subjective (user or
session dependent). A user might want to make some quality tradeoffs, especially when resources
(such as processing power or network bandwidth) can change dynamically and an application’s
resource allocation might be reduced. For example, a user (or task Ti) might generally have a
desired quality level. However, she may be able to accept lower quality in certain dimensions if
there are insufficient resources to obtain the desired quality levels. It is, therefore, to the user’s
advantage for a system to provide an interface that allows that user to make implicit or explicit
quality tradeoffs.

Quality Index. Certain quality dimensions, such as frame rate or end-to-end delay have
easily defined utility functions while others, such as picture format, are often expressed in non-
numeric, non-uniform, or non-increasing order and require a mapping from the quality space to
a numeric quantitative space. We introduce the notion of QualityIndex to map quality levels to
indices.

We now illustrate the concept and the use of the Quality Index in the context of our previous
video-conferencing application. Consider task Ti, which could be a video conferencing system. Ti’s
quality dimensions, quality space and Quality Index might be represented by the following:

Picture format: Assume it uses the H263 [3] standard format

Format: SQCIF QCIF CIF 4CIF 16CIF
Quality Index: 1 2 3 4 5

The corresponding Quality Index is therefore Qi1 = {1, 2, 3, 4, 5}.

Color depth: Assume that Ti has 1, 3, 8, 16, and 24 bit color depths available for the user to
choose.

Depth: 1 3 8 16 24
Quality Index: 1 2 3 4 5

Therefore Qi2 = {1, 2, 3, 4, 5}.

Frame rate: Ti allows frame rates ranging from 1 fps to 30 fps in steps of 1 fps. These will map
directly onto Qi3 = {1, 2, . . . , 30}.

Rate (fps): 1 2 . . . 30
Quality Index: 1 2 . . . 30

Encryption key length: For Ti, encryption will be either on with 56-bit encryption or off. There-
fore we have Qi4 = {1, 2}.

Key length: (none) 56-bit
Quality Index: 1 2

Audio sampling rate: Assume Ti provides audio sampling rates from AM-quality (8 kHz) to CD-
quality (44 kHz).

Sampling rate (kHz): 8 16 24 44
Quality Index: 1 2 3 4

Thus we have Qi5 = {1, 2, 3, 4}.

Audio bit count: Assume that Ti provides only two sampling sizes, 8 bits and 16 bits.
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Bit count: 8 16
Quality Index: 1 2

Therefore Qi6 = {1, 2}.

End-to-end delay: Assume that end-to-end delays ranging from 125 ms to 25 ms in steps of 25 ms.
Since high numbers for end-to-end delay are worse than low numbers, Qi7 = {1, 2, . . . , 5}maps
high number to low indices.

Delay (ms): 125 100 . . . 25
Quality Index: 1 2 . . . 5

Dimension-wise and Application Utilities. Quality points in the multi-dimensional
case generally do not have a complete ordering. The individual dimensions, however, do. Recall
that the application utility ui for Ti is defined in terms of the value that accrues when Ti achieves a
certain quality, i.e. ui : Qi → IR. As discussed above, when many quality dimensions are involved, it
is often very difficult for a user to express his/her quality preferences. We therefore provide the user
with the capability to specify dimension-wise quality utilities. As a result, the application utility
can then be defined as a weighted sum of dimension-wise utility.

Given the Quality Index, a dimension-wise utility can be defined and the application utility
can be defined from it.

System Utilities. For the overall system, with multiple applications each of which possibly
requires multiple resources, we define a system utility function

u : Q1 × · · · ×Qn → IR,

which could be defined in a variety of ways such as:

• A (weighted) sum of Application Utilities

u(q1, . . . , qn) =
n∑
i=1

wiui(qi)

for differential services, where ui is non-decreasing, and 0 ≤ wi ≤ 1 could be the relative
importance or priority2 of Ti, or

• u = u∗, where
u∗(q1, . . . , qn) = min

i=1...n
ui(qi)

for “fair” sharing.

Problem Formulation. For a given set of tasks T1, · · · , Tn, our problem is to assign
qualities (qi) and allocate resources (ri) to tasks or applications, such that the system utility u is
maximized. Therefore we have the following optimization problem:

maximize u(q1, . . . , qn)

subject to qi ≥ qmin
i or qi = 0 , i = 1, . . . , n, (QoS Constraints)

n∑
i=1

rij ≤ rmax
j , j = 1, . . . , m, (Resource Constraints)

ri |=i qi , i = 1, . . . , n.

