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Abstract

Reinforcement leaning is often dore using parameterized function approximators to store
value functions. Algorithms are typicdly developed for lookuptables, and then applied
to function approximators by using badkpropagation. This can lead to agorithms
diverging on very small, smple MDPs and Markov chains, even with linea function
approximators and epoch-wise training. These dgorithms are dso very difficult to
analyze, and dfficult to combine with ather algorithms.

A series of new families of algorithms are derived based on stochastic gradient descent.
Since they are derived from first principles with function approximators in mind, they
have guaranteed convergence to locd minima, even on general norinea function
approximators. For bath residud algorithms and VAPS agorithms, it is possble to take
any of the standard agorithms in the field, such as Q-leaning or SARSA or vaue
iteration, and rederive anew form of it with provable mnvergence

In addition to better convergence properties, it is shown howv gradient descent all ows an
inelegant, inconvenient algorithm like Advantage updeting to be conwerted into a much
simpler and more eaily analyzed algorithm like Advantage leaning. In this case that is
very useful, since Advantages can be leaned thousands of times faster than Q values for
continuows-time problems. In this case, there ae significant pradicd benefits of using
gradient-descent-based techniques.

In addition to improving baoth the theory and pradice of existing types of agorithms, the
gradient-descent approach makes it possble to creae atirely new classes of
reinforcement-leaning algorithms. VAPS agorithms can be derived that ignore values
atogether, and simply lean good pdicies diredly. One hallmark of gradient descent is
the eae with which dfferent algorithms can be combined, and this is a prime example.
A single VAPS dgorithm can bah lean to make its value function satisfy the Bellman
equation, and also lean to improve the implied pdicy diredly. Two entirely different
approadhes to reinforcement leaning can be cmbined into a single dgorithm, with a
single function approximator with a single outptt.

Simulations are presented that show that for certain problems, there ae significant
advantages for Advantage leaning over Q-leaning, residual agorithms over dired, and
combinations of values and pdicy seach ower either alone. It appeas that gradient
descent is a powerful unifying concept for the field of reinforcement leaning, with
substantial theoreticd and pradicd value.
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1 Introduction

Reinforcement learning is afield that can addressa wide range of important problems.

Optimal control, schedule optimization, zero-sum two-player games, and language
leaning are dl problemsthat can be addressed using reinforcement-leaning agorithms.

There ae still anumber of very basic open questions in reinforcement leaning, however.
How can we use function approximators and still guarantee onvergence? How can we
guarantee o©nvergence for these dgorithms when there is hidden state, or when
exploration changes during leaning? How can we make dgorithms like Q-leaning work
when timeis continuous or the time steps are small? Are value functions good, a shoud
we just diredly seach in pdicy space?

These ae important questions that span the field. They ded with everything from low-
level detail s like finding maxima, to high-level concepts like whether we shoud be even
using dynamic programming at al. This thesis will suggest a unified approac to all of
these problems: gradient descent. It will be shown that using gradient descent, many of
the dgorithms that have grown piecaned over the last few yeas can be modified to have
a simple theoreticd basis, and solve many of the &owve problems in the process These
properties will be shown anayticdly, and aso demonstrated empiricdly on a variety of
simple problems.

Chapter 2 introduces reinforcement leaning, Markov Dedsion Processs, and dynamic
programming. Those familiar with reinforcement learning may want to skip that chapter.
The later chapters briefly define some of the terms again, to aid in seledive realing.

Chapter 3 reviews the relevant known results for incremental and stochastic gradient
descent, and describes how these theorems can be made to apply to the dgorithms
proposed in this thesis. That chapter is of theoreticd interest, bu is not needed to
understand the dgorithms propased. The proposed algorithms are said to converge "in
the same sense that badkpropagation converges’, and that chapter explains what this
means, and hav it can be proved. It also explains why two independent samples are
necessary for convergenceto alocd optimum, bu not for convergencein general.

Chapters 4, 5, and 6 present the three main algorithms. Residual algorithms, Advantage
leaning, and VAPS These dhapters are designed so they can be read independently if
there is one dgorithm of particular interest. Chapters 5 and 6 bath use the ideas from
chapter 4, and all three ae based on the theory presented in chapter 3, and wse the
standard terminology defined in chapter 2.

Chapter 4 describes residual algorithms. This is an approach to creaing pure gradient-
descent algorithms (cdled residud gradient algorithms), and then extending them to a
larger set of algorithms that converge faster in pradice (cdled residud algorithms).
Chapters 5 and 6 bath describe residual algorithms, as proposed in chapter 4.
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Chapter 5 describes Advantage learning, which al ows reinforcement leaning with
function approximation to work for problemsin continuouws time or with very small time
steps. For MDPs with continuous time (or small tim e steps) where Q functions are
preferable to value functions, this algorithm can be of gred pradicd use. Itisalsoa
residual algorithm as defined in chapter 4, so it has those anvergence properties as well.

Chapter 6 describes VAPS, which al ows the exploration pdicy to change during learning,
while still giving guaranteed convergence In addition, it allows pure seach in pdicy
space leaning padlicies diredly withou any kind d value function, and even all ows the
two approadies to be combined. VAPSIs a generalization o residual algorithms, as
described in chapter 4, and adiieves the good theoreticad convergence properties
described in chapter 3. The VAPS form of several different algorithms is given,
including the Advantage leaning algorithm from chapter 5. Chapter 6 therefore ties
together all the maor themes of this thesis. If thereis only timeto read ore dhapter, this
might be the best one to read.

Chapter 7 is abrief summary and conclusion.
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2 Background

This chapter gives an owerview of reinforcement leaning, Markov Dedsion Processes
and dynamic programming. It defines the standard terminology of the field, and the
notationto be used throughou this thesis.

2.1 RL Basics

Reinforcement learning is the problem of leaning to make dedsions that maximize
rewards or minimize @sts over a period d time. The environment gives an oweral,
scdar reinforcement signal, bu doesn't tell the leaning system what the @rred dedsions
would have been. The leaning system therefore has much less information than in
supervised learning, where the environment asks questions, and then tells the leaning
system what the right answers to those questions would have been. Reinforcement
leaning does use more information than unsupervised learning, where the leaning
system is smply given inpus and is expeded to find interesting patterns in the inpus
with no dher training signal. In many ways, reinforcement learning is the most difficult
problem of the three because it must lean by trial and error from a reinforcement signa
that isnot as informative a might be desired.

This training signa typicaly gives delayed reward: a bad dedsion may not be punished
until much later, after many other dedsions have been made. Similarly, a good cedsion
may not yield a reward urtil much later. Delayed reward makes leaning much more
difficult.

The next three sedions define the three types of reinforcement leaning problems
(Markov chains, MDPs and POMDPs), and the two approadhes to solving them (pure
palicy seach, and dynamic programming).

2.1.1 Markov Chains

A Markov chain is a set of states X, a starting state xo[1X, a function giving transition
probabiliti es, P(x;,x+1), and a reinforcement function R(x,X.+1). The state of the system
starts in xo. Time is discrete, and if the system is in state x; at time t, then at time t+1,
with probability P(x1,x2), it will be in state x..1, and will receve reinforcement R(X;,Xc+1)-
There ae no dedsions to make in a Markov chain, so the leaning system typicdly tries
to predict future reinforcements. The value of a state is defined to be the expeded
discourted sum of al future reinforcements:

V(x)= E§ % R(x; ’Xi+1)E
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where 0<y<1 is a discourt fador, and E[] is the epeded value over al possble
trgjedories. If a state transitions badk to itself with probability 1, then the reinforcement
is usually defined to be zero for that transition, and the state is cdl ed an absorbing state.
If y=1, then the problem is said to be undscourted. If the reinforcements are boundd,
and either y<1 o al trgedories lead eventually to absorbing states with probability 1,
then Viswell defined.

Markov chains are rarely useful reinforcement leaning problems by themselves, bu are
useful for solving more general problems. Hereis one cae, though, where the value of a
state in a Markov chain has a useful meaiing: suppase the time step in the dain
represents one yea, and the reinforcement represents the number of dalarsthat a sharein
a cetain stock will pay eat yea in dvidends. The dain always reades an absorbing
state with probability 1, representing the company going bankrupt. An investor has sme
money to invest for at least that long, and has the dhoice between ether investing in that
stock (and rever sdling it), or putting the money into a savings ac@urt with an interest
rate of ((1/y)-1), compounced annually. If the state right now is %, how much shoud the
investor be willing to pay for one share of the stock? The axswer is V(x;), as defined
abowe.

This exampleill ustrates what discourting does. If yis closeto ore, then reinforcement in
the distant future is aimost as desirable aimmediate reinforcement. If yis close to zero,
then only reinforcement in the nea term matters much. Soy can be thought of as diredly
related to cdculations for the present value of money in econamics.

Ancther way to look at V is as a weighted sum of future reinforcements, where the first
reinforcement has weight 1, the seaond fes weight v, the third hes weight y?, and so on.
How many terms does it take before haf of the total weight has occurred? In aher
words, what is the "half-life" of this exporential weighting? The answer is Log,2 steps.
Thisis easy to remember to ore significant figure for certain common values of y. When
y=0.9, Helf of the reinforcement that matters happen in the first 7 time steps. When
y=0.99, the half-life is 70 time steps. For y=0.999it's 700, and for y=0.9999it's 7000.
These rough numbers are useful to remember when picking a discourt fador for a new
reinforcement-leaning problem.

2.1.2 MDPs

Markov chains are of limited interest because there ae no dedsions to make. Instea,
most reinforcement leaning deds with Markov Dedsion Processes (MDPs). An MDPis
like aMarkov chain, except that on every time step the leaning system must look at the
current state and choose an adion from a set of legal adions. The transition probability
and reinforcement recaved are then functions of baoth the state and the adion. Given a
discourt fador y, the problem is to lean a good padlicy, which is a function that picks an
adionin ead state. When foll owing a given pdicy, an MDP reduces to a Markov chain.
The goal is to find the palicy such that the resulting chain has as large avalue in the start
state & possble.
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Thisisavery general problem. A control problem, such as flying a plane, can be viewed
as an MDP, where the airrent position, attitude, and velocity make up the state, and the
signals ent to the cntrol surfaces constitute the ation. Reinforcement might be asignal
such as a 1 on every time step urtil the plane aashes, then a O theredter. That is
equivaent to telling the learning system to dowhatever it takes to avoid crashes, bu not
giving it any clues asto what it did wrong when it does crash.

Optimization problems can also be thought of as MDPs. For example, to ogimize a
schedule that tells several shops what jobs to doand in what order, you can think o a
completely-fill ed-out schedule & being a state. An adion is then the ad¢ of making a
change to the schedule. The reinforcement would be how good the schedule is,
optimizing speed or cost or bath.

2.1.3 POMDPs

In an MDP, the next state is aways a stochastic function d the arrent state and adion.
Given the aurrent state and adion, the next state is independent of any previous dates and
adions. This is the Markov property, and systems withou that property are cdled
Partially Observable Markov Dedsion Processes (POMDPs). An example would be a
the cad game Bladkjadk, where the probability of the next cad drawn from the dedk
being an aceis nat just a function d the cads currently visible on the table. It isaso a
function d how many aces have dready been drawn from the arrent dedk. In ather
words, if the "state” is defined to be those cads that are airrently visible, then the
probability distribution d the next state is nat just a function d the arrent state. It is
also afunction d previous dates.

There is a simple method for transforming any POMDP into an MDP. Just redefine the
"state" to be alist of al observations e so far. In Bladkjadk, the aurrent "state” would
be arecord o everything that has happened since the last time the dek was shuffled.
With that definition d state, the probability distribution for the next card truly is a
function oy of the aurrent state, and nd of previous gates. Unfortunately, this means
that number of states will be vastly increased, and the dimensiondlity of the state space
will change on ead step, so this may make solving the problem difficult.

Another approach to converting a POMDP to an MDP is the belief state approach. This
is applicable when the POMDP is a simple MDP with part of the state nat visible. The
agent maintains a probability distribution d what the non-observable part of the state is,
and updites it acording to Bayes rule. If you cdl this probability distribution itself the
"state”, then the POMDP is reduced to an MDP. This can be amuch better approach than
just recording a history of all observations, since the belief state is typicdly finite
dimensional. In addition, this approach dcesn't waste time remembering useless
information. In the Blakkjadk example, a belief-state goproach would simply remember
which cards have been seen drealy, bu would na record what order they were seen in,
andwould na record what adions were performed ealier.
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Finaly, there is an urfortunate term that has led to widespread confusion. A POMDP is
often said to have hidden state, in contrast to an MDP, which dces not. This refleds that
most POMDPs can be thought of as MDPs where part of the state is not observable.
However, that does not mean that any MDP with unolservable state will become a
POMDP! For example, suppcse adiver picks up a dam from the ocean floor. The diver
does not know whether the dam contains a peal. That is one asped of the state of the
universe that is not observable. It isalso highly relevant to the diver's behavior: if thereis
no peal, then it may not be worth the dfort to open the dam. Since the state is hidden,
and is important, does this become aPOMDP? No. It is true that given the arrent
observations, the diver canna tell whether the peal is there. However, remembering
previous observations gives no more information than just the airrent observation.
Therefore, it is not a POMDP. The system is gill an MDP, despite the state that is
hidden. The questionto ask is aways "would the ayent be ale to improve performance
by remembering previous observations?'. If the answer is yes, then it is a POMDP,
otherwiseit isan MDP.

