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Abstract

Shared storage arrays enable thousands of storage devices to be shared and directly accessed by end
hosts over switched system-area networks, promising databases and filesystems highly scalable, reliable
storage. In such systems, however, concurrent host I/Os can span multiple shared devices and access
overlapping ranges potentially leading to inconsistencies for redundancy codes and for data read by
end hosts. In order to enable existing applications to run unmodified and simplify the development of
future ones, we desire a shared storage array to provide the illusion of a single controller without the
scalability bottleneck and single point of failure of an actual single controller. In this paper, we show
how rapidly increasing storage device intelligence coupled with storage’s special characteristics can be
successfully exploited to arrive at a high performance solution to this storage management problem. In
particular, we examine four concurrency control schemes and specialize them to shared storage arrays;
two centralized ones: simple server locking, and server locking with leased callbacks; and two
distributed ones based on device participation: distributed locking using storage-device-embedded lock
servers and timestamp ordering using loosely synchronized clocks. Simulation results show that both
centralized locking schemes suffer from scalability limitations. Moreover, callback locking is
particularly suspect if applications do not have much inherent locality and if the storage system
introduces false sharing. Distributed concurrency control with device support is attractive as it scales
control capacity with storage and performance capacity and offers the opportunity to piggyback
lock/ordering messages on operation requests, eliminating message latency costs. Simulations show
that both storage-optimized device-based protocols exhibit close to ideal scaling achieving 90-95% of
the throughput possible under totally unprotected operation. Furthermore, timestamp ordering uses less
network resources, is free from deadlocks and has performance advantages under high load. We show
how timestamp ordering can be extended with careful operation history recording to ensure efficient
failure recovery without inducing I/Os under normal operation. This brings the overhead of
concurrency control and recovery to a negligible few percent thereby realizing the scalability potential
of the shared array I/O architecture.
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1. Motivation

Traditional I/O subsystems use a centralized component to coordinate access to storage when the system

includes multiple storage devices (Figure 1(a)). The data may be striped across the devices or stored redun-

dantly such that a single logical I/O operation initiated by an application may involve sending requests to

multiple devices. A single component controlling storage (thestorage controller) receives the application’s

read and write requests and coordinates them so that applications see the appearance of a single shared

disk. Networked clients send requests to the storage controller (a shared file server, storage server or RAID

controller) which accesses storage devices on their behalf. Even in redundant configurations where tandem

storage controllers are used [Bart81, Bhide91], one controller explicitly or implicitly relinquishes control

of storage devices to another host as part of a fail-over or load rebalancing protocol. Similarly, for parallel

RAID architectures where intelligence is distributed to the storage devices [Cao93], a single host still con-

trols all the storage devices and serializes all the accesses.

One of the major limitations of today’s I/O subsystems is their limited scalability due to the number of

shared controllers that data must pass through, typically from client to server, from server to RAID

controller, and from RAID controller to device. Emerging shared, network-attached storage arrays

(Figure 1(b)) are enhancing scalability by eliminating the shared controllers and enabling direct host

access to potentially thousands of storage devices [Gibson98, Lee96, Mass98] over cost-effective switched

networks [Boden95, Horst95, Benn96]. In these systems, each host acts as the storage controller on behalf

of the applications running on it. Such systems are desirable because they can potentially achieve greater

scalability and availability, and can allow large collections of storage to be managed as a single system

[Gold95].

Unfortunately, shared storage arrays shown in Figure 1(b) lack a central point to effect coordination.

Hosts accessing shared storage can see inconsistent data or corrupt it unless proper concurrency control

provisions are taken. This concurrency control can be done in the application, for example, a distributed

database, but only for the conflicts that the application is aware of. Lower level functionality added by

storage such as parity maintenance for fault-tolerance is transparent to the application and defeats

application-level concurrency control protocols. For example, consider two hosts in a cluster, each one is

writing to a separate block, but the blocks happen to be in the same RAID stripe, thereby updating the

same parity block. Races can occur which would cause the parity protecting both files to be corrupted,
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forsaking the disk fault-tolerance property. Furthermore, several applications can be simplified if the

storage system provided serialization of storage level reads and write requests to data partitioned across

several storage devices (so that a reader can not see partial effects of an ongoing write, i.e. see the data

either before or after a concurrent write by another host). To preserve the consistency of storage layer

redundancy codes (RAID parity, mirrors), to allow existing applications to run unmodified and to simplify

the development of future ones, we desire the shared storage system to provide the illusion of a single

controller.

In this paper, we identify storage’s special characteristics and specialize traditional approaches to take

advantage of these characteristics. In particular, we examine four concurrency control schemes and

specialize them to shared storage arrays; two centralized ones: simple server locking, and server locking

with leased callbacks; and two distributed ones based on device participation: distributed locking using

storage-device-embedded lock servers and timestamp ordering using loosely synchronized clocks. We

evaluate the protocols under various workload and networks conditions and discuss their implications on

recovery.

The rest of the paper is organized as follows. Section 2 describes shared storage arrays and the

composition of their operations, and formalizes the guarantees that they should provide. Section 3 briefly

reviews the traditional approaches to ensuring serializability for database transactions, as we later apply

them to shared storage arrays. Section 4 presents and evaluates our specialized protocols. Section 5

discusses the extension of the protocols to provide the proper recovery guarantees. We overview ongoing

work in Section 6 and conclude the paper in Section 7.

Figure 1. Illustrations of a conventional storage system (a), where all host requests are serialized at a single storage controller, and a shared
storage array (b) where network-attached storage devices are shared and directly accessed by hosts and where serializability must be ensured
by a distributed protocol, implicilty transforming low-level host software into a parallel storage controller.
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2. Shared storage arrays

Figure 1(b) shows the kind of system that concerns us. A shared storage system is composed of multiple

disks and hosts, connected by a scalable network fabric. The devices store uniquely named blocks, possi-

bly organized into partitions or objects, and act independently of each other. Hosts perform high-level read

and writeoperations(hostreadandhostwrite)to logical ranges that map onto one or more low-levelI/O

requests(devreadanddevwrite).A low-level I/O request is a read or write to (contiguous) physical blocks

on a single device. Depending on the striping and redundancy architecture, and whether a storage device

has failed,hostreadand hostwrite operations may break down into different low-leveldevreadsand

devwrites,and some form of computation may be needed1. We assume that each host performs storage

access (parity computation and access coordination) on behalf of the applications running on it. We refer to

low-level device requests that are part of the same high-level operation assiblings.

