
A Real-Time Push-Pull Communications Model for

Distributed Real-Time and Multimedia Systems

Kanaka Juvva Raj Rajkumar

January; 1999
CMU �CS � 99� 107

School Of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

This research was supported by the Defense Advanced Research Project Agency in part under agreement E30602-97-2-0287

and in part under agreement F30602-96-1-0160. The views and conclusions contained in this document are those of the authors

and should not be interpreted as representing policies , either expressed or implied of U.S.Government.

Keywords: Push Communication, Pull Communication, Distributed Systems, Real-Time Systems, QoS, Proxy,
End-to-End delay, Multimedia Systems.

Abstract

Real-time and multimedia applications like multi-party collaboration, internet telephony and distributed com-

mand control systems require the exchange of information over distributed and heterogeneous nodes. Multiple

data types including voice, video, sensor data, real-time intelligence data and text are being transported widely

across today's information, control and surveillance networks. All such applications can bene�t enormously from

middleware, operating system and networking services that can support QoS guarantees, high availability, dynamic

recon�gurability and scalability.

In this paper, we propose a middleware layer called the \Real-Time Push-Pull Communications Service" to

easily and quickly disseminate information across heterogeneous nodes with exible communication patterns. Real-

time push-pull communications is an extension of the real-time publisher/subscriber model, and represents both

\push" (data transfer initiated by a sender) and \pull" (data transfer initiated by a receiver) communications.

Nodes with widely di�ering processing power and networking bandwidth can coordinate and co-exist by the

provision of appropriate and automatic support for transformation on data. In particular, unlike the real-time

publisher/subscriber model, di�erent information sources and sinks can operate at di�erent frequencies and also

can choose another (intermediate) node to act as their proxy and and deliver data at the desired frequency. In

addition to the synchronous communications of the publisher-subscriber model, information sinks can also choose

to obtain data asynchronously. This service has been implemented on RT-Mach, a resource-centric kernel using

resource kernel primitives [7]. This paper presents an overview of the design, implementation and a performance

evaluation of the model. We also test the applicability and versatility of this service using RT-Conference, a
multi-party multimedia collaboration application built on top of this model. Finally, we summarize some key

lessons learned in this process.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Organization of the Paper . 3

1.4 Comparison with Related Work . 3

2 The Real-Time Push-Pull Communication Model 4

2.1 The Real-Time Publisher/Subscriber Model . 5

2.2 Proxy . 5

2.3 Pull Communications . 6

2.4 Why is this model \Real-Time"? . 6

3 Implementation of the Real-Time Push-Pull Model 6

3.1 Application Programming Interface . 7

3.2 Client's Usage of the Real-Time Push-Pull Model . 7

3.3 Performance Evaluation . 9

3.3.1 The Performance Impact of a Proxy . 9

3.3.2 The Impact of Message Lengths and Multiple Subscribers 10

4 RT-Conference: A Multi-Party Multimedia Collaboration System 11

4.1 The Architecture and Components of RT-Conference . 12

4.2 Lessons Learned . 15

5 Conclusions 17

i

List of Figures

1 Real-Time Push/Pull Communications as a Middleware Service. 2

2 The Real-Time Publisher/Subscriber Model . 3

3 The Architectural Components of the Real-Time Push-Pull Communications Model. 4

4 The daemon threads, their functions and their priorities. Lower numeric values represent higher

priorities. 7

5 The Application Programming Interface for the Real-Time Push-Pull Model. 8

6 The Sequence of Actions on Daemon Arrival and Tag Creation. 9

7 The Pull View. 10

8 RT-Conference: A Multi-party Multimedia Collaborative System on Real-Time Mach 11

9 The Architecture of the Multi-Party Collaborative System. 12

10 The client threads, their functions and their priorities. 13

11 The Mixing of Multiple Audio Input Streams to Speaker. 13

12 Amplitude Control to Avoid Signal Overow. The top half depicts the amplitude scaling for R

received streams. The bottom half illustrates the real-time tracking of R. 14

13 Silence Detection Mechanism. 14

14 The Interface to Audio Device Input/Output. 15

15 The Assembly and Dis-assembly of Video Frames. 15

16 The Interface to Video Input/Output. 16

17 The Networked Video Shooting Game for Real-Time Data Streaming. 16

18 Key Data Structures Used. 19

ii

List of Tables

1 Round-Trip delays for Di�erent Proxy Locations . 10

2 The Round-Trip Delays (in ms) encountered with no proxies. 10

3 The Round-Trip Delays with a proxy on an intermediate node. The number of publishers is 1. . . . 11

iii

1 Introduction

The advent of high-performance networks such as ATM and 100 Mbps networks in conjunction with signi�cant

advances in hardware technologies are spawning several distributed real-time and multimedia applications. Dis-

tributed multimedia systems, in particular, are becoming more prevalent and e�ective in making widespread infor-

mation accessible in real-time. Examples include video-conferencing over the internet, multi-party collaborations

systems, internet telephony etc. Data communications in these systems take place among geographically dis-

tributed participants, whose computing and networking resources can vary considerably. A service infrastructure

which supports such distributed communications should be scalable, exible and cater to di�erent CPU/network

bandwidths while providing real-time guarantees. We propose a real-time push-pull communication model, a mid-

dleware substrate which provides communications services for di�erent real-time applications executing on top

of it, while providing real-time guarantees. The push-pull communications model an extension of the real-time

publisher/subscriber [4, 5, 6]. It is a real-time event channel between information sources and sinks. The layering

of the Push-Pull Communications as a middleware service in a single node of a real-time system is illustrated in

Figure 1.

Services somewhat similar to our real-time push-pull model have been provided in the past and others are

currently being developed. For example, our current model builds and extends the real-time publisher-subscriber

model of [4]. Maestro [1, 2] is a support tool for distributed multimedia and collaborative computing applications.

`Salamander' [3] is a push-based distribution substrate for internet applications. The primary di�erence between

our model and others is that we focus on maintaining timeliness guarantees and predictability, which in turn may

necessitate a relatively closed environment. Real-time CORBA services and real-time Object Request Brokers

[8, 11, 12] are also attempting to address some aspects related to our model. Our model and middleware service

are speci�cally designed such that they can be utilized within or from CORBA interfaces.

1.1 Motivation

The real-time publisher/subscriber communication model illustrated in Figure 2 can be considered to represent

\push communications" where data is \pushed" by information sources to information sinks. As a result, sub-

scribers can obtain information only at the rate at which the data is being pushed. This model is appropriate

and e�cient for periodic and synchronous updates between sources and sinks which are operating at the same

frequencies
1
. Unfortunately, this can be very limiting in many cases where di�erent clients have di�erent process-

ing power and/or widely varying communication bandwidth (because of connectivity to a low bandwidth network

such as a telephone modem or an encrypted satellite link). If consumers did not have the same processor power

or network bandwidth, a publisher must either falsely assume that they all have the same capability or publish

two (or more) streams to satisfy consumers with di�erent capabilities.