2.1.4 Pure Policy Search

Given an MDP or POMDP, honv can an agent find a good pdicy? The most
straightforward approac is to make up a palicy, evaluate it by following it for a while,
then make dhanges to it. This pure padlicy seach is the gproac followed by genetic
algorithms, badkpropagation through time, and leaning automata. This would be
expeded to work well for problems where loca minimain pdicy space aerare. It would
also be expeded to work well when the number of pdiciesis snmall compared to the size
of the state space For example, if there ae two flight control programs that were written
for the spaceshuittle, and there's only room for one, then there ae redly only two pdicies
possble: use one program or the other. Clealy, the best way to find the optimal padlicy
will be to simply try bath of them in simulation, and seewhich ore works better. There
are dso problems where pure pdicy seach daes not work well. One example is the
following MDP:

Figure 2.1.An MDP where pure padlicy seach dces poaly

In eath state, the leaning system must chocse ather the solid-line adion a the dotted-
line a¢ion. The only way to win isto chocse the right adion onevery single time step. If

18



the leaning system must aways dart in the start state, and if the only reinforcement
comes in the Win/Lose states, then it is very difficult to lean the pdicy diredly. If there
are N states in ead row, then orly one out of every 2" pdicies will be optimal, and slight
improvements to a subopimal padicy will never yield improvements in performance If
the leaning system is all owed to choase which state to start in, then this can still be made
difficult by adding an exporential number of new states that transition to the Win and
Lose states, bu aren't readable from the Start state.

2.1.5 Dynamic Programming

For problems like figure 2.1, a better approach is to lean more than just a palicy. For
example, the leaning system might remember which states are bad, with the rules:

1 Thelose stateisbad.
2 If bath arrows from a state lead to bad states, then that state is bad
3 If one arow leaving a state goes to a bad state, then dorit choacse that adion

Using this leaning system, the ajent can quckly lean to solve the problem. If it
repeaedly starts in the Start state and performs random adions (except when rule 3
spedfies an adion), then it will naturally lean that the bottom states nea the end are bad,
and work its way badk toward the beginning. After just O(N) runs, it will have aperfed
palicy.

Another approach would be to remember which arrows are bad rather than which states
arebad. That could be dore using these rules instead:

1 If anarrow goesto the Lose state, then that arrow is bad
2 If an arrow goesto a state with two bad arrows, then that arrow is bad

This also leans quickly. These two agorithms are known as incremental value iteration
and Q-leaning respedively. They are both forms of dynamic programming (Bertsekas,
1999. In general, dynamic programming algorithms lean a policy by storing more
information than just the padlicy. They store values, which indicae how good states or
state-adion peirs are. Eacd value is updated acrding to the values of its succesors.
That causes information to flow badk from end states toward the start state. Once the
values have been leaned, the pdicy bewmmes trivia: aways chocse the adion that is
greedy with resped to the leaned values.

The two approacdhes to solving reinforcement-leaning problems, pue pdicy seach, o
using values, tend to be used by different reseach communities, and are not generally
combined. In chapter 6, it will be shown that through gradient-descent techniques, it is
natural to combine the two approaches, and that in some caes the mmbination performs
much better than either alone.
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2.2 Reinforcement-Learning Algorithms

This sdion gives an owerview of some of the reinforcement-leaning agorithms in
common Lee.

2.2.1 Actor-Critic

In ador-critic systems, there ae two comporents to the reinforcement-leaning system.
The critic leans values, and the actor leans pdicies. At any given time, the aitic is
leaning the values for the Markov chain that comes from foll owing the aurrent pdlicy of
the ador. The ador is constantly learning the palicy that is greedy with the resped to the
critic's current values.

It is particularly interesting to examine ador-criti ¢ systems that use alookup table to store
the values and pdicies. A lookuptable represents the value in ead state with a separate
parameter. If it first updates the value in every state once, then updites the pdicy in
every state once, then repeds, then this reduces to incremental value iteration, whichisa
form of dynamic programming that is guaranteed to converge to the optimal padlicy. If it
instead updhtes all the values repeaedly in al the states urtil the values converge, then
updates all the palicies once, then repeds, then it reducesto pdlicy iteration, another form
of dynamic progranming with guaranteed convergence |If it updates all the values N
times between upditing the pdlicies, then it reduces to modified pdicy iteration, which is
also guarantead to converge to oggimality.

It would seam that an ador-criti ¢ system with alookuptable is guaranteed to converge to
optimality no matter what. Surprisingly, that is not the cae. Although it always
converges for y<0.5 (Williams & Baird 1993, it does not always converge for larger y, as
shown hy the foll owing counterexample:
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1, 3/(1-y)

1, 1/(1-y) 1, 3/(1-y)

2, 1/(1-y) 2,3/(1-y)

2, /(1)

Figure 2.2. An MDP where ador-critic can fail to converge

The number on ead arrow in figure 2.2 is the reinforcement. In ead state, there is a
choice between moving either 1 or 2 states aroundthe drcle. The first number at eat
state is the arrent padicy (to move 1 o 2 states), and the second number is the arrent
value (which isafunction d the discourt fador). Let B be the ad¢ of updating the value
in state i to match the value of its successor under the aurrent palicy. Let |; be the ad of
improving the padlicy in state i to be greedy with resped to the aurrent values of the
immediate successors. Performing the foll owing updates in the order listed (reading from
left to right) causes the padlicies and values to oscill ate:

B1, 13, Ba, ls, Ba, 14, Bs, 11, B3, Is, Be, I2

This updates every state's value and pdicy exadly once yet leaves the pdiciesin half the
states being wrong. It can be repedaed forever withou every converging. If fad, even if
theinitial values are perturbed dlightly, it will still oscill ate forever.

On the other hand, randamly-seleded B and | operations will converge with probability 1.
This is obvious, since when there ae optimal padlicies and values everywhere, no further
changes are possble. There is a finite-length sequence of updates that will read those
optimal pdlicies and values, and any finite sequence will be generated eventually with
probability 1.
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2.2.2 Q-learning

A more common algorithm is Q-leaning. In Q-leaning, avalue Q(x,u) is dored for eah
state x andadionu. A Q valueis updated acwrding to:

Q%) 8 0 (1-a)Q(x,u) +amax(R +1Q(x..,u), (21)

whereaisasmall, pasitive leaning rate. A Q value Q(x,u) is an estimate of the expeded
total discounted reinforcement recaved when starting in state x, performing adion u, and
following the optimal pdlicy theredter. The optimal pdlicy is the pdicy that is greedy
with resped to the optima Q function. The optimal Q function is the unique function
that satisfies this relationship between ead Q value and the Q values of its siccessor
state:

Q% u,) =max{E[R +1Q(x..,w]) (2.2)

Equation (2.2) is the Bellman equaion for Q-leaning. The updete in equation (2.1) can
be thought of as changing the left side of the Bellman equation to more nealy match a
sample of the right side. It must move slowly becaise the right side of (2.2) is an
expeded value, averaged ower al possble succesor states, while the right side of (2.1) is
just a randam sample of a successor state. Q-leaning has guaranteed convergence with
lookup tables if the leaning rate deaeases over time & an appropriate rate, and the Q
values are stored in alookuptable (Watkins, 1989.

For a particular Q function, the diff erence between the two sides of equation (2.2) is the
Bellman residud. Suppcse that for a particular Q function, the worst Bellman residual
for any state-adion pair is an absolute differenceof 8. Sincethis Q functioniswrong, the
padlicy that is greedy with resped to it may also be wrong. How bad can the greedy pdlicy
be? If the very first time step is in a state with a Bellman residual of 9, then the greedy
palicy might be subogimal, transitioning to states whose expeded max Q values are
lower than for the optimal adion by an amourt of d. In the long run, this may lower the
total, expeded, dscounted reinforcement by at most 8. On the sewnd time step, there
might be anther error of at most 6, which lowers the total by at most yd. In the long run,
the total return may be too low by 3(1+y+y*+y>+...)=8/(1-y). Thiskind d error boundis
typicd for reinforcement-leaning algorithms based on d/namic programming. They are
typicdly propationa to the maximum Bellman residual, and inversely propational to (1-
y). That is unfortunate when vy is close to 1, kecause that leads to a very large bound.
Unfortunately, these bounds aretight: there ae caes where the aror redly isthat bad.

2.2.3 SARSA

In the dgorithms discussed so far, it is assumed that states and adions are somehow
chasen for training. It might be that they are chasen randamly, or it might be that they are
chasen by foll owing some trgjedory generated by arandam palicy. One reasonable idea
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would be to start in the start state, and onevery time step, choose the adion that is greedy
with probability 1-¢, and arandaom adionwith probability €, for some small, pasitivee. It
might even be agued that the randamness $ioud rever be turned of, just in case the
environment changes. If that is the cae, then perhaps it would be better to lean the
palicy that is optimal, given that you will explore € of the time. 1t would be like aperson
who when walking aways takes a randam step every 100 maces or so. Such a person
would avoid walking along the top d a diff, even when that is the "optimal" pdicy for a
personwho daesn't explore randamly.

SARSA isan agorithm that usesthisidea Theupdateis:

Q(x,u) 8 0 (1-a)Q(x,u) +a (R +yQ(Xy,Uyuy))

Thisisthe same & Q-leaning, except that the value of the next state is not the maximum
Q vaue. Instea, it isthe Q value asciated with whatever adion is chosen at time t+1.
That adion will be the greedy adion with probability 1-€. In that case, the updbte is

identicd to Q-leaning. With probability €, the adion will be randam, and the value that
isbadked upwill belower.
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3 Gradient Descent

This chapter describes the various forms of incremental and stochastic gradient descent,
and the mnwvergence results that have been proved. This will be the theoreticd
foundationfor the dgorithms propased in chapters 4, 5,and 6.

3.1 Gradient Descent

Given a smocth, nonregative, scdar function f(x), how can the vedor x that minimizes f
be found? One gproad is gradient descent. The vedor x isinitialized to some randam
value, and then onead time step, it is updated acording to:

xdO x-ad, f(x)

Clealy, f(x) will tend to deaease over time. It may eventualy get nea alocd minimum,
and then start to oscill ate & it bources badk and forth acossthe bottom. To get f(x) to
converge, it is usualy necessary to shrink the learning rate over time, so the oscill ations
will deaease. If the leaning rate shrinks too fast, though, x may converge to a point that
isn't alocd minimum. The standard condtions on the leaning rate ae that it shrinks
acording to some schedule such that the foll owing two condtions hold:

S a, = o (3.1)

Zcrf <o (3.2

Simple gradient-descent methods are dmost never used with reinforcement leaning,
supervised leaning, or any of the problems or algorithms mentioned in this thesis.
Instead, it is much more common to use incremental gradient descent, stochastic gradient
descent, or both.

3.2 Incremental Gradient Descent

The previous fdion assuumed that f(x) was an arbitrary, smoacth function. Suppacse,
insteal, that f(x) is defined to be the sum of alarge number of individual functions:

(=3 ()
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Given this definition d f(x), simple gradient descent would be to repeaedly change x
acording to:

x &0 x—aZDxfi(x)
Incremental gradient descent repeas this instead:

fori =1ton
xd O x—-al, f.(x)

Thisis often used, for example, with badkpropagation reural networks. Inthat casex isa
weight vedor for the neural network, and fi(x) is the squared error in the output for
training example i. Then f(x) is the total squared error. Simple gradient descent
corresponds to epoch-wise training, and incremental gradient descent corresponds to
incremental training, where the weights are changed immediately after ead training
exampleis presented.

3.3 Stochastic Gradient Descent

Incremental training assumes that ead o the fi(x) functions are evaluated in turn before
starting over on the first one. Alternatively, one culd just pick the fi(x) functions
randamly from the set by repeaedly doing:

I & O randomnumberin[1,n]

x &0 x-al, f,(x)
Thisis gochastic gradient descent. On ead time step, the x vedor changes by a randam
amounrt, bu on average it is moving in the diredion d the gradient. Asthe leaning rate

shrinks, these small steps gart to average out, and it is very much like doing smple
gradient descent.

3.4 Unbiased Estimators

Of course, there ae other forms of stochastic gradient descent as well. The most general
form isto repedaedly do:

x a0 x-a(d,f(x)+w) (3.3)

where w is arandam, zero-mean vedor chosen independently ead time from some fixed
probability distribution. The stochastic gradient descent in the previous ®dionisjust a
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spedal case of update (3.3). The expressonin parenthesesin (3.3) is corred on average,
so its value on any given time step is an unhiased estimate of the true gradient. Let Y and
Z berandam variables, and let y1, Y7, z1, and z, be samples from those randam variables.
If E[] isthe expeded value, then it isthe cae that:

y1 isan unbased estimate of E[Y]

(y; isan unbased estimate of E[[1Y]

y1+2; isan unbased estimate of E[Y +Z]

y1 z; isan unhbased estimate of E[Y Z]

y1Y» isan unbased estimate of E[Y?]

2 y1 Oy, isan unbased estimate of DE[Y?] = E[O(Y?)]
2y, Oy: isan unbased estimate of (JE[Y])? = (E[OY])?

The last two lines are particularly important. True stochastic gradient descent requires
unbased estimates of the gradient. To get the expeded gradient of the square of a
randam variable requires two independent samples (y; andy,). If the same sampleis used
twice thisdoesyield an unbased estimate of something, bu it's not the expeded value of
asguare any more. Thisis sgnificant for most of the dgorithms propaosed in this thesis.
Conwergence to a locd minimum of the mean squared Bellman residual is guaranteed
using two independent samples. If a single sample is used twice then it minimizes the
squared expeded value rather than the expeded squared value. Depending on hawv
randam the MDP is, this might cause the pdlicy to be fairly subogimal.

3.5 Known Results for Error Backpropagation

A large literature exists for badkpropagation convergence results, based on the genera

literature for stochastic goproximation. The @nwvergence of stochastic and incremental

agorithms for neural networks has been extensively studied (White 1989, White 1990,
Gaivoronski 1994, Mangasarian & Solodov 1994,Luo & Tseng 1994, Solodov 1995,
Mangasarian & Solodov 1995,Solodov 1996,Luo 1991,Bertsekas 1995, Bertsekas &

Tsitsiklis 1996, Solodov 1997,Solodov and Zavriev 1998. Over the last few yeas,

results have been extended and generalized. Two of the latest papers are most relevant to

the dgorithmsin thisthesis.