(1)

2Note that the algorithms or schemes presented in this paper are for the weighted sum where the weights are set
to 1 for simplification to present the algorithms.
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In the next section, we will formulate the combinatorial problem in a different manner, so
as to precisely show the complexity of the QoS optimization problems. We will also also present an
algorithm from that perspective in Section 4.2.

3 Optimization Problem Complexity

In the previous section, we defined a general QoS optimization problem involving multiple resources
(MR) and multiple QoS d̆imensions (MD). The general problem is, therefore, denoted by MRMD. It is
useful to identify three special cases of this problem in which either the number of resources is
restricted to a single resource (SR) or there is a single QoS dimension (SD) or both. Algorithms
for SRSD, SRMD and MRSD problems have been discussed in [12, 13]. In Section 2, we discussed QoS
dimensions and indicated that those could be either continuous (e.g. processor cycles to ensure a
task’s worst case computation time) or discrete (e.g. different video formats). In this paper, we
focus on the optimization problem only for the case of discrete QoS settings. In this formulation,
we can give an explicit enumeration of all possible QoS operating points for each task. Using this
discrete formulation, the MRMD optimization problem defined in the previous section can be restated
as follows.

Let κi1, . . . , κi|Qi| be an enumeration of the quality space, Qi, for task Ti. Let ρij1, . . . , ρijNij
be an enumeration of the resource usage choices (tradeoffs among different resources) associated
with κij for Ti, where Nij is the number of such resource usage choices. In particular, we require
ρijk |=i κij, that is the resource vector ρijk must provide QoS levels κij to application Ti.

Let xijk = 1 if task Ti is assigned quality point κij and resource consumption ρijk, and
xijk = 0 otherwise. Hence, if task Ti is accepted for processing by the system, then exactly one of
the indicator variables xijk equals 1, while the others are 0. If Ti is not accepted, then all are 0.
Using this notation, the optimization problem can be stated as:

maximize
n∑
i=1

|Qi|∑
j=1

Nij∑
k=1

xijkui(κij)

subject to
n∑
i=1

|Qi|∑
j=1

Nij∑
k=1

xijkρijk` ≤ rmax
` , ` = 1, . . . , m,

|Qi|∑
j=1

Nij∑
k=1

xijk ≤ 1 , i = 1, . . . , n,

xijk ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , |Qi| , k = 1, . . . , Nij.

(2)

Note, that ρijk` is just the `th coordinate of the vector ρijk. Note that the possible QoS levels
for application Ti (κij), their utility (ui(κij)), resource requirements using ρijk (ρijk`, 1 ≤ ` ≤ m)
and total resource availability (rmax

` ) are given constants. The variables to be selected to optimize
total system utility are the xijk. Consequently, all the instances of our problem (SRSD, SRMD, MRSD,
MRMD) can be viewed as special cases of the general (mixed) Integer Programming or Nonlinear
Programming problems.

We now consider the complexity of the SRSD, SRMD, MRSD, MRMD problems.

Proposition 1 SRSD, SRMD, MRSD, and MRMD are all NP-hard problems.

Proof Since SRSD is a special case of the other SRMD, MRSD and MRMD, it is sufficient to show that
SRSD is NP-hard.
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For SRSD, we have m = Nij = 1 and thus k = ` = 1. Consequently, Problem (2) becomes

maximize
n∑
i=1

|Qi|∑
j=1

xij1ui(κij)

subject to
n∑
i=1

|Qi|∑
j=1

xij1ρij11 ≤ rmax
1 ,

|Qi|∑
j=1

xij1 ≤ 1, i = 1, . . . , n,

xij1 ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , |Qi| .