Large collections of storage commonly employ redundant codes transparently with respect to

applications so that simple and common device failures can be tolerated without invoking expensive higher

level failure and disaster recovery mechanisms. Maintaining this redundancy is a primary storage

management function. For example, in RAID level 5, a redundancy code is computed across a group of

data blocks and stored on a separate parity device as illustrated in Figure 2. This allows the system to

tolerate any single self-identifying device failure by recovering data from the failed device using the other

data blocks in the group and the redundant code [Patt88]. The block of parity that protects a set of data

units is called a parity unit. A set of data units and their corresponding parity unit is called a parity stripe.

Whether the array is in fault-free or in degraded mode, all of the RAID level 5 operations are either single-

phase or two-phase (a read phase followed by a write phase) as shown in Figure 3(a). This distinguishing

characteristic of storage clusters in fact extends to all the RAID architectures (including mirroring, single

failure tolerating parity and double failure tolerating parity [Gibson92, Blaum94] as well as parity

declustering [Holl94] which is particularly appropriate for large storage systems). All fault-free and

degraded mode high-level operations are composed of either single-phase or two-phase collections of low-

level requests. A single phasehostread(hostwrite) breaks down into paralleldevread (devwrite)requests,

1. We assume that low-level storage management code in each host performs storage access (parity computation and access coor-
dination) on behalf of the applications running on that host. It can be implemented in software as operating system device
drivers or could be delegated to a system-area network card.



8 of 26

while a two-phasehostwritebreaks down into a first read phase (wheredevreadsare sent to the disks)

followed by a write phase (wheredevwrites are issued). While we focus for the rest of this paper on RAID

level 5 as our case study and evaluation architecture, our concurrency control protocols equally apply to

the other levels.

2.1. Storage transactions

A shared storage array partitions data across multiple devices and uses redundancy codes that cause a sin-

gle high-level host read or write (hostreadandhostwrite) operation to break down into multiple low-level

disk I/O requests (devreadanddevwrite) possibly separated with some computation. We call these high-

level operationsstorage transactions.

When applications on multiple hosts concurrently perform hostwrite storage transactions across shared

devices which are transparently protected by RAID level 5, parity inconsistencies can arise. To illustrate

this problem, consider two hosts writing to two different data blocks that happen to be in the same parity

stripe, as shown in Figure 3(b). Because both data blocks are in the same parity stripe, both hosts pre-read

the same parity block and use it to compute the new parity. Later, both hosts write data to their independent

blocks but overwrite the parity block such that it reflects only one host’s update. The final state of the

parity unit is therefore not the cumulative XOR of the data blocks. A subsequent failure of a data disk, say

device 2, will lead to reconstruction that does not reflect the last data value written to the device (YB).

In this section, we would like to formalize the guarantees that storage-level transactions should provide

to the higher levels (i.e. the guarantees that a shared storage array should provide to the higher levels).
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Figure 2. RAID level 5 hostwrite and hostread operations in the absence and presence of faults. An arrow directed towards a device
represents a devwrite, while an arrow originating at a device represents a devread. The + operation represents bitwise XOR. A device marked
with an X represents a failed device. Host write operations in fault-free mode are handled in one of three ways, depending on the number of
units being updated. In all cases, the update mechanisms are designed to guarantee the property that after the write completes, the parity unit
holds the cumulative XOR over the corresponding data units. In the case of a large write (a), since all the data units in the stripe are being
updated, parity can be computed by the host as the XOR of the data units and the data and parity blocks can be written in parallel. If less than
half of the data units in a stripe are being updated, the read-modify-write protocol is used (b). In this case, the prior contents of the data units
being updated are read and XORed with the new data about to be written. This produces a map of the bit positions that need to be toggled in the
parity unit. These changes are applied to the parity unit by reading its old contents, XORing it with the previously generated map, and writing
the result back to the parity unit. Reconstruct-writes (c) are invoked when the number of data units is more than half of the number of data units
in a parity stripe. In this case, the data unitsnotbeing updated are read, and XORed with the new data to compute the new parity. Then, the new
data units and the parity unit are written. If a device has failed, the degraded-mode protocols shown in (d) and (e) are used. Under degraded
mode, all the operational devices are accessed whenever any device is read or written.

(a) (b) (c) (d) (e)
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Given that storage-level transactions are layered below high-level transactions, it makes little sense for

them to replicate the performance-costly guarantees provided by the higher level. Accordingly, we

concentrate on the aspects of the storage array that are not accounted for by traditional database transaction

theory. Database transactions [Gray75, Eswa76] traditionally provide the ACID (Atomicity, Consistency,

Isolation and Durability) properties [Haerder83, Gray93]. We argue that for storage transactions, we need

and should provide only durability, consistency and isolation. These notions have a specific meaning for

storage-level transactions:

• Consistency. Consistency for storage transactions is defined by the particular redundancy code and striping

employed, but is well-known to the storage system. For example, in the case of RAID level 5, the consistency

requirement is that the cumulative XOR of the data units in the stripe equals the parity block. It must be ensured in

the face of concurrent host write requests and in the face of power and host failures.

• Isolation. We desire the storage system to ensure serializability for concurrents high-level reads and writes (storage

transactions) submitted to it. Providing this guarantee simplifies higher levels and ensures that the consistency of

the redundancy codes is preserved, since we know that a serial application of the storage transactions preserves

consistency.

• Durability . The storage array needs to ensure that data written to it by completed storage transactions persists,

never switching back to older data. This is the basic function of storage devices today - we will not address it fur-

ther.

