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Abstract

We envision the deployment of an electronic services market that will deliver a wide range of electronic ser-
vices over networks. This market will allow applications to combine resources at endpoints with resources
inside the network to deliver high-quality products to end-users. Electronic services will range from simple
data delivery services to sophisticated value-added services such as video conferencing and data mining. We
argue that the deployment of such a diverse set of services will be facilitated by the presence of an integrated
set of customizable resource management mechanisms. In this paper, we introduce three concepts that re-
spond to this need. First, the resources allocated to an application will be integrated in a virtual network that
forms the basis of runtime resource management and quality of service optimization. Second, each resource
is managed by a hierarchical resource manager that satisfies the combined priorities and constraints of the
services and applications sharing the resource. Finally, since both network conditions and application re-
quirements can change, application-specific adaptation is needed to optimize quality of service at runtime.
The CMU Darwin project is developing a comprehensive set of customizable resource management mecha-
nisms based on these concepts. We outline the Darwin resource management mechanisms and we describe
an initial implementation.
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1 An Electronic Services Market

While for several decades, computer networks have primarily been used to move data using programs such
as ftp and telnet, they increasingly are being used for more complex tasks (e.g., information retrieval), or
as tools in support of inter-personal communication (e.g., video conferencing). We expect this trend to
continue, and to lead to the creation of a sophisticated electronic services market that can deliver a wide
range of services over the network. These services will often integrate communication with computation
and storage access. The ability to invoke value-added services in the same way that we now invoke more
traditional “bitway” services will create exciting new opportunities for computer users: an application will
be able to combine resources available at the end-points with a rich set of services delivered by the network
to create a high-quality electronic end-product for its users. While applications may in some cases invoke
only simple services, e.g. bitway services, in many cases the entire end-product may be delivered by the
network, and the ”application” on the end-point be just a user interface, e.g. a web browser.

The delivery of such value-added services requires appropriate resource management mechanisms that
control who can use what resources inside the network. An abstract view is that for each service request from
an application, the service provider will allocate an integrated set of resources—including communication,
computing and storage resources—that satisfies the request, and the service provider will then use these
resources during the application session to meet application needs. In addition to this idealized view, we also
envision an approach in which a service provider does not actually own the resources, but instead manages
resources already held or acquired by the application. We expect that both during the initial allocation
phase and throughout the session, the provider will want to manage resource selection and use so that it can
optimize the quality of the particular service being provided. In other words, it must be possible to tailor
resource management to meet specific application and service requirements.

Besides appropriate resource management support, many other system components are needed before
such complex services can be deployed. Examples include support for service composition, resource and
service discovery, and electronic commerce. In particular, resource management, the focus of this paper, is
a key building block in the implementation of an electronic services market. Each of the resource manage-
ment mechanisms we present also has the important property that it is useful in combination with existing
mechanism, even if the other components described are not present.

We first use a simple example to illustrate the envisioned services and to identify specific system re-
quirements. We then present three concepts that cooperatively support such services: the virtual network,
hierarchical scheduling, and customizable runtime resource management. Finally, we describe the initial
implementation of Darwin, a prototype realization of these ideas, and we conclude with a discussion of
related work and a summary.

2 Service requirements

While we are already experiencing the delivery of services over the Internet today, these services typically
have fairly modest networking requirements compared with the services envisioned in this paper. We will
use an example to illustrate the characteristics of the envisioned services and the resulting resource manage-
ment requirements.

2.1 A simple example

At a high level we can characterize the envisioned electronic services market as providing complex, value-
added network services.Complexmeans that the services will support multi-party applications that use
a wide variety of data types that may impose challenging timing and synchronization constraints on the
processing and transfer of the data.Value-addedmeans that the services will in general not just perform
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low-level data transfer and manipulation, but can present high-level functionality based on lower-level com-
ponent services.

The prototypical application that would benefit from a dynamic electronic services market is a collab-
orative work environment combining traditional video conferencing with joint access by the participants to
large amounts of archived data, real time data streams, and interaction with distributed computing tasks. A
very simple version of this scenario is a group of scientists who have a (virtual) meeting to discuss the output
of a simulation, and to compare it with archived results from experiments. A similar but more ambitious
example is disaster control, e.g. planning the response to a forest fire. In this case, a group of specialists
convene periodically to discuss status and actions. In their virtual meeting, they need access to live data
feeds from the disaster area, various types of archived data that can be used to assess damage or compare
with previous disasters, and the output of simulations that evaluate various control strategies. In both cases,
the quality of delivered services must be very high to support collaboration effectively.

Even this simple virtual meeting example needs a diverse set of resources. It requires communication
bandwidth to carry the video and audio between the participants. It requires computational resources to
execute the simulation and additional communication resources to distribute the output of the simulation to
the scientists. Depending on conditions, additional resources may be required. For example, video mixing
resources may be needed for high-end video conferencing support. Similarly, if there is a mismatch between
the video capabilities of the participants, video transcoders may have to be added. Finally, the simulation
may need access to archived data that is available only in certain locations.

2.2 Service characteristics

We use the example to identify key service characteristics and the resource management features that are
needed to support them efficiently.

A first service feature is that services need a collection of resources of diverse types. This means that it
is advantageous to allocate resources in a coordinated fashion. For example, the simulation engines would
ideally be placed close to participating scientists to minimize communication costs. Similarly, the simulation
engines should be placed in locations that have sufficient communication bandwidth. While it is possible to
allocate the resources one at a time in an uncoordinated fashion, this is likely to increase the cost and may
degrade quality.

