
What is a Recursive Module?

Karl Crary Robert Harper Sidd Puri

October 1998

CMU-CS-98-168

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

A hierarchical module system is an e�ective tool for structuring large programs. Strictly hierarchical module

systems impose an acyclic ordering on import dependencies among program units. This can impede modular

programming by forcing mutually-dependent components to be consolidated into a single module. Recently

there have been several proposals for module systems that admit cyclic dependencies, but it is not clear how

these proposals relate to one another, nor how one might integrate them into an expressive module system

such as that of Standard ML or O'Caml. To address this question we provide a type-theoretic analysis of

the notion of a recursive module in the context of the \phase-distinction" formalism for higher-order module

systems. We extend this calculus with a recursive module mechanism and a new form of signature, called a

recursively-dependent signature, to support the de�nition of recursive modules. These extensions are justi�ed

by an interpretation in terms of more primitive language constructs. This interpretation may also serve as

a guide for implementation.

This research was sponsored by the Advanced Research Projects Agency CSTO under the title \The Fox Project:

Advanced Languages for Systems Software", ARPA Order No. C533, issued by ESC/ENS under Contract No.

F19628-95-C-0050. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing o�cial policies, either expressed or implied, of the Defense Advanced Research Projects

Agency or the U.S. Government.



Keywords: Type systems, module systems, functional programming, phase splitting.



1 Introduction

Hierarchical decomposition is a fundamental design principle for controlling the complexity of large pro-

grams. According to this principle a software system is to be decomposed into a collection of modules whose

dependency relationships form a directed, acyclic graph. Most modern programming languages include mod-

ule systems that support hierarchical decomposition. Many, such as Standard ML [13] and O'Caml [12], also

support parameterized, or generic, modules to better support code re-use.

There is no question that hierarchical design is an important tool for structuring large systems. It has

often been noted, however, that strict adherence to a hierarchical architecture can preclude the decomposition

of a system into \mind-sized" components. In some situations the natural decomposition of a system

into modules introduces cyclic dependencies, which cannot be expressed in a purely hierarchical formalism.

The only solution is to consolidate mutually-dependent fragments into a single module, which partially

undermines the very idea of modular organization.

In response several authors have proposed linguistic mechanisms to support non-hierarchical modular

decomposition. Recent examples include: Sirer, et al.'s extension of Modula-3 with a \cross-linking" mecha-

nism [17]; Flatt and Felleisen's extension of their MzScheme language with cyclically-dependent \units" [6];

Duggan and Sourelis's \mixinmodules" that extend the Standard MLmodule system with a special \mixlink"

construct for integrating mutually-dependent structures [4, 5]; and Ancona and Zucca's algebraic formalism

for mixin modules [2]. Each of these proposals seeks to address the problem of cyclic dependencies in a

module system, but each does so in a slightly di�erent way. For example, Flatt and Felleisen's formalism

does not address the critical issue of controlling propagation of type information across module boundaries.

Duggan and Sourelis's framework relies on a syntactic transformation that, in e�ect, coalesces the code of

mutually-dependent modules into a single module. It is not clear what are the fundamental ideas, nor is it

clear how to integrate the various aspects of these proposals into a full-featured module system.

It is natural to ask: what is a recursive module? We propose to address this question in the framework

of type theory, which has proved to be a powerful tool for both the design and implementation of module

systems. We conduct our analysis in the context of the \phase distinction" module formalism introduced

by Harper, Mitchell, and Moggi [9] (hereafter, HMM). The phase distinction calculus provides a rigorous

account of higher-order modules (supporting hierarchy and parameterization) in a framework that makes

explicit the critical distinction between the static, or compile-time, part of a module and the dynamic, or

run-time, part. This calculus has proved to be of fundamental importance to the implementation of higher-

order modules, as evidenced by its use in Shao's FLINT formalism used in the SML/NJ compiler [15] and

in the TIL/ML compiler [18].

Our analysis proceeds in two stages. First we consider a straightforward extension of the phase distinction

calculus with a notion of recursive (self-referential) module. An interpretation of this new construct is

provided by an interpretation of it into the primitive module formalism of the phase distinction calculus.

This interpretation renders the compile-time part as a recursive type and the run-time part as a recursive

function, as might be expected. In essence a recursive module is just a convenient way of introducing

recursive types and functions.

Unfortunately this simple-minded extension does not go far enough to be of much practical use. As

Duggan and Sourelis have observed [5], it is of critical importance for most practical examples that the type

equations that hold of a recursive module be propagated into the de�nition of the recursive module itself.

In essence the de�nitions of the type components of a recursive module must be taken to be the types that

they will eventually turn out to be (!) once the recursive declaration has been processed. Accounting for this

\forward reference" is the core contribution of our work. We introduce a new form of signature (interface)

for recursive modules, called a recursively-dependent signature, that allows us to capture the required type

identities during type checking of a recursive module binding. This signi�cantly increases the expressive

power of the recursive module formalism, and is, we assert, of fundamental importance to the very idea of

recursive modules.

1



2 Type-Theoretic Framework

We begin by presenting the framework in which we conduct our analysis. We will conduct our examples using

an informal external language closely modeled after the syntax of Standard ML. The external language is then

elaborated into the type-theoretic internal language that we describe below. We will treat the elaboration

process informally, illustrating it by examples. Details of how elaboration may be formalized appear in

Harper and Stone [10].

Our internal language is an extension of the phase distinction calculus of Harper, Mitchell, and Moggi [9].

The language consists of two main components: a core calculus, a predicative variant of Girard's F!, and a

structure calculus, extending the core language with a primitive module construct without explicit mecha-

nisms for hierarchy (e.g., substructures) or parameterization (e.g., functors). Primitive modules consist of

a static, or compile-time, part containing the type constructors of the module, together with a dynamic,

or run-time, part containing the executable code of the module. This separation is known as the phase

distinction. An important property of the formalism is that the phase distinction is maintained, even in the

presence of higher-order (and, as we shall see, recursive) module constructs.