• No atomicity. The recovery property of database transactions, that guarantees that a transaction will appear to have

either completed in its entirety or to never have started is called atomicity [Gray75]. Transaction atomicity is

ensured by recovery mechanisms in the database [Gray93, Mohan92] in the face of three kinds of failures: transac-

tion failures (user abort), system failures (loss of volatile memory contents) and media (storage device) failures.

The recovery mechanism is triggered whenever a failure occurs. It does not assume or require that storage writes

are atomic because 1) atomicity of storage writes (even without striping and redundancy) is expensive, and 2) the

higher level mechanisms in the database already ensure this function at the granularity of a whole transaction.

Figure 3(a). The general composition of storage-level
host operations. Operations are either single phase or two-
phase. Two-phase operations have a read phase followed
by a write phase. A computation (C) separates the two I/O
phases. Host operations are denoted byhostread and
hostwrite, while disk level requests are denoted bydevread
anddevwrite.
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Figure 3(b). A timeline showing two concurrent read-modify-writes (two-
phase writes) in RAID with no concurrency control provisions taken. Initially,
the data units contain on device 1 and device 2 contain X0 and Y0 respectively

and the parity unit is their XOR (X0+Y0). Although host A is updating device

1 and host B is updating device 2, they both need to update the parity, both read
the same version of the parity, but Host A writes parity last overwriting B’s
parity write, leaving parity inconsistent.
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Our goal in this paper then is to arrive at a protocol ensuring isolation and consistency for storage

transactions. Given that the connectivity of system-area networks enables thousands of storage devices and

hosts to be clustered in one shared array, we desire the protocol to scale to such large sizes. Furthermore,

the protocol must be free from deadlocks. Finally, new functions required from storage device should be

simple and clear, given that devices are manufactured by several independent vendors, and complex

systems implemented by diverse organizations are likely to be fragile. In Section 5, we will address

preserving consistency after failures. In Section 4, we will specialize techniques used to ensure isolation

for database transactions to the problem of ensuring isolation of storage transactions. We briefly review

these database techniques we draw upon in the next section.

3. Background: Serializability in database systems

The traditional correctness requirement for achieving isolation of database transactions is serializability

[Papa79, Benstein87], which has traditionally been ensured using one of three approaches:

• Locking. This conservative approach is the most widely used in practice. Locks on shared data items are

used to enforce a serial order on execution. Significant concurrency can be achieved withtwo-phase

locking[Gray75], a programming discipline where locks may be acquired one at a time, but no lock can

be released until it is certain that no more locks will be needed. Locking is the preferred solution when

resources are limited and the overhead of lock acquisition and release is low. Two-phase locking, how-

ever, is susceptible to holding locks long enough to reduce concurrency and to deadlocks. A deadlock

prevention or detection and resolution scheme must be employed in conjunction with two-phase locking.

• Optimistic methods. Locking is also known as the pessimistic approach, since it presumes that conten-

tion is common and locks data items before accessing them. Optimistic methods are rather aggressive

since they assume conflict is rare and do not acquire locks before accessing the data but instead validate

via another mechanism that the transaction’s execution was serializable when the transaction is ready to

commit [Eswa76, Kung81]. If a serializability violation is detected, the transaction is aborted and

restarted. Optimistic protocols are desirable when the overhead of locking/unlocking is high (e.g. if it

involves network messaging), when conflicts are rare or when resources are plentiful and would be oth-

erwise idle (e.g. multiprocessors).

• Timestamp ordering. Timestamp ordering protocols select an a priori order of execution using some

form of timestamps and then enforce that order [Bern80]. Most implementations verify timestamps as
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transactions execute read and write accesses to the database, but some more optimistic variants delay the

checks until commit time [Adya95]. In the simplest timestamp ordering approach, each transaction is

tagged with a unique timestamp at the time it starts. In order to verify that reads and writes are proceed-

ing in timestamp order, the database tags each data item with a pair of timestamps,rts  andwts , which

correspond to the largest timestamp of a transaction that read and wrote the data item, respectively. Basi-

cally, a read by transactionT with timestampopts(T) to data itemv is accepted ifopts(T)>wts(v) , oth-

erwise it is immediately rejected. A write is accepted ifopts(T)>wts(v)  andrts(v) . If an operation is

rejected, its parent transaction is aborted and restarted with a new larger timestamp. In order to avoid

cascading aborts, reads are not allowed to read data items written by active (uncommitted) transactions.

In fact, when an active transaction wants to update a data item, it first submits apre-write to the data-

base declaring its intention to write but without actually updating the data. The database accepts a pre-

write only if opts(T)>wts(v) and rts(v) . A pre-write is committed when the active transaction T com-

mits and awrite is issued for each submittedpre-write . Only then is the new value updated in the

database and made visible to readers. A transaction that issued apre-write may abort, in which case its

pre-writes are discarded and any blocked requests are inspected in case they can be completed. If apre-

write with opts(T) has been provisionally accepted but not yet committed or aborted, any later oper-

ations from a transactionT’ with opts(T’)>opts(T)  are blocked until the pre-write withopts(T)  is

committed or aborted.

handle read(v, opts);
if (opts<wts(v)) then {

return (REJECT);
} else if (opts>min-pts(v)) {

put request on queue;
min-rts(v)=MIN(opts, min-rts(v));

else {
rts(v)= MAX(rts(v), opts)
inspectQueuedWrites = true;
return committed value;

}

handle pre-write(v, opts);
if (opts < rts(v)) then {

return(REJECT);
} else if (opts < wts(v)){

return (REJECT);
} else {

min-pts(v)=MIN(opts,
min-pts(v));

put request on queue;
return(ACCEPT);