(3)

The 0–1 Knapsack Problem is known to be NP-hard [8]. It can be described as follows. Given a set
of n items and a knapsack of capacity c, with pi and wi the profit and weight of item i respectively,
select a subset of the items so as to

maximize
n∑
i=1

pixi

subject to
n∑
i=1

wixi ≤ c

xi ∈ {0, 1}, i = 1, . . . , n,

(4)

We can therefore reduce the 0–1 Knapsack Problem to SRSD by setting

Qi = {1}
ui(qi) = pi

rmax
1 = c

ρi111 = wi

which gives the 0–1 Knapsack Problem’s xi represented by xi11 in the SRSD problem.2

The observation that the SRSD (hence MRMD) problem is NP-Hard indicates that systems with
a large number of tasks cannot be optimized in real-time. Nevertheless, this does not preclude the
possibility that special versions of the problem can be optimally solved, or that fast algorithms that
give near optimal solutions cannot be found. In the next section, we report on algorithms that offer
near-optimal solutions for MRMD problems of substantial size.

4 MRMD Algorithms

In this section, we develop several algorithms which will be used to find near-optimal solutions to the
MRMD QoS optimization problem. In view of the multi-dimensional and potentially subjective nature
of QoS, there may be no complete ordering among quality-of-service points, even for individual
tasks. Moreover, as discussed earlier, in some instances, different combinations of resources can be
used to obtain one multi-dimensional quality point. Consequently, there may be no function that
can be defined to map the resources allocated to an application to its achieved utility. To deal with
this problem, a structural composition is required for the algorithms that calls for a mapping from
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resource to utility. Specifically, an R-U (Resource to Utility) function/graph will be constructed for
each task through the QoS Profile and Resource Profile defined in Section 2.

Recall that given a particular resource allocation to a task, one could use those resources to
improve QoS in some dimensions and reduce it in others, and these different allocations would lead
to different utility values. Still, the most valued QoS point for each resource value can be chosen.
We then define a function gi : R→ IR, such that

gi(r) = max{ ui(q) | r |=i q } (5)

and define hi : R→ P(Qi) to retain the quality points associated with the utility value gi(r):

hi(r) = { q ∈ Qi | ui(q) = gi(r) ∧ r |=i q }. (6)

An R-U graph can then be generated for each task, each of which would be a multi-dimensional
step function.

4.1 Finding the Optimal Solution for MRMD

The solution method and algorithm described in this section can be viewed as an extension of the
dynamic programming algorithm described in [6]. The scenario we use to illustrate the algorithm is
a two-resource (m = 2) case, but the scheme and results described below extend readily to higher
dimensions.

The challenge here is to extend the tabular or regular dynamic programming scheme to the
case of multiple resources. As in the single resource case, each allocation is in units of size rmax

1 /P1

and rmax
2 /P2. These represent the smallest possible allocation of each resource type, and Pi, i = 1, 2

determine the total number of these resource bundles. When P1 = P2 = 100, for instance, this
would mean that allocation is given as an integer percentage of the total resource available.

For the two-resource case, the structure of an optimal solution to the problem can be char-
acterized as follows:

Denote by v(i, p1, p2) the maximum utility achievable when only the first i tasks are consid-
ered with rmax

1 p1/P1 units of resource R1 and rmax
2 p2/P2 units of resource R2 available for allocation.

Define the value of an optimal solution recursively in terms of the optimal solutions to subproblems
as

v(i, p1, p2) = max
p′
1
∈{0,...,p1}

p′
2
∈{0,...,p2}

{gi(p′1, p′2) + v(i− 1, p1− p′1, p2 − p′2)} (7)

In analogy with the single resource case, v(n, P1, P2) will be the maximum utility achievable
given n tasks and rmax of resources. The set of interesting p′1 and p′2 values are the discontinuity
points of gi.

We shall use the following notation in our algorithm. Let

Ci =

〈(
ui1
ri1

)
, . . . ,

(
uiki
riki

)〉
list the discontinuity points of gi, the utility function associated with Ti in increasing u-order. Let
r(i, p1, p2) contain the corresponding resource allocations that yield v(i, p1, p2). Let qos(i, p1, p2) be
the list of QoS allocations choices for tasks T1 through Ti that result in v(i, p1, p2).