Second, providers will want to control the “quality of the service” they provide. For example, a provider
could offer high quality video conferencing for board-level meetings, and a lower quality version for in-
formal discussions. This requires resource management mechanisms that give different levels (or type,
quality, etc.) of service to different users. Recent research efforts on support for integrated services net-
works [26, 34, 25] partially address this issue. However, these mechanisms focus on the quality of the
service received by individual flows, rather than entire applications. Mechanism are needed that will map
different levels of application-level QoS (e.g. minimal video frame rate) into appropriate per-flow QoS spec-
ifications (e.g. controlled load service). However, the specific low-level QoS mechanisms that are needed to
maintain a fixed high-level QoS may depend on the load conditions in the network, i.e. the most appropriate
mapping may change over time and may be different for different network segments. Current research has
mostly focused on fixed mappings, e.g. MPEG-1 video translates into a reservation for 1.5 Mbps. Static
mappings are likely to be inefficient, e.g. they may allocate too many resources or use reservations when
best effort service suffices.

Third, the definition of high (or low) quality for complex services is service specific, so for maximum
efficiency service providers will need sufficient control over resources to apply them in a way that optimizes
the quality of the specific service being provided. This means that the resource management mechanisms
should be customizable in a number of ways. First, providers will want to have control over what resources
are allocated, as described above. Moreover, since network conditions change over time, providers will
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want to be involved in how resource use is changed. For example, while some providers might be happy
with a proportional redistribution of bandwidth, others might want to protect higher priority flows, or even
change the number of flows. How quickly this adaptation can happen is also important for the quality of
service perceived by the application. For example, applications such as long data transfers can live with
large fluctuations in bandwidth, while others, such as visualization, will want to respond quickly, since in
the time interval between the change and the adaptation, the user may receive poor service.

In summary, the service characteristics suggest that we need mechanisms for coordinated and customiz-
able resource management not only in space (i.e. type and location of resources) but also in time. The latter
means that resource allocation activities occur on a number of time scales (i.e. application start up time,
round trip times, packet times) and these activities should be coordinated. For example, resource allocation
at start up time should be able to choose between the use of reservations on one hand, or best effort service
augmented with appropriate runtime adaptation on the other. Without appropriate support, service quality
maybe poor and unpredictable, or peak allocation of resources may be needed. We are not aware of any
existing system that provides systematic support for customization of network resource management over a
broad range of time scales.

Figure 1: Example service

2.3 Hierarchical services

While services can certainly be delivered in a monolithic way, i.e. a single service provider implements
the complete service on top of the bare hardware, it seems more likely that electronic services will be
structured in a hierarchical fashion: value-added services are implemented in terms of lower-level services.
The motivation is reuse of functionality and need for specialization. Specialized service providers will
develop, and other providers will want to incorporate their services instead of trying to develop expertise
in that particular area. Figure 1 illustrates one way in which the needs of our scientists can be met by a
service hierarchy. One of the users issues a request to a service provider; the request specifies the location
of the scientists, the quality of the video and the approximate computational and I/O requirements of the
simulation. This particular service provider does not implement this functionality, but breaks up the request
and submits separate request to service providers specializing in video conferencing and simulation. These
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service providers satisfy the request and allocate resources, possibly using yet another layer of providers.
The original provider coordinates the various players both at startup and at runtime. Runtime actions might,
for example, involve reducing the quality of the video if the network load increases dramatically. Alternative,
at particular points in the simulation it may be appropriate to increase the resolution of the simulation output
at the expensive of the interactive video.

The nature of the service providers will differ at different levels in the service hierarchy. Low-level ser-
vice providers will focus on managing resources, e.g. communication resources, storage resources including
both archived data and storage for temporary data, and computing resources, which can be general-purpose
(e.g. a workstation cluster) or special-purpose (e.g. a real-time MPEG encoder). Higher up in the hierarchy
we will find increasingly more sophisticated providers that add value through the use of proprietary code
and resource management mechanisms. Hierarchical services require support for hierarchical resource man-
agement. While there has been some work in this area, e.g. research on network link-sharing [14], research
is needed in mechanisms that support a wide range of sharing policies and large, dynamic hierarchies.

2.4 Non-electronic services

The electronic services market we envision has much in common with “real-world,” non-electronic services
markets. In both cases, a wide diversity of services exists and many options are available for integrating
and marketing services. For example, in the regular market, a homeowner who wants to add a room to
his house may do it herself after purchasing materials and tools (i.e. use her own resources combined with
low-level services), or could instead work with a general contractor (i.e. invoking a high-level service) who
takes care of everything. We envision that users will have the same options in an electronic services market.
A second example is that in both cases we expect the structure of the market to be hierarchical: contractors
will often rely on subcontractors to perform some of the tasks. Finally, we expect that in both markets, many
services will be offered as an integrated package and most details of the implementation will be hidden from
users. For example, when ordering financial data (bricks), the user will in general not care where they were
produced or how they were transported. She might care who was responsible (i.e. what company generated
the data or produced the bricks), or to what specification the product is guaranteed to conform, since that
has a dramatic impact on the quality of the final product.