}

Figure 4. Pseudo-code for basic timestamp ordering, showing the actions taken by the database upon receipt of a read (left), a pre-write
(center) and a write request (right).opts represents the timestamp of the transaction making the request.min-rts(v) represents the smallest
timestamp of a queued read to data itemv, while min-pts(v)represents the smallest timestamp of a queued pre-write tov. When a write is
processed, its corresponding pre-write is removed from the service queue. This could increasemin-pts(v), resulting in some reads being serviced.
Similarly, when a read is processed and removed from the service queue,min-rts(v)could increase resulting in some write requests becoming
eligible for service. When a read is processed, theinspectQueuedWritesflag is set, which causes the database to inspect the queue and see if any
writes can be serviced. Similarly, when a write is processed, theinspectQueuedReadsflag is set so that queued reads are inspected for service.
Upon inspection of the queue, any requests that can be serviced are dequeued, possibly leading to computing new values ofmin-rts(v)andmin-
pts(v).

handle write(v, opts, new-value)
if (opts > min-rts(v)) {

put request on queue;
else {

write new-value to store;
wts(v) = MAX(wts(v), opts);
inspectQueuedReads = true;

}
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4. Concurrency control for shared storage arrays

In this section, we present two centralized protocols, server locking and callback locking, and two distrib-

uted protocols, device-served locking and timestamp ordering. We show how the distributed protocols ben-

efit from specialization to storage characteristics and technology trends. We evaluate performance relative

to ideal performance, that of unprotected concurrent operation, which we call thezero-overhead protocol

(no concurrency control work). First of all, however, we describe our evaluation environment.

4.1. Evaluation environment

We implemented our protocols in full detail in simulation, using the Pantheon simulator system

[Wilkes96]. We simulate a cluster system consisting of hosts and disks connected by a network. Table 1

shows the baseline parameters of the experiments. Although the protocols were simulated in detail, the ser-

vice times for hosts, controllers, links and storage devices were derived from simple distributions based on

observed behavior of Pentium-class servers communicating with 1997 SCSI disks [Seag97] over a fast

switched local area network (like FibreChannel). Host clocks were allowed to drift within a practical few

milliseconds of real-time [Mills88]. We compared the performance of the protocols under a variety of syn-

thetically generated workloads and environmental conditions. The baseline workload represents the kind

of sharing that is characteristic of OLTP workloads and cluster applications (databases and file servers),

where load is dynamically balanced across the hosts or servers in the cluster resulting in limited locality

and mostly random accesses. This baseline system applies a moderate to high load on its storage devices

yielding about 50% sustained utilization.

4.2. Centralized locking protocols

With server locking,a centralized lock server provides locking on low-level storage block ranges. A host

acquires an exclusive (in case of adevwrite) or a shared (in case of adevread) lock on a set of target ranges

by sending alock messageto the lock server. The host may then issue thedevreadsor devwriteslow-level

Baseline simulation parameters

System size 20 devices, 16 hosts, RAID level 5, stripe width = 4 data + parity, 103 stripe units per device.

Host workload random think time (normally distributed with mean 80 ms, variance 10 ms), 70% reads, host access
address is uniformly random, access size uniformly varies between 1 and 4 stripe units.

Service times Disk service time random (normally distributed with mean positioning of 8 ms, variance 1 ms +
0.06 microsec/byte (transfer). Network bandwidth is 10 MBytes/sec and has a random overhead of 1-
2ms. Mean host/lock server message processing/request service time is 750 useconds.

Table 1. Baseline simulation parameters. Host data is striped across the devices in a RAID level 5 layout, with 5 devices
per parity group. Host access sizes excersize all the possible RAID write algorithms shown in Figure 2.
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I/O requests to the devices. When all I/O requests complete, the host sends anunlock messageto the lock

server. As there is only one lock and one unlock message per high-level operation, the protocol is trivially

two-phase and therefore serializable. Because all locks are acquired in a single message, latency is mini-

mized and deadlocks are avoided. The lock server queues a host’s lock request if there is an outstanding

lock on a block in the requested range. Once all the conflicting locks have been released, a response is

returned to the host. However, server locking introduces a potential bottleneck at the server and delays

issuing the requests low-level I/O requests for at least one round trip of messaging to the lock server.

Callback locking[Howa88, Lamb91, Carey94] is a popular variant of server locking, which delays the

unlock message, effectively caching the lock at the host, in the hope that the host will generate another

access to the same block in the near future and be able to avoid sending a lock message to the server. If a

host requests a lock from the lock server that conflicts with a lock cached by another host, the server

contacts the host holding the conflicting lock (this is thecallback message), asking it to relinquish the

cached lock so the server can grant a lock to the new owner. One common optimization to callback locking

is to have locks automatically expire after a lease period so that callback messaging is reduced. Our

implementation uses a lease period of four seconds.

Figure 5 highlights the scalability limitation of server locking protocols. It plots the host-end latency of

the protocols against (a) throughput (number of hosts) and against (b) contention. The protocols bottleneck

substantially before delivering the full throughput of the I/O system that is attainable with the zero-
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Figure 5. (a) Scaling of server and callback locking. The bottom-most line represents the zero-overhead protocol. Centralized locking
schemes bottleneck before delivering half of the maximum achievable throughput. The applied load was increased by increasing the number
of active hosts in the system until saturation, starting from 4 hosts. The baseline workload (16 hosts) corresponds to the fourth point in the left-
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callback locking increases to that of server locking. Callback locking still reduces latencies by about half under moderate to high contention
even for a random-access workload because the baseline workload is mostly reads (70%) and shared locks are cached at each host.
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overhead protocol. This is caused by the fact that the server’s CPU is bottlenecked with handling network

messaging and processing lock and unlock requests (750usec per message send or receive). Callback

locking reduces lock server load and lock acquisition latencies, provided that locks are commonly reused

by the same host multiple times before a different host requests a conflicting lock. At one extreme, a host

requests locks on its private data and never again interacts with the lock server until the lease expires. At

the other extreme, each lock is used once by a host, and then is called back by a conflicting use. This will

induce the same number of messages as simple server locking, but the requesting host must wait on two

other machines, one at a time, to obtain a lock that must be called back potentially doubling pre-I/O

latency. Pre-I/O latency can be even worse if a locks is shared by a large number hosts since all of them

need to be called back.

