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Abstract

Parallelization has become a popular mechanism to speed up data classification tasks that deal with large
amounts of data. This paper describes a high-level, fine-grained parallel formulation of a decision tree-based
classifier for memory-resident datasets on SMPs. We exploit two levels of divide-and-conquer parallelism
in the tree builder: at the outer level across the tree nodes, and at the inner level within each tree node.
Lightweight Pthreads are used to express this highly irregular and dynamic parallelism in a natural manner.
The task of scheduling the threads and balancing the load is left to a space-efficient Pthreads scheduler.
Experimental results on large datasets indicate that the space and time performance of the tree builder scales
well with both the data size and number of processors.
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1 Introduction

The increasing availability of massive amounts of data in science and industry has made data mining ap-
plications such as data classification highly prevalent. Data classification is used to predict the value of a
class (a dependent attribute) in a data record based on the values of its other attributes. A set of data records
with known class values, called thetraining set, is used to construct a model for enabling this prediction.
In particular, decision tree-based models have become a popular mechanism for data classification, because
decision trees are relatively fast to compute, they are fairly simple to interpret by humans [30], and they
obtain accuracies comparable to other classification techniques [21]. Larger training sets enable the con-
struction of more accurate decision trees, but also increase the processing and memory requirements of the
tree building phase. Therefore, techniques that speed up decision tree building are useful. Recent work has
focused on parallelizing decision tree builders to meet this goal [22, 18, 33, 12]. Many businesses are now
investing in cost-effective symmetric multiprocessors (SMPs) with large amounts of memory to speed up
their data classification tasks.

Decision tree building algorithms have a large amount of inherent parallelism. However, the structure of
the final decision tree and the work involved in building each subtree is highly variable and data-dependent.
Therefore, implementing a parallel decision tree builder that can make effective use of multiple processors
by balancing the load and yet provide reasonable data locality is a difficult problem. Some recent parallel
methods have focused on building the decision tree from out-of-core training data, that is, data that is too
large to fit in main memory [22, 33, 18]. However, the availability of cost-effective symmetric multiproces-
sors (SMPs) equipped with a few gigabytes of main memory is increasing, and the demand for interactive
packages requiring fast decision tree builders is rising (e.g., [35, 29, 1]). Therefore, we believe that building
decision trees from in-core data remains an important problem.

This paper presents a parallel implementation of a decision tree builder for in-core data that uses fairly
fine-grained, lightweight threads. The job of efficiently implementing the program is left to the thread
scheduler, allowing the expression of simple, high-level code. Since the program is expressed in terms of a
large number of dynamic, lightweight threads, the thread scheduler can automatically balance the load across
the processors. However, if the scheduler creates too much active parallelism, the high-level, fine-grained
parallel program can often end up requiring much more memory than its serial counterpart [6, 32, 31, 26].
Increased memory requirements limit the size of the largest dataset than can be used to construct the tree
without paging to disk. In general, the running time can be affected even before the physical memory is
exhausted [26]. Therefore, we use a provably-efficient thread scheduler [27] that provides good space and
time performance for the multithreaded decision tree builder. In effect, this thread scheduler partitions the
work involved with the upper part of the tree across all the processors. However, when the working set
size decreases below a user-defined threshold (e.g., when it fits in a processor’s cache), it automatically
schedules the work for an entire subtree on a single processor to get good locality. This scheduling strategy
was developed to execute nested parallel programs in general; in particular, this paper shows that it is results
in good performance for a high-level decision-tree building code.

We have parallelized the original C4.5 decision tree building algorithm as proposed by Quinlan [30].
We exploit divide-and-conquer parallelism in C4.5 at two levels: at the outer level of building the tree node-
by-node in a top-down, recursive manner, and at the inner level of sorting data records within a single node
using a parallel quicksort. The expression of this high degree of fine grained parallelism has several advan-
tages, including simpler code, adaptability to a changing number of available processors, and automatic load
balancing. We feel that this approach of using fine grained threads with an efficient thread scheduler could
potentially be extended to other decision tree building techniques.