It would be very desirable if a client with a relatively low processing power and/or communication bandwidth is

able to consume published data at its own preferred rate. In other words, the data reaching this client depends on

its own needs, and not that of the publishing volume/rate of the publisher. Also, the real-time publisher/subscriber

model is completely synchronous: subscribers normally block on a \channel" (represented by a distribution tag)

waiting for data to arrive. Publishers produce data at the rates that they determine, and the published data is

immediately sent to the subscribers on that distribution tag.

The Push-Pull Communications model addresses both of the above concerns:

� First, it allows consumers on the same data streams to receive and process data at (locally determined)

rates, which are independent of those used at the information sources. As a result, clients with high or

low processing power and/or high or low network bandwidth can still usefully consume data on a stream.

In addition, this can happen without the knowledge of the data producers who do not have to distinguish

among the capabilities of the receiving consumers.

� Secondly, in the push-pull communication model, data can be either \pushed" by an information producer

or \pulled" by an information consumer. A \pulling" consumer can choose to consume data at a rate

lower than the data production rate. In the extreme, a pulling consumer can choose to only consume data

asynchronously.

In summary, the real-time push-pull communications model we propose not only continues to support e�cient

synchronous communications among homogeneous nodes, but also supports asynchronous communications among

heterogeneous nodes.

1A subscriber may choose to operate at a di�erent lower frequency by, for example, skipping every other published datum on a

subscribed tag. However, for this to happen, the subscriber must still receive and \consume" the datum albeit in a trivial \drop-it"

fashion.

1

CPU Memory
NetBW

CPU
Reserves

Memory

NetBW

Real-Time Push-Pull Communication
Services

Physical
resources

Real-Time
Kernel

OS &
Middleware

Services RT-ORB

Real-Time and Multimedia ApplicationsReal-Time and Multimedia ApplicationsApps

Full Duplex
Audio/Video Servers

Multicast
Services

Disk BW

Reservations

Video Audio

RT-Scheduling Policies
VM Wiring

RT-IPC
RT-Threads

RT-Synchronisation

Hi-Resolution Timers
Audio Driver
Video Drivers
Network Support

Figure 1: Real-Time Push/Pull Communications as a Middleware Service.

1.2 Objectives

The following are the objectives of the Push-Pull model:

Synchronous Communications: Publishers and subscribers operate at the same frequency. This can be called

push communications. Many hard real-time systems come under this categeory of communications.

Asynchronous Communications: The communication model should cater to di�erent bandwidth and process-

ing capabilities of producers and consumers. Publishers continue to pump information at their own rate and

subscribers receive data at their own locally determined rates. On the other hand, publishers and subscribers

should be able to operate asynchronously. The frequency transformation and scaling that needs to be done

is carried out transparently. Possible transformations that can be supported are

� History Bu�ers: A �nite sequence of a real-time activity can be bu�ered at a location and can be pulled

by a subscriber on demand at a later point of time.

� Flexibility: For performance and applicability reasons, the location of the \proxy" for transforming data

frequency should be exible. If the proxy is located on the client with lower capability, the bene�ts

of scaling can diminish signi�cantly. On the other hand, if the proxy were sitting at the information

source itself, the load on that node can become undesirably high. Thus, the data transformation can

take place right at the source or at the sink or at some intermediate node. A provision should exist for

clients, system administrators, or information sources to choose the actual proxy location at start-time

and/or dynamically.

� Scalability: The communication model should be scalable for several nodes and support many applica-

tions and multiple clients at the same time.

In our approach, we use a proxy to perform the transformation on the data transparent to the data source and

the data sink during data communications. These proxy agents can perform the transformations without

a�ecting the functionality of producers and consumerss (but potentially increasing the end-to-end delay

between the two). Data scaling might also require that the proxy be aware of the semantics of the data (for

example, that it is a raw video stream). A proxy is used only when necessary, and two (or more) clients can

be receiving at two (or more) rates from the same data channel. We use pull communications to support

history bu�ers and pulling of older messages on demand.

QoS Guarantees : The communications service should be predictable, analyzable and provide timing guaran-

tees. In other words, the components of the communications service should make use of real-time scheduling

2

P1

P2

P6

P5

P4

P3

Tag2Tag1

P1 publishes on Tag1
P2 is a subscriber on Tags 1 & 2
P3 & P4 publish on Tag2
P5 is a publisher on Tag1 and a
 subscriber on Tag2
P6 subscribes to Tag1

Figure 2: The Real-Time Publisher/Subscriber Model

schemes such as priorities and synchronization protocols which bound and minimize priority inversion. For

dynamic online control, admission control should be executed at several layers to meet the QoS requirements.

Reservation of memory, network bandwidth, CPU bandwidth and disk bandwidth [7,9,10] can be used to

provide end-to-end QoS guarantees.

Protection and Enforcement: Since multiple communication channels can be in use simultaneously at di�er-

ent rates, there should be support for spatial and temporal protection among the various channels. As an

example, increasing the frame rate of a video chat group should ideally not adversely a�ect the worst-case

end-to-end delays of a surveillance application. The scheduling/dispatching layers should use primitives

which support enforcement when possible. For instance, a reservation-based scheduling scheme [7] pro-

vides temporal protection and guaranteed timeliness, while priority-based schemes can provide predictable

timeliness under worst-case assumptions that do not enforce protection.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we present a high-level overview of the real-time

push-pull communication model and describe the primary components of the model. In Section 3, we describe

our implementation of the real-time push-pull model, and present an evaluation of our implementation in terms of

round-trip delays encountered between communicating parties. In Section 4, we describe in detail a multi-party

multimedia collaboration system named RT-Conference that we built on top of the real-time push-pull model to

evaluate its usability and e�cacy. We also summarize some key lessons that we learned during the development

of both the push-pull layer and the application. Finally, we present our concluding remarks in Section 5.

1.4 Comparison with Related Work

In this section we discuss the related systems and compare our approach with the others. Our communication

model is built on top of resource kernel[7] and uses resource kernel primitives real-time priorities, real-time threads

, RT-IPC and basic priority inheritance mechanisms at all leves (client and daemons) and focusses on real-time

gurantees like timeliness. The model �ts well with in the context of both hard and soft real-time systems and

particularly it is very promising to distibuted multimedia applications like videoconferencing. The example ap-

plication we describe in this paper proves these concepts. The model can be easily extended to use reservations.