Using the above notation and based on Equation (7), an exact algorithm can be constructed
for the MRMD problem with discrete resource bundle allocations. As an illustrative example, the
following formalizes this algorithm for m = 2 and general n assuming that resources have been
divided into Pi, i = 1, 2 bundles:
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mrmd(n, P1, P2, C1, . . . , Cn)

1. for p1 = 0 to P1 do // Initialization
2. for p2 = 0 to P2 do
3. v(0, p1, p2) := 0
4. r(0, p1, p2) := 0
5. qos(0, p1, p2) := nil

6. for i = 1 to n do // Dynamic programming
7. for p1 = 0 to P1 do
8. for p2 = 0 to P2 do
9. u∗ := 0

10. r∗ := 0
11. j∗ := 0
12. for j = 1 to |Ci| do
13. if (rij 6≤ (p1, p2)) then
14. continue
15. else
16. u := uij + v(i− 1, p1 − rij1, p2 − rij2)
17. if (u > u∗) then
18. u∗ := u
19. r∗ := rij
20. j∗ := j
21. v(i, p1, p2) := u∗

22. r(i, p1, p2) := r∗

23. qos(i, p1, p2) := qos(i− 1, p1 − rij1, p2− rij2) concat [hi(rij∗)]

24. (p1, p2) := rmax // Unwind and retrieve allocation results
25. for i = n downto 1 do
26. resource(i) := r(i, p1, p2)
27. utility(i) := v(i, p1, p2)
28. (p1, p2) := (p1, p2)− resource(i)
29. return v(n, P1, P2), qos(n, P1, P2), resource(1), . . . ,resource(n), utility(1), . . . ,utility(n)

Upon the return of the mrmd algorithm, qos(n, P1, P2) will contain the QoS values assigned
to T1 through Tn, utility(i) contains the corresponding utility accrued for Ti, and resource(i) gives
the resource allocation for Ti. Notice that the resource part in each element of the Ci list above is
a vector, and therefore they do not necessarily increase in the resource component.

Let L = maxni=1 |Ci|. The computational complexity of the algorithm is then given by
O(nLP1P2), or O(nP 2

1P
2
2 ), which is pseudo-polynomial as in the SRMD case.

The above algorithm extends in straightforward fashion to multiple resources with com-
putational complexity O(nP 2

1 · · ·P 2
m), where m is the number of different resources available for

allocation. Due to its pseudo-polynomial complexity, we expect that it will have limited use for
large-sized on-line systems. However, it can be used for off-line and solution quality measurement
of other heuristic and approximation schemes.
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4.2 Integer Programming

Using the problem formulation given in Equation 2 of Section 3, Integer Programming algorithms
can also be applied. For efficiency reasons, we use the CPLEX [2] MIP callable library which employs
a branch-and-bound algorithm. In the branch-and-bound method, a series of LP subproblems is
solved. A tree of subproblems is built, where each subproblem is a node of the tree. The root node
is the LP relaxation of the original IP problem.

To improve the performance of the integer programming with branch-and-bound approach,
one can use task priorities and gradients of the dimension-wise quality utility functions as heuristics
for developing an integer solution at the root node and for selecting the branching node, the variable
and direction. By setting the optimality tolerance (such as the gap between the best result and utility
of the best node remaining) or setting limits on time, nodes, memory, etc., one can also obtain fast
approximately optimal results.

One drawback of the branch-and-bound technique for solving integer programming problems
is that the solution process can continue long after the optimal solution has been found, while the
tree is exhaustively searched in an effort to guarantee that the current feasible integer solution is
indeed optimal. As we know, the branch-and-bound tree may be as large as 2n nodes, where n
equals the number of binary variables. A problem containing only 30 variables could produce a tree
having over one billion nodes.

We shall provide a performance evaluation of this scheme in the next section. Still, its
applicability for practical but large MRMD problems is yet to be determined.

4.3 Approximation Algorithm for MRMD

In this section, we shall define an algorithm that yields near-optimal results but can execute at
potentially much higher speeds than the optimal algorithms using dynamic programming or mixed
integer programming. We shall use an algorithm that uses a localsearch technique. Recall that n
denotes the number of tasks and m denotes the number of resources. Let

Ci =

〈(
ui1
ri1

)
, . . . ,

(
uiki
riki

)〉
represent the discrete set of utility-resource pairs for task Ti. Note that in contrast with the SRMD
algorithms presented in [6] where each rij, 1 ≤ j ≤ ki was a scalar, the resource components, rij, in
Ci are vectors.