3 Application/Service Customizable Resource Management

The goal of supporting a diverse collection of interdependent services imposes new requirements on network
resource management. In this section, we identify three concepts that are important for resource manage-
ment in networks with rich sets of value-added services.

3.1 Resource Management Dimensions

The resource management mechanisms needed for customizable value-added services have to meet require-
ments along three dimensions: resource management across space, time, and organizational boundaries:

• space: Services and applications have to allocate resources (links, switch capacity, compute resources,
etc.) to meet their needs. Mechanisms are needed to identify and allocate these resources.

• time: Conditions in the network and user requirements change over time. Services and applications
must be able to change the use and allocation of resources in response to these changes.

• organizations: Many organizations will share resources in the network. Mechanisms are needed to
isolate or dynamically share resources in a controlled fashion across these organizations.
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The need for customization cuts across these three dimensions: services and applications need to cus-
tomize what resources they allocate, how they change (adapt) resource use over time, and how they share
resources with other organizations. We call a network that supports such a high degree of customizability
anapplication-aware network.

3.2 Concepts

To capture the requirements for customizable resource management for application-aware networks, we
introduce the following three concepts:

Virtual network: The resources allocated to an application or service are grouped into a virtual network
(or mesh) that forms the basis for resource management. Service providers will for example use the
resources in their mesh to satisfy service requests. The mesh includes not only resources, but also
appropriate control state in the switch, computing, and storage nodes that are part of the mesh. This
state can be manipulated at runtime to customize or speed up tasks in a wide range of areas such as
security and adaptation.

Hierarchical scheduling: Use of each resource is managed by a hierarchical scheduler that enforces the
sharing relationships between organizations. These relationships are represented by a tree with nodes
representing the resource slices that are allocated to providers and arcs representing contractor-subcontractor
relationships. Hierarchical resource management should support a broad range of resource sharing
policies between siblings, and resource management decisions in one subtree should not adversely af-
fect other subtrees, in order to allow resource management to be done locally by individual providers
or users.

Application/service specific runtime resource management:Resource management decisions are made
continuously in response to changes in network conditions and application requirements, and these
resource management adjustments will also have to be tailored to the particular service being deliv-
ered. A direct way of achieving this is to have application or service specific state and code inside
the network that participates directly in resource management. This approach allows a fast response
to changing conditions since decisions are made locally with easy access to relevant information on
network conditions.

3.3 Virtual Networks

The virtual network, sometimes also called a virtual mesh or supranet [13], is the core abstraction for
resource management in application-aware networks. Virtual networks can belong to service providers or
applications, i.e. service or applications meshes, and since we are interested in value-added services, a virtual
network will in general include not only communication, but also computation and storage resources.

The three important operations on virtual networks are creation, support, and management. Virtual
networks can be created in a number of ways. Large services meshes will typically be controlled by the
owners of physical resources, or they will be created as a result of long-term agreements (contracts) between
providers. Smaller meshes e.g. meshes created to support specific applications, will be created on the fly
and may be fairly short-lived. At runtime, the virtual network is supported by the (hierarchical) scheduler:
it makes sure that sufficient resources are used to support activities inside the virtual network. Finally, the
network management system and service-specific code support the runtime management of resources inside
the virtual network.

When we combine the notion of a virtual network with that of a service hierarchy, we get a hierarchy of
virtual networks (Figure 2). At lower levels in the hierarchy, we find large service providers, whose primary
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Figure 2: A hierarchy of virtual meshes

Figure 3: Resource tree for link

role is leasing resources to providers higher up in the hierarchy; these providers provide the core network
infrastructure. Service providers higher in the hierarchy typically lease resources from several providers
beneath them in the hierarchy, and add value by adding functionality. At the top of the hierarchy are the
virtual networks that correspond to “integrator” service providers and individual applications that invoked
them. Drawing a hierarchy of service meshes is difficult because it has too many dimensions. However, if we
focus on a single resource (e.g. a link), the hierarchy becomes a resource tree. Figure 3 shows for example
the resource tree for one of the links owned by the the Communication Services provider in Figure 1; note
that it is “upside down” compared to service hierarchy.

While virtual networks and resource hierarchies can precisely characterize resource sharing policies,
they also raise complexity and scalability problems. For example, backbone routers may have to manage
huge trees. The key to scalability is flow aggregation, which corresponds to collapsing subtrees into nodes.
Our expectation is that routers on customer premises and edge routers may manage trees that include appli-
cation flows, but that core routers will largely operate on flow aggregates, along the lines of virtual private
networks. This is illustrated in Figure 4. The figure shows an application mesh (highlighted in black)
supporting a rich set of flows between endpoints C and A. Edge routers use the full resource tree to make
scheduling decisions, but in the core of the network, the mesh resources are represented by a single node.

In the remainder of this paper we focus on resource management mechanisms, or, in terms of virtual
networks, on mechanisms for the creation, support, and management of virtual networks.
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3.4 Virtual network creation

The creation of the virtual network provides the first opportunity for resource management customization.
We focus on application meshes since they are created most frequently.