If the f(x) functionis snooth and has a Lipshitz continuous gradient, then a huge range of
results can be proved (Bertsekas & Tsitsiklis, 1997 ,revised Jan 1999. If f is nonregative
and the leaning rate decays acording to equations (3.1) and (3.2), then f(x) will
converge, its gradient will converge to zero, and every limit point of x is a stationary
point of f, all with probability 1. In ather words, it is guaranteed to converge to a locd
minimum in every desirable sense. In fad, for the incremental version (rather than
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stochastic), the cnvergence is absolutely guaranteed, rather than just with probability 1.
Most function approximators stisfy the smoothness assumptions, so any simple aror
function like mean squared error will aso satisfy them.

Even the smoathness assumptions can be relaxed, allowing piecevise smocoth functions
that contain creases where the gradient doesn't even exist (Solodov 199%. These results
apply to incremental gradient descent. It isinteresting to ask what the definition d "locd
minimum" will be when there ae aeases. Obvioudly, it can't be that the gradient will
converge to zero, since that can't happen when dang gradient descent on a function like
f(xX)=|x]. The correspondng concept for norsmooth functions is that x converges to a
point whase generalized derivative includes the zero vedor. In ather words, x converges
to alocd minimum, even if the gradient isn't defined at that paint. The full result is that f
will converge cetainly, and x will converge to a locd minimum if x remains bounded
(whichinturnisasared if aweight decay term is added).

Each o the dgorithms in this thesis is sid to converge "in the same sense @&
badpropagation”. Thismeansthat if they are exeauted with incrementa gradient descent
(such as during prioritized sweeping), then convergence is guaranteed by the Solodov
results in every sense that would be wanted. If the dgorithms are exeauted with smoaoth
error functions, then the Bertsekis and Tsitsiklis results guarantee ©nwvergence in every
sense that would be wanted. Infad, these results are even stronger than are needed.

That still | eaves one other case. What if it is desired to do stochastic gradient descent
rather than incremental (e.g. during reinforcement leaning with randam exploration), and
the eror function is not smooth? Reinforcement leaning differs from Badkpropagation
in that this case of horsmocth error functions can adually occur, even when the function
approximator appeas at first glance to be very smooth. The problem arises because of
the max operator. If a neural network is infinitely differentiable and hes two ouputs,
Q1(x) and Q(x), correspondng to two dfferent adions, then the value functionis defined
as.

V(x,w) = max@Q, (x,w),Q,(x,w))

In this case, even if Q; and Q. are smoath functions of the weights, V probably isn't. This
can be seen by considering the cae when Qi(x,w)=Q:(x,w). Suppce that a
infinitesdmal increase in a given weight causes Q; to increase but not Q.. Then a small
increase in that weight will cause V to increase, but a small deaease in that weight will
not change V at all. That means that the derivative of V with resped to that weight will
not exist at that point. Most of the dgorithms proposed here have aror functions that are
functions of amax, so this would make the eror functions norsmocth. Even worse, there
is no way to fix the problem by using some kind d soft max function. In dynamic
programming, the maximum is a very important function. Any smocthing of it would
introduce erors, and even a small error introduced onevery time step can leal to alarge
error in the final palicy.
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Soisit hopeless? Not at al. It turns out the function approximator wasn't as snooth as it
initialy looked, bu it can easily be made smooth withou changing it much at al. The
solutionisto cdl the outputs of the function approximator y; andy, instead of Q; and Q..
Then, a simple function cdculates Q; and Q; as afunction d y; andy,. Thisisdorein
such away that Q; isamost identicd to y;, Q; isasmocth function d the weights, and the
maximum of al the Q; is itself a smoath function d the weights. The process doesn't
even change the pdlicy; the maximum Q; will be the samei as the maximum y;.

One posshble example of such a smoathing functionis given here. It will ensure that all
of the derivatives are continuows. It could be much simpler if it just ensure that the first
and second ckrivatives were ontinuoLs.

First, define eab Q value to be aweighted average of the y values, as shown in equation
(3.9.

S oy, 0 w) =y, (x w))y, (x,w)

34
S oly, 0cw) -y, (x,w)) o9

Q (x,w) =

where g is a smocth, paitive function that approadhes zero for large positive and
negative aguments. In aher words, eat Q will be aweighted average of al the y
values, bu it will give the most weight to its own y value and y values close to its own,
and wery little weight to y values that are much dfferent from its own. One possble
choicefor the g functionis equation (3.5), which is graphed in figure 3.1

B :%—O.%;’ _i)ﬁ
e if x>0
g(x) =0 (3.5)
U
0 e otherwise
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Figure 3.1. Theg function wsed for smoathing. Shown with e=1.

Thisfilter on the output of the function approximator causes the V functionto be smoath,
yet has avery small effed onthe nature of the Q function. Its propertiesinclude:

The pdicyisunchanged. The maximum Q corresponds to the maximumy. Q values
will betied for maximum if and orly if the crrespondngy values are tied.

The values change little. If all the y values are spread ou, with notwo being close,
then eat Q will be dmost equal to the wrrespondngy. If two or morey values are
close to eat aher, then the mrrespondng Q values will be drawn closer to the mean
of thasey values. In ether case, the Q valueis close to the crrespondngy value. In
ead case, the meaning of "close" is controlled by €. For any given set of y values, as
€ goesto zero, ead Q value goes to the wrrespondngy value.

It is computationally cheg. Very little cdculation is needed to find Q from v,
espedally compared to the mmputation reeded to findy when y is a neural network.
Furthermore, some dgorithms, such as VAPS (chapter 6) with ¢>0, o Wire Fitting
(Baird & Klopf, 1993, drealy pass the output of y through a similar-looking
function, so there is very littl e alditional cost to fold in this new cdculation.

It makes max smoath. The partial derivative of V with resped to ead y exists
everywhere. The partial derivative of ead Q with resped to ead y or weight also
exists. The secondand higher derivatives can also be made to exist if desired.

Eadh o these properties is easily shown. Since g is a function d x/g, reducing € will
cause the pe& to become narrower, causing ead y to have lesseffed on aher y values
that are far from it. Clealy, as € goes to zero, every Q will therefore gproach the
correspondng y.

To show that smoathing does nat affed the pdlicy (the largest y corresponds to the largest
Q), first consider what would happen if g were exporential for all x, rather than just for
x<0. Inthat case, plugging the exporential in for g in equation (3.4) causesthey; termsin
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the numerator and denominator of equation (3.4) to cancd, learing an expresson that
does nat depend ony;. So, if g were asimple exporential, al of the Q values would be
equal to eat ather. Next, consider what happens when the g defined in equation (3.5) is
used instead. Note that when x is positive, g(x)<e“. This must be true because g(x) is
defined in that case to be of the form g(x)=e’**™) where f(X) is a positive expresson,
which makes g lessthan the simple exporential. Note that for the maximum y;, al of the
differences are negative, so the Q; value will be the same for the simple exporential as for
the g from equation (3.4). For any y value that is not the maximum, the weight that it
gives to y values greaer than itself is deaeased when g is changed from a smple
exporential to equation (3.4). Since it gives reduced weight to y values greder than
itself, and the same weight to itself and values lessthan itself, its Q value will deaease.
So, for the simple exporentia, all Q values are the same, and then changing g to use
equation (3.4) causes the Q values asociated with the maximum y to stay the same, and
al others to deaease. Therefore, the smoathing preserves pdlicies. All of this only
works because g(x)<e“¢, and that iswhy g was edficaly chasen to have that property.

It is also easy to show that g is continuots, as is its first derivative with resped to the 'y
values (the gradient), its oond drivative (the Hesgan), and all higher derivatives.
Clealy this will be true & paints other than g(0). At g(0), the simple exporentia has a
value of €, and an nth derivative of €"e’*. For x>0, g is of the form g(x)=€***™™) and it
is clea that f(x) is an expresson whose value and all derivatives a 0 go to zero when
approached from the right. Given that fad, it is clea that g(0") itself must have the
appropriate derivatives when approadied from the right. The derivative of the right half
of g(x) will be the sum of two terms: €*g(X)-f '(X)g(x). The second term contains an f,
which makes it zero at x=0", and makes all further derivatives of it zero there. So the
secondterm can be ignored when taking further derivatives. The first term is the same &
when taking the derivative of the smple exporential. Further derivatives foll ow the same
pattern. Therefore, g(0)=g(0") andalso g '(0)=g '(0") and g "(0)=g "(0") and so on.

Finally, this smoothing function makes the maximum operator smocth. Thisis obviously
true when there is aunique maximumy. To consider the cae of atie, plug the definition
of g into the definition d Q, and take the derivatives for the maximum Q value with
resped to al the y values. Note that for the maximum Q, every g behaves just like a
simple exporential. Taking the derivative of the combined equation, and looking at the
limit as the seaondlargest y approadies the largest v, it is clea that the gradients of ead
of them with resped to all they values (including ead ather) are equal. This only works
becaise g isasimple exporential for x<0. That iswhy g was eaficdly chaosen to have

that property.

When the function approximator is snoothed in this way, the dgorithms discussd in this
thesis converge to a locd minimum in the same sense & badkpropagation. It is
interesting that convergence proofs for supervised leaning require smooth function
approximators, and nov convergence proofs for reinforcement leaning also require
smooth function approximators. However, in the reinforcement leaning case, the
smoathness constraint deds with the derivative of the maximum output, na just the
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derivatives of eat ouput individually. As in supervised leaning, it is not difficult to
ensure function approximators have the needed property. In fad, as down in this
sedion, any function approximator that is snocoth in the supervised-leaning sense can be
made smoacth in the reinforcement-leaning sense with a small modificaion. This
modificaion hes little dfed on the Q vaues, little dfed on the computational cost, and

no effed on the paicy. Neither this nor decging leaning rates were needed for any of
the simulationsin thisthesis.
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4 Residual Algorithms: Guaranteed Convergence with Function
Approximators

Reinforcement leaning is often dore using function approximators. Although there is a
well-developed theory guaranteang reinforcement-leaning convergence on lookup
tables, and although there is a well-developed theory guaranteang supervised-leaning
convergence on function approximators, littl e has been proved abou the combination o
the two. This chapter demonstrates that when the two concepts are combined in the
obvious way, as has normally been dorg, the dgorithms can dverge. This chapter shows
very simple problems where these dgorithms blow up, popcses residud gradient
agorithms, which have provable mnwvergence, and propases residud algorithms, which
maintain the guarantees while leaning faster in pradice

4.1 Introduction

A number of reinforcement leaning agorithms have been propased that are guaranteed
to lean a padlicy, a mapping from states to adions, such that performing those adionsin
those states maximizes the expeded, total, discourted reinforcement receved:

V=<ZV‘R> (4.2)

where Ry is the reinforcement receved at time t, <> is the epeded value over al

stochastic state transitions, and y is the discount fador, a mnstant between zero and ore
that gives more weight to nea-term reinforcement, and that guarantees the sum will be
finite for bounded reinforcement. In genera, these reinforcement leaning systems have
been analyzed for the cae of an MDP with afinite number of states and adions, and for a
leaning system containing a lookup table, with separate entries for ead state or state-
adion pair. Lookuptablestypicdly do nd scde well for high-dimensional MDPs with a
continuum of states and adions (the arse of dimensiondlity), so a general function
approximation system must typicaly be used, such as a sigmoidal, multi-layer perceptron,
a radia-basis-function retwork, or a memory-based-leaning system. In the following
sedions, various methods are analyzed that combine reinforcement leaning algorithms
with function approximation systems. Algorithms such as Q-leaning or value iteration
are guaranteed to converge to the optimal answer when used with a lookuptable. The
obvious method for combining them with function-approximation systems, cdled the
direa algorithm here, does nat have those guarantees. If fad, counterexamples will be
shown that demonstrate both dred Q-leaning and dred value iteration failing to
converge to an answer. Even batch training and on-padlicy training doesn't help dred Q-
leaning in that example. A new class of agorithms, residud gradient algorithms, are
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shown to aways converge, bu residua gradient Q-leaning and residual gradient value
iteration may converge very slowly in some caes. Finaly, a new classof agorithms,
residud agorithms, are proposed. It will be shown that dired and residua gradient
agorithms are acdually speda cases of residual algorithms, and that residual agorithms
can easlly be found such that residual Q-leaning or residual value iteration have both
guaranteed convergence, and converge quickly on problems for which residual gradient
agorithms converge slowly. This chapter does not just define anew algorithm. Rather,
it defines a new processfor deriving algorithms from first principles. Using this process
the residual form of any reinforcement leaning algorithm based on d/namic
programming can be eaily derived. This new agorithm is then guaranteed to converge,
and may even lean faster in pradice, which is 1own in simulation here. In addition, this
framework will form the basis of the dgorithms propased in chapters 5 and 6, which are
also types of residual algorithms.

4.2 Direct Algorithms

If aMarkov chain has afinite number of states, and ead V(X) is represented by a unique
entry in alookuptable, and ead pcssble transition is experienced an infinite number of
times during leaning, then updite Error! Reference sour ce not found. is guaranteed to
converge to the optimal value function as the leaning rate a decass to zero at an
appropriate rate. The various dates can be visited in any order during leaning, and some
can be visited more often than ahers, yet the dgorithm will still converge if the learning
rates decay appropriately (Watkins, Dayan 92). If V(X) was represented by a function-
approximation system other than a lookup table, updcate Error! Reference source not
found. could be implemented dredly by combining it with the badpropagation
algorithm (Rumelhart, Hinton, Williams 86). For an inpu x, the adua output of the
function-approximation system would be V(X), the “desired ouput” used for training
would be R+yW(X), and al of the weights would be aljusted through gradient descent to
make the adual output closer to the desired ouput. For any particular weight w in the
function-approximation system, the weight change would be:

N (%)

= (4.2)

tw=a(R+W (x,,)-V(x))

Equation (4.2) is exadly the TD(0) algorithm, by definition. It could also be cdled the
direa implementation d incremental value iteration a Q-leaning. The dired algorithm
reduces to the original algorithm when used with a lookuptable. Tesauro (1990, 1992
has dhown very good results by combining TD(0) with badpropagation (and also using
the more general TD(A)). Sinceit is guaranteed to converge for the lookup table, this
approach might be expeded to also converge for general function-approximation systems.
Unfortunately, thisis not the cae, asisill ustrated by thetiny MDP shown in figure 4.1
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Figure 4.1. The 2-state problem for value iteration, and a plot of
the weight vs. time. R=0 everywhere and y=0.9. The weight starts
at 0.1, and grows exporentially, even with betch training, and even
with arbitraril y-small | earning rates.