The main result of HMM is that higher-order module constructs are a de�nitional extension of the

primitive structure calculus. In other words higher-order constructs are already present in the primitive

structure calculus in the sense that they may be de�ned in terms of existing constructs. (This interpretation

may be thought of as a compilation strategy for higher-order modules, and indeed this fact has been exploited

in the FLINT [15] and TIL [18] compilers.) This means that we need not explicitly discuss higher-order

module constructs in this paper, but rather appeal to HMM for a detailed discussion of their implicit

presence.

To support the extension with recursive modules we enrich the core phase distinction calculus with these

additional constructs:

1. Singleton and dependent kinds to allow expression of type sharing information in signatures. Related

formalisms for expressing type sharing information are given by Harper and Lillibridge [7] and Leroy

[11].

2. A �xed point operation for building collections of mutually-recursive type constructors. These recursive

constructors are de�nitionally equal to their unrollings. We term such constructors equi-recursive, to

distinguish them from the more conventional iso-recursive constructors, in which conversions between

the constructors and their unrollings must be mediated by the explicit use of an isomorphism. We

discuss the interplay of equi- and iso-recursive constructors in Section 5.

3. A �xed point operation for building collections of mutually-recursive functions. As will become appar-

ent later on, we cannot (as in SML) limit this operation to collections of explicit lambda abstractions.

Instead we formalize a notion of valuability (indicating terminating expressions) and a corresponding

notion of total function, essentially as in Harper and Stone [10], but with the additional idea that

recursively-de�ned variables are not considered valuable within the body of their de�nitions, but are

considered valuable in their subsequent scope.

In subsequent sections of this paper, we will further augment our structure calculus with various constructs

for recursive modules, and then show how those constructs can be reduced to the elementary constructs

discussed in this section.

2.1 The Core Calculus

The core phase distinction calculus contains four syntactic classes: kinds, type constructors (or just \con-

structors"), types, and terms. As usual, types classify terms and kinds classify constructors. The construc-

tors provide a lambda calculus for constructing types. The syntax of the core calculus appears in Figure

1. We shall consider expressions that di�er only in the names of bound variables to be identical, and write

capture-avoiding substitution of E for X in E0
as E0

[E=X].

The kinds include the kind T of all monotypes; the trivial kind 1, containing only the constructor

?; dependent products ��:�1:�, containing constructor functions from �1 to �2 where � stands for the

2



kinds � ::= T j 1 j Q(c) j��:�1:�2 j��:�1:�2
constructors c ::= � j ? j ��:�:c j c1c2 j hc1; c2i j �i(c) j 1 j c1 * c2 j

c1 � c2 j ��:�:c
types � ::= c j �1 ! �2 j �1 * �2 j �1 � �2 j 8�:�:�
terms e ::= x j ? j �x:�:e j e1e2 j he1; e2i j �i(e) j ��:�:e j e[c] j �x (x:�:e)
contexts � ::= � j �[� : �] j �[x : �] j �[x " �]

Figure 1: The Core Calculus

Q(c : T )
def

= Q(c)

Q(c : ��:�1:�2)
def

= ��:�1:Q(c � : �2) (for � not free in c)

Q(c : �1 � �2)
def

= Q(�1(c) : �1)� Q(�2(c) : �2)

Q(c : 1)
def

= 1

Figure 2: Higher-Order Singletons

argument and may appear free in �2; and dependent sums ��:�1:�2, containing constructor pairs built from

�1 and �2 (respectively) where � stands for the left-hand member and may appear free in �2. As usual, if

� does not appear free in �2, we write �1 ! �2 for ��:�1:�2 and �1 � �2 for ��:�2:�2.

Finally, for any constructor c with kind T , the singleton kind Q(c) contains monotypes de�nitionally

equal to c. Thus, if c has kind Q(c0), the calculus permits the deduction of the equation c = c0 : T . Singleton

kinds provide a mechanism for expressing type sharing information [7, 11]. Although singleton kinds exist

only for monotypes, they may be used in conjunction with higher dependent kinds to express higher-order

sharing information. For instance, if c has kind ��:T:Q(list(�)), it follows that c = list : T ! T . The

de�nition in Figure 2 generalizes this idea.
1

The type constructors are largely standard. The trivial type 1 contains the trivial term ?. The types

c1 ! c2 and c1 * c2 are the types of total and partial functions from c1 to c2 and are discussed in more detail

below. The equi-recursive constructor ��:�:c[�] is is a �xed point of the equation � = c[�]. Thus ��:�:c[�]

is equal to its unrolling c[��:�:c[�]]. This is in contrast to the somewhat more conventional iso-recursive

formulation, where conversions between the two must be mediated by explicit operations. In Section 5 we

discuss how to simplify the type theory to use only iso-recursive constructors.

Note that there is a subtle interaction between recursive constructors and singleton kinds. Since the con-

structor ��:�:c has kind �, it follows that ��:Q(c):c0 = c. Thus, although ��:T:� is a vacuous, uninhabited

type (as usual), the deceptively similar type ��:Q(int):� is equal to int.

The �nal construct, �x (x:�:e) at the term level, allows the de�nition of recursive values. However, to

achieve conservativity over ML, we wish to prevent the de�nition of cyclic data structures such as �x (x :

int list: 1::x), which cannot be de�ned in ML.
2
We do this by imposing a value restriction on the bodies of

recursive de�nitions. The calculus contains judgements � ` e # � asserting that e has type � and terminates

without computational e�ects. (In the present setting, the only computational e�ect is nontermination.)

With this so-called value restriction in place, the formation rule for recursive values is:

�[x " �] ` e # � � ` � type

� ` �x (x:�:e) : �
(x 62 Dom(�))

This rule is read: �x (x:�:e) has type � if e terminates with type � under the assumption that x has type

� but cannot be taken as valuable. This rules out the cyclic list proposed above, since 1::x is not valuable

1Note that Q(c : �) is not de�ned when � is a singleton or dependent sum kind. This does not change the expressive power
of this construct and is necessary to obtain some desirable properties, for instance that Q(c : �) is a subkind of �, and that �
is uniquely determined by Q(c : �).

2To achieve conservativity over ML, we will also need to eliminate equi-recursive types in favor of iso-recursive types. We
discuss this in Section 5.