When an application starts up, it will issue a request to the network listing its requirements. A request
will typically include the end-points that are part of the application, the need for access to specific resources
in the network, plus a description of desired communication, computation and storage functionality. The
latter should be specified at as a high a level as possible, giving the network maximal flexibility in how it
satisfies the request. For example, if possible, the request specifies the quality of the video stream instead
of a specific bandwidth, giving the network the option of selecting the most appropriate encoding. Aser-
vice brokerwill use the request to identify the required resources, using a cost or performance criterion to
optimize network and/or application performance. Service brokers will often have some knowledge of the
application domain so they can perform domain specific optimizations, e.g. select the best video encod-
ing [9]. Applications may use their own service brokers to identify necessary resources. Research issues
include defining languages to specify application requests, resources, and the implementation of functions
in terms of resources, plus algorithms to map requests on resources. The key challenge is dealing with scale,
both in terms of the size of requests and the number of options in available resources.

Once resources have been identified, a signaling protocol is used to allocate the resources, in effect
creating the virtual mesh. Note that in a hierarchical resource management environment, a signaling protocol
will often request resources from another service provider, indirectly invoking another signaling protocol.
For example, it might end up invoking PNNI to set up an ATM connection or RSVP to set up resources
inside an IP subnet. One of the key new features that must be supported by the Darwin signaling protocol
is support for application delegates, both to set up the delegates on specific switch nodes, and to set up
communication channels so delegates can interact. Another unusual feature is the need to set up non-
communication resources.

The bottom of Figure 1 shows a mesh that could support the collaborative work environment application
described in Section 2. The mesh consists of a virtual “slice” of each of the physical resources shown in
black. The compute resources could either be special purpose devices or, more likely, generic resources that
have been programmed to provide the specific service needed for this application.

An important criterion for the selection of the mesh is that there be a very high probability that suf-
ficient mesh resources will remain available for the duration of the session. This is most easily achieved
by reserving the resources, but this is an expensive solution, especially for bursty applications. It is more
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attractive to have users share resources dynamically. Predictability can often still be achieved by carefully
selecting a best effort or weak guaranteed service. For example, suppose a service provider offers a high
and low quality video conferencing service, and the network infrastructure provides three service classes:
two classes of differentiated best effort service and an IETF style guaranteed service. The provider could
use the following policy: during peak hours, the high and low quality video streams would be mapped to
the guaranteed and high quality best effort service classes, respectively, while the high and low quality best
effort service classes might be sufficient during off-peak hours. Clearly, more refined strategies are possible:
the selection can be more dynamic based on real-time information, and different classes can be picked for
different flows and in different subnets. The provider can make such optimizations transparently to the user.

Mesh allocation involves not only identifying and allocating the resources needed to satisfy the appli-
cation request, but also preparing the network to deal efficiently with a wide variety of possible runtime
situations. For example, by establishing the appropriate state in the mesh, e.g. the delegates described
below, the response to changes in traffic conditions could be implemented as local actions, e.g. selective
packet dropping and the redistribution of bandwidth. The mesh creation phase can also be used to plan for
application changes. For examples, when a mesh is created for a video conference, there may be advanced
knowledge about the likely number and geographical distribution of participants. This knowledge could be
used to preallocate resources in some regions, and to establish service delegates that can quickly redistribute
these resources as participants enter and leave the conference. Finally, the mesh can also help in dealing
with recovery after failures: the state associated with mesh can be used to redirect traffic around a failed
link, or reestablish state in a failed switch node after it comes back up.

3.5 Hierarchical resource management

An important aspect of our vision is that services can be composed in a hierarchical fashion: applications
invoke high-level service providers, which may in turn invoke services from more primitive or lower-level
service providers. As described above, the set of resources controlled by each service provider can be seen
as a virtual network. The network is virtual in the sense that the service provider does not control specific
physical resources, but rather shares physical resources with other service providers. Consider the example
shown in Figure 5. There are two bitway service providers (B1 and B2) that own physical link and router
resources. In addition, there are two value added service providers (V1 and V2), each of which builds
a virtual mesh that consists of link and router capacities of B1 and B2, and additional processing/storage
nodes owned by itself.

Each service provider in the hierarchy supports multiple clients and may need to dedicate a fraction of its
resources to each of its clients. Clients are either higher level service providers or applications, and they may
in turn want to control resource sharing between their clients (for service providers) or across their flows (for
applications). In other words, the service hierarchy results in a resource management hierarchy. For each
physical resource, sharing and thus contention exist at multiple levels: at the physical resource level among
multiple service providers, at the service provider level among lower level service providers or organiza-
tions, and at application level among individual flows. This hierarchical resource sharing relationship for a
particular resource can be concisely represented by a resource tree. Figure 5 shows an example of a resource
hierarchy for a specific link. The root node represents the physical link resource and leaf nodes represent
the finest granularity of virtual resources, which can correspond either to individual traffic streams, such
as the Seminar Video stream, or to traffic aggregates, such as Provider 2’s best-effort traffic class. Interior
nodes represent virtual resources that are managed by entities such as service providers, organizations and
applications.

We now use this example to illustrate several important features of a resource hierarchy. First, the re-
source management policies of the entities sharing the physical resource can be very diverse. In the example,
two service providers dynamically share the 155 Mbps link. Service Provider 2 supports the IETF Intserv
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Figure 5: An Example Resource Management Hierarchy

QoS model (guaranteed and controlled load) for individual traffic streams, while the more sophisticated Ser-
vice Provider 1 supports organization-based QoS, where the organizations and applications can specify the
dynamic sharing relationship for their traffic streams. It is important that these diverse policies can coexist
without negative interactions. For example, changes in how CMU distributes its bandwidth should not result
in missed deadlines for the flows in the guaranteed service class of Provider 2.