To handle the multi-dimensional resource case, it is useful to define a penalty vector to
“price” each resource combination. Specifically, let p = (p1, · · · , pm), where pi ∈ [1,∞) be the
penalty factor, and rp = (r1 · p1, · · · , rm · pm) be the penalized resource vector. It is useful to define
a scalar metric for each penalized resource vector. This metric is denoted r∗. A variety of metrics
could be used. For example, r∗ can be defined as:

r∗ = ‖rp‖ =
√

(rp1)2 + · · ·+ (rpm)2

Once we have defined r∗, we augment Ci by adding this component to obtain:

Cic =

〈 ui1
ri1
r∗i1

 , . . . ,
 uiki
riki
r∗iki

〉 .
We now define the algorithm amrmd1. In this algorithm, rc denotes the current remaining resource
capacity after some of the available resources have been allocated. s list[i].t, s list[i].r, s list[i].u
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contain task ids, their associated r-values and u-values of the corresponding tasks, and r[i] gives the
resources currently allocated to Ti.

amrmd1(n, C1, . . . , Cn, ε)

1. u∗ := 0
2. p := initial penalty (C1, . . . , Cn, r

max)
3. repeat := true
4. while repeat do
5. repeat := false
6. for i = 1 to n do
7. Cic := compound resource (Ci, p)
8. for i = 1 to n do
9. C′ic := convex hull frontier(Cic)

10. r[i] := 0 // vector assignment
11. u[i] := 0
12. stop[i] := 0
13. s list= merge(C′1c, . . . , C

′
nc)

14. rc := rmax

15. for j = 1 to |s list| do
16. i := s list[j].t
17. if (stop[i]) then
18. break
19. β := s list[j].r− r[i] // vector subtraction
20. if (β ≤ rc) then
21. rc := rc − β
22. r[i] := s list[j].r
23. u[i] := s list[j].u // update allocation of Ti
24. else
25. stop[i] := 1
26. u := 0
27. for i = 1 to n do
28. u := u+ u∗[i]
29. if ((u− u∗) > ε) then
30. repeat := true
31. u∗ := u
32. for i = 1 to n do
33. u∗[i] := u[i]
34. r∗[i] := r[i]
35. p := adjust penalty (p, C1, . . . , Cn, r

c, rmax)
36. for i = 1 to n do
37. q[i] := hi(r∗[i]) // see Equation (6)
38. return u∗, q[1], . . . , q[n], r∗[1], . . . , r∗[i]

Note that the procedure convex hull frontier works on the compound resource portion of each
element in Cic. By setting ε to different values, along with the heuristic result from procedure
initial penalty and adjust penalty, we can control the solution refinement steps. The asymp-
totic computational complexity of amrmd1 with zero refinement; can be obtained as follows.
Let L = maxni=1 |Ci|. The procedure initial penalty takes O(nL) operations. After the pro-
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cedure convex hull frontier3 (which requires O(nL logL) operations) a convex hull frontier with
non-increasing slope segments is obtained for each task. The segments are merged at Step 13 using
a divide-and-conquer approach with log2 n levels, with each level requiring nL comparisons. Merg-
ing thus requires O(nL logn) operations. Steps 15 through 25 require O(|s list|) = O(nL). The
adjust penalty procedure requires O(nL), and Steps 27 through 35, 36 through 38 require O(nL).
The total running time of the algorithm is, therefore, O(nL logL)+O(nL logn)+O(nL)+O(nL) =
O(nL lognL).

In the next section, we apply the algorithms amrmd1 and MRMD to a range of test problems
to evaluate their effectiveness.

5 Performance Evaluation

In this section, we present a detailed performance evaluation of the dynamic programming, integer
programming and amrmd1 algorithms discussed in the previous section.

5.1 The Nature of the Experiments

The experiments we conducted were as follows. For each task set, we generated given number of
task profiles, each with the following properties:

• The number of QoS options was given.

• The resource usage for the QoS options were generated randomly, but consistently, i.e., more
resouce would not lead to lower quality.

• The utility associated with each QoS options was likewise generated randomly, but consistently.

The three MRMD algorithms were then run on this task set for a given number of available units on
each resource. The running times and total utility obtained for each algorithm were noted. This
was repeated for several task sets and we computed the average performance across these repeat
experiments. Finally, for larger sized problems, the running times for dynamic programming and
integer programming proved to be impractical (hours or days in some cases) and we evaluated only
the near-optimal algorithm amrmd1.