3



constructors c ::= � � � jFst(s)
terms e ::= � � � j snd (s)
signatures S ::= [�:�:�]

modules M ::= [c; e]

contexts � ::= � � � j �[s : S] j �[s " S]

Figure 3: The Structure Calculus

unless x is valuable. In fact, the value restriction implies that all appearances of x must be guarded by

(i.e., within the body of) a lambda abstraction; lambda abstractions are always valuable, regardless of the

state of their free variables. As in Harper and Stone [10], the collection of valuable expression is enlarged by

including a type for total (pure) functions, such as cons (::). The application of a valuable total function

to a valuable argument is considered valuable. Total functions are considered to be types, but not type

constructors, in order to prevent their erroneous use in conjunction with recursive types.

2.2 The Structure Calculus

Atop the core calculus we erect a structure calculus, exactly as in HMM. To review, we add two syntactic

classes, one for at signatures and one for at structures (Figure 3). Structures are pairs [c; e] of constructors

and terms. The left-hand component is referred to as the compile-time (or, static) component, and the

right-hand component is referred to as the run-time (or, dynamic) component. Signatures, which classify

structures, have the form [�:�; �], where � stands for the compile-time component and may appear free in

�. The structure, [c; e] has kind [�:�; �] if c has kind � and e has type �[c=�]. Often we will write [� = c; e]

as shorthand for [c; e[c=�]]. We also add constructor and term constructs Fst(s) and snd (s) for extracting

the �rst and second components out of structures named by variables. We will occasionally treat these

constructs as variables and allow substitution for them.

The structure calculus shows an explicit phase distinction between compile-time and run-time expres-

sions [9, 3]. Static expressions may be separated from dynamic ones, and static ones will never depend on

dynamic ones. This ensures that programs may be typechecked without the need to execute any run-time

code.

HMM show that higher-order modules can be reduced to the simple structure calculus given here. There-

fore we will omit explicit discussion of higher-order modules, without any loss of generality. In this paper,

we show how recursive modules may similarly be reduced to the structure calculus given here. In so doing,

we will show that despite the apparent intertwining of static and dynamic expressions in recursive modules,

that the phase distinction can be preserved, just as HMM showed for higher-order modules.

3 Opaque Recursive Modules

We begin our examination by considering what we call \opaque" recursive modules. These will prove to

insu�ciently expressive for most applications, but they will serve to illustrate the main ideas and motivate

the more complex machinery in the next section.

In the (informal) external language, we write an opaque recursive module de�nition as:

structure rec S :> SIG = struct ... end

The structure variable S is, of course, permitted to appear free within the structure's body. The signature

SIG then expresses all the information that is known about S in the body or in the subsequent code. (We

borrow the \:>" symbol from Standard ML 1997 [13] to suggest this opacity.) In particular, the opaque

signature obscures the fact that the types in S are recursively de�ned.

This declaration construct corresponds to a module �xed point operation in the internal language, written

�x (s:S:M ). For reasons similar to those in the previous section, we must impose a value restriction on M ,

4



� ` � kind �[� : �] ` � type �[� : �] ` c : � �[� : �][x " �] ` e # �

� ` �x (s:[�:�:�]:[c[Fst(s)=�]; e[Fst(s); snd (s)=�; x]]) = [� = ��:�:c; �x(x:�:e)] : [�:�:�]
(�; x 62 Dom(�))

Figure 4: Phase-Splitting Recursive Modules

resulting in the following typing rule:

�[s " S] `M # S � ` S sig

� ` �x (s:S:M ) : S
(s 62 Dom(�))

Thus, a recursive module is valid if its body (M ) is valuable without assuming the recursive variable (s) to

be valuable. If a module M is [c; e], then M will be valuable exactly when e is valuable (i.e., constructors

are always valuable).

Following HMM, we wish to reduce recursive modules to the primitive structure formalism by de�n-

ing �x (s:S:M ) in terms of primitive constructs. We will do this by phase-splitting recursive modules

into run-time and compile-time components. Suppose S is the signature [�:�:�] and M is the structure

[c(Fst(s)); e(Fst (s); snd (s))]. Then we can interpret �x (s:S:M ) by wrapping the static and dynamic compo-

nents in �xed point expressions:

�x (s:S:M ) = [� = ��:�:c(�); �x(x : �:e(�; x))]

This de�nition is formalized in the type theory by the equational rule in Figure 4. This rule parallels the

non-standard equational rules from HMM, and illustrates that recursive modules are already present in the

underlying calculus. In particular, the formation rule for recursive modules given above follows from the

de�nition and need not appear as a primitive rule.

3.1 Trouble with Opacity

The opaque interpretation of recursive modules is pleasantly simple, but unfortunately, it is not su�ciently

expressive to support some desired programming idioms. One common application of recursive modules is

to break up mutually recursive data types. As a particularly simple (though somewhat contrived) example,

consider an implementation of integer lists as a recursive module that defers recursively to itself for an

implementation of the tail:

signature LIST =

sig

type t

val nil : t

val null : t -> bool

val cons : int * t -> t

val uncons : t -> int * t

end

5



structure rec List :> LIST =

struct

datatype t = NIL | CONS of int * List.t

val nil = NIL

fun null NIL = true

| null (CONS _) = false

fun cons (n : int, l : t) =

case l of

NIL => CONS (n, List.nil)

| CONS (n' : int, l' : List.t) =>

CONS (n, List.cons (n', l'))

fun uncons NIL = raise Fail

| uncons (CONS (n : int, l : List.t)) =

if List.null l then

(n, NIL)

else

(n, CONS (List.uncons l))

end

This implementation typechecks properly, and it is observationally equivalent to a conventional imple-

mentation. However, intensionally it is very di�erent, because each use of cons and uncons must traverse

the entire list, leading to poor behavior in practice. A more direct implementation is impossible because the

opacity of List.t precludes any knowledge that List.t is the same as t.