In figure 4.1, the entire MDP is just two states, and the function approximator is linea,
with orly a single weight. There is zero reinforcement on ead time step, and the
discourt fador y=0.9. The optimal weight is zero, giving corred values of zero in eat
state. Unfortunately, if the initial weight is noreero, then it will grow withou bound,and
the values will grow withou bound. This problem happens whether training is batch or
incremental, and no matter what positive leaning rate is chosen, even a slowly-
deaeasing leaning rate. It is disturbing that a widely-used agorithm would fail on such
asimple problem.

This MDP has no absorbing state. Trajedories go forever. Could it be that MDPs with
finite-length trgjecories will always avoid the problem seen here? No. Any MDP with a
discourt fador of y can be transformed into a new MDP with no dscourting (a discourt
fador of 1.0), with a new absorbing state added, and with a transition from every other
state to the @sorbing state with probability 1-y. If that transformation is dore to any of
the courterexamples given in this thesis, the weights will still change in exadly the same
way, and the values will change in exadly the same way. So whether trgedories
eventualy end with probability 1 o just go onforever, either way the munerexamples
blow up the same way.

Could the problem be that the function approximator is not general enowgh? After all, it
is able to represent the optimal value function, v(0)=v(1)=0, bu there eist other value
functions that it canna represent, such as v(0)=v(1)=1. No, even that does not prevent
divergencein genera, as shown by figure 4.2
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Figure 4.2. The 7-state star problem for value iteration, and a plot
of the values and weights iraling out to infinity, where dl
weights garted at 0.1. By symmetry, weights 1 through 6 are
aways identicd. R=0 everywhere and y=0.9.
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In figure 4.2, there ae seven states, and the value of eat state is given by the linea
combination d two weights. Every transition yields a reinforcement of zero. During
training, ead passble transition is observed equally often. The function-approximation
system is smply alookuptable, with ore additional weight giving generalization. Thisis
an extremely benign form of function-approximation system. It is linea, it is genera
(can represent any vaue function owr those states), the state vedors are linealy
independent, and al have the same magnitude (1-norm, 2-norm, or infinity-norm).
Furthermore, it has the desirable property that using badpropagation to change the value
in ore state will cause neighbaing states to change by a most two-thirds as much.
Therefore, this g/stem exhibits only mild generdization. If one wished to extend the
Watkins and Dayan proaofs to function-approximation systems, this would appea to be an
ided system for which convergence to optimality could be guaranteed for the dired
method. However, that isnat the case.

If the weight wg were not being used, then it would be alookuptable, and the weights

and values would all conwerge to zero, which is the @rred answer. However, in this
example, if al weights are initially positive, then all of the values will grow withou
bound. Thisis due to the fad that when the first six values are lower than the vaue of
their successor, W(7), and V(7) is higher than the value of its siccessor, YW(7), then wg is
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increased five times for every time that it is deaeased, so it will rise rapidly. Of course,
wy will fall, bu more slowly, because it is updated lessfrequently. The net effed then is

that all of the values and all of the weights grow withou bound,spiraling out to infinity.
It is dso passble to modify the amunerexample so the weights grow monaonicdly,
rather than spiraling out. Figure 4.3 shows one such Markov chain. Note that the value
of state 11 is always greder than that of state 1. This means that if the Markov chain
were onwverted to an MDP, adding a choice of which state to go to, it might be expeded
to lean apadlicy that chooses to go to state 1.

State Values vs. Tine

1000
V(11)
100
V(1)
10
1 5 10 15 20 25 30

Figure 4.3. The 11-state star problem for value iteration, where dl
weights darted at 0.1 except wp, which started at 1.0. R=0
everywhere and y=0.9.

In this example, every transition was updated equally often, even though the transition
from state 1 to itself would be seen more often duing an adua trgedory. What if
training were limited to on-padlicy leaning? Thisisleaning where the states are updated
with frequencies propational to howv often they are seen duing trgedories, while
following a single, fixed pdicy. On-pdlicy leaning includes leaning on states as they
are seen onatrgedory, or leaning on randamly-chosen states from a database of states
gleaned from trgjedories. On-palicy training does guarantee ©nvergence for linea
function approximators when the problem is purely prediction ona Markov chain (there
are no adions or dedsions). Could this prodf be extended to Q-leaning on MDPs? No,
even with onpdlicy training and general, linea function approximators, Q-leaning can
still blow up, as demonstrated in figure 4.4.
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Figure 4.4.The star problem for Q-leaning. R=0 everywhere and
y=0.9.

In this MDP, every transition recaves zero reinforcement, and ead state has two adions,
one represented by a solid line, and ore represented by a dotted line. In al states, the
solid adion transitions to state 11, and the dotted adion transitions to ore of the states 1
through 10, chosen randomly with unform probability. During training, a fixed
stochastic palicy is used to ensure sufficient exploration. In every state, the solid adionis
chasen with probability 1/10, and the dotted adion is chasen with probability 9/10. This
ensures that every state-adion pair is explored infinitely often, and that eat of the solid
Q values is updated equally often. If the solid Q values dart larger than the dotted Q
values, and the transition from state 11 to itself starts out as the largest of the solid Q
values, then all weights, Q values, and values will diverge to infinity. As long as the
pdlicy in every state isto dothe solid adion, the solid Q values will ad just like the state
values in the example in figure 4.3. That ensures that the state values will al blow up
monaonicdly, which in turn ensures that the padlicy will never change.

This is true for both epoch-wise and incremental leaning, and even for small |eaning
rates or slowly deaeasing leaning rates. This example demonstrates that for a simple
MDP with alinea function approximator able to represent al passhble Q-functions, the Q
values can diverge, even when training ontrgjedories. The next sedion presents away to
modify Q-learning to ensure convergenceto alocd optimum.

4.3 Residual Gradient Algorithms

It is unfortunate that a reinforcement learning algorithm can be guaranteed to converge
for lookup tables, yet be unstable for function-approximation systems that have even a
small amourt of generdization. Algorithms have been proved to converge for LQR
problems with quedratic function-approximation systems (Bradtke 93), bu it would be
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useful to find an algorithm that converges for any function-approximation system on
more general problems. To find an agorithm that is more stable than the dired
agorithm, it is useful to spedfy the exad goa for the leaning system. For the problem
of prediction ona deterministic Markov chain, the goa can be stated as finding a value
function such that, for any state x and its successor state X', with a transition yielding
immediate reinforcement R, the value function will satisfy the Bellman equation:

V() = (R+ W (X)) (43)

where < >isthe expeded value over al possble successor states x'. For a system with a
finite number of states, the optimal value function V' is the unique function that satisfies
the Bellman equation. For a given value function V, and a given state x, the Bellman
residud is defined to be the diff erence between the two sides of the Bellman equation.
The mean squared Bellmanresidud for an MDP with n states is therefore defined to be:

E=1Y (R+ W (X) =V (X)) (4.4)

X

If the Bellman residua is noreero, then the resulting palicy will be subogimal, bu for a
given level of Bellman residua, the degree to which the pdlicy yields sibogimal
reinforcement can be boundd (sedion 2.2.2 and Willi ams, Baird 93. This suggests it
might be reasonable to change the weights in the function-approximation system by
performing stochastic gradient descent on the mean squared Bellman residual, E. This
could be cdled the residud gradient algorithm. Residual gradient algorithms can be
derived for both Markov chains and MDPs, with either stochastic or deterministic
systems. For simplicity, it will first be derived here for a deterministic Markov chain,
then extended in the next sedion. Assume that V is parameterized by a set of weights.
To lean for a deterministic system, after a transition from a state x to a state x, with
reinforcement R, aweight w would change acording to:

Aw=-a[R+W(x) =V(Q]Z W (x) =2V ()| (4.5)

For a system with a finite number of states, E is zero if and orly if the value functionis
optimal.

In addition, kecaise these dgorithms are based on gradient descent, it is trivia to
combine them with any other gradient-descent-based algorithm, and still have guaranteed
convergence. For example, they can be combined with weight decay by adding a mean-
squared-weight term to the eror function. My Ph.D. student, Scott Weaver, developed a
gradient-descent algorithm for making neural networks become more locd automaticdly
(Weaver, 1999. This could be combined with residual gradient algorithms by simply
adding his error function to the mean squared Bellman residual. The result would still
have guaranteed convergence
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Althowgh residual gradient algorithms have guaranteed conwvergence, that does not
necessarily mean that they will always lean as quickly as dired algorithms, nar that they
will find as goodafina solution. Applying the dired algorithm to the example in figure
4.5 causes date 5 to quickly converge to zero. State 4 then guckly conwverges to zero,
then state 3, and so on. Information flows purely from later states to ealier states, so the
initial value of wy, and its behavior over time, has no effed on the speed at which V(5)

converges to zero. Applying the residual gradient algorithm to figure 4.2 results in much
dower leaning. For example, if initialy ws=0 and w4=10, then when leaning from the
transition from state 4 to state 5, the dired algorithm would simply deaease wy, bu the
residual gradient algorithm would bah deaease wy and increase ws. Thus the residual
gradient algorithm causes information to flow both ways, with information flowing in the
wrong diredion moving slower than information flowing in the right diredion by afador

of y. If yiscloseto 1.0,then it would be expeded that residual gradient algorithms would
lean very slowly onthe problem in figure 4.5.

(HHHHH

Figure 4.5. The hall problem. R=1 in the @sorbing state, and zero
everywhere dse. y=0.9.

4.4 Residual Algorithms

Direa algorithms can be fast but unstable, and residual gradient algorithms can be stable
but sow. Dired agorithms attempt to make eab state match its succesors, but ignore
the dfeds of generdization duing leaning. Residual gradient agorithms take into
acoun the dfeds of generaization, bu attempt to make eab state match bah its
succesrs and its predecesors. These dfeds can be seen more eaily by considering
epoch-wise training, where aweight change is cdculated for every possble state-adion
pair, acording to some distribution, then the weight changes are summed and the weights
are changed appropriately. In this case, the total weight change dter one goch for the
direa methodand the residual gradient method, respedively, are:

AW, = —az[R+ W(X)=V(x)][-0,V(x)] (4.6)

AW, = —az[R+ W (X') =V (X)]
(DWW (x') =0,V (X)]

4.7

In these equations, W, AW, and the gradients of V(x) and V(X) are dl vedors, and the
summationis over al statesthat are updated. If some states are updated more than orce
per epoch, then the summation shoud include those states more than orce The
advantages of ead algorithm can then be seen graphicdly.
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Figure 4.6 shows a situation in which the dired method will cause the residua to
deaesase (left) and ore in which it causes the residual to increase (right). The latter is a
case in which the dired method may not converge. The residual gradient vedor shows
the diredion d stegoest descent on the mean squared Bellman residual. The dotted line
represents the hyperplane that is perpendicular to the gradient. Any weight change vedor
that liesto the left of the dotted line will result in adeaease in the mean squared Bellman
residual, E. Any vedor lying along the dotted line results in nochange, and any vedor to
the right of the dotted lineresultsin anincrease in E. If an algorithm always deaeases E,
then clealy E must converge. If an agorithm sometimes increases E, then it becomes
more difficult to predict whether it will converge. A reasonable gproad, therefore,
might be to change the weights acording to a weight-change vedor that is as close &
possbleto AW, so asto lean quickly, while still remaining to the left of the dotted line,

so asto remain stable. Figure 4.7 shows such avedor.

AW,
Awi\/ / AWpg /
. v ‘
Figure 4.6. Epoch-wise weight-change vedors for dired and
residual gradient algorithms

AW,

9

Figure 4.7. Weight-change vedors for dired, residual gradient,
and residual algorithms.

This weighted average of adired agorithm with aresidua gradient algorithm could have
guaranteed convergence, because AW, causes E to deaease, and might be expeded to be

fast, because AW/ lies as close @ possble to AW (. Actually, the dosest stable vedor to
AW could be found ly projeding AW orto the plane perpendicular to AW(g, which is

represented by the dotted line. However, the resulting vedor would be ollinea with
AWy, so AW, shoud lean just as quickly for appropriate dhoices of leaning rate. AW

is smpler to cdculate, and so appeas to be the most useful algorithm to use. For ared
number @ between Oand 1,AW/ is defined to be:

AW, = (1- @AW, + @AW, (4.8)
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This agorithm is guaranteed to converge for an appropriate doice of @. The dgorithm
causes the mean squared residual to deaease monaonicdly (for appropriate @), bu it
does nat follow the negative gradient, which would be the path of stegoest descent.
Therefore, it would be reasonable to refer to the dgorithm as aresidud agorithm, rather
than asaresidud gradient agorithm. A residual agorithm is defined to be any algorithm
in the form of equation (4.8), where the weight change is the weighted average of a
residual gradient weight change and a dired weight change. By this definition, bdh
direa agorithms and residual gradient algorithms are spedal cases of residual
agorithms.

An important question is how to choose @ appropriately. One gproad isto tred it as a
constant that is chosen manually by trial and error, as is dore when people use
badkpropagation with a @nstant leaning rate. Just as a leaning rate mnstant can be
chosen to be & high as possble withou causing the weights to blow up, so ¢ can be
chosen as close to 0 as possble withou the weights blowing up. A ¢ of 1 is guaranteed
to conwverge, and a @ of 0 might be expeded to lean quckly if it can lean at al.
However, this may not be the best approach. It requires an additional parameter to be
chosen by tria and error, and it ignores the fad that the best @to useinitialy might nat be
the best @to use later, after the system has leaned for some time.