Second, the hierarchy specifies both a minimum share of the resources for each entity plus sharing
policies that defines how unused resources should be distributed over other entities. The minimum share
of resources given to an entity can be viewed as a virtual resource that can be further allocated according
to a policy specified by that entity. For example, Value Added Service Provider 1 further divides its virtual
link resource to two organizations: CMU and the University of Pittsburgh. An entity will not only receive
its minimum share of resource, but also get excess resources that are allocated to other entities but not
currently used. Thisdynamic(rather thanstatic) sharing relationship is also governed by the resource
sharing hierarchy. For example, if the aggregate bandwidth of controlled load traffic served by VP2 is less
than 10 Mbps during a certain period, the best-effort traffic served by VP2 will have the highest priority to
use the extra resource.

Finally, the hierarchy allows the co-existence of competitive and cooperative sharing. For example, the
Distributed Simulation application may have many audio streams traversing the same link. However, it
is unlikely that more than a few audio streams are active simultaneously. Rather than making a separate
reservation for each audio stream, the Distributed Simulation application makes one reservation and lets all
its audio streamscooperativelyshare this virtual resource. Similarly, rather than making a reservation for
each traffic stream, Provider 2 lets all controlled load traffic freely share the same virtual resource, exploiting
statistical multiplexing. In contrast, since Providers 1 and 2 arecompetitivelysharing the link, each provider
is guaranteed to get its share (100 Mbs and 55 Mbs respectively) of the link if it needs it to support its traffic,
independent from the requirements of, or the actions by, the other provider.

While this hierarchical resource management framework is also useful for today’s networks, for exam-
ple, to support hierarchical link sharing service [14], it is much more important in the context of value-added
services networks in which resource owners, service providers, and applications will all have their own
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entity-specific resource management policies. The ability to customize resource management policies at all
sharing levels is one of the key requirements and distinctive features for value-added services networks.

In contrast, today’s networks provide limited support for customizable management of network re-
sources. The network allocates resources either on a per packet basis (datagram network) or on a per traffic
stream basis (Virtual Circuit Network). RSVP introduces the concept of reservation style, with which traf-
fic streams from different senders can share one reservation. However, this capability is limited in several
respects. First, resources can be shared only by traffic streams directed to the same multicast address. Even
if a single video conferencing application uses video, audio, and whiteboard tools, there can be no dynamic
resource sharing by these tools if they use different multicast addresses, as is case for the MBONE tools.
The current model of RSVP and IntServ also provides no support for hierarchical virtualization of resources.

3.6 Application-specific adaptation

Achieving high quality of service is not a goal that can be met at startup time alone; it requires attention
on an ongoing basis. The reason is that both network conditions and application requirements change, and
thus the “optimal” allocation of resources changes constantly. Runtime resource management should be
customizable for the same reasons that virtual network creation is customizable: the best way to adapt to
changes in resource availability is service specific, and service providers will want to consider user prefer-
ences when optimizing service quality. For example, if the bandwidth available to a video stream drops, the
service provider may simply reduce the frame rate for “basic” customers, or may switch to a higher differ-
entiated service class for “deluxe” customers. Moreover, runtime resource management decisions have to
be made on several time scales, including very fine time scales. The faster a provider can respond, the less
noticeable and the less objectionable the impact is likely to be for users.

A direct way of achieving responsive, customizable runtime resource management is to haveappli-
cation and service presencein the network that is directly involved in or affects resource management
decisions. Application or service presence can take many forms, ranging from a set of parameters that en-
code application priorities, to general programs that are invoked when certain application-defined events are
triggered. The most appropriate format will have to balance the degree of customization and sophistication
with the complexity and overhead of the required runtime environment. We will refer to such state or code
asdelegatessince they represent the interests of the application or service provider in the network. Hav-
ing delegates inside the network (as opposed to the endpoints) should improve responsiveness, since the
resource management code has ready access to relevant information on network conditions and can quickly
implement the decision, avoiding delays of potentially several roundtrip times. Delegates are a focused
application of active networking [30].

Delegates are logically part of the virtual network and they are established when the virtual network
is created. This involves checking the safety properties of the delegates, allocating local resources, and
arranging for appropriate access to the switch state and network events. The set up phase also has a security
component that determines 1) what runtime resource management actions delegates are allowed to take,
and 2) what pool of resources they are allowed to manage. Delegates will typically be allowed to manage
the resources of the virtual network they are associated with; if hierarchical scheduling is used, this means
that they are allowed to modify a subtree of the local resource tree. One of the reasons for having such an
extensive set up phase is that it reduces the need for runtime checking, resulting in more efficient customized
runtime resource management.

Both the usefulness and implementation cost of delegates depend critically on the type of resource
management decisions they can make. Ideal candidates are operations that benefit from customization and
fast response, but that do not require resource intensive processing. The simplest class of operations is to
change the resource tree used by the scheduler in response to an increase or decrease in bandwidth, e.g.
the delegate can change the distribution of bandwidth across flows or flow aggregates, or it can change the
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service class that used for a set of flows. Customization is needed to implement service-specific cost or
quality goals, e.g. a minimum frame rate has to be maintained, or to implement organizational policies, e.g.
certain classes of video get dropped if there is congestion. Other possible operations include changing the
routing inside the virtual network to balance traffic load or selectively dropping packets to relieve congestion.
Finally, delegates can be used to coordinate distributed events. For example, delegates could provide explicit
feedback to applications if some application-specified condition is met, thus allowing the application to
respond more quickly and based on more accurate information than if it had to rely exclusively on implicit
feedback (packet drops).