It must be added here that the optimal results obtained by the integer programming scheme
and the dynamic programming algorithm matched. This provides us with a good degree of cross-
validation of correctness with respect to our implementations of our schemes.

5.2 Performance of the Dynamic Programming Scheme

We first present the results of the evaluation of the dynamic programming scheme. As mentioned
earlier, dynamic programming yields the optimal resource allocation to the various tasks but its run
times can be rather large.

Figure 1 plots the CPU time consumed by mrmd (the dynamic programming algorithm) when
there are two resources and rmax = 〈180, 100〉. In other words, the number of units of resource 1
is 180, and the number of units of resource 2 is 100. By assumption, each resource can only be
allocated in integer units4. The number of tasks to which these two resources must be allocated is

3Overmars & Leeuwen’s [10] algorithm, the quickhull [11] or Graham-Scan [1].
4Higher the total number of units, finer is the granularity of the resource allocation.
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Figure 1: The Run times of Algorithm mrmd with rmax = 〈180, 100〉

plotted along the x-axis. The CPU time consumed by the dynamic programming scheme is plotted
along the y-axis and is in terms of seconds. Three lines are plotted corresponding to different QoS
options available to each task. For example, the top-most line corresponds to a QoS maximum of
〈4, 3, 4〉 (i.e. there are three QoS dimensions, each having 4, 3 and 4 discrete options respectively).
As can be seen, the consumed time increases linearly with the number of tasks, and the slope
increases as the number of QoS options to be considered increases. These results are consistent with
the pseudo-polynomial complexity of the dynamic programming scheme discussed in Section 4.1.

It must be noted that, in absolute terms, mrmd consumes several tens of seconds for a problem
of modest size in terms of the number of tasks. As a result, its applicability to make online decision-
making in real-time systems is highly questionable.

5.3 Performance of the Integer Programming Scheme
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Figure 2: Running Times for Computing the Optimal Solution using Mixed Integer Programming

14



0

5

10

15

20

25

30

35

5 10 15 20 25 30

T
im

e 
(s

)

Number of Tasks

qmax=<3,3,3>
qmax=<3,4,3>
qmax=<4,3,4>

Figure 3: Running Times for Computing Solutions using Mixed Integer Programming and a Specified
Maximum Deviation from the Optimal Solution

The CPU times consumed by the mixed integer programming package CPLEX on three-dimension,
two-resource problems are shown in Figure 2. An option called SOS (Special Ordered Set) files was
used to group sets of related variables and set weights on members of the sets. The graph plots
the running times to find an optimal solution for each of the five problems of different sizes. The
results are shown as a scatter-plot rather than as an average of running times due to their high
degree of variability. For example, among the five problems with 15 tasks having a QoS maximum
of 〈4, 3, 4〉, the running times were 0.59, 0.69, 2.43, 2.79 and 34.91 seconds. This indicates that
subtle differences in the specific utility and resource values of set-points can drastically increase the
size of the search space.

Optimality Thresholds. In order to reduce the running times while still maintaining high-
quality results, an optimality threshold can be specified. The optimality threshold indicates that
the solution will be within a fixed bound of the optimal solution. The running times for the same
problem set with an optimality threshold of 5% is shown in Figure 3. By applying this threshold, the
worst-case running time was reduced to 31.85 secs versus 107.69s for finding the optimal solution
while at the same time maintaining results which are very close to the optimal solution. The actual
quality of the results measured as a fraction of the optimal result is shown in Figure 4. All of the
solutions in our problem set were more than 96.95% of the optimal solution.

Running Time Thresholds. If a strict upper bound on the solution time is required, a
time-out can also be set. When the time limit for a problem has expired, the currently available best
solution is returned. The solution quality for a 3-second timeout is shown in Figure 5. Even with a 3
second timeout, all of the sample problems completed with solutions that are at least 93.43% of the
optimal. This demonstrates that reasonable sized problems can be solved using integer programming
techniques when a timeout is used.

5.4 Performance Evaluation of amrmd1

We now evaluate the performance of the amrmd1 algorithm. Figures 6 and 7 correspond to the same
set of tasks used to plot Figure 1 (i.e. rmax = 〈180, 100〉, n = {5, 10, 15, 20, 25}).