There is some related work going on this area to support distributed mulitmedia applications. Maestro[1] is a

3

midddeware support tool for distibuted multimedia and collaborative computing applications. Salamander[3] is a

push based distribution substrate designed to accomodate the large variation in Internet connectivity and client

resources through the use of application speci�c plug-in modules. However[3] doesnot address temporal protection

among di�erent virtual data channels and it does the best �t of resources among applications.

In [21], Fox et. al. propose a general proxy architecture for dynamic distillation of data based on ckient

variation. It doesn't address temopral dependencies which impose tight timing constraints on the distillation

process, which a�ects the architecture of the distller. The work in [16] addresses adding group communications

support to CORBA. Some work is going on RT-CORBA [8, 11, 12] to provide QoS and minimize end-to-end

latencies in CORBA based systems. Work in [15, 17, 19, 22] address group communication protocols and clock-

synchronisation.

2 The Real-Time Push-Pull Communication Model

Node 2Audio,Video,
Surveillance...

Push/Pull
Clients

Data Tag
Operations

Push/Pull
Daemon

Multimedia services

Resource Kernel

Meta data
Receiver
thread

Application
data

receiver
thread

Pull Buffers

Tag Table

Data

Tag Operations

Audio,Video,
Surveillance...

Push/Pull
Clients

Data Tag
Operations

Push/Pull
 Daemon

Node 1

delivery
manager
thread

local
manager

thread

update
manager
thread distribution

manager
thread

proxy
manager
threadpull

manager
thread

Tag Table

Pull Buffers

Network

Push
channel

Push
channel

Push
channel

Pull
channel

Pull
channel

Node 2

Figure 3: The Architectural Components of the Real-Time Push-Pull Communications Model.

The push-pull communication model is an extension of the real-time publisher/subscriber model. In this section,

we summarize the real-time publisher/subscriber model and describes the push-pull extensions to the model.

The architecture of the real-time push-pull communications model is illustrated in Figure 3. Nodes in the

system are assumed to be interconnected using a real-time network fabric. Every node runs a daemon comprising

of multiple threads. A client wishing to communicate using the real-time push-pull layer interfaces to a library

4

in its own address space. The library maintains local information from the real-time push-pull substrate and its

own local bu�ers. This information maintained in the client is structured such that any damage to this data will

a�ect only this client. The threads within the daemon and the client are discussed in more detail in Section 3.

The individual components of the push/pull communication model are given below.

� Distribution Tag: Distribution tag is the logical handle for communication. Tag Table entry in each daemon

is a repository of all the distribution tags.

� Push/Pull Daemon: The Push/Pull daemon executes on every node involved in the push/pull communica-

tions. The major function of the daemon is to establishment communication between clients.

� Push Client: Publishers(information source) and Subscribers(information sink) are push clients. Publishers

publish data on a speci�ed distribution tag and subscribers subscribe to the tag for data.

� Pull Client: Pull subscribers are pull clients.

� Push Channel: Push channel is the logical communication channel to which the publisher pushes the data.

� Pull Channel: Pull channel is the logical communication channel on which the pull subscriber obtains the

data.

� Pull Bu�ers: Pull bu�ers are the repository of the data samples, which can be pulled by the pull subscribers.

The key aspects supported by the real-time push-pull model are described next.

2.1 The Real-Time Publisher/Subscriber Model

The push-pull communication model is based on and provides complete support for the Real-Time Publisher/Subscriber

model [4] for communication between information producers (publishers) and information consumers (subscribers).

In the real-time publisher/subscriber model illustrated in Figure 2, a consumer can consume information from

multiple sources, while a producer can produce information for multiple consumers. A producer can also be a

consumer and vice-versa. A data channel represented by \a distribution tag" represents each category of data that

is available in the system. For example in a multiparty-multimedia collaboration application, which is described

in the later sections of the paper audio, video, text and whiteboard data are represented by di�erent tags audio,
video, text and whiteboard respectively. A publisher publishes on a distribution tag, and subscribers to that tag

can consume the information published on that tag. However, a publisher need not know who the subscribers to

its published information are, and a subscriber need not know who the publishers of its consumed information are.

In other words, the publisher-subscriber communication model allows a general many-to-many communications

model.

In the real-time publisher-subscriber communication model, timing delays for communications between an

information producer and an information consumer are predictable, analyzable and e�cient. As may be expected,

this analyzability is based on the assumption that the communication demands are known a priori or will be

explicitly speci�ed at run-time using admission control schemes.

The implementation of the real-time publisher-subscriber communication model allows the information about

publishers and subscribers to be stored as close to the publisher as possible (namely in its own process address

space on its own node as a library). This proximity to the end-user yields both performance and predictability

bene�ts. A distributed fault-tolerant name-service hidden from the application interface allows the physical

communications among publishers and subscribers to occur [6]. This name-service allows processor nodes to fail

and/or to (re)join the system. When failures happen or when nodes (re)join, the naming service continues to

function and real-time publication/subscription on distribution tags continue to function normally.

2.2 Proxy

A consumer upon subscription to a tag (either as a push-client or a pull-client) can specify frequency scaling

that must be done by the middleware service on the data stream it is subscribing to. A proxy will be created

to accomplish this frequency transformation, and once established, is transparent to the data source as well as

the data sink. The existence (or non-existence) of the proxy is retained in the attributes of the distribution tags

(channels) maintained by the daemons and client libraries, and used appropriately when data is published or

pulled. In other words, the proxy sits as a transparent and useful entity between a source and a sink. This is

illustrated in Figure ??.

A push-pull daemon is run on every node of the system using our middleware service, and the proxy agent

when needed resides typically within the daemon of the node where it is located. It can reside in a client library

if the proxy is at either the publisher or the subscriber node. Data published to a subscriber who has requested

a proxy is frequency-transformed as it is being transmitted (by dropping as necessary). The critical aspect is

5

that multiple subscribers on the same channel may want to have their proxy in distinct modes. For example,

Subscriber-1 may want to have its proxy in Proxy-Mode-1, Subscriber-2 in Proxy-Mode-2 and Subscriber-3 in

Proxy-Mode-3.

2.3 Pull Communications

\Pull" communications is used by a subscriber to \pull" speci�c data samples asynchronously on demand. For

instance, a subscriber may want to pull dynamically a particular recent sequence of an ongoing video conference.

An aircraft control system may want to pull weather information about a particular region in the past two hours.

As a result, it is desirable that the middleware service support a history bu�er which stores recent versions of

data samples published on a channel. A customer can then request on demand the most recent copy of a data

sample, the n
th
-most recent version or a speci�c absolute sample from this history.

2
The pull sequence as viewed

by a pull client is illustrated later in Figure 7.

A subscriber issues pull requests to pull the messages. Time-stamping and/or versioning of data is required

to indicate a speci�c message. In our current implementation, all the messages carry a sequence number and the

sequence number is used to pull a speci�c message. End-to-End delays for pull communications can be predicted

in a way similar to push communications.