Some other examples cannot be written in the opaque case at all. For example, consider an implemen-

tation of abstract syntax trees using mutually dependent modules for expressions and declarations. These

modules interact with each other through the let expression, which contains a declaration, and the val dec-

laration, which contains an expression. To optimize a common case, the expression code includes a function

for let val expressions that defers to the declaration code to build a declaration:

signature EXPR =

sig

type exp

type dec

val make_let : dec * exp -> exp (* let DEC in EXP end *)

val make_let_val : identifier * exp * exp -> exp

(* let val ID = EXP in EXP end *)
...

end

signature DECL =

sig

type dec

type exp

val make_val : identifier * exp -> dec (* val ID = EXP *)
...

end

6



structure rec Expr :> EXPR =

struct

datatype exp = LET of Decl.dec * exp | ...

type dec = Decl.dec

fun make_let (d : dec, e : exp) = LET (d, e)

fun make_let_val (id : identifier, e1 : exp, e2 : exp) =

let val d = Decl.make_val (id, e1) (* type error! e1 : exp 6= Decl.exp *)

in

LET (d, e2)
...

end

and Decl :> DECL =

struct

datatype dec = ...

type exp = Expr.exp
...

end

Unfortunately, this code does not typecheck. The call to make val within make let val expects an argument

with type Decl.exp, which, because of the opacity of Decl, is not known to be the same type as exp, the

type of its actual argument e1. The type error occurs because the type system cannot tell that exp is equal

to Decl.exp, even though an examination of the recursive de�nition reveals that it is actually true.

4 Transparent Recursive Modules

The di�culties described in the previous section can be traced to the inability to track su�cient type

information in the context of a recursive structure binding. In the abstract syntax example the proposed

binding fails to typecheck because within the de�nition of Expr it is not apparent that the type exp is

equivalent to the type Decl.exp, even though this equation will be valid once the recursive binding is in

force. Similarly, within the de�nition of Decl it is not apparent that the type dec is equivalent to the type

Expr.dec, which will turn out to be true once the binding is in force. Were this equation available while the

de�nitions of Expr and Decl are being typechecked, the entire declaration would be seen to be valid, and

these very equations would hold true afterwards. Similarly, the ine�ciency of the suggested implementation

of lists may be traced to the failure to identify the types List.t and t inside the de�nition of List.

What is needed is a means of propagating the type equations that will, upon completion of the recursive

binding, turn out to be true of the recursively-de�ned structures, into the scope of the recursive de�nition

itself. This makes it possible to exploit the recursive de�nitions of the types involved during typechecking

of the dynamic part of the recursively-de�ned modules, leading to a much more exible and useful notion of

recursive module. In e�ect we are exploiting the phase distinction by solving the static recursion equations

prior to checking the dynamic typing conditions of the module, but we are achieving this using a one-pass

algorithm.

How is this additional type sharing information to be propagated? The obvious solution is to add the

appropriate equations to the signatures of the modules involved. In the case of the abstract syntax example

this may be achieved as follows:

structure rec Expr : EXPR where type dec = Decl.dec = ...

and Decl : DECL where type exp = Expr.exp = ...

Similarly, in the list example we may propagate the required information as follows:

7



structure rec List : sig

datatype t = NIL | CONS of int * List.t
...

val cons : int * t -> t

val uncons : t -> int * t

end = ...

The underlined phrases indicate free occurrences of structure variables that are introduced by the recursive

structure binding. Since the signatures of the recursively-de�ned structure variables depend on the structures

themselves, we call these signatures recursively-dependent signatures, or rds's for short.

The purpose of a recursively-dependent signature is to express the sorts of recursive type equations that

are required to recover the ill-formed examples of the preceding section. Let us now revisit those examples

to see how rds's are used to resolve the di�culties those examples raise. With the addition of the type

de�nitions given above, the abstract syntax example from Section 3 is now type correct since the equations

Expr.dec = Decl.dec and Decl.exp = Expr.exp are propagated into the bindings of the structures Expr

and Decl. This is all that is required for the code given in Section 3 to be type correct.

The list example is handled similarly, but also raises a delicate point about recursive datatypes in the

context of a recursive structure binding. Using a recursively-dependent signature it is possible to give an

implementation of lists with constant-time primitive operations as follows:

structure rec List : sig

datatype t = NIL | CONS of int * List.t
...

val cons : int * t -> t

val uncons : t -> int * t

end =

struct

datatype t = NIL | CONS of int * List.t
...

fun cons (n : int, l : t) = CONS (n, l)

fun uncons NIL = raise Fail

| uncons (CONS (n, l)) = (n, l)

end

The e�ect of the recursively-dependent signature in this example is to ensure that the implementation type

of the recursive datatype List.t coincides with the implementation type of the type t within the body of the

de�nition. In other words we impose a structural, or transparent, interpretation of recursive datatypes within

the scope of a recursive structure binding, rather than the more familiar nominal, or opaque, interpretation

used in Standard ML. In type-theoretic terms the rds ascribed to List is tantamount to a signature that

transparently de�nes the type t to be the underlying iso-recursive type of the recursive datatype. We note,

however, that this interpretation can be limited to the recursive structure binding itself, and need not

propagated into the subsequent scope of the binding. In type-theoretic terms the elaborator must \seal" the

structure with an opaque signature hiding the implementation type of List.t after the binding has been

processed.

In order to maximize the propagation of type information we will assume that the elaborator implicitly

renders every recursively dependent signature to be fully transparent in the sense that every type component

is given by an explicit type de�nition. In the present case of recursive module de�nitions, the elaborator can

produce the needed fully transparent signature by inspection of the module being de�ned. (This is always

possible since we are assuming a transparent interpretation of datatypes.)

As emphasized by Duggan and Sourelis [5], it is important in practice to consider recursive structure

bindings whose right-hand sides are applications of previously-de�ned functors (parameterized modules).

A na��ve attempt to do so runs afoul of the opacity problem once again, as demonstrated by the following

\functorized" version of the list example. Speci�cally, we wish to de�ne the List structure as follows:

8



structure rec List : sig

datatype t = NIL | CONS of int * List.t
...

end =

BuildList (structure List = List)

where the functor BuildList abstracts the e�cient implementation of lists as follows:

functor BuildList (structure List : LIST) = ... as above ...

However, the e�cient implementation of lists no longer typechecks since the assumption governing the

parameter List of BuildList does not propagate the critical recursive type equation, as was observed by

Duggan and Sourelis (for an essentially similar example). The solution is to use a recursively-dependent

signature for the functor parameter, as follows:

functor BuildList (structure rec List : sig

datatype t = NIL | CONS of int * List.t
...

end) =

... as above ...

