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Abstract

The goal of the FoxNet project is to explore the advantages (and drawbacks) of implementing
networking software using an extended version of the SML language. In this report, we document
the performance of the FoxNet. Using the performance results as a guide, we compare small
function overhead and memory access performance of the extended SML to the dominate systems
programming language C.
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Introduction

Researchers have made great progress in the design and implementation of programming languages
in the past twenty years. However, most systems software, and in particular most networking
software, is still written in C and C++. The FoxNet is an experiment to create an Internet networking
stack using an extended version of Standard ML (SML) [7]. The protocols and services provided by
the FoxNet are de�ned by the Request For Comments numbers 791 and 1122 [5, 8]. The extended
version of SML, which the FoxNet uses, is de�ned by the development team of the Standard ML of
New Jersey compiler [2]. For this report, we call this extended language SML+ (leaving the term
SML for the language de�ned in [7]) and we call the compiler which compiles the SML+ language the
SML/NJ compiler.

The goal of the FoxNet project is to explore the advantages (and drawbacks) of implementing
networking software using SML+ and to understand how to extend the SML language to accommo-
date systems software. Our FoxNet experience has shown us that SML provides excellent high-level
support for producing systems software, but it lacks low-level support for producing e�cient im-
plementations. At the architectural level, the SML signatures provide concrete speci�cations for
de�ning and discussing the modules of a large system. At the process level, the compilation man-
ager of SML/NJ eliminates the burden of building and maintaining make�les. At the implementation
level, the type system catches programming mistakes which commonly occur when using C and au-
tomatic memory management eliminates a whole class of memory-allocation bugs that plague C

and C++. Despite these strengths, the low-level implementation support that the SML+ language
provides has two weaknesses:

� Small functions: SML+ does not provide a mechanism for e�ciently implementing very small
functions | functions smaller than 20 instructions. The C language provides the #define

macro mechanism for e�ciently using very small functions. The C++ language gives a pro-
grammer additional control over inlining with the inline declaration and with templates.

� Foreign memory : SML+ provides a mechanism for reading and writing raw memory from
outside the heap managed by the SML/NJ system. The FoxNet was able to use this foreign
memory system mechanism to interact with the operating system, but the foreign memory
system is unacceptably slow for creating e�cient networking systems.

In this report, we compare a networking stack written in SML+ (using the term FoxNet) with
the networking stack from Digital Unix (using the term UNIX), which is written in C. We show that
the two implementations have similar throughput over Ethernet, but the FoxNet consumes over
10 times the CPU resources. We continue by pro�ling the FoxNet and using the results to �nd
the major consumer of CPU resources: the checksum routine. We use the checksum routine to
illustrate the two disadvantages of the SML+ language when implementing system software. Finally,
we draw our conclusions.

Performance Measurement

The performance measurements use two identical Digital Equipment Corporation Alpha 300/266
computers each with 96 Mb of memory running Digital Unix 4.0. We perform the tests with the
machines started in single-user mode, and the network interfaces activated manually using the
ifconfig command. The FoxNet tests are compiled using version 110.5 of the Standard ML of
New Jersey compiler. In order gain access to the network, we extended the SML/NJ runtime system
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with an interface to the Digital Unix packet �lter and the FORE ATM application interface. These
extensions allow the FoxNet to access the Ethernet and ATM networks directly from a user process
running the SML/NJ system. We use NetPerf version 2.1 patch level 2 to measure the performance
of the networking stack from Digital Unix. NetPerf is a commonly used networking performance
testing program maintained at Hewlett Packard [4]. For the remainder of the report, the unit MB
stands for 106 bytes, and the unit Mb stands for 106 bits.

Ethernet 10 Mb/s

The performance measurements over Ethernet use the built in Ethernet adaptor of the Alphas and
the machines are connected to each other using a single strand of cable forming an isolated 10 Mb/s
network.

TCP Throughput

The FoxNet uses a test similar to the NetPerf TCP Stream Performance test to measure through-
put. The TCP window sizes for both UNIX and the FoxNet are set to 65,536 bytes for these
measurements. We measured three di�erent payload sizes: 1 byte, 1,000 bytes and 1,000,000 bytes.
In Figure 1, we show the results of the measurements for the throughput of both the FoxNet and
UNIX handling di�erent size payloads.