While delegates may make it possible to do more effective resource management, this comes at a cost:
delegates can potentially have significant computational requirements, and their execution could in fact
reduce overall network performance if they are not supported correctly. Routers support activities on a
range of time scales, and complexity and performance can be controlled by choosing the appropriate time
scale for each activity. The most frequent operation is packet forwarding, and performance can be optimized
by keeping the data forwarding path simple. Instead, we expect application or service specific delegates to
execute in the control plane of the switch nodes, i.e. they operate on a coarser time scale. While there will
of course still be stringent limits on the resource use of delegates, this should be easier to manage. Note that
it is likely that people will develop delegates that are computationally expensive or executed frequently, or
even delegates that perform data processing tasks such as video transcoding or encryption. However, these
tasks would generally require different locus of execution, e.g. they could be executed on a workstation farm
or on compute nodes inside the router that are specifically designed for this purpose.

While application presence in the network and explicit interactions may allow more effective adapta-
tion, there are also several risks associated with these mechanisms. These risks include safety and security
concerns caused by application presence, reduced network performance, and, maybe most importantly, a
potentially significant increase in complexity inside the network, which may cause increased failures and
longer recovery times. Dealing with these problems is a major challenge, and the benefits of these mecha-
nisms ultimately must be weighed against their risks and costs.

4 The CMU Darwin Project

The CMU Darwin project has implemented a prototype system that incorporates the resource management
mechanisms described in the previous section. We give an overview of the Darwin architecture and briefly
describe its components. More details can be found elsewhere [8].

4.1 System Architecture

Figure 6 shows how the components in the Darwin system work together to manage network resources.
Applications running on end-points can submit requests for service to a service provider which includes a
service broker (Xena). The service broker identifies the resources needed to satisfy the request, and passes
this information to a signaling protocol, Beagle, which allocates the resources. For each resource, Beagle
interacts with a local resource manager to acquire and set up the resource. The local resource manager
modifies local state, such as that of the packet classifier and scheduler shown in the figure, so that the new
application will receive the appropriate level of service. The signaling protocol can also set updelegates,
code segments that can customize resource management for newly allocated resources. Throughout this
process, appropriate resource authorizations must be made. Service brokers have to know what resource
pools they are allowed to use, and the signaling protocol and local resource managers must be able to
validate the resource allocation request and set up appropriate billing or charging. Other scenarios, using
the same architecture, are possible. For example, sophisticated applications can use a built-in service broker
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Figure 6: Darwin system architecture

to identify resources and can then interact directly with Beagle to allocate the resources.
This architecture is driven in part by our goal of supporting customizable services in a heterogeneous

network environment, and by a need to support multiple administrative domains. Service brokers interact
directly with applications and can incorporate a lot of knowledge about the application domain. One example
of a service broker could be a service provider specializing in video conferencing: it can translate a high level
request (high-quality conference for 5 participants) into a list of required resources. A radically different
example of a service broker could be a network resource manager for a university; the manager understands
the relative priorities of requests and also enforces a set of policies that determine when additional resources
can be leased. Local resource managers, on the other hand, concern themselves only with the management of
a specific communication, computation or storage resource. We expect that different types of local resource
managers will be deployed in different administrative domains. The signaling protocol has to bridge the
gap: it receives high-level, application-independent and implementation-independent instructions from the
service brokers, and translates them into specific instructions for each local resource manager.

Figure 7 shows how the different entities on switch nodes interact. For performance reasons, it is impor-
tant to distinguish between the data forwarding and control functions on the switch nodes. The focus of the
data path, which includes classification, route lookup, and scheduling, is on high packet throughput, so this
component must be kept simple. Control plane activities include signaling, routing (not shown), and cus-
tomized runtime management actions. These activities happen on a much coarser time scale, and, although
resources will always be limited, there is more room for customization and intelligent decision making. The
control interface, i.e. the interface exported by the local resource manager to delegates and Beagle, specifies
the range of resource management operations that delegates and Beagle can perform. As such, it defines the
scope of customization of resource management that is possible at startup (through Beagle) and at runtime
(through the delegates).

4.2 System components

The Darwin architecture is similar in many ways to traditional resource management structures. For exam-
ple, the resource management mechanisms for the Internet defined by the IETF in the last few years rely on

12



Classifier Scheduler

Local Resource Manager

Beagle Delegates

Route lookup

Routing

Control API Event Notification

Xena   Beagle

Other
Routing
Entities

Applications
Other Delegates

Figure 7: Darwin node architecture

QOS routing [32, 12] (service brokers), RSVP [36] (signaling similar to Beagle), and local resource man-
agers that set up packet classifiers and schedulers. The more recent proposals for differentiated service [25]
require similar entities. The systems differ in the specific responsibilities of the entities. We briefly elaborate
on the Darwin system components and explain how they address the requirements listed in Section 2.