Here again we assume a structural interpretation of datatypes that occur within an rds, which is consistent

with the structural signature matching rule for functor applications in Standard ML.

Again, the elaborator must render rds's fully transparent. For recursive module de�nitions that was

easily done by inspection of the de�nition. However, when an rds is the signature of a functor argument, the

argument is unavailable for such inspection. In order to render such rds's fully transparent, the elaborator

must name any abstract types within the signature and pull them out. (A similar device is used by the

generative stamps in the De�nition of Standard ML [13].) For example, the signature

rec S : sig

type t

type u = S.u -> t

end

is rewritten by introducing a type de�nition for t setting it equal to an abstract type that is de�ned outside

the rds. The resulting signature is acceptable because the rds, which now lies within an outer signature, is

fully transparent:

sig

type t'

structure rec S :

sig

type t = t'

type u = S.u -> t

end

end

4.1 Formalization of Recursively-Dependent Signatures

The addition of recursively-dependent signatures to the phase distinction calculus is performed in two stages.

First, we extend the syntax of signatures with the recursively dependent form, which we write �s:S, and

extend the signature formation and equivalence rules with rules governing this new form. We also extend the

module formation rules to include introductory and eliminatory rules for recursively-dependent signatures.

Second, we show that this enrichment of the structure calculus may be interpreted into the original structure

calculus (over the extended core language described in Section 2) by exhibiting an equation between rds's

and ordinary signatures.

9



� ` � kind �[� : �] ` �[�=Fst(s)] type �[� : �] ` S(c : �) kind

�s:[�:Q(c[Fst(s)=�] : �); �] = [�:Q((��:�:c) : �); �[�=Fst(s)]]

Figure 5: Phase-Splitting Recursively-Dependent Signatures

Informally, the recursively-dependent signature �s:S contains those modules M that belong to S where

s may appear free in S and stands for M . In other words, M belongs to �s:S when M belongs to S[M=s].

Formally, rds's adhere to the following introductory and eliminatory rules:

� `M : S[M=s] � ` �s:S sig

� ` M : �s:S

� `M : �s:S

� `M : S[M=s]

As discussed previously, in the rds �s:S we require that the static component of S be fully transparent, that

is, that it completely specify the identity of its static component using singleton kinds. Thus, in order for an

rds �s:S to be well-formed, S must be fully transparent and well-formed under the assumption that s has

signature S0
, where S0

is obtained from S by stripping out the singleton kinds specifying the identity of the

static component. Formally, rds's have the following formation rule:

� ` S sig �[s : S] ` [�:Q(c : �); �] sig

� ` �s:[�:Q(c : �); �] sig
(S � [�:�; �[�=Fst(s)]])

As with the recursive modules of Section 3, we wish to reduce recursively-dependent signatures to primitive

constructs of the structure formalism. We do this by wrapping the compile-time component of the rds in a

�xed point expression, and by redirecting recursive references in the run-time component:

�s:[�:Q(c(Fst(s)) : �); �(�;Fst(s))] = [�:Q((��:�:c(�)) : �); �(�; �)]

In the second underlined fragment, recursive references using Fst(s) are redirected to use �. The interesting

part is the �rst underlined fragment: Suppose [c0; e] is a prospective member of the rds. The rds dictates

that c0 : Q(c(c0) : �) and consequently that c0 = c(c0) : �. Therefore, c0 may be taken to be ��:�:c(�) as

provided by the �rst underlined fragment.

This de�nition is formalized in the type theory by the equational rule in Figure 5. As in Section 3,

this rule illustrates that recursively-dependent signatures are already present in the underlying calculus. In

particular, the introductory and eliminatory rules given above follow from the de�nition and need not appear

as primitive rules.

5 Future Work

Purely hierarchical module systems, such as the Standard ML module system, may be criticized on the

grounds that they lack adequate support for cyclic dependencies among components. In such languages

interdependent components must be consolidated into a single module, which can prevent decomposition

of a system into \mind-sized" fragments. Several authors (including Duggan and Sourelis [4, 5] and Flatt

and Felleisen [6]) have proposed module systems that better support such cyclic dependencies among units.

With at least two di�erent proposals for recursive modules in hand, it is natural to ask \what is a recursive

module?" We provide an answer to this question in the form of a type-theoretic analysis of recursive modules

based on the \phase distinction" calculus of higher-order modules [7].

Speci�cally, we propose an extension of the phase distinction calculus with a new form of recursive module

and a new form of signature, called a recursively-dependent signature. Following the paradigm of the phase

distinction interpretation of higher-order modules, we demonstrate the sensibility of this extension by giving

an interpretation of it into a pure calculus of structures (without explicit recursive module constructs).

This interpretation demonstrates that in a precise sense, recursive modules are already present in the pure

structure calculus. As in the case of higher-order modules, this is the key to implementing recursive modules

10



in a type-passing compiler such as Shao's FLINT-based implementation of Standard ML [15] or Morrisett, et

al.'s TIL compiler [18] | simply translate them into the pure structure formalism using the interpretation

given here.

To make these ideas practical more work remains to be done. It is important to demonstrate that type-

checking remains decidable in the presence of recursively-dependent signatures. The central issue for decid-

ability is decidability of equivalence for equi-recursive constructors of higher kind. Amadio and Cardelli [1]

provide an algorithm for checking equality of equi-recursive types; it is not clear at present whether their

work extends to higher kinds. It is also important to consider a dynamic semantics for the extended language

and to demonstrate the soundness of the type system for this dynamic semantics. We do not expect any

di�culties with this extension.