Throughput in Mb/s
Size FoxNet UNIX Ratio

1 MB 6.92 6.89 1

1 KB .50 6.88 .007

1 Byte .0006 .79 .00007

Figure 1: Ethernet throughput measurements. The �rst column indicates the size of
the payload. The second column is the throughput for the foxnet in Mb/s and the
third column is the throughput for UNIX in Mb/s. The fourth column is the ratio of the
FoxNet to UNIX.

TCP Latency

The FoxNet uses a test similar to the NetPerf TCP Request{Response test to measure latency.
A packet with a 1 byte payload is sent to a server which responds with a packet with a 1 byte
payload. The test counts the number of responses per second. In Figure 2, we show the results of
the latency measurements.
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Responses/s
FoxNet UNIX Ratio

257 2343 .11

Figure 2: Ethernet request{response measurement. The �rst two columns show the
responses per second for the FoxNet and UNIX respectively. The third column is the
ratio of the FoxNet to UNIX.

ATM 155 Mb/s

The hardware set of the ATM performance measurements consists of a FORE ForeRunner PCA200E
ATM adaptor installed in each machine and a ForeRunner ASX200WA ATM switch connecting the
machines together forming an isolated network. The segment size for the network is set to 65,536
bytes.

Test Throughput in Mb/s Ratio

UNIX 79.15 |

FoxNet 18.4 .23

FoxNet no checksum 47 .59

Figure 3: ATM Throughput. This is the 1 MB test run using an ATM network instead of an
Ethernet network. The �rst column is the system being measured. The second column is the
throughput and the third column is the ratio of the FoxNet to UNIX. We include the measurement
of the FoxNet without the checksum routine to demonstrate how much time the checksum routine
consumes.

CPU Utilization and Layer Timing

The 1 Mb/s throughput test case gives us the opportunity to compare the CPU utilization of both
systems sustaining a throughput of 6.9 Mb/s. The NetPerf program has a feature to measure
the CPU utilization of the UNIX networking stack running the throughput test, but its accuracy is
dependent on the behavior of the operating system. In the throughput test, the CPU utilization
measurement uses a tight loop | called a soaker | to consume any CPU cycles left over by the
C networking stack. We start the workstation in single-user mode to eliminate as many processes
as possible. While the networking test is executing, the soaker loop runs in its own process at a
very low priority waiting for the test to block. When the network stack blocks, the soaker gets its
chance to use the CPU until the networking test is ready to run again. It executes its loop counting
the number of iterations. The accuracy of the utilization measurement depends upon the policy of
the scheduler allowing the soaker to run only when the networking test is blocked. Unfortunately,
Digital Unix suspends the networking test and gives the soaker processor cycles to try to balance
the performance of the entire system. Therefore, we will only use the measurements for a rough
comparison.

In order to measure the CPU utilization of the FoxNet, we extended the SML/NJ runtime system
with the exact code NetPerf uses to measure CPU utilization.
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UNIX FoxNet Ratio

CPU Usage 8% 88% 11

Figure 4: CPU utilization measurement. Both UNIX and the FoxNet are measured using
the 10 MB Ethernet throughput test. The second column shows the utilization for UNIX
and the third column shows the utilization for the FoxNet. The fourth column is the
ratio of the FoxNet to UNIX CPU utilization. The FoxNet requires 11 times the resources
of the CPU for a 6.9 Mb/s throughput.

Our measurements show that the UNIX system consumes about 8% of the CPU while the FoxNet
consumes about 88%. To understand why UNIX is 11 times more e�cient than the FoxNet, we use
the Alpha cycle counter [10] to measure the time it takes a packet to pass through each layer of
the FoxNet. We accumulate this measurement information at each layer and calculate the average
number of cycles it takes to process a packet at each layer in the network stack.

From our experience working with the FoxNet, we know that the checksum routine consumes a
large portion of the packet processing time. Therefore, we measured two di�erent stacks, one with
the TCP checksum calculation and one without. We show, in Figure 5, the average layer timings
of the two stacks.