The first component is the hierarchical fair service curve (HFSC) scheduler [28] that manages link
bandwidth and that can implement a broad range of sharing policies, including fair sharing and guaran-
teed services. Moreover, it supports the hierarchical resource management that is needed for hierarchical
service deployment, and it allows controlled sharing of resources between sibling nodes without violating
guarantees inside the subtrees, so subtrees can be managed independently.

A second component is a service broker, called Xena, which translates an application request into a set of
resources and lower-level service invocations. Xena is essentially a multi-resource router: it tries to satisfy
the request while minimizing a cost function or maximizing an application-provided quality function. The
latter allows applications to customize the quality of the service. The current implementation of Xena recog-
nizes not only generic resource types (e.g. bandwidth, CPU cycles), but also specialized resources related to
video streams, e.g. different encodings and transcoder requirements, allowing Xena to make domain-specific
optimizations for that class of applications [9]. For example, it can transparently insert transcoders to deal
with mismatches in encoding. These optimizations are possible because brokers receive high-level requests
and can use domain knowledge. Xena currently uses an integer linear programming formulation [4] for its
optimizations.

The Beagle signaling protocol is responsible for carrying out the allocation of the chosen resources
and for maintaining the state associated with virtual networks [10]. The distinguishing feature of Beagle
is that it allocates resources for complete virtual networks, instead of individual flows. Other properties
include support for hierarchical resource management, the installation of application and service delegates,
and the provision of the communication channels they need. Work is in progress on providing appropriate
authorization and security mechanisms.

Delegates are implemented as Java applets that execute in the Kaffe [33] runtime environment, which
runs on the router. This environment provides maximal flexibility for experimentation, albeit at some per-
formance penalty. The current control interface allows delegates to modify the resource tree associated with
the virtual networks they manage, e.g. they can change bandwidth distributions, define new flows, or specify
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that a particular flow should be dropped. Since the packet classifier uses not only the traditional IP header
fields, but also an application flow id, this allows delegates to implement a broad range of customized re-
source management policies. For example, if congestion builds up, a delegate can specify that specific flows
should get guaranteed bandwidth, or it can selectively drop low priority flows. Much more work is needed
to define the full control interface and to evaluate benefits and costs of the delegate model.

All four components have been implemented and execute in an integrated fashion [8]. The initial devel-
opment and test environment was a controlled testbed consisting of three routers along with twelve endpoints
that can execute traffic generators and applications. The routers are PCs running NetBSD or FreeBSD. Dar-
win has recently been ported to the DARPA Cairn wide-area network testbed and a port to a vendor platform
is planned.

5 Impact on Core Network Infrastructure

In this section we look at the changes required in the network infrastructure to support application-aware
networks and describe some possible deployment scenarios.

While the mechanisms described above are quite different from these in use today, we believe that
introducing them is quite feasible, since most of the required changes are outside of the core network in-
frastructure. As we indicated above, it is useful to categorize the activities according to the time scale on
which they occur. On the finest time scale, we have hierarchical scheduling. It has be built into the “core
network” to provide the bearer services, on which higher level services can be built in a hierarchical way.
This is however the main change, and in fact, simpler measures (such as provisioning of CBR circuits at
some switches or use of a differentiated services infrastructure [5]) can support high quality service. The
other mechanisms are on coarser time scales and will be easier to introduce.

Given the cost of the installed networking infrastructure, new features are always introduced incremen-
tally. Application-awareness can be introduced incrementally by gradually introducing application-aware
switch nodes. The nodes would be connected using the existing networks, which represent the “bearer”
service layer of Figure 2. While having a large number of application-aware switch nodes would increase
flexibility, we expect that most applications will require only a small set of such nodes, and most switches
and routers that handle application traffic will provide only basic bearer services. The basic bearer services
should provide some mechanism to provide different level of service to different users, but this can be at
a coarse level, e.g. for flow aggregates. For example, edge routers could use the mechanisms described
in this paper to implement customized definitions of QoS while core routers would only operate on flow
aggregates, as described in Section 3.3.

Our motivation based on an electronic services market leads us to suggest that these or similar mecha-
nisms can be used to support such a market on the Internet. Even at a smaller scale, dynamic availability
of efficient, assured services and service creation through composition will be useful, and this environment
may be more appropriate for initial testing and deployment. An example would be a university campus or
a commercial or government organization that has multiple sites connected by leased lines. The resource
management mechanisms described above could be used to manage traffic belonging to different depart-
ments or classes of applications (e.g. with different priorities or security requirements). Similarly, resources
on the network could be packaged into value-added services accessible to end-points.

6 Relationship to Other Research

There has recently been a lot of work in defining and implementing support for multiple classes of QoS
in networks. This has resulted in specific proposals both for ATM [1] and for IP [11]. The ”Integrated
Services” IETF proposal, for example, defines a controlled load (weak guarantees) [34] and guaranteed
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traffic class (strong guarantees) [26] in addition to the traditional best effort class. A more recent proposal
for differentiated services [5] places more emphasis on flow aggregation. The Darwin project is looking at a
higher level notion of QoS than these efforts: it looks at collections of streams instead of individual streams,
and tries to define QoS in an application-oriented way rather than having a small set of predefined classes.
Note that these two research thrusts complement each other: Darwin expects a bearer layer, which is likely
to support a small number of simple bearer services.

Another related research effort in the IP community is link sharing [14]. It addresses the problem of
how organizations can share network resources in a preset way, while allowing the flexibility of distributing
unused bandwidth to other users. Clearly, the hierarchical scheduling addresses in part the link sharing
problem [3, 28].

