
Intensional Investigations

Denis R. Dancanet

CMU-CS-98-135

School of Computer Science

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Stephen Brookes, Chair

Guy Blelloch

Dana Scott

G�erard Berry, Ecole des Mines de Paris

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy

c1998 Denis R. Dancanet

This research was sponsored in part by the O�ce of Naval Research under Grant No. N00014-93-1-0750.

The views and conclusions contained in this document are those of the author and should not be interpreted as

representing the o�cial policies, either expressed or implied, of the U.S. Government.

Keywords: semantics of programming languages, parallel programming languages, intensional

semantics, intensional expressiveness, circuit semantics, circuit complexity, type inference, re�ne-

ment types, concrete data structures, sequential algorithms, categorical combinators.

Abstract

This thesis is about the theory and practice of intensional semantics. Traditional denotational

models of programming languages are usually extensional in that they concern themselves only with

input/output properties of programs. The meaning of a program is typically taken to be a function

from input to output containing no information about the way that function computes its result.

In an intensional denotational semantics, the meaning of a program is an object embodying aspects

of the computation strategy. The structure of the object varies, depending on the language one

models and the intended usage. For instance, previous intensional semantics have been developed

using functions on richer domains, pairs of a function and a computation strategy, and sequential

algorithms, and they were used to reason about e�ciency, complexity, order of evaluation, degrees

of parallelism, e�ciency-improving program transformations, and so on.

In the �rst part of this thesis, we develop an intensional semantics based on abstract circuits.

A program is mapped to a circuit, whose dimensions tell us how much parallel work and time is

required to execute the program. We relate the circuit dimensions to various execution strategies,

and to more traditional models of parallel execution, such as the PRAM. Our main application

for circuit semantics is the establishment of relative intensional expressiveness results. Extensional

expressiveness is concerned with whether a construct enables us to compute new functions. Since

most programming languages are Turing-complete this is usually not very interesting. On the other

hand, intensional expressiveness is concerned with whether a construct enables us to write more

e�cient programs. Utilizing a somewhat surprising connection with the �eld of circuit complexity,

we study the relative intensional expressive power of various deterministic and nondeterministic

parallel extensions of PCF.

Although most of our results have to do with parallel programming languages, we also study

relative intensional expressiveness in a sequential setting. Using techniques di�erent from circuit

semantics, we compare Colson's primitive recursive algorithms to Berry and Curien's sequential

algorithms, in the area of e�cient expressibility of a function that computes the minimum of two

lazy natural numbers.

In the second part of this thesis, we establish the practical utility of intensional semantics, by

taking an existing semantics, that of sequential algorithms on concrete data structures, and using

it to develop a re�nement type inference system. The system features recursive types, subtyping,

intersection types, polymorphism, and overloading. The types are the concrete data structures,

and the terms are expressions in a lazy, higher-order, polymorphic, functional language, which are

compiled to categorical combinators represented by sequential algorithms. A type may be re�ned

by several subtypes (for instance, bool can be re�ned by true and false). The type always di�ers

from its re�nements at a �nite number of points. If a term has a regular type, then the system

enters into an interrogative abstract interpretation session with it, seeking to evaluate it only at

those points relevant from the point of view of re�nement type inference. Sequential algorithms

provide very precise information about the dependence of pieces of output on pieces of input, and

we can use this intensional information to generate a re�nement type. We prove soundness of both

the type inference and re�nement type inference, and we show several examples from our prototype

implementation.

To my father and to the memory of my grandfather

Contents

1 Introduction 7

1.1 Intensional semantics . 7

1.1.1 The extension of intension . 7

1.1.2 What is intensional semantics? . 8

1.1.3 An example: Primitive recursion and the lazy natural numbers 9

1.2 Relative intensional expressiveness . 10

1.3 Re�nement types . 11

1.4 Claims of the thesis . 12

1.5 Related work . 12

1.5.1 Intensional semantics . 12

1.5.2 Relative intensional expressiveness . 14

1.5.3 Re�nement types and type inference for CDS0 15

1.6 Outline . 15

2 Background 17

2.1 PCF and full abstraction . 17

2.2 Concrete data structures . 19

2.2.1 Sequential functions . 22

2.2.2 Sequential algorithms . 22

2.3 The language CDS0 . 23

2.3.1 Type de�nitions . 24

2.3.2 Interaction with the interpreter . 25

2.3.3 Algorithm syntax . 26

2.3.4 Polymorphism . 27

2.3.5 Categorical combinators . 29

2.3.6 Forest representation . 29

2.3.7 CDS02 operational semantics . 31

2.3.8 Related languages . 33

2.4 Parallel algorithms on concrete data structures . 33

2.5 Applications of sequential algorithms . 34

2.6 Re�nement type inference for Standard ML . 35

2.7 Colson's work on intensional expressiveness . 36

3 Expressing Minimum 39

3.1 Implementing lazy natural numbers in CDS0 . 39

3.2 CDS0 and minimum . 40

3.3 CDSP . 42

1

2 CONTENTS

3.3.1 Forest semantics of query . 43

3.3.2 CDSP and minimum . 44

3.4 CDS0 versus CDSP . 44

3.5 Discussion . 46

4 Circuit Semantics 49

4.1 PCF and deterministic parallel extensions . 50

4.1.1 PCF . 50

4.1.2 Parallel-or and parallel conditionals . 50

4.1.3 Query . 50

4.2 Circuit semantics: �rst approach . 53

4.3 Intensional separation for deterministic extensions 54

4.3.1 pif� versus por and pifo . 54

4.3.2 Query versus pif� . 57

4.4 Comparing deterministic and nondeterministic query 58

4.4.1 Recursion-free PCF . 59

4.4.2 Nondeterministic query . 59

4.5 Circuit semantics revisited . 61

4.5.1 Circuits for PCF . 61

4.5.2 Circuits for query . 70

4.6 On the method and the metric . 70

4.6.1 Intensional expressiveness and parallel complexity 70

4.6.2 Comparison with the PRAM . 71

4.6.3 How to compare determinism and nondeterminism 72

4.7 A connection with boolean circuits . 73

4.7.1 Boolean circuits . 73

4.7.2 The connection . 73

4.8 Applications . 76

4.9 Discussion . 77

5 Type Inference 79

5.1 Issues in designing a type system for CDS0 . 79

5.2 The language of types . 81

5.3 Ground dcds . 83

5.3.1 Subtyping . 83

5.3.2 Intersection types . 87

5.4 Sequential algorithms . 88

5.4.1 Subtyping . 89

5.4.2 Intersection types . 90

5.5 Decidability of monomorphic subtyping . 90

5.6 Monomorphic type inference . 98

5.7 Polymorphism and overloading . 100

5.8 Subtyping with polymorphic types . 102

5.9 Type inference with polymorphism and overloading 103

CONTENTS 3

6 Re�nement Type Inference 107

6.1 Introductory examples . 108

6.2 Re�nement types . 112

6.3 Re�nement type inference for algorithms . 114

6.4 A higher-level language . 117

6.4.1 PCF . 117

6.4.2 Compilation to CDS0 . 117

6.5 Abstract interpretation . 121

6.5.1 Loop detection . 121

6.5.2 Depth-bounding . 122

6.6 Re�nement type inference for expressions . 123

6.6.1 Generating relevant cells . 123

6.6.2 The algorithm . 124

7 Implementation and Examples 127

7.1 Implementation . 127

7.1.1 Brief overview . 127

7.1.2 Di�erences between implementation and theory 130

7.2 CDS0 examples . 130

7.3 PCF . 135

7.3.1 Base environment . 135

7.3.2 Examples . 137

8 Conclusions and Further Work 143

8.1 General conclusions . 143

8.1.1 Relative intensional expressiveness . 143

8.1.2 Re�nement type inference . 144

8.2 Further work . 145

8.2.1 Re�nement type inference . 145

8.2.2 Applications of CDS0 . 146

8.2.3 Extensions of CDS0 . 146

A Summary of Major De�nitions 147

A.1 CDS0 operational semantics . 147

A.1.1 Evaluation of forests . 147

A.1.2 CDS02 rules . 147

A.2 CDS0 typing rules . 148

A.2.1 Subtyping and intersection types . 148

A.2.2 Monomorphic type inference . 149

A.2.3 Polymorphic type inference . 149

A.2.4 Re�nement types . 150

B CDS0 and CDSP Algorithms 151

B.1 left min . 151

B.2 min . 152

B.3 CDS0 algorithms used to compile PCF . 152

B.4 Types for CDS0 algorithms in base environment . 158

B.5 AND TASTER . 160

4 CONTENTS

C CDS0 and PCF Syntax 163

C.1 CDS0 syntax . 163

C.2 PCF syntax . 166

Bibliography 167

Acknowledgements

First and foremost, I thank my advisor, Stephen Brookes, for being my teacher and mentor. He

put up with my sketchy ideas and ippant writing style, and above all, he was patient. His demand

for precision provided a great example. Naturally, any errors remaining in this document are his

fault. (Just kidding, Steve.)

I thank Guy Blelloch, Dana Scott, and G�erard Berry for their comments and discussions about

my work, and for serving on the thesis committee. I thank Peter Lee, Frank Pfenning, and John

Reynolds for showing an interest in my work. On several occasions, Peter has come up with

references that proved very relevant. Frank kindly explained to me his work on re�nement type

inference. In addition, I thank the rest of the members of the POP group for making CMU a

stimulating place to do research in programming languages.

I thank Lokendra Shastri, my advisor at the University of Pennsylvania, for introducing me

to research in computer science. I owe a great debt of gratitude to Val Breazu-Tannen, for his

teaching, his advice, and his friendship.

It is with great pleasure that I acknowledge the help received from Sharon Burks, Catherine

Copetas, Karen Olack, and the rest of the School of Computer Science support sta�. They have

created a wonderful environment.

A good deal of the fun in being a graduate student came from having a great group of o�cemates:

Je�erey Shufelt, my closest friend during these years, with whom I generated an enormous number

of ideas that will one day change the world, See-Kiong Ng, Ji�ri Sgall, Conrad Poelman, Peter

Jansen. I thank you. Thanks also to Sue Older, J�urgen Dingel, Yuan Hsieh, and the other friends

in the department.

Finally, I thank Nury Garcia for alternatively distracting me and encouraging me to work, and

my father for his help, both spiritual and �nancial, without which this thesis would not have been

possible. He remains the most interesting person I know, and this work is partially dedicated to

him.

Pittsburgh, PA

August 1, 1997

5

Chapter 1

Introduction

This thesis explores theoretical and practical issues in the semantics of programming languages.

On the theoretical side, we compare various sequential and parallel programming languages, with

the aim of establishing when one allows us to write more e�cient programs than another. We

call this pursuit relative intensional expressiveness, and the main tool we use to achieve results is

intensional semantics. Generally speaking, an intensional semantics is any semantics mapping a

program into an object which provides some insight into the way the program computes its result,

that is, the computation strategy of the program.

Since an intensional semantics provides information about the computation strategy of a pro-

gram, the question naturally arises of how to take advantage of such information for the purpose

of program analysis. On the practical side of this thesis, we show how to do this by designing a

re�nement type inference system using sequential algorithms on concrete data structures.

Before going any further, we shall describe in more detail what we mean by intensional seman-

tics, relative intensional expressiveness, and re�nement types.

1.1 Intensional semantics

The word intension is a loaded one in computer science in general, and even in the area of pro-

gramming languages in particular. First, we give a brief description of the various usages of the

word, pointing out the intended one in this work, followed by a discussion of intensional semantics

proper, and a simple example.

1.1.1 The extension of intension

The word originated in philosophy: intension is the set of all attributes thought of as essential

to the meaning of a term, as opposed to extension, which is the set of objects to which a term

applies. It is used in logic: intensional logic is the branch of logic concerned with assertions whose

meaning is dependent on an implicit context. The logic usage led to one of the meanings in the

programming languages community: an intensional programming language is one with context

dependent constructs (for instance, a notion of execution time step). The �rst such language was

Lucid, occurring in both sequential [31] and parallel [4] avors.

Another meaning of intension/extension is the opposition between the function-as-a-program /

function-as-a-graph views. It is used this way in recursion theory and proof theory, and this is the

intended meaning here. An intensional programming language is one with constructs which make

explicit intensional properties, such as order of evaluation, degree of parallelism, etc. An example of

7

8 CHAPTER 1. INTRODUCTION

such a language is Berry and Curien's CDS0 [7], a programming language of sequential algorithms

on concrete data structures.

1.1.2 What is intensional semantics?

Traditionally, denotational semantics has mainly been used to reason about extensional properties

of programs. The meaning of a program is typically taken to be a function from input to out-

put conveying no information about the way that function computes its result. For instance, two

sorting programs, such as bubblesort and mergesort, are mapped by an extensional semantics to

the same input/output function, the function that sorts its input. However, the two programs are

very di�erent in terms of e�ciency. This is an intensional feature. In an intensional denotational

semantics, the meaning of a program is an object embodying aspects of the program's computation

strategy , i.e., the way the program computes its result, and thus by choosing an appropriate inten-

sional model, bubblesort and mergesort can be di�erentiated. Ideally, one would like to be able to

use an intensional semantics to establish relative e�ciency results, e.g., mergesort is \better" than

bubblesort in average or worst case.

There are many ways of constructing intensional denotational models. We outline just a few

possibilities:

� We could take the meaning of a program to be a function on a richer domain (e.g., [11, 19])

whose structure permits us to deduce information about computation strategy. This is usually

achieved by introducing partially de�ned elements in the model; by knowing what our program

does on partial inputs, we can get an idea of the evaluation strategy.

� We could take the meaning to be a pair consisting of a function and an object conveying

intensional information; this object could represent the cost of evaluating the function, or

could be a function from inputs to costs (e.g., [44, 77]).

� We could dispense with functions as meanings altogether, and use algorithms instead (e.g., the

Berry-Curien intensional model for sequential languages using sequential algorithms on con-

crete data structures [6]).

An important point to note is that intensionality is relative. A semantics can be more intensional

than another one. For each extensional semantics there is a hierarchy of intensional semantics that

add more and more information. Our choice of an intensional semantics should be dependent on

what program properties we wish to reason about, i.e., we should be able to pick the relevant

amount of detail for the problem at hand.

When one is not interested in the intensional aspects of program behavior, the intensional

model should agree with the extensional one. In other words, one should be able to throw away the

extra detail in an intensional model (e.g., the computation strategy) and have it collapse onto an

extensional model. If our intensional models are such \conservative extensions" of the extensional

one, then we could reason about both intensional and extensional aspects at the same time.

We will be referring to an intensional denotational semantics simply as an intensional seman-

tics, although in general, an intensional semantics is any semantics which enables one to reason

about intensional features. In particular, operational semantics has also been used to reason about

intensional issues [75, 9, 41]. We are particularly interested in denotational models because they

are de�ned compositionally and permit algebraic reasoning (to show that two programs have the

same meaning, we need only show that they have the same denotation), and they enable the use

of well-known techniques for reasoning about programs, such as �xed-point induction [80].

1.1. INTENSIONAL SEMANTICS 9

?

S(?)

Sk(?)

S!(?)

0

S(0)

Sk(0)

��

�
�

@
@

@@

@@

.
.
.
.