A natural question is whether the reliance on equi-recursive constructors is essential for supporting

recursive modules. (For example, Duggan and Sourelis's formalism does not rely on this form of recursive

types.) We conjecture that it is not essential, based on the following observations. Under the standard

type-theoretic interpretation of ML (see, for example, Harper and Mitchell [8]), the implementation of a

recursive datatype is an iso-recursive type. If we restrict recursive modules to datatypes (as in Duggan and

Sourelis' formalism), and adopt the \transparent" interpretation outlined in Section 4, then equi-recursive

types are completely eliminable by the translation into the underlying structure calculus, provided that we

adopt Shao's equation for iso-recursive types:
3

��
=
�:c(�) � ��

=
�:c(��

=
�:c(�))

The relevance of Shao's equation to the elimination of equi-recursive types is based on the following ob-

servation. After translation into the pure structure calculus, datatypes in the body of a recursive module

de�nition have implementation types of the form

��:��
=
�:c(�; �)

for some constructor c. Using a bisimilarity interpretation of equality of equi-recursive types, and applying

Shao's equation, we may prove that this type is equivalent to the type

��
=
�:c(�; �)

which is a purely iso-recursive type. This observation sheds light on the nature of Duggan and Sourelis's

restriction on the recursively de�ned type components of a mixin module to datatypes, which are implicitly

iso-recursive. Strictly speaking, this restriction is not necessary, but if it were to be adopted, it would, by the

observation above, allow the elimination of equi-recursive types from the internal language of a type-based

compiler for ML.

3This equation was introduced by Shao [16] in his FLINT formalism in order to support the compilation of Standard ML.
Shao observed that this equation is essential for e�ciently compiling Standard ML, even in the absence of recursive modules.

11



A Type Theory

A.1 Core Calculus

� ` � kind

� ` T kind

� ` 1 kind

� ` c : Type

� ` Q(c) kind

� ` �1 kind �[� : �1] ` �2 kind

� ` ��:�1:�2 kind
(� 62 Dom(�))

� ` �1 kind �[� : �1] ` �2 kind

� ` ��:�1:�2 kind
(� 62 Dom(�))

� ` �1 = �2 kind

� ` T = T kind

� ` 1 = 1 kind

� ` c1 = c2 : Type

� ` Q(c1) = Q(c2) kind

� ` �1 = �0

1 kind �[� : �1] ` �2 = �0

2 kind

� ` ��:�1:�2 = ��:�0

1:�
0

2 kind
(� 62 Dom(�))

� ` �1 = �0

1 kind �[� : �1] ` �2 = �0

2 kind

� ` ��:�1:�2 = ��:�0

1:�
0

2 kind
(� 62 Dom(�))

� ` �1 � �2 kind

� ` T � T kind

� ` 1 � 1 kind

� ` c1 = c2 : Type

� ` Q(c1) � Q(c2) kind

� ` c : T

� ` Q(c) � T kind

� ` �0

1 � �1 kind �[� : �0

1] ` �2 � �0

2 kind �[� : �1] ` �2 kind

� ` ��:�1:�2 � ��:�0

1:�
0

2 kind
(� 62 Dom(�))

� ` �1 � �0

1 kind �[� : �1] ` �2 � �0

2 kind �[� : �0

1] ` �0

2 kind

� ` ��:�1:�2 � ��:�0

1:�
0

2 kind
(� 62 Dom(�))

� ` c : �

� ` � : �
(� : � 2 �)

12



� ` ? : 1

� ` �1 kind �[� : �1] ` c : �2

� ` ��:�1:c : ��:�1:�2
(� 62 Dom(�))

� ` c1 : ��:�1:�2 � ` c2 : �1

� ` c1c2 : �2[c2=�]

� ` c1 : �1 � ` c2 : �2[c1=�] �[� : �1] ` �2 kind

� ` hc1; c2i : ��:�1:�2
(� 62 Dom(�))

� ` c : ��:�1:�2

� ` �1(c) : �1

� ` c : ��:�1:�2

� ` �2(c) : �2[�1(c)=�]

� ` 1 : T

� ` c1 : T � ` c2 : T

� ` c1 * c2 : T

� ` c1 : T � ` c2 : T

� ` c1 � c2 : T

�[� : �] ` c : �

� ` ��:�:c : �
(� 62 Dom(�))

� ` c : �0 � ` �0
� � kind

� ` c : �

� ` ��:�1:c � : ��:�1:�2
� ` c : ��:�1:�2

(� not free in c)

� ` h�1(c); �2(c)i : ��:�1:�2

� ` c : ��:�1:�2

� ` c1 = c2 : �

� ` c : �
� ` c = c : �

� ` c2 = c1 : �

� ` c1 = c2 : �

� ` c1 = c2 : � � ` c2 = c3 : �

� ` c1 = c3 : �

� ` �1 = �0

1 kind �[� : �1] ` c = c0 : �2

� ` ��:�1:c = ��:�0

1:c
0 : ��:�1:�2

(� 62 Dom(�))

13



� ` c1 = c0

1 : ��:�1:�2 � ` c2 = c0

2 : �1

� ` c1c2 = c0

1c
0

2 : �2[c2=�]

� ` c1 = c0

1 : �1 � ` c2 = c0

2 : �2[c1=�] �[� : �1] ` �2 kind

� ` hc1; c2i = hc0

1; c
0

2i : ��:�1:�2
(� 62 Dom(�))

� ` c = c0 : ��:�1:�2

� ` �1(c) = �1(c
0) : �1

� ` c = c0 : ��:�1:�2

� ` �2(c) = �2(c0) : �2[�1(c)=�]

� ` c1 = c0

1 : T � ` c2 = c0

2 : T

� ` c1 * c2 = c0

1 * c0

2 : T

� ` c1 = c0

1 : T � ` c2 = c0

2 : T

� ` c1 � c2 = c0

1 � c0

2 : T

� ` � = �0 �[� : �] ` c = c0 : �

� ` ��:�:c = ��:�0:c0 : �
(� 62 Dom(�))

� ` c1 = c2 : �0 � ` �0
� � kind

� ` c1 = c2 : �

� ` c : Q(c0)

� ` c = c0 : T

� ` c : 1

� ` c = ? : 1

� ` c1 : �1 �[� : �1] ` c2 : �2

� ` (��:�1:c2)c1 = c2[c1=�] : �2[c1=�]
(� 62 Dom(�))

� ` c : ��:�1:�2

� ` (��:�1:c �) = c : ��:�1:�2
(� not free in c)

� ` c1 : �1 � ` c2 : �2

� ` �i(hc1; c2i) = ci : �i

(i = 1; 2)

� ` c : ��:�1:�2

� ` h�1(c); �2(c)i = c : ��:�1:�2

�[� : �] ` c : �

� ` ��:�:c = c[(��:�:c)=�] : �
(� 62 Dom(�))