Fortunately, it is easy to cdculate the @ that ensures a deaeasing mean squared residual,
whil e bringing the weight change vedor as close to the dired algorithm as possble. To
acomplish this, simply use the lowest @ possble (between zero and ore) such that:

AW, AW, >0 (4.9)

Aslong asthe dat product is positive, the angle between the vedors will be aaite, and the
weight change will result in adeaeasein E. A @that credes a stable system, in which E
is monaonicdly deaeasing, can be found ly requiring that the two vedors be
orthogonal, then adding any small, pasitive constant € to @ to convert the right angle into
an aaute angle:

AW, AW, =0

(qAWd + (l_ qo)AWrg) mwrg =0

-AW,, AW,

- (4.10)
(AW, —AW,) AW,

@
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If this equation yields a @ outside the range [0,]], then the dired vedor does make an
aaute angle with the residual gradient vedor, so a ¢ of 0 shoud be used for maximum
leaning speed. If the denominator of @ is zero, this either means that E is at a locd
minimum, or else it means that the dired agorithm and the residual gradient algorithm
yield weight-change vedors painting in the same diredion. In either case, a @ of 0 is
acceptable. If the equation yields a @ between zero and ore, then this is the @ that causes
the mean squared Bellman residual to be cnstant. Theoreticdly, any ¢ above this value
will ensure onvergence Therefore, a pradicd implementation o a residual algorithm
shoud first cdculate the numerator and denominator separately, then chedk whether the
denominator is zero. If the denominator is zero, then @=0. If it is nat, then the dgorithm
shoud evaluate equation (4.10, add a small constant €, then ched whether the resulting
@liesintherange [0,1]. A ¢ ouside thisrange shoud be dipped to lie on the boundary
of thisrange.

The @owe defines residua agorithms in general. For the speafic example used in
eguations (4.6) and (4.7), the correspondng residual algorithm would be:

AW, = (1~ g)AW, + @AW,
=-@-gay [R+ W) -V EOI- BV (0] (4.11)
—ga’y [R+W (x') =V OO0 (x) = DV ()]
= —azx [R+ W (x) =V (0JlgD W (x) - 0V (¥)]

To implement this incrementally, rather than epoch-wise, the dhange in a particular
weight w after observing a particular state transition would be:

Aw = —a[R+ W (x) -V (3)]ly LV (x) -2V (X)) (4.12)

It isinteresting that the residual algorithm turns out to be identicd to the residual gradient
algorithm in this case, except that one term is multiplied by @.

To find the marginall y-stable ¢ using equation (4.10), it is necessary to have an estimate
of the goch-wise weight-change vedors. These can be gproximated by maintaining
two scadar vaues, wg and wyg, associated with eah weight w in the function-

approximation system. These will be traces, averages of receit values, used to
approximate AW g and AWrg, respedively. Thetraces are updated acmrding to:

w, B0 (1= 0w, - g[R+W(x) -V (x)]

4.13
-0,V ()] @13
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Wrg g0 (l_ U)Wrg - l’l[R+ W(XI) _V(X)]

(4.14)
0w W (x) = OV ()]

where |1 is a small, pasitive @mnstant that governs how fast the system forgets. A vaue
for @can befound wsing equation (4.15):

> Wy W
w

@= +
z (Wd - Wrg )Wrg

u (4.15)

If an adaptive @ is used, then there is no longer a guarantee of convergence since the
traces will not give perfedly-acarate gradients. Conwvergence is guaranteed for
sufficiently-small ¢, so a system with an adaptive @ might clip it to lie below some user-
seleded boundry. Or it might try to deted divergence and deaease @ whenever that
happens. Adaptive @isjust aheuristic.

4.5 Stochastic Markov Chains

The residual agorithm for incremental value iteration in equations (4.12 and (4.15 was
derived assuming a deterministic Markov chain.

The derivation above was for a deterministic system. This algorithm does not require that
the model of the MDP be known, and it has guaranteed convergenceto alocad minimum
of the mean squared Bellman residual. That is because it would be doing gadient
descent on the expeded value of a square, rather than a square of an expeded value. If
the MDP were nonceterministic, then the dgorithm would still be guaranteed to
converge, bu it might not converge to a locd minimum of the mean squared Bellman
residual. This might still be auseful algorithm, however, becaise the weights will still
converge, and the aror in the resulting palicy may be small if the MDP is only slightly
nondeterministic (deterministic with orly asmall amourt of added randamness.

For a nondeterministic MDP, convergenceto alocd minimum of the Bellman residual is
only guarantead by using equation (4.16), which also reduces to (4.12 in the cae of a
deterministic MDP:

Aw = -a[R+ W (x,") =V ()]

(4.16)

[W%V(Xz' _%V(X)]
Given a state x, it is necessary to generate two succesor states, x;” and x’, ead drawn
independently from the distribution defined by the MDP. This is necessary becaise an
unhiased estimator of the product of two randam variables can be obtained by multiplying
two independently-generated unhbased estimators. These two independent successor
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states are ealy generated if a model of the MDP is known o is leaned. It is aso
possble to dothis withou a model, by storing a number of state-succesor pairs that are
observed, and leaning in a given state only after it has been visited twice. This might be
particularly useful in a situation where the leaning system controls the MDP during
leaning. If the leaning system can intentionally perform adions to return to a given
state, then this might be an effedive leaning method. In any casg, it is never necessary to
lean the type of detailed, mathematicd model of the MDP that would be required by
badpropagation through time, and it is never necessary to perform the types of integrals
over successor states required by value iteration. It appeas that residual algorithms often
do nd require models of any sort, and on occasion will require only a partial model,
which is perhaps the best that can be dorne when working with completely-general
function-approximation systems.

4.6 Extending from Markov Chains to MDPs

Residual agorithms can also be derived for reinforcement leaning on MDPs that provide
a dhoiceof several adionsin ead state. The derivation processisthe same. Start with a
reinforcement leaning algorithm that has been designed for use with alookuptable, such
as Q-leaning. Find the equation that is the murterpart of the Bellman equation. This
shoud be an equation whaose unique solutionis the optimal function that isto be leaned.
For example, the munterpart of the Bellman equationfor Q-leaningis

Q(x,U) = <R+ ymaxQ(x ,u )> 4.17)

For a given MDP with afinite number of states and adions, there is a unique solution to
equation (4.17), which is the optima Q-function. The eguation shoud be aranged such
that the functionto be leaned appeas on the left side, and everything else gopeas onthe
right side. The direa agorithm is just badkpropagation, where the left side is the output
of the network, and the right side is used as the "desired ouput” for leaning. Given the
courterpart of the Bellman equation, the mean squared Bellman residua is the average
squared dfference between the two sides of the eguation. The residua gradient
algorithm is smply gradient descent on E, and the residua algorithm is a weighted sum
of the dired and residual gradient algorithms, as defined in equation (4.9).

4.7 Residual Algorithms

Most reinforcement leaning algorithms that have been suggested for prediction a control
have asciated equations that are the cunterparts of the Bellman equation. The optimal
functions that the leaning system shoud lean are dso urique solutions to the Bellman
eguation counterparts. Given the Bellman equation cournterpart for a reinforcement
leaning agorithm, it is graightforward to derive the asociated dred, residual gradient,
and residual algorithms. As before, @ can be dosen, o it can be aaptive, being
cdculated in the sameway. Ascan be seen from Table 4.1, al of the residual agorithms
can be implemented incrementally except for residua value iteration. Value iteration
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requires that an expeded value be cdculated for ead pcssble adion, then the maximum
to be found. For a system with a continuum of states and adions, a step of value iteration
with continuows gates would require finding the maximum of an urcourtable set of
integrals. This is clealy impradicd, and appeas to have been ore of the motivations
behind the development of Q-leaning. Table 4.1 also shows that for a deterministic
MDP, al of the dgorithms can be implemented withou a model, except for residual
value iteration. This may simplify the design of aleaning system, since thereis no read
to lean a model of the MDP. Even if the MDP is nondeterministic, the residual
algorithms can still be used withou a model, by observing x'q, then using X'2=x'1. That

approximation still ensures convergence, but it may force mnwvergence to an incorred
padlicy, even if the function-approximation system is initialized to the crred answer, and
the initial mean squared Bellman residual is zero. If the nondeterminism is merely a
small amourt of noise in a cntrol system, then this approximation may be useful in
pradice For more acarate results, it is necessry that x'1 and Xx'p be generated

independently. This can be dore if a model of the MDP is known o leaned, a if the
leaning system stores tuples (x,u,x’), and then changes the weights only when two tuples
are observed with the same x and u. Of course, even when a model of the MDP must be
leaned, oy two succesor states need to be generated; thereis no reed to cdculate large
sums or integrals asin valueiteration.
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Table 4.1. Four reinforcement learning algorithms, the courterpart of the
Bellman equation for ead, and eathh o the mrrespondng residual
algorithms. The fourth, Advantage leaning, is discussed in chapter 5.

Reinforcement Counterpart of Bellman Equation (top)
Leaning
Algorithm Weight Change for Residual Algorithm (bottom)

TD(0) V(x) = (R+W(x))

aw, = -a(R+ W(x,)-V)) (& V(X,) =& V(%)

Value V(x) = max R+ W(X))
|teration ’

Aw, = —a(muax<R+ W(x))-V(x)(e2 max R+ W(x)) - 2.V(x))

QU = R+ ymaxQ(x ,u)

Q-leaning
Aw, = —a(R+ ymuaxQ(x'1 U = Q(X, u))(qoy% muaxQ(x' 2 U) —ZQ(X, u))
A(X,u) = < R+ Y™ maxA(X' ,u )>§ +(1-4) maxA(x,u')
Aw, = —a((R+ y* maxA(X ,,u ))ﬁ +(1-4) maxA(x,u') — A(X, u))
Advantage ! v
leaning mqay“ e muaxA(x' U ) E+El-4)2 muaxA(x, u) -2 A(X, u))

4.8 Simulation Results

Figure 4.8 shows smulation results. The solid line shows the learning time for the star
problem in figure 4.2, and the dotted line shows the leaning time for the hall problem in
figure 4.5. In the simulation, the dired method was unable to solve the star problem, and
the leaning time gpeas to approad infinity as @ approaches approximately 0.1034. The
optimal constant @ appeas to lie between 0.2and 0.3. The alaptive ¢ was able to solve
the problem in time dose to the optimal time, while the final value of ¢ at the end was
approximately the same & the optimal constant ¢. For the hal problem from figure 4.5,
the optimal agorithm is the dired method, ¢ =0. In this case, the alaptive ¢ was able to
quickly reat ¢=0, and therefore solved the problem in close to ogimal time. In eat
case, the leaning rate was optimized to two significant digits, through exhaustive seach.
Each data point was cdculated by averaging over 100 trids, ead with dfferent initial
randam weights. For the alaptive methods, the parameters u=0.001and €=0.1 were used,
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but no attempt was made to ogtimize them. When adapting, @ initially started at 1.0, the
safe value arrespondng to the pure residual gradient method.

90001

80001

7000+

6000+

—=—Star problem

5000+ L a Star (cdoptive

—=—Hadll problem
o Hdl (cdoptive

4000+
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Figure 4.8. Simulation results for two MDPs

The lines in figure 4.8 clealy show that the dired method can be much faster than pue
residual gradient algorithms in some caes, yet can be infinitely slower in athers. The
square and triangle, representing the residual gradient algorithm with adaptive @,
demonstrate that the dgorithm is able to automaticdly adjust to the problem at hand and
still achieve nea-optimal results, at least for these two problems.

Further comparisons of dired and residual agorithms on hgh-dimensional, norlinea,
problems are given in chapter 5, where the Advantage leaning algorithm is propcsed.
Advantage learning is one example of aresidual algorithm

4.9 Summary

Residual algorithms can doreinforcement learning with function approximation systems,
with guaranteed convergence and can lean faster in some caes than bah the dired
methodand pue gradient descent (residud gradient algorithms). Locd minima have not
been a problem for the problems own here. The shortcomings of both dred and
residual gradient algorithms have been shown. It has aso been shown, bah analyticdly
andin simulation, that dired and residual gradient algorithms are spedal cases of residual
algorithms, and that residual algorithms can be found that combine the beneficial
properties of both. This allows reinforcement leaning to be cmbined with general
function-approximation systems, with fast leaning, while retaining guaranteed
convergence
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5 Advantage learning: Learning with Small Time Steps

Q-leaning is metimes preferable to value iteration, such as in some problems that are
highly stochastic and poaly modele. Often, these problems ded with continuots time,
such asin some robaics and control problems, and dfferential games. Unfortunately, Q-
leaning with typicd function approximators is unable to lean anything useful in these
problems. This chapter introduces a new agorithm, Advantage leaning, which is
exporentialy faster than Q-leaning for continucs-time problems. It is interesting that
this algorithm is one example of aresidual algorithm, as defined in chapter 4. In fad, the
direa form of the dgorithm wouldn't even have the mnvergence results that exist for Q-
leaning on lookup tables. The @ntribution d this chapter therefore ill ustrates the
usefulnessof the gradient-descent concept, as s1own in chapter 4.

The empiricd results are dso interesting, as they invave a6-dimensional, red-valued
state space highly norlinea, nonhdonamic dynamics, continuows time, and ogimal
game playing rather than just control. The results $1ow a dramatic advantage of
Advantage leaning over Q-leaning (the latter couldnt lean at all), and residual
agorithms over dired (the latter couldnt lean at all).