Figure 6 plots the ratio of the solution quality obtained by amrmd1 to the optimal solution
obtained by the mrmd dynamic programming algorithm. Two conclusions are of immediate interest.
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Figure 4: Solution Quality using Mixed Integer Programming and a Specified Maximum Deviation
from the Optimal Solution

The first is from Figure 6 and shows that amrmd1 obtains more than 96% of the maximum quality
obtained by the dynamic programming algorithm. The second conclusion is from Figure 7 which
shows that the solutions can be obtained in the order of tens of milliseconds (instead of tens of
seconds for mrmd). Hence, in brief, amrmd1 obtains better than 96% of the quality obtained by mrmd
but does so three orders of magnitude faster.

We then used amrmd1 to solve much larger problems (where mrmd and mixed integer program-
ming would take too long to be practical). Figure 8 plots the scalability of amrmd1 with respect to
the number of tasks and the size of each task’s quality space. We used rmax = 〈10000, 10000, 10000〉,
n = 8, 16, 32, 64, 128, 256, 512, 1024, and the number of QoS dimensions ranged from 1 through 6.
The run times plotted along the y-axis are in log2 scale. As can be seen, acceptable running times
are obtained for up to 100 tasks. The running times scale with both the number of tasks and the
number of QoS dimensions.

Finally, Figure 9 plots the scalability of amrmd1 with respect to the number of tasks and
number of resources. We now use qmax of each task to be 〈3, 3, 3〉, n = 8, 16, 32, 64, 128, 256, 512, 1024.
The number of resources ranges from 1 through 6, where each resource has a very large number of
100000 units. As can be seen, the run times do not change much at all as the number of resources
increases. The primary reason is that amrmd1 uses a single compound resource that combines
multiple resources into a single virtual resource to be allocated. Hence, it scales well and is robust
with any increase in the number of resources. The primary determinant of run times in this case is
the number of tasks which are considered for allocation.

5.5 Comparative Evaluation of amrmd1 & Integer-Programming

The unpredictable run times and the lack of scalability to large problems clearly make pure integer
programming methods unsuitable for use in on-line admission control. Even with approximation
techniques, such as setting a timeout, high quality results cannot be achieved within a reasonable
amount of time. By contrast, the amrmd1 algorithm obtained solution quality of better than 96% of
optimal with a worst-case execution time of only 90ms on the 30 task example compared to solution
qualities of 93% of optimal using integer programming with a 3 second timeout. In addition, amrmd1
also uses far less memory than integer programming which uses substantial amounts of memory as
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Figure 5: Solution Quality with Timeouts in Mixed Integer Programming

it searches the solution space. The combination of the faster running times and lower memory
consumption make amrmd1 far more suitable for on-line admission control.

6 Concluding Remarks

Real-time and multimedia systems must deal with a host of QoS dimensions including audio fidelity,
video frame-rate, sampling rate, algorithmic precision, and end-to-end latency. Distributed appli-
cations such as video-conferencing, internet telephony and air traffic control also require the use of
multiple resources at end-hosts and on intermediate network links. In this paper, we have studied
the general problem of apportioning multiple finite resources to satisfy the QoS needs of multiple
applications along multiple QoS dimensions. Each application derives some utility as resources are
allocated to it and its QoS requirements can be satisfied to a greater or lesser degree. Our ob-
jective was to maximize the utility derived by all the applications in the system. This problem is
shown to be NP-hard. We have then presented, evaluated and compare three strategies to solve this
problem. Two traditional approaches, dynamic programming and mixed integer programming, are
used to compute optimal solutions to this problem but we show that their running times are rather
high (as might be expected). An adaptation of the mixed integer programming problem, however,
yields near-optimal results with (potentially) significant lower running times. Finally, we present
and evaluate an approximation algorithm based on a local search technique which combines multiple
resources into a single compound pseudo-resource. This scheme yields a solution quality that is less
than 5% away from the optimal solution but is shown to run more than two orders of magnitude
faster. In addition, the use of the “compound resource” allows this technique to be very scalable
and robust as the number of resources required by each application increases.