� ` c = c0[c=�] : � �[� : �] ` c0 : �

� ` c = ��:�:c0 : �
(� 62 Dom(�))

14



� ` � type

� ` c : T
� ` c type

� ` �1 type � ` �2 type

� ` �1 ! �2 type

� ` �1 type � ` �2 type

� ` �1 * �2 type

� ` �1 type � ` �2 type

� ` �1 � �2 type

�[� : �] ` � type

� ` 8�:�:� type
(� 62 Dom(�))

� ` �1 = �2 type

� ` � type

� ` � = � type

� ` �2 = �1 type

� ` �1 = �2 type

� ` �1 = �2 type � ` �2 = �3 type

� ` �1 = �3 type

� ` c = c0 : T

� ` c = c0 type

� ` �1 = �0

1 type � ` �2 = �0

2 type

� ` �1 ! �2 = �0

1 ! �0

2 type

� ` �1 = �0

1 type � ` �2 = �0

2 type

� ` �1 * �2 = �0

1 * �0

2 type

� ` �1 = �0

1 type � ` �2 = �0

2 type

� ` �1 � �2 = �0

1 � �0

2 type

� ` � = �0 �[� : �] ` � = �0 type

� ` 8�:�:� = 8�:�0:�0 type
(� 62 Dom(�))

� ` e : �

� ` x : �
(x : � 2 �)

� ` x : �
(x " � 2 �)

� ` ? : 1

� ` � type �[x : �] ` e # �

� ` �x:�:e : � ! �0
(x 62 Dom(�))

15



� ` � type �[x : �] ` e : �

� ` �x:�:e : � * �0
(x 62 Dom(�))

� ` e1 : � ! �0 � ` e2 : �

� ` e1e2 : �0

� ` e1 : � * �0 � ` e2 : �

� ` e1e2 : �0

� ` e1 : �1 � ` e2 : �2

� ` he1; e2i : �1 � �2

� ` e : �1 � �2

� ` �i(e) : �i

(i = 1; 2)

� ` � kind �[� : �] ` e # �

� ` ��:�:e : 8�:�:�
(� 62 Dom(�))

� ` e : 8�:�:� � ` c : �

� ` e[c] : �[c=�]

� ` � type �[x " �] ` e # �

� ` �x(x:�:e) : �
(x 62 Dom(�))

� ` e : �0 � ` � = �0 type

� ` e : �

� ` e # �

� ` x # �
(x : � 2 �)

� ` ? # 1

� ` � type �[x : �] ` e # �

� ` �x:�:e # � ! �0
(x 62 Dom(�))

� ` � type �[x : �] ` e : �

� ` �x:�:e # � * �0
(x 62 Dom(�))

� ` e1 # � ! �0 � ` e2 # �

� ` e1e2 # �
0

� ` e1 # �1 � ` e2 # �2

� ` he1; e2i # �1 � �2

� ` e # �1 � �2

� ` �i(e) # �i

(i = 1; 2)

� ` � kind �[� : �] ` e # �

� ` ��:�:e # 8�:�:�
(� 62 Dom(�))

16



� ` e # 8�:�:� � ` c : �

� ` e[c] # �[c=�]

� ` � type �[x " �] ` e # �

� ` �x(x:�:e) # �
(x 62 Dom(�))

� ` e # �0 � ` � = �0 type

� ` e # �

� ` e = e0 : �
� ` e : �

� ` e = e : �

� ` e2 = e1 : �

� ` e1 = e2 : �

� ` e1 = e2 : � � ` e2 = e3 : �

� ` e1 = e3 : �

� ` �1 = �2 type �[x : �1] ` e = e0 : �2 �[x : �1] ` e # �2

� ` �x:�1:e = �x:�0

1:e
0 : �1 ! �2

(x 62 Dom(�))

� ` �1 = �2 type �[x : �1] ` e = e0 : �2

� ` �x:�1:e = �x:�0

1:e
0 : �1 * �2

(x 62 Dom(�))

� ` e1 = e0

1 : � ! �0 � ` e2 = e0

2 : �

� ` e1e2 = e0

1e
0

2 : �0

� ` e1 = e0

1 : � * �0 � ` e2 = e0

2 : �

� ` e1e2 = e0

1e
0

2 : �0

� ` e1 = e0

1 : �1 � ` e2 = e0

2 : �2

� ` he1; e2i = he0

1; e
0

2i : �1 � �2

� ` e = e0 : �1 � �2

� ` �i(e) = �i(e
0) : �i

(i = 1; 2)

� ` � = �0 kind �[� : �] ` e = e0 : � �[� : �] ` e # �

� ` ��:�:e = ��:�0:e0 : 8�:�:�
(� 62 Dom(�))

� ` e = e0 : 8�:�:� � ` c = c0 : �

� ` e[c] = e0[c0] : �[c=�]

� ` � = �0 type �[x " �] ` e = e0 : � �[x " �] ` e # �

� ` �x(x:�:e) = �x(x:�0:e0) : �
(x 62 Dom(�))

� ` e = e0 : �0 � ` � = �0 type

� ` e = e0 : �

17



� ` e # 1

� ` e = ? : 1

� ` e1 # �1 �[x : �1] ` e2 : �2

� ` (�x:�1:e2)e1 = e2[e1=x] : �2
(x 62 Dom(�))

� ` e # �1 ! �2

� ` (�x:�1:ex) = e : �1 ! �2
(x not free in e)

� ` e # �1 * �2

� ` (�x:�1:ex) = e : �1 * �2
(x not free in e)

� ` e1 # �1 � ` e2 # �2

� ` �i(he1; e2i) = ei : �i

(i = 1; 2)

� ` e : �1 � �2

� ` h�1(e); �2(e)i = e : �1 � �2

� ` c : � �[� : �] ` e : �

� ` (��:�:e)[c] = e[c=�] : �[c=�]
(� 62 Dom(�))

� ` e # 8�:�:�

� ` (��:�:e[�]) = e : 8�:�:�
(� not free in e)

� ` � type �[x " �] ` e # �

� ` �x(x:�:e) = e[�x(x:�:e)=x] : �
(x 62 Dom(�))

A.2 Structure Calculus

� ` c : �

� ` Fst(s) : �
(s : [�:�:�] 2 �)