5.1 Introduction

In work dore before the development of the residual algorithms, an algorithm cdled
advantage updaing (Harmon, Baird, and Klopf, 1995 was propcsed that seamed
preferable to Q-leaning for continuows-time systems. It was dhown in simulation that it
could lean the optimal pdlicy for a linea-quadratic differential game using a quadratic
function approximation system. Unfortunately, it required two function approximators
rather than ore, and there was no convergence proaof for it, even for lookuptables. In
fad, under some update sequences (though na those suggested in the paper), it could be
shown to oscill ate forever between the best and worst possble palicies. This result came
from esentially forcing it to ad like the ador-critic system in figure 2.2 This was an
unfortunate result, since in simulation it leaned the optimal palicy exporentialy faster
than Q-leaning as the time-step size was deaeased. It was never clea how the dgorithm
could be ectended to solve its theoreticd problems, na was it clea how it could be
anayzed. This particular problem was adually the original motivation kehind the
development of residual algorithms, described in chapter 4.

In this chapter, a new algorithm is derived: advantage learning, which retains the good
properties of advantage updating but requires only one function to be leaned rather than
two, and which has guaranteed convergence to a locd optimum. It is a residua
algorithm, so bah the derivation and the analysis are much simpler than for the original
algorithm.  This illustrates the power of the genera gradient-descent concept for
developing and analyzing new reinforcement-leaning algorithms.
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This chapter derives the alvantage leaning algorithm and gives empiricd results
demonstrating it solving a nonlinea game using a general neural network. The gameisa
Markov dedsion process (MDP) with continuows gates and nonlinea dynamics. The
game wnsists of two players, a missle and a plane; the missle pursues the plane and the
plane esades the missle. On ead time step, eah player chocses one of two passble
adions; turn left or turn right 90 degrees. Reinforcement is given orly when the misdle
either hits or misses the plane, which makes the problem difficult. The alvantage
functionis dored in asingle-hidden-layer sigmoidal network. The reinforcement leaning
agorithm for optima control is modified for differential games in order to find the
minimax point, rather than the maximum. This is the first time that a reinforcement
leaning algorithm with guaranteed convergence for general function approximation
systems has been demonstrated to work with a general neural network.

5.2 Background

5.2.1 Advantage updating

The alvantage updating algorithm (Baird, 1993 is areinforcement learning algorithm in
which two types of information are stored. For ead state X, the value V(x) is gored,
representing an estimate of the total discourted return expeded when starting in state x
and performing optimal adions. For ead state x and adion u, the advantage, A(x,u), is
stored, representing an estimate of the degree to which the expeded total discourted
reinforcement is incressed by performing adion u rather than the adion currently
considered best. It might be cdled the negative of regret for that adion. The optimal

value function V*(x) represents the true value of eat state. The optima advantage
function A" (x,u) will be zero if u is the optimal adion (becaise u confers no advantage

relative to itself) and A* (x,u) will be negative for any subogimal u (because asubogtimal
adion has anegative advantage relative to the best adion).

Advantage updating has been shown to lean faster than Q-leaning, espeadaly for
continuows-time problems (Baird, 1993,Harmon, Baird, & Klopf, 1995. It is not a
residual agorithm, though, so there is no proof of convergence, even for lookup tables,
and there is no obvous way to reduce its requirements from two function approximators
to ore.

5.2.2 Advantage learning

Advantage learning improves on advantage updating by requiring only a single function
to be stored, the alvantage function A(x,u), which saves memory and computation. Itisa
residual algorithm, and so is guaranteed to converge to alocd minimum of mean squared
Bellman residual. Furthermore, advantage updating requires two types of updates
(leaning and namali zation updites), while advantage leaning requires only a single type
of update (the leaning update). For ead state-adion pair (x,u), the alvantage A(x,u) is
stored, representing the utility (advantage) of performing adion u rather than the adion
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currently considered best. The optima advantage function A*(x,u) represents the true
advantage of eat state-adion pair. The value of astateis defined as:

V' (x) = maxA (x,u) (5.1)

The advantage A* (x,u) for state x and adionu is defined to be:

(RHyV" (x)) =V (%)
AtK

A (x,u) =V (X)+ (5.2

where V" is the discourt fador per time step, K is a time unit scding fador, and < >
represents the expeded value over all possble results of performing adion u in state x to
recave immediate reinforcement R and to transition to a new state X'. Under this
definition, an advantage can be thought of as the sum of the value of the state plus the
expeded rate & which performing u increases the total discourted reinforcement. For
optimal adions the seand term is zero; for subogima adions the seamnd term is
negative. Note that in advantage leaning, the alvantages are dlightly different than in
advantage updating. In the latter, the values were stored in a separate function
approximator. In the former, the valueis part of the definition, as sen in equation (5.2).

The Advantage function can aso be written in terms of the optima Q function, as in
equation (5.3).

A (xou) =V () - (X);ti (U (5.3)

which suggests a simple graphicd representation d how Advantages compare to Q
values, shownin figure 5.2
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Figure 5.1. Comparison d Advantages (blad) to Q values (white)
in the cae that 1/(kAt)=10. The dotted line in eat state
represents the value of the state, which equals both the maximum
Q value and the maximum Advantage. Each A is 10 times as far
from V asthe @rrespondng Q.

Infigure 5.1, The Q values (white) are dose together in eadt state, but differ grealy from
state to state. During Q leaning with a function approximator, small errors in the Q
values will have large dfeds onthe pdicy. The Advantages (blad) are well distributed,
and small errorsin them will not grealy affed the pdicy. As At shrinks, the Q values all
approad their respedive dotted lines, while the Advantages do nd move. All of thisis
similar to what happened in Advantage updating, bu in Advantage leaning it is smpler,
since there is no real to store aseparate value function. And the latter is guaranteed to
converge. Not surprisingly, leaning can be much faster than Q leaning, as can be seen
by comparing the dgorithms on alinea quadratic regulator (LQR) problem..

The LQR problem is as follows. At a given time t, the state of the system being
controlled is the red value ;. The antroller chooses a wntrol adion ut which is also a

red value. The dynamics of the system are:

Xt :ut

The rate of reinforcement to the leaning system, r(x,ut), is

2

r(xt,ut) = _th — U
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Given some pasitive discourt fador y<1, the goal is to maximize the total discourted
reinforcement:

[ ¥ir(x,u)dt

A discrete-time antroller can change its output every At seconds, and its output is
constant between changes. The discourted reinforcement recaved duing a single time
stepiis:

t+ At tr Ot

R.0c,u)= [ 'r(x . u)dr= [y

Tt

(-(x, + tu,)? - u?)dr

and the total reinforcement to be maximized is:

Z (v*') R (XU,

The results of comparison experiments onthis LQR problem arein figure 5.1
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Figure 5.2. Advantages all ow leaning whose spedl is independent
of the step size, while Q leaning leans much slower for small step
Sizes.

When At=1, it reduces to Q leaning, and so takes the same amourt of time to lean. As
At goes to zero, the target Advantage function A* does nat change, while the target Q
function Q* beames aimost flat in the adion dredion. That makes Q very susceptible
to nase, and causes it to take much longer to lean.

5.3 Reinforcement Learning with Continuous States

5.3.1 Direct Algorithms

For predicting the outcome of a Markov chain (a degenerate MDP for which there is only
one possble adion in eadt state), an obvious agorithm is an incremental form of value
iteration, which is defined as:

V(X) « @-alV(x)+a[R+wW(x)] (5.4)

If V(x) is represented by a function-approximation system other than a look-up table,
upckte (5.4) can be implemented dredly by combining it with the badpropagation
algorithm (Rumelhart, Hinton, & Williams, 86). For an inpu x, the output of the
function-approximation system would be V(x), the “desired ouput” used for training
would be R+W(X), and all of the weights would be aljusted through gradient descent to
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make the adual output closer to the desired ouput. Equation (5.4) is exadly the TD(0)
agorithm, and could also be cdled the dired implementation d incremental value
iteration, Q-learning, and advantage learning.

5.3.2 Residual Gradient Algorithms

Reinforcement learning algorithms can be guaranteed to converge for lookuptables, yet
be unstable for function-approximation systems that have even a smal amourt of
generalization when using the dired implementation (Boyan, 95. To find an algorithm
that is more stable than the dired algorithm, it is useful to spedfy the exad goal for the
leaning system. For the problem of prediction ona deterministic Markov chain, the goal
can be stated as finding a value function such that, for any state x and its siccesor state
X', with a transition yielding immediate reinforcement R, the value function will satisfy
the Bellman equation:

V(x) ={R+ V(X)) (5.5)

For agiven value functionV, and agiven state x, the Bellmanresidud is defined to be the
difference between the two sides of the Bellman equation. The mean squared Bellman
residud for an MDP with n states is therefore defined to be:

£== 3 [RWOx ) -vixf (5.6)

Residual gradient algorithms change the weights in the function-approximation system by
performing gradient descent on the mean squared Bellman residual, E.  Thisis cdled the
residud gradient algorithm. The residual gradient algorithm and a faster version cdled
the residud algorithm are described in chapter 4.

The ourterpart of the Bellman equation for advantage leaning is.
* 1
A (xu >R+ o axxu< ~(xu 5.7
061 = Rty A (0, 0) ot o G (o) (5.7

If A(X,u) isan approximation d A*(x,u), then the mean squared Bellman residual, E, is:

At 1 " :
E= >§>R+y Apar(X. u>< o AtKBL\nax(x,u) A(x,u>§< (5.8)

where the inner <> is the expeded value over all possble results of performing a given
adion u in a given state x, and the outer <> is the expeded value over al possble states
and adions.
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5.4 Differential Games

Differential games (Isaac, 1969 are played in continuous time, or use sufficiently small
time steps to approximate @ntinuows time. Both players evaluate the given state and
simultaneously exeaute an adion, with no knavledge of the other player's sleded adion.

The value of a game is the long-term, discourted reinforcement if both opporents play
the game optimally in every state. Consider a game in which player A tries to minimize
the total discourted reinforcement, while the opporent, player B, tries to maximize the
total discournted reinforcement. Given the alvantage A(x,ua,up) for ead pcosshble adion

in state x, it isuseful to define the minimax and maximin values for state x as;

minimax(x)= min maxA(xu, ,u, ) (5.9)

maximin(x)= maxmin A(x,u,,u, ) (5.10)

If the minimax equals the maximin, then the minimax is cdled a saddepaoint and the
optimal padlicy for bath payersisto perform the adions associated with the saddlepaoint.
If a saddiepoint does naot exist, then the optimal pdlicy is dochastic if an ogimal palicy
existsat al. If asaddepoint does nat exist, and aleaning system treds the minimax as if
it were asaddepaint, then the system will behave asif player A must chocse an adion on
eadt time step, and then player B choaoses an adion based uponthe adion chosen by A.
For the dgorithms described below, a saddepoint is assumed to exist. If a saddepoint
does nat exist, this assumption gives a slight advantage to player B.

5.5 Simulation of the Game

5.5.1 Advantage learning

During training, a state is chosen from a uniform randam distribution onead leaning
cycle. The vedor of weights in the function approximation system, W, is upceted
acording to equation (5.11) onead time step.

_ 1 10 O
AW——GEKR+ S A e X W) — + A-—A. . (xU) —Ax U
VP ) 3 P ()~ AU .
O .9 1 100 0 C o
° —_— ) _— 4 _ ) Et—
r_?y M Aﬁwlnmax(x’u) AtK AtKDM Anlnmax(x7u) é\NA(X’ U)[

The parameter @ is a @nstant that controls a trade-off between pue gradient descent
(when @ equals 0) and afast dired algorithm (when @ equals 1). @ can change alaptively
by cdculating two values, wy and w,q. These ae traces, averages of receit values,
updated acoording to:
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W  (L-pwe = pf(R+y*A (X WY AK+@L-1/AK)A (%, u)]

¢ T Al (X1 U)
0 (5\N min max 0

R+ YA, . (X W)AK+ T

Wy « (1= ()W —
o « (1= U)W qu‘l/AtK)Amm _(xu) = A, U)E
[ Ati N 0 513
I}/ (9\N Amin max(X' ,U) D/(AtK) + -
O

él -1/ AtK)i A (xu) - 0%, A(X, U)E

where pwas a small, pasitive constant that governed how fast the system forgets. On

ead time step a stable @ is cdculated by using equation (5.14). This ensures convergence
while maintaining fast leaning:

z WdWrg

= = +
q) Z (Wd - Wrg)Wrg

u (5.14)

5.5.2 Game Definition

The problem is a differential game with a missle pursuing a plane, similar to cther
pursuit games (Rajan, Prasad, and Rao, 1980 Milli ngton 199). The adion performed by
the missle is a function d the state, which is the position and welocity of baoth players.
The adion performed by the planeisafunction d the state andthe adion d the missle.

The game is a Markov game with continuows gates and nonlinea dynamics. The state x
isavedor (xmXp) composed o the state of the misdle and the state of the plane, eat of
which are compaosed o the position and e ocity of the player in two-dimensional space
The ationu isavedor (Um,up) composed of the adion performed by the missle and the
adion performed by the plane, eat of which is ascdar value; 0.5 indicaes a 90 degree
turn to the left, and -0.5 indicates a 90 degreeturn to the right. The next state x,,, is a
nontinea function d the arrent state X, and adion u, The speed of ead player is fixed,
with the speed and turn radius of the missle twicethat of the plane. On ead time step
the heading of ead player is updated acwrding to the adion chosen, the velocity in bah

the x and y dimensions is computed for ead payer, and the pasitions of the players are
updated.

The reinforcement function R is a function d the distance between the players. A
reinforcement of 1 is given when the Euclidean distance between the players grows larger
than 2 unts (plane escapes). A reinforcement of -1 is given when the distance grows
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smaller than 0.25 uiits (missgle hits plane). No reinforcement is given when the distance
is in the range [0.25,3. The misdle seeks to minimize reinforcement, while the plane
seeks to maximize reinforcement.