Figure 5 and Figure 6 show that at the baseline workload, callback locking reduces latency relative to

simple locking by 20% but is still 33% larger than the zero-overhead protocol. This benefit is not from

locality as the workload contains little of it, but from the dominance of read traffic which allows

concurrent read locks at all hosts, until the next write. While more benefits would be possible if the

workload had more locality, the false sharing between independent accesses that share a parity block limits

the potential benefits of locality.

4.3.  Parallel lock servers

The scalability bottleneck of centralized locking protocols can be avoided by distributing the locking work

across multiple parallel lock servers1. This can be achieved in two ways: a host can send a single request to

one of the lock servers which coordinate among themselves (ensuring proper concurrency control and free-

Figure 6. Summary performance of the various protocols under the baseline configuration of 16 hosts and 20 devices. The table shows the
mean host latency, throughput, average number of messages and the fraction of operation delayed (blocked or retried) for each protocol.
Distributed protocols (device-served locking and timestamp ordering) approximate the ideal performance of the zero-overhead protocol. The
performance of the distributed protocols reflects all the piggy-backing and overwrite optimizations discussed in the paper.

Summary baseline performance

Server Locking Callback lock-
ing

Device-served
locks

Timestamp
ordering

Zero-overhead
protocol

 Mean latency (msec) 49 41 33 32.8 29.71

Throughput (ops/sec) 599.6 599.6 600.2 599.7 600.4

Average number of messages 10.67 9.57 11.86 7.79 6.68

Fraction of operations
delayed (blocked or retried)

0.62% 33% 0.31% 0.16% 0%

Peak 20-device throughput 600 899.3 1275.1 1274.7 1349.5
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dom from deadlock) and return a single response to the host, or hosts can send directly send parallel lock

requests to the servers based on the partitioning of locks. As the first approach simply displaces the respon-

sibility at the cost of more messaging, we do not discuss it further. We assume locks are partitioned across

the locks servers according to some static or dynamic scheme. When a host attempts to acquire multiple

locks managed by multiple servers, deadlocks can arise. This can be avoided if locks are acquired in a spe-

cific order, but this implies that lock requests are sent to the lock servers in sequence—the next request is

sent only after the previous reply is received—and not in parallel, increasing latency and lock hold time

substantially. Alternatively, deadlocks can be detected via time-outs. If a lock request can not be serviced

at a lock server after a given time-out, a negative response is returned to the host. A host recovers from

deadlock by releasing all the acquired locks, and retrying lock acquisition from the beginning. While paral-

lel lock servers do not have the bottleneck problem, this benefit comes at the cost of more messaging and

usually longer pre-I/O latency. This induces longer lock hold time, increasing the window in time of poten-

tial conflict compared to an unloaded single lock server and resulting in higher probabilities of conflict.

4.4. Device-served locking

Given the paramount importance of I/O system scalability and the opportunity of increasing storage device

intelligence, we investigated embedding lock servers in the devices. The goal is to reduce the cost of a scal-

able serializable storage array, and by specialization, increase its performance. Our specializations exploit

the two-phase nature of RAID storage transactions can be exploited to piggy-back lock messaging on the

I/O requests; thereby, reducing the total number of messages, and latency.

In device-served locks, each device serves locks for the blocks stored on it. This balances lock load over

all the devices, enhancing scalability. Like any parallel lock server scheme, simple device-served locking

increases the amount of messaging and pre-I/O latency. However, often the lock/unlock messaging can be

1. Faster lock servers can be built using low-latency networks, hardware-specialized transport protocols and symmetric multipro-
cessor machines. However, this simply increases the maximum attainable throughput but does not eliminate the scalability
limitation.

Figure 7. The breakdown of a host operation wiht device-served
locking and the piggy-backing optimization. A node represents a
messge exchange with a device. An “L” node includes alock

operation, “LR” represent thelock-and-devread operation,
while “WU” stands for devwrite-and-unlock . The edges
represent control dependencies. A “B” node represents a
synchronization point at the host, where the host blocks until all
preceding operations complete, restarting from the beginning if
any of them fail. Lock operations can fail if the device times out
before it can grant the lock (“A”).

begin hostwrite begin hostread

two-phase write single phase read

begin hostwrite

single phase write

LR LR LR

WU WU WU

L L L

WU WU WU

LR LR LR

U U U

end hostreadend hostwriteend hostwrite
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eliminated by piggy-backing these messages on the I/O requests. Lock requests are piggy-backed on the

first I/O phase of a two-phase storage transaction. To make recovery simple, we require that a host not

issue anydevwritesuntil all locks have been acquired, although it may issuedevreads. Thusly, restarting an

operation in the lock acquisition phase does not require recovering the state of the blocks (since no data has

been written yet). In the case of single-phase writes, a lock phase must be added, preceding the writes since

we can not bundle the lock and write requests together without risking serializability. However, unlock

messages can be piggy-backed onto write I/O requests as shown in Figure 7. In the case of single-phase

reads, lock acquisition can be piggy-backed on the reads, reducing pre-I/O latency, but a separate unlock

phase is required. The latency can be hidden from the application since the data has been received. In the

case of two-phase writes, locks can be acquired during the first I/O phase (by piggy-backing the lock

requests on thedevreadrequests) and released during the second I/O phase (by piggy-backing the unlock

messages onto thedevwriterequests) totally hiding the latency and messaging cost of locking. This device-

supported parallel locking is almost sufficient to eliminate the need for leased callback locks because two-

phase writes have no latency overhead associated with locking and the overhead of unlocking for single

phase reads is not observable. Only single phase writes would benefit from lock caching. Given the

increase in complexity that comes with callback locking and the increase in complexity when systems

depend on identical semantics in devices manufactured by multiple independent vendors, we see pragmatic

value in avoiding callback locking.

Device-served locking is more effective than the

centralized locking schemes, as shown in the

summary table of Figure 6. With the baseline

workload, it achieves latencies only 10% larger than

minimal, and a peak throughput equal to 94% of

maximum.