This work can progress along several future directions. First, we are currently implementing
this optimization model in the Amaranth test-bed at Carnegie Mellon. Secondly, the current model
has assumed that one pre-defined set of resources is used by each application (perhaps in different
quantities based on the implementation chosen). This, for example, corresponds to the use of a
static route between two nodes on a network. This assumption needs to be relaxed in the future.
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A Sample Task Profiles and Solution Results

A.1 Sample Task Profiles

Task profile in stanza form:
{TASK_Profile: tid = 11

qmin = <0,0,0> qmax = <4,3,4>
{Application_Profile:
[QoS_Profile: 3

[QoS_Profile_Dim: 0.3031 4 <0.7697,0.8849,1,1>]
[QoS_Profile_Dim: 0.3745 3 <0,1,1>]
[QoS_Profile_Dim: 0.3224 4 <0.849,0.849,0.849,1>]

]
[Resource_Profile: <4,3,4>

[<9,5>,<5,15>] [<13,5>,<6,17>] [<17,6>,<7,19>] [<22,6>,<8,21>]
...
[<24,11>,<6,20>] [<32,12>,<7,22>] [<42,13>,<8,24>] [<56,14>,<9,26>]

]
}

}

Translated Task profile in vanilla form:
<1,1,1> 0.171055 [<5,7>,<7,3>]
<1,1,2> 0.353209 [<6,8>,<9,3>]
<1,1,3> 0.535371 [<7,9>,<11,3>]
<1,1,4> 0.535371 [<9,11>,<14,4>]
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Figure 7: Running Times of Algorithm amrmd1 with rmax = 〈180, 100〉

...
<4,3,1> 0.635684 [<12,17>,<14,6>]
<4,3,2> 0.817838 [<14,20>,<17,7>]
<4,3,3> 1 [<18,23>,<21,7>]
<4,3,4> 1 [<22,27>,<26,8>]

A.2 Sample Results

Due to length limitations, we list only one assigned quality point for each task (multiple quality
points which consume the same amount of resources exist for some tasks).

The following example consists of 15 tasks, an rmax of 〈180, 100〉 and a qmax of 〈4, 3, 4〉.

Algorithm amrmd1:
Task 0 : (qid=33,q=<3,3,1>,r=<12,7>,u=0.897889)
Task 1 : (qid=21,q=<2,3,1>,r=<13,3>,u=0.986799)
Task 2 : (qid=20,q=<2,2,4>,r=<10,9>,u=0.635217)
Task 3 : (qid=0,q=<0,0,0>,r=<0,0>,u=0)
Task 4 : (qid=46,q=<4,3,2>,r=<26,8>,u=1)
Task 5 : (qid=33,q=<3,3,1>,r=<7,12>,u=0.476604)
Task 6 : (qid=8,q=<1,2,4>,r=<11,12>,u=0.97287)
Task 7 : (qid=24,q=<2,3,4>,r=<18,11>,u=0.950321)
Task 8 : (qid=9,q=<1,3,1>,r=<18,0>,u=0.904968)
Task 9 : (qid=43,q=<4,2,3>,r=<9,5>,u=0.891014)
Task 10 : (qid=10,q=<1,3,2>,r=<12,2>,u=0.963892)
Task 11 : (qid=5,q=<1,2,1>,r=<11,5>,u=0.881512)
Task 12 : (qid=0,q=<0,0,0>,r=<0,0>,u=0)
Task 13 : (qid=37,q=<4,1,1>,r=<16,14>,u=0.717887)
Task 14 : (qid=16,q=<2,1,4>,r=<17,10>,u=0.907425)
Time: 39439us
Total: (11.1864,<180,98>)

Algorithm mrmd:
Task 0 : (<12,7>,0.8979)
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Figure 8: Running Times of Algorithm amrmd1 with the number of resources (m) = 3 and varying
the number of QoS Dimensions

Task 1 : (<13,3>,0.9868)
Task 2 : (<7,5>,0.5198)
Task 3 : (<0,0>,0)
Task 4 : (<24,7>,0.9452)
Task 5 : (<7,12>,0.4766)
Task 6 : (<21,4>,0.9457)
Task 7 : (<14,11>,0.8911)
Task 8 : (<18,0>,0.905)
Task 9 : (<9,5>,0.891)
Task 10 : (<12,2>,0.9639)
Task 11 : (<11,5>,0.8815)
Task 12 : (<18,8>,0.4959)
Task 13 : (<13,14>,0.6667)
Task 14 : (<0,17>,0.9074)
Time: 31137433us
Total: (11.37, <179,100>)
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