The alvantage function is approximated by a single-hidden-layer neural network with 50
hidden nodes. The hidden-layer nodes eat have asigmoidal adivation function whose
output liesin therange [-1,1]. The output of the network is a linea combination d the
outputs of the hidden-layer nodes with their asociated weights. To speel leaning a
separate adaptive leaning rate was used for ead weight in the network. There ae 6
inpus to the network. The first 4 inpus describe the state and are normalized to the
range [-1,1]. They consist of the difference in pasitions and e ocities of the players in
both the x and y dimensions. The remaining inpus describe the adion to be taken by
eadh player; 0.5and-0.5indicate left andright turns respedively.

5.6 Results

Experiments were formulated to acaomplish two oljedives. The first obedive was to
determine to what degree avantage leaning could lean the optima podlicy for the
misgle/aircraft system. The semnd oljedive was to compare the performances of
advantage leaning when implemented in the residual gradient form, in the dired form,
and wsing weighted averages of the two by using values of @in the range [0,1].

In Experiment 1, the residual form of advantage leaning leaned the rred padicy after
800,000training cycles. The missle leaned to pusue the plane, and the plane leaned to
evade the missle. Interesting behavior was exhibited by both players under certain initial
condtions. First, the plane leaned that in some caes it is able to indefinitely evade the
missle by continuowly flying in circles within the missle's turn radius. Second, the
misdle leaned to anticipate the position d the plane. Rather than healing diredly
toward the plane, the missle leaned to leal the plane under appropriate drcumstances.
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Figure 5.3. The first snapshot (pictures taken o the adual
simulator) demonstrates the missle leading the plane and, in the
second snapshat, ultimately hitting the plane.

ooy
o @
o S

Figure 5.4. The first snapshot demonstrates the aility of the plane
to survive indefinitely by flying in continuows circles within the
misgle's turn radius. The sewmnd snapshot demonstrates the
leaned behavior of the plane to turn toward the misdle to increase
the distance between the two in the long term, a tadic used by
pil ots.

In Experiment 2, dfferent values of @ were used for the weighting fador in residual
advantage leaning. Six different experiments were run, ead using identicd parameters
with the exception d the weighting fador @ Figure 5.5 presents the results of these
experiments. The dashed lineisthe eror level after using an adaptive @. A @ of 1 yields
advantage learning in the residua gradient form, while aq of 0 yields advantage leaning
implemented in the dired form.
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Figure 5.5: ¢@comparison. Final Bellman error after using various
values of the fixed @ (solid), or using the alaptive @ (dotted).

5.7 Summary

This chapter shows the power of the gradient-descent concept by deriving a new, residual
agorithm. Advantage upceting was a useful algorithm, though it had no convergence
proof, and was inelegant. Residual agorithms allowed the development of Advantage
leaning, which was the same & Advantage updating in pradice, bu had better
theoreticd properties, and also used less computational and memory resources. It was
compared onatest problem that is highly nonlinea, with continuows dates. In general,
nonlinea problems of this type ae difficult to solve with classcad game theory and
control theory, and therefore gopea to be goodapplications for reinforcement leaning. It
was $own that the residual algorithm with adaptive @ was able to perform as well aswith
the optimal ¢. Furthermore, the palicy leaned by the system yielded behavior resembling
the strategies used by pilots. Neither Q-leaning nor a dired form of Advantage leaning
was able to learn anything at al, which suggests both the utility of Advantage learning for
continuous time, and the utility of residual algorithmsin general.
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6 VAPS: Value and Policy Search, and Guaranteed Convergence
for Greedy Exploration

This chapter proposes VAPS a generdization d residual agorithms that allows the
exploration pdicy to change during leaning. In addition, it alows a leaning system to
forget abou values altogether, and just seach in pdicy spacediredly. In the field of
reinforcement leaning, algorithms that use values tend to be very separate from those that
do pdicy seach, so it is aurprising that a single family of algorithms could do bdh.
However, VAPSis a gradient-descent algorithm, and any two gradient-descent algorithms
can dways be combined by summing their error functions. Therefore, it can hande both
Vaues And Policy Seach (VAPS simultaneously, with just a single function
approximator, na a separate ones for values and pdicies. This result is only possble
becaise the dgorithms are derived from first principles using a gradient-descent
tednique. Simulation results suggest that it is useful to combine these two approades
that have traditionally resided in entirely different camps.

6.1 Convergence Results

Many reinforcement-leaning algorithms are known that use a parameterized function
approximator to represent a value function, and adjust the weights incrementally during
leaning. Examples include Q-leaning, SARSA, and advantage leaning (chapter 5).
There ae simple MDPs where the original form of these dgorithms fail s to converge, as
demonstrated in chapter 3, and summarized in Table 6.1 For the caes with V, the
algorithms are guaranteed to converge under reasonable asumptions uch as decaying
leaning rates. For the caes with X, there ae known cournterexamples where it will
either diverge or oscill ate between the best and worst passble padlicies, which have values
that are very different. This can happen even with infinite training time ad slowly-
deaeasing leaning rates (Baird, 95,Gordon, 9. If abox on the dhart contains an X,
then it will never be posgbleto prove that al situationsin that box avoid dsaster. It may
be possble, however, that future reseach will prove that some subset of the box does
have guaranteed convergence or guaranteed avoidance of disastrous oscill ations. Perhaps
new classes of function approximators, or particular types of MDPs will be shown to
have this property. At the moment, though, the dhart refleds the results that are known.

Table 6.1 has three ©lumns, correspondng to three types of training example
distributions. In afixed dstribution, ead transition is £en a cetain percentage of the
time. This might be dore by drawing transitions randamly from a database of previously-
recrded transitions. It could also be dore by training on transitions as they are seen
while following a fixed, stochastic exploration pdicy. It might even be dore by sorting
all possble transitions into some order, then making a sweep through the list, then
resorting and repeding, as in prioritized sweeing.

In on-pdicy training, the fixed dstribution corresponds to haw often the transitions are
seen whil e foll owing afixed, stochastic palicy. Thisrestriction onthe distribution all ows
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convergence to be guaranteed for pure prediction problems (Markov Chains), with linea
function approximators. Unfortunately, it doesn't allow convergence proafs for any other
case onthe dart.

In a mostly-greedy distribution, the transitions are generated by following trajedories.
These trgjedories are generated by following a stochastic pdicy, bu the pdicy itself
changes over time & aresult of leaning. Thiswill be the cae for dmost any red-world
reinforcement-learning problem, sinceit is generally useful to train onthe same types of
states during learning as those that will be seen when using the learned pdicy. If leaning
is dore entirely with some fixed pdicy, then the leaned pdicy is likely to be different,
and the two are likely to spend time in dfferent regions of state space That iswhy it is
usualy necessary to allow the pdlicy to change. For a very stochastic problem like
badkgammon, the pdlicy can simply be greedy: during leaning, the system can always
choose the adion which appeas optimal acording its current value function. For amore
deterministic problem, like diess it would be better to be mostly-greedy, occasionaly
choasing adions that are not greedy with resped to the aurrent values, just to ensure
sufficient exploration. Unfortunately, this third column has known counterexamples in
amost every case.

The rows of the dart or divided into three sedions: Markov chains, MDPs, and
POMDPs. Markov chains are pure prediction, with no paicy, so there is no entry for
usually-grealy distributions on Markov chains. The MDP rows are for problems with the
Markov property, where the next state distribution degpends only on the aurrent state and
adion. The POMDP rows are for those problems lacing this property.

Within ead type of problem, there ae four rows correspondng to dfferent types of
function approximators. Lookuptables are simple, and have guaranteed convergence for
MDPs and Markov chains. For POMDPs, however, even lookup tables are not
guaranteed to converge with existing algorithms (Gordon, 9. For linea function
approximators, where the value is a linea function d the weights and a possbly-
nonlinea function d the states and adions, there ae diverging counterexamples for most
cases. If the problem is pure prediction (a Markov chain) and the distribution is on
palicy, then convergence is guaranteed (Sutton, 1988. In all other cases, there ae
counterexamples that diverge. For nornlinea function approximators, even onpalicy
training can dverge on pue prediction problems (Tsitsiklis & Van Roy, 1997. Generdl,
norlinea function approximators can dverge in every case. Since e/en linea function
approximators can diverge for MDPs and POMDPs, more general approximators sich as
neural networks can also dverge. There is, however, a dassof function approximators
that have guaranteed conwvergence for MDPs, though na POMDPs (Gordon, 1999.
These averagers are systems such as K-neaest neighbas where the output for a given
inpu is an average of the outputs of stored data. It would na include locdly-weighted
regresson, where an extrapolated value can be greaer than al of the data points. It is
also important to nde that the dart only refers to incremental algorithms using value
functions that slowly change weights in a function approximator. It does not include
agorithms that solve MDPs diredly using linea programming (Gordon, 1999, or pure
palicy-seach methods such as badkpropagation through time.
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It is interesting that the dart gives the same result for MDPs with linea function
approximators as for POMDPs with lookuptables. That is becaise these two cases are
adualy the same situation. A linea function approximator can be viewed as a system
that first performs ome paosshbly-norinea function on the state or state-adion pair,
possbly even changing their dimensiondity. Then, it uses a lookup table on the
transformed state. If the initial, fixed transformation is thought of as part of the
environment rather than pert of the leaning system, then this problem reduces to lookup
tableson POMDPs.

Each X inthefirst two columns can be dhanged to a v and made to converge by using a
modified form of the dgorithm, the residud form described in chapter 4. However, this
is only possble when leaning with a fixed training distribution, and that is rarely
pradicd. For most large problems, it is useful to explore with a padlicy that is usually-
greedy with resped to the aurrent value function, and that changes as the value function
changes. In that case (the rightmost column of the dart), the arrent convergence
guarantees are not very good.

One way to guarantee onvergencein all three olumnsisto modify the dgorithm so that
it is performing stochastic gradient descent on some average earor function, where the
average is weighted by state-visitation frequencies for the arrent usualy-greedy padlicy.
Then the weighting changes as the palicy changes. It might appea that this gradient is
difficult to compute. Consider Q-leaning exploring with a Boltzman dstribution that is
usually gready with resped to the leaned Q function. It seams difficult to cdculate
gradients, since danging asingle weight will change many Q values, changing asingle Q
value will change many adion-choice probabiliti es in that state, and changing a single
adion-choice probability may affed the frequency with which every state in the MDP is
visited. Althouwgh this might sean difficult, it isnot. Surprisingly, unbased estimates of
the gradients of visitation dstributions with resped to the weights can be cdculated
quickly, and the resulting algorithms can put aV in every casein Table 6.1
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Table 6.1. Current convergence results for incremental, value-based RL
algorithms. Residual algorithms changed every X in the first two columns

Fixed Fixed Usually-
distribution | distribution |  greedy
(on-palicy) distribution
Lookuptable v v
Markov | Averager v v
chain Linea v X
Nonlinea X X
Lookuptable v v v
MDP Averager v v X
Linea X X X
Nonlinea X X X
Lookuptable X X X
POMDP | Averager X X X
Linea X X X
Nonlinea X X X
V=convergence guaranteed
X=courterexample is known that either diverges or oscill ates between
the best and worst possble pdlicies.

to V. The new VAPSform of the dgorithms changes every X toa .

6.2 Derivation of the VAPS equation

Consider a sequence of transiti ons observed whil e foll owing a particular stochastic palicy
onan MDP. Let s ={Xo,U0,Ro, X1,U1,Ry, ... Xe1,U1,Re1, %,U, R} be the sequence of states,
adions, and reinforcements up to time t, where performing adion u; in state x; yields
reinforcement R, and a transition to state x+1. The stochastic policy may be afunction o
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avedor of weightsw. Withou lossof generality, assume the MDP has asingle start state
named Xo. If the MDP has terminal states, and x; is aterminal state, then xi.1=Xg. Let S
be the set of al possble sequences from time O tot. Let &(s) be agiven error function
that cdculates an error on ead time step, such as the squared Bellman residual at timett,
or some other error occurring at time t. Note that the aror at timet can pdentialy be a
function d everything that has happened so far on the sequence If eisafunction d the
weights, then it must be asmocth function d the weights. Consider a period d time
starting at time O and ending with probability P(end | s) after the sequence s, occurs. The
probabiliti es must be such that the expeded squared period length is finite. Let B be the
expeded total error during that period, where the expedation is weighted acerding to the
state-visitation frequencies generated by the given pdicy:

B= Z P(periodendsat timeT after trapctoryS;) 'y e(s))
T= S]—D §

=5 > eAs)P(s) (6.1
=0 55,

where srisasequencefrom timeOto time T, Sy isthe set of all possble such sequences,
the inner summation is over eatd s which is a subsequence of sy going from time O to
timei (foral i from0OtoT), andPis:

P(s) =P(u |8)P(R |S)|j P(U, 1S)P(R IS)P(x.. Is)[L-P(end|s)]  (6.2)

Note that onthe first line, for a particular s, the aror (s) will be alded in to B oncefor
every sequencethat starts with s.. Each of these terms will be weighted by the probability
of a mmplete trgjedory that starts with 5. The sum of the probabiliti es of all trajedories
that start with s is smply the probability of s, being observed, sincethe period is assumed
to end eventualy with probability one. So ref Error! Bookmark not defined. equals
(6.1). Then (6.2) isthe probability of the sequence, of which only the P(ujls) fador might
be afunction d w. If so, this probability must be asmoaoth function d the weights and
norzero everywhere. The partial derivative of B with resped to w, a particular element of
the weight vedor w, is:

9 P IslF

< 0
aWB-;%%e{a)%(gﬁe(sap(s‘)ﬂ T

=5 ;P(st)%%e(sme(s‘)iﬁln(wuj-l 15,0k (6.3)
t=0 s O = O
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Summing (6.3) over an entire period gives an unbased estimate of B, the expeded total
error during a period. An incremental agorithm to perform stochastic gradient descent
on B is the weight update given onthe left side of Table 6.2, where the summation over
previous time steps is replacel with a traceT; for ead weight. This agorithm is more
genera than previous algorithms of this form, in that e can be afunction d all previous
states, adions, and reinforcements, rather than just the arrrent reinforcement. This is
what allows VAPSto do bah value and pdicy seach.