The decision tree building program uses a lightweight, user-level implementation of Posix standard
threads or Pthreads [17]; the Pthreads implementation has been modified to use the space-efficient sched-
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uler [27]. The results of executing the program on an 8-processor SMP indicate that the implementation
scales well with both the number of processors and the number of data instances (records). For example,
for an input dataset with 1.6M instances on 8 processors, we obtain a speedup of 6.32 with respect to an
efficient, serial version of the program. The results also indicate that the modified, space-efficient Pthreads
scheduler provides better space and time performance for the tree builder, in comparison to the original
Pthreads scheduler.

The remainder of this paper is organized as follows. Section 2 describes how our parallel formulation
of the C4.5 tree building algorithm. Section 3 provides an overview of the hardware and software systems
used to implement the algorithm. The experimental results are presented in Section 4. Section 5 presents
an overview of related work in parallel decision tree building, followed by a summary and discussion in
Section 6.

2 Parallelizing C4.5

Recent tree building algorithms [20, 33], designed mainly for out-of-core data, result in equivalent perfor-
mance as Quinlan’s C4.5 [30] for in-core data. Since the focus of this work was on building the decision
tree from in-core data, that is, data that fits in the main memory of the machine, we decided to parallelize
the original C4.5 algorithm.

C4.5 is a top-down divide-and-conquer algorithm that builds a decision tree from instances with both
discrete and continuous attributes. Our implementation currently handles only continuous attributes, and
therefore builds binary trees. At each node, the best attribute (and best split) is picked according to the
highest gain ratio. Computing the gain ratio involves sorting the instances according to each attribute at
each tree node. Since the time for pruning the tree is negligible (< 1%) compared to the time required for
the tree building phase [20], we have not currently implemented the pruning phase.

We took advantage of the intrinsic divide-and-conquer nature of the C4.5 algorithm to parallelize it
using lightweight threads; Figure 1 shows our parallel formulation of the algorithm. A new child thread is
dynamically created to execute each of the two branches of thein parallel construct (which include
the recursive calls toTree Build ). The child threads may execute in parallel; after finishing the parallel
recursive call, they synchronize with the original (parent) thread and terminate. In practice, since threads
are typically more expensive than simple function calls, we amortize thread overheads by switching to serial
recursion when the dataset size becomes very small. To increase the degree of parallelism in the code, the
work executed at each tree node can also be parallelized. We executed each sort at a node using a parallel
divide-and-conquer quicksort; again, each recursive call to quicksort is executed by a new thread. Thus, our
code has two levels of divide-and-conquer parallelism: at the outer level over the decision tree, and at the
inner level (within each tree node) in the quicksort. The resulting computation graph is highly irregular and
data dependent, and it is left to the thread implementation to schedule it efficiently at runtime. Note that
this use of a large number of lightweight threads allows the program to be written at a fairly high level, with
code that reflects the natural parallelism in the program. Further, the load can be balanced automatically by
the thread scheduler, and the program can adapt to a changing number of available processors. A coarse-
grained version in which the programmer explicitly partitions and maps the parallelism onto the processors
and dynamically balances the load would be significantly more complex. A more detailed description of the
advantages of using lightweight threads in general can be found elsewhere [26].

The sort was executed in place and did not involve any dynamic allocation of heap memory. However,
in the outer level of the divide-and-conquer parallelism, heap memory is dynamically allocated at each tree
node to store the subset of instances that filter down to that node. Thus, the instances used at each node
are stored in contiguous memory, leading to simpler code and efficient use of the processor cache. Since
the threads constructing the node’s children subsequently access these instances in parallel (to extract their
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Tree_Build(data) {
if Is_Leaf(data) return (Make_Leaf(data));
(attr, split) = Find_Best_Split(data);
cell = Make_Cell(attr, split);
in parallel {

{
data1 = Extract_Data(data, attribute, split, lesser_or_equal);
cell->left = Tree_Build(data1);

}
{ data2 = Extract_Data(data, attribute, split, greater);

cell->right = Tree_Build(data2);
}

}
return (cell);

}

Find_Best_Split(data) {
for each attr {

Sort(data, attr); /* parallel quicksort */
find best split in sorted data;

}
pick attr a with best split s;
return (a,s);

}

Figure 1: Pseudocode for the parallelized version of C4.5.Extract Data() allocates space for and
extracts instances with values of the given attribute that are either less-than-or-equal, or greater than the
given split value.Sort() sorts the instances according to the given attribute using a parallel, divide-and-
conquer quicksort.

subset), this heap memory is freed after the entire subtree under the node has been constructed1. Thus, due
to the large numbers of threads expressed and the big amounts of dynamic memory allocated, we decided to
use a space-efficient thread scheduler [27], as described in Section 3.