Despite its scalability, device-served locking has

two disadvantages: it uses more messages than

centralized locking protocols, as shown in the

summary table of Figure 6, and it has performance

vulnerabilities under high contention due to its susceptibility to deadlocks.The difficulty of configuring the
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Figure 8. The performance of the protocols under high contention.
When the hosts are conflicting over 2% of the active portion of the
disk, device-served locking suffers from disk queues and latency
growing without bound, due of timeout-induced restarts.
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time-outs is another disadvantage of device-served locking. Figure 8 graphs the behavior of the protocol

under increasing contention, which we induce by limiting the fraction of storage addressed by all hosts.

When hosts access no more than 2% of the active disk space, the disk queues start to grow because of

increased lock hold times that occur when deadlocks must be detected. Note that although deadlocks may

be uncommon, they have two second-order effects; they cause a large number of requests to be queued

behind the blocked (deadlocked) requests until time-outs unlock the effected data; and when deadlocks

involve multiple requests at multiple devices, time-outs lead to inefficiencies because they restart more

operations than necessary to ensure progress. This results in further messaging load on the network and in

wasting device resources on more message and request processing.

4.5. Timestamp ordering

Timestamp ordering protocols are an attractive mechanism for distributed concurrency control over storage

devices since they place no overhead on reads and are not susceptible to deadlocks. Following Section 3,

timestamp ordering works by having hosts independently determine a total order in which high-level oper-

ations should be serialized, and by providing information about that order (in the form of a timestamp) in

each I/O request so that the devices can enforce the ordering. Since I/O requests are tagged with an explicit

order according to which they have to be processed (if at all) at each device, deadlocks can not occur and

all allowed schedules are serializable. Instead, out-of-order requests will be rejected causing their parent

high-level operation to be aborted and retried with a higher timestamp. As in the database case, since each

device is performing a local check, a write request may pass the check in some devices, but the high-level

operation may abort due to failed checks in other devices. To avoid complex and expensive undo opera-

tions, writes need consensus before allowing changes; splitting the write protocol into a pre-write phase

followed by a write phase ensures that all the devices take the same decision. The cluster of hosts share a

loosely-synchronized clock used to generate timestamps. New timestamps are generated at a host by sam-

begin hostwrite

begin hostread

two-phase write single phase read

begin hostwrite

single phase write

RP RP RP

W W W

P P P

W W W

R R R

end hostread

end hostwriteend hostwrite

Figure 9. The composition of host operations in the optimized
timestamp ordering protocol.devread, devwrite , andpre-write

requests are denoted by “R”, “W” and “P” nodes respectively. “RP”
denotes aread-and-prewrite request. A “B” node represents a
synchronization barrier at the host, where the host blocks until all
preceding operations complete, restarting from the beginning if any of
them fail. Some of the pre-writes or reads may be rejected by the
device because they did not pass the timestamp checks. In a two-phase
write, the pre-write requests are piggy-backed with the reads. Hence,
both reads and two-phase writes use the minimal amount of
messaging. Single phase writes still require a round of messages
before the devwrite requests are issue.

B B

restart
restart
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pling the local clock, then appending the host’s unique identifier to the least significant bits of the clock

value. Each device maintains two timestamps associated with each block (rts andwts ) as discussed in

Section 3. The device similarly maintains a queue of requests, reads, writes and pre-writes which are

awaiting service (blocked behind a pre-write). As in Section 3, we denote bymin-pts the smallest times-

tamp for a pre-write that has been accepted in a specific block’s request queue.

4.5.1. Implementation of timestamp ordering

We describe the read-modify-write protocol here since it employs the piggy-backing optimization and is of

reasonable complexity. This protocol reads data and parity in a first phase, uses this data together with the

“new data” to compute the new parity, then updates both data and parity. The host starts by generating a

new timestamp,opts , then sends low-level I/Oread requests to the data and parity devices, tagging each

request withopts , and bundling each request with apre-write request. The device receiving a “read-

and-pre-write ” request, performs the necessary timestamp checks both for a read and a pre-write, accept-

ing the request only if both checks succeed; that isopts>rts andwts . An accepted request is queued if

opts>min-pts because there is no outstanding pre-write with a lower timestamp, otherwise data is

returned to the host andrts is updated ifopts>rts . When the host has received all the data from the

accepted “read-and-pre-write ” requests, it computes the new parity and sends the new data and parity in

low-level write I/O requests also tagged withopts . The devices are guaranteed by the acceptance of the

pre-write to updatewts , discard the corresponding pre-write request from the queue, possibly increasing

min-pts . The request queue is then inspected to see if anyread or read-and-pre-write requests can now

be completed. Under normal circumstances, the read-modify-writes protocol does not place any overhead,

just like piggy-backed device-based locking.

We discuss optimizations to the basic timestamp ordering protocol next, which lend them to efficient

implementation. These optimizations were implemented in our simulation, and the results reflect their

effects.

4.5.2. Implementation optimizations

Minimizing buffering overhead. The protocol as presented can induce high buffering overhead at the

storage device when there is high overwrite and read activity to overlapping ranges. If the storage device

has accepted multiple pre-writes to a block, and their corresponding writes are received out of order, the

writes have to be buffered and applied in order to satisfy any intermediate reads. Our approach is to apply
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writes as soon as they arrive meeting the stringent scheduling requirements of modern disk drives. As a

result, some reads may have to be rejected. Although readers can starve in our protocol if there is a

persistent stream of writes, this is unlikely in shared arrays. The advantage of immediate write processing

is that storage devices can exploit their ability to stream data at high data rates to the disk surface.