Layer
with

checksum
(cycles per layer)

without
checksum

(cycles per layer)

TCP 239,742 93,440
IP 47,448 48,236

Ethernet 2,458 2,500
Device 34,072 30,244

Total 323,740 174,420

Figure 5: Pro�le of the layers of the FoxNet TCP stack. The second column shows the
average cycle count for processing a packet at each layer. The third column shows the
same measurement as the second column but with the checksum calculation removed
from the TCP layer. The uctuations of the measurements between the second and
third columns for the Device, Ethernet and IP layers are caused by interrupts and
other e�ects of a multitasking system. The ratio of the without-checksum total to the
with-checksum total is 54%. Therefore, the checksum accounts for 46% of the packet
processing time.

This test demonstrates that most of the time is spent in the TCP layer and that the TCP
checksum calculation takes 46% of the packet processing time. The TCP checksum is calculated
using part of the TCP header and the entire TCP payload. It treats these bytes as if they are
an array of 16-bit words and calculates a 16-bit answer by summing the array using 16-bit one's
complement arithmetic. The running time of the checksum routine is dominated by its inner loop.
Therefore, this will be our focus for the remainder of the report.
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Small Functions

Most systems software contains a few small functions, which have calling overhead that takes more
time than executing the function itself. An example of this situation is the C Standard I/O (stdio)
library [9]. The stdio library contains a type called FILE, which the library implementation uses to
store the state of the internal bu�ering system. The fgetc is a small function, which extracts the
next character from a FILE bu�er. The calling overhead of fgetc is unacceptable for time critical
code. A simple way to remove the overhead is to copy the body of the function to the function call
site; this method of removing overhead is called manual inlining and has several problems:

� The function body for fgetc may not be available.

� The programmer has to understand the invariants of the FILE type and how it behaves with
respect to the rest of the stdio library.

� Any maintenance programming performed on the stdio library must include changes to all
the places that fgetc is manually inlined.

The stdio library solves this problem by introducing a #define macro called getc, which
has the same behavior as fgetc. Using getc, the macro system automates the inlining of the
fgetc body at the function call site. By using the macros system, the calling overhead has been
eliminated, the internal workings of the stdio library are protected and there is a single point to
make all maintenance changes.

In the FoxNet, the bu�ering mechanism is implemented as an abstract data type called a
Word Array. The Word Array provides functions for extracting and manipulating the bu�ers in
di�erent word formats. These include 32-bit and 16-bit size words in big-endian or little-endian
format. We will show that the small functions of the Word Array add signi�cant overhead to the
checksum routine. We can measure the overhead by simply inlining the function checkOneEntry

into the Word Array function, fold. We measure the performance of the two routines by calculating
the checksum of a bu�er with a length of 222 bytes. In Figure 6, we show the inner loop of the
FoxNet checksum routine.

fun checkOneEntry(new, accumulator) =

Word32.+ (

Word32.+ (

Word32.>> (new, 0w16),

Word32.andb (new, 0wxffff),

accumulator)

fun checksum buffer = Word_Array.W32Little.fold checkOne 0w0 buffer

Figure 6: The inner loop of the FoxNet checksum. The notations Word32.+, Word32.>>

and Word32.andb are 32-bit two's complement addition, logical right shift and bitwise
and operation respectively. These functions are documented in the SML/NJweb pages [1].
This routine takes 72.1 billion cycles to calculate checksum on the test bu�er.

In a Word Array, a buffer is a triple (byteBuffer, first, last) where byteBuffer is an
array of bytes, first points to the �rst 32-bit word in the bu�er and last points to the last 32-bit
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fun fold f b (byteBuffer, first, last) =

let

fun loop (index, accumulator) =

if index > last then accumulator

else

loop (index + 1, f (Pack32Little.subArr(byteBuffer, index), value))

in

loop (first, b)

end

Figure 7: The fold function from the FoxNet. We discuss the Pack32Little.subArr

in the Foreign Memory section.

word in the bu�er. The function Word_Array.W32Little.fold interprets the bytes in the bu�er
as an array of 32-bit words and has the following de�nition

fold f b [w1; w2; : : : ; wn] returns f(w1; f(w2; : : : ; f(wn; b) : : :))

where the wi's are 32-bit words in little-endian format. We display the code for the FoxNet

Word_Array.W32Little.fold function in Figure 7. We show the results of substituting the body
of the checkOne function for the variable f of the function fold in Figure 8.