Another active area of research is QoS routing. Given an application request for a connection with a
certain QoS properties, QoS routing algorithms try to identify a path that meets the requirements while also
optimizing some cost function. QoS routing is basically a simple version of the virtual mesh allocation
problem in Darwin. Note that QoS routing is in general NP-complete [32], although it has been shown to be
tractable for certain types of networks [24, 23]. The mesh allocation problem is significantly more complex,
so we expect to make use of heuristics that have good properties for the common case.

Signaling protocols have been widely studied and deployed. These protocols typically allow the user
to request one of a small number of service types, e.g. establishing a point-to-point connection or adding a
receiver to a multicast connection. A recent example is the ATM signaling protocol standardized by the ITU
and ATM forum [2]. RSVP [36] is an example of a signaling protocol that came out of the data networking
community. It establishes multicast “flows”, which are weaker than connections, and allows the creation of
filters that merge the reservations of multiple flows.

Other efforts have defined and implemented signaling frameworks that give end-points access to the
internals of the network [21]. Examples of primitive operations are updating a routing table or reserving
link resources. These can be combined to set up a connection, i.e. signaling frameworks could be viewed as
an assembly language that can be used to implement higher level constructs. Similar to assembly languages,
they provide maximum flexibility, but little guidance or support for program development.

The signaling protocol in Darwin will strike a balance between these two extremes. The protocol will
be more structured than a framework, but will have to be flexible enough to support application delegates
and their requirements. Support for application-awareness and security are two areas of emphasis for the
Darwin signaling protocol.

The idea of “Active networks” has recently attracted a lot of attention. The idea is that instead of having
packets be passive entities that are carried around, packets can be active and change the behavior of the
network [30]. The term “active networks” refers to a broad range of networks. One extreme is the idea that
every packet header is a program that will be executed by the switches. In a weaker form, programs are
restricted to special packets and active networks provide a mechanism to manage the network more easily,
e.g. active packets can be used to upgrade software over the network.

The Darwin project touches on the active networking area in two ways. First, application delegates
are an example of active packets, but represent a very “mild case” of active networks: delegates operate
in the control plane, and their actions are restricted to the management of traffic and resources supporting
communication. A second area where Darwin overlaps with active networks is the integration of computa-
tion and communication inside the network. Since active packets contain programs, they will have certain
computational requirements. When allocating a virtual mesh, Darwin will try to satisfy both computational
and communication requirements, and it may indeed make tradeoffs across these different resource types.
Virtual mesh allocation addresses one of the resource allocation problems associated with active networks.

A final area of related work is adaptation to network conditions. In the Internet, there is no exchange of
congestion information between entities, so end-points have to adapt based on implicit feedback, e.g. TCP
interprets dropped packets as a sign of congestion [19]. Recently, several applications have been developed
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that adapt to the bandwidth and latency variations of the underlying network. One class of examples are
Internet-based video and audio tools [17, 18, 15, 6, 31]. Another class of examples consists of distributed
computations modifying the granularity of the computation in response to network status [27, 29]. The
adaptation policies used in these applications are ad hoc and application specific.

Interpreting implicit feedback from the network is difficult [7], and some recent network control al-
gorithms, such as ATM flow control algorithms [1, 20], provide explicit information to each end-system.
There have been some attempts at making this information available to applications, resulting in explicit,
albeit generic, feedback to applications. Recent work on renegotiated service [22, 16, 35] attempts to com-
bine reservation and feedback control algorithms, resulting in the explicit exchange of state information in
both directions between applications and the network. In Darwin we plan to design mechanisms that allow
systematic explicit state exchange among applications, transport layer, and network layer, giving applica-
tions access to more accurate and timely information about the network. Darwin focuses on multi-party
applications, where the interpretation of and response to feedback is more complicated. Moreover, we hope
that application presence will make it possible to generate feedback that is tailored to the application, and
easier to interpret.

7 Conclusion

We envision a market place of electronic services that allows the construction of value-added services by
composition and rapid marshaling of resources provided by other services. We argue that flexible resource
management mechanisms that are customizable by applications and service providers are important for
such a electronic services market place. In particular, we present three concepts that capture the resource
management requirements:

• a virtual network consisting of all the resources and states that are provisioned to a service provider
or an application; the creation of the virtual network provides an opportunity to optimize resource use
and the quality of the delivered service, using application and service specific optimization criteria.

• a hierarchical scheduler allows each physical resource to be managed as a set of virtual resources,
controlled by different entities; the scheduler has to be able to satisfy the customized resource man-
agement policies of different entities (resource owner, service providers, applications) simultaneously,

• runtime resource management is customized through the use of delegates, application or service spe-
cific code or state in the network; delegates allow resource allocation decisions to be made locally,
without the need for slower global protocols.

These concepts have been implemented in the CMU Darwin system. Within Darwin, virtual networks are
created using Xena, a a service broker that designs an efficient mesh in response to application requests, and
Beagle, a signaling system that maintains the low-level state required to implement and maintain the mesh.
The HFSC scheduler implements the virtual network abstraction and manages hierarchical resource sharing
relationships between the virtual networks. Finally, virtual network resources are managed by Java-based
delegates that operate in the control plane and manage data plane resource through a control interface.
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