Avoiding timestamp accesses.The alert reader may have noticed that the protocols require that the pair of

timestampsrts andwts associated with each disk block be durable, read before any disk operation, and

written after every disk operation. A naive implementation might store these timestamps on disk, nearby

the associated data. However, this would result in one extra disk access after reading a block (to update the

block’s rts ), and one extra before writing a block (to read the block’s previouswts ). Doubling the number

of disk accesses is not consistent with our high-performance goal. Because all clocks are loosely

synchronized and message delivery latency should be bounded, a device need not accept a request

timestamped with a value much smaller than its current time. Hence, per-block timestamp information

older thanT seconds, for some value toT, can be discarded and a value of “current time minusT” used

instead. Moreover, if a device is reinitiating after a “crash” or power cycle, it can simply wait timeT after

its clock is synchronized before accepting requests, or record its initial synchronized time and reject all

requests with earlier timestamps. Therefore, timestamps only need volatile storage, and only enough to

record a few seconds of activity. The use of loosely synchronized clocks for concurrency control and for

efficient timestamp management has been suggested in the Thor client-server object-oriented database

management system [Adya95].
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Figure 10. Scalability of timestamp ordering compared to the locking variants (left) and the effect of workload (write/read) composition on
messaging overhead for the various protocols (right). Under read-intensive workloads, timestamp ordering comes close to the zero-overhead
protocol. Its messaging overhead increases as the fraction of writes increases. However, it still performs the least amount of messaging across
the range of workloads.
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In addition to being highly scalable, as illustrated in Figure 10, another advantage of timestamp ordering

is that uses the smallest amount of messaging compared to all the other protocols. It has no messaging

overhead on reads, and with the piggy-backing optimization applied, it can also eliminate the messaging

overhead associated with read-modify-write operations.

4.6. Blocking/retry behavior

When several operations attempt to access a conflicting range, the succeeding operations are delayed until

the first one completes. The probability of delay depends on the level of contention in the workload of

course. But even for a fixed workload, the concurrency control protocol and environmental factors (e.g.

network reordering of messages) can result in different delay behavior for the different protocols. As

shown in Figure 6 and Figure 8, the fraction of operations delayed is highest for callback locking because

it has the highest window of vulnerability to conflict (lock hold time). Distributed device-based protocols

both do better than callback locking and server locking because they exploit piggy-backing of lock/order-

ing requests on the I/Os thereby avoiding the latency of communicating with the lock server before starting

the I/O and shortening the window of vulnerability to conflict.

Both device-based protocols, however, are potentially more sensitive to the message transport layer,

precisely message arrival skew. Message arrival skew can cause deadlocks and restarts for device-served

locks, and rejections and retries for timestamp ordering because sibling requests are serviced in a different

order at different devices. Restarts and retries are also counted as delays and are therefore accounted for in

Figure 6 and Figure 8.

To investigate the effect of message skew on the delay and latency behavior of the protocols, we

conducted an experiment where we varied the degree of reordering performed by the network and

measured its effect on delay and latency.1 Message latency was modeled as a uniformly distributed random

variable over a given window size, extending from 1 tows milliseconds ([1-ws]). A larger window size

implies highly variable message latencies and leads to a higher probability of out-of-order message arrival.

Figure 11 graphs latency and fraction of operations delayed againstws. Although timestamp ordering and

device-based locking are sensitive to message skew, the end effect on host latency is less noticeable. This is

1. The probability of message arrival skew (out-of-order arrival) may grow because of aberrant host or network behavior. The time
between the receipt of an I/O in one device and the receipt of its sibling at another may grow because: (1) a slow host or as a
side effect of process scheduling decisions at the host; (2) some I/O requests may get lost, requiring a retransmission by the
network protocol, causing some requests to arrive relatively earlier than others; (3) the network may have unpredictable trans-
mission latencies due to bursty traffic, or may dynamically route sibling requests over different links with different transmis-
sion latencies or loads.
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because high message variability in fact plagues the centralized locking variants even more since they

perform more pre-I/O messaging.

4.7. Effect of faster disks

Finally, we carried out a final experiment to try to anticipate the performance of the protocols in the near

future given the current industry trends. Disk drive performance is expected to keep growing as a result of

evolutionary hardware technology improvements (e.g. higher densities leading to higher transfer rates), the

introduction of new technologies (e.g. solid-state disks leading to reduced access times) or device econom-

ics (dropping memory prices and increased device functionality [Gibson98] leading to larger on-disk cache

memory sizes). To simulate the effect of faster disks, we carried out an experiment where we increased the

hit rate of the disk cache and measured the scalability of the protocols as the hit rate increased. As shown

in Figure 12, callback locking does not keep up with the throughput of the faster disk drives. Device-served

locks continues to approximate ideal scaling behavior at 20% cache hit rates. However, at 60% cache hit

rates, the devices can support a larger number of hosts, resulting in increased probability of real and spuri-

ous deadlocks. As a result, the fraction of operations restarted increases dramatically. Timestamp ordering,

however, continues to approximate the performance of the zero-overhead protocol even under high load.

This is because under high load, when conflicting requests build up in the disk queues, timestamp ordering

naturally ensures that all devices will service sibling requests in the same order (timestamp order), while

device-served locking services requests in a potentially random order (device-served locking satisfies a

request at a device as soon as the locks it requests are available.)
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Figure 11. Effect of the variability in network message latencies on the fraction of operation delayed or retried (left) and on host-end
latency (right) for the various protocols. Message latency is varied uniformly between 1ms and a maximum window size. The graphs plot
latency and fraction of operations delayed versus the size of the variability window size. Note that for the left-hand graph, the y-axis is plotted
in log scale.
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5. Recovery for shared storage arrays

Shared storage arrays must ensure their consistency on recovery from a host failure, a partial or a general

power failure. Consistency can be ensured by recomputing all the redundancy codes on recovery from a

failure.This is prohibitingly expensive, of course. The ideal approach would be to recompute the code only

for those stripes that are in fact inconsistent. This requires the recovery process to determine which blocks

were in the process of being updated during the failure.

Consistency under locking.The locking protocols can be extended to ensure consistency pessimistically

in the following way: if a host crashes holding a write lock, then the lock server marks the target range sus-

pect, and recomputes parity on recovery to ensure it is consistent before handing the lock to another host.