The original version of the FoxNet checksum routine, from Figure 6, calculates the checksum
in 72 billion cycles while the inlined checksum routine does the calculation in 45 billion cycles.
Therefore, the function fold introduces an overhead of 60%. From a systems software perspective,
a mechanism for removing the overhead of small functions gives you more freedom in dividing a
system into modules.

Foreign Memory

The SML/NJ runtime system manages memory structures in its own fashion in its own heap. If SML
is to be used as a systems programming language, it must be able to access and manipulate memory
structures from other languages. The SML+ language has added several structures for doing this.

100 104 108

� � � 1D AB 78 E3 44 67 03 B1 F1 23 � � �

Figure 9: Memory. In this �gure, we show memory as bytes starting at location 100.

The core of the SML+ foreign memory system is the Word8Array structure [1]. This structure
implements arrays of bytes (8-bit words) of �xed length. The SML/NJ runtime system can send and
receive data by using arrays of bytes, implemented using Word8Arrays, as parameters to the un-
derlying operating system calls. A program can use the functions of the Word8Array to manipulate
the bytes of a bu�er. Assuming the memory con�guration in Figure 9 and a Word8Array starting
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fun inlineChecksum (byteBuffer, first, last) =

let

fun loop (index, accumulator) =

if index > last then accumulator

else

loop (

index+1,

let

val new = Pack32Little.subArr(byteBuffer, index)

in

Word32.+ (

Word32.+ (

Word32.>> (new, 0w16),

Word32.andb (new, max32)),

accumulator)

end

in

loop(first, 0w0)

end

Figure 8: The checksum routine with the CheckOne routine manually inlined into the
fold routine. This routine takes 45.2 billion cycles to calculate the checksum on the
test bu�er.

at location 100 called buffer, the function Word8Array.sub(buffer,1) will return the value 0x78
located at address 0x101.

The SML+ language has structures for accessing Word8Arrays in di�erent formants and word
lengths: Pack32Little, Pack32Big, Pack16Little and Pack16Big. For example, the structure
Pack32Little provides functions for manipulating Word8Arrays as arrays of 32-bit values in little-
endian format. Assuming the memory con�guration from Figure 9, the call subArr(buffer,0)
from the Pack32Little structure would return the 32-bit value, 44 � 224 + E3 � 216 + 78 � 28 + AB,
and the Pack32Little call subArr(buffer,1)would return the value F1�224+B1�216+03�28+67.

These structures provide the basic mechanisms for interacting with memory structures from
outside the SML/NJ system. However, their design clashes with the alignment restrictions imposed
by modern processors. All CPUs provide single instructions for accessing 32-bit and 16-bit words
(on the Alpha, the instructions ldl and stl load and store 32-bit-little-endian values), but valid
addresses are restricted to multiples of four for the 32-bit instructions and multiples of two for the
16-bit instructions. If these restrictions are not met, the CPU generates an alignment exception.

The SML/NJ compiler could create very e�cient code if it used the multiple byte access in-
structions. Unfortunately, the SML/NJ runtime places no alignment restrictions on the addresses of
Word8Arrays, making these fast access instructions unsafe for implementing functions like subArr
from the Pack32Little structure. Therefore, the 32-bit and 16-bit values must be assembled out
of several 8-bit values obtained using single byte loads.

We can measure the overhead of assembling 32-bit words from four individual bytes by per-
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forming the following experiment. We calculate the number of cycles the checksum routine uses to
access memory by creating a copy of the checksum routine with the memory accesses removed. The
di�erence of the running times of these two routines is amount of time spent accessing memory. We
can do the same measurement with the checksum routines translated into C in order to calculate
the number of cycles that C uses to access memory as 32-bit words. In Figure 10, we show the code
for the checksum routine translated to C. In Figure 11 and Figure 12, we show the lines which we
changed, to remove the memory accesses.

System Original No Access Di�erence

SML+ 45.2 5.6 39.6

C 8.3 1.0 7.3

Ratio: 5.4

Figure 13: Foreign memory overhead. The second column shows the number of cy-
cles that both the C implementation and the SML+ implementation take to calculate
the checksum on the test case bu�er. The third column shows the number of cycles
that both implementations take to calculate the checksum without reading memory.
The forth column shows the number of cycles spent accessing memory for both im-
plementations. The ratio is the overhead imposed by the SML/NJ implementation of
Pack32Little.subArr.