Code complexity. We provide the number of lines of code as a measure of the complexity of writing
the parallel tree builder using the high-level model of lightweight threads. The initial serial version was
under 700 lines of code, including comments and code for I/O, debugging and testing; around 50-100 of
these lines could have been omitted if the code was not written with the intention of being subsequently
parallelized. Starting from the 700 lines of serial code, three functions, totaling to under 150 lines of code,
were duplicated to convert them into their parallel versions; we retained the original serial versions for serial
recursion near the leaves of the decision tree. Less than 40 new lines of code were added to parallelize these
three functions using Pthreads; the majority of these 40 lines involved packing and unpacking arguments for
the Pthreads. Thus, the final code had less than 900 lines of code.

1A more complex method of coding the algorithm can free the memory at an earlier stage, once all the child threads have
extracted their subsets.
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3 Execution Platform

The hardware platform for the experiments described in this paper is an 8-processor Sun Enterprise 5000
SMP running Solaris, with 2GB of main memory. Each processor is a 167MHz UltraSPARC with a 512KB
L2 cache. All the experiments described in this paper have a space requirement of less than 2GBs, so that
the data is always resident in the main memory.

Posix threads or Pthreads [17] support a standard interface adopted by a number of SMP vendors [36,
37, 14, 7, 15]. We use the native Pthreads package on Solaris 2.5 [37], which implements Pthreads at the
user level. This allows common thread operations such as creation and synchronization to be cheaper than
corresponding operations on kernel-level threads [28, 26]. Thus, thousands of threads can be dynamically
created and destroyed during the execution of the program.

We use two versions of the native Solaris Pthreads implementation2. Both versions use a default thread
stack size of a page (8KB) instead of the original 1MB, because a small stack is more appropriate for our
lightweight, short lived threads. Setting the library’s default stack size to 8KB allows the library tocache and
reuse previously allocated stacks of that size. The first version of the Pthreads implementation uses a simple
FIFO scheduling queue, the only option currently available in the native Solaris Pthreads implementation.
We call this version of the Pthreads implementation the “original” version. In general, a FIFO queue may
result in a large number of threads being simultaneously created and made active. Consequently, the program
may require more memory than necessary, and hence, also suffer from poor performance [26]. Therefore,
our second Pthreads version uses a space-efficient scheduler [27, 25]. In general, this scheduler reduces the
total amount of memory required to execute a parallel program, while also resulting in good locality and low
scheduling overheads. We call this version of Pthreads the “new” version. In the Section 4, we will present
experimental results using both Pthreads versions. Note that the standard Posix interface supported by both
versions is identical, and therefore we run the same decision tree building program using both versions. We
now describe the space-efficient scheduler in more detail.

The space-efficient scheduler

Unlike distributed memory machines, SMPs have smaller (a few megabytes in size) hardware-coherent off-
chip caches, and they do not support explicit, user-controlled distribution of data in these caches. Therefore,
if some task makes sequential passes over data that is too large to fit in the cache, which processor the task is
scheduled on has little impact on its performance (provided the load is balanced). The tasks of creating the
nodes in the upper part of the decision tree make sequential passes over large amounts of data, and therefore
have such characteristics. However, once the data that filters down to a subtree fits in a processor’s cache,
it is more efficient to construct the entire subtree on that processor (provided there is sufficient work to
keep all processors busy). This characteristic is common to a number of nested, divide-and-conquer parallel
applications. The space-efficient scheduling algorithm used in this paper was designed to efficiently execute
such applications while keeping total memory requirements low.