� ` Fst(s) : �
(s " [�:�:�] 2 �)

� ` e : �

� ` snd(s) : �[Fst(s)=�]
(s : [�:�:�] 2 �)

� ` snd(s) : �[Fst(s)=�]
(s " [�:�:�] 2 �)

� ` e # �

� ` snd(s) # �[Fst(s)=�]
(s : [�:�:�] 2 �)

� ` S sig

� ` � kind �[� : �] ` � type

� ` [�:�:�] sig
(� 62 Dom(�))

� ` S1 = S2 sig

� ` S sig

� ` S = S sig

18



� ` S2 = S1 sig

� ` S1 = S2 sig

� ` S1 = S2 sig � ` S2 = S3 sig

� ` S1 = S3 sig

� ` � = �0 kind �[� : �] ` � = �0 type

� ` [�:�:�] = [�:�0:�0] sig

� ` S1 � S2 sig

� ` S1 = S2 sig

� ` S1 � S2 sig

� ` S1 � S2 sig � ` S2 � S3 sig

� ` S1 � S3 sig

� ` � � �0 kind �[� : �] ` � = �0 type �[� : �0] ` �0 type

� ` [�:�:�] � [�:�0:�0] sig
(� 62 Dom(�))

� `M : S

� ` c : � � ` e : �[c=�] �[� : �] ` � type

� ` [c; e] : [�:�:�]
(� 62 Dom(�))

� `M : S0 � ` S � S0 sig

� `M : S

� `M # S

� ` c : � � ` e # �[c=�] �[� : �] ` � type

� ` [c; e] # [�:�:�]
(� 62 Dom(�))

� `M # S0 � ` S � S0 sig

� `M # S

� `M1 = M2 : S

� `M : S

� `M = M : S

� ` M2 = M1 : S

� ` M1 = M2 : S

� `M1 = M2 : S � `M2 = M3 : S

� ` M1 = M3 : S

� ` c = c0 : � � ` e = e0 : �[c=�] �[� : �] ` � type

� ` [c; e] = [c0; e0] : [�:�:�]
(� 62 Dom(�))

� `M1 = M2 : S0 � ` S � S0 sig

� ` M1 = M2 : S

19



A.3 Recursive Module Calculus

� `M : S

�[s " S] `M # S � ` S sig

� ` �x(s:S:M) : S
(s 62 Dom(�))

� `M1 = M2 : S

� ` � kind �[� : �] ` � type �[� : �] ` c : � �[� : �][x " �] ` e # �

� ` �x(s:[�:�:�]:[c[Fst(s)=�]; e[Fst(s); snd(s)=�; x]]) = [� = ��:�:c;�x(x:�:e)] : [�:�:�]
(�;x 62 Dom(�))

� ` S sig

� ` S sig �[s : S] ` [�:Q(c : �); �] sig

� ` �s:[�:Q(c : �); �] sig
(S � [�:�; �[�=Fst(s)]])

� ` S1 = S2 sig

� ` � kind �[� : �] ` �[�=Fst(s)] type �[� : �] ` S(c : �) kind

�s:[�:Q(c[Fst(s)=�] : �); �] = [�:Q((��:�:c) : �); �[�=Fst(s)]]
(� 62 Dom(�))

References

[1] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM TOPLAS, 15(4):575{631, 1993.

[2] Davide Ancona and Elena Zucca. An algebra of mixin modules. In F. Parisi-Presicce, editor, WADT '97 12th

Workshop on Algebraic Development Techniques { Selected Papers, volume 1376 of Lecture Notes in Computer
Science, pages 92{106, Berlin, 1997. Springer Verlag.

[3] Luca Cardelli. Phase distinctions in type theory. unpublished manuscript.

[4] Dominic Duggan and Constantinos Sourelis. Mixin modules. In Proceedings of the ACM International Conference
on Functional Programming, pages 262{273, Philadelphia, PA, June 1996.

[5] Dominic Duggan and Constantinos Sourelis. Parameterized modules, recursive modules, and mixin modules. In
1998 ACM SIGPLAN Workshop on ML, pages 87{96, Baltimore, Maryland, September 1998. ACM SIGPLAN.

[6] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages. In Proceedings of the ACM SIG-
PLAN '98 Conference on Programming Language Design and Implementation (PLDI), pages 236{248, Montreal,

Canada, June 1998.

[7] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with sharing. In Twenty-

First ACM Symposium on Principles of Programming Languages, pages 123{137, Portland, OR, January 1994.

[8] Robert Harper and John C. Mitchell. On the type structure of Standard ML. ACM Transactions on Programming

Languages and Systems, 15(2):211{252, April 1993. (See also [14].).

[9] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the phase distinction. In

Seventeenth ACM Symposium on Principles of Programming Languages, San Francisco, CA, January 1990.

[10] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML. In Gordon Plotkin, Colin

Stirling, and Mads Tofte, editors, Robin Milner Festschri�t. MIT Press, 1998. (To appear).

[11] Xavier Leroy. Manifest types, modules, and separate compilation. In Proceedings of the Twenty-�rst Annual

ACM Symposium on Principles of Programming Languages, Portland. ACM, January 1994.

[12] Xavier Leroy. The Objective Caml system: Documentation and user's guide. Available at

http://pauillac.inria.fr/ocaml/htmlman/., 1996.

[13] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The De�nition of Standard ML (Revised).
MIT Press, 1997.

[14] John Mitchell and Robert Harper. The essence of ML. In Fifteenth ACM Symposium on Principles of Program-
ming Languages, San Diego, California, January 1988.

[15] Zhong Shao. An overview of the FLINT/ML compiler. In Proceedings of the 1997 ACM SIGPLAN Workshop

on Types in Compilation, Kyoto, Japan, June 1997.

20



[16] Zhong Shao. Equality of recursive types. (Private communication), September 1998.

[17] Emin G�un Sirer, Marc E. Fiucynski, Przemys law Pardyak, and Brian N. Bershad. Safe dynamic linking in an
extensible operating system. In Workshop on Compiler Support for System Software, Tucson, AZ, February

1996.

[18] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter Lee. TIL: A type-directed

optimizing compiler for ML. In ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 181{192, Philadelphia, PA, May 1996.

21