.
.
.
.

Figure 1.1: The lazy natural numbers

1.1.3 An example: Primitive recursion and the lazy natural numbers

For a simple example of an intensional semantics, consider the semantics of primitive recursive

(PR) algorithms. PR algorithms are just syntax for expressing PR functions [57]. The syntax is

in the form of a rewrite system obeying certain syntactic restrictions corresponding to the format

of primitive recursive function de�nitions (see Colson [19, 20] for a formal de�nition). The PR

algorithms operate on integers in unary representation, denoted by 0, S(0), and so on, where S

stands for successor. Consider the following two algorithms for integer addition [20]:

add1(0; y) = y

add1(S(x); y) = S(add1(x; y))

add2(x; 0) = x

add2(x; S(y)) = S(add2(x; y))

The standard extensional denotational semantics for add1, add2 maps them both into the

addition function of type N2!N , where N is the at domain of natural numbers. A simple

intensional semantics may be provided by using the lazy natural numbers [19, 20, 22]. The domain

LNAT is shown in Figure 1.1. LNAT captures the temporal aspect of �nding out what an input is.

At Sk(?) we don't know yet if we have the number Sk(0), or something larger (at least Sk+1(?)).

This intensional semantics is su�cient to distinguish between the two addition algorithms. Using

the meaning function [[]] from [20, 22] (which makes the meaning ? when an algorithm tries to

recur on ?) we have:

[[add1]](S2(?); S(?)) = S2(?)

[[add2]](S2(?); S(?)) = S(?)

The LNAT semantics is richer than the N semantics, and contains intensional information; the

above equations can be interpreted as showing that at some point, add2 tries to evaluate part of its

second argument before the �rst, whereas add1 looks at its �rst input �rst. Although the LNAT

semantics still represents the meanings of add1 and add2 as functions (from LNAT � LNAT to

LNAT), it conveys implicit information about the computation strategy of the related functions

from N2 to N .

10 CHAPTER 1. INTRODUCTION

Colson used the LNAT semantics to study the e�cient expressibility of a function that computes

the minimum of two natural numbers represented in unary notation. Although the semantics

appears quite simple, it was enough to allow Colson to prove a rather surprising impossibility

result: PR algorithms cannot compute minimum e�ciently. We shall present his work in more

detail in the next chapter. The LNAT semantics will also appear in our work, when we conduct

our own study of the e�cient expressibility of a minimum function in the context of sequential

algorithms on concrete data structures, and their generalization to parallel algorithms.

1.2 Relative intensional expressiveness

In the �rst half of this thesis, we are interested in establishing relative intensional expressiveness

results for programming languages. Most work in the past has focused on extensional expressive-

ness: Language L1 is extensionally more expressive than L2 if L1 can compute all the functions

computable in L2. We say that language L1 is intensionally more expressive than L2, if L1 can

compute all the functions computable in L2, with at least the same asymptotic complexity. The

notions of complexity we concentrate on are time and work. Note that there has been a lot of

work comparing the intensional expressiveness of di�erent models of computation. For instance,

allowing only a single tape for a Turing machine can square the time necessary to recognize a

language versus a two-tape Turing machine [48]; and there are certain problems for which there

exist faster CRCW PRAM algorithms than EREW PRAM algorithms [23]. Our goal is to compare

programming languages, not their underlying computation models. We shall be careful to point

out when we need to make special assumptions about the computation model in order to achieve

our programming language comparisons.

It would appear that there should be close connections between relative intensional expressive-

ness and complexity theory. Indeed, there has been some work on machine-independent character-

izations of complexity classes. A long time ago, Cobham [18] characterized P as a language similar

to primitive recursive algorithms. Very recently, Clote [17] did the same for NC, which can be

viewed as the class of functions that can be computed \quickly" in parallel. The characterization

of NC also takes the form of a variant of primitive recursive algorithms. One of the main prob-

lems of complexity theory, P versus NC, can then be viewed as a problem of relative intensional

expressiveness.

Quite obviously, we should not expect the act of viewing a problem as a relative intensional

expressiveness problem on programming languages to make it easier. Proving negative results and

lower bounds is di�cult, no matter how one looks at it. It should be interesting to see, however,

if any useful new ideas emerge at the interface of programming languages theory and complexity

theory. We hope that our work can be seen as a small step in this direction.

We compare both sequential and parallel languages. First we examine the e�cient expressibility

of minimum on lazy natural numbers in CDS0 and in a parallel extension of CDS0 we call CDSP,

and contrast that to Colson's results with PR algorithms. Then we compare four deterministic

parallel extensions of PCF [70], which is the prototypical sequential functional language. Finally,

we compare a deterministic and a nondeterministic extension of PCF. To aid us in the comparisons

of PCF extensions, we introduce a new intensional semantics called circuit semantics. Circuit

semantics associates a gate with each basic construct of the language, and takes the meaning of a

program to be a circuit. The dimensions of the circuit enable reasoning about running time and

work required for execution. Circuit semantics also allows us to formalize a connection between

deterministic and nondeterministic parallel PCF programs, and monotone and De Morgan boolean

circuits [87], respectively.

1.3. REFINEMENT TYPES 11

1.3 Re�nement types

The idea of re�nement types is due to Freeman and Pfenning [35, 36]. In their work, the programmer

may choose to decompose a type into a collection of subtypes by means of a recursive datatype

declaration. The subtypes are called re�nements of the original type. They also developed a type

inference system which �rst obtains a regular type (not involving re�nements) for a program, then

attempts to obtain a re�nement type for it by means of re�nement type inference rules. The

intended use for the system was as a programmer's aid in eliminating spurious warnings generated

by the Standard ML type inference for missing patterns that were actually unreachable.

We think that the idea of re�nement types is a very interesting one, but our approach has a very

di�erent avor. We are interested in program analysis and we do not have re�nement type inference

rules. Instead we perform an abstract interpretation on the program directly (instead of doing it

at the level of types). As in Freeman and Pfenning, the programmer has to specify re�nements,

and we rely on the program to have a regular type before trying to generate a re�nement type for

it. We shall have more to say about di�erences between the two systems later, when we present

our approach in detail. For now, we wish to illustrate the basic idea with some examples.

Suppose we have a generic, lazy functional language with a syntax similar to that of Standard

ML (the examples below are actual programs from our implementation). Suppose further that we

decide to distinguish between true and false, i.e., we want to re�ne bool . We would expect the

following program with regular type bool! bool:

val not = fn x => if x then false else true;

to have re�nement type true! false ^ false! true, where ^ denotes intersection of types. The

intuitive meaning is that the program not has both types true! false and false! true.

Something more interesting happens when we decide to re�ne a recursive type. Suppose we

have integer lists (intlist), and we want to distinguish between empty lists (empty intlist), lists

with one element (one intlist), and lists of two or more elements (many intlist). Then we would

expect the map function of regular type (int! int)! intlist! intlist:

val map = letrec mapf =

fn f => fn l => if null l then []

else (f (hd l)) :: ((mapf f) (tl l))

in mapf

end;

to have the following re�nement type:

(int! int)! empty intlist! empty intlist ^

(int! int)! one intlist! one intlist ^

(int! int)!many intlist!many intlist:

We make use of intensional semantics to help generate such re�nement types by translating the

programs to categorical combinators [26], which themselves denote sequential algorithms (i.e., CDS0

programs). The types are represented as concrete data structures [56]. A type and its re�nements

will always be distinguishable by examination at a �nite number of points. So we perform abstract

interpretation of the CDS0 program over the lattice of such points, and use the very precise in-

formation on the dependence of parts of the output on parts of the input provided by sequential

algorithms to generate the re�nement type.

12 CHAPTER 1. INTRODUCTION

1.4 Claims of the thesis

The guiding principle behind this work and the central claim of the thesis is:

The exploration of intensional semantics is interesting from both a theoretical and practical

point of view.

More speci�cally, we claim the following:

� De�nition of the notion of relative intensional expressiveness for programming languages.

� De�nition of CDSP, a parallel extension of CDS0 with a query construct [12].

� Proof that CDS0 is more expressive than PR algorithms, but less expressive than CDSP.

� Formalization of a new intensional semantics, circuit semantics, and comparisons with par-

allel evaluation strategies [49]: call-by-speculation, parallel call-by-value, and parallel eager

evaluation.

� Identi�cation of a hierarchy of intensional expressiveness for deterministic parallel extensions

of PCF: parallel conditional on booleans is equivalent to parallel or; both are less expressive

than parallel conditional on integers, which in turn is less expressive than query .

� Formalization of a connection between work and time complexity of functional programs ex-

tended with deterministic and nondeterministic query , and monotone and De Morgan circuits.

Use of this connection and a hardware assumption to show that nondeterministic query is

more expressive than the deterministic one.

� Development of a type system based on concrete data structures. Implementation of type

inference for CDS0.

� Proof of soundness for both type inference and re�nement type inference.

� Development of a new application of CDS0.

� Implementation of a practical approach to re�nement type inference.

1.5 Related work

We consider separately related work in the areas of intensional semantics, relative intensional

expressiveness, and re�nement types and type inference for CDS0.

1.5.1 Intensional semantics

The related work surveyed here is composed of several di�erent strands. The common element is

a concern with the analysis of intensional aspects of programs. In most cases, the programming

language is sequential, and the analysis is carried out from an operational presentation of the

semantics. The notable exceptions will be pointed out.

We discuss relevant work on the following topics: intensional semantic models for programming

languages, intensional hierarchies, and automatic complexity analysis. The section is broken down

by area (e.g., recursion theory), rather than topic, to give an idea of the naturality and pervasiveness

of these ideas.

1.5. RELATED WORK 13

Recursion theory

The distinction between a function and the algorithm that computes it was made early on in re-

cursion theory [76], but the main focus of the theory is on the functions, that is on the extensional

features. Most results have to do with closure properties of various collections of recursive func-

tions. However, a so-called \abstract" recursion theory (also called theory of algorithms) has been

developed, chiey by Moschovakis [64, 65, 66], although the ideas go back to Kleene and others.

In [64] Moschovakis develops the foundation for the theory. The semantics of a recursive partial

function is a set of functionals, called a recursor. It is essentially a higher-order functional program

de�ned by a family of mutually recursive function de�nitions. Intensional analysis can be performed

in an operational style on the recursor. The possibility of implementing the language of recursors

as a programming language called REC is discussed. More recent works [65, 66] update and elab-

orate on the older paper. Algorithms are modeled as recursors, which are part of a programming

language called FLR (Formal Language of Recursion). The main thrust is in proving that FLR is

a reasonable language in terms of including all desirable intensions.

Proof theory

Proof theory [38, 39] has been mainly concerned with extensional aspects, as well. A series of

functional systems of increasing extensional expressive power has been studied: linear �-calculus,

typed �-calculus, primitive recursion, G�odel's system T , Martin-L�of's intuitionistic type theory,

Girard-Reynolds polymorphic second-order �-calculus (system F), and the theory of constructions.

None of these systems is Turing-complete; all their programs terminate.

Recently there has been work on intensional aspects of some of these functional systems. Col-

son's work [19, 20] with primitive recursive algorithms was mentioned already. He also studied

system T and system F . System T can express an e�cient algorithm for minimum. It is an open

problem whether min(n; p) can be written in system F with complexity O(min(n; p)). The cur-

rent best program (see [29]) is O(min(n; p)log(min(n; p)). Interestingly, system T appears to be

intensionally stronger than system F , even though it is extensionally weaker.

Programming languages

There is a large body of literature devoted to automatic complexity analysis. There are typically

two phases to an automatic complexity analysis system: deriving recurrences for the complexity

of a program, and solving them. Deriving the recurrences is usually accomplished by constructing

a cost (or complexity) function from the program and obtaining from this a function of the input

size. The cost function normally counts the number of rewrites in the operational semantics, plus

constants for the primitive operations.

Most of the work in automatic complexity analysis has been devoted to studying strict, sequen-

tial, �rst-order, functional languages (the earliest examples are Wegbreit [86] and Le Metayer [60]).

There has also been some e�ort in the area of lazy �rst-order languages [79, 85]. The derivation

of a program's complexity is more complicated in this setting, because only part of an argument

might be needed. There has also been work with higher-order strict and lazy languages [78]. The

basic idea is to construct cost-closures so a function can carry around cost information.

Several authors have used pro�ling semantics, i.e., operational semantics augmented with time

and work information, to perform automatic complexity analysis in a parallel setting. Roe [75]

considered a parallel lenient language, and Zimmerman [89, 90] a data-parallel language. The

language Zimmermann analyzes is a �rst-order parallel language with vectors and a parallel \for-

14 CHAPTER 1. INTRODUCTION

all" construct (and similar others) ranging over vectors. The approach is the same as in the

sequential case: a cost function is constructed, with the cost of the parallel \for-all" equal to some

constant plus the maximum cost of the operation over each vector element.

Hudak and Anderson [49] developed pomsets as a semantics for parallel functional programs.

They were able to distinguish between various evaluation strategies (call-by-value, call-by-name,

call-by-need, call-by-speculation). More recently, Blelloch and Greiner [9, 41] provided pro�ling

semantics for parallel call-by-value and call-by-speculation. Their aim in [9] was to show that

good upper bounds for merging and sorting can be obtained with an implicitly parallel language.

The second model [41] was used to prove the e�ciency of a particular implementation of call-by-

speculation. Both models were related to more traditional parallel models such as the PRAM.

The circuit model we develop in this paper is most closely related to call-by-speculation. The

di�erences are due to the presence of conditionals in the language. In contrast to earlier work, we

are interested in proving lower bounds and performing intensional comparisons between parallel

languages.

An interesting approach to automatic complexity analysis, in the setting of strict, sequential,

�rst-order languages, was taken by Rosendahl [77]. He also constructs a time (or cost) function

from the program, but in order to talk about the correctness of this time function, he de�nes an

\instrumented" denotational semantics which returns a denotation and the time complexity. A

time-bound function, which gives an upper bound on computation time for all inputs of a certain

size, is derived by abstract interpretation from the time cost function.

Talcott developed a theory of intensional semantics [83]. Essentially, the extraction of the

intensional information is based on a low-level operational semantics: from a program she constructs

a computation sequence. Analysis is performed on the computation sequence: the time complexity

of a program is the length of its computation sequence. Other properties can be analyzed, such as

maximum stack depth and number of function calls.

Gurr [44] extended denotational semantics in order to model intensional aspects (resource re-

quirements) of �rst-order, sequential languages. In his framework, the meaning of a program is a

pair of the original denotation of the program and a map from input values to an object of resource

values. The object of resource values is modeled as a monoid (a semigroup with identity). Time

and space requirements of programs can be formulated in this framework. He also studied the

derivation of exact and non-exact complexities.

1.5.2 Relative intensional expressiveness

The only example we are aware of which compared the intensional expressiveness of two pro-

gramming languages is the already mentioned work of Colson on the expressiveness of primitive

recursion.

There has been little work on comparing determinism and nondeterminism. Felleisen, in his

theory of expressiveness [32], de�ned a construct c as more expressive than another c0 if the trans-

lation of a program using c to one using c0 requires a global reorganization of the program. He

showed that adding side-e�ects to a sequential functional language increases expressive power.