The space-efficient scheduler conserves memory requirements by prioritizing threads in their serial,
depth-first execution order. Further, the scheduler preempts threads when they allocate too much memory;
such threads are essentially lowered in priority. Note that in the parallel C4.5 formulation described in
Section 2, threads constructing the nodes in the upper levels of the decision tree allocate large amounts of
memory to store data instances. Therefore, these threads may get preempted and subsequently rescheduled
on different processors. However, when a thread and its descendent threads do not allocate a large amount
of memory, the scheduler allows all of them to execute on a single processor (unless other processors are
idle). Since the decision tree in our program is built at each stage by recursively forking new child threads

2We had access to the source code for the original Solaris Pthreads implementation, allowing us to make modifications to it.
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to build each subtree, entire subtrees near the bottom of the tree are executed on a single processor. Further,
the threads within such a subtree are executed by the scheduler in a depth-first order on one processor, which
typically results in good cache locality. Similarly, child threads ineach invocation of the parallel quicksort
(which does not require any dynamic memory allocation) tend to be executed in depth-first order on the
same processor as their parent thread. The depth-first execution order is achieved by each processor storing
its threads in a LIFO stack; such stacks are globally ordered by the scheduler according to the serial (depth-
first) execution order of their threads. Note that whenever a processor becomes idle, it selects a thread to
steal at random from high-priority stacks. The thread is stolen from the bottom of the selected stack, and
typically corresponds to the computation of a node higher in the decision tree. Such a stealing policy results
in higher granularity of work being stolen, leading to fewer steals. For a purely nested-parallel program
with a depth (critical path length) ofD and a serial (depth-first) space requirement ofS1, the scheduler
guarantees that the parallel execution onp porcessors will requireS1 + O(p �D) space3. Further details
on the design and analysis of the space-efficient scheduler, along with experimental comparisons with other
thread schedulers, can be found elsewhere [25, 27].

Note that Pthreads support a wide range of standard functions, and are implemented as a separate library
(instead of being part of the programming language). Consequently, they incur overheads for operations
such as thread creation and deletion that are two orders of magnitude higher than the cost of a C function
call. In our experiments, we amortize such basic Pthread overheads by switching to serial recursion once the
dataset at a node reaches a size of 4000 instances (or less). Similarly, in the parallel quicksort, we switch to
serial recursion once the number of examples to be sorted falls below 4000. Note that such serialization of
subtrees at the lowest levels of the recursion tree (in both the tree build and quicksort) allows both versions
of the Pthread scheduler to obtain data reasonable locality near the leaves. However, the space-efficient
scheduler can obtain additional locality by scheduling multiple Pthreads close together in the recursion tree
on one processor.

4 Experimental Results

We now describe the experiments to evaluate our C4.5 implementation. This section begins by describing
the input datasets and the accuracy of our final decision tree for the inputs. Next, we describe the space and
time performance of our program.

4.1 Input datasets

Due to the lack of availability of real datasets with more than 150,000 (150K) examples, we decided to use
the synthetic dataset proposed by Agrawalet al. [3]. Each instance (record) in the synthetic dataset holds
information about a customer. The dataset has 8 continuous attributes, each representing some information
about the customer4. To allow a meaningful comparison with previous work, we used functionpred7from
the synthetic dataset generator [16] to generate the dataset. The binary class declares whether or not the
customer has any disposable income that he/she is likely to spend. The functionpred7computes the class
for each customer (record) as shown below.

3For example, our parallel formulation of the decision tree builder in Figure 1 is a purely nested parallel program. However, the
use of mutexes and condition variables within the Pthread implementation itself addsnon-nested-parallel computation to the final
Pthreads-based decision tree builder.

4We did not use the ninth attribute, namely the zipcode, and we treated the numeric “car” attribute as continuous.
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function pred7:
disposable := (2� (salary+commission)/3� loan/5� educationlevel�5000+ equity/5� 10000);
if (disposable> 0) then return TRUE;
else return FALSE

Performance results for a real, but smaller speech-recognition dataset are reported elsewhere [27, 25].
We verified the correctness of the decision tree builder by measuring its accuracy for the synthetic

dataset. Note that since we have not yet implemented tree pruning, our program produces larger-than-
optimal trees with a slight cost to accuracy. For example, for the a training set with 100K instances and a
test set with 20K instances, our program achieves an accuracy of 96.2%. Data-generating functions simpler
than function 7 result in accuracies of 100% for even very small training sets, because in this case, the tree
produced by our program is small and pruning is not required. We expect the accuracy of our program to
improve after tree pruning is implemented.