2.4 Why is this model \Real-Time"?

A logical question to ask of the real-time push-pull model is what makes it deserve the quali�er \real-time"?

As argued in [4], the real-time publisher-subscriber model (which represents the \push" portion of the real-time

push-pull model) exhibits two desirable properties:

1. If the parameters of all tasks in the system are known (either a priori or because of explicit speci�cation

at admission control time), the worst-case end-to-end delays can be computed using traditional real-time

techniques such as Rate-Monotonic Analysis. This is made possible by the use of real-time scheduling

algorithms and real-time synchronization primitives that bound priority inversion.

2. The model clearly distinguishes between non-real-time actions (like Create Tag) and real-time actions with

deadlines (like Publish Data). The former is always handled at lower priority than the latter. In addition,

the design enables the real-time actions to communicate using a very direct path between senders and

receivers. This in turn reduces the end-to-end delays for real-time applications.

Similarly, the \pull" model is also designed such that assertions about predictable end-to-end delays can be

made and proved. Consider a \pull client". Its end-to-end delay to the \pull bu�er" can be predicted analogous to

the \push" side. In addition, if a publisher is assumed to update the \pull bu�er" at a certain rate, the timeliness

of its updates as a publisher can also be guaranteed. Combining these two aspects, it is possible to guarantee that

the version (or timestamp) of a data sample obtained by a \pull" client is no older than the most recent version

by a known, �xed o�set.

3 Implementation of the Real-Time Push-Pull Model

Our real-time push-pull model has been implemented on RT-Mach, Resource Kernel version RK97 [7] using the

resource kernel primitives of real-time scheduling and reservations which also bound priority inversion. RK97a

is the recent release of the resource kernel and supports extended CPU reservations, disk reservations, real-

time threads, real-time IPC, real-time synchronization primitives, very high resolution timers, full duplex audio

support, real-time video capture, a real-time window manager, fault-tolerant timeline scheduling, and wireless

roaming support.

Each daemon in the communications infrastructure consists of six real-time threads, each with a di�erent

real-time priority. The client library used with each application consists of two real-time threads. UDP is used

for communication between clients and daemons. RT-IPC is used for sending application data from the daemon

to local clients.

Daemon:

1. Local Manager: It receives the client's requests (tag operations) and updates the local tag table.

2. Distribution Manager: It sends the updated tag table to both remote daemons and local clients.

2Our current implementation supports a circular bu�er which stores a �xed number of the most recent samples published.

6

Thread Main function Relative
priority

Local
Manager

Receives requests as to communication data and
updates the local tag table

12

Update
Manager

Updates the local tag table when it receives updated
tag information from a remote daemon

10

Distribution
Manager

Multicasts updated tag information to both remote
daemons and local clients

11

Delivery
Manager

Multicasts application data to local clients that are
subscribing on this data

2

Proxy
Manger

Receives data from publisher, scales frequency of
data and transmits to subscriber.

1

Figure 4: The daemon threads, their functions and their priorities. Lower numeric values represent higher priorities.

3. Update Manager: It updates its local tag table when it receives the updated tag information from a

remote daemon.

4. Delivery Manager: It multicasts the application data to local clients that subscribed to the tag.

5. Proxy Manager: It receives proxy data and does the transformation. Transformed data is multicast to the

daemon of the proxy subscribers. This applies only for Proxy-Mode-3. For Proxy-Mode-1 and Proxy-Mode-2

transformation is done by the subscriber and publisher respectively.

6. Pull Manager: It receives the pull data and sends it to the pull subscriber.

The priorities of the threads in the daemon are listed in Figure 4.

Client Library:

There are two real-time threads in the application library linked with each application using the real-time push-pull

service:

1. Application Receiver: It receives the published data from the daemon using RT-IPC. Data is stored into

a bu�er protected by a condition variable.

2. Network Receiver: It receives all updates to distribution tags it locally needs from its daemon.

The priorities of the client threads are discussed in more detail in the next section.

3.1 Application Programming Interface

The real-time push-pull communications model has programming interfaces to create/destroy a distribution tag,

obtain publication/subscription rights on a distribution tag, push/receive data synchronously on a distribution

tag, and pull data asynchronously from a distribution tag. In addition, the speci�cation of the proxy and the

setting of QoS attributes is accomplished by setting attributes on a distribution tag. This API is presented in

Figure 5.

3.2 Client's Usage of the Real-Time Push-Pull Model

The sequence of actions that a client must perform in order to use the real-time push-pull model is outlined below.

Each node which wants to communicate using the real-time push-pull model must have a daemon running. A

client calls ClientAPI Init()where communication ports are initialized. It creates a distribution tag and obtains

a tag handle is obtained for its communications. A publisher obtains a publication rights on the tag, and a

subscriber obtains subscription rights on the tag. A proxy subscriber speci�es the location of its proxy by setting

necessary proxy attributes on the particular tag. A pull subscriber speci�es the pull attributes by setting the pull

attributes on the tag.

A publisher publishes messages on the tag, and corresponding subscribers receives these messages. A proxy

subscriber receives its messages from the proxy rather than from the publisher directly at appropriately trans-

formed rates.

The sequence of events triggered in the real-time push-pull infrastructure by some invocations made by the

client are illustrated in Figure 6. They can be summarized as below.

When a non-steady-state path request(tag creation/deletion request, publish/subscribe rigth request, set push attribute,

set pull attribute) is issued,

7

/* initialization and closing functions */

ClientAPI Init();

int UnRegister();

/* create and destroy tags */

tagID t Create DistTag(tagID str t tag);

int Destroy DistTag(tagID t tag);

/* set QoS attributes of tags */

int Set Tag Attributes(tagID str t tag, int flavor, int param1, int param2,char *hostname);

int Set Pull Attributes(tagID str t tag, User pub, int param1, int param2,char *hostname);

/* get publication/subscription rights */

tagID t Get Send Access(tagID str t tag)

int Release Send Access(tagID t tag)

tagID t Subscribe(tagID str t tag)

int Unsubscribe(tagID t tag)

/* publish, receive or pull messages */

Send Message(tagID t tag, void *msg, int msglen);

int Recv Message(tagID t tag, void *msg, int *msglen);

int Pull Message(tagID t tag, void *msg, int *msglen);

int Recv Message From(tagID t tag, void *msg, int *msglen, inaddr t *source, u int *pid, struct timeval *tp,

int *seqno);

/* Get tag information */

int Get Tag List(int *count, char *** tag names);

int Get Local Tag List(int *cnt, char ***tag list);

User* Get Publisher List(tagID t tagid, int* cnt);

tagID t Get TagID(tagID str t tagname);

Figure 5: The Application Programming Interface for the Real-Time Push-Pull Model.