Every algorithm propcsed in this chapter is a spedal case of the VAPS equation onthe
left side of Table 6.2 Note that no model is nealed for this algorithm. The only
probability nealed in the dgorithm is the padlicy, na the transition pobability from the
MDP. Thisis gochastic gradient descent on B, and the update rule is only corred if the
observed transitions are sampled from trgedories found ty following the airrent,
stochastic palicy. Both e and P shoud be smocth functions of w, and for any given w
vedor, e shoud be bounded. The dgorithm is smple, bu adually generates alarge dass
of different algorithms depending on the dhoice of e and when the traceis reset to zero.
For a single sequence, sampled by following the arrent palicy, the sum of Aw along the
sequence will give an unbased estimate of the true gradient, with finite variance
Therefore, duing leaning, if weight updates are made & the end d ead trial, and if the
weights gay within a bounded region, and the leaning rate gpproades zero, then B will

converge with probability one. Adding aweight-decay term (a constant times the 2-norm
of the weight vedor) onto B will prevent weight divergence for small initia leaning
rates. There is no guarantee that a global minimum will be foundwhen using genera

function approximators, bu at least it will converge. This is true for badkpropagation as
well.

Table 6.2. The general VAPS agorithm (left), and severa instantiations
of it (right). This sngle dgorithm includes both value-based and pdicy-
seach approaches and their combination, and gives guaranteed
convergencein every case.

sarsd(S) = 3 Ez[Rt—l + (X, Up) = QX ut—l]

eQ—Iearning(st) = % Ezl_Rt—l + y muaXQ(X1 ’ U) - Q(X1—1! ut—l

pw, = -a[Z e(s) + &(8)T]

1ty maxA(x, u) - % A% 1, Uy) O

R
eadvamage(st) 2 E B + (% - 1) muaX A(Xt—1' U)B

-2
ATI - ow In(P(UI_l | S_l)) evaluefiter'cnion (S) = % EHEX E[Rtfl + W(Xt)] - V(Xt—l)g

€3aRrsA policy (s) = (1 - ﬁ)eSARSA(St) + ﬁ(b -y Rt)
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6.3 Instantiating the VAPS Algorithm

Many reinforcement-leaning algorithms are value-based; they try to lean a value
function that satisfies the Bellman equation. Examples are Q-leaning, which leans a
value function, ador-critic dgorithms, which lean a value function and the pdlicy that is
greedy with resped to it, and TD(1), which leans a vaue function lbased on future
rewards. Other agorithms are pure palicy-search algorithms; they diredly lean a pdicy
that returns high rewards. These include REINFORCE (Williams, 1987, Willi ams,
1987b, Willi ams, 1989, badkpropagation through time, leaning automata, and genetic
algorithms. The dgorithms proposed here combine the two approaches: they perform
Value And Policy Search (VAPS. The generd VAPS equation is instantiated by
choasing an expresson for e. This can be aBellman residua (yielding value-based), the
reinforcement (yielding palicy-seach), or alinea combination d the two (yielding Value
And Policy Seach). The single VAPSupdate rule on the left side of Table 6.2 generates
a variety of different types of algorithms, some of which are described in the foll owing
sedions.

6.3.1 Reducing Mean Squared Residual Per Trial

If the MDP has terminal states, and atrial is the time from the start until atermina state
isreaded, then it is passhble to minimize the expeded total error per trial by resetting the
traceto zero at the start of ead trial. Then, a wnvergent form of SARSA, Q-leaning,
incremental value iteration, a advantage leaning can be generated by choasing e to be
the squared Bellman residual, as shown onthe right side of Table 6.2 In ead case, the
expeded value istaken ower al possble (x,u;,R) triplets, given s.;. The palicy must be a
smoath, norzero function d the weights. So it could na be an e-greedy pdlicy that
choaoses the greedy adion with probability (1-€) and chooses uniformly otherwise. That
would cause adiscontinuity in the gradient when two Q values in a state were equal.
However, the poicy could be something that approaches e-greedy as a positive
temperature ¢ approades zero:

1+ eQ(x,u)/c

P(U|X):%+(1‘5)W)

(6.4)

where n is the number of posgble ationsin eat state. Note that thisisjust an example,
not part of the definition o the VAPS agorithm. VAPSIs designed to work with any
smoaoth function approximator and any smooth exploration pdicy. This particular
exploration pdicy was used in the simulations iown here, but any other smocth function
could have been used instead.

For ead instance in Table 6.2 other than value iteration, the gradient of e can be
estimated using two, independent, unkiased estimates of the expeded value. For example:
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When @=1, this is an estimate of the true gradient. When ¢<1, this is a residud
algorithm, as described in chapter 4, and it retains guaranteed convergence, bu may lean
more quickly than pure gradient descent for some values of ¢@. Note that the gradient of
Q(x,u) at time t uses primed variables. That means a new state and adion at time t were
generated independently condtioned onthe state and adion at time t-1. Of coursg, if the
MDP is deterministic, then the primed variables are the same & the unprimed. If the
MDP is nonceterministic but the model is known, then the model must be evaluated ore
additional time to get the other state. If the model is not known, then there ae three
choices. First, amodel could be leaned from past data, and then evaluated to give this
independent sample. Seoond, the issue could be ignored, simply reusing the unprimed
variables in placeof the primed variables. This may affed the qudity of the leaned
function (depending on hav randam the MDP is), but doesn’t stop convergence, and may
be an acceptable gproximation in pradice In fad, this is recommended for POMDPs.
Third, all past transitions could be recorded, and the primed variables could be found ly
seaching for al the times (x.1,uw.1) has been seen before, and randamly choosing one of
those transitions and wsing its successor state and adion as the primed variables. Thisis
equivaent to leaning the cetainty equivalence model, and sampling from it, and so is a
spedal case of thefirst choice For extremely large state-adion spaces with many starting
states, this is likely to give the same result in pradice & smply reusing the ungrimed
variables as the primed variables. Note that when weights do nd affed the pdlicy at all,
these dgorithms reduceto standard residual algorithms.

It is also pasgble to reduce the mean squared residual per step, rather than per trial. This
is dore by making period lengths independent of the padlicy, so minimizing error per
period will aso minimize the aror per step. For example, a period might be defined to
be the first 100 steps, after which the traces are reset, and the state is returned to the start
state. Note that if every state-adion peir has a pasitive thance of being seen in the first
100 steps, then this will nat just be solving a finite-horizon problem. It will be adually
be solving the discounted, infinite-horizon problem, by reducing the Bellman residual in
every state. However, the weighting of the residuals will be determined ony by what
happens during the first 100 steps. Many different problems can be solved by the VAPS
algorithm by instantiating the definition d "period" in dfferent ways. These ae nat
different algorithms for solving the same problem. Rather, they are dgorithms for
solving different problems, with different metrics. When seaching for a good \alue
function, it is clealy goodto find ore with zero Bellman residual everywhere, bu if that
isnot posshle, then it is not clear how best to weight the residuals. The goal might be to
reduce average aror per trial or average aror per step. Either way, it is easy to derive a
VAPSalgorithm that triesto ogtimize that criterion.

67



6.3.2 Policy-Search and Value-Based Learning

It is also possble to add a term that tries to maximize reinforcement diredly. For
example, e could be defined to be esarsapaicy rather than esarsa. from Table 6.2, and the
tracereset to zero after ead terminal state is readed. The constant b does naot affed the
expeded gradient, bu does affed the noise distribution, as discussed in (Willi ams, 88).
When [(3=0, the dgorithm will try to lean a Q function that satisfies the Bellman
equation, just as before. When 3=1, it diredly leans a pdicy that will minimize the
expeded total discourted reinforcement. The resulting “Q function” may not even be
close to containing true Q values or to satisfying the Bellman equation, it will j ust give a
good pdicy. When B is in between, this agorithm tries to bah satisfy the Bellman
equation and give goodgrealdy padlicies. A similar modificaion can be made to any of the
algorithms in Table 6.2 In the speda case where =1, this algorithm reduces to the
REINFORCE agorithm (Williams, 1988. REINFORCE has been rederived for the
spedal case of gaussan adion dstributions (Tresp & Hofman, 1995, and extensions of it
appea in (Marbach, 1999. This case of pure pdicy seach is particularly interesting,
because for 3=1, thereis no reel for any kind d model or of generating two independent
succesrs. Other agorithms have been proposed for finding palicies diredly, such as
those given in (Gullapalli, 92) and the various algorithms from learning automata theory
summarized in (Narendra & Thathadhar, 89. The VAPS agorithms proposed here
appeas to be the first one unifying these two approaches to reinforcement leaning,
finding a value function that both approximates a Bellman-equation solution and dredly
optimizes the greedy padlicy.

10000

0.6 0.8

0 0.2 0.4
Beta

Figure 6.1. A POMDP and the number of trials needed to lean it
vS. B. A combination d podlicy-seach and value-based RL
outperforms either alone.

Figure 6.1 shows simulation results for the combined algorithm. A runis sid to have
learned when the greedy pdlicy is optimal for 1000 conseautive trials. The graph shows
the average plot of 100 runs, with dfferent initial randam weights between +10°. The
learning rate was optimized separately for eat 3 value. R=1 when leaving state A, R=2
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when leaving state B or entering end, and R=0 atherwise. y=0.9. The dgorithm used was
the modified Q-leaning from Table 6.2, with exploration as in equation 13,and ¢=c=1,
b=0, €=0.1. States A and B share the same parameters, so ardinary SARSA or grealy Q-
leaning could never converge, as shown in (Gordon, 9. When =0 (pure value-based),
the new algorithm converges, bu of course it canna lean the optimal padlicy in the start
state, since those two Q vaues lean to be equal. When [(3=1 (pure poalicy-seach),
leaning converges to ogimality, bu slowly, sincethere is no value function cading the
results in the long sequence of states nea the end. By combining the two approadhes, the
new algorithm leans much more quickly than either alone.

It is interesting that the VAPS algorithms described in the last three sedions can be
applied dredly to a Partially Observable Markov Deasion Process (POMDP), where the
true state is hidden, and al that is avalable on ead time step is an ambiguous
“observation’, which is a function d the true state. Normally, an algorithm such as
SARSA only has guarantead convergence when applied to an MDP. The VAPS
agorithms will converge in such cases. In fad, simulation results on five particular
POMDPs (Peshkin, Meuleau, & Kadbling, 1999 showed VAPS outperforming
SARSA(A) on three problems (including that from in figure 6.1, with the same function
approximator but different exploration pdicy), and was equally good ontwo.

6.4 Summary

A new family of algorithms was presented: VAPS Speda cases of it give new
agorithms correspondng to Q-leaning, SARSA, and advantage leaning, bu with
guaranteed convergence for a wider range of problems than was previously possble,
including POMDPs. For the first time, these can be guaranteed to converge to a locd
minimum, even when the exploration pdicy changes during leaning. Other spedal cases
alow new approadies to reinforcement leaning, where there is a tradeoff between
satisfying the Bellman equation and improving the greedy policy. For one MDP,
simulation showed that this combined algorithm leaned more quickly than either
approadh alore. This unified theory, unfying for the first time both value-based and
palicy-seach reinforcement leaning, is of theoreticd interest, and also was of pradicd
value for the simulations performed. Future reseach with this unified framework may be
able to empiricdly or analyticdly addressthe old question d when it is better to lean
value functions and when it is better to learn the pdlicy diredly. It may also shed light on
the new question, d whenit is best to do bdh at once
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7 Conclusion

Gradient descent is a powerful concept that has been underused in reinforcement learning.
By rederiving al of the common algorithms with stochastic gradient-descent techniques,
it is posgble to guaranteetheir convergence, and to spead them up in pradice It isaso
possble to derive entirely new algorithms. It was gradient descent that made Advantage
leaning possble, which is much better than Q-leaning for continuows-time problems
with small time steps. It even adlowed VAPS to be derived, which allows adaptive
exploration pdicies, combines the two main approaches to reinforcement leaning into a
single dgorithm in anatural way, and has hown advantages in pradice & well as theory.
The techniques proposed here, such as residua algorithms (which are faster than pue
gradient descent) and the smoathing function (which allows powerful theoreticd results
to be derived) are dl due to the underlying concept of gradient descent. Because dl of
these ideas were based on a simple derivation from gradient descent on simple aror
functions, it is possble to combine them with ead ather, as was dore in VAPS to apply
them to genera function approximators, to analyze them, and to implement them on
simple hardware.

7.1 Contributions

This thesis has propased a general, unfying concept for reinforcement leaning using
function approximators and incremental, ornline leaning. The residual and VAPS
families of algorithms include a new courterpart to most of the existing algorithms
commonly in use. The Advantage updating algorithm was propased, though it had many
major flaws. The power of residual algorithms was further ill ustrated by deriving
Advantage leaning from Advantage updating, removing all of the obvious flaws. The
power of VAPSwas further ill ustrated by combining values with pdicy seach (hencethe
name). Thefigure 7.1ill ustrates how these cntributions build onead aher, where eab
pieceis suppated by one or more other pieces. Each bax lists one or more @ntributions,
except for the gray box, which contains prior algorithms that already existed.
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Figure 7.1. Contributions of this thesis (all but the dark baoxes),
and hav eat bult on ore or two previous ones. Everything
ultimately is built on gradient descent.

7.2 Future Work

Future work could explore when values are preferable to pue policy seach (or when
Vaue and Policy Seach together is a better ideg. It could further explore whether locd
minima ae aproblem in pradice It might examine the gplicaion o gradient descent
techniques to other forms of reinforcement leaning, such as TD(A) and herarchicd
systems. It would be particularly interesting to investigate how palicy seach as dore in
VAPSinterads with POMDPs, where values can be aproblem. There ae many areasin
reinforcement leaning where gradient descent techniques might be useful, and there is
much room for further exploration.
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