4.2 Serial performance

All the speedups reported in this paper are calculated with respect to the serial C version of the program
that does not use any threads. To ensure that this base case is competitive with previous work for in-core
input sizes, we measured the performance of this serial version for the synthetic dataset. On a 167MHz
UltraSPARC with 128MB of main memory, building the tree for one of the biggest problem sizes (300,000
or 300K input instances) that ran without paging required 266 seconds. On a similar machine with more
memory, the serial program built a tree from 800K instances in 816 seconds, and took 1748 seconds to
build a tree from 1600K instances. The same program ran for an input size of 100K in 155 seconds on a
80MHz PowerPC processor5. Note that these numbers are competitive with previous decision tree building
implementations [33, 22] on data generated by a function slightly simpler thanpred76. For example,
Zaki et al. [39] report a running time of around 1750 seconds for 1000K input instances of a synthetic
dataset generated using the simpler function on a 112MHz PowerPC.

Recall that we switch to serial recursion in our code once the number of examples falls below 4000.
This ensures that thread overheads are under 1% of the total running time of the program. Consequently, the
multithreaded version on one processor runs at most 1% slower than the serial, C program.

4.3 Parallel performance

We now present the results of running the parallel, multithreaded decision tree builder on multiple pro-
cessors. Parallel implementations of programs often require more memory than their serial counterparts,
especially when the parallelism is expressed in a high-level and fine-grained manner. Minimizing the mem-
ory requirement of the parallel tree builder allows the use of larger datasets for building the tree without
paging to disk. Note that a lower memory requirement also typically results in better time performance due
to fewer memory-related system calls, and fewer TLB misses. We therefore present both the time and space
performance of the parallel tree builder.

The numbers reported in this section were measured on the 8-processor Enterprise 5000 SMP described
in Section 3. In all the figures, “Orig” refers to the Pthreads implementation with the original FIFO schedul-

5Because this machine has only 32MB of memory, we did not run bigger problem sizes on it.
6The previous implementations were evaluated using a data generating function “function 7” that differs slightly frompred7,

and is defined elsewhere [33]. Our tree builder ran around 20% faster on the data generated by this simpler function (function 7),
compared to data generated bypred7, which we use in all our experiments.
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ing queue, while “New” refers to the implementation that uses the space-efficient Pthreads scheduler. We
ran our program on datasets ranging in size from 100K instances to 1600K (1.6M) instances.

Time performance

Figure 2 shows the speedup of our program for with respect to the serial C version of the program. Although
both thread libraries perform fairly well, the space-efficient library scales better with the number of proces-
sors. This is probably because it results in a lower memory requirement (less contention between threads
for memory allocation), and because it schedules threads in an attempt to get better locality at lower levels
of the recursion tree. As expected, the speedups are higher for the larger problem size.
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denotes the implementation modified to use a space-efficient Pthreads scheduler.
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4, 8). These experiments used the space-efficient scheduler.

Figure 3 shows the increase in running time with the size of the input dataset using the new Pthreads
scheduler. Recall that we use quicksort to pick the best attribute at a decision tree node; quicksort sorts
n records inO(n logn) time in the expected case. Therefore, the running time grows slightly faster than
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linearly with the input size.

Space performance

We use the high-water mark of total heap memory allocation (including the memory required to store the
input data) as a measure of the memory requirement of the program. This high-water mark is essentially
the maximum of the total heap memory allocated by all the threads at any time during the execution of the
program. Recall that heap memory is dynamically allocated to store subsets of the original input dataset that
filter down to individual tree nodes. Figure 4 shows the variation in the memory requirement of the decision
tree builder with the number of processors, for different input sizes. The results indicate that the original
Pthreads scheduler requires more memory than the space-efficient scheduler as the problem size increases.
Figure 5 shows the variation of the memory requirement using the space-efficient scheduler, as the problem
size increases. Both Figures 4 and 5 show that the total memory required by the decision tree builder does
not increase with the number of processors.
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5 Related Work