1. The client's local request service sends a request to the local manager of of the Push/Pull Daemon

2. The local manager checks to see if the tag status change can be made. If so, it sends an update status to

the update manager of the remote Push/Pull daemons. Then, it updates its local tag table.

3. The local manager then sends a response (SUCCESS/ERROR) back to client.

When the steady-state path request \publish" message on a tag is issued,

1. The calling thread automatically checks the local tag information for valid information.

2. If valid, it sends copies to all receivers on local node(if any) and atmost one message to each remote delivery

manager/proxy manager whose node has atleast one receiver/proxy for that tag.

When the steady-state path request \receive message on a tag" is issued,

1. The calling thread atomically checks the local tag information for valid information.

2. If valid the calling thread issues in RT IPC call to receive the message. If a message is already pending , a

message is returned to the client.

3. If no message is pending , the client waits on IPC port for a message

When the steady-state path request \pull message on a tag" is issued,

1. The client's local request service sends a request to the local manager of the local Push/Pull daemon and

waits at an IPC port for message

2. The local manager checks for pull mode and in mode-1 sends the pull message to client. In mode-2 and

mode-3 it sends the pull request to the correpnding Push/Pull daemon and waits for a message.

3. After receiving the pull message from remote daemon, the message is sent to the client.

8

Initialization phase
Daemon
 (Local)

Register

Register

Request other
daemons’ data

Daemon
(Remote)

Daemon
(Remote)

API (Create_tag / Publish / Subscribe)
Client
(Local)

Request
tag information

Request
tag operation

Daemon
 (Local)

Figure 6: The Sequence of Actions on Daemon Arrival and Tag Creation.

The view of events seen by a pull subscriber is presented in Figure 7. Two primary data structures exported to

a client include a Tag structure representing the distribution tag on which messages are sent/received, and a User

structure which represents an identity of a process. These two data structures are presented in the Appendix.

3.3 Performance Evaluation

The real-time push-pull model has been successfully designed and implemented. This section describes a set of

measurements obtained on a network of three Pentium-120 MHz PCs with 32MB RAM running RT-Mach version

RK97a. The network was a dedicated 10Mbps ethernet, and a Subscriber, a Publisher and a Proxy were run on

three separate nodes.

3.3.1 The Performance Impact of a Proxy

The experiment we conducted to measure the performance impact of a proxy is as follows. A publisher transmits

a 64-byte message which is received by a subscriber, who in turn re-transmits that message by publishing on a

separate tag. The original publisher receives this message and the time taken for this sequence to complete at the

�rst publisher node corresponds to a Round-trip Delay. We calculated the average of this round-trip delay after

100 messages. We also calculated the standard deviation of the round trip delay to evaluate the perturbations in

the model. These measurements based on an unoptimized implementation
3
are summarized in Table 1.

We repeated the experiment in 2 con�gurations: without a proxy, and with a proxy inbetween the �rst

publisher/subscriber pair. In addition, the proxy if used could be located on the publisher site, the subscriber

site or an intermediate site. The measurements of round-trip delays are listed in Table 1.

As can be seen, the presence of a proxy at a subscriber node or a publisher node adds very little overhead

compared to the case of having no proxy at all. In this case, the proxy was scaling the data stream by a factor of

one, i.e. passing the data straight through. When the proxy is on a remote node, a latency of about 3ms is added

to the round-trip path.

3The system measured uses an ISA bus 8-bit Ethernet card, and we expect signi�cantly better absolute performance numbers on a

32-bit PCI card.

9

data w/ sequence #

pull
client

pull
buffers

pull
request

Figure 7: The Pull View.

Mode Round Trip std deviation
delays in ms in ms

No Proxy 6.012933 0.0118728

Proxy At Subscriber 6.01278 0.021036

Proxy At Publisher 6.0176868 0.01262178

Proxy At Intermediate Node 9.349978 0.220098

Table 1: Round-Trip delays for Di�erent Proxy Locations

3.3.2 The Impact of Message Lengths and Multiple Subscribers

Number of Subscribers Message Size(Bytes)
64 256 512 1024 1536 1792

1 5.914 6.018 7.369 6.463 9.014 9.020

4 5.975 7.818 8.972 8.981 8.992 9.013

8 8.973 9.513 10.483 10.899 10.141 12.160

Table 2: The Round-Trip Delays (in ms) encountered with no proxies.

We repeated the previous experiment but varied the length of each message. One would expect that the

round-trip delays would increase with message size. The round-trip delays as message length is varied and in the

absence of any proxy are listed in Table 2. As expected, the round-trip delay increases (almost) linearly with the

increase in the size of the message. We then tested the case where there is more than 1 subscriber subscribing to

the �rst tag on the same machine and only the last subscriber responds to the publisher. The round-trip delays

farther increase because of additional preemption on the receiving node.

The round-trip delays as message length varies and in the presence of a proxy on an intermediate node are

listed in Table 3. Again, the round-trip delay increases (almost) linearly with message length. Furthermore, the

addition of the proxy adds at least 3ms to the round-trip delay, which, as one might expect, increases as the

message length increases.

10

Message Size Round Trip

(bytes) delays (in ms)

1 8.964

64 9.361

1024 11.760

1536 12.195

1792 14.986

Table 3: The Round-Trip Delays with a proxy on an intermediate node. The number of publishers is 1.

4 RT-Conference: AMulti-Party Multimedia Collaboration Sys-

tem

Video1

Video2

Video3

Whiteboard

Text Window

Figure 8: RT-Conference: A Multi-party Multimedia Collaborative System on Real-Time Mach

The implementation of the real-time push-pull service described in the previous two sections is relatively complex

due to the various possible con�gurations that must be supported. However, the elegance of the model lies in its

power of many-to-many communications and the simplicity that it provides in terms of transparency of underlying

nodes, networks and communication protocols. We therefore wanted to exercise this abstraction to validate its

usability and ease of programming a real application. From that perspective, we built a multi-party multimedia

collaborative system named RT-Conference [23] on top of this model.

The graphical user interface of RT-Conferencewhich is used to process the requests and displaying the responses

and video is shown in Figure 4. This system supports the following features:

11

Chat
Tag

Whiteboard
Tag

Control
Tag

Audio
Tag

Video
Tag

Client communication library

Chat
receiver

White
receiver

Control
receiver

Audio
receiver

Video
receiver

Menu
manager

Control
manager

Audio
manager Audio

player

Video
manager

Periodic threads
Aperiodic threads

Human
interface

Device
interface

RT-Conference System Design

Figure 9: The Architecture of the Multi-Party Collaborative System.