The literature on Id [82], an implicitly parallel language, has produced practical examples

of comparisons of Id's purely functional core, the extension with I-structures (single-assignment

arrays), and the extension with M-structures (arrays with element-level synchronization).

There has been notable work on extensional comparisons of merging primitives in dataow

networks [68]. One of the functions considered there is poll which checks, without blocking, if an

input is present. We make use of poll in our work. However, we are not aware of any relevant

1.6. OUTLINE 15

intensional comparisons of parallel constructs. The general opinion expressed in [62] (and echoed

in [47]) seems to be that the main advantage of nondeterminism is in specifying a process.

There has been some recent research at the juncture of complexity theory and programming

languages theory, with broadly the same aim of bridging the gap between these two areas of

computer science. Aside from the machine-independent characterizations of P and NC already

mentioned, there has been work on the characterization of P in terms of bounded linear logic

[40] and �-calculus [59]. In addition, Jones has commenced a reconstruction of computability and

complexity theory from a programming languages perspective [53, 54].

1.5.3 Re�nement types and type inference for CDS0

Pierce [69] introduced F^, a variant of system F with intersection types, subtyping, and bounded

quanti�cation. Using an explicit alternation construct called for , this system can derive re�ne-

ment types. Unfortunately the system is too powerful; it has explicit types, and type checking is

undecidable.

Reynolds developed the programming language Forsythe [74], which has intersection types and

subtyping, but no polymorphism. In this system, an intersection type can contain a mixture of

ground and higher-order types.

There has been much work on type systems using intersection types [46]. Such systems are

usually too powerful to admit type inference; [21] is an exception. Fuh and Mishra [37] developed a

type inference system which combines polymorphism and subtyping, but does not have intersection

types.

There has also been a lot of work on type systems based on records (see [43] for several examples,

including type inference systems). Concrete data structures (cds) are, in some sense, similar to

records; they have cells (like �elds in a record) which can be �lled with values. In addition,

however, cds have accessibility conditions, but this is not essential: the notion of subtyping we

develop for cds is very similar to that for records. More important is the fact that a higher-order

type in CDS0 is also a cds, and we can interactively ask questions about the values of its cells.

Soft typing [15] is a type inference system which includes polymorphism, subtyping, and union

types, and it is designed for dynamically-typed languages; when a program fails to have a static

type, run-time checks are included. The main thrust of this system is to be able to type programs

that would normally be rejected by standard type checking.

Castagna, Ghelli, and Longo [16] de�ned the �&-calculus, a calculus for overloaded functions

with subtyping. A function can be overloaded with the addition of new pieces of code. The types

of the various pieces have some consistency conditions. In CDS0, programs can use generic cell

and value references which can result in overloading. Our notion of overloading for CDS0 types is

similar to [16], except that we do not build the consistency conditions into the type; we adopt the

same notation.

1.6 Outline

Chapter 2 describes the work that we are building upon most directly in this thesis. We discuss the

full abstraction problem for PCF and Kahn and Plotkin's de�nition of sequentiality using concrete

data structures. This was the starting point of Berry and Curien's work on sequential algorithms

on concrete data structures and its implementation as a programming language, CDS0. We spend

a fair amount of time on CDS0 as it features prominently in the second part of this thesis. We

describe Brookes and Geva's work on a parallel extension of CDS0, which provides us with one

16 CHAPTER 1. INTRODUCTION

of the deterministic parallel constructs we study. Hughes and Ferguson's use of CDS0 to perform

abstract interpretation is also covered. Although our approach is di�erent, knowledge of the earlier

work is useful. Finally, we provide a brief exposition of Freeman and Pfenning's work on re�nement

types, and Colson's work on intensional expressiveness.

Chapter 3 begins our relative intensional expressiveness explorations. Relying on Colson's

work, we show that CDS0 is more expressive than PR algorithms. Even though CDS0 programs

are sequential, they are not \ultimately obstinate," like the PR algorithms. However, CDS0

still cannot compute a natural version of the minimum function on lazy natural numbers. The

parallel extension CDSP can compute that function. In addition, CDSP can compute certain n-ary

functions more e�ciently than CDS0.

Circuit semantics is introduced in Chapter 4. Initially, we introduce only a na��ve version of

circuit semantics that can essentially only distinguish programs based on depth. This is enough

to compare four deterministic parallel extensions of PCF and separate them into three levels of

intensional expressiveness. We then commence a more careful development of circuit semantics,

comparing it to various parallel evaluation strategies, and using it to model a deterministic and

nondeterministic parallel extension of PCF. We formalize a connection between the circuit dimen-

sions of parallel PCF programs and monotone and De Morgan boolean circuits. Utilizing strong

results from complexity theory, and assuming hardware that can detect unde�ned inputs, we are

able to prove an intensional separation of the deterministic and nondeterministic construct.

Chapter 5 marks the beginning of the second part of the thesis. We carefully formalize a

type system based on concrete data structures, that includes subtyping and intersection types.

We show the decidability of subtyping for ground concrete data structures, and we introduce a

type inference system, proving its soundness. Then we add polymorphism and overloading to the

language, showing how to extend the subtyping decision procedure and the type inference system.

We prove soundness for the extended system.

Re�nement type inference is presented in Chapter 6. We de�ne re�nement types for CDS0

and show how the intensional information present in a sequential algorithm can be used to extract

a re�nement type. We introduce a generic, lazy functional language, and show how it can be

compiled to CDS0. To derive re�nement types for expressions built up from sequential algorithms,

we introduce a loop-detecting evaluator, and show how we need only evaluate the expression at a

certain (small) number of cells. We prove soundness of the re�nement type inference.

Chapter 7 describes our prototype implementation and includes more examples. We outline

briey the implementation of CDS0 itself, which is based upon the work of Devin. Most of the

chapter is devoted to our implementation of type inference and re�nement type inference. We

provide examples showing the bene�ts and limitations of our approach.

Finally, Chapter 8 looks back on the thesis drawing some conclusions and outlines areas for

possible future work.

Chapter 2

Background

This chapter surveys the work that we will be building upon most directly in what follows. Sec-

tion 2.1 gives a brief history of the full abstraction problem for PCF. Section 2.2 discusses Kahn and

Plotkin's concrete data structures and their formulation of a notion of sequentiality, and its use by

Berry and Curien in constructing an intensional semantics of sequential algorithms for PCF. Berry

and Curien's programming language CDS0, which is a direct implementation of their intensional

semantics, is described in Section 2.3. In Section 2.4 we describe Brookes and Geva's extension of

Berry and Curien's work to the setting of parallel algorithms. Section 2.5 covers the only previous

work on practical applications of sequential algorithms. Freeman and Pfenning's re�nement type

inference system is described in Section 2.6. Finally, Colson's work on the intensional expressiveness

of primitive recursive algorithms is discussed in Section 2.7.

2.1 PCF and full abstraction

When a language is designed, the semantics which is normally regarded as \the de�nition" of the

language is often presented in an operational style, by reference to the computations of an abstract

machine, or, in the case of structural operational semantics [71], by a set of rewrite rules. This

leads to a notion of program equivalence based on observability: two programs will be considered

equivalent if, when inserted into the same context (intuitively, a program with a hole in it), we get

the same �nal result after execution, as characterized by the abstract machine or by application of

the rewrite rules.

If we give the language a denotational semantics as well, we obtain a di�erent notion of pro-

gram equivalence: two programs are equivalent if they denote the same value. It would be useful

if these two notions of equivalence were identical: proving denotational equivalence would then

automatically imply operational equivalence, and vice versa. If that were the case we would say

that the denotational semantics is fully abstract with respect to the operational semantics [70].

The formulation is worded this way because the operational semantics is considered as intuitively

known.

Unfortunately, it turns out to be rather di�cult, in general, to design fully abstract denotational

semantics [63, 8]. In the setting of sequential languages, there has been a great deal of e�ort

expended in discovering a fully abstract semantics for the language PCF (Programming Computable

Functions) [70, 42]. PCF is regarded as the \prototypical" sequential programming language. It

is a typed �-calculus with two ground types, booleans (o) and integers (�) and the following set of

17

18 CHAPTER 2. BACKGROUND

tt ;� : o (truth values)

n : � (integers, n � 0)

isZero? : �! o

+1;�1 : �! �

�o : o! o! o! o (boolean conditional)

�� : o! �! �! � (integer conditional)

Y� : (�!�)! � (one for each �)

Figure 2.1: PCF constants

�� tt M�N�!M�; for � = �; o +1 n!n+ 1; for n � 0

�� � M�N�!N�; for � = �; o �1 (n+ 1)!n; for n � 0

Y�M!M(Y�M) isZero? 0! tt

((�x: M)N)![N=x]M isZero? (n+ 1)!� ; for n � 0

M!M 0

(MN)!(M 0N)

N!N 0

(MN)!(MN 0)
if M is +1;�1, isZero?

M0!M 0
0

(�� M0)!(�� M
0
0)

Figure 2.2: Operational semantics for call-by-name evaluation of PCF

types, �:

� : : = o j � j �!�

The syntax for raw (untyped) terms is given by the grammar:

M : : = c j x j �x: M j MM

The constants traditionally included in the language are shown in Figure 2.1. The operational

semantics for call-by-name evaluation is shown in Figure 2.2. For simplicity, we blur the distinction

between numerals and integers, and use n to denote both. We omit the typing rules, which are

standard.

The standard denotational semantics for PCF is given by the semantic function

D: Terms!Environments!
[
D�;

where D� is a family of domains which includes the at domains of booleans (Dbool) and integers

(Dint), and such that D�1! �2 = [D�1 !D�2], the continuous function space (see [70] for details).

2.2. CONCRETE DATA STRUCTURES 19

Plotkin [70] showed that the standard denotational semantics D for PCF is not fully abstract.

The problem is that the denotational semantics is \�ner" than the operational semantics. It makes

too many distinctions. If two programs are denotationally equivalent, then they are operationally

equivalent. The converse does not hold. This happens because the denotational semantics contains

functions which are not de�nable in the language, like parallel-or (por). Por returns true if at least

one of its arguments is true:

por tt ? = tt

por ? tt = tt

por � � = �

Using por we can construct a program context that distinguishes denotationally between two

operationally equivalent programs. First, let
� � Y� (�f: f). Then, let

ORTEST � �i: �f: �� (f tt
o)

(�� (f
o tt)

(�� (f � �)
� i)

�

)

�

Now, ORTEST 0 is operationally equivalent to ORTEST 1, namely they both diverge. However,

according to the denotational semantics,

D[[ORTEST]]? = �v: ��: if � = por then v else ?;

and we have D[[ORTEST 0]] 6= D[[ORTEST 1]].

Attempts to solve this problem have been aimed at eliminating the unwanted functions from the

semantics, by restricting the continuous functions to \sequential" functions. Other ways of solving

this are to change the operational semantics or to add primitives to PCF. Plotkin [70] showed that

the denotational semantics for PCF + por (referred to as PCFP) is fully abstract. Cartwright,

Curien, and Felleisen showed [14, 26] that full abstraction can also be obtained by extending PCF

with a catch primitive (referred to as PCFC).

Recently, the full abstraction problem for PCF has been solved, independently, by several groups

[2, 52, 67]. Interestingly, all these solutions are constructed in a similar way: First, an intensional

semantics based on game semantics is constructed. Then, the undesirable intensional elements

are �ltered out, leaving behind an extensional model. The most fascinating part is that the game

semantics can be seen as an elegant generalization of the work discussed in the next section, and

upon which the language CDS0 is based.

2.2 Concrete data structures

Some of the early e�orts at de�ning sequential functions were hampered by working in a setting

where no distinction was made between function domains and domains of the data they compute

on. In part to alleviate this, by providing a model in which it is easier to formalize the notion

of incremental computation, Kahn and Plotkin [56] developed concrete data structures, and their

domain-theoretic version, the concrete domains.

A concrete data structure is like a variant record in Pascal. It consists of a set of named cells,

which can hold values, and an accessibility relation governing the order in which the cells can

20 CHAPTER 2. BACKGROUND

be �lled with values. A cell �lled with a value is called an event, written c = v. The following

de�nitions are adapted from Curien [26].

De�nition 2.2.1 A concrete data structure (cds) is a tuple (C; V;E;`), where C; V;E are sets of

cells, values and events, respectively, such that

E � C � V and 8c 2 C;9v 2 V: (c; v) 2 E

and ` is a relation, called an accessibility relation, between �nite subsets of E and elements of

C. We say that fe1; : : : ; eng is an enabling of c if fe1; : : : ; eng ` c, which may also be written

e1; : : : ; en ` c. A cell such that ; ` c (which is abbreviated ` c) is called initial.

De�nition 2.2.2 A state is a subset x of E such that:

1. (c; v1); (c; v2) 2 x) v1 = v2

� (no cell is �lled more than once). This is called consistency.

2. If (c; v) 2 x then there exists a sequence of events e1; : : : ; en such that en = (c; v); ei =

(ci; vi) 2 x, and fej j j < ig contains an enabling of ci for all i � n

� (only enabled cells may be �lled). This is called safety.

The set of states of a cds M ordered by set inclusion is a partial order hD(M);�i called a

concrete domain. If a domain D is isomorphic to D(M), we say that M generates D.

De�nition 2.2.3 Given a state x of a cds, we say that a cell c is:

� �lled (with v) in x if (c; v) 2 x,

� enabled in x if x contains an enabling of c,

� accessible from x if it is enabled but not �lled in x.

The sets of �lled, enabled, and accessible cells of x are denoted F (x); E(x), and A(x), respectively.

De�nition 2.2.4 A state y is said to cover a state x, written x�< y, if x < y and 8z:x < z � y

we have z = y. In addition, we write x <c y(x�<c y) if c 2 A(x); c 2 F (y) and x < y(x�< y).

De�nition 2.2.5 A cds M = (C; V;E;`) is well-founded if the transitive closure of the relation

� de�ned on C by:

c1 � c if and only if an enabling of c contains an event (c1; v)

is well-founded, i.e., there is no in�nite descending sequence : : : cn+1 � cn � : : :� c.

De�nition 2.2.6 A cds is called stable if for each state x and cell c enabled in x, c has a unique

enabling in x.

We are only interested in well-founded and stable cds in the sequel. We call such cds determin-

istic (dcds). In addition, we shall be using an operational semantics for CDS0 called CDS02 [7, 30],

which requires the dcds to be sequential.

2.2. CONCRETE DATA STRUCTURES 21

De�nition 2.2.7 A cds M is called sequential if, for every cell d, and each state x of M such that

d 62 F (x) and 9y � x: d 2 F (y);

there exists a cell c such that:

c 2 A(x) and 8y � x; d 2 F (y)) c 2 F (y):

Such a cell c is called a sequentiality index of M for d at x.

A cds M such that all its enablings contain at most one event is called �liform. Filiform cds's

are particularly well-behaved, and they make the presentation of some de�nitions much simpler.

Example 2.2.8 We can de�ne the dcds of booleans (BOOL) the following way: there is one cell

called B, which can be �lled with either tt or � . The set of states of this dcds is:

ffg; fB = ttg; fB = � gg:

Note that hD(BOOL);�i is isomorphic to Dbool, the at domain of booleans, i.e., BOOL generates

Dbool.

Example 2.2.9 The dcds of integers INT, can be de�ned in a similar fashion: there is one cell

called N which can be �lled with any integer value. Again, note that INT generates Dint, the at

domain of integers.

Example 2.2.10 We provide an example of a non-sequential dcds, which will become relevant

when we present the operational semantics CDS02. The dcds is called STABLE and has four cells:

B1; B2; B3; C. The cells Bi are all initial with possible values tt ;� . Cell C has any integer as a

possible value, and the following access conditions:

fB1 = tt ; B2 = � g ` C

fB2 = tt ; B3 = � g ` C

fB3 = tt ; B1 = � g ` C:

The reason STABLE fails to be sequential is that we cannot determine sequentially if C is accessible;

each of the access conditions omits one of the Bi cells, so we wouldn't know where to start to �gure

out if C is accessible. It lacks a sequentiality index.

We can view a product of two cds's as being composed of two sides: a left and a right hand

side. The product is created by tagging the left hand side cds cells with a 1 and the right hand

side cells with a 2.

De�nition 2.2.11 Let M and M 0 be two cds's. The product M �M 0 = (C; V;E;`) is de�ned as

follows:

� C = fc:1 j c 2 CMg
S
fc0:2 j c0 2 CM 0g;

� V = VM
S
VM 0 ;

� E = f(c:1; v) j (c; v) 2 EMg
S
f(c0:2; v0) j (c0; v0) 2 EM 0g;

� (c1:1; v1); : : : ; (cn:1; vn) ` c:1 if (c1; v1); : : : ; (cn; vn) ` c (and similarly for the right hand side).

It is easier to visualize the product of two cds's when they are both �liform. Table 2.1 summa-

rizes the procedure.

22 CHAPTER 2. BACKGROUND

M M 0 M �M 0

Cells c c0 c:1; c0:2

Values v v0 v; v0

Events (c; v) (c0; v0) (c:1; v); (c0:2; v0)

Enablings (c1; v1) ` c (c01; v
0
1) ` c

0 (c1:1; v1) ` c:1; (c
0
1:2; v

0
1) ` c

0:2

Table 2.1: Product of two �liform dcds's

2.2.1 Sequential functions

Using cds's, Kahn and Plotkin [56] de�ned a notion of sequential function.

De�nition 2.2.12 A continuous function f is sequential at some state x in its domain, if for each

cell c0 accessible in f(x) either:

1. no cell is accessible in x, or

2. there is an accessible cell c that must be �lled in any state y that is a superset of x such that

c0 is �lled in f(y). The cell c is called a sequentiality index of f at x for c0.

A function is sequential if it is continuous and sequential at every x in its domain.

Intuitively, this de�nition captures the notion that a sequential function is at any point depen-

dent on one of its inputs; if that input diverges, the function will diverge.

2.2.2 Sequential algorithms

Berry and Curien [6] showed that Kahn-Plotkin cds's and sequential functions do not form a

cartesian closed category (ccc), hence they cannot be used to model PCF. However, Berry and

Curien de�ned sequential algorithms on cds's, which do form a ccc. This model was not useful for

solving full abstraction for PCF because it is intensional (and it is known that the solution must

be extensional [63]), but that is exactly the feature of interest for this work; the meaning of a PCF

term is an algorithm and the model is fully abstract with respect to a notion of observability that is

sensitive to computation strategy. This is the �rst instance of an intensional model in the computer

science literature of which we are aware.

Sequential algorithms can be viewed two ways: abstractly and concretely. Abstractly, a sequen-

tial algorithm is a pair of a sequential function and a (sequential) computation strategy. If there

are several ways of proceeding during the computation, the computation strategy points out a par-

ticular one. Concretely, a sequential algorithm is a state of a dcds of arrow type (the exponentiation

dcds).

De�nition 2.2.13 Given two dcds's, M and M 0, the exponentiation dcds M)M 0 is de�ned [26]

by:

� if x is a �nite state of M and if c0 is a cell of M 0, then xc0 is a cell of M)M 0.

� the values and events are of two types:

1. type \valof": if c is a cell of M then valof c is a value of M)M 0, and (xc0;valof c)

is an event of M)M 0 if c is accessible from x,

2.3. THE LANGUAGE CDS0 23

M M 0 M)M 0

Cells c c0 xc0, where x 2 D(M)

Values v v0 valof c; output v0

Events (c; v) (c0; v0)
(xc0; valof c); where c 2 A(x);

(xc0; output v0)

Enablings (c1; v1) ` c (c01; v
0
1) ` c

0 (yc0; valof c) ` xc; if y�<c x;

(xc01; output v
0
1) ` xc

0

Table 2.2: Exponentiation of two �liform dcds's

2. type \output": if v0 is a value of M 0 then output v0 is a value of M) M 0, and

(xc0;output v0) is an event of M)M 0 if (c0; v0) is an event of M 0.

� the enablings are also of two types:

1. (yc0;valof c) ` xc0 if y�<c x (type \valof"),

2. (x1c
0
1;output v

0

1
); : : : ; (xnc

0
n;output v

0

n
) ` xc0

if x =
S
fxi j i � ng and (c01; v

0
1); : : : ; (c

0
n; v

0
n) ` c

0 (type \output").

A state of M)M 0 is called a sequential algorithm.

Again, for ease of reading we provide a description of the procedure for constructing an expo-

nentiation dcds for �liform dcds in Table 2.2.

Example 2.2.14 The state of BOOL) BOOL that corresponds to the boolean negation is:

ffgB = valof B; fB = ttgB = output � ; fB = � gB = output ttg:

The way to read this de�nition is: Given no information about the input and having to �ll the

output cell B, we ask what value the input cell B holds. If the input is true we output false and

conversely.

Berry and Curien [6] de�ned application, composition, product, pairing, currying, uncurrying,

and �xpoint for sequential algorithms, and showed that sequential algorithms and cds's form a

ccc. They used sequential algorithms to construct an (intensional) model of typed �-calculus

with recursion; �-expressions are translated to categorical combinators, which are represented by

sequential algorithms.

2.3 The language CDS0

The programming language CDS0 [5, 6, 7, 30] is a direct implementation of the intensional deno-

tational semantics presented above; hence, it is an intensional programming language of sequential

algorithms. The name stands for Concrete Data Structures. The initial idea [5] was to make CDS0

a kind of \assembly" language for a (syntax-wise) ML-like language called CDS. Programs in CDS

would be compiled down to CDS0. Only CDS0 was ever implemented [30].

CDS0 is a lazy, polymorphic, higher-order, functional language with several quite interesting

features:

24 CHAPTER 2. BACKGROUND

� Uniformity of types. Everything in CDS0 is a state of a dcds. This can be a state-constant

or a higher-order algorithm. The algorithm syntax is just syntactic sugar for the state of a

dcds. Consequently, an algorithm can be evaluated without being applied to any argument.

Operationally speaking, terms of non-ground type can be observed.

� Full abstraction. The denotational semantics of CDS0, which maps an algorithm to a state

of the dcds corresponding to its type (hence a CDS0 object) is fully abstract with respect

to two di�erent operational semantics (CDS01 and CDS02) [26]. Since the semantics of an

algorithm is a CDS0 object it is possible to write algorithms which manipulate the semantics

of other algorithms.

� Demand-driven, coroutine-like evaluation style. The user types in an expression and enters a

request loop, where questions about various cells of the dcds that is the type of the expression

can be asked. If the expression is a state-constant the value of the cell is simply looked up

in the state; if the expression is compound, processes are associated with each subexpression

and they exchange information while computing the value of the cell. The computation style

is an extension of the coroutine mechanism of Kahn and MacQueen [55].

� Rich data structure de�nition facilities. Cds's are very general and permit de�nition of a wide

variety of data structures. In particular, they can be de�ned recursively, and one cds can be

grafted into another. A thorough discussion of the type de�nitions in CDS0 will be deferred

to the second part of this thesis, where we develop a type inference system for CDS0.

The examples in this section are from our own implementation of CDS0, which follows that of

Devin [30] for the untyped part. We shall describe our implementation in more detail in Chapter 7.

2.3.1 Type de�nitions

The types in CDS0 are dcds's. Only ground dcds's can be de�ned; higher-order ones must be

created out of pre-existing dcds's. We begin by de�ning the dcds's we have already encountered in

the previous section:

let bool = dcds

cell B values tt, ff

end;

let int = dcds

cell N values [..]

end;

let stable = dcds

cell B1 values tt, ff

cell B2 values tt, ff

cell B3 values tt, ff

cell C values [..] access B1=tt,B2=ff or B2=tt,B3=ff or B3=tt,B1=ff

end;

The graft construct allows us to copy an already de�ned dcds into another, tagging all its cells

with a speci�ed tag and optionally adding accessibility conditions. Here is a simple example:

2.3. THE LANGUAGE CDS0 25

let tagged_bool = dcds

graft (bool.foo)

end;

This declaration creates a dcds with a single cell, B:foo with possible values tt ;� . Grafting

is more useful when used in conjunction with recursive declarations. We could de�ne a stream of

integers in the following fashion:

letrec int_stream = dcds

cell (N.l) values [..]

graft (int_stream.l) access (N.l) = [..]

end;

We have created an in�nite dcds with cells of the form N:l;N:l:l; : : :, each of which can have

any integer as a value, and such that one cell has to be �lled in order for the next one to become

enabled. We can explore in our interpreter the structure of this dcds, by asking it to unroll the

dcds:

show more 3 int_stream;

{

(N.l) values [..],

((N.l).l) values [..] access (N.l)=[..],

(((N.l).l).l) values [..] access ((N.l).l)=[..]}

Cell names that become ever-longer as a dcds is being unrolled are a typical feature of CDS0

recursive type declarations.

2.3.2 Interaction with the interpreter

The states we encountered in the previous section can be typed \as is" into the interpreter. We

begin with a state of BOOL. We omit typing considerations.

{B = tt};

request? B;

--> tt

request? ;

#

Note how we entered the request loop, and examined the contents of cell B. Unsurprisingly, it was

�lled with tt . We can perform the same kind of examination of a higher-order state, i.e., we can

explore an algorithm without applying it to an argument. Here is boolean negation again:

{ {}B = valof B, {B=tt}B = output ff, {B=ff}B = output tt };

request? {}B;

--> valof B

Already, we have some idea of the computation strategy of this algorithm: we know it examines its

input. By continuing the questions and answers further, we can �nd out what it does with its two

possible inputs:

26 CHAPTER 2. BACKGROUND

request? {B=tt}B;

--> output ff

request? {B=ff}B;

--> output tt

2.3.3 Algorithm syntax

Writing algorithms solely in state form would quickly become tedious, so an alternative syntax is

provided. It is important to realize, however, that the notation is just syntactic sugar for a state.

An algorithm from M to M 0 will have the general form:

algo

request c1' do

<instruction>

end

request c2' do

<instruction>

end

...

end

The algorithm contains a number of request-do branches, each of which speci�es a recipe for com-

puting the value of an output cell c0i. There are two kinds of instructions:

output v'

which outputs a value into a cell of M 0 and

valof c is

v1 : <instruction>

...

vn : <instruction>

end

which tests a certain input cell and branches accordingly.

If an output cell c0 is not initial we must specify, after the request-do construct, how it can

become enabled. This is done with a from-do construct:

from <input state 1> do

<instruction>

end

from <input state 2> do

<instruction>

end

...

Two simple algorithms that work on booleans are shown in Figure 2.3. The �rst is the boolean

negation, which we have encountered already in state form. The two forms are equivalent (they

actually map into the same internal representation, as we shall see). The second is \left and,"

which performs a boolean conjunction, testing its left input �rst; if that input is � it outputs the

value � right away, so it is not strict in both arguments. We can actually write four di�erent

2.3. THE LANGUAGE CDS0 27

let not =

algo

request B do

valof B is

tt : output ff

ff : output tt

end

end

end;

let land =

algo

request B do

valof (B.1) is

tt: valof (B.2) is

tt: output tt

ff: output ff

end

ff: output ff

end

end

end;

Figure 2.3: Boolean negation and left conjunction algorithms

kinds of boolean conjunction algorithms: \left and," \left strict and" (which would check its right

argument even if the left one is �), \right and," \right strict and."

An example of an algorithm which uses the from-do construct is shown in Figure 2.4. The

algorithm acts like the identity on the initial cells of STABLE , but then distinguishes how cell C

became enabled.

2.3.4 Polymorphism

Polymorphism arises in CDS0 through the use of generic (i.e., variable) cell and value names.

Variable names start with the special symbol \$". For example, this is how we could write the

polymorphic identity:

let id = algo

request $C do

valof $C is

$V : output $V

end

end

end;

Note that the $C from the output name is the same as the input one, and similarly for the

values. The output cell name gets bound to a non-variable name �rst, when a query is issued.

When the answer is returned, the input value gets bound to a non-variable �rst, then is copied to

the output value. To make this clearer, we evaluate id by itself:

id;

request? {}B;

--> valof B

request? {B=tt}B;

--> output tt

28 CHAPTER 2. BACKGROUND

let distinguish =

algo

request B1 do

valof B1 is

tt : output tt

ff : output ff

end

end

request B2 do

valof B2 is

tt : output tt

ff : output ff

end

end

request B3 do

valof B3 is

tt : output tt

ff : output ff

end

end

request C do

from {B1=tt, B2=ff} do

output 1

end

from {B2=tt, B3=ff} do

output 2

end

from {B3=tt, B1=ff} do

output 3

end

end

end;

Figure 2.4: Algorithm utilizing from-do construct

2.3. THE LANGUAGE CDS0 29

Combinator Syntax Argument Type Result Type

Application A:B A:D ! D0, B:D A:B:D0

Composition AjB A:D0 ! D00, B:D ! D0 AjB:D ! D00

Fixpoint fix(A) A:D ! D fix(A):D

Curry curry(A) A:D �D0 ! D00 curry(A):D ! D0 ! D00

Uncurry uncurry(A) A:D ! D0 ! D00 uncurry(A):D �D0 ! D00

Pair < A;B > A:D ! D1, B:D ! D2 < A;B >:D ! D1 �D2

Product (A;B) A:D1, B:D2 (A;B):D1 �D2

Table 2.3: CDS0 combinators

Since id has type 8�: �!�, its cells will be higher-order. First we asked what the output cell

B is, given no information about the input, and id replied that it needs to know the value of the

eponymous input cell. When given that value, it simply copied it over to the output.

2.3.5 Categorical combinators

Sequential algorithms and states can be combined to form expressions using the categorical combi-

nators. There are seven combinators: application (\:"), composition (\j"), �xpoint (\fix"), curry

(\curry"), uncurry (\uncurry"), pair (\< ; >"), and product (\(;)"). For ease of reference, we

list the combinators, along with their types in Table 2.3. The language of expressions is given by

the following grammar, where x stands for a state-constant, and a for an algorithm declaration:

e : : = x j a j e:e j eje j fix(e) j curry(e) j uncurry(e) j< e; e >j (e; e):

As an example of the use of combinators, we examine two simple expressions in the interpreter:

not.{B=tt};

request? B;

--> ff

request? ;

not | land;

request? {}B;

--> valof (B.1)

request? {(B.1)=ff}B;

--> output tt

2.3.6 Forest representation

Before presenting the operational semantics, we introduce the internal representation of forests for

sequential algorithms developed by Devin [30]. Sequential algorithms already have a tree structure,

so forests are quite similar. The two di�erences are:

1. The lists of from-do instructions become a tree of From instructions, similar to valofs. This

is possible when we restrict ourselves to sequential dcds's.

2. When asking the value of an input cell, we specify which input it comes from, i.e., given a

type M1!M2!� � �!Mn, when we perform a valof of cell ci from Mi, this becomes a Valof

30 CHAPTER 2. BACKGROUND

let curry_land =

algo

request {}B do

valof B is

tt: output valof B

ff: output output ff

end

end

request {B=tt}B do

from {B=tt} do

output output tt

end

end

request {B=ff}B do

from {B=tt} do

output output ff

end

end

end;

print land;

land =

{B=valof ((B.1), 1) is

tt : valof ((B.2), 1) is

tt : output tt

ff : output ff

ff : output ff

}

print curry_land;

curry_land =

{B=valof (B, 1) is

tt : valof (B, 2) is

tt : output output tt

ff : output output ff

ff : output output ff

}

Figure 2.5: Curried left conjunction and internal representations

(ci; i) instruction. This has the e�ect of making currying and uncurrying a simple game on

input cell indices and tags.

A forest contains several trees, each one containing an instruction specifying how to compute

one output cell: Tree (c1; instruction1); : : : ;Tree (cn; instructionn): The instructions are of three

kinds:

Result outputn v

Valof (c; i) is

v1 : instruction1
: : :

end

From (c; i) is

v1 : instruction1
: : :

end

Figure 2.5 shows a sequential algorithm for the curried version of \left and" and the internal

representation as a forest for this algorithm and the earlier presented \left and." Note that despite

their very di�erent syntax trees, the two algorithms map into very similar forests, with the only

di�erences occurring in the number of inputs and the product tags on the input cells.

We are now ready to present the operational semantics for the evaluation of forests. (All the

CDS0 operational semantics rules are summarized in Appendix A.1 for ease of reference.) The

rules are of the form forest ? c ! v. We introduce a special value,
, which stands for an un�lled

cell. This is di�erent from ?: When attempting to �nd a cell's value, the interpreter may loop, in

which case the value would be ?. It is possible, however, that the interpreter can �gure out that

the cell is not �lled in that state, in which case the result would be
. The �rst two rules specify

the search of a forest for the proper tree.

(Tree1)
c0i = c0

Tree (c01; ins1); : : : ;Tree (c0n; insn) ? x1 � � � xnc
0 ! ins i ? x1 � � � xnc0

2.3. THE LANGUAGE CDS0 31

(Tree2)
8i: c0i 6= c0

Tree (c01; ins1); : : : ;Tree (c0n; insn) ? x1 � � � xnc
0 !

When executing a Result instruction, we simply output the resultant value.

(Result) Result v0 ? x1 � � � xnc
0 ! v0

A Valof (ci; i) of a cell x1 � � � xnc
0 speci�es that we need to ask the i'th state part of the cell

name x1 � � � xnc
0 what value ci has. If that sub-query returns a value we look up the appropriate

branch of the Valof . If no branch matches we return
, and if the sub-query returns
 we return

an answer that speci�es that we still need the value of cell ci.

(Valof)

xp ? c !

8><
>:
vi
v; and 8i: vi 6= v

Valof (c; p) is

v1 : ins1
: : :

end

9>>>=
>>>;

? x1 � � � xnc0 !

8><
>:

insi ? x1 � � � xnc
0

outputp�1 valof c

From instructions are very similar to Valof . When the sub-query returns a value not in the list

we fail by raising an exception, because the From cannot be satis�ed. If the sub-query returns
,

we also return
 without failing, because it might still be possible to increase the input state and

potentially satisfy the From.

(From)

xp ? c !

8><
>:
vi
v; and 8i: vi 6= v

From (c; p) is

v1 : ins1
: : :

end

9>>>=
>>>;

? x1 � � � xnc0 !

8><
>:

insi ? x1 � � � xnc
0

fail with no-access

2.3.7 CDS02 operational semantics

The �rst operational semantics devised for CDS0 was called CDS01 [26], and it involved the use of

tables to store temporary results when evaluating certain constructs. The reason for the tables is

that in some cases it is impossible to re-derive the enablings that allowed us to reach a certain point.

Consider applying the algorithm distinguish from Figure 2.4, of type STABLE ! STABLE , to a

state of STABLE , let us call it arg, in which attempting to evaluate B1 loops, but B2 = tt ; B3 = � .

If we have already evaluated B2; B3, then distinguish:arg ? C should return 2. But if we did not

store the previously evaluated B2; B3, we would have no way of knowing how to go about �nding

C's value, and we would loop if we chose to evaluate B1.

The tables in CDS01 were only necessary for application, composition, and �xpoint. Carrying

previously evaluated values around led to e�cient evaluation of �xpoints, but in general CDS01

was ine�cient in both space usage and time, because of searches in the tables.

In CDS02 [30] the restriction is made that all dcds's be sequential, so STABLE is outlawed and

one no longer has to keep the tables. The restriction to sequential dcds's is not essential in practice

32 CHAPTER 2. BACKGROUND

since most usual data structures are sequential. CDS02 is slower in the evaluation of �xpoints, but

is overall more e�cient than CDS01.

It is possible to pose intensional queries in CDS02. Whereas in CDS01 states are always

explicitly given by enumeration of events, in CDS02 the interpreter manipulates expressions. The

rule for application, given below, illustrates the point.

(App)

A ? Bc0!

8><
>:

valof c

output v0

A:B ? c0!

8><
>:

v0

Instead of constructing approximations x to the state of B and posing queries of the form A ? xc0,

as would be done in CDS01, we simply package the expression B with the cell c0 and ask that

question of A. This essentially leads to a direct dialog between \interested parties" rather than

having it be centralized through the use of tables.

The rules for composition and �xpoint are in the same vein.

(Comp)

A ? (B:x)c00!

8><
>:

valof c0 B?xc0! valof c

output v00

AjB ? xc00!

8><
>:

valof c

output v0

(Fix)

A ? fix(A)c!

8><
>:

valof c0

output v

fix(A) ? c!

8><
>:

v

The rule for �xpoint is actually an optimization that builds in one application step of the

following rule:

(Fix') fix(A) ? c!A:fix(A) ? c

The remaining rules are simple games on the product tags of a cell. In the rule for uncurry,

�1; �2 are the �rst and second projections.

(Pair) < A1; : : : ; An > ? x(c:i)!Ai ? xc

(Prod)
nY
i=1

Ai ? (c:i)!Ai ? c

2.4. PARALLEL ALGORITHMS ON CONCRETE DATA STRUCTURES 33

(Curry)

A ? (x� y)c00!

8>>><
>>>:

valof (c:1)

valof (c0:2)

output v00

curry(A) ? xyc00!

8>>><
>>>:

valof c

output valof c0

output output v00

(Uncurry)

A ? (�1:x)(�2:y)c
00!

8>>><
>>>:

valof c

output valof c0

output output v00

uncurry(A) ? xc00!

8>>><
>>>:

valof (c:1)

valof (c0:2)

output v00

2.3.8 Related languages

A language in some ways similar to CDS0 has recently been developed by Cartwright, Curien,

and Felleisen [14]. It is called SPCF (Sequential PCF) and it extends PCF with error values and

primitives for non-local transfer of control (catch and throw). This enables an SPCF program to

observe and exploit order of evaluation in other programs. SPCF programs are called observably

sequential algorithms. If there are no errors, SPCF collapses into CDS0. In the presence of errors,

SPCF is an extension of CDS0.

2.4 Parallel algorithms on concrete data structures

Brookes and Geva [12] proceeded to extend Berry and Curien's work to the setting of deterministic

parallel algorithms on concrete data structures. The aim was to provide a general intensional theory

of deterministic parallel computation.

A parallel algorithm can also be viewed two ways. Abstractly, it is a pair of a continuous

function and a (parallel) computation strategy. Concretely, it is a program in a language of parallel

algorithms.

The key change to sequential algorithms to yield parallel ones is to replace the valof construct

with a parallel query construct, which, intuitively, spawns o� a number of valofs. More precisely,

a query starts a number of parallel sub-computations and speci�es conditions based on the results

of the sub-computations under which the main computation may resume. As an example, here is

how we could write parallel-or (of type BOOL2 ! BOOL) in syntax meant to look like CDS0 as

much as possible:

34 CHAPTER 2. BACKGROUND

let por =

algo

request B do

query {(B.1), (B.2)} is

{tt, _} : output tt

{_, tt} : output tt

{ff, ff} : output ff

end

end

end;

The previous algorithm, while deterministic, is a little misleading, because it seems to imply that

one has knowledge of which argument evaluated, so one could write a non-deterministic program.

To ensure determinism we have to make sure the output is the same for all consistent input states.

Another problem is caused by higher-order parallel algorithms: their queries have to apply not

only to the immediate input, but also possible further inputs. To account for all this, the notation

would have to be somewhat di�erent (see [12]).

Brookes and Geva were able to de�ne application, currying and uncurrying of parallel algo-

rithms. However, this only works for �rst-order types and composition was not de�ned. Thus, they

did not obtain a ccc of parallel algorithms on concrete data structures.

It is important to note that Berry and Curien also had di�culty de�ning composition for

sequential algorithms; their solution was to de�ne it in terms of the abstract view of sequential

algorithms.

2.5 Applications of sequential algorithms

A sequential algorithm contains detailed information about the relationship between input and

output. It does not simply tell us how the output depends on the input, but precisely how parts

of the output depend on parts of the input. Seizing on this intensional information, Hughes and

Ferguson [33, 50] developed applications using sequential algorithms as a representation for func-

tional programs. The programs are translated to categorical combinators, which are represented

by sequential algorithms. The sequential algorithms they use are a somewhat simpli�ed version of

Berry and Curien's. The tree structure of algorithms is made explicit, and cell names become the

concatenation of labels found on branches of a tree from the root to a leaf. Values are stored at

the leaves. No provision is made for the from construct; in our vocabulary, only valof and result

nodes exist. The operational semantics employed appears to be a version of CDS01.

In [50] a loop-detecting interpreter for a lazy, higher-order language is described. The standard

approach to detecting loops is to check for a recursive function being called twice with the same

arguments. But this does not work for higher-order functions. Using sequential algorithms one

can get around this problem. The knowledge of what input cells a particular output cell depends

on makes it possible to detect when a cell depends on itself. To do this, whenever we encounter

a valof c while trying to compute the value of a cell, we keep track of c and all the cells c itself

depends on. A cell is called detectably bottom when it either depends on itself, or it depends on a

detectably bottom cell.

When having to answer the question fix f ? c, Hughes and Ferguson attempt to evaluate c in

the chain of increasing approximations to the �xpoint of f : ?; f:?; f2:?; : : : ; either getting a value,

or showing that c is detectably bottom. The key point is that, in a �nite dcds, there is a bound on

2.6. REFINEMENT TYPE INFERENCE FOR STANDARD ML 35

the number of unrollings of the �xpoint that must be made before it becomes clear that c cannot

�lled; this bound is simply the number of distinct cells in the dcds.

In a later paper [33], an abstract interpretation based on sequential algorithms is developed for a

higher-order, lazy language. The implementation is reported as being orders of magnitude faster for

higher-order programs than competing approaches, such as frontiers [45] and pending analysis [88].

The problem the implementation su�ers from is space-ine�ciency. This does not seem surprising,

given that it uses a CDS01-like operational semantics. In more recent work, Hughes, Hunt, and

Runciman [51] report on attempts at overcoming this problem.

Our own approach to abstract interpretation and loop-detection is somewhat di�erent because

we are using CDS02. We shall discuss this issue at length when we present our re�nement type

inference system in Chapter 6.

2.6 Re�nement type inference for Standard ML

In the Freeman-Pfenning framework for re�nement type inference [35, 36], only datatypes can

be re�ned, and the re�nements are speci�ed using a rectype statement. For example, here is a

polymorphic version of the re�nement mentioned in Section 1.3, of empty, one element, and two or

more element lists:

datatype � list = nil | cons of � � � list

rectype � empty = nil

and � singleton = cons (�; nil)

and � long = cons (�; cons(�; � >list))

and � ?list = bottom (list)

This de�nition would result in the following re�nement type lattice:

� ?list

� singleton � long

� >list

� empty

b
b
b

b
bb

"
"
"
"
""

b
b
b
b
bb

"
"
"
"
""

Note that the re�nement types are kept separate from the regular types. In particular, the

re�nement type � >list gets automatically generated to correspond to the regular type � list.

Given such a rectype declaration, the Freeman-Pfenning system automatically generates the

following type for the constructor cons:

cons : (� � � empty)!� singleton ^

(� � � singleton)!� long ^

(� � � long)!� long:

In addition, their system can infer the following type for the polymorphicmap function (written

in a slightly di�erent way than the example from Section 1.3):

8��: (�!�)! � empty !� empty ^

� singleton !� singleton ^

� long !� long.

36 CHAPTER 2. BACKGROUND

The ability to de�ne re�nements of parametrized types enables rectype declarations such as the

following, which distinguishes even and odd length lists of booleans (runit stands for the empty

tuple re�nement type):

datatype blist = nil | cons of bool � list

rectype bev = cons (>bool � bod) | nil (runit)

and bod = cons (>bool � bev)

The re�nement type inference algorithm works (roughly) by obtaining a regular type for an

expression, then trying out all possible re�nements of that type, and using re�nement type inference

rules to reach a result type. In the case of re�nement type variables, all possible instantiations at

a particular type must be considered. Pending analysis is used for �xpoints.

The main di�culties with this approach seem to be caused by instantiations of polymorphic

re�nement type variables. There are two problems: In many cases, one cannot use the polymorphic

version of a function and get the best re�nement type, and, when higher-order functions are used,

the number of possible re�nements gets very large, which leads to ine�ciency.

As an example, suppose we have re�ned bool by true and false, and we want to derive a

re�nement type for the following program:

let val not = fn x => if x then false else true

val double = fn f => fn x => f (f x)

in double not true

end;

The type of double is 8�: (�!�)!�!�. When double is applied to not, since the regular type

of not is bool! bool, we need to instantiate � to all possible re�nements of bool, which leads to the

following re�nement type for double:

(true! true)! true! true ^

(false! false)! false! false ^

(>bool!>bool)!>bool!>bool ^

(?bool!?bool)!?bool!?bool:

Using this re�nement type for double, since not has re�nement type true! false ^ false! true

(and, implicitly, >bool!>bool), the best re�nement type we can get for double not is >bool!>bool,

and hence the entire program has type >bool. The only way the more precise type of true can be

obtained is if double is no longer a polymorphic function. If we specify that variable x in double

is really a boolean, the re�nement type of double becomes an intersection of 112 components,

including pieces that enable us to infer true! true ^ false! false as the re�nement type for

double not. Using that type, we can get true as the type for the program.

2.7 Colson's work on intensional expressiveness

We could de�ne the minimum of two integers in unary representation in a natural way by the

following rewrite system:

min(x; 0) = 0

min(0; x) = 0

min(S(x); S(y)) = S(min(x; y))

2.7. COLSON'S WORK ON INTENSIONAL EXPRESSIVENESS 37

Note that this is not a primitive recursive (PR) algorithm; there is simultaneous recursion on two

inputs.

We need to distinguish between the function min de�ned above, and an algorithm mina for

min. Intuitively, by applying the rewrite rules, the algorithm mina(n; p) computes its result in

O(min(n; p)) time (it takes exactly min(n; p) + 1 steps).

Colson studied the expressibility of minimum in the context of PR algorithms [19, 20]. He

established that PR algorithms are inherently sequential: like sequential algorithms, they possess

sequentiality indices. Moreover, PR algorithms are sequential in an even stronger sense. They su�er

from \ultimate obstination" [20, 22]: at some point one argument must be chosen to be evaluated

until the end. Using primarily the intensional semantics of lazy natural numbers (LNAT), which

we exhibited earlier, he proved two main results:

Proposition 2.7.1 There is no PR algorithm a of arity 2 satisfying:

[[a]](Sn(?); Sp(?)) = Smin(n;p)(?):

Proposition 2.7.2 There is no PR algorithm which computes the minimum of two numbers n

and p in unary representation, and is of complexity O(min(n; p)).

However, there are many PR algorithms which compute the minimum of two integers. We

de�ne one below, using some auxiliary functions (see [57]):

pred(0) = 0

pred(S(x)) = x

sub(x; 0) = x

sub(x; S(y)) = pred(sub(x; y))

MIN(x; y) = sub(x; sub(x; y))

Note that in an operational interpretation of this de�nition, the algorithmMINa(n; p) forMIN

has a worst-case running time of O(max(n; p)). Let us call the elements of LNAT of the form Sk(0)

de�ned , and the elements of the form Sk(?) partial . The function MIN agrees with min on the

de�ned elements of LNAT . They are di�erent on the partial elements. By the LNAT semantics we

have:

[[min]](Sn(?); Sp(?)) = Smin(n;p)(?)

[[MIN]](Sn(?); Sp(?)) = ?

We can view Proposition 2.7.1 as an extensional result: PR algorithms can compute MIN

but not min. Note that there are many other functions between min and MIN in the pointwise

order. But it is the intensional aspect of Proposition 2.7.2 that is particularly interesting here: PR

algorithms cannot compute minimum e�ciently.

If we augment PR algorithms with functional arguments, we arrive at G�odel's system T [39].

In system T we can not only compute new functions (e.g., the Ackermann function), but we can

also compute minimum e�ciently (system T can express an algorithm for min [19]). Thus, system

T is more powerful than PR both extensionally and intensionally.

Colson's results are the �rst intensional expressiveness results for programming languages of

which we are aware.

38 CHAPTER 2. BACKGROUND

Chapter 3

Expressing Minimum

In this chapter, we begin our intensional explorations, by studying the expressibility of the min-

imum of two lazy natural numbers in CDS0. We expected to obtain results similar to Colson's

in our study of sequential algorithms. After all, CDS0 is a sequential programming language by

design: sequential algorithms compute sequential functions. It turns out, however, that sequential

algorithms are su�ciently more powerful than PR algorithms to be able to compute minimum

e�ciently, but not powerful enough to compute the \natural" min function from Section 2.7. The

parallel query construct of Brookes and Geva allows us to compute that function. This, of course,

raises the question of whether the addition of query increases the intensional expressiveness of the

language. We show that it does; in particular, the computation of various n-ary functions can be

speeded up. However, this assumes non-parallel evaluation of CDS0.

Section 3.1 de�nes the dcds of lazy natural numbers and shows how it can be implemented in

CDS0, along with various algorithms on the lazy natural numbers. In Section 3.2 we show that

CDS0 cannot compute the min of Section 2.7, but can compute minimum e�ciently. We exhibit

an algorithm to do this. We introduce the extension of CDS0 with query, named CDSP, and de�ne

its semantics in Section 3.3. Section 3.4 shows the comparison of CDS0 and CDSP.

3.1 Implementing lazy natural numbers in CDS0

LNAT , the dcds of lazy natural numbers, is de�ned as follows: It has cells bn, for n � 0, values 0

and 1, and the following accessibility relation: b0 is initial, and fbi = 1g ` bi+1 (�lling a cell with 1

enables the next cell). Intuitively, �lling a cell with 1 means there might be more to follow, whereas

0 means we are done. hD(LNAT);�i is isomorphic to the domain LNAT from the introduction.

The encoding of the lazy natural numbers is:

Sn(?) = fbi = 1 j i < ng;

Sn(0) = fbi = 1 j i < ng [fbn = 0g; for n � 0;

S!(?) = fbi = 1 j i � 0g:

This mathematical de�nition of LNAT can be implemented as CDS0 code in the following way:

letrec lnat = dcds

cell B values 0,1

graft (lnat.s) access B = 1

end;

39

40 CHAPTER 3. EXPRESSING MINIMUM

We ask the interpreter to unroll the de�nition by displaying the �rst few cells and their access

conditions:

show more 3 lnat;

{

B values 0, 1,

(B.s) values 0, 1 access B=1,

((B.s).s) values 0, 1 access (B.s)=1}

Now let us de�ne a few constants: ?, 0, S(?), 1, and S!(?):

let Bot = {};

let Zero = {B=0};

let S_bot = {B=1};

let One = {B=1,(B.s)=0};

let Srec = algo

request B do

output 1

end

request ((B.$V).s) do

valof (B.$V) is

1 : output 1

end

end

end;

let S_omega_bot = fix(Srec);

S!(?) is de�ned as the least �xpoint of the algorithm which in the base case �lls B with 1, and

recursively, if the previous cell contains 1, puts 1 into the current cell. All the algorithms we shall

write on LNAT will have a similar structure. Note how we have used a variable ($V) to stand for

a sequence of tags of :s of any length (including 0).

Now we can write the successor algorithm; it is shown in Figure 3.1. It is only slightly more

complicated than the algorithm for S!(?), but warrants further explanation because it is higher-

order. Successor is de�ned as the �xpoint of a higher-order algorithm and it works as follows: If

asked what B is, it immediately outputs 1 (the successor of anything is at least S(?)). In the

general case, if asked what value an output cell holds, it asks what value the input cell immediately

preceding it holds, and outputs the same value.

3.2 CDS0 and minimum

We begin by showing that sequential algorithms cannot compute min. The proof follows standard

lines (cf. [6, 12]).

Proposition 3.2.1 There is no sequential algorithm computing min.

3.2. CDS0 AND MINIMUM 41

let succ_rec =

algo

request {}B do

output output 1

end

request {}((B.$V).s) do

output valof (B.$V)

end

request {(B.$V)=0}((B.$V).s) do

output output 0

end

request {(B.$V)=1}((B.$V).s) do

output output 1

end

end;

let S = fix(succ_rec);

Figure 3.1: The successor algorithm

Proof: A sequential algorithm computes a sequential function. But min is not sequential, since

it has no sequentiality index at (?;?) for output cell b0. In other words, there is no input cell

which must be �lled in order for min to �ll b0. (Actually, min has no sequentiality index at any

(Sn(?); Sn(?)) for bn, n � 0.) Therefore, no CDS0 algorithm can compute min. 2

But this does not mean we cannot compute minimum e�ciently in CDS0. Recall that the

problem with PR algorithms was that they become \�xated" on one input. Sequential algorithms

allow us to keep alternating between the two inputs, examining one cell at a time.

Proposition 3.2.2 There is a sequential algorithm which computes the minimum of two numbers

n and p in unary representation, and is of time complexity O(min(n; p)).

Proof: The actual algorithm is listed in Appendix B.1. Even though it looks rather complicated it

has the same basic structure as the previous LNAT algorithms. For the purpose of the presentation,

we shall assume the existence of a higher-level ML-like syntax for CDS0 algorithms, and discuss

an algorithm written in that syntax. It is implicitly to be understood, however, that we are really

referring to the CDS0 program.

In higher-level syntax, the algorithm looks like a simple sequential version of the min function

de�nition from Section 2.7. We choose the left input to evaluate �rst.

algo left min (n1, n2) =

case n1 of

0) 0

j S(x)) case n2 of

0) 0

j S(y)) S(left min(x, y))

42 CHAPTER 3. EXPRESSING MINIMUM

The algorithm has the following property:

[[left min]](Sn(0); Sp(0)) = Smin(n;p)(0);

so it does compute the minimum, and it works in time O(min(n; p)) by alternating between the

inputs and examining one cell at a time. 2
Note that the algorithm also satis�es:

[[left min]](Sn(?); Sp(?)) = Smin(n;p)(?);

so Colson's Proposition 2.7.1 fails as well in the context of sequential algorithms.

The key di�erence between left min and mina is illustrated by their behavior on pairs of a

totally de�ned and a partial element, such as (Sn(?); Sn(0)) (they agree on all other inputs):

[[left min]](Sn(?); Sn(0)) = Sn(?)

[[mina]](S
n(?); Sn(0)) = Sn(0)

This comparison makes it clear that min is a parallel function: it must evaluate its inputs in parallel

in order to be able to determine when either one is de�ned. Also note that [[left min]] �ts between

min and MIN in the pointwise order.

We illustrate the behavior of left min with the aid of the interpreter:

left_min.(One,S_bot);

request? B;

--> 1

request? (B.s);

--> 0

request? ;

left_min.(S_bot,One);

request? B;

--> 1

request? (B.s);

-->

request? ;

left_min.(S_omega_bot,One);

request? B;

--> 1

request? (B.s);

--> 0

3.3 CDSP

We now consider the extension of CDS0 with the query construct, which we call CDSP, standing

for \CDS Parallel." This was examined in detail by Brookes and Geva [12] from a denotational

point of view. We are more interested in the operational aspect, since we want to know the running

time of programs that use query. Consequently, we look at the changes necessary to the forest

representation and semantics in order to accommodate query.

As when we �rst described the query construct in Section 2.4, we shall ignore issues related to

ensuring that consistent inputs lead to the same output, and issues of the necessity of specifying

3.3. CDSP 43

future inputs in certain cases (such as for curried parallel algorithms). These issues are not related

to our main concerns; we refer the reader to [12] for the extra notation required to handle such

problems.

3.3.1 Forest semantics of query

We extend the set of forest instructions by queries, with the following general form:

Query f(c1; i1); : : : ; (cn; in)g is

fv11; : : : ; v1ng : ins1
: : :

fvm1; : : : ; vmng : insm
end

A query will have a number of patterns, each one of which is a vector of values extended with

the special symbol \ ". We introduce auxiliary notation to talk about patterns separately. In

general, the ith pattern will have the form:

f(c1; i1); : : : ; (cn; in)g is

fvi1; : : : ; ving:

Evaluating a pattern involves evaluating all the cells for which the corresponding pattern position

is not \ " in parallel, and verifying that the values match. There are three possible answers:

1. The values match, in which case we return the special value match.

2. There is at least one value that does not match. We return no match.

3. We do not have enough information to decide if we have a match. In this case we issue a

residual pattern which asks for the values of just those cells whose values we still need to

know.

This is summarized in the following evaluation rule for patterns, using the conventions that for any

v, \ " v v, and (v1; : : : ; vn) v (v01; : : : ; v
0
n) when, for each i, vi v v0i.

(Pat)

xi1 ? c1 ! v01;

: : :

xin ? cn ! v0n

9>=
>; and

8><
>:

(v01; : : : ; v
0
n) w (v1; : : : ; vn)

(v01; : : : ; v
0
n) incomparable to (v1; : : : ; vn)

(v01; : : : ; v
0
n) v (v1; : : : ; vn)

f(c1; i1); : : : ; (cn; in)g is

fv1; : : : ; vng:

)
? x1 � � � xnc0 !

8><
>:

match

no match

residual pattern

When executing a query, we will evaluate all the patterns in parallel. There are also three

possibilities:

1. At least one pattern matches (it is �ne if several patterns match, since we assume outputs

are the same in that case), in which case we execute the appropriate instruction.

2. No pattern matches, in which case we return
.

3. Evaluation of all patterns results in residual patterns. In that case we return a residual query

by putting together the residual patterns. We will not provide details on constructing such

queries.

44 CHAPTER 3. EXPRESSING MINIMUM

We present below the rule for evaluation of query instructions. Patternk stands for the kth

pattern in the query, and 1 � k � m.

(Qry)

8><
>:
Patternk ? x1 � � � xnc

0 ! match

8k: Patternk ? x1 � � � xnc
0 ! no match

8k: Patternk ? x1 � � � xnc
0 ! residual pattern

Query f(c1; i1); : : : ; (cn; in)g is

fv11; : : : ; v1ng : ins1
: : :

fvm1; : : : ; vmng : insm
end

9>>>>>=
>>>>>;

? x1 � � � xnc0 !

8><
>:

insk ? x1 � � � xnc
0

residual query

3.3.2 CDSP and minimum

The addition of the parallel query construct enables us to compute min, which is essentially a

generalization of parallel-or to integer arguments. The program is shown in Appendix B.2. Note

that it is actually simpler than the CDS0 program for left min. Again, for the purpose of the

presentation, we use a higher-level syntax. In that syntax, the program looks almost the same as

the de�nition of the min function from the introduction:

algo min (n1, n2) =

query (n1, n2) is

(0,)) 0

j (, 0)) 0

j (S(x), S(y))) S(min(x, y))

The program is clearly e�cient, examining two cells at a time. We then obtain the following:

Proposition 3.3.1 There is a CDSP program computing min.

3.4 CDS0 versus CDSP

We have seen that both CDS0 and CDSP can compute the minimum of two lazy natural num-

bers e�ciently. This raises the question of whether the addition of deterministic parallelism to

CDS0 buys us any intensional power. There actually appears to be a folk conjecture that deter-

ministic parallelism is not \useful." The claim is that even though deterministic parallel features

may increase the extensional expressiveness of a language, they are expensive to use and the ad-

ditional expressiveness is not useful in practice, because it applies only to computations that are

unbounded. In our terms, the claim is that deterministic parallelism may increase extensional, but

not intensional expressiveness.

This conjecture is false. Deterministic parallelism does add intensional expressiveness. The

deterministic query construct of CDSP is su�ciently general to allow a speedup in the computation

of many di�erent functions. When computing certain n-ary functions, the query construct allows

us to construct a tree of processes of logarithmic depth. We illustrate with n-ary disjunction.

For notational simplicity, we de�ne a separate function for each value of n, and we assume n is

a (�xed) power of 2. We have already de�ned por for two arguments. Here is the general case:

algo porn (b1, . . . , bn) =

por (porn/2 (b1, . . . , bn/2),

porn/2 (bn/2+1, . . . , bn))

3.4. CDS0 VERSUS CDSP 45

When computing porn, in order to �ll the output cell we query in parallel two cells. In order

to �ll those cells, we query two more for each. Intuitively, after a depth of log n queries we reach

our n inputs. Therefore, we compute the result in time O(log n). In CDS0, since we must examine

the inputs sequentially, we can only compute the result in time O(n).

We can formalize this by instrumenting our operational semantics to keep track of depth of the

computation. We only do this for result, query, valof, application, and product, as the others are

similar.

The new rules will have the form forest ; t ? c ! v; t0, where t stands for the time (or depth)

at which the question is asked, and t0 for the time at which an answer is issued. The modi�cations

for result and valof are simple.

(Result') Result v0; t ? x1 � � � xnc
0 ! v0; t+ 1

(Valof')

xp; t ? c !

8><
>:
vi; t

0

v; t0; and 8i: vi 6= v

; t0

Valof (c; i) is

v1 : ins1
: : :

end

9>>>=
>>>;
; t ? x1 � � � xnc0 !

8><
>:

ins1; t
0 + 1 ? x1 � � � xnc

0

; t0 + 1

outputp�1 valof c; t0 + 1

For query, the di�erence is that we are evaluating the patterns in parallel, and, within each

pattern, the cells are also evaluated in parallel. The depth of a pattern evaluation will depend

on the maximum of the depths of its sub-computations. The depth of a successful query will be

the minimum of the depths of the matching pattern evaluations; an unsuccessful query will have a

depth that is the maximum of the depths of all pattern evaluations.

(Pat')

xi1 ; t ? c1 ! v01; t1
: : :

xin ; t ? cn ! v0n; tn

9>=
>; and

8><
>:

(v01; : : : ; v
0
n) w (v1; : : : ; vn)

(v01; : : : ; v
0
n) 6w; 6v (v1; : : : ; vn)

(v01; : : : ; v
0
n) v (v1; : : : ; vn)

f(c1; i1); : : : ; (cn; in)g is

fv1; : : : ; vng:

)
; t ? x1 � � � xnc0 !

8><
>:

match; T

no match; T

residual pattern; T

(Qry')

8><
>:
Patternk; t ? x1 � � � xnc

0 ! match; tk
8k: Patternk; t ? x1 � � � xnc

0 ! no match; tk
8k: Patternk; t ? x1 � � � xnc

0 ! residual pattern; tk

Query f(c1; i1); : : :g is

fv11; : : : ; v1ng : ins1
: : :

fvm1; : : : ; vmng : insm
end

9>>>>>=
>>>>>;
; t ? x1 � � � xnc0 !

8><
>:

insk; Tmin ? x1 � � � xnc
0

; Tmax

residual query; Tmax

where T = 1 + maxft1; : : : ; tng, Tmax = maxft1; : : : ; tng, and Tmin = minftk1 ; : : : ; tkmg, for all ki
such that Patternki ; t ? x1 � � � xnc

0 ! match; tki .

46 CHAPTER 3. EXPRESSING MINIMUM

Finally, emblematic of the modi�ed CDS02 rules is application. We also show the new rule for

product, which is needed in what follows.

(App')

A; t ? Bc0!

8><
>:

valof c

output v0

9>=
>; ; t0

A:B; t ? c0!

8><
>:

v0

9>=
>; ; t0 + 1

(Prod')
nY
i=1

Ai; t ? (c:i)!Ai; t+ 1 ? c

Example 3.4.1 Suppose we just want to ask a question of a ground state. Let us consider the

state fB = ttg. Its forest representation is Tree(B;Result tt), so we have:

fB = ttg; 0 ? B ! tt ; 1:

Example 3.4.2 We have already seen the internal representation of land in Figure 2.5. We have:

land:f(B:1) = tt ; (B:2) = ttg; 0 ? B! tt ; 4;

because there are two valof and two result instructions along the way.

We are now ready to prove that n-ary disjunction works in logarithmic time.

Proposition 3.4.3 porn(b1; : : : ; bn); 0 ? B ! v; t, where t � 4 log n.

Proof: By induction on n, which is always a power of 2.

In the base case we have, por(b1; b2); 0 ? B ! v; 4, since we execute App', Query', Prod',

and Result'. But 4 = 4 log 2, so the proposition holds for n = 2. Suppose it holds for n. Then

por2n(porn(b1; : : : ; bn); porn(bn+1; : : : ; b2n)); 0 ? B ! v; t;

where t = 1 + 1 +maxf1 + 4 log n; 1 + 4 log ng = 3 + 4 log n. But 4 log 2n = 4 + 4 log n > t. 2
So we have established that:

Proposition 3.4.4 CDSP is intensionally more expressive than CDS0.

3.5 Discussion

The sequentiality of the primitive recursive algorithms is manifested by their ability to recur on

only one input. This makes them \ultimately obstinate," and they are not able to express an

e�cient algorithm for minimum.

The sequentiality of Berry-Curien algorithms is \by design." A sequential algorithm computes

a sequential function, by only choosing one sequentiality index at a time, even if more than one

exists. However, sequential algorithms are more expressive than primitive recursive algorithms:

there is a sequential algorithm that computes a version of the minimum function e�ciently, but

not the \natural," inherently parallel, minimum function.

3.5. DISCUSSION 47

The addition of deterministic parallelism to CDS0 allowed us to compute the \natural" version

of the minimum function, but CDS0 was already able to express an e�cient minimum algorithm.

However, the addition of deterministic parallelism did add intensional expressiveness, contradicting

a folk conjecture. The computation of a number of functions can be speeded up, such as n-ary

disjunction.

Note that there is a certain sense, however, in which our comparison of CDS0 and CDSP is

not \fair." It is possible to imagine parallel evaluation strategies for CDS0 (cf. Curien [26]). Such

parallel evaluation would not work well with CDS02, but in CDS01, with its tables, we could have

eager computation which �lls the table without waiting for a question. This could, of course, lead

to a lot of useless computation, so it may be possible that we get good time-e�ciency, but poor

work-e�ciency. We return to this point in the concluding chapter.

48 CHAPTER 3. EXPRESSING MINIMUM

Chapter 4

Circuit Semantics

This chapter consists of two parts, both concerned with establishing relative intensional expressive-

ness results for parallel extensions of PCF, and both utilizing circuit semantics as the main tool.

Circuit semantics associates a gate with each basic construct of the language, and takes the mean-

ing of a program to be a circuit. The dimensions of the circuit enable reasoning about running time

and work required for execution. In the �rst part of the chapter, we compare four deterministic

extensions of PCF: parallel-or, parallel conditionals on booleans and integers, and deterministic

query [12]. To aid us in this comparison we introduce a na��ve version of the circuit semantics (�rst

reported in [13]), which enables us to talk about relative depth of an implementation. This notion

is good enough to produce a hierarchy of intensional expressiveness: query is the most powerful,

followed by parallel conditional on integers, while parallel-or and parallel conditional on booleans

are equivalent and the weakest.

In the second part of the chapter, we compare deterministic query with a nondeterministic

version (�rst presented in [27]). We re�ne the circuit semantics to allow us to talk about parallel

time and parallel work required for execution, and we establish connections between the size and

depth of a circuit representing a parallel PCF program to the time and work required to execute it

under call-by-speculation [49], parallel call-by-value, and parallel eager evaluation. We also relate

the circuit dimensions of a program to the time and number of processors required to execute it in

the PRAM model.

In order to be able to compare the two versions of query, we are forced to make a hardware

assumption which is equivalent to having the ability to detect unde�ned inputs. This makes a

subset of the programs using nondeterministic query return a deterministic result. The assumption

is reasonable from a practical point of view and has been used in various studies of consensus

problems in distributed systems [34]. The e�ect of this assumption is to render our problem

similar to one from computational complexity, that of comparing monotone and De Morgan boolean

circuits. It turns out that parallel PCF programs are intensionally equivalent to boolean circuits

for a certain class of functions involving unde�ned inputs. This connection allows us to use strong

results from complexity theory to establish intensional expressiveness results.

Section 4.1 describes the slightly di�erent version of PCF we are using, and the deterministic

parallel extensions we shall be comparing. A �rst version of the circuit semantics is introduced in

Section 4.2 and is used to obtain the �rst intensional separation results in Section 4.3. Section 4.4

describes the recursion-free version of PCF we use for the nondeterministic extension, and intro-

duces the nondeterministic query. The circuit semantics is re�ned in Section 4.5 and the method

for making the comparison between determinism and nondeterminism is outlined in Section 4.6.

Section 4.7 shows a connection between our question and circuit complexity, which is used in Sec-

49

50 CHAPTER 4. CIRCUIT SEMANTICS

tion 4.8 to obtain the separation of deterministic and nondeterministic query. Finally, Section 4.9

provides a discussion of the results.

4.1 PCF and deterministic parallel extensions

4.1.1 PCF

In addition to the standard PCF constants listed in Figure 2.1, we assume the existence of a

constant-time equality test for integers:

= : �! �! o

with the obvious operational semantics. Traditionally, the equality test is implemented using re-

cursion (cf. [81]), but this would render some of the issues of interest to us moot. The reason

for this is that in what follows we will want to know when one construct can be implemented in

terms of others without using recursion. Since we are not using integers in unary representation,

it would be unreasonable to have to use recursion to check for equality. In fact, a more realistic

logarithmic-time test would not invalidate our results; we chose a constant-time test because it is

simpler.

Let FV (M) stand for the set of free variables of term M . If FV (M) = ; then the term M is

closed , else it is open. The closed terms of ground type are referred to as programs.

4.1.2 Parallel-or and parallel conditionals

The parallel extensions of PCF studied in Plotkin's seminal paper [70] are: por, pifo (parallel

conditional on booleans), and pif� (parallel conditional on integers). The extension of PCF with

any of these functions is fully abstract with respect to the standard denotational semantics. The

parallel conditionals are de�ned as follows:

pif� : o!�!�!�

pif� ? x x = x

pif� tt x ? = x

pif� � ? x = x

for � = �; o. Por, pifo, and pif� are known to be extensionally equivalent [26, 81], i.e., one can

be implemented in terms of another. The question we address is whether they are intensionally

equivalent. Interestingly, the answer turns out to be negative.

4.1.3 Query

Another parallel deterministic extension we are interested in exploring is query . We have already

encountered query in the context of concrete data structures, but the construct is quite general,

and in this chapter we use it to extend PCF. Figure 4.1(a) shows the PCF-like syntax we envision

for query in yet another example of a program for parallel-or.

The general form of the query syntax is shown in Figure 4.1(b). The x�ii (�i 2 fo; �g) are

variables, the pi are patterns, and the M �
i are PCF terms. A pattern is a vector of length n (the

number of variables in the query), with each element being either a variable y, a closed term e of

ground type, or the \don't care" symbol \ ". All of the variables in one pattern must be distinct.

We distinguish between two versions of the query construct: deterministic and nondeterministic.

In the �rst case, we shall require the same output for all consistent inputs. Let p1 = (v1; : : : ; vn)

4.1. PCF AND DETERMINISTIC PARALLEL EXTENSIONS 51

por � �xy: query (x; y) is query : (�1 � � � � � �n)! �

(tt ,)) tt query (x�11 ; : : : ; x
�n
n) is

j (, tt)) tt p1)M �
1

j (� , �)) � . . .

pk)M �
k

Figure 4.1: (a) parallel-or, (b) query syntax

and p2 = (w1; : : : ; wn) be two patterns. We call the two patterns consistent (written p1 * p2) if 8i,

either D[[vi]] v D[[wi]] or D[[vi]] w D[[wi]]. Since the elements of patterns come from at domains,

this formulation of consistency coincides with the conventional notion of \having an upper bound."

We extend the standard semantics with D[[]]� = ?, and note that a variable in a pattern will

always be consistent with anything, since it is the equivalent of a \don't care."

Example 4.1.1 We present some examples of consistent and inconsistent patterns. We have

(; 1) * (0;); (; y) * (x;); (x; 1) * (0; y); and also (x; 1) * (0; x):

On the other hand,

(0; 1) 6* (0; 0) and (; 1) 6* (0; 0):

A deterministic query has the property that it produces the same output for all consistent

inputs, i.e., given two patterns pi; pj , if pi * pj then D[[Mi]] = D[[Mj]]. The determinism restriction

makes it fairly easy to de�ne a semantics, shown in Figure 4.2. We use Q to refer to the general

form of query, from Figure 4.1(b). Amb is McCarthy's ambiguity operator [62]:

amb(?; x) = x; amb(x;?) = x; amb(x; y) = x or y;

which behaves essentially like a parallel-or when only one argument is de�ned, and performs an

arbitrary choice between the arguments if both are de�ned. Ambk is k-ary amb. Because of the

determinism constraints, it will always be the case that amb will behave deterministically, i.e., if

we have amb(x; y) with both x; y de�ned, then x = y. Consequently, the meaning of a query will

be a continuous function.

We use the notation ~x for (x�11 ; : : : ; x
�n
n), and j for concatenating environments, with the simple

properties: � j ? = ? j � = �. It is not possible to have multiple bindings for the same variable,

because of our requirement that all variables in one pattern should be distinct. ^ is parallel-and,

with the properties: tt ^ tt = tt ; � ^ ? = � ; ? ^ � = � .

The auxiliary semantic function Dpat de�nes the meaning of a pattern match. It keeps track of

whether the pattern match succeeds and of any bindings generated in the process. A pattern match

succeeds when each element of the pattern matches its corresponding input. Since we can have

variables in the patterns, we may generate bindings. The results of element-wise matching com-

parisons are combined with parallel-and, and the environment extended with any newly generated

bindings.

We work out an example in detail in order to illustrate the semantics. Consider the following

query:

52 CHAPTER 4. CIRCUIT SEMANTICS

Dpat : Patterns!Environments!(Dbool � Environments)

D[[Q]]� = ambk(D[[~x is p1)M �
1]]�; : : : ;D[[~x is pk)M �

k]]�)

D[[~x is p)M �]]� =

(
D[[M �]](� j �); if Dpat[[~x is p]]� = (tt ; �)

?; if Dpat[[~x is p]]� = (� ; �)

Dpat[[(x
�1
1 ; : : : ; x

�n
n) is (e�11 ; : : : ; e

�n
n)]]� = (b1 ^ � � � ^ bn; �1 j � � � j �n);

where (bi; �i) = Dpat[[x
�i
i is e�ii]]�

Dpat[[x
� is e�]]� =

8><
>:

(D[[x�]]� = D[[e�]]�;?); if e� is closed

(tt ; y� 7! x�); if e� � y�

(tt ;?); if e� �

Figure 4.2: Denotational semantics for deterministic query

Q � query (x1; x2) is

(x; 1))M1

j (0; y))M2.

According to the semantics, we have:

D[[Q]]� = amb(D[[x1x2 is (x; 1))M1]]�;D[[x1x2 is (0; y))M2]]�):

The arguments to the ambiguity operator are:

D[[x1x2 is (x; 1))M1]]� =

(
D[[M1]](� j x 7! x1); if �(x2) = 1

?; otherwise:

D[[x1x2 is (0; y))M2]]� =

(
D[[M2]](� j y 7! x2); if �(x1) = 0

?; otherwise:

One can easily see why having variables in the patterns is equivalent to a \don't care"; the only

di�erence is that the environment � gets extended with a new binding. The above equations were

obtained with the aid of the Dpat semantics:

Dpat[[x1x2 is (x; 1)]]� = (�(x2) = 1; x 7! x1); because

Dpat[[x1 is x]]� = (tt ; x 7! x1)

Dpat[[x2 is 1]]� = (�(x2) = 1;?)

Dpat[[x1x2 is (0; y)]]� = (�(x1) = 0; y 7! x2); because

Dpat[[x1 is 0]]� = (�(x1) = 1;?)

Dpat[[x2 is y]]� = (tt ; y 7! x2)

It should be noted that since the two patterns are consistent (cf. Example 4.1.1), we must have

D[[M1]] = D[[M2]] if our query is to be deterministic.

4.2. CIRCUIT SEMANTICS: FIRST APPROACH 53

b x y

M

x

M

N

(a) (b) (c)

Figure 4.3: (a) �x: M , (b) (�x: M)N , (c) �� b x y

4.2 Circuit semantics: �rst approach

In order to compare por, pifo, and pif�, we �nd it useful to view PCF programs as circuits. There

are several reasons for this. First, it enables us to reason based on the last gate used in the circuit.

Viewing a program as a circuit reduces the number of cases we need to consider. Second, the

running time of the program loosely corresponds to the depth of the circuit. At this stage, we are

only interested in the depth of programs, i.e., closed terms of ground type, so we need not worry

about complications caused by higher-order terms. Also, a loose correspondence is �ne, since we

only need to distinguish programs that use recursion from programs which do not. And third,

circuits provide a visual and intuitive semantics. This is more than a cosmetic point: viewing

programs as circuits enables us to �nd the connection with boolean circuits in the second part of

this thesis.

The translation from PCF to circuits is simple. Figure 4.3 shows circuits for function de�nition,

application, and a constant. A function denotes a circuit some of whose inputs are labelled with

variables. Application substitutes a value for a variable, or, if we have a whole circuit, connects its

output to the respective variable-labelled input. Note that higher-order functions can be treated

in this framework as well, by using gates labelled with the function variable inside the circuit (for

an example, see Figure 4.8 in Section 6). There are gates for the various constants. The only

interesting case is the Y combinator. It gives rise to a special kind of circuit, a dynamic circuit ,

which can have subparts expanded dynamically as required during computation.

The semantics of circuits is based on PCF's operational semantics. Execution is demand-driven

and begins at the output. The last gate in the circuit is activated. This gate may start evaluating

one (or more, if it is parallel) of its inputs, leading to activity at further gates, and so on. If the

computation terminates, the result will �lter down to the output of the last gate.

De�nition 4.2.1 A circuit is static if it is the translation of a non-recursive PCF program.

De�nition 4.2.2 A circuit is dynamic if it is the translation of a recursive PCF program.

A circuit could have several inputs, but it always has just one output, so it is shaped as a tree.

De�nition 4.2.3 The depth of a static circuit is equal to the height of the underlying tree.

De�nition 4.2.4 A circuit is constant-depth if it is either static, or a dynamic circuit which does

not expand more than a �xed constant number of times (independent of the inputs).

54 CHAPTER 4. CIRCUIT SEMANTICS

= f

+1

n n x

3

x

f :

Figure 4.4: Y F

Example 4.2.5 To give an example of dynamic circuits, and to illustrate the di�erence between

constant-depth and non-constant-depth dynamic circuits, consider the following PCF term:

F = �fnx: �� (= n 3) x (f (+1 n) x):

Figure 4.4 shows the circuit denoted by the recursive PCF term Y F . We enclose a dynamic circuit

in a box with dotted lines, to represent the fact that it can be expanded. The box is labelled with the

name of the recursive part. The result of expanding the circuit once is shown in Figure 4.5.

The program Y F n for 0 � n � 3 gives rise to a constant-depth dynamic circuit, while for n > 3

it results in a non-constant-depth dynamic circuit.

In the following, we are particularly interested in the constant-depth circuits. If two functions

can be implemented in terms of each other with constant-depth circuits, we say that the two

functions are intensionally equivalent .

4.3 Intensional separation for deterministic extensions

4.3.1 pif� versus por and pifo

We begin by reviewing known implementations of the various functions.

Proposition 4.3.1 por and pifo are intensionally equivalent.

Proof: We need constant-depth implementations of one in terms of the other. This can be done

as follows (cf. [81]):

por = �xy: pifo x tt y,

pifo = �bxy: por (pand b x)

(pand (not b) y)

(pand x y),

where pand is the parallel conjunction de�ned by:

pand = �xy: not (por (not x) (not y));

and we have generalized por to three arguments in the obvious way. 2
It is known that pif� can implement pifo (cf. [81]):

4.3. INTENSIONAL SEPARATION FOR DETERMINISTIC EXTENSIONS 55

= f

+1

n x

3

x

f :

=

n 3 x

+1

n

Figure 4.5: Y F expanded once

pifo = �bxy: (= 1 (pif� b (�� x 1 0) (�� y 1 0))):

This implementation is also e�cient. In view of the previous proposition, it follows that pif� can also

implement por e�ciently. However, the converse is false. The problem is that por can only start

parallel subcomputations on booleans, whereas pif� operates in parallel on integers. The standard

way of encoding pif� with por uses recursion (cf. [81]):

pif� = Y F 0; where

F = �fnbxy: �� (por (pand (= x n) (= y n))

(pand b (= x n))

(pand (not b) (= y n)))

n

(f (+1 n) b x y).

This is clearly ine�cient, because of the way the recursion unwinds, checking if x and y are equal

to 0 �rst, then 1, and so on. But we cannot do any better. To show that, we prove �rst two lemmas

which restrict the shape of any program computing pif�.

The point of the �rst lemma is that it is impossible to design boolean circuitry B which chooses

between x and y and obeys all the requirements of pif�.

Lemma 4.3.2 It is not possible to write a program in PCF + por that computes pif� b x y and is

of the form �� B x y, where B is a static circuit yielding a boolean.

Proof: Without loss of generality, the issue is whether it is possible to write a PCF + por function

B with the following properties:

1. If b is tt then B is tt ,

56 CHAPTER 4. CIRCUIT SEMANTICS

b (= x y) B

tt ? tt

� ? �

? tt tt

Table 4.1: Requirements for function B

2. If b is � then B is � ,

3. If (= x y) is tt then B is tt .

Figure 4.1 shows some of the inputs and corresponding outputs for function B. For simplicity, we

assume only b and (= x y) are used in evaluating B. The same argument can be carried through

with additional inputs, since b and (= x y) must be used in evaluating B.

The last line of Table 4.1 implies by monotonicity that B � tt = tt . But this violates the

monotonicity condition raised by the second line. Therefore, no program of this form computes

pif� b x y. 2

Our second lemma generalizes the �rst one.

Lemma 4.3.3 It is not possible to write a program in PCF + por that computes pif� b x y and is

of the form �� B N1 N2, where B, N1, N2 are static circuits yielding a boolean and two integers

respectively.

Proof: Intuitively, there are two possibilities for B: either it \chooses" between N1 and N2, or

it is \hardwired" to always pick one of them. More precisely, we have two cases for the function

computed by B:

1. B is non-constant. Since the program computes pif� b x y, the result must be either x or y.

There are an in�nite number of possible inputs and outputs and N1, N2 are static circuits,

so it is not possible to hard-code the output. B will sometimes return tt and sometimes � .

There are then three choices for what N1, N2 evaluate to:

(a) They evaluate to x, y, respectively. But this is impossible by Lemma 4.3.2.

(b) They both evaluate to pif� b x y. The �� gate then does no work. Since N1, N2 both

compute something of type integer, there are essentially two cases for the last gate used

in their construction: (i) �� or (ii) +1 (�1 is handled similarly). In case (i) apply the

same reasoning of this lemma. There cannot be an in�nite sequence of �� gates which

do nothing, since the circuit is static. It is not possible for all �� gates to do nothing

since the output would then have to be constructed out of +1, �1, and the integers,

so it would either be hard-coded (and it must work for an in�nite number of values),

or produce a �xed o�set from x or y. The latter case is analogous to case (1a) above,

except that the branches evaluate here to a �xed o�set of x or y; the same reasoning

applies. In case (ii) there cannot only be +1 (or �1) gates for the reason outlined above.

Also, there can only be a constant number of +1 (or �1) in a row before some �� is

reached, whereupon we can apply the lemma again. By the same reasoning we must at

some point encounter case (1a) of the proof.

4.3. INTENSIONAL SEPARATION FOR DETERMINISTIC EXTENSIONS 57

(c) One evaluates to pif� b x y and the other to x or y. We apply the same reasoning as

in case (1b) to the last gate in the branch evaluating to pif� b x y, eventually reaching

case (1a).

2. B is constant. That means that either N1 or N2 must compute pif� b x y. Again we have

a �� gate which does no work. Without loss of generality, assume B is tt , so N1 always

gets chosen. We apply the same reasoning as in case (1b) to the last gate in N1 eventually

reducing the problem to case (1a).

So our circuit cannot be �lled with gates which \do no work." At some point there must be a ��

which essentially attempts to choose between x and y. But that is impossible by Lemma 4.3.2.

Therefore, our pif� program cannot have even this more general form. 2
Now we are ready to prove the main result of this section.

Proposition 4.3.4 PCF + por cannot implement pif� with a constant-depth circuit.

Proof: Assume there exists a constant-depth circuit computing pif�. There are two possibilities:

1. Static circuit. The result has type integer. Therefore, there are two cases for the last gate in

the circuit:

(a) ��. By Lemma 4.3.3 this is not possible.

(b) +1 or �1. The circuit cannot be constructed entirely out of +1, �1, integers, x, y,

because the result would be either hard-coded (and it must work for an in�nite number

of values), or a �xed o�set of x or y. Also, since the circuit is static, there can only be

a constant number of +1 or �1 in a row before reaching an occurrence of ��. Then we

have essentially the same situation as in case (1a) (modulo some �xed o�set, as in the

proof of Lemma 4.3.3), and by the same argument the circuit cannot implement pif�.

2. Dynamic circuit. We want to show that the circuit cannot be constant-depth. Assume, for a

contradiction, that there is a �xed maximum constant depth beyond which the recursion does

not get unwound, regardless of the inputs b, x, y. Then there are only �nitely many constant-

depth circuits which could be the result of the unwinding. But there are in�nitely many

possible inputs. Therefore, at least one of these circuits must work for in�nitely many inputs.

Apply the same reasoning on that circuit as in case (1) of this proof. We can assume there is

no other recursion, otherwise continue the argument on the innermost recursion, which must

exist because of the constant-depth assumption. Therefore, there is no �xed maximum depth

for unwinding the recursion computing pif�.

In conclusion, it is impossible to write a constant-depth program using por to compute pif�,

therefore por and pif� are not intensionally equivalent. 2

4.3.2 Query versus pif�

In order to compare query to the other constructs, we need to make �ner-grained distinctions than

those in the previous section, and consequently, circuit semantics is no longer useful in the form we

have presented it. The problem is due to the fact that we have a mixture of sequential and parallel

constructs in the language and circuit semantics is an inherently parallel semantics. For a non-

parallel evaluation strategy this implies that the running time of a program does not correspond

closely to its circuit depth. To make the comparisons in this section we need to extend PCF's

58 CHAPTER 4. CIRCUIT SEMANTICS

operational semantics with a notion of running time. We omit the details, but note that the results

of this section only apply to evaluation strategies that are not parallel on the sequential constructs

of PCF. We return to this point in the last chapter of the thesis.

To see that query is more powerful consider the implementation of an n-ary function, such as

n-ary addition. Assume the existence of an addition operation (+), so we can write sequential

addition without having to use recursion: add2 � �xy: x+ y. We can implement binary addition

with query as follows:

padd � �x1x2: query (x1; x2) is

(v1; v2)) v1 + v2

Note that the addition of v1 and v2 is performed sequentially (this + is sequential, not bitwise-

parallel). This is not essential. What is important is that separate processes are started to evaluate

the inputs. Thus, we can implement n-ary addition in depth log n by constructing a tree of binary

additions.

So the question we are concerned with is whether pif� can also implement n-ary addition e�-

ciently. The answer is no. The problem is that even though pif� can start parallel subcomputations

to evaluate two integers, it must return one of them. There is no way to combine the results of the

subcomputations. Only a limited amount of communication exists between the subcomputations:

a check for equality of their results.

Proposition 4.3.5 PCF + pif� cannot implement n-ary addition in depth log n.

Proof: We identify a property that holds for our query program, padd, and show that it does not

hold for programs of PCF + pif�. In padd the inputs are evaluated in parallel and the result is

their sum. In PCF + pif�, the only parallel primitive is pif� so the inputs x and y must go through

some pif� if they are to be evaluated in parallel. Suppose x goes through pif� after passing through

some constant-depth circuit computing F and similarly for y and a function G. Then the output

of the pif� is either F (x) or G(y). If either F (x) = x + y or G(y) = x + y, then the addition was

performed sequentially before the pif�. If the output of pif� goes into some constant-depth H such

that H(F (x)) = x+ y or H(G(y)) = x+ y then the addition was also performed sequentially, this

time after the pif�. So it is not possible to compute x + y using pif� in such a way that x and y

are evaluated in parallel. Therefore, a PCF + pif� program for n-ary addition must be of depth at

least n. 2

As a corollary of the previous two propositions, we have the following:

Proposition 4.3.6 PCF + por cannot implement n-ary addition in depth log n.

In light of these results, we have the emergence of a picture of di�erent levels of intensional

expressiveness for deterministic parallel constructs: At the lowest level we have por and pifo, which

seem to be able to speed up only n-ary boolean functions. At the next level we have pif�, which

can be used to speed up some integer functions. Finally, at the top level we have query, which can

be used to speed up n-ary addition.

4.4 Comparing deterministic and nondeterministic query

A natural question to ask, after the results of the previous section, is whether relaxing the determin-

ism constraint on the deterministic query gives us an increase in intensional expressiveness. This

4.4. COMPARING DETERMINISTIC AND NONDETERMINISTIC QUERY 59

turns out to be a di�cult question. In order to answer it we are forced to make some concessions:

First, we consider a recursion-free version of PCF, since the recursive part does not mesh well with

our interpretation for nondeterministic query. This is not that important, however, since we shall

be making a connection with boolean circuits, which are not recursive. Second, we make a hard-

ware assumption, in order to render the result of a subset of nondeterministic queries deterministic.

This, of course, implies that we are not really comparing a deterministic and a nondeterministic

construct, but rather two di�erent machine models. We also need to go back and revisit the circuit

semantics in order to obtain a precise correspondence between the dimensions of a circuit and the

running time and work required to execute a program. We begin by introducing the modi�ed

language and nondeterministic query.

4.4.1 Recursion-free PCF

The big departure from the previous description of PCF is the lack of recursion. However, since

we still need to talk about unde�ned (or \missing") inputs, we introduce \unde�ned" constants

�, one for each type �. We also expand somewhat the set of arithmetic constants, but this is not

essential. The new set of constants we will consider is:

tt ;� : o +;� : �! �! �

n : � �� : o!�!�!� (� 2 fo; �g)

=; <;>;�;� : �! �! o
� : � (unde�ned elements)

4.4.2 Nondeterministic query

We drop the consistency requirement on the various outputs of a query. As an example of the

programs we can write now, here is one that turns out to be important in what follows:

not? � �x:query (x) is

tt) �

�) �

) tt

The semantics we presented earlier for deterministic query (Figure 4.2) also makes sense for non-

deterministic query, but now permits the amb operator to be presented with distinct de�ned inputs.

Under this interpretation, however, programs no longer compute functions, but relations. Given

the fact that our de�nition of intensional expressiveness requires the computation of functions, we

would have to restrict the indeterminacy to the inside of a program. The following proposition

shows that we