In the recent past, there has been a fair amount of research on parallelizing data mining applications in gen-
eral [11, 34, 19, 2, 4, 8, 5, 9, 24, 38, 10, 23]. However, a fewer number of parallel decision tree builders
have been presented [33, 12, 22, 18]. For example, the SPRINT tree building algorithm [33] is designed to
efficiently handle out-of-core data. Because sorts on out-of-core data are expensive, it pre-sorts the data at
the beginning of the execution rather than at each tree node, and uses a hash table to map a data record to the
node it currently belongs to. In the parallel version of SPRINT for distributed memory machines [33], pro-
cessors synchronously construct each node of the tree. Each of theP processors begins with1=P of the data
instances, but the partitioning can soon become highly unbalanced. Explicit load balancing involves signif-
icant complexity [39]. Further, SPRINT uses per-processor hash tables, and these hash tables are large near
the top of the tree; therefore, the memory requirement of SPRINT increases with the number of processors.
Parallel algorithms based on SPRINT have also been proposed for shared memory SMPs [39]. One of these
algorithms (MWK) constructs the tree in a breadth-first manner, with pipelined parallelism between nodes
at the same level in the tree. However, since data is always accessed level-by-level, the algorithm cannot
take advantage of the good cache usage that can be obtained by executing an entire, lower-level subtree on
one processor. A second algorithm (SUBTREE) exploits task parallelism by dynamically assigning com-
putations of subtrees to processor groups. In both the algorithms, the partitioning and scheduling is done
explicitly by mechanisms specific to the algorithms. In comparison, our algorithm expresses more fine-
grained parallelism both across tree nodes and within a node, and relies on the underlying, general-purpose
Pthreads implementation to transparently schedule and balance the work.

ScalParC is another parallel decision tree builder designed for handling out-of-core data on distributed
memory machines [18]. As with SPRINT, the ScalParC algorithm pre-sorts the data, but uses a distributed
hashtable instead of a per-processor hashtable to map records to nodes; this reduces the memory required
to store the hash table. To balance the load across processors, the tree is built level-by-level in a breadth-
first order. This scheme is well-suited for handling out-of-core data, where disk accesses dominate the
total execution time. However, for in-core datasets, good cache locality is important at lower levels of
the recursion tree, which cannot be obtained with a breadth-first tree construction. Srivastavaet al. [12]
propose a parallel formulation in which processors work together to synchronously build the nodes in the
top few levels of the decision tree; the tree nodes in lower levels are gradually partitioned across groups
of processors as the number of data instances filtering down to the nodes decreases. Note that by using
our general-purpose, space-efficient thread scheduler, we automatically get a similar implementation while
using a simple, high-level program.

6 Summary and Discussion

Decision tree building is a difficult application to parallelize, due to a large amount of data-dependent,
dynamic parallelism. We have presented a high-level parallel formulation of Quinlan’s C4.5 decision tree
building algorithm which uses an underlying, space-efficient implementation of lightweight Pthreads to get
good performance. Because the lightweight-threads model allows threads to be dynamically created and
destroyed often, we are able to express the dynamic parallelism inherent within C4.5 in a natural manner.
The use of lightweight threads also allows us to express a large amount of parallelism, so that the load can
be dynamically balanced by the thread implementation. We showed that with an efficient, general-purpose
thread scheduler, our high-level code can achieve serial and parallel performance competitive with previous
approaches. We feel that this lightweight threads approach can be applied to other data mining approaches,
leading to simpler parallel formulations for cost-effective SMPs.

Future work involves adding tree pruning and the ability to handle discrete attributes. Currently we
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parallelize only the sorts at each tree node. We plan to express more of the parallelism inherent within the
work performed at each node; for example, the calculation of the best gain ratio from a sorted sequence
can also be parallelized. We feel that an efficient implementation of lightweight threads will also be useful
to parallelize decision tree building algorithms designed for out-of-core data; the threads could be used to
hide a significant portion of the I/O latency in such problems. We also plan to investigate the potential of
applying an efficient implementation of lightweight threads to other data mining techniques.
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