This requires maintaining the lock state (the outstanding write locks) at the server on stable storage so that

on recovery, the lock server can determine the suspect ranges. This makes the lock operation expensive,

since each lock and unlock must be recorded on persistent storage. An alternative approach uses “busy

bits” that are set before the update and reset once the update completes. Using “busy bits” to mark blocks

that are being updates induces two extra synchronous I/Os per write.1

Consistency under timestamp ordering. The basic timestamp ordering protocol can be extended to pro-

vide consistency in one of two approaches. The first is similar to the busy-bit approach. The second avoids

1. This overhead can be reduced, however, using write-ahead logging and group commit [Hag87] as used in the Petal clustered
storage system [Lee96] or through the use of NVRAM. Note that the amount of NVRAM required could be large especially
in the case of callback locking where locks are held by the hosts for long periods of time.
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Figure 12. The scalability of callback locking, device-served locking and timestamp ordering for 20% (left) and 60% (right) disk cache hit
rates. The bottom-most line represents the performance of the zero-overhead protocol. While timestamp ordering continues to approximate
ideal performance at higher disk hit rates, callback locking bottlenecks at a fraction of the possible throughput. Server locking (not shown
here) bottlenecks at an even lower throughput. The singular point on the right-hand graph corresponds to device-served locking under 58 hosts
(the number of devices is kept fixed at 20). Faster disks can support more hosts, but contention among more hosts at some point leads to a
sharp increase in the number of restarted operations for device-based locks (the fraction of operations restarted jumps from a negligible value
to 17%).
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the use of extra I/Os and NVRAM completely at the expense of slightly more recovery overhead. The first

approach uses information in the pre-write queues of the devices to determine writes that were active dur-

ing the failure. Note that the active writes are easy to determine under timestamp ordering, because if a

multi-device write did not complete, then it must have apre-write still in the service queue at some

device (for which the corresponding write was not received). The recovery manager can query the devices

for thepre-write that have been accepted but not committed and deduce from that the blocks that belong

to inconsistent stripes and recompute the parity for those stripes. Similar to the “busy bit” approach, this

requires maintaining the pre-writes queues on stable storage inducing extra I/Os unless the storage device

is endowed with enough NVRAM.

The second approach maintainspre-write queues in volatile memory accessing the disk only to write

data to the disk surface. It uses an additional data structure called alinkage record. A linkage record is, in

principle, a list of (device id, block id) pairs. It is used to describe the data that is being written in the

hostwriteoperation. When adevwrite is processed, the host data is written to disk and the device also

writes in the block header the timestamp and the linkage record associated with thehostwrite.1 Upon

recovery, the recovery process can find suspect blocks by simply reading the linkage records of the blocks

and cross-checking them, as illustrated by the example of Figure 13. Block data does not need to be

1. Note that the linkage record can be very compact and can be stored in the extra bytes available in the sector headers of modern
disk drives (~20 bytes). Linkage records can be compact because hosts issue writes to logically contiguous range of bytes,
and hence the linkage record can simply consist of two integers: the address of the first block and the of the last block in the
range.

Device 1 Device 2Host A
X

Figure 13. An illustration of how linkage records are used to detect writes that did not complete on recovery. Host A intends to write to
both blocks X and Y. The host attaches the timestamp 10, and the linkage record X-Y to each write request.The write request is received and
processed at device 2, but due to a host or general power failure, the write request sent to device 1 is not processed. Since device 2 processed
the write, updating the timestamp and the linkage record in the header of the block together with the data. Upon recovery, Host B reads the
suspect blocks and inspects the linkage records. The cross-check fails because the linkage record returned with block Y refers to block X, but
block X has a lower timestamp (8<10) which implies that block X has not been updated when B’s read was processed.
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transferred and parity need not be recomputed unless cross-checking actually fails. In this case, the stripe

can be made consistent by reading the data units, computing fresh parity, and writing it back to the array.

6. Future work

The protocols we presented in this paper assume that storage controllers do not cache data or parity blocks.

In our ongoing work, we are evaluating ways to support coherent caching of parity and data blocks.

The protocols also ensure both isolation (serializability) and consistency. Serializability is ensured even

if host requests access overlapping data. Several applications perform higher level locking so that hosts

never concurrently access overlapping data. If serializability is not required by the higher level, then the

only correctness criterion that storage transactions should provide to higher levels is the consistency of

redundancy codes. The presented protocols can be further specialized so that they only ensure consistency.

Our ongoing work is focussing on specializing the protocols to exploit such weaker guarantees.

7. Conclusions

Shared storage arrays promise databases and filesystems highly scalable, reliable, self-managing storage.

However, they eliminate the storage controller and, thereby the central point of control from storage sys-

tems, causing storage added function such as RAID to be visible over the network, potentially causing

inconsistencies as a result of concurrency or failures. Rapidly increasing storage device intelligence, cou-

pled with the special characteristics of storage operations can be successfully exploited to arrive at a high-

performance solution to this problem that realizes the scalability potential of the shared array I/O architec-

ture.

In this paper, we examine four concurrency control schemes for shared storage arrays; two centralized

ones: simple server locking and server locking with leased callbacks; and two distributed ones with device

participation; distributed locking using storage-device-embedded lock servers, and timestamp ordering

schemes based on loosely synchronized clocks. Simulation results show that both server-based locking

schemes suffer from scalability limitations. Moreover, we found callback locking particularly suspect if

applications do not have much inherent locality or if the storage system causes this locality to be disturbed.

Distributed concurrency control with device support is attractive as it scales control capacity with

storage and performance capacity, and offers the opportunity to piggyback lock/ordering messages on

operation requests, eliminating message latency costs. Distributed locking, like any multiple lock server

solution, implies that locks can not be acquired at once making it susceptible to deadlocks. Deadlock
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avoidance via serial locking stretches the normal case latency and is therefore undesirable. Time-out-based

deadlock detection and recovery yields a simple strategy and is shown to impose little performance

overhead except for cases of extreme contention.

Timestamp ordering based on loosely synchronized clocks is free from deadlocks, places less stress on

the network than distributed locking, is vulnerable to fewer conflicts and has performance advantages

under high load. Furthermore, we show how it can be extended with operation history recording using

embedded linkage records to ensure proper consistency after failures without inducing extra I/Os under

normal operation. We have completed, with little effort, an implementation of timestamp ordering in our

prototype storage system.
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