We summarize the results of the experiment in Figure 13. As you can see, the foreign memory
handling primitives of SML/NJ are 5.4 times slower than the memory accesses of C. The C checksum
routine generates a single ldl instruction to read the 32-bit word. The SML/NJcompiler generates
several instructions to read four bytes and concatenates them together to form a 32-bit word.

Conclusions

Matching the throughput performance of a UNIX system for large block sizes is a signi�cant mile-
stone for the FoxNet. Unfortunately, the FoxNet takes 11 times the CPU resources to obtain this
performance. We have identi�ed that the checksum calculation consumes 47% of the CPU time.

Studying the checksum routine leads us to the conclusion that there are two signi�cant imped-
iments to using SML/NJ as an e�cient systems programming language. First, accessing memory
from outside the SML/NJ system is unacceptably slow. In fact, accessing 32-bit words using SML/NJ
is 5.4 times slower than using C. The following are two possible alternatives for solving the foreign
memory problem:

� The current implementation of the Word32Little.subArr reads four individual bytes and
concatenates them together forming a 32-bit word. The compiler could generate the single
instruction for reading the 32-bit word. This code would execute quickly, but could cause an
alignment exception. The SML/NJ runtime system could handle the exception and simulate
the instruction.

� Instead of basing the the foreign memory system on Word8Arrays, SML+ could base it on
Word32Arrays. This new system would introduce a set of coercions from Word32Arrays
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unsigned int

inlineChecksum(byteBuffer, first, last) f

int index = first;

unsigned int accumulator = 0;

while (index <= last ) f

unsigned int w32 = byteBuffer[index];

index += 1;

sum += ( (w32>>16) + (w32&0xFFFF) );

g

return accumulator;

g

Figure 10: C Checksum routine. The inlineChecksum routine from Figure 8 translated
into C. This routine takes 8.3 billion cycles to calculate the checksum on the 224 byte
test bu�er.

val dummy = ref 0

fun inlineChecksum (byteBuffer, first, last) =

...

let

val new = !dummy

in

...

Figure 11: SML+ inlineChecksum without memory accesses. This �gure shows just the
portions of the inlineChecksum routine which we changed to remove memory accesses.
This routine takes 5.6 billion cycles to calculate the checksum on the 224 byte test bu�er.

unsigned int dummy = 0;

unsigned int

inlineChecksum(byteBuffer, first, last) f

...

unsigned int w32 = dummy;

...

g

Figure 12: The routine from Figure 10 with the memory references removed. The access
to the bu�er (byteBuffer[index]) is replaced with reading a variable dummy. We have
declared the variable dummy as external to keep the compiler from optimizing the loop
away. This routine takes 1.0 billion cycles to calculate the checksum on the 224 byte
test bu�er.
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to Word16Arrays and from Word32Arrays to Word8Arrays. This would allow access to the
di�erent word sizes while still obeying the alignment restrictions. Disallowing the reverse
coercion would eliminate any unsafe code.

The second impediment to using SML+ as a systems programming language is its inability to
eliminate the function call overhead for small functions. This makes it di�cult to abstract low
level mechanisms, such as bu�er handling, into their own modules. Consequently, the programming
teams are forced to manually inline the small functions throughout the system making maintenance
di�cult. Several research projects have addressed this problem. The CAML system from Inria has
included a macro system in their build environment. Matthias Blume is working on automatic
inlining for the SML/NJ system [3]. Finally, the research in the �eld of staged computations, such
as the work on lightweight runtime-code generation by Leone and Lee [6] and the work on modal
ML by Wickline, Lee, Pfenning and Davies [11], can be used to eliminate small function overhead.

In industry, performance is not the only measure of quality for systems software. Using SML+

for programming the FoxNet gives it many reliability bene�ts over C and C++. Also, we have found
that the SML module system and higher-order functions make good building blocks for expressing
systems software elegantly and directly. In this report, we have identi�ed two impediments, which
when removed could greatly improve the e�ciency of using SML+ for systems software. It is no
longer a question of whether SML+ can be used to create systems software, but a question of making
it e�cient enough for low-level programming.
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