

© ROBERT T. MONROE, 1998

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract:

Armani is a language for capturing software architecture design expertise and
specifying software architecture designs. This document describes the Armani
language in detail with specifications for the language syntax and semantics, as well
as examples illustrating common usage.

The research reported here was sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under grants F33615-93-1-1330
and N66001-95-C-8623; and by National Science Foundation under Grant CCR-9357792 and a Graduate
Research Fellowship. Support was also provided by the Kodak Corporation in the form of a Graduate Research
Fellowship. Views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of Wright Laboratory, the US
Department of Defense, the United States Government, or the National Science Foundation. The US Government
is authorized to reproduce and distribute reprints for Government purposes, notwithstanding any copyright notation
thereon.

Capturing Software Architecture
Design Expertise with Armani

Version 2.3
Robert T. Monroe

Originally published October, 1998
Revised January, 2001

CMU-CS-98-163

© ROBERT T. MONROE, 1998

��������	
�	�
��

The Armani design language provides software architects with a rich language for
describing software architecture designs, constraints on the evolution of those designs,
and architectural design expertise. The types of architectural design expertise that can be
captured with the Armani language include design vocabulary, design rules, and
architectural styles. In addition to capturing software architecture design expertise, the
Armani design language is a full-fledged software architecture description language in its
own right.

The Armani design language is also used as the configuration language for the Armani
software architecture design environment. This environment can be rapidly and
incrementally configured to use the design expertise captured with the Armani design
language. This captured design expertise guides software architects using the Armani
environment in the creation of appropriate software system architectures and provides an
analytical base to confirm that the system designs obey the specified design rules.

This document provides a detailed description of the syntax and the semantics of the
Armani design language and illustrates its use as a design specification language for
capturing both architectural design expertise and the specifications of individual software
architectures. Neither the design environment itself nor details on how the design language
can be used to customize the environment are discussed in this document.

This document is the first public draft of the Armani Language Reference Manual. It is
intended as a detailed proposal for the language that will allow people to begin
experimenting with the design language and provide feedback on ways in which it may be
improved. Please read the manual with these goals in mind.

�����
��
����������
������

As with any design language, Armani1 must make tradeoffs between competing goals and
constituencies. This section enumerates the main principles and design decisions
underlying Armani, and discusses the tradeoffs made in defining the language.

�
������������
��

The following principles have guided the design of the Armani language.

1 For the remainder of this document the single term Armani will refer to the Armani design language. The design
environment associated with the language will be referred to as the Armani design environment.

Chapter

�

 �

• Armani focuses on the description of system structure and how that system structure
may evolve over time rather than the dynamic run-time behavior of systems.

• Armani is a declarative language. Armani specifications describe architectural
structure and constraints on that structure; they do not describe operations for
modifying or deleting architectural structures. Informally, an Armani specification
describes the structure of a system and the constraints that must hold on that system
as it evolves. The Armani description itself describes neither how to create the
structure of a system, nor how to check that the constraints are satisfied. These
operations are embedded in the language processing tools, rather than the language
itself.

• Armani uses a single integrated language for describing instances of system
architectures and capturing abstract architectural design expertise.

• Armani is built as an extension of the Acme architecture description and interchange
language to encourage easy translation to and from Acme. This interchangeability
should allow Armani users to take advantage of existing and future Acme-based tools
and infrastructure.

• The Armani constraint language allows a style designer or system designer to
differentiate between invariant constraints (fundamental design constraints) and
heuristics (rules of thumb).

• The Armani constraint language uses a first-order predicate logic-based language to
express and package design constraints. Checking for satisfaction of Armani
constraints is rendered decidable by permitting variables to be quantified only over
finite sets.

• Armani uses the following seven core constructs for describing instances of
architectural designs: components, connectors, ports, roles, systems, representations,
and properties. These constructs are described in greater detail in the following
section.

• Armani supports the capture of reusable abstract design expertise with the following
core constructs: design element types, property types, design invariants, heuristics,
and analyses, and architectural styles. These constructs are also described in greater
detail in the following section.

�

�
��������
������

In designing the Armani language, there were two basic tradeoffs to be made. The first
concerns the conflicting goals of making the language well suited for use as a stand-alone
textual design language for humans vs. making it well-suited as a machine-processible
format for architectural designs and design expertise. In general, most decisions favored
making the language flexible, expressive, and concise for human language users. These
decisions were, however, tempered by the need to make the language easily processible
by automated tools.

The second tradeoff in designing the Armani language deals with the need to make the
language rich and intuitive for the software architects and environment designers that

 �

make up Armani’s target audience, while keeping the language simple, and semantically
tractable. Armani tends to favor richness and naturalness of expression when doing so
does not severely compromise the tractability of the language.

�����
���������
��	
�	�
��

Armani provides seven core constructs for describing instances of architectural designs:

Components represent the primary computational units of a system.

Connectors represent and mediate interactions between components.

Ports represent components' external interfaces.

Roles represent connectors' external interfaces.

Systems are collections of components, connectors, and a description of the topology
of the components and connectors.

Properties are annotations that store additional information about elements
(components, connectors, ports, roles, and systems).

Representations allow a component, connector, port, or role to describe its design in
greater detail by specifying a sub-architecture that elaborates the parent element.

Chapter 2 provides a detailed overview of these constructs, including informal discussion
and examples of their usage, an informal syntax specification, and a more formal
specification of one form of semantic representation and the algorithms for processing that
representation.

To support the capture of reusable abstract design expertise, Armani provides the
following core language constructs:

Design Element Types are predicates that describe the fundamental structure and
constraints of design vocabulary elements.

Property Types are predicates that describe the type and structure of properties.

Design Invariants capture design constraints that must hold in a design.

Design Heuristics capture suggestions for creating effective designs.

Design Analyses are functions computed over instances of architectural designs.
Design analyses may be specified in the Armani predicate language or as
external functions linked into the environment.

Architectural Styles aggregate instances of the above five constructs for packaging
design expertise.

Chapter 3 describes the constructs for capturing abstract architectural design expertise in
detail, including informal discussion and examples of their usage, an informal syntax
specification, a canonical abstract syntax representation, and a detailed discussion of how
an Armani specifications can be processed to determine consistency between a design
instance and the constraints the design claims to satisfy.

The Armani constructs for specifying design invariants, heuristics, and analyses are
presented in Chapter 4. Chapter 5 walks through a set of examples that exercise the full

 �

Armani language. Appendix A outlines an alternative approach to semantics, by showing
how Armani’s semantics can be treated as a special case of the PVS set-theoretic
approach. Finally, a detailed specification of the Armani design language syntax is given in
Appendix B.

© ROBERT T. MONROE, 1998

��
��� ������!��
���������������
�

�����
���
������������	
�	�
��

Chapters 2 and 3 present an overview of the core Armani design language. Language
concepts and constructs are introduced throughout these chapters by presenting an
informal discussion of the concept or construct, introducing its syntax with both examples
and BNF’s, presenting a canonical representation for the construct, and discussing
algorithms and/or techniques for evaluating these canonical representations.

The language presentation used in the main body of this report is intended to provide a
concrete interpretation of the language in a form that will allow three classes of reader to
understand how the language can be represented and processed. These classes are:

1. Architectural Style Developers who use the Armani design language to capture
and package reusable architectural design expertise. This includes people who
only need to capture architectural design expertise with the Armani language in an
architectural style, as well as custom environment builders who use architectural
style specifications to customize an Armani design environment.

2. Software Architects who use architectural styles and their associated
environments to design, specify, and evaluate architectures for specific software
systems. They may also be style developers, but this need not be the case.

3. Armani Tool Developers who write tools to operate on Armani descriptions. It is
not yet clear if there will be a significant market for third-party Armani tools, but a
clean specification of the language syntax and semantics will reduce the barriers
to building such tools, encouraging the development of a third-party tool market.

To address this audience this report takes a pragmatic and operational approach to
describing the meaning of Armani specifications. Specifically, it shows how an architectural
design specified in Armani can be translated into a (finite) tree of nested records. It also
shows how Armani “types” can be translated into predicates over that tree. Determining
whether a given architectural design (or part of a design) satisfies a given type is then
defined in terms of the algorithms that allow one to determine whether the corresponding
tree satisfies the corresponding predicate. The algorithms given for performing this
evaluation are performed in the abstract syntax domain rather than the semantic domain.

This treatment is heavily biased towards explaining how one would write tools to process
an Armani description. It is believed that this operational approach, although less elegant,
compact and formal than most modern language semantic treatments will best satisfy the
needs of the intended audience.

Chapter

"

 #

To address a more formal, language-theoretic audience, Appendix A sketches the
approach one would use to define a set-theoretic semantic specification for the Armani
design language. This approach is adapted from work by previous researchers who have
developed predicate-based type systems.

�	
�	�
������!
������������$������
������
��

Armani uses seven core constructs to specify a system’s architectural structure –
components, connectors, ports, roles, systems, representations, and properties. Each of
these constructs is described below in detail.

%�����
��������������

Components represent the primary computational elements and data stores of a system.
Intuitively, they correspond to the boxes in box-and-line descriptions of software
architectures. Typical examples of components include clients, servers, filters, objects,
blackboards, and databases.

Components’ interfaces are defined by a set of ports. Each port identifies a point of
interaction between the component and its environment. A component may provide
multiple interfaces by using multiple ports. A port can represent an interface as simple as a
single procedure signature or more complex interfaces such as a collection of procedure
calls that must be invoked in a specified order or an event multi-cast interface point.

%���
����������&��
��

Connectors represent interactions among components. Computationally speaking,
connectors mediate the communication and coordination activities among components.
Informally they provide the "glue" for architectural designs and correspond to the lines in
box-and-line descriptions. Examples include simple forms of interaction, such as pipes,
procedure call, and event broadcast. But connectors may also represent more complex
interactions, such as a client-server protocol or a SQL link between a database and an
application.

Like components, connectors have explicitly specifiable interfaces that are defined by a set
of roles. Each role of a connector defines a participant of the interaction represented by the
connector. Binary connectors have two roles such as the caller and callee roles of an RPC
connector, the reading and writing roles of a pipe, or the sender and receiver roles of a
message passing connector. Other kinds of connectors may have more than two roles.
For example, an event broadcast connector might have a single event-announcer role and
an arbitrary number of event-receiver roles.

� ��
���

Systems represent configurations of components and connectors. A system includes
(among other things) a set of components, a set of connectors, and a set of attachments
that describe the topology of the system. An attachment describes the relationship
between a connector and a component by associating a port interface on a component
with a role interface on a connector.

 '

()����
�

To illustrate the simple structure language, Example 2.1 describes a trivial architectural
specification of a system with two components – a client and a server -- connected by an
rpc connector. The client component is declared to have a single send-request port, and
the server has a single receive-request port. The connector has two roles designated
caller and callee. The topology of this system is declared by the set of Attachments.

&
��
�
���������

Complex architectural designs generally require hierarchical descriptions to provide a
specification that is both sufficiently detailed and tractable for individual designers to
understand. Recognizing this, Armani supports hierarchical decomposition of
architectures. Specifically, any component or connector can be represented by one or
more detailed, lower-level descriptions. Each such description is termed a representation.
The use of multiple representations allows Armani to encode multiple views of architectural
entities (although there is nothing built into Armani that supports resolution of inter-view
correspondences). It also supports the description of encapsulation boundaries, as well as
multiple refinement levels.

����
���
��

There is clearly more of interest in an architectural description of a system than the
topology of its components and connectors. The property construct in Armani provides a
mechanism for annotating designs and design elements with detailed, generally non-
structural, information. All of the architectural entities described to this point (components,
connectors, ports, roles, systems, and representations) can be annotated with properties.

An Armani property is a name, type, value triple. The Armani type system is described in
detail in section 3.

()����
��

The following example describes an extension to the simple client-server system given in
Example 2.1. This example has been annotated with properties that describe
characteristics of the structural elements of the system.

System simple_cs = {
 Component client = { Port send-request }
 Component server = { Port receive-request }
 Connector rpc = { Roles {caller, callee} }
 Attachments {
 client.send-request to rpc.caller ;
 server.receive-request to rpc.callee }
}

Example 2.1: Simple client-server specification in Armani

 �*

System simple_cs = {
 Component client = {
 Port send-request;
 Properties { request-rate : float = 17.0;
 source-code : external-file = "CODE-LIB/client.c" }}

 Component server = {
 Port receive-request;
 Properties { idempotent : boolean = true;
 max-concurrent-clients : integer = 1;
 source-code : external-file = "CODE-LIB/server.c" }}

 Connector rpc = {
 Role caller;
 Role callee;
 Properties { synchronous : boolean = true;
 max-roles : integer = 2;
 protocol : Wright = "..." }}

 Attachments { client.send-request to rpc.caller ;
 server.receive-request to rpc.callee }
}

Example 2.2: Simple-client-server system with properties

�

�����������������������
�� ���)�

The full Armani BNF is included in Appendix B (along with a description of the BNF
notation used here). A short BNF for the core Armani structural language is provided here.
The simplicity of the core structural language is reflected in the language’s short and
simple BNF. This syntax description will be extended and improved throughout this
document as new language features are introduced.

System ::= System Name = { EntityDecl* } ;

EntityDecl ::= ComponentDecl
| Connector-Decl
| Port-Decl
| Role-Decl
| Property-Decl
| Rep-Decl
| Attachments-Decl

GenericDecl ::= PropertyDecl | RepDecl;

ComponentDecl ::= Component Name = {
 (PortDecl | GenericDecl)* } ;

ConnectorDecl ::= Connector Name = {
 (RoleDecl | GenericDecl)* } ;

 ��

PortDecl ::= Port Name = { GenericDecl * } ;

RoleDecl ::= Role Name = { GenericDecl * } ;

AttachmentDecl ::= Attachments { (PortName To RoleName)* } ;

Name ::= [a-zA-Z][a-zA-Z0-9_\-+]*

����
���
��

PropertyDecl ::= Property Name [: Type] = Value
| Properties { (Name [: Type] = Value ;) * } ;

&
��
�
���������

RepDecl ::= Representation [Name]= System
 Bindings = { (Name To Name)* } ;

%���������&
��
�
������������(���������

The remainder of this section presents an overview of the steps taken in processing an
Armani design description, the canonical representation into which an Armani specification
is translated, and the notation and form of the equations used to specify the translation
from Armani syntax to its canonical representation.

�����
�����
�������
���

The processing of an Armani specification occurs in four steps.

1. Parse Armani file to create an initial Abstract Syntax Tree (AST).

2. Create fully qualified names and resolve the naming scope of styles, types, elements,
properties, representations, and design rules.

3. Translate the AST to a canonical Armani representation.

4. Perform consistency checks on the canonical representation.

In order to fully process an Armani description, that description must be well-formed.
Checking that expressions are well-formed happens in steps one and two. The meaning of
an ill-formed expression is undefined and cannot be analyzed for consistency. In the
descriptions below we include a description of the well-formedness conditions for each
Armani construct.

Denotational equations given throughout this document explain what happens in the third
step – conversion from abstract syntax to a canonical representation. Consistency checks
are performed on the canonical representation. This consistency check determines
whether an instance of an architectural design specification satisfies the predicate defined
by the architectural styles, “types”, and design rules applied to the design.

 �"

%����������
��
�
���������

The canonical Armani representation is simply a collection of records (or tuples) that
represent the structure of Armani element instances, properties, types, design rules, and
styles. The structure of the records varies for each of these classes of Armani constructs.
As the semantics are presented for each Armani construct, the structure of that construct’s
record is presented. The values stored in the fields of the records may be scalar values,
other records, or sets of records, depending on the type of entity being represented.
Because records can store other records (as well as references to other records), the
canonical representation of an Armani structure emerges as a tree, in which each node is
a record that may contain other records as children.

Denotational equations are used to describe the translation of abstract Armani syntax into
its canonical representation. Consider the denotational equation:

M [<Armani Expression>] c = [c | c.x ← 4]

The above expression is read “The meaning of <Armani Expression> (which is specified in
Armani’s abstract syntax), in the context c is the context c with the new value ‘4’ assigned
to the record field x of context c”. All semantic equations are evaluated within a context. A
context is simply a record whose values can be modified as a result of the evaluation of
the syntactic expression. It is also possible for an equation to return a new context that
may or may not be linked in some way to the original context, as the following example
shows:

M [<Armani Expression>] c = [c’ | c.s ← c’, c’.x ← 104]

In this example, the meaning of the expression on the left hand side of the equation is the
new context c’, such that c’ is linked to context c by the field c.s of context c, and field c’.x
has the value ‘104’.

In most cases, the context of evaluation will be an element record or a design space
record (discussed in subsequent sections and chapters), but other contexts are used
occasionally as needed. When the context of evaluation is an element, the context will be
indicated with a variable named e. When the context of evaluation is unknown, but may be
any kind of context (e.g. design space, element, or something else), the context is
indicated with a c.

The result of the semantic evaluation of an entire Armani description is a global design
space record that serves as the initial top-level context. This global design space record
holds the tree that represents the structures of the Armani design that was evaluated.

�+�������� ���)�

To simplify the presentation of the canonical structure, the concrete syntax specified in the
beginning of this chapter needs to be simplified and represented with the following abstract
syntax. The abstract syntax simply strips some of the syntactic sugar from the concrete
syntax. The equations that construct a canonical Armani representation operate over the
abstract syntax.

 �,

Element ::= Category Name = ElementContents

Category ::= System | Component | Connector | Port | Role

ElementContents ::= (Element | Property | Representation | Attachment)*

Attachment ::= Attachment (Element, Element)

Property ::= Property Name PropValue

Representation ::= Representation Name = Element Bindings

Bindings ::= Bindings (Element, Element)*

Name ::= <valid Armani identifier >

�
���������
����(�
�
���$������
��

This section presents some simple equations for converting Armani expressions in the
language’s abstract syntax into the expressions’ canonical representations. This treatment
assumes that all names have been fully resolved and include their full qualification for
purposes of name comparison. In this approach, denotational equations describe how
records of values, sets, and other records are built from Armani declarations.

All evaluations of the simple instance-based expression language described in this section
are done in the context of an element description, e = (n, c, s, p, r, a). The notation M [s] e
is read "the meaning of statement s in the context of element e". To bootstrap the context
for this simple introduction, semantic analysis begins in the context of an empty, unnamed
element in which the top-level system is declared. Additional types of scopes (and their
associated rules) will be added as more sophisticated language expressions are added.

Throughout, when equations are used to describe the canonical representation, a number
of functions are introduced. The meaning of a function is defined where it is first used.
When a function is used later, its meaning of that function remains the same.

Attachments. An Armani attachment is represented as a record of the form (c, n1, n2)
where c is a category (always Attachment) and each ni is an identifier that specifies the
name of an element.

Well-formedness rules:

ni : Identifier
c : Category

((Port(n1) and Role(n2)) or (Role(n1) and Port(n2)))

and Parent(Parent(n1)) = Parent(Parent(n2))

where:
Port(n) is a predicate that is true iff n refers to a Port-category element
Role(n) is a predicate that is true iff n refers to a Role-category element
Parent(n) returns the element that defines n (the parent of n).

Meaning: M [Attachment n1 n2] e = [e | e.a ← e.a ∪ { (Attachment, n1, n2) }]

 ��

Bindings. An Armani binding is a triple of the form (c, n1, n2) where each ni is an identifier
that specifies the name of an element and c stores the category of the record (always
Binding). The context in which a binding is evaluated is a representation tuple e.r,
rather than an element e.

Well-formedness rules:

ni : Identifier
c : Identifier
pr : Representation = Parent(b)
ps : System = Parent(b).system
pe : Element = Parent(pr)
Nps : Namespace = Namespace(ps)
Npe : Namespace = Namespace(pe)

n1 ∈ Nps and n2 ∈ Npe

and ((Port(n1) and Port(n2)) or (Role(n1) and Role(n2)))

Meaning: M [Binding n1 n2] e.r = [e.r | e.r.b ← e.r.b ∪ { (Binding, n1, n2) }]

 ��

Properties. An Armani property is a record of the form (c, n, t, v), where n represents the
fully qualified name of the property, t specifies the type of the property, v specifies the
value of the property, and c stores the category of the record (always Property).
Property types and the visibility of type names are described in detail in chapter 3. For
the purposes of this section, a type t is a fully resolved reference to a property type. If
the name can’t be fully resolved this is an error that should be caught before the
canonical representation building stage. The property well-formedness rules and
equation follow:

Well-formedness rules:

n : Identifier
t : PropertyTypeReference
v : PropertyValue

 (n != "")

and (not IsArmaniKeyword(n))
and (ResolvedPropertyType(t))
and (SatisfiesType(v, t))

where:

IsArmaniKeyword(n) is a predicate that is true iff n is an Armani Keyword
ResolvedPropertyType(t) is a predicate that is true iff t refers to a resolved

property type
SatisfiesType(v,t) is a predicate that is true iff the property value v satisfies the

property type t.

Meaning:

M [Property n : t = v] e =
 if (n ∉ Names(e.r)) and (n ∉ Names(e.s)) and (n ∉ Names(e.p)) then
 [e | e.p ← e.p ∪ { (Property, n, t, v) }]

where:
Names(r) is a function that returns a set containing all of the “local” (not fully

qualified) names used in the scope defined by the record r.

Representations. An Armani representation is a record of the form (c, n, e’, b).

Well-formedness rules:

c : Category
n : Identifier
e' : Element
b : Set{Binding}

System(e')

Meaning:

M [Representation n = e' b] e =
if (n ∉ Names(e.r)) and (n ∉ Names(e.s)) and (n ∉ Names(e.p)) then
 [e | e.r ← e.r ∪ { (Representation, n, M [e']e.r, M [b]e.r) }]

 ��

Declaration statement sequencing. An instance declaration statement si specifies an
element, property, attachment, representation, or binding. Composition of declaration
statements is handled by the following rule:

Meaning: M [s1; …; sn] e = M [sn] M [sn-1] … M [s1] e

Empty statement sequence. The meaning of an empty sequence of declaration
statements is handled by the following rule:

Meaning: M [{}] e = e

Elements. An Armani element e is a tuple of the form e = (n, c, s, p, r, a).

Informally:

n = name of the element
c = category of the element
s = set of elements that define e’s substructure (e.g. ports, roles, etc.)
p = set of properties that define the properties of e.
r = set of representations that define e’s subarchitectures
a = set of attachments that define e’s topology, iff e is a system.

The well-formedness rule for elements uses the function Names : Set → Set that
creates a new set of name identifiers that is a projection of the "n" field (the name
field) of all tuples in the original set of tuples (e.g. Names({(n=foo, …), (n=bar,…)})
returns the set {foo,bar}).

This well-formedness rule declares the legal substructure for various categories of
elements, and no entities declared as part of this element can share the same
identifier.

Well-formedness rules:

n : Identifier
c : Category
s : Set{Element}
p : Set{Property}
r : Set{Representation}
a : Set{Attachment}

Ne : Namespace = Namespace(e)

 �-

Port(e) → (s = { })
and Role(e) → (s = { })
and Component(e) → (forall e’ in s | Port(e’))
and Connector(e) → (forall e’ in s | Role(e’))
and System(e) → (forall e’ in s | Component(e’) or Connector(e’))
and (a != {}) → System(e)

and forall x, y in p | (x.n = y.n) → (x = y)
and forall x, y in r | (x.n = y.n) → (x = y)

 and (Names(s) ∩ Names(p) = { })

and (Names(r) ∩ Names(p) = { })
and (Names(s) ∩ Names(r) = { })

where:

Component(n) is a predicate that is true iff n refers to a Component-category
element

Connector(n) is a predicate that is true iff n refers to a Connector-category
element

System(n) is a predicate that is true iff n refers to a System-category element

Meaning:

Category is a meta-variable that represents the category declaration of the
element, name is a syntactic identifier

M [Category name = { s1 ;…; sn }] e =
 if (name ∉ Names(e.r)) and (name ∉ Names(e.s))
 and (name ∉ Names(e.p)) then
 [e | e.s ← e.s ∪ M [{ s1 ;…; sn }] (c= Category, n=name, s={},
 p = {}, r= {}, a={})]

()�
������!
������
��������
������
�

The structural language described thus far is a subset of the complete Armani structural
instance language. The constructs that need to be added to this description include typed
properties, meta-properties, “extended with” clauses, and instance-based invariants and
heuristics. Instance-based invariants and heuristics simply define a local subtype that the
instance must satisfy, rather than defining instance-based constraints. As such, instance-
based constraints are specified as part of the typed-language specification presented in
the following chapter.

.()�
��
�����!/������
��

Syntactically, it is possible to assign a value to an element by "unifying" multiple element
value specifications to form a single value for that element. This is not a particularly useful
construct when used with the instance language alone, but it is quite useful for extending a
minimal type instance with greater detail or composing multiple fragments to form an
instance. The abstract syntax for such an operation has the form:

 �#

Element ::= Category Name = EltContents

Category ::= System | Component | Connector | Port | Role

EltContents ::= (Element | Property | Representation | Attachment)*
 | (Element | Property | Representation | Attachment)+
 (extended with EltContents)*

A simple example is:

Component c = { Port p; } extended with { Property rate : int = 100; };

This has the same canonical representation as:

Component c = { Port p; Property rate : int = 100; };

Unifying properties. The following, slightly more problematic, example shows the
unification of a property type and value:

Component d = { Property rate : int; } extended with { Property rate : int = 100; };

Which has the same canonical representation as the following component declaration:

Component c = { Property rate : int = 100; };

The algorithm for unifying properties p = (n, v, t) and p’ = (n’, v’, t’) within the scope of an
element e is fairly straightforward. The following algorithm unifies a property p with a set of
properties pset that may, or may not, already contain a property with the unique name p.n.
The UnifyProperties algorithm uses a helper function called LookupPropByName(name,
set{Property}) which retrieves a property record with the requested name from the set of
Property records passed as an argument.

UnifyProperties algorithm

Function signatures:
LookupPropByName : (name, Set{Property}) → Property
UnifyProperties : (Property, Set{Property}) → Set{Property}

Algorithm:
UnifyProperties(p : Property, pset : Set{Property}) returns Set{Property} = {

If p.n ∉ Names(pset)
 return pset ∪ {p}
else {

Property targetProp = LookupPropByName(p.n, pset)

// unify the type specifications
if (targetProp.t is undefined) then targetProp.t = p.t
else if (p.t is defined) and (targetProp.t != p.t) then
 throw Error // the properties’ types can’t be unified

// unify the value specifications
if (targetProp.v is undefined) then targetProp.v = p.v

 �'

else if (p.v is defined) and (targetProp.v != p.v) then
 throw Error // the properties’ values can’t be unified

 }

 // replace the previous property tuple for p.n with the property unified as

// targetProp and return the revised set of properties
 return { pset - LookupPropByName(p.n, pset) } ∪ { targetProp }
}

We can use the UnifyProperties function to define the meaning of the extending an
existing element e with a property p.

M [extended with Property n : t = v] e = [e | e.p ← UnifyProperties((n, t, v), e.p)]

Unifying attachments. Unifying an attachment a with an existing element structure e is
trivial. The unified set of attachments is simply the union of the set of attachments in e and
the singleton set containing the attachment a. That is:

M [extended with Attachment(n1, n2)]e = [e | e.a ← e.a ∪ { (Attachment,n1, n2) }]

Unifying substructure. The meaning of “extended with”clauses becomes significantly
more complex when we need to unify elements and representations. The following
example illustrates the unification of substructure elements.

System s = {
 Component c = {
 Port p1 = { Property x;
 Property y : float = 7.1;
 };
 Port p2 = { Property s : string = "foo"; };
 } extended with {
 Port p1 = { Property x : int = 100;
 Property y : float = 7.1;
 Property z : int=100;
 };
 };
 }

The system description above is equivalent to the following:

System s = {
 Component c = {
 Port p1 = { Property x : int = 7;
 Property y : float = 7.1;
 Property z: int = 100 };
 Port p2 = { Property s : string = "foo"; };
 };
}

The following system description, on the other hand, has an extended with clause that can
not be unified because it redefines the type of property s in port p2.

 "*

System s = {
 Component c = {
 Port p1 = { Property x; Property y : float = 7.1; };
 Port p2 = { Property s : string = "foo"; };
 } extended with {
 Port p2 = { Property s : int = 100; }; // ERROR -- string != int
 }
 }

The algorithm for unifying element substructure e’ = (n’, c’, s’, p’, r’, a’) with an existing
element e = (n, c, s, p, r, a) is presented next. This algorithm returns the new set of
substructure elements (e.s) for element e. It is important to note that the element e’ being
unified with element e has the relationship that e’ represents substructure of e. That is, if
the unification is successful then a postcondition of this algorithm is that e’ ∈ e.s. The
UnifyElements algorithm makes use of the helper function LookupElementByName(name,
set{Element}) which retrieves the element record with the requested name from the set of
element records passed as an argument. The function UnifyRepresentations is defined
subsequently.

UnifyElements algorithm

Function signatures:
LookupEltByName : (name, Set{Element}) → Element
UnifyElements : (Element, Element) → set{Element}

Algorithm:
UnifyElements(eparent, echild : Element) returns Set{Element} = {

If (echild.n ∉ Names(eparent.s))
 return eparent.s ∪ { echild }

Element targetElt = LookupEltByName(echild.n, eparent.s)
If (targetElt.c != echild.c)
 throw Error
else {
 // else we have a matching name and category, try to unify properties
 // if an error is thrown in unifyProperties() propogate up and return an
 // error
 forall properties p’ in echild.p {

targetElt.p ← unifyProperties(p’, targetElt.p)
}

 // repeat for attachments, if applicable
 forall attachments a’ in echild.a {

targetElt.a ← { a’ } ∪ targetElt.a)
}

 // repeat for representations, if applicable
 forall representations r’ in echild.r {

targetElt.r ← unifyRepresentations(r’, targetElt.r)
}

 // repeat recursively for substructure of echild

 forall elements egrandchild in echild.s {

 "�

targetElt.s ← unifyElements(egrandchild, echild)
}

 } { pass any errors that were thrown by unify* functions on to caller }

 // replace the previous element tuple named by echild.n in eparent.s

// with targetElt, which has now been unified with the extension in echild.
// and return the revised set of substructure

 return { eparent.s - LookupEltByName(echild.n, eparent.s) } ∪ { targetElt }
}

We can use the UnifyElements function to define the meaning of extending an existing
element eparent with a substructure element echild.

M [extended with echild] eparent = [eparent | eparent.s ← UnifyElements(eparent.s, echild)]

Unifying representations. Like properties, attachments, and element substructure,
unification of representations must be supported in extended with clauses. Consider the
following examples of extending existing structure with an additional representation.

Component c = {
 Port outer;
 Representation r1 = {
 System subSys = {
 Component subComp = { Port inner; Property y : float = 7.1; };
 }
 Bindings { c.outer to c.r.subSys.subComp.inner; };
 };
} extended with { Representation r2 = {…}; Representation r3 = {…}; };

Unification in this case is simple because the representations all have different names.
Hence, this component description is equivalent to the following component description.

Component c = {
 Port outer;
 Representation r1 = {
 System subSys = {
 Component subComp = { Port inner; Property y : float = 7.1; };
 }
 Bindings { c.outer to c.r.subSys.subComp.inner; };
 };
 Representation r2 = {…};
 Representation r3 = {…};
};

The following description, on the other hand, has a more complex extended with clause
where the name of an existing representation is also in the extended with clause. This
specification can be unified because the substructure of the representations can be
unified.

 ""

Component c = {
 Port outer;
 Representation r1 = {
 System subSys = {
 Component subComp = { Port inner; Property y : float = 7.1; };
 }
 Bindings { c.outer to c.r.subSys.subComp.inner; };
 }
} extended with {
 Representation r1 = {
 System subSys = {
 Component subComp = {
 Port inner; Port end;
 Property y : float = 7.1; Property x :int = 1;
 };
 Component subComp2 = { Port innerEnd; }
 };
 Bindings { c.outer to c.r.subSys.subComp.end;};
 }
};

This component description is equivalent to the following component description. The
system subSys of the representation r1 is unified with the system of the same name in the
extended with clause, as are the bindings.

Component c = {
 Port outer;
 Representation r1 = {
 System subSys = {
 Component subComp = {
 Port inner; Port outer;
 Property y : float = 7.1; Property x :int = 1;
 };
 Component subComp2 = { Port innerEnd; }
 }
 Bindings { c.outer to c.r.subSys.subComp.inner;
 c.outer to c.r.subSys.subComp.end;
 };
 }
}

Two representations cannot be unified if their respective systems cannot be unified. The
following example illustrates an extended with statement that is illegal because the type of
a property of representation r1’s system (subSys) is redefined incompatibly in the extended
with clause.

 ",

Component c = {
 Port outer;
 Representation r1 = {
 System subSys = { Property x : int = 7; }
 Bindings { };
 }
} extended with {
 Representation r1 = {
 System subSys = {
 Property x : string = "illegal"; -- ERROR! Type of x redefined
 }
 Bindings { c.outer to c.r.subSys.subComp.end;};
 }
};

The algorithm for unifying an "extension representation" rextension = (n’, e’, b’) with a set of
existing representations rset is presented next. If it is able to perform the unification, this
algorithm returns a new set of representations containing the unification of rextension with rset.
If it is unable to unify the representation rextension with rset it throws an error and the meaning
of the encapsulating extended with statement is undefined. The UnifyRepresentations
algorithm uses the helper function LookupRepByName(name, set{Representation}) which
retrieves the representation record identified by name from the set of representation
records passed as an argument.

UnifyRepresentations algorithm

Function signatures:
LookupRepByName : (name, Set{Representations}) → Representation
UnifyRepresentations :

(Representation, Set{Representation}) → set{Representation}

Algorithm:
UnifyRepresentations (rextension : Representation, rset : Set {Representation})

 returns Set{Representations}
{

If (rextension.n ∉ Names(rset))
 return rset ∪ { rextension }

// else we have a matching name for the rep, attempt to unify the system
// if an error is thrown in unifyElements() it propogates up and returns an
// error from this function
Representation targetRep = LookupRepByName(rextension.n, rset)

 If (rextension.e.n != targetRep.s.n) throw error;

 // Error: different system names

 // try to recursively unify all of the substructure of rextension’s system with

// targetRep

forall properties p’ in rextension.e.p {
targetRep.e.p ← unifyProperties(p’, targetRep.e.p)

}

 "�

 // repeat for attachments (if applicable)
 forall attachments a’ in rextension.e.a {

targetRep.a ← { a’ } ∪ targetRep.a)
}

 // repeat for representations (if applicable)
 forall representations r’ in rextension.e.r {

targetRep.r ← unifyRepresentations(r’, targetRep.r)
}

 // repeat recursively for substructure of rextension.e
 forall elements egrandchild in rextension.e.s {

targetRep.e ← unifyElements(egrandchild, rextension.e)
}

 // unify the bindings sets with a simple unioning
 targetRep.b ← rextension.b ∪ targetRep.b

 // pass any errors that were thrown by unify* functions on to caller

 // replace the previous representation tuple named by rextension.n in the

// passed-in set of representations with targetRep, which has now been
// unified with the extension in rextension and return the revised set of Reps

 return { rset - LookupRepByName(rextension.n, rset) } ∪ { targetRep }
}

Multiple Extended with statements. The description of the extended with construct to
this point has specified the meaning of an element description extended with a single-
statement declaration. The language also supports extending an element description with
another element description. That is, specifying a list of declaration statements as an
extension to an existing element description. This is the same as repeatedly extending an
element description with each statement in the list. The equation for using multiple
statements in an extended with clause follows:

Let s1, ..., sn be declaration statements

M [extended with { s1; … ; sn }] e =

M [extended with sn] M [extended with sn-1] … M [extended with s1] e

Multiple extended with clauses can be strung together. The meaning of the composition of
multiple extended with clauses is expressed in the following equations.

Let s1, ..., sn, sn+1, ..., sm be declaration statements

M [extended with { s1; … ; sn } extended with { sn+1; … ; sm }] e =

M [extended with { sn+1; … ; sm }] M [extended with { s1; … ; sn }] e

 "�

0
��1����
���
��

Meta-properties are ignored during the construction of the canonical representation. At an
informal level, a meta-property is a property record that applies to a property, rather than
an element. Meta-properties are allowed as annotations on properties for the purposes of
tooling, but they have no effect on the underlying meaning of an Armani expression.
Specifically, meta-properties are not considered in consistency checking. It is possible that
a future extension will support meta-properties by allowing property records to recursively
include other property records (which represent that property’s meta-properties) but this
step is not taken in this draft of the Armani specification.

%��
��
�����	�� �

Throughout the full Armani language, identifiers for all entities are case sensitive. This
includes user-defined types, instances, design rules, and design analyses. Keywords, on
the other hand, are not case sensitive.

© ROBERT T. MONROE, 1998

� �
�2��
����&��
�2��������!��
��������� �
��

%���������
����()�
����
����!��������

The Armani design language provides constructs for capturing three fundamental classes of
architectural design expertise – design vocabulary, design rules, and architecural styles.

• Design vocabulary is the most basic form of design expertise that can be captured
with Armani. The design vocabulary available to a software architect specifies the
basic building blocks for system design. Design vocabulary describes the selection of
components, connectors, and interfaces (ports and roles) that can be used in system
design. As an example, the design vocabulary available for a naïve client-server style
of design might include client and server components and an HTTP connector.
Armani provides a rich predicate-based type system that environment designers can
use to specify the design vocabulary, the properties of vocabulary elements, and the
design invariants and heuristics that describe how the vocabulary elements can be
used.

• Design rules specify heuristics, invariants, composition constraints, and contextual
cues to assist architects with the design and analysis of software architectures.
Armani makes the following aspects of a design rule independently modifiable: the
specification of the rule itself, the policy for dealing with violations of the rule, and the
scope over which the rule is enforced. Armani allows the association of design rules
with a complete style, a collection of related design elements (such as all of the
components in a system), a type of design element, or an individual instance of a
component or connector. By making the scoping of design rules highly flexible and
specifying their policy independent of the rule itself, Armani allows an architect to add,
remove, modify, or temporarily ignore design rules as appropriate for various stages
and types of design.

• Architectural styles provide a mechanism for packaging and aggregating related
design vocabulary, rules, and analyses. An Armani style specification consists of the
declaration of a design vocabulary that can be used for designing in the style, and a
set of design rules that guide and constrain the composition and instantiation of the
design vocabulary.

Chapter

,

 "#

� �
��

The Armani design language’s type system provides a mechanism that designers can use
to capture abstract design vocabulary specifications. These specifications can be used
both to create instances of design elements and to verify that an instance of a design
element satisfies the design constraints specified by the type.

The Armani type system serves a significantly different purpose than the type systems
typically provided by programming languages. Programming language type systems are
generally designed to provide statically-checkable guarantees of run-time program
behavior (e.g. to insure that a function will not accidentally attempt to add a floating point
value to an array of strings). Armani’s type system, on the other hand, provides a form of
checkable redundancy that assures the design constraints for a given type of design
vocabulary are satisfied where that vocabulary is used. The type system provides a
mechanism for ensuring that the system’s fundamental design constraints are not violated
as a design evolves over time (e.g. through system maintenance, upgrades, etc.).

To achieve these goals, Armani uses a predicate-based type system that supports the
expression of complex type constraints and invariants. Type expressions are predicates
that elements can satisfy. A type definition determines a set of design elements those
that satisfy the type's predicate. An element that satisfies type T’s predicate is said to
satisfy type T. A computationally-decidable predicate language (described in detail in
chapter 4) is used to ensure that complex type constraints can be mechanically checked.

The Armani type system supports two broad categories of type expressions design
element types (component, connector, port and role types) and property types (primitive,
compound, and aliased property types). The type system used for design elements
supports both a subtyping facility and the specification of rich constraints over the structure
and properties of design elements. The property type system, on the other hand, is
significantly simpler than the design element type system. The property type system allows
only simple predicates whose primary purpose is to specify the structure used for storing
property values. It does not support subtyping or rich constraints on property values.

This section provides an overview of the syntax, common usage, canonical representation,
and typechecking algorithms for the design element type system. We use the term
“typechecking” to mean the process of determining whether a design satisfies the
constraints imposed by its design vocabulary, design rules, and architectural styles.
Architects seem to find this term intuitively analogous to the typechecking process used for
typechecking programs. The Armani typechecking process provides equations for
constructing a canonical syntactic representation of Armani designs and design expertise.
It also defines a set of algorithms for determining consistency between design instances
and the design expertise used to construct them.

�
����(�
�
���� �
�3�

�
����������
����
�
�
���� �
�

A design element type can specify two kinds of constraints on design elements. First, it
can specify required structure and properties, possibly with default values. Second, it can
specify explicit invariants and heuristics (predicates) that describe legal property and
structure values of an element of that type. This section describes component, connector,
port and role types (referred to as design element types or just element types). Armani

 "'

system types are referred to as architectural styles (or simply styles), and are discussed in
a later section. Styles extend the capabilities of the design element types described in this
section.

A more detailed specification of the syntax and canonical representation of element type
declarations is given later in this chapter. For purposes of immediate discussion the
following informal description of the Armani element type system is provided.

The informal syntax for declaring a design element type is:

<Category> Type <TypeName> = {
 <Sequence of: required structure and values
 | required properties
 | explicit invariants
 | explicit heuristics >
}

In the informal syntax given above, <Category> can be any of the literals Component,
Connector, Port, or Role, and <TypeName> specifies a valid identifier. The body of the
type declaration consists of a sequence of constraints by which instances of this type must
abide. Informally, the meaning of the four kinds of constraint declarations that can be
made within a type declaration are described below:

• Required Structure. The structural declarations in a type description T define the
substructure that an element e of type T (written e : T) must have. Informally, for
every port, role, or representation defined in T, an instance e : T must have a
corresponding port, role, or representation. The port, role, or representation
defined in the instance must be defined with at least as much detail as its
corresponding port, role, or representation in the type declaration. A more detailed
specification of required structure statements is given in table 3.1.

• Required Properties. A property pi declared in a type declaration T specifies that
an element e : T must define the property pI. Further, if pI is declared to have a
type and/or a value in T, pI declared in e : T must also have the same type and/or
value. As with required structure, a more detailed specification of property
declarations is given in table 3.1.

• Explicit Invariants. In addition to the required structure and properties of a type,
additional constraints can be specified using Armani’s Predicate Language
(described in chapter 4). These invariants can specify ranges of valid values for
properties, constraints on the types and number of substructure elements that an
element of type T can have, and any other constraint that can be specified with
the Armani Predicate Language. An element e : T must satisfy the invariant
constraints defined in T in order to satisfy T’s predicate (and thus satisfy type T).

• Explicit Heuristics use the same predicate specification language as explicit
invariants. Unlike invariants, though, heuristics are not considered in determining
whether an element e satisfies a type T. Violations of type heuristics can be
flagged during constraint analysis or analyzed by external tools, if desired, but the
heuristics themselves are not part of a type’s predicate. The heuristics construct
provides architects and designers with a way to capture design "rules of thumb"
that are less strict than invariants.

 ,*

An element e : T satisfies the type T’s predicate if e contains all of the required structure
and properties specified in T, and e satisfies all of the invariant predicates defined in T.

The following example shows a type specification that declares constraints that must be
satisfied by all instances of the type in the form of required minimal structure and
predicates that must be maintained. Keywords are indicated in boldface type, comments in
greyed-text.

Component Type Client = {

 // Declare the minimal structure that must exist. In this case, it says that an instance
 // of this type must have a port called request, and that port must have the protocol
 // rpc-client.
 Port Request = { Property protocol : CSProtocolT = rpc-client };

 // The next declaration says that a client must have a property of type "float" called
 // "request-rate." It also provides a default value for that property, which can be
 // changed when an instance of this type is created.
 Property request-rate : float << default = 0.0 >>;

 // Now specify the invariants that all elements that claim to satisfy this type must possess.

 // all ports must support the rpc-client protocol

 Invariant forall p in self.Ports • p.protocol = rpc-client;

 // there may be no more than 5 ports on a client
 Invariant size(self.Ports) <= 5;

 // The request rate must be a non-negative value less than 100
 Invariant request-rate >= 0;

 // Specify a heuristic indicating the request rate should not exceed 100
 Heuristic request-rate < 100;
}

Example 3.1: Declaring component type “Client”

The Client type specification imposes the following structural and invariant constraints on
component instance C : Client:

Structural constraints:

n A Client instance must have a port called request, with a property called
protocol. The protocol property must be of type CSProtocolT and have a
value of rpc-client.

n A Client instance must have a property called request-rate of type float. The
default value of 0.0 can be overriden with an extended with {…} clause, but
the initial value for this property on all Client instances created with the new
operator will be 0.0.

 ,�

Invariant constraints:

n All ports of a client must have a property named protocol, which has a value
of rpc-client.

n There may be no more than 5 ports on a Client instance.

n The request-rate property of a Client component must have a value greater
than 0.

The heuristic constraint that the request-rate property of an instance of a Client component
have a value less than 100 is not considered in determining whether that instance satisfies
the Client type.

%�
������������
��������
������� �
�����!��
�������
�
�
���

Instances of the four basic architectural elements – components, connectors, ports, and
roles, can be created with the following (informal) syntax:

<Category> <InstanceName> [: <TypeName>] = <Value> ;

where
 <value> ::= ({ <sequence of property and structure specs.> } | new <TypeName>)
 (extended with <value>)*

Specifying an explicit type for an instance is optional. If no type is explicitly declared for an
individual instance, then the type of that instance defaults to <Category>. Consider the
following example of a component declared without an explicit type declaration:

Component C = { Port input; } ;

In this instance, the value of component C is { Port input }, which satisfies the constraints
of the Component type, so this instance declaration is valid.

When an instance is explicitly typed, as in the following example, the value on the right
hand side of the “=” token must satisfy the predicate defined by the declared type.
Consider the following example:

Component C : Client = new Client;

In this example, a component C is declared to satisfy type Client. The value of C is defined
using the Armani new operator. The expression new <TypeName> creates a value
expression consisting of the minimal structure declared in the declaration of <TypeName>
with default values applied to properties as specified in the type specification. Properties
with no default value provided in the type declaration have undefined values in the
generated instance.

Using the Client type defined in example 3.1, the previous example creates a component
with the following canonical structure:

 ,"

Component C : Client = {
 Port Request = { Property protocol : CSProtocolT = rpc-client }
 Property request-rate : float = 0.0;
}

This default Client component satisfies the invariants and heuristics declared in the Client
type definition.

It is possible to associate non-default values with an element created from a given type
using the extended with <value> construct. The following example illustrates a client with
an additional port and an additional property.

Component C’ : Client = new Client extended with {
 Port ExtraPort = { Property protocol : CSProtocolT = rpc-client;
 Property primary-port = true };
 Property request-rate : float = 5.0;
}

This declaration would result in the creation of a new component C’ with the following
structure:

Component C’ : Client = {
 Port Request = { Property protocol : CSProtocolT = rpc-client } ;
 Port ExtraPort = { Property protocol : CSProtocolT = rpc-client};
 Property primary-port = true;};
 Property request-rate : float = 5.0;
}

In this example, the default constructor is extended with new property values that either
add new structure and values or override the default structure and value of the type. The
value that is assigned to C’ in this case is the unification of the structure declared with the
extended with {... } clause and the structure that is created with the new <TypeName>
constructor. The algorithm for unifying substructure of an element using the extended with
{…} construct was given in Chapter 2 where the semantics of extended with was specified.

�
�
�������
�
�
���� �
��������������

A type specification defines the minimal structure and properties that elements of a given
type must have, along with a set of invariants that must hold for all instances that satisfy
the type. Every type T can be converted to a predicate Ft that takes a single element E as
an argument. If the function Ft(E) evaluates to true, then element E satisfies type T (written
T(E)).

Detailed descriptions of the semantics of required structure and invariant specifications of
a type declaration follow.

&
4���
����������
3��

Table 3.1 informally defines the meaning of various element type statements constraining
required structure in instances of that element type.

 ,,

Declaration Type Example Meaning

Structural element C
with no type or value
declaration

Port C; Forall elements E s.t. E declares type T
(written E:T), T(E) implies E has the
element named C as a child.

Structural element C
with a type but no value
declaration

Port C : t’; Forall elements E s.t. E:T, T(E) implies
E has the element named C as a child,
and that C satisfies t’ (t’(C))

Structural element C
with a type and a value
declaration

Port C : t’ = {

 Property j:t’’ =

 bar};

Forall elements E s.t. E:T, T(E) implies
E has the element named C as a child,
and t’(C) and C has the property j:t’’
with a value of bar.

Property named P with
no type or value given

Property P; Forall elements E st E:T, T(E) implies
E has the property P of type “Property.”

Property named P with
a type t’ specified, but
no value given

Property P : t’; Forall elements E st E:T, T(E) implies
E has the property P of type t’. P’s
value is unconstrained beyond the
requirement that the value of P satisfy
type t’.

Property named P with
a type t’ specified and a
default value v given.

Property P : t’

 <<default=v>>;

Forall elements E st E:T, T(E) implies
E has the property P of type t’. P’s
value defaults to v when a new
instance of type T is created but the
<<default = v>> clause is simply a
convenience that the type has no
obligation to maintain. The << ... >>
notation specifies that “default = v” is a
meta-property.

Property named P with
a type t’ specified and a
value v associated
directly to the property

Property P:t’ = v; Forall elements E st E:T, T(E) implies
E has the property P of type t’ and P’s
value is v. This statement declares a
constant-valued property for the type.

 Table 3.1 Structural Constraint Specifications

�

$�	�������3�

The invariant declarations of a type T define a set of predicates that must hold for all
instances of type T. These invariants are specified using a subset of the predicate
language described in chapter 4. The primary restriction that this subset of the language
imposes is that the scope of names (and entities) visible from within a predicate in the type
declaration is limited to those entities (properties, ports, roles, etc.) defined in the type
definition or the definition of any of its supertypes. In order to improve modularity, the type
predicates are limited to operating over values of an instance of the type. The design rule

 ,�

mechanism used with systems (described later in this chapter) supports constraints
spanning multiple types and instances.

One implication of this design decision is that invariants placed in element type
declarations are most appropriate for local constraints on all elements of the type, such as
valid ranges of property values. Constraints involving the relationship between elements,
such as valid system topologies or valid port/role pairs, must be put in a system or a style
specification.

Details of the scoping constraints for type specifications follow:

• Scope of names within a type declaration: Names are lexically (statically) scoped
and the namespace for a type spans both the structural constraints and invariants of
the type specification. No two property and/or structural elements of a type declaration
may share names. Structural elements (e.g. ports, roles, and representations) share
the name space with properties. As a result, names used in the structure section may
be unambiguously referenced by invariant predicates, allowing the use of dot notation
to refer to substructure and properties. The root of the type namespace that is visible
to invariant predicates is the identifier self which is a reference to the instance of this
type that is being checked for type-satisfaction. Invariant predicates can reference only
self and entities that are descendents of self in the AST.

• Scope of predicates: Predicates declared within a type specification may only
reference properties or structural elements named within the structural specification of
the type, including substructure affiliated with those elements and properties. They
may not refer to anything outside of the scope of the type declaration. This strict
limitation on referencing entities outside of the element improves modularity and
reusability of type specifications. Rules limiting the interactions of and relationships
between design elements can be expressed with style-wide or system-wide design
rules (discussed later in this chapter).

The keyword self is used to refer to the instance of an element that is being type-checked.
Unless otherwise explicitly fully qualified, property names in an invariant predicate have an
implicit self. preceding them and refer to the instance being checked.

Heuristics are specified in the same way as invariants and are governed by the same
scoping rules. Heuristics differ from invariants only in that they are not considered for type-
checking purposes.

����
����� �
��
�����������

A type may be declared within the global design space or within a style specification. Type
names are lexically scoped. Types declared outside of all style declarations have global
scope. Types with global scope are visible within all systems or styles declared in that
global scope. A type defined within a style specification is visible to all other declarations in
the style, all of that style’s substyles (to be described later), and all systems that are
declared to be in that style.

��+� �
��

Armani supports a strict form of subtyping that ensures substitutability between subtypes
and supertypes. That is, if type T’ is a subtype of type T (written T’ ≤ T), then an element

 ,�

that satisfies T’ may be used wherever an element of type T is required. The following
informal syntax describes Armani’s subtyping construct.

<Category> Type <SubTypeName> extends <SuperTypeName>+ with {
 <Sequence of: required structure and values
 | required properties
 | explicit invariants
 | explicit heuristics >
}

The semantics of this construct are straightforward. The new (sub)type <SubTypeName>
consists of the unification of the structural requirements of all supertypes with the new
structural declarations, and the union of the invariant and heuristic predicates of all
supertypes with the new invariant and heuristic declarations. The unification operation for
type structure is the same as the unification operation on instances is described in chapter
2. Because types are reduced to prototypical elements for semantic evaluation, the same
unification operation is applicable to both element types and instances. All instances of the
subtype are also instances of the supertype, and satisfy the constraints of both the
supertype and the constraints listed in the extends ... with {...} clause.

Consider the following example:

Component Type BlockingClient extends Client with {
 Port BlockingRequest = {Property protocol = rpc-client};
 Property blocking : boolean = true;
 Property timeout-sec : float << default = 30.0 >>;

 Invariant timeout-sec < 60.0;
}

An instance of a BlockingClient type component would then have all of the structure and
rules to maintain that a Client type component would have, plus the additional properties
and rules given in this specification. The previous type declaration is equivalent to
declaring the BlockingClient type without subtyping as indicated below (using the Client
type definition from the previous section):

Component Type BlockingClient = {
 Port Request = {Property protocol = rpc-client};
 Port BlockingRequest = {Property protocol = rpc-client};
 Property request-rate : float << default = 0 >>;
 Property blocking : boolean = true;

 Invariants {
 Forall p in self.Ports | p.protocol = rpc-client;
 Size(Ports) <= 5;
 request-rate >= 0;
 timeout-sec < 60.0;
 };

 Heuristic request-rate < 100;
}

 ,�

%���������&
��
�
�����������(�
�
���� �
��

The mechanism used for specifying the canonical representation of element types is an
extension to the mechanism used for specifying element instances in chapter 2. This
approach converts an element type declaration into a record representing the structure
and constraints of that type. An algorithm is provided that determines whether a record
representing an element instance satisfies the predicates of the type(s) it claims to satisfy.

The equations specified for instances in chapter 2 regarding properties, attachments,
representations, bindings, extended with clauses, and declaration statement sequencing
remain unchanged in this extended specification. In order to extend the record
representation to support element types, though, the following changes must be made to
the element canonical representation record and equations:

• Two additional record fields must be introduced to store predicates. i stores the
invariant predicates specified by the element type and h stores the heuristic
predicates specified by the element type.

• The new record field tasserted stores the names of all types that this element claims
to satisfy.

• The new record field tsuper stores the names of an element type’s supertypes.

The primary distinction between tasserted and tsuper is that the typechecking algorithm tests
whether the types stored in tasserted (and, by transitivity the supertypes of those types) are
satisfied by the element it is typechecking. The tsuper field, on the other hand, only stores
the supertypes of a declared type. A subtype satisfies its supertype by definition, so there is
no need to verify type-compliance with the typechecker. Exactly one of the two sets tsuper
and tasserted should be empty. The tsuper field should be empty if the declaration is an
instance. Likewise, the tasserted field should be empty if the declaration is a type.

In addition to the extended element record, the concept of a design space is introduced to
support the context used for global type declarations and scoping. A design space is a
tuple d = (telt, tprop, da, s) where:

telt is the set containing the element types defined in the context of d
tprop is the set of property types defined in the context of d
s is the set of systems defined in the context of d
da is the set of design analyses defined in d

A design space can be used as the context in which a type or system is evaluated. When
the context of evaluation is a design space rather than an element, the context will be
indicated with a variable named d. When the context of evaluation is an element, the
context will be indicated with a variable named e. When the context of evaluation is
unknown, but may be any kind of context (design space, element, or something else), the
context is indicated with a c.

Revised element specification.
An Armani element (or element type) e is a record of the form

e = (n, c, s, p, r, a, i, h, tsuper, tasserted).

Informally:

 ,-

n = name of the element.
c = category of the element.
s = set of elements that define e’s substructure (e.g. ports, roles, etc.).
p = set of properties that define the properties of e.
r = set of representations that define e’s subarchitectures.
a = set of attachments that define e’s topology, empty unless e is a system.
i = set of invariant predicates defined for e.
h = set of heuristics defined for e.
tsuper = set of names of supertypes of this element type.
tasserted = set of names of types this element claims to satisfy.

The well-formedness rule for elements uses the function Names : Set → Set that
creates a new set of name identifiers that is a projection of the "n" field (the name
field) of all tuples in the original set of tuples (e.g. Names({(n=foo, …), (n=bar,…)})
= {foo,bar}).

This well-formedness rules declare the legal substructure for various categories of
elements, and indicates that no two distinct entities declared as part of this
element can share the same identifier.

Well-formedness rules:

n : Identifier
c : Category
s : Set{Element}
p : Set{Property}
sr : Set{Representation}
a : Set{Attachment}
i : Set{InvariantPredicate}
h : Set{HeuristicPredicate}
tsuper : Set{TypeName}
tasserted : Set{TypeName}

Port(e) → (s = { })

and Role(e) → (s = { })
and Component(e) → (forall e' in s | Port(e'))
and Connector(e) → (forall e' in s | Role(e'))
and System(e) → (forall e' in s | Component(e') or Connector(e'))
and (a != {}) → System(e)

and forall x, y in p | (x.n = y.n) → (x = y)
and forall x, y in r | (x.n = y.n) → (x = y)

 and (Names(s) ∩ Names(p) = { })

and (Names(r) ∩ Names(p) = { })
and (Names(s) ∩ Names(r) = { })

and ((tsuper = { }) xor (tasserted = { }))

Meaning (element instance declarations):

 ,#

In each of the equations below, Category is a meta-variable that represents the
category declaration of the element and name is an identifier.

An element instance declaration that declares no type and occurs in the context of
an existing element has the following meaning:

M [Category name = { s1 ;…; sn }] e =
 if (name ∉ Names(e.r)) and (name ∉ Names(e.s))
 and (name ∉ Names(e.p)) then
 [e | e.s ← e.s ∪ M [{ s1 ;…; sn }] (c= Category, n=name, s={},
 p = {}, r= {}, a={},
 tasserted = { Category },
 tsuper = {}, i = {}, h = {})]

A system instance declaration that claims to satisfy no type and occurs in the
context of a design space has the following meaning:

M [System name = { s1 ;…; sn }] d =
 if (name ∉ Names(d.f)) and (name ∉ Names(d.s))
 and (name ∉ Names(d.tprop)) and (name ∉ Names(d.telt)) then
 [d | d.s ← d.s ∪ M [{ s1 ;…; sn }] (c= System, n=name, s={},
 p = {}, r= {}, a={},
 tasserted = { System },
 tsuper = {}, i = {}, h = {})]

An element instance declaration that claims to satisfy one or more types and
occurs in the context of an existing element has the following meaning:

M [Category name : t1, …, tn = { s1 ;…; sn }] e =
 if (name ∉ Names(e.r)) and (name ∉ Names(e.s))
 and (name ∉ Names(e.p)) then
 [e | e.s ← e.s ∪ M [{ s1 ;…; sn }] (c= Category, n=name, s={},
 p = {}, r= {}, a={},
 tasserted = { Category } ∪ { t1, …, tn },
 tsuper = {}, i = {}, h = {})]

Meaning (element type declarations):

It is not possible to specify a system type using the syntax System Type n = {…}.
A system type is a family/style, which is described later in this chapter. Therefore,
the only valid values for Category in the expression Category Type n = {…} are
Component, Connector, Port, or Role.

An element type declaration that claims no supertypes and occurs in the context
of a design space has the following meaning:

M [Category Type name = { s1 ;…; sn }] d =
 if (name ∉ Names(d.f)) and (name ∉ Names(d.s))
 and (name ∉ Names(d.tprop)) and (name ∉ Names(d.telt)) then
 [d | d.s ← d.s ∪ M [{ s1 ;…; sn }] (c= System, n=name, s={},
 p = {}, r= {}, a={},
 tasserted = {}, tsuper = { Category },
 i = {}, h = {})]

 ,'

An element type declaration that claims one or more supertypes and occurs in the
context of a design space has the following meaning:

M [Category Type name extends t1, …, tn with { s1 ;…; sn }] d =
 if (name ∉ Names(d.f)) and (name ∉ Names(d.s))
 and (name ∉ Names(d.tprop)) and (name ∉ Names(d.telt)) then
 [d | d.s ← d.s ∪ M [{ s1 ;…; sn }] (c= System, n=name, s={},
 p = {}, r= {}, a={},
 tasserted = {},
 tsuper = { Category } ∪ { t1,…, tn },
 i = {}, h = {})]

$��������������� �
�

Armani supports the instantiation of types by providing a construct that returns an element
structure containing the minimal structure specified by the type – properties,
representations, attachments, and substructure. The meaning of a new <TypeName>
statement follows:

M [new TypeName] e =
[e | e.p ← InstantiateProperties(TypeName, e, e.p),
 e.r ← InstantiateReps(TypeName, e, e.r),
 e.s ← InstantiateSubstructure(TypeName, e, e.s),
 e.a ← InstantiateAttachments(TypeName, e, e.p)]

The Instantiate*(…) functions used in this equation all take a type name, a scope in which
that type name is visible, and the appropriate set of entities to which the instantiated
structure is to be added. The functions use the extension/unification algorithms defined in
the previous chapter to unify the declarations produced by the type instantiation with the
set of entities to which the instantiation is being added. The functions then return an
appropriately unified set.

function InstantiateProperties: (Name, Scope, Set{Property}) → Set{Property}
InstantiateProperties(nametype : Name, e : Scope, pset : Set{Property})

returns Set{Property}
{

ElementType t = lookupTypeByName(nametype, e)
forall properties p in t.p {
 pset ← UnifyProperties(p, pset)
}
return pset

}

 �*

function InstantiateReps: (Name, Scope, Set{Representation}) → Set{Representation}
InstantiateProperties(nametype : Name, e : Scope, rset : Set{Representation})

returns Set{Representation}
{

ElementType t = lookupTypeByName(nametype, e)
forall Representations r in t.r {
 rset ← UnifyRepresentations(r, rset)
}
return rset

}

function InstantiateSubstructure: (Name, Scope, Set{Element}) → Set{Element}
InstantiateSubstructure(nametype : Name, e : Scope, eset : Set{Element})
 returns Set{Element}
{

ElementType t = lookupTypeByName(nametype, e)
forall Elements echild in t.s {
 eset ← UnifyElements(echild, Parent(eset))
}
return eset

}

function InstantiateAttachments: (Name, Scope, Set{Attachment}) →
 Set{Attachment}
InstantiateAttachments(nametype : Name, e : Scope, aset : Set{Attachment})
 returns Set{Representation}
{

ElementType t = lookupTypeByName(nametype, e)
forall Attachments a in t.a {
 aset ← aset ∪ { a }
}
return aset

}

�

%!
�5����
����
�
�
��������� �
��������
�� �

The equations given to this point reduce Armani instance and type specifications to their
canonical forms. To determine the type correctness (and general consistency) of an
Armani specification, the following algorithm, TypecheckElement(e : Element), is applied to
the canonical representation of the top-level Armani system. This algorithm performs a
depth-first traversal of the canonical representation’s tree structure rooted at e, ensuring
that all substructure of the system is type-correct. If all of the substructure of the subtree
rooted at e is type-correct then the algorithm returns true. If the algorithm finds any
substructure that is not consistent with the predicates defined by its type declarations then
it returns false.

The TypecheckElement(e : Element) algorithm makes use of the boolean helper functions
CompareToPrototype(eprototype, einstance : Element), LookupName(n : Identifier, s : Scope),
and TypecheckProperty(p : Property). CompareToPrototype uses the prototype element
eprototype as a type specification for einstance and returns true if einstance satisfies the type
eprototype. The CompareToPrototype function is used to recursively typecheck type

 ��

specifications with multiple layers of substructure. LookupName returns the record named
by n in scope s, or nil if n is undefined in scope s. TypeCheckProperty verifies that a
property p is internally type-consistent. That is, it returns true if the value of p satisfies the
type predicate of p.

The signatures of each of the functions used to compute type-correctness are provided
below:

TypecheckElement: Element → boolean
LookupName: (Name, Scope) → Tuple
CompareToPrototype: (Element, Element) → boolean
TypecheckProperty: Property → boolean

The detailed algorithms that implement these functions follow:

TypecheckElement: Element → boolean
TypecheckElement: (ei : Element) returns boolean
{
 // Before checking that the element instance satisfies its declared types, make
 // sure that all of its substructure, properties and representations are internally
 // type-correct.
 // begin by recursing through all substructure to make sure that it typechecks
 foreach element esub in ei.s
 if TypecheckElement(esub) == false then return false

 // then check that all properties in the instance ei are internally consistent
 foreach property p in ei.p
 if TypecheckProperty(p) == false then return false

 // and that all the representations of this element have a system that typechecks
 foreach representation r in ei.r
 if TypecheckElement(r.e) == false then return false

 // and that ei satisfies all of the invariants it declares. At the semantic level, an
 // invariant describes a predicate that is evaluated over an element instance.
 foreach invariant i in ei.i
 if i(ei) == false then return false

 // make sure that the structure required by eI’s asserted types exists
 foreach ElementTypeName n in ei.tasserted {
 ElementType et = LookupName(n, ei)
 if (et = nil) return false // typename n not visible in this element’s scope

repeat until et = nil {
 // this loop continues until et’s and all of et’s supertypes have been tested.

 if (et = nil) return false // typename n not visible in this element’s scope
 if (ei.c != et.c) return false // type and element have different categories

// check that the substructure of et exist in eI
foreach ElementTuple esub in et.s {

 Let ei = LookupName (esub.n, ei.s)
 if (ei == ({})) return false // then ei has no substructure named et.n

 else if CompareToPrototype(esub, ei) == false

 �"

 return false // then substructure doesn’t match
}

// check that properties of et properly exist in eI

 foreach PropertyTuple pt in et.p {
 Let pi = LookupName (pt.n, ei.p)

 if (pi == nil) return false // then ei does not have a property named p.n
 if (pt.t is not undefined) then

 if (pt.t != pi.t) return false
 if (pt.v is not undefined) then

 if (pt.v != pi.v) return false
}

// check that the representations of et exist in eI
foreach RepresentationTuple r in et.r {

 Let ri = LookupName (r.n, ei.r)
 if (ri == ({})) return false // then ei does not have a rep named r.n

 if (r.s is not undefined) then
 if (CompareToPrototype(r.s, ri.s) == false then return false

 if (r.b is not undefined) then
 if (r.b != ri.b) return false

}

// check that each invariant defined in the type et is satisfied in instance ei.
foreach invariant i in et.i

 if i(ei) == false then return false

 // repeat for et’s supertype, if there are no more supertypes then
 // et will be set to nil and this loop will be exited
 Let et = et.tsuper

} // end repeat until supertype is nil

} // end foreach type asserted

// if we get to here then we can’t show that the element does not typecheck,
// so return that it does typecheck.
return true;
}

Having defined the primary typechecking algorithm, the typechecking helper functions
are defined below:

TypecheckProperty: Property → boolean
TypecheckProperty(p : property) returns boolean
{
 // if the value of property p (p.v) satisfies the predicate defined by property
 // p’s type (expressed here as the function p.t) then return true else return false
 return p.t(p.v);
}

CompareToPrototype: (Element, Element) → boolean
CompareToPrototype(eprototype, einstance) returns boolean
{

 �,

 // put in algorithm to do prototype-based typechecking. Return false if we
 // can prove that einstance does not satisfy eprototype, else return true.
 if (einstance.c != eprototype.c) then return false

// walk over the structure of the prototype, making sure the prototype’s
// substructure exists in the instance.
foreach ElementTuple esub in eprototype.s {
 Let ei = LookupName (esub.n, einstance.s)
 if (ei == ()) return false // then ei has no substructure named et.n
 else if CompareToPrototype(esub, ei) == false
 return false // then substructure doesn’t match
}

// check that properties of eprototype properly exist in einstance
 foreach PropertyTuple pt in eprototype.p {

 Let pi = LookupName (pt.n, einstance.p)
 if (pi == nil) return false // then ei does not have a property named p.n
 if (pt.t is not undefined) then

 if (pt.t != pi.t) return false
 if (pt.v is not undefined) then

 if (pt.v != pi.v) return false
}

// check that the representations of et exist in eI
foreach RepresentationTuple r in eprototype.r {
 Let ri = LookupName (r.n, einstance.r)
 if (ri == ({})) return false // then ei does not have a rep named r.n
 if (r.s is not undefined) then
 if (CompareToPrototype(r.s, ri.s) == false then return false
 if (r.b is not undefined) then
 if (r.b != ri.b) return false
}

// if we get to here then we haven’t been able to prove that it does not typecheck

 // so return true.
 return true;
}

�

����
�� �� �
��

The discussion of the type system to this point has described the type system used for
design vocabulary elements. Properties of these design elements can also be typed. The
type system is similar to the design element type system’s, but the constraints that can be
imposed on properties are much simpler than those that can be imposed on design
elements.

A property of a design element is simply a scoped name with which a value and a type can
be associated. The purpose of a property type is to define the range and structure of
values that can be applied to the named property.

 ��

A property type can be either an atomic type, an enumerated type, a compound type (set,
sequence or record), or a type renaming.

Atomic property types. An atomic property type is one of Armani’s basic built-in type
primitives – int, float, boolean, or string. An example of two properties declared to have
atomic types follows:

Property rate : float = 7.5;
Property purpose-description : string = “This component...”;

The declaration of a type can be, but does not need to be, separated from the use of that
type in specific properties. Explicitly named types are declared with the following (informal)
syntax:

Property Type <TypeName> = <TypeStructure>;

where <TypeName> is an identifier to be associated with <TypeStructure>.
<TypeStructure> can define an enumerated type, a compound type, or rename a
previously defined type. Semantically, <TypeStructure> specifies a predicate that defines
the set of valid values for the type and in doing so defines the structure that values of the
type must posses.

Instances of properties are declared using the following syntax.

Property <PropertyName> : <TypeName> = <PropertyValue>;

The property named <PropertyName> is associated with the element in which it is
declared. The type of <PropertyName> is explicitly specified using the “: <Typename>”
notation.

Enumerated property types. An enumerated type defines a set of valid values that a
property of that type may hold. The following example defines a type “color” that can have
any of the values white, red, blue, green, or black.

Property Type color = enum {white, red, blue, green, black};

A compound property type is a type that provides a property with structure to store multiple
values. Compound types are either sets, sequences, or records of other types. Compound
typed properties may either use named compound types or explicitly create a new type in
the type signature of the property. Alternatively, if a property does not declare a type but
uses the syntax for specifying the value as a record, set, or sequence, then Armani uses
simple type inferencing to store the value appropriately.

Examples of compound type declarations and usage follow:

Records. A record type contains multiple typed fields that store distinct but related values.
Values of the fields of a record property can be referenced by the name of the field.

The syntax for record type declarations is:

Property Type <TypeName> = Record “[” <FieldDefs>* “]”;

where <FieldDefs> is a sequence of (name, type) pairs. Examples of record type
declarations and the use of record types in property declarations follow:

 ��

Property Type visualization = Record [x,y : int; fill-color : color];

Property point : Record [x,y : int] = [x = 4; y = 10];
Property vis : visualization = [x = 10; y = 20; fill-color = blue];

Sequences. A sequence type is an ordered list of elements, separated by commas. A
sequence instance may have repeated values. The items stored in a sequence must be of
a single type. The following syntax is used for specifying a type that stores a sequence of
<TypeName>’s :

Property Type <TypeName> = Sequence < <TypeName> > ;

Examples of sequence property type and sequence property instance declarations follow:

Property Type string-list = Sequence<string>;
Property Type vis-list = Sequence <visualization>;

Property int-seq : Sequence<int> = <1, 2, 3, 4, 2, 3, 4>;
Property string-seq : string-list = <"one", "two", "three", "one">;
Property comp-vis : vis-list = < [x = 10; y = 20; fill-color = black],
 [x = 50; y = 300; fill-color = white] >;

Sets. A set type defines an unordered set of elements, separated by commas, with no
duplicate values. Like a sequence type, a set type must be homogeneous. The following
syntax is used for specifying a set type:

Property Type <TypeName> = Set { <TypeName> } ;

The following examples illustrate the declaration of set property types and their use:

Property Type int-set = Set{int};
Property Type color-set = Set {color};

Property set-of-floats : Set{float} = {1.2, 3.4, 5.6, 7.8, 9.0};
Property set-of-ints : int-set = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};
Property set-of-colors : color-set = {blue, red, green, white};

Type renaming. A renamed property type allows users to separate the logical meaning of
a type from its underlying storage structure. A renamed type is comparable to a “typedef”
in the C language. For example, both a URL and a Java method declaration can be
specified as properties of a component using a string. The semantics that tools should use
to interpret the content of those two strings, however, are significantly different. The
following example shows how these types could be renamed to be more descriptive:

 ��

Property Type java-method = string;
Property Type url = string;

Property some-java-method : java-method = “foo(x,y:int){...}”;
Property some-url : url = “http://www.codeland.com”;

�

%����������
��
�
���������������
�� �� �
��

A property type, like a design element type, specifies a predicate that defines a set of valid
values for instances of that type. A given property is type-correct if its value is an element
of the set described by its type. The range of type predicates that can be defined for
property types is more limited than those that can be defined for element types.
Specifically, it is not possible to associate arbitrary invariants with a property type and the
language provides no support for property subtypes. A property type defines only structural
predicates. Extending the property type language to include support for arbitrary invariants
should be reasonably straightforward.

A property is type-correct if the property’s value satisfies the property’s type predicate.
Because property types can be either explicitly named (and then referenced by that name)
or used anonymously in a property instance specification, the semantic specifications for
the meaning of a property's structural predicate is defined separately from the meaning of
naming a specific property type.

The abstract syntax for property type declarations follows (keywords are in boldface):

PropertyTypeDecl ::= Property Type Name = PropertyTypeDesc

PropertyTypeDesc ::= int | float | string | boolean
| set { PropertyTypeDesc }
| sequence < PropertyTypeDesc >
| enum { Name (“,” Name)* }
| record [Name1 : PropertyTypeDesc1 ;
 … Namen : PropertyTypeDescn ;]
| Name

Name ::= <valid-identifier>

Property type meaning equations. The canonical representation of an Armani property
type is a predicate that takes a single property value (of unknown type) as an
argument. If the predicate evaluates to true then the value satisfies the type that the
predicate represents, otherwise the value does not satisfy the type of the property.

Meaning equations:

 �-

M [PropertyTypeDesc] c : PropertyValue → Boolean

M [Property Type n = PropertyTypeDesc] d =

 [d | d.tprop ← d.tprop ∪ (n, M [PropertyTypeDesc] d)]

M [int] c = λv. v ∈ { 32-bit Integers }
M [float] c = λv. v ∈ { 32-bit FloatingPointValues }
M [string] c = λv. v ∈ { ValidArmaniStrings }
M [boolean] c = λv. v ∈ { true, false }

M [enum { n1, …, nm }] c = λv. v ∈ { n1, …, nm }

M [Sequence <PropertyTypeDesc>] c = λv. Sequence(v) and

forall ei in v • (M [PropertyTypeDesc] c) ei
M [Set <PropertyTypeDesc>] c = λv. Set(v) and

forall ei in v • (M [PropertyTypeDesc] c) ei

M [record [n1 : PropertyTypeDesc1 ;… nm : PropertyTypeDescn ;]] c =

 λv. Record(v) and forall i in { 1..n } • M [PropertyTypeDesci] c v.ni.value

Anonymous property types. An instance of a property (e.g. the property rate on
component instance foo) must be typed, but the property does not need to use a
previously defined type. A property instance may declare an anonymous
compound type, as the following example illustrates:

 Component foo = {
 Property rate : Record [speed : int; units : string] =
 [speed : int = 100; units : string = “kb/s”];
 };

In this example property foo.rate has declared a new anonymous type a record
with the fields speed (of type int) and units (of type string). This new type is not
visible to any other property or element (hence the term anonymous), but it
specifies the structure that the value of the property must possess. An
anonymous type declaration in the context of a property instance specifies a
predicate that the value of that property instance must satisfy. The addition of
anonymous types does not require any modification to the equations for property
instances given in chapter 2.

���!��
��������� �
��

Although individual types and design rules can be useful by themselves, expertise of this
sort tends to be more useful when packaged as part of a coherent collection of related
vocabulary and constraints. Armani’s architectural style construct supports the ability to
aggregate and package related vocabulary and constraints.

An Armani architectural style specification consists of a set of type definitions, a set of
design rules, a set of design analyses, and a set of minimal required structures. Any or all
of these sets may be empty. A style is fundamentally a system type that also defines a

 �#

design space. Styles obey all of the rules and semantics of types presented thus far, with
some constraints to support the style’s design space function.

The informal syntax for defining a style is:

Style <style-name> = { <style-element>* } ;

 or

Style <style-name> extends <super-style-name>+
 with { <style-element>* } ;

<style-element> ::= <Sequence of: required structure and values
 | required properties
 | explicit invariants
 | explicit heuristics
 | design analyses
 | type definitions >

The syntax, canonical representation, and typechecking rules for individual type
specifications, design rules, and design analyses have been described earlier in the
chapter. In its role as a design space, a style is a named collection (or a package) of such
constructs. In its role as a system type, a style constrains the design of systems defined in
that style.

System instances may make use of the design expertise packaged in a style by declaring
that the system satisfies a style. The syntax for declaring that a system instance satisfies a
style is:

System <sample-system >: <sample-style> = { <system-decl-body> } ;

When a system instance is declared to have a specific style the names of all of the types
and design analyses declared in that style are visible within the system instance. Further,
all of the design rules contained in the style definition must hold over the system instance.
That is, the design rules in the style definition take effect in the scope of the system
instance, binding the concrete elements in the system instance to the appropriate abstract
design rules of the style.

Declaring that a system is designed in a specific style indicates that the constraints
specified by that style in the form of design rules must be maintained in the system
instance. Failure to satisfy these constraints constitutes a type error.

The set of type specifications given in a style declaration provide vocabulary of types that
can be used within a system description in that style. The system definition is not, however,
limited to using only the types provided by the style (unless there is a design rule that
explicitly limits the types of vocabulary that can be used). Design elements within the
system instance that claim to satisfy a type defined in the style must, however, satisfy the
type predicate given in the style definition.

Name visibility within a style. In order to insure that styles can be used as independent,
modular packages, abstract design rules and types defined within a style have limited
visibility to names defined outside of the scope of the style definition. Type definitions within
a style may only be subclasses of types defined in a superstyle. Likewise, ports and roles

 �'

defined within a component or connector type definition may only claim to satisfy types
defined within the style itself or one of the style’s superstyles.

A design rule defined in a style may refer to design analyses defined within that style,
design rules defined in an explicitly included library, the types defined within that style, and,
of course, all primitive Armani predicates.

��+�� �
��

A style can extend an existing style to make use of the types and design rules defined in
the existing style. The following example illustrates such an extension:

Style super = { ... };

Style sub extends super with {
 Component type new-component = { ... };
 Invariant forall x in self.components • foo(x));
};

This example creates a new style called sub that extends an existing style called super.
The new style “sub” is a substyle of the style “super.” The new style “sub” consists of the
union of the types, design rules, design analyses, and structure defined in both the “super”
style and those defined directly in the definition of style “sub.” Because the substyling
declaration only allows types, design rules, and structure to be added to a style, any
system that satisfies the constraints of “sub” will also satisfy the constraints of “super.”

A substyle may not redefine types or design rules named in the superstyle. It may,
however, create new types that extend the types defined in a superstyle.

A style may be a substyle of multiple superstyles, as in:

Style sub extends super-1, super-2, super-3 with {
 Component type new-component = { ... };
 Invariant forall x in self.components | foo(x));
};

Using multiple superstyles is similar to using a single superstyle: the new style “sub” will
consist of the union of the types, abstract design rules, and binding statements defined in
all of its superstyles, as well as those defined directly in “sub.”

� ��
���������
��������
��������
��� �
��

A system can declare that it satisfies multiple styles. In specifying that it satisfies multiple
styles it also claims to satisfy the constraints of all of the styles used. The syntax for
declaring that a system uses (satisfies) multiple styles is:

System sample-sys : style-1, style-2, ..., style-n = {...} ;

Such a declaration makes the vocabulary of styles 1 through n available for use in the
system and that design rules from styles 1 to n are bound to sample-sys. As a result,
sample-sys needs to satisfy all of the design rules of each style. The style constraints of
system sample-sys are the unification of the vocabulary and quantified design rules of
styles 1 to n, in the sense described earlier.

 �*

The “new” operator defined earlier in this chapter for creating minimal instances of simple
element types can also be used with styles to create systems with the minimal required
structure of that style. As with simple element types, the “extended with” construct can be
used to extend the minimal structure provided by “new” and customize the created system.
The syntax for creating a new minimal instance of a style is:

System <sys-name> : <style-name> = new <style-name> [extended with {…}] ;

The meaning of the new operator for systems is the same as the meaning of using new
with other element types.

�
��������!������1�� �
�����������

Using multiple styles in a single system can cause various kinds of conflicts. The two
primary kinds of conflicts are name conflicts (for vocabulary and design rules) and
conceptual conflicts where the styles are incompatible.

Naming conflicts are easy to deal with. The use of an ambiguous name within a system
specification is an error. Ambiguous naming can be avoided by qualifying types and design
rules specified within style definitions with the name of the style from which the type or
design rule should be used. For example:

Style generic-cs = { ... Component Type client = {...} ... };
Style special-cs = { ... Component Type client = {...} ... };

System sample : generic-cs, special-cs = {
 Component generic-client : generic-cs.client = {...};
 Component special-client : special-cs.client = {...};

 Invariant special-client.no-peers(...);
}

In this example, the client type is defined in both the generic-cs style and the special-cs
style. Each of the *.client type components in the system sample explicitly specify which of
the client types (special-cs.client or generic-cs.client) they refer to. The components in
system sample cannot simply claim to be of type client, as the client type is provided by
multiple styles used by the system, making the identifier “client” ambiguous. Type and
design rule names that appear in only one style do not need to be qualified in a system
declaration. References from within a system specification to design analyses2 provided
by styles follow the same set of disambiguating and qualifying rules as those used for
disambiguating types defined by multiple styles.

Style designers need not explicitly qualify references to types or design analyses that are
defined within the same style specification. All references to types or abstract design rules
from within a style definition are implicitly qualified and, in fact, only able to, refer to types
and abstract design rules of the same style. Consider the following (revised) example:

2 Design Analyses are a language construct presented in Chapter 4.

 ��

Style generic-cs = { ...
 Component Type client = {...}
 Component Type server = {...}
 ...
};

Style special-cs = { ...
 Component Type client = {...}
 Component Type server = {...}
 Design Analysis only-cs-conns(c : client, s:server) : boolean = {...};
 Invariant Forall c,s in {select self.Components | SatisfiesType(c, Client) and
 SatisfiesType(s, Server) } | only-cs-conns(c,s);
}

System sample : generic-cs, special-cs = { ... }

In this example, the design rules and the types have been automatically (and implicitly)
qualified to refer to their “native” style when evaluated in the context of the system
instance.

Conceptual mismatch. A second kind of conflict that can occur when using multiple
styles within a single system are conceptual mismatches. These conflicts occur when the
styles being used are incompatible with each other. An example of such a conflict is a
system that merges a pipe-filter style, which requires that all components are filters and all
connectors are pipes, with a client-server style that requires all components to be clients or
servers and all connectors to be HTTP streams. Unless the required types are
(accidentally) compatible with each other (e.g. instances of Filters satisfy the constraints of
Client) no system instance can be created that simultaneously satisfies the constraints of
both styles.

It is up to Armani users to detect and avoid such conceptual conflicts. Using multiple styles
in a single system instance expands the vocabulary available for use in that system but
generally constrains the design of the system further by introducing additional design
constraints. As the previous example indicates, it is possible to overly constrain a design
by using multiple styles. Tools can be developed to detect obvious style incompatibilities,
but they will not eliminate the need to be careful when using multiple styles for a single
system instance.

%����������
��
�
��������������!��
��������� �
��

The specification of the canonical representation of architectural styles is a straightforward
extension to the canonical representation of simple elements (components, connectors,
ports, and roles) and simple element types (their corresponding types). An architectural
style is a system type. In addition to its role as a system type, though, an architectural style
also defines a design space for declaring property and element type specifications,
abstract design rules, and design analyses. The types, design rules, and design analyses
defined in a style s are available for use within system instances defined in the style s.
Declaring that a system instance is a member of a style (e.g. System s : SomeStyle = {…}
) makes the type, design rule, and design analyses declared in the style visible within the
system instance specification but does not limit the use of types, design rules, and
analyses defined elsewhere (unless explicitly prohibited by style-wide invariants).

 �"

As with the other Armani constructs, an Armani style description is translated into a record
structure that can be analyzed algorithmically. To remain consistent with the format used
for defining simple element instances and types, a record type s is introduced that can be
used to represent either systems or styles. A record s has all of the substructure of an
element record e, with the additional field d to represent the new design space defined by
the style or system.

Thus the revised record s representing an Armani system or style in the semantic domain
has the form:

s = (n, c, s, p, a, i, h, tsuper, tasserted, d).

Informally, the fields of the tuple represent:

n = name of the family.
c = category of the tuple (always family).
s = set of elements that define an instance of f’s default structure
p = set of properties that define the properties of f.
a = set of attachments that define the default topology of a system instance
i = set of invariant predicates defined for f.
h = set of heuristics defined for f.
tsuper = set of names of super-styles that this style definition extends.
tasserted = set of names of styles this system instance claims to satisfy.
d = design space tuple that stores the design space defined by s.

Well-formedness rules:
The well-formedness rules given here describe the constructs that can be added
to a style definition. The primary purpose of the well-formedness rules is to insure
that no two distinct entities declared as part of a system or style share the same
identifier.

s = (n, c, s, p, a, i, h, tsuper, tasserted, d).

n : Identifier
c : Category
s : Set{Element}
p : Set{Property}
a : Set{Attachment}
i : Set{InvariantPredicate}
h : Set{HeuristicPredicate}
tsuper : Set{StyleName}
tasserted : Set{StyleName}
d : DesignSpace

Style(s)
and ((tsuper == {}) xor (tasserted == {}))
and d.s == {}
and forall t in d.telements • t.c != System

where:

Style(s) is a predicate that is true iff s is a Style declaration.

 �,

Meaning (system instance declarations):

A system instance declaration that claims to satisfy no style/type and occurs in the
context of a design space has the following meaning:

M [System name = { s1 ;…; sn }] d =
 if (name ∉ Names(d.f)) and (name ∉ Names(d.s))
 and (name ∉ Names(d.tprop)) and (name ∉ Names(d.telt)) then
 [d | d.s ← d.s ∪ M [{ s1 ;…; sn }] (c= System, n=name, s={},
 p = {}, r= {}, a={},
 tasserted = { System },
 tsuper = {}, i = {}, h = {},

d.telements = {}, d.tproperties = {},
d.s ← {}, d.da ← {})]

Meaning (style declarations):

A system type (style) declaration that claims no super-styles and occurs in the
context of a design space has the following meaning:

M [Style name = { s1 ;…; sn }] d =
 if (name ∉ Names(d.f)) and (name ∉ Names(d.s))
 and (name ∉ Names(d.tprop)) and (name ∉ Names(d.telt)) then
 [d | d.s ← d.s ∪ M [{ s1 ;…; sn }] (c= System, n=name, s={},
 p = {}, r= {}, a={},
 tasserted = {}, tsuper = { System },
 i = {}, h = {},

d.telements = {}, d.tproperties = {},
d.s ← {}, d.da ← {})]

A style declaration that claims one or more superstyles and occurs in the context
of a design space has the following meaning:

M [Style extends t1, …, tn with { s1 ;…; sn }] d =
 if (name ∉ Names(d.f)) and (name ∉ Names(d.s))
 and (name ∉ Names(d.tprop)) and (name ∉ Names(d.telt)) then
 [d | d.s ← d.s ∪ M [{ s1 ;…; sn }] (c= System, n=name, s={},
 p = {}, r= {}, a={},
 tasserted = {},
 tsuper = { System } ∪ { t1,…, tn },
 i = {}, h = {},

d.telements = {}, d.tproperties = {},
d.s ← {}, d.da ← {})]

© ROBERT T. MONROE, 1998

�!
����������
�����
������
�

The Armani predicate language is the portion of the Armani design language used for
specifying the predicates of design invariants and design heuristics. The predicate
language is based on first-order predicate logic with composable terms, user-definable
functions, and limited quantification capabilities. To keep the language decidable, variables
may be quantified only over finite sets.

This chapter presents the core constructs of the predicate language in four sections:
primitive functions, operators, quantification, and design analyses.

The Armani predicate language consists primarily of standard predicate logic expressions,
which are well understood. As such, we focus on the aspects of the predicate language
that differ from traditional predicate logic and the aspects that require careful integration
with the rest of the Armani language. Careful integration issues include how to evaluate a
predicate over a canonical Amani language representation (e.g. for determining type
satisfaction), how parameters are passed to functions, and the scope and visibility rules for
identifiers in logical expressions.

�������	
�����������

This section describes the primitive functions built into the Armani predicate language for
use in design invariants, heuristics, and analyses. The general form used for specifying
function signatures is:

FunctionName(FormalParamName : FormalParamType ,*) : ReturnType

Followed by a description of the behavior of the function. Object is the most general type
that can be used as a ReturnType or a FormalParameterType. Design elements, design
element types, properties, and representations are all subtypes of object. Primitive property
values (integers, floats, booleans, and strings) are not objects and are not valid arguments
to functions that take objects as arguments.

� �
�����������

declaresType(e : Element, t : ElementType) : boolean
Returns true if element e declares that it satisfies
type t, else returns false.

Chapter

�

 ��

satisfiesType(e : Element, t : ElementType) : boolean
Returns true if element e satisfies the predicate
defined by type t, independent of whether e
declares to satisfy type t, else returns false.

typesDeclared(e : Element) : set{Type}
Returns the set of identifiers of the types that
element e declares that it satisfies.

declaredSubtype(subType,superType : ElementType) : boolean
Returns True if subType declares that it is a
subtype of superType, else returns False.

superTypes(t : ElementType) : set{Type}
Returns the set of all types that are declared as
supertypes of element type t.

6���!�%���
���	�� �����������

attached(conn : Connector, comp : Component) : boolean
Returns True if connector conn is attached to
component comp, else False.

attached(r : Role, p : Port) : boolean Returns True if role r is attached to port p, else
False.

connected(c1, c2 : Component) : boolean
Returns True if component c1 is directly connected
to component c2 by at least one connector, else
False.

reachable(c1, c2 : Component) : boolean
Reachable(…) is the transitive closure of
Connected(…). It returns True if component c2 is
reachable from component c1, else False. This
function examines only undirected graph
connectivity.

���
��1%!��������������

parent(c : Component) : System Returns the System in which Component c is
instantiated, or nil if c is not a child of anything.

parent(c : Connector) : System Returns the System in which Connector c is
instantiated, or nil if c is not a child of anything.

parent(p : Port) : Component Returns the Component in which Port p is
instantiated, or nil if p is not a child of anything.

 �-

parent(r : Role) : Connector Returns the Connector in which Role r is
instantiated, or nil if r is not a child of anything.

parent(s : System) : Representation Returns the Representation in which System s is
declared, or nil if s is a toplevel System and thus not
declared in a representation.

parent(p : Property) : Element Returns the Element of which p is a Property, or nil
if p is not a property of anything.

parent(r : Representation) : Element Returns the Element of which r is a Representation,
or nil if r is not a Representation of anything.

�
������������

union (s1, s2 : Set{α}) : Set{α} Returns the union of sets s1 and s2.

intersection (s1, s2 : Set{α}) : Set{α} Returns the intersection of sets s1 and s2.

contains(x : object, s : set) : boolean Returns true if set s contains object x, else false.

flatten(sets : Set{Set{α}}) : Set{α} Returns the union of the elements of all sets
contained in the argument sets. The signature for
this function is Flatten : Set(Set(α)) → Set(α)

setDifference(lhs, rhs : Set{α}}) : Set{a}
Returns the set difference of sets lhs and rhs. That
is: rhs – lhs. The signature of this function is
SetDifference : (Set(α) x Set(α)) → Set(α)

isSubset(subset, superset : Set{α}) : boolean
Returns true if set subset is a subset of set
superset, else false

size(s : set) : integer Returns the cardinality of the set s.

sum(s : set{number}) : number Returns the sum of all of the numbers in the set s.

product(s : set{number}) : number Returns the product of the numbers in the set s.

The select(…) and collect(…) set constructors also operate on sets, but with a slightly
different syntax from other functions. Set constructors are described in detail in this
chapter’s section on quantification.

$�
�����
����������
����%���������

Literal constants may be used for comparison, as parameters, or as functions that return
their own value. Examples of literal constants include: true, 124, “string”, and “zanzibar”.
Identifiers are names that can be resolved as references to an object.

 �#

Appropriately typed literal constants can be used as arguments to functions. Likewise,
appropriately typed identifiers may be used as arguments to functions. The meaning of an
identifier passed as an actual parameter to a function depends on the type specified by the
function’s formal parameter. If the formal parameter specifies an object type then a
reference to the object referred to by the identifier is passed as the function argument. This
is pass-by-reference semantics. If, on the other hand, the function’s formal parameter
specifies a primitive property type (int, float, boolean, string, record[…], set{…}, or
sequence<…>) the identifier passed as an actual parameter is dereferenced and the value
of the property referred to by the identifier is passed as the actual parameter (pass by
value semantics).

None of the primitive functions specified in the Armani predicate language have side
effects or change the state of the objects passed as arguments. Therefore, the parameter
passing semantics can always be thought of as pass-by-value, with all of the dereferencing
of identifiers done before passing the value of the object.

��
�������

The Armani predicate language includes primitive operators for comparison, logic,
arithmetic, and set operations, along with a small collection of miscellaneous operations.
Details for each category of operator are given in the following tables.

%������������
�������

The predicate language includes the following operators for comparing two values:

Operator Example Meaning

== x == y true if x equals y, else false

!= x != y true if x does not equal y, else false

> x > y true if x is greater than y else false

>= x >= y true if x is greater than or equal to y, else false

< x < y true if x is less than y, else false

<= x <= y true if x is less or equal to y, else false

Comparison operator notes:

n Operands must be numeric for the operators >, <, >=, and <=.

n The equality and inequality operators (== and !=) perform object (or reference)
equality tests for design elements and references to design elements. That is, the
statement element e == element e’ is true iff element e is element e’. The equality

 �'

operators perform value equality tests on properties and literal values. That is, if
property x == 4 and property y == 4 then x = y.

�������
�������

The predicate language includes the following operators for building logical expressions:

Operator Example Meaning

and x and y true if both x and y are true, else false

or x or y true if either x or y are true, else false

xor x xor y true if (x = true and y = false) or (x = false and y =
true), else false

-> x -> y Implication (if). If x is true then y must be true. If x
is false, the value is true.

<-> x <-> y two-way implication (iff). true if x and y are either
both true or both false. false if they have different
values.

! !x not x. True if x is false, else false

For all logical operators, all operands must evaluate to boolean typed values. All logical
operators return a boolean typed value.

����!�
������
�������

The predicate language includes the following operators for doing simple arithmetic
operations:

Operator Example Meaning

+ x + y Addition. Sum of the values of x and y

- x – y Subtraction. Difference of x – y

* x * y Multiplication. Product of x and y

/ x / y Integer division if both x and y are integers, else
floating point division.

mod x mod y Modular division.

For all of the arithmetic operators, the operands need to be numeric. Modular division
requires that both operands be integers.

 �*

0���
����
������
�������

The following miscellaneous operators are also primitive operations in the Armani
predicate language:

Operator Example Meaning

() (z or (x < y)) Precedence operator. all expressions in the
innermost parentheses are evaluated before
moving to the outer level of parentheses.
Standard C interpretation used.

. object.property

comp.portName

Qualifier and dereferencer. The period is used to
qualify names and dereference substructure
within an object. The value of the referenced
entity is returned by the operation.

7������
����������8�����()��
�������

It is, of course, possible to build up expressions using the primitive predicates and the
supplied operators. The grammar for doing so is:

Expression ::= Primitive-Function(ActualParams)
 | Literal-Constant
 | Identifier
 | DesignAnalysisIdentifier(ActualParams)
 | QuantifedPredicate
 | Unary-Operator Expression
 | Expression Binary-Operator Expression;

Unary-Operator ::= Armani primitive unary-operator ;

Binary-Operator ::= Armani primitive binary-operator ;

Primitive-Function ::= Primitive Armani Predicate Language function ;

Identifier ::= Reference to a variable or property

DesignAnalysisIdentifier ::= Reference to a user-defined Design Analysis

ActualParams ::= List of values for parameters to pass to function

The production for QuantifedPredicate is defined in this chapter’s Quantification section. A
PredicateExpression is an Expression that evaluates to a boolean value.

 ��

�

9��������������

In addition to primitive functions and operators, the Armani predicate language provides a
limited quantification mechanism. Both universal and existential quantification are
supported, with the limitation that all quantification must be done over finite sets. This
limitation insures that the satisfaction of any predicate expression is decidable.

Quantified predicates use the following syntax in the predicate language.

QuantifiedPredicate ::= (forall | exists) Identifier (, Identifier)* : TypeExpression
 in SetExpression (, Identifier (, Identifier)*
 : TypeExpression in SetExpression)*
 | PredicateExpression ;

The keyword forall indicates universal quantification and the keyword exists indicates
existential quantification. The following examples illustrate the use of simple quantified
predicates.

Forall comp : aCompType in sys.Components | comp.secure = True;
Exists conn : connector in sys.Connectors |DeclaresType (conn, EventSystemType);

Quantified predicates may be embedded within other quantified predicates. For example:

Forall comp : aCompType in sys.Components |
 Forall port : aPortType in comp.Ports | port.protocol = RPC;
Forall comp : aCompType in sys.Components |
 Exists conn : aConnType in sys.Connectors |
 Connected(comp,conn);

Quantified predicates are not limited to single variables. The following predicate is true in
systems where all components are connected to all other components by at least one
connector, forming a fully connected graph.

Forall c1, c2 : component in sys.Components |
 Exists conn : connector in sys.Connectors |
 Attached (c1, conn) and Attached (c2, conn)

The following three equations describe the meaning of simple quantified predicates whose
quantification includes a single variable. The equations for more complex expresssions are
described subsequently as generalizations of these basic equations. The first equation
indicates that a PredicateExpression in the Armani predicate language is a function from
some context (a mapping of variable names to values) to a boolean value. The functions
and operators that can be composed to form a valid PredicateExpression outlined in the
previous two sections of this chapter.

M [PredicateExpression] : Context → Boolean

M [Forall v in { e1 ;…; em } | PredicateExpression] c =

 M [PredicateExpression] [c | v ← e1]

 �"

 and M [PredicateExpression] [c | v ← e2]
 and … and M [PredicateExpression] [c | v ← em]

M [Exists v in { e1 ;…; em } | PredicateExpression] c =

 M [PredicateExpression] [c | v ← e1]
 or M [PredicateExpression] [c | v ← e2]
 or … or M [PredicateExpression] [c | v ← em]

The following three pairs of equations specify the meaning for quantifications involving
more than one variable. The first pair of equations simply define the meaning of a
shorthand for quantifying multiple variables over a single set. They say that quantifying
multiple variables over a single set is the same operation, semantically, as quantifying
each of the variables individually over different sets that all contain the same values. The
second pair of equations provide a generalization of the first equations that describe how
complex combinations of variables quantified in a single quantification expression with
multiple variables and multiple sets are translated into the canonical form of a series of
simple quantification expressions. The final pair of equations describes the meaning of
quantified predicates whose quantification expression are expressed in this canonical
form.

The intuitive explanation of these equations is that in a predicate expression that is
universally quantified, the value of that expression is true if and only if the expression holds
for all combinations of values of the variables specified in the quantification expression.
The value of an existentially quantified predicate expression is true if and only if there
exists at least one combination of variable bindings that makes the predicate expression
true.

Equations for translating quantifications of multiple variables over a single set into
canonical semantic form.

M [Forall v1, v2, …, vn in { e1 ;…; em } | PredicateExpression] c =
M [Forall v1, in { e1 ;…; em }, v2, in { e1 ;…; em }, … , vn, in { e1 ;…; em },
 | PredicateExpression] c

M [Exists v1, v2, …, vn in { e1 ;…; em } | PredicateExpression] c =

M [Exists v1, in { e1 ;…; em }, v2, in { e1 ;…; em }, … , vn, in { e1 ;…; em },
 | PredicateExpression] c

Generalization of prior equations for quantifying multiple variables over multiple sets:

M [Forall v1, v2, …, vn in { e1 ;…; em1 }, v1’, v2’, …, vn’ in { e1’ ;…; em2’ }, …,
v1

p’, v2
p’, …, vn

p’ in { e1
p’ ;…; emn

p’ } | PredicateExpression] c =
 M [Forall v1, in { e1 ;…; em }, v2, in { e1 ;…; em }, … , vn, in { e1 ;…; em },
 v’1, in { e’1 ;…; e’m1 }, v’2, in { e’1 ;…; e’m1 }, …, v’n, in { e’1 ;…;e’m1 }, …,
 vp’

1, in { ep’
1 ;…; ep’

mn}, v
p’

2 in { ep’
1;…; ep’

mn}, …, vp’
n, in { ep’

1 ;…;ep’
mn }

 | PredicateExpression] c

M [Exists v1, v2, …, vn in { e1 ;…; em1 }, v1’, v2’, …, vn’ in { e1’ ;…; em2’ }, …,

v1
p’, v2

p’, …, vn
p’ in { e1

p’ ;…; emn
p’ } | PredicateExpression] c =

 M [Exists v1, in { e1 ;…; em }, v2, in { e1 ;…; em }, … , vn, in { e1 ;…; em },
 v’1, in { e’1 ;…; e’m1 }, v’2, in { e’1 ;…; e’m1 }, …, v’n, in { e’1 ;…;e’m1 }, …,
 vp’

1, in { ep’
1 ;…; ep’

mn}, v
p’

2 in { ep’
1;…; ep’

mn}, …, vp’
n, in { ep’

1 ;…;ep’
mn }

 | PredicateExpression] c

 �,

Equations for translating canonical quantifications of multiple variables over multiple
sets into predicates over the canonical Armani representation.

M [Forall v1 in { e1 ;…; em1 }, v2 in { e’1 ;…; e’m2 },
 … vn in { ep’

1 ;…; ep’
mn } | PredicateExpression] c =

 M [PredicateExpression] [c | v1 ← e1, v2 ← e’1, …, vn ← ep’
1]

and M [PredicateExpression] [c | v1 ← e2, v2 ← e’1, …, vn ← ep’
1]

and … and M [PredicateExpression] [c | v1 ← em1, …, vn ← ep’
1]

and M [PredicateExpression] [c | v1 ← e1, v2 ← e’2, …, vn ← ep’
1,]

and … and M [PredicateExpression] [c | v1 ← em1, v2 ← e’2,…, vn ← ep’
1]

and … and M [PredicateExpression] [c | v1 ← em1, v1 ← e’m2,…, vn ←ep’
mn]

M [Exists v1 in { e1 ;…; em1 }, v2 in { e’1 ;…; e’m2 },

 … vn in { ep’
1 ;…; ep’

mn } | PredicateExpression] c =
 M [PredicateExpression] [c | v1 ← e1, v2 ← e’1, …, vn ← ep’

1]
or M [PredicateExpression] [c | v1 ← e2, v2 ← e’1, …, vn ← ep’

1]
or … or M [PredicateExpression] [c | v1 ← em1, …, vn ← ep’

1]
or M [PredicateExpression] [c | v1 ← e1, v2 ← e’2, …, vn ← ep’

1,]
or … or M [PredicateExpression] [c | v1 ← em1, v2 ← e’2,…, vn ← ep’

1]
or … or M [PredicateExpression] [c | v1 ← em1, v1 ← e’m2,…, vn ←ep’

mn]

�
��
)��
������������
���������������

As mentioned earlier, variables can only be quantified over finite sets. The Armani
predicate language provides a number of set operators and constructors for creating an
appropriate set for quantification. The syntax for the SetExpression nonterninal used in the
syntax production of QuantifiedPredicate follows:

SetExpression ::= SetLiteral | Identifier | SetFunction | SetConstructor

SetLiteral ::= { } | { (Literal | Identifier) (,Literal | , Identifier)* }

SetFunction ::= Primitive-Function (ActualParams)

 | DesignAnalysisIdentifier (ActualParams)

SetConstructor ::= { select variable in SetExpression | PredicateExpression }
 | { collect variable.substructure in SetExpression | PredicateExpression }

The standard ways for specifying and/or creating a set over which a variable will be
quantified are (1) specifying a literal set, (2) referring to an existing set, (3) calling a
function that returns a set type, or (4) constructing a set using the select or collect set
constructor operators. The following examples illustrate each of these four methods.

(1) Forall x : int in { 1, 2, 3, 4, 5 } | P(x)
(2) Forall x : port in self.ports | P(x)
(3) Exists x : port in union(foo.ports, bar.ports) | P(x)
(4) Forall x : component in

 { select c : aCompType in self.Components | c.rate > 100 } | P(x)

 ��

These techniques can be combined as appropriate wherever a SetExpression can be
used. The following example illustrates mixing and matching SetExpressions.

Forall x : int in { select y in { 1, 2, 3, 4, 5 } | y > 2 } | P(x)

Select and collect. These functions are set constructors that create a new set from the
members of an existing set.3 The select function acts as a filter that takes a set s and a
predicate expression p as arguments and evaluates to a new set s’ that contains the
members of the set s that satisfy the predicate p. The returned set s’ is a subset of the
original set s, as the following example illustrates:

{ select v : int in { 1, 2, 3, 4, 5 } | v > 2 } evaluates to the set { 3, 4, 5 }.

Like the select function, the collect function acts as a filter on a set s and creates a new set
s’ from the elements of s that satisfy the predicate p. The new set s’, however, is not a
subset of the original set s. Rather, the new set consists of the values of the specified
substructure of the original set’s elements. The following examples should help to illustrate:

{ collect v.x : int in { [x=4; y=6], [x=5; y=7]; [x=5; y=8] } | v.y – v.x = 2 }
evaluates to { 4, 5 }

{ collect c.ports : set{port}in self.Components | satisfiesType(c, Filter) }

evaluates to { all sets of ports on self’s components that satisfy type Filter }

Standard sets. All design elements consist of one or more finite sets that can be
dereferenced using the “.” (dot) operator. A list of the standard sets available for various
categories of design elements follows. The basic notation used here is that anything in
angle brackets (e.g. <Component>) refers to a type or category of design element or
property. The item in angle brackets needs to be replaced by a reference to an instance of
that category in order to retrieve the desired set. The standard sets include:

<System>.Components Refers to the set of components that are instantiated in
<System>. Only components whose parent is <System> are
returned. It does not traverse into any representations.

<System>.Connectors Refers to the set of connectors that are instantiated in
<System>. Only connectors whose parent is <System> are
returned. It does not traverse into any representations.

<Component>.Ports Refers to the set of ports defined as interfaces to
<Component>.

<Connector>.Roles Refers to the set of roles defined as interfaces to
<Connector>.

<Element>.Representations
Refers to the set of representations of <Element>

3 The select and collect constructs were derived from similar constructs in UML’s Object Constraint Language
(OCL). Further information on OCL is available at www.omg.org and at www.rational.com/uml/html/ocl.

 ��

<Element>.Properties Refers to the set of properties of <Element>

In addition to these standard sets, the dot notation can be used on elements with set-typed
properties to refer to the sets stored in those properties.

�
�������� �
��

In addition to the primitive functions, the Armani predicate language supports user-defined
functions with the design analysis construct. A design analysis is simply a user-defined
function that can be invoked from design invariants or design heuristics. Design Analyses
can be defined by composing primitive functions from the Armani Predicate Language
and/or other Design Analyses. Alternatively, design analyses can be externally defined
functions or tools that are accessed through the Java interpreter. External design analyses
are performed out of the scope of the Armani system, leaving the semantics for such
functions undefined. It is the responsibility of the user defining the external analyses to
insure that the function returns the type of entity published in the design analysis signature.

The syntax for the design analysis construct adds the following productions to the Armani
predicate language grammar presented thus far:

DesignAnalysis ::= analysis Identifier (FormalParams) : ReturnTypeIdentifier =
 Expression
 | external analysis Identifier(FormalParams) :
 ReturnTypeIdentifier = ExternalReference ;

An ExternalReference is a reference to a function defined outside of the Armani language.
In the Armani toolset, this is a reference to a method available in the Java interpreter that is
running Armani. The general form of an external reference that calls the Java interpreter is
package.class.method(ActualParams).

The following examples illustrate the declaration of design analyses.

analysis goesFast(fil : Filter) : boolean = (fil.rate > 1000);

analysis goesFastSecurely(fil : Filter) : boolean = (goesFast(fil) and fil.secure = true) ;

external analysis sourceCompiles(fil : Filter) : rate = java.tools.checkSrc(fil);

Once declared, these design analyses are available for use in design invariants and
design heuristics. As an example, the following style description makes use of these
design analyses.

 ��

Style sample = {
 Component Type Filter = { Property rate : int; … };

 // invariant that says all filters are fast and secure.
 Invariant forall f : component in self.Components |
 satisfiesType(f, Filter) → goesFastSecurely(f);

 // invariant that says the source code compiles for all filters
 Invariant forall f : component in self.Components | sourceCompiles(f);

 // heuristic that limits fan-in and fan-out
 Heuristic forall c : component in self.Components | size(connectedTo(c)) <= 2;
}

 �-

��
�����
������
�� ���)�

Expression ::= Primitive-Function(ActualParams)
 | Literal-Constant
 | Identifier
 | DesignAnalysisIdentifier(ActualParams)
 | QuantifedPredicate
 | Unary-Operator Expression
 | Expression Binary-Operator Expression;

Unary-Operator ::= Armani primitive unary-operator ;

Binary-Operator ::= Armani primitive binary-operator ;

Primitive-Function ::= Primitive Armani Predicate Language function ;

Identifier ::= Valid reference to a variable or property

DesignAnalysisIdentifier ::= Valid reference to a user-defined Design Analysis

ActualParams ::= List of values for parameters to pass to function

QuantifiedPredicate ::= (forall | exists) Identifier (, Identifier)*
in SetExpression
(, Identifier (, Identifier)* in SetExpression)*
| PredicateExpression ;

SetExpression ::= SetLiteral | Identifier | SetFunction | SetConstructor

SetLiteral ::= { } | { (Literal | Identifier) (,Literal | , Identifier)* }

SetFunction ::= Primitive-Function (ActualParams)
| DesignAnalysisIdentifier (ActualParams)

SetConstructor ::= {select variable in SetExpression | PredicateExpression }
| { collect variable.substructure
 in SetExpression | PredicateExpression }

DesignAnalysis ::= analysis Identifier (FormalParams) : ReturnTypeIdentifier =
 Expression
 | external analysis Identifier(FormalParams) :
 ReturnTypeIdentifier = ExternalReference ;

Syntax Notes:

A PredicateExpression is an Expression that evaluates to a boolean value. An
ExternalReference is a reference to a function defined outside of the Armani language. In
the Armani toolset, this is a reference to a method available in the Java interpreter that is
running Armani. The general form of an external reference that calls the Java interpreter is
package.class.method(ActualParams).

© ROBERT T. MONROE, 1998

�������()����
��
This chapter ties together the constructs and concepts presented in the previous four
chapters by presenting two styles a Pipe-and-Filter style and a Client-Server style and
two example systems that use the styles.

���
1���1����
���� �
������ ��
��

The Pipe-and-Filter style is used for systems that can be modeled as a sequence of
transformations on a stream of data. The classes of systems that can be modeled in this
style range from Unix-based text processing systems to Digital Signal Processing (DSP)
pipelines. All components in the Pipe-and-Filter style are Filters that read a stream of input
data, perform some computation, and then write out the results. All connectors in the Pipe-
and-Filter style are Pipes, which asynchronously transport a stream of typed data from a
source input to a sink output, maintaining the ordering of data elements.

���
1���1����
���� �
�

Style Pipe-and-Filter = {

// First define the design vocabulary

// Define the flowpaths type
Property Type flowpathRecT = Record [fromPt : string; toPt : string;];

// Define port and role types
Port Type inputT = { Property protocol : string = "char input"; };

Port Type outputT = { Property protocol : string = "char output"; };

Role Type sourceT = { Property protocol : string = "char source"; };

Role Type sinkT = { Property protocol : string = "char sink"; };

// Define component types
Component Type Filter = {
 Port input : inputT;
 Port output : outputT;
 Property function : string;
 Property flowPaths : set{flowpathRecT}
 << default : set{flowpathRecT} =
 [fromPt : string = "input"; toPt : string = "output"]; >>;

 // constraint that limits the addition of other ports to input or output ports

Chapter

�

 -*

 Invariant forall p : port in self.Ports |
 satisfiesType(p, inputT) or satisfiesType(p,outputT);
};

// Define component types
Connector Type Pipe = {
 Role source : sourceT;
 Role sink : sinkT;
 Property bufferSize : int;
 Property flowPaths : set{flowpathRecT} =
 [from : string = "source"; to : string = "sink"];

 // invariants require that a Pipe have exactly 2 roles, and a buffer with
 // positive capacity.
 Invariant size(self.Roles) == 2;
 Invariant bufferSize >= 0;
 };

//
// Define abstract style-wide design analyses
//

// define an abstract design analysis that checks for cycles in the system graph.
Design Analysis hasCycle(sys :System) : boolean =
 forall c1 : Component in sys.Components | reachable(c1,c1);

// define an external design analysis that computes the throughput rate for a
// component
External Analysis throughputRate(comp :Component) : int =
 armani.tools.rateAnalyses.throughputRate(comp);

//
// Specify the design invariants and heuristics for systems built in this style.
//

// only attach inputs to sinks and outputs to sources
Invariant forall comp : Component in self.Components |
 Forall conn : Connector in self.Connectors |
 Forall p : Port in comp.Ports |
 Forall r : Role in conn.Roles |
 attached(p,r) ->
 ((satisfiesType(p,inputT) and satisfiesType(r,sinkT)) or
 (satisfiesType(p,outputT) and satisfiesType(r,sourceT)));

// no dangling roles
Invariant forall conn : Connector in self.Connectors | forall r : Role in conn.Roles |

 exists comp : Component in self.Components | exists p : Port in comp.Ports |
 attached(p,r);

// flag unattached ports

 -�

Heuristic forall comp : Component in self.Components |
 forall p : Port in comp.Ports | exists conn : Connector in self.Connectors |
 exists r : Role in conn.Roles |
 attached(p,r);

// a system in the pipe-and-filter style can have no cycles
Invariant !hasCycle(self);

// all components should have a throughput of at least 100 (units?)
Heuristic forall comp : Component in self.Components |
 throughputRate(comp) >= 100;

}; // end pipeFilterFam style/family definition.

���
1���1����
��� ��
���������
�

Having specified the Pipe-and-Filter style, the following example illustrates the definition of
a system instance specified in the Pipe-and-Filter style. This is a trivial system that has
three components strung together with a pair of pipes. It obeys all of the design rules
specified in the style definition, and also specifies a set of invariants that constrain the
evolution of this instance of the system (and some of the system’s components and
connectors as well).

System sample : Pipe-and-Filter = new Pipe-and-Filter extended with {

 // declare the components
Component reduce-noise : Filter = new Filter extended with {
 Property function : string = "reduce-noise.exe";

 // add an invariant that says throughput of this particular filter has to be
 // higher than the minimum required by the style (which is 100).
 Invariant throughputRate(self) >= 150;
};

Component find-errors : Filter = new Filter extended with {
 Port error : outputT = new outputT;
 Property function : string = "find-errors.exe";
};

Component compute-trajectories : Filter = new Filter extended with {
 Property function : string = "compute-trajectories.exe";
};

// declare the connectors
Connector p1 : Pipe = new Pipe extended with {
 Property bufferSize : int = 1024;
};

Connector p2 : Pipe = new Pipe extended with {
 Property bufferSize : int = 1024;
};

// hook the filters up with the pipe.

 -"

Attachments = { reduce-noise.output to p1.source;
 find-errors.input to p1.sink;
 find-errors.output to p2.source;
 compute-trajectories.input to p2.sink;
};

// instance-specific invariants that specify that all components are filters and all
// connectors are pipes.
Invariant forall conn : Connector in self.Connectors |
 declaresType(conn, Pipe) and satisfiesType(conn, Pipe);
Invariant forall comp : Component in self.Components |
 declaresType(comp, Filter) and satisfiesType(comp, Filter);

};

%��
��1�
�	
���� �
������ ��
��

The Client-Server style is a popular generic style used frequently to construct Distributed
Information Systems. Components in the Client-Server style consist of Clients and
Servers. Clients send requests for data or processing to Servers, which perform the
requested processing or retrieve data. Connectors in the Client-Server style are either
Procedure-Calls (PC’s) or Remote Procedure-Calls (RPC’s). RPC’s and PC’s can be
either blocking or non-blocking calls.

Style naïve-client-server-style = {

 // define the style’s vocabulary
 Component Type naïveClientT = {
 Port makeCall;
 };

 Component Type naïveServerT = {
 Port receiveCall;
 Property max-concurrent-requests : int;
 Design Invariant max-concurrent-requests <= 5;
 };

 Connector Type pcT = {
 Roles { caller; callee; };
 Property blocking : boolean << default : boolean = true>>;
 Design Invariant size(self.roles) = 2;
 };

 Connector Type rpcT extends pcT with {
 Property callerAddress : string;
 Property calleeAddress : string;
 }

 // Define the design analyses that can be used within this style

 // specify topological attachment constraints.

 -,

 // only allow client-server connections.
 // client-client and server-server connections are invalid.
 Design Analysis no-peer-connections(c1,c2:Component) : boolean =
 (Connected(c1,c2) =>
 ~(DeclaresType (c1,naiveClientT) AND DeclaresType (c2,naiveClientT))
 AND ~(DeclaresType (c1,naiveServerT)
 AND DeclaresType (c2,serverClientT)));

 // Define the design rules for this style.
 // limit the vocabulary types used in this style to naive-clients,
 // naive-servers and rpc’s.
 Forall comp in self.component |
 (DeclaresType(comp, naiveClientT)
 AND SatisfiesType(comp, naiveClientT)
 OR (DeclaresType(comp, naiveServerT)
 AND SatisfiesType(comp, naiveServerT) ;

 Forall conn in self.connectors |
 (DeclaresType(conn, pcT)
 AND SatisfiesType(conn, pcT)
 OR (DeclaresType(conn, rpcT)
 AND SatisfiesType(conn, rpcT) ;

 Design Invariant forall c1, c2 in self.components | No-peer-connections(c1,c2);

}; // end naive-client-server-style definition.

We can now extend this example style to create a substyle that introduces a new subtype
of server called a database server. The substyle also introduces an additional design rule
that insures a system will always have precisely one primary server. The structure and
constraints of the previous style definition will be included in the substyle. As a result, any
system developed in the substyle will also satisfy all of the constraints of the superstyle and
work with any tools that are designed to work with the superstyle.

Style db-cs-style extends naive-client-server-style with {

 // define the substyle’s new database server component type
 Component Type databaseServerT extends naiveServerT with {
 // By redefining rpc-callee, this type definition adds a new property
 // to the type’s port rpc-callee. It also adds a new constraint to maintain.
 Port receiveCall = {
 Property query-language : protocol << default : protocol = RPC>>;
 }
 Property primary-server : boolean << default : boolean = False >>;
 Design Invariant rpc-callee.query-language == RPC;
 };

 // Add a design invariant that says “There must be exactly one server in
 // a system that has the primary-server property set to “true.”
 Design Invariant size({select c in self.components |

 DeclaresType(c, naiveServerT) → c.primary-server}) == 1;

 -�

};

To complete the client-server example, the following system uses the db-cs-style to
describe a simple library information system that keeps library records and makes them
available via clients. The server also provides a local in-process client for doing server
administration.

System library-information-system : db-cs-style = {

 // the primary server
 Component lisDB : databaseServerT = new databaseServerT extended with {
 Port adminPort;
 Property max-concurrent-requests : int = 2;
 Property primary-server : boolean = true;
 };

 // a collection of browsing clients that look up library info.
 Component publicBrowser1 : naiveClientT;
 Component publicBrowser2 : naiveClientT;
 Component refLibrarianBrowser : naiveClientT;

 // an admin client to handle server administration. This lives in the same
 // process as the server.
 Component adminClient : naiveClientT = new naiveClientT extended with {
 Property access-clearance : acl = high;
 };

 // declare the connectors that plumb the system.
 Connector pub1Conn : rpcT = new rpcT extended with {
 Property blocking : boolean = true;
 Property callerAddress : string = "browser1-machineName";
 Property calleeAddress : string = "lis-db-machineName";
 };

 Connector pub2Conn : rpcT = new rpcT extended with {
 Property blocking : boolean = true;
 Property callerAddress : string = "browser2-machineName";
 Property calleeAddress : string = "lis-db-machineName";
 };

 Connector refConn : rpcT = new rpcT extended with {
 Property blocking : boolean = true;
 Property callerAddress : string = "refLibrarianBrowser-machineName";
 Property calleeAddress : string = "lis-db-machineName";
 };

 Connector adminRequests : pcT;

 // hook the components and connectors together to plumb the system.
 Attachments {
 publicBrowser1.makeCall to pub1Conn.caller;
 lisDB.receiveCall to pub1Conn.callee;
 publicBrowser2. makeCall to pub2Conn.caller;
 lisDB. receiveCall to pub1Conn.callee;

 -�

 refLibrarianBrowser. makeCall to refConn.caller;
 lisDB. receiveCall to refConn.callee;
 adminClient.makeCall to adminRequests.caller;
 lisDB.adminPort to adminRequests.callee;
 };

 // make sure that the lisDB remains the primary server.
 Design invariant lisDB.primary-server == true;
};

© ROBERT T. MONROE, 1998

������
�����	
��
���������
���
���

This appendix lays out a roadmap to a more rigorous formal semantics for Armani than
the operational view taken in the main body of this report.4

Armani is not the first language to adopt a predicate-based type system. As a result,
defining the formal semantics for such a type system is largely a solved problem. In
particular, Owre and Shankar provide a formal semantics for PVS, a specification
language that uses predicate-based types [OS97]. In fact, the type system of PVS is
significantly more complex and powerful than Armani’s, so embedding Armani into it is a
relatively straightforward task. The only minor difficulty is supporting record types and a
form of typing for records that permits a record instance to satisfy a record type with fewer
fields.

The semantic equations given in the main body of this document define how constructs in
the Amani design language can be mapped from their abstract syntax to a tuple structure.
For the specification provided in the body of this document, we have provided algorithms
to determine type and constraint satisfaction.

In the alternative semantic model outlined in this appendix, however, the semantics of the
Armani type system are based on set membership, as in PVS. The tuples defined
previously are equivalent to a record structure – each tuple contains a set of label/value
pairs. In this alternative semantic approach we test these record structures for type-
compliance by testing for set membership. Specifically, every instance in an Armani
definition defines a record, and each type in an Armani definition defines a set of records.
As a result, the typechecking rules used are sound if they guarantee that all entities e that
claim to satisfy a type T in the syntactic world correspond to an element in the semantic
domain that is a member of the set defined by T in the semantic domain. Specifically, the
following equation must hold, where M defines the meaning function that maps entities
from the syntactic domain to the semantic domain:

e : T ⇒ M (e) ∈ M (T)

The treatment provided in the body of this document explains how to map from Armani’s
syntactic domain to the required record structure.

Although Armani’s type system is similar to the PVS’, they are not identical. To properly
reflect the variations it is necessary to make two additions to the PVS semantics of types.
First we must add the concept of records and record types to its semantic universe.
Second, we need to loosen PVS’s “closed-world” model. That is, a type in PVS defines the

4 I would like to thank David Garlan, Jurgen Dingel, and Sidd Puri for the significant assistance they provided in
mapping Armani constructs and concepts to the PVS semantic structure.

Appendix

�

 -#

set of elements with exactly that type’s structure. An Armani type defines a set of elements
with at least the structure required by the type. In particular, an element of a record type
may have additional fields, not specified by the type.

To add the concept of records and record types to PVS’s semantic universe we view a
record as a function from labels to values. Following PVS’s set-oriented semantic
approach, a record type is then modeled as a set of records. To describe records and
record types in the PVS semantic domain, we need to add some sets to the PVS semantic
domain. The first addition is a set of all labels, denoted. Records are then functions that
have the form { 〈 l1, v1〉, …, 〈 ln, vn〉 }, where li ∈ L and vi represents a value (these values will
be subsequently defined).

Following the style of specifying PVS semantics in [OS97], we build up the space of all
records in steps. The notation RECk+1 represents the set of all records defined at level k+1
of the type universe. RECk+1 is defined by the following equation:

{ } { } () (){ }iiknjijinnn SvUSSvvllLllvlvl ∈•∃∧=⇒=∧⊂=+ :;...;,...,| ,,...,,REC 11111k

The Ui’s in the above definition refer to the levels in the type universe – as explained later.

Operations to create a projections of the labels of a record, and the selection operation "."
are as follows:

{ }
{ }

. v r.l

 l,...,l labels(r)

 ,,...,,r let

ii

n1

11

=
=

= nn vlvl

Record types are then introduced as follows:

[] { }{ }
{ }

∉
∈∈•∀∧⊂

≡+ US if

US if ...1:)(,...,|:
:,...,:

Ki

Ki1
111

iinK

Knn

SlrnirlabelsllRECr
SlSl

This record type definition supports Armani’s requirement that an instance must have at
least the structure specified by its type. (In contrast, as noted, the PVS type system
requires that an instance specify exactly the structure defined in the type.)

Finally, we introduce the following notation to describe the infinite union of all of the sets
with the form of the previous definition:

[] [] Knn
K

Knn SlSlSlSl :,...,::,...,: 11111 �
ω∈

+ ≡

(Here the symbol U represents set union. The type universe definition (definition 1.1 of
[OS97]) for PVS then needs to be expanded with two additions the set of all labels are
added to the basic set U0 and the Uω set that describes all record types. The following
revised definition of the type universe illustrates reflects these changes.

 -'

Definition 1.1 (type universe)

{ } { }

[]
{ }
{ }

’

,...,
,...,

11’

1

0

1

1

:,...,:

)(,|,|

},,2{

ωω

ω

ω
ω

ω

UUU

XlXlU

UU

XUYXXUYXYXUU

LU

UXX
Lll

nn

i
i

UX
i

Y
iii

n

n

i

∪=

=

=

℘∪∈∪∈×∪=

ℜ=

∈
∈

∈

∈
+

�

�

�

As specified in [OS97], U refers to the basic universe. Subsequent semantic definitions
assign a set in U to each PVS type and an element in Uω to each well-typed term. The
rank of a set X in U is the least i such that X ∈ Ui.

These additions and modifications to PVS semantics allow us to represent the Armani type
system’s semantics using the set-based formalism given in [OS97], augmented by the
definitions above. The mapping from Armani’s tuple representation to an appropriate set of
record and record types is straightforward. Each instance in Armani is represented as a
tuple that consists of a set of name/value pairs. These name/value pairs correspond
directly to the records used in this extension to PVS. Type definitions in Armani define a
set of instances. This set of instances is represented in the semantic domain as a set of
records of the record type defined above.

���
���)�8�8�+������! �

[OS97] Sam Owre and Natarajan Shankar, The Formal Semantics of PVS. Technical
Report CSL-97-2, SRI International, Menlo Park, CA, August 1997.

© ROBERT T. MONROE, 1998

�������8:��

8:��0
��1� ���)�

Keyword Keywords are specified with bold text. Keywords are case-
insensitive

Non-Terminal Non-Terminals are specified with italics

 (…) Parentheses group tokens and productions

[…] Indicates an optional production

(…)? Indicates a sequence of zero or one elements (synonymous with [])

(…)+ Sequence of one or more elements

(…)* Sequence of zero or more elements

| Seperates alternative choices

�

�������6�������

ArmaniDesign ::= (TypeDeclaration | FamilyDeclaration
 | DesignAnalysisDeclaration)*
[SystemDeclaration]
<EOF>

Design Element Types:

FamilyDeclaration ::= Family Identifier ["(" ")"] "=" FamilyBody [";"]

FamilyBody ::= "{" (TypeDeclaration)* "}"

TypeDeclaration ::= ElementTypeDeclaration | PropertyTypeDeclaration

ElementTypeDeclaration ::= ComponentTypeDeclaration
| ConnectorTypeDeclaration

Appendix

8

 #"

| PortTypeDeclaration
| RoleTypeDeclaration

ComponentTypeDeclaration ::= Component Type Identifier "="
parse_ComponentDescription [";"]
|
 Component Type Identifier Extends
 Identifier ("," Identifier)*
 With parse_ComponentDescription [";"]

ConnectorTypeDeclaration ::= Connector Type Identifier "="
 parse_ConnectorDescription [";"]
|
 Connector Type Identifier Extends
 Identifier ("," Identifier)*
 With parse_ConnectorDescription [";"]

PortTypeDeclaration ::= Port Type Identifier "="
parse_PortDescription [";"]
|
Port Type Identifier Extends Identifier ("," Identifier)*
With parse_PortDescription [";"]

RoleTypeDeclaration ::= Role Type Identifier "=" parse_RoleDescription [";"]
|
Role Type Identifier Extends Identifier ("," Identifier)*
with parse_RoleDescription [";"]

lookup_ComponentTypeByName ::= Identifier

lookup_ConnectorTypeByName ::= Identifier

lookup_PortTypeByName ::= Identifier

lookup_RoleTypeByName ::= Identifier

lookup_PropertyTypeByName ::= Identifier

Design Elements:

SystemDeclaration ::= System Identifier (":" Identifier)? "=" systemBody [";"]

SystemBody ::= (New lookup_ComponentTypeByName |
 "{"
 (ComponentDeclaration | ComponentsBlock
 | ConnectorDeclaration | ConnectorsBlock
 | PortDeclaration | PortsBlock | RoleDeclaration
 | RolesBlock | PropertyDeclaration | PropertiesBlock
 | AttachmentsDeclaration | RepresentationDeclaration
 | DesignRule
)*
 "}"

 #,

)
[Extended With SystemBody]

ComponentDeclaration ::= Component Identifier
[":" lookup_ComponentTypeByName]
("=" parse_ComponentDescription ";" | ";")

ComponentsBlock ::= Components "{"
(Identifier
 [":" lookup_ComponentTypeByName]
 ("=" parse_ComponentDescription ";" | ";")
)*
"}" [";"]

parse_ComponentDescription ::= (New lookup_ComponentTypeByName
 |
 "{" (PortDeclaration | PortsBlock
 | PropertyDeclaration
 | PropertiesBlock
 | RepresentationDeclaration
 | DesignRule)*
 "}"
)
 [Extended With parse_ComponentDescription]

ConnectorDeclaration ::= Connector Identifier
[":" lookup_ConnectorTypeByName]
("=" parse_ConnectorDescription ";" | ";")

ConnectorsBlock ::= Connectors "{"
(Identifier
 [":" lookup_ConnectorTypeByName]
 ("=" parse_ConnectorDescription ";" | ";"))*
"}" [";"]

parse_ConnectorDescription ::= (New lookup_ConnectorTypeByName
 |
 "{" (RoleDeclaration | RolesBlock |
 | PropertyDeclaration
 | PropertiesBlock
 | RepresentationDeclaration
 | DesignRule)*
 "}"
)
 [Extended With parse_ConnectorDescription]

PortDeclaration ::= Port Identifier
[":" lookup_PortTypeByName]
("=" parse_PortDescription ";" | ";")

PortsBlock ::= Ports "{"
(Identifier
 [":" lookup_PortTypeByName]
 ("=" parse_PortDescription ";" | ";"))*
 "}" [";"]

 #�

parse_PortDescription ::= (New lookup_PortTypeByName
 |
 "{" (PropertyDeclaration | PropertiesBlock
 | RepresentationDeclaration | DesignRule)*
 "}"
)
[Extended With parse_PortDescription]

RoleDeclaration ::= Role Identifier
[":" lookup_RoleTypeByName]
("=" parse_RoleDescription ";" | ";")

RolesBlock ::= Roles "{"
(Identifier
 [":" lookup_RoleTypeByName]
 ("=" parse_RoleDescription ";" | ";"))*
 "}" [";"]

parse_RoleDescription ::= (New lookup_RoleTypeByName
 | "{" (PropertyDeclaration | PropertiesBlock |
 RepresentationDeclaration | DesignRule)*
 "}")
[Extended with parse_RoleDescription]

AttachmentsDeclaration ::= [Identifier "="]
Attachments "{"
(Identifier "." Identifier to Identifier "." Identifier
["{" (PropertyDeclaration | PropertiesBlock)* "}"]
";")*
"}" ";"

Properties:

PropertyDeclaration ::= Property parse_PropertyDescription ";"

PropertiesBlock ::= Properties "{"
 [parse_PropertyDescription
 (";" parse_PropertyDescription | ";")*
]
 "}" [";"]

parse_PropertyDescription ::= [Property] Identifier
":" PropertyTypeDescription
["=" PropertyValueDeclaration]
["<<" parse_PropertyDescription
 (";" parse_PropertyDescription | ";")*
 ">>"
 |
 "<<" ">>"
]

PropertyTypeDeclaration ::= Property Type Identifier
(";"

 #�

 |
 "=" (Int ";" | Long ";" | Double ";" | Float ";"
 |String ";" | Boolean ";" | Any ";"
 |Enum ["{" Identifier ("," Identifier)* "}"] ";"
 |Set ["{" "}"] ";"
 |Set "{" PropertyTypeDescription "}" ";"
 |Sequence ["<" ">"] ";"
 |Sequence "<" PropertyTypeDescription ">" ";"
 |Record "[" parse_RecordFieldDescription
 (";" parse_RecordFieldDescription | ";")* "]" ";"
 |Record ["[" "]"] ";"
 |Identifier ";"
)
)

PropertyTypeDescription ::= Int | Long | Float | Double | String
| Boolean | Any
| Set ["{" [PropertyTypeDescription] "}"]
| Sequence ["<" [PropertyTypeDescription] ">"]
| Record "[" parse_RecordFieldDescription
 (";" parse_RecordFieldDescription | ";")* "]"
| Record ["[" "]"]
| Enum ["{" Identifier ("," Identifier)* "}"]
| Enum ["{" "}"]
| Identifier

 parse_RecordFieldDescription ::= Identifier ("," Identifier)*
 [":" PropertyTypeDescription]

PropertyValueDeclaration ::= Integer_Literal | Floating_Point_Literal | String_Literal
| False | True | AcmeSetValue | AcmeSequenceValue |
AcmeRecordValue | Identifier

AcmeSetValue ::= "{" "}"
| "{" PropertyValueDeclaration
 ("," PropertyValueDeclaration)* "}"

AcmeSequenceValue ::= "<" ">"|
"<" PropertyValueDeclaration
 ("," PropertyValueDeclaration)* ">"

AcmeRecordValue ::= "[" RecordFieldValue (";" RecordFieldValue | ";")* "]"

RecordFieldValue ::= Identifier ":" PropertyTypeDescription "="
PropertyValueDeclaration

Representations and Bindings:

RepresentationDeclaration ::= Representation "{"
SystemDeclaration
[BindingsMapDeclaration]
"}" [";"]

 #�

BindingsMapDeclaration ::= Bindings "=" "{" (BindingDeclaration)* "}" [";"]

BindingDeclaration ::= [Identifier "."] Identifier to
[Identifier "."] Identifier
["{" (PropertyDeclaration | PropertiesBlock)* "}"] ";"

Design Rules and Analyses:

DesignRule ::= (Design)? (Invariant | Heuristic)
DesignRuleExpression ";"

DesignRuleExpression ::= QuantifiedExpression | BooleanExpression

QuantifiedExpression ::= (forall | exists) Identifier ":"
lookup_arbitraryTypeByName in
SetExpression "|" DesignRuleExpression

BooleanExpression ::= OrExpression (and OrExpression)*

OrExpression ::= ImpliesExpression (or ImpliesExpression)*

ImpliesExpression ::= IffExpression ("->" IffExpression)*

IffExpression ::= EqualityExpression ("<->" EqualityExpression)*

EqualityExpression ::= RelationalExpression ("==" RelationalExpression
| "!=" RelationalExpression)*

RelationalExpression ::= AdditiveExpression
("<" AdditiveExpression | ">" AdditiveExpression
 | "<=" AdditiveExpression | "=>" AdditiveExpression)*

AdditiveExpression ::= MultiplicativeExpression
("+" MultiplicativeExpression
 | "-" MultiplicativeExpression)*

MultiplicativeExpression ::= UnaryExpression
("*" UnaryExpression
 | "/" UnaryExpression
 | "%" UnaryExpression)*

UnaryExpression ::= "!" UnaryExpression
| "-" UnaryExpression
| PrimitiveExpression

PrimitiveExpression ::= "(" DesignRuleExpression ")"
| LiteralConstant | DesignAnalysisCall | Id

Id ::= Identifier ("." Identifier)*

DesignAnalysisCall ::= Id "(" ActualParams ")"

 #-

LiteralConstant ::= IntegerLiteral | FloatingPointLiteral | StringLiteral
| true | false

ActualParams ::= (ActualParam ("," ActualParam)*)?

FormalParams ::= (FormalParam ("," FormalParam)*)?

ActualParam ::= LiteralConstant | DesignAnalysisCall | Id

FormalParam ::= Identifier ("," Identifier)* ":"
(Identifier | Component | Connector | Port | Role
 | Int | Float | String | Boolean)

SetExpression ::= (SetReference | SetFunction | LiteralSet
 | SetConstructor)

SetReference ::= Identifier (("." Identifier) | ("." Components)
 | ("." Connectors) | ("." Ports) | ("." Roles)
 | ("." Representations) | ("." Properties))+

SetFunction ::= (Union | Intersection | Setdiff)
"(" SetExpression "," SetExpression ")"

LiteralSet ::= ("{" "}" |
"{" (LiteralConstant | Id) ("," (LiteralConstant | Id))* "}")

SetConstructor ::= "{" Select Identifier ":" lookup_arbitraryTypeByName in
SetExpression "|" DesignRuleExpression "}"