4.1 The Architecture and Components of RT-Conference

The internal architecture of the conferencing system is shown in Figure 9. There are a total of �ve tags in the

system, with a tag being assigned to each media type. This has two advantages. First, clients can deal with

di�erent multimedia data types in di�erent ways and with di�erent timing requirements. Secondly, a user can

choose to publish on and subscribe to any media subset within the conference. For example, low bandwidth clients

might opt only for audio and not publish or subscribe to any video data. High bandwidth clients can choose all

available streams. Some passive \pull clients" might want to pull the white-board on demand to sporadically

watch the progress of a design, a chess game or a discussion. The various threads in the client, along with their

functions and their priorities, are listed in Figure 10.

The components of RT-Conference are explained below.

� Audio Publish: Clients who wants to publish audio initiate the request by pressing the push button. An

audio tag is created if it does not exist. A full-duplex Vibra-16 (Sound Blaster) audio driver captures

audio and plays back in real-time. It schedules DMA operations in \auto-init" mode to achieve full duplex

operation. The details of the driver design [24] are not relevant to the paper. A full duplex audio server

handles the record and play for multiple audio clients. The multi-party conferencing system interacts with

the audio server to capture audio and playback.

� Audio Subscribe: Client receives audio data by subscribing to audio tag, which inturn initiated by clicking

the push-button.

� Video Publish:Clients who wants to publish video initiate the request by pressing the push button. An

video tag is created if it does not exist.

� Video Subscribe:Client receives video data by subscribing to video tag.

� White-board: A shared \white-board" is provided for for drawing text and graphics. White board data is

published on whiteboard tag and is tranmitted all clients.

� Text Chat:Text chat data is published on chat tag and is tranmitted to all clients.

Twelve real-time including two library threads provide the communication services. These threads have dif-

ferent real-time priorities. A network receiver receives the tag operations. An application receiver receives

the application data. A whiteboard receiver, a chat receiver, a control receiver, a video receiver and

an audio receiver thread receive the published data on their respective distribution tags.

We now explain audio mixing and other related features of the audio clients:

12

Name Main function Relative
Priority

Network receiver Receives all communication data from local daemon and
updates the tag table.

10

Application receiver Receives all application data from local daemon. 2
Chat receiver Receives text data for chatting and display it to the window. 9

Whiteboard receiver Receives data for whiteboard and draw figures to the window 7
Control receiver Receives data for real-time data application and changes the

status on the screen.
2

Audio receiver Receives audio data and buffers them until the period to replay
comes.

3

Video receiver Receives video data, assembles a video frame, and displays it
on the screen.

5

Menu manager Manages the event from a user on the screen, and sends data if
necessary.

2

Audio manager Receives audio data from microphone periodically and sends it
to subscribers.

3

Video manager Receives video data from video camera periodically and sends
it to subscribers.

5

Control manager Changes the status of application and sends this information to
all members.

2

Audio player Mixes audio packets into one packet and passes it to the
speaker periodically.

3

Figure 10: The client threads, their functions and their priorities.

From site A
64kbps

Device
driver

Audio
server

A+B+C

A

B

C

64kbps

192kbps

From site B
64kbps

From site C
64kbps

Audio Mixing

Figure 11: The Mixing of Multiple Audio Input Streams to Speaker.

� Audio Mixing: The system uses an audio sampling rate of 8 KHz and 8 bits per sample. A block of length

256 bytes is used for record and play. Audio mixing is achieved by simply adding the PCM samples. Details

of the mixing algorithm can be found in [23] and are illustrated in Figure 11.

� Amplitude Control: One practical issue that must be dealt with in the context of multi-party audio

communications is the issue of audio amplitude control during audio mixing. If the number of audio sources

is large and they must be mixed together, the system must decide how much \weight" is given to each

audio stream. If all streams are treated as is and summed up, it is possible that the resolution of the audio

on the mixer side is exceeded, overow occurs, and the resulting audio will be a complete distortion of

its inputs. RT-Conference adopts the simple scheme of scaling each audio stream down by the number of

current publishers on the audio tag. This summing based on the number of receivers (R) is illustrated in

the top of Figure 12. We have also experimented with tracking in real-time the number of \speakers" who

are talking at any given time. That is, even though 3 people may be participating in the conference, only

one may be talking. It may be desirable to ensure that a single person's voice is heard distinctly and their

audio volume is not turned down. A state transition scheme tracks the number of speakers in real-time, and

is based on a check of overows happening within an audio block. This scheme is illustrated in the bottom

half of Figure 12.

� Silence Detection: Dealing with delayed audio packets is an important feature of the system. Since audio

packets are sent from di�erent publishers through the network, they do not arrive at the subscriber site

13

A

A/R

A/R

A

A

Start Overflow Overflow

No overflow
during a period

No overflow
during a period

R=1 R=2

Figure 12: Amplitude Control to Avoid Signal Overow. The top half depicts the amplitude scaling for R received

streams. The bottom half illustrates the real-time tracking of R.

Silence Talkspurt

1

0

DE bit

packetainsapleithX

lengthPacketB

Silenceelse

TalkspurtThrPif

X
B

P

i

B

i
i

:

:

1

1

≥

= ∑
=

Figure 13: Silence Detection Mechanism.

synchronously. In order to keep audio quality above a certain level, the audio from di�erent publishers

should be played back with small delay and delay jitter. To maintain audio quality and to reduce a demand

on system resources with tight timing requirements, a silence detection mechanism has been implemented

as shown in Figure 13.

Since all participants do not always speak at the same time, each person's speech is divided into two parts,

\silence" and \talkspurt". If the average of the absolute values of the audio samples in a packet, P , is

greater than a given threshold, Thr, the packet is considered to be in the talkspurt and if P is less than

Thr, then the packet is considered to be in the silence. Because packets in the silence are less important

than packets in the talkspurt, a discard-eligible bit (DEbit) is set in the header of silence packets,

which can be discarded at the receiver site if necessary. We experimentally found that Thr = 1 is enough

to distinguish between talkspurt and silence.4 At the receiver site, each user is assigned a set of memory

bu�ers. An Audio Player thread periodically picks up a packet stored by an Audio Receiver thread from

each bu�er, mixes them into one packet and passes it to the audio server. However, if the number of packets

in this bu�er exceeds the maximum number of silence packets Max S, the Audio Receiver starts discarding

silence packets. If the number of packets in the bu�er exceeds the maximum number of talkspurt packets,

Max T, the Audio Receiver starts discarding the talkspurt packets.

4In a deployed context, however, the threshold may be higher in order to mask out some background noise.

14

A
ud

io
 c

ar
d

RT-Mach

D
ev

ic
e

dr
iv

er

Audio
data

Audio
data

IPC

Audio
Server

8kHz 8bit / sample PCM
(= 64kbps)

256 bytes

Audio
player

Audio
manager

Interfacing with the Audio I/O Device

Figure 14: The Interface to Audio Device Input/Output.

� Audio Device Interface: As mentioned earlier, full-duplex audio is supported in RT-Mach by a user-

level server which can provide audio services to multiple local clients simultaneously. This is illustrated in

Figure 14.

Buffer

NetworkFrame

HS1S2D

No compression
5 frames/sec

H: Communication header
S1: Inter-frame sequence #
S2: Intra-frame sequence #
D: Video data

Recovery from communication error

Wrong order
• Intra-frame → Recovery
• Inter-frame → Frame loss
Duplicate packet → Recovery
Packet loss → Frame loss

Assembly and Disassembly of Video Frames

Figure 15: The Assembly and Dis-assembly of Video Frames.

We now explain the communication scheme for the relatively large video packets and other related features of

the video and game clients:

� Communication of Video Frames: Since RT-Conference publishes raw video at this point, the size

of each video frame (at least 80x80) is larger than the size of a single packet. Each frame is therefore

fragmented into multiple packets and then published. The assembling and disassembling of packets is done

using intra-frame sequence number and inter-frame sequence numbers, and is illustrated in Figure 15. Any

communication errors (such as dropped packets, delayed or out-of-order deliveries) are also taken care of by

this subsystem.

� Video Device Interface: The video input/output interface used by RT-Conference is illustrated in Fig-

ure 16. Contrary to audio, the video output path communicates with the X-server for display on the monitor.

� Real-Time Video Game: The real-time networked video game that the RT-Conference participants

can play is illustrated in Figure 17. The objective of the game is to shoot a randomly moving target in

collaboration with one another. The person who starts the game gets to move a gun-sight towards the

moving target, and the others get to �re at the target. A �nite amount of shots can be taken and the game

expires after a �xed amount of time. The number of times the target was hit is the score gained by the

participants.

4.2 Lessons Learned

We learnt several lessons during the design and implementation of the real-time push-pull layer and the RT-

Conference system. We summarize some of them below:

15

V
id

eo
 c

ar
d

D
ev

ic
e

dr
iv

er

RT-Mach

Color Video
manager

Video receiver

Color Color map (256 colors)

Frame
data

Video
data

Video
data

X Server

Color

U
N

IX
E

m
ul

at
or

RGB 24bits/pixel
 8bits/pixel

Interfacing with the Video Devices

Figure 16: The Interface to Video Input/Output.

PILOT SHOOTER SHOOTERTarget

LEFT RIGHT FIRE FIRE

Networked Game with Real-Time Data Streaming

Figure 17: The Networked Video Shooting Game for Real-Time Data Streaming.

� Push-Pull: The push-pull communications service made the programming of the distributed portions of the

system rather easy enabling seamless communication of the various streams. Actually, the (correct) use of

UDP/IP in the underlying communication layer of the push-pull model even had an unexpected side bene�t.

Recently, during a demonstration where RT-Conference was run over a real-time network which o�ered

bandwidth guarantees, an operator error brought down the network. When the network bandwidth got

re-established, all video and audio streams recovered without any intervention and RT-Conference resumed

its functioning .

� Flexibility: The model is very exible and can support both hard real-time and soft real-time applications.

Several applications with di�erent QoS requirements can coexist in the model at the same time. Model

clearly distinguishes non real-time actions from real-time actions.

� Priority and reservation management: In a system such as RT-Conference, the priorities (or the choice of

reservation periods which in turn dictates the priorities) of the various threads play a critical role. Each data

type in this system has di�erent semantics to the user, and di�erent timing characteristics. Audio is very

sensitive to jitter and is signi�cant for interactive communications. It is therefore relatively easy to assign

audio the highest priority in the system. The real-time data stream of the video game was assigned the next

highest priority. The video thread was assigned the next highest priority followed by the white-board and

the chat window. However, other combinations of priorities may also work depending upon available system

resources and the expected frequency of usage of some data types. Hence, these parameters may actually

need to be o�ered as options to the end-user(s).

In addition to the threads within the client application, the underlying communication service threads must

also cooperate with the application threads with appropriate priorities. It is useful to note here that daemon

threads and client threads must coordinate their priority levels, else one or the other would su�er. Such

situations are the logical candidates for abstractions like processor reserve, disk and network reserves [7],

which provide timeliness guarantees and temporal protection from misbehaving threads.

16

� System bottlenecks: While video clearly consumes a good portion of the system's bandwidth, our experience

is that the network stack can also play a signi�cant role. In particular, if audio data is being processed in

very small blocks (for obtaining good end-to-end latencies), the costs of the communication protocol stack

and context switching overheads can also contribute to signi�cant overhead. We used a block size of 256

bytes for the audio stream. This imposes an acceptable overhead on Pentium 150MHz workstations but our

past experience is that the corresponding overhead can be rather high on i486 66 MHz machines.

� Silence detection: We also found that for human conversations, about 90% of the audio packets can actually

be �ltered away by silence detection. This not only acts as an excellent context-sensitive compression scheme,

but also greatly ameliorates the problem stated in the previous item.

� Thread safety and X-11/Unix: The biggest problem that we faced was one of thread safety. X-11 library calls

and Unix system calls are both being used to support the RT-Conference GUI, but neither is thread-safe in

the context of RT-Mach. This posed our biggest problem and was eventually solved only by the judicious

introduction of mutex locks and select() statements to ensure that at most one of the thread-unsafe events

was happening at any given time.

5 Conclusions

The real-time push-pull communications model extends the synchronous real-time publisher/subscriber model in

two signi�cant ways. One, it allows information sinks to access recently published data samples asynchronously

on demand. Two, it supports a heterogeneous environment by allowing low-bandwidth, low-power computing

nodes to participate in ongoing communications. This distributed communications service has been successfully

implemented as a middleware layer on top of RT-Mach, a resource-centric kernel which provides QoS support.

These services can be also invoked from CORBA [18]. We have presented some end-to-end measurements. We

have studied performance of the model in di�erent con�gurations. An interesting multi-party collaboration test-

bed has been built on top of this model. Providing more exible QoS guarantees for each data channel, intelligent

and load-balancing positioning of proxies, embedding proxies in network elements for custom data scaling, support

for high availability, etc. can be interesting future directions.

References

[1] Ken Birman, Roy Friedman, Mark Hayden and Injong Rhee. Middleware Support for Distributed Multimedia

and Collaborative Computing. SPIE International conference on Multimedia computing and Networking,'98,

San Jose, USA.

[2] Robert van Renesse, Ken Birman, Thorsten von Eicken and Keith Marzullo New Applications for Group

Computing In Theory and Practice of Distributed Systems, Lecture Notes in Computer Science, Vol.938.

[3] G. Robert Malan, Farnam Jahanian, and Sushila Subramanian Salamander: A Push-based Distribution

Substrate for Internet Applications. Proceedings of the USENIX Symposium on Internet Technologies and

Systems, December 1997; Monterey, California.

[4] Raj Rajkumar, Mike Gagliardi and Lui Sha The Real-Time Publisher/Subscriber Inter-Process Communi-

cation Model for Distributed Real-Time Systems: Design and Implementation In Proceedings of the IEEE

Real-time Technology and Applications Symposium, June 1995.

[5] Mike Gagliardi, Raj Rajkumar and Lui Sha Designing forcEvolvability: Building Blocks for Evolvable Real-

Time Systems. In Proceedings of the IEEE Real-time Technology and Applications Symposium, June 1996.

[6] Raj Rajkumar and Mike Gagliardi. High Availability in The Real-Time Publisher/Subscriber Inter-Process

Communication Model. In Proceedings of the IEEE Real-Time Systems Symposium, December 1996.

[7] Raj Rajkumar, Kanaka Juvva, Anastasio Molano and Shui Oikawa. Resource Kernels: A Resource Centric

Approach to Real-Time Systems. In Proceedings of the SPIE/ACM Conference on Multimedia Computing

and Networking, January 1998.

[8] Douglas C. Schmidt, Daid L. Levine, and Sumedh Mungee. The Design of the TAO Real-Time Object

Request Broker, In Computer Communications Journal,Summer 1997.

[9] Anastasio Molano, Kanaka Juvva and Raj Rajkumar. Real-Time Filesystems:Guaranteeing Timing Con-

straints for Disk Accesses in RT-Mach. In Proceedings of the IEEE Real-Time Systems Symposium, Decem-

ber, 1997.

17

[10] Anastasio Molano, Raj Rajkumar, Kanaka Juvva. Dynamic Disk Bandwidth Management and Metadata

Pre-fetching in a Reserved Real-Time Filesystem. In Proceedings of 10th Euromicro Real-Time Workshop.

[11] V. Fay Wolfe, L.C.DiPippo, R.Ginis, M.Squadrito, S. Wohlever, I. Zykh, and R. Johnston Real-Time

CORBA. In Proceedings of the Third IEEE Real-TIme Technology and Applications Symposium, (Montreal

Canada), June 1997.

[12] J.A.Zinky, D.E.Bakken, and R. Schantz. Architectural Support for Quality of Service for CORBA Objetcs

Theory and Practice of Object Systems,vol. 3, No. 1, 1997.

[13] Talley, T.M., Je�ay, K. Two-Dimensional Scaling Techniques for Adaptive, Rate-Based Transmission Control

of Live Audio and Video Streams. Proc. Second ACM Intl. Conference on Multimedia, San Francisco, CA,

October 1994, pp. 247-254.

[14] Peter Nee, Kevin Je�ay, Gunner Danneels. The Performance of Two-Dimensional Media Scaling for Internet

Videoconferencing. In Proceedings of the Seventh International Workshop on Network and Operating System

Support for Digital Audio and Video, St. Louis, MO,May 1997.

[15] van Renesse, R., Birman, K.P., and Ma�eis,S. Horus: A Flexible Group Communication System. Commun

ACM 39, 4 (April 1996).

[16] Mae�s, S. Adding group communication and fault-tolerance to CORBA. In Proceedings of the 1995 USENIX

Conference on Object- Oriented Technologies (Monterey,calif.,June 1995).

[17] L.E.Moser,P.M. Melliar-Smith, D.A. Agarwal, R.K. Budhia and C.A. Lingeley-Papadopoulos. Totem: A

Fault-Tolerant Multicast Group Communication System. Commun ACM 39, 4 (April 1996).

[18] Amir, E., McCanne, S., and Katz, R. Receiver-driven Bandwidth Adaptation for Light-Weight Sessions.

Usenix-97.

[19] Flaviu Cristian, Frank Schmuck. Agreeing on Processor Group Membership in Timed Asynchronous Dis-

tributed Systems. UCSD Technical Report CSE95-428, 1995.

[20] M. Clegg and K. Marzullo. A Low-Cost Group Membership Protocol for a Hard Real-Time Distributed

System. In Proceedings of Real-Time Systems Symposium, San Francisco, California,December 1997,pp.

90-99.

[21] A. Fox, S.D.Gribble,Y. Chawathe,E. Brewer, P. Gauthier. Cluster-Based Scalable Network Services. In

Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles(SOSP-16), Saint-Malo,

France, October 1997.

[22] Alan Fekete, Nancy Lynch, Alex Shvartsman. Specifying and Using a Partitionable Group Communication

Service. in 1997 PODC97, Santa Barbara, CA, pp. 53-62.

[23] Tomoyuki Ueno. The Design and Implementation of a Collaborative Conferencing System on Real-Time

Mach. Master's Thesis Report, 1997-03, Information Networking Institute, Carnegie Mellon University.

[24] SoundBlaster-16 Programmer's Guide, Creative Labs, 1996.

[25] Flaviu Cristian. Synchronous and Asynchronous Group Communications. in IEEE Workshop on Fault-

tolerant and Parallel Distibuted Systems, Honolulu.

[26] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek. A QoS-based Resource Allocation Model In

Proceedings of the IEEE Real-Time Systems Symposium. December, 1998.

[27] Lehoczky, J. P., Sha, L. and Ding, Y. The Rate Monotonic Scheduling Algorithm | Exact Characterization

and Average-Case Behavior. Real-Time Systems Symposium, Dec, 1989.

[28] Joseph, M. and Pandya. Finding Response Times in a Real-Time System. The Computer Journal (British

Computing Society,(29) 5:390-395, October, 1986.

[29] Tindell, K. An Extendible Approach for Analysing Fixed Priority Hard Real-Time Tasks. Technical Report

YCS189, Department of Computer Science, University of York, December, 1992.

|oOo|

18

Appendix A

The two key data structures used by our real-time push model are listed below. The comments on each �eld are

self-explanatory to some extent.

typedef structf

tagID t id; /* Numerical Identifier */

tagID str t id str; /* String Identifier */

u int primary; /* IP Address of Primary Node for this tag */

u int backup; /* IP Address of Backup Node for this tag */

UserList pList; /* List of Publishers on this tag */

UserList sList; /* List of Subscribers to this tag */

u int seq no; /* Sequence# for a publisher */

u int active; /* Flag indicating activity on a tag */

g Tag;

typedef struct f

u int pid; /* Process ID */

u int addr; /* IP Address */

u short port; /* Port listened on */

Ipc rt port; /* Port for ipc */

u int type ; /* Push Subscriber/Pull Subscriber */

u int freq; /* Frequency for proxy */

u int proxy location; /* Proxy/Pull location for the subscriber */

u int proxy ipaddr; /* IP address push/pull applies only to mode 3 */

u int noMessages ; /* No of pull messages */

u int pub pid ; /* pull publisher id */

u int pub addr ;

g User;

Figure 18: Key Data Structures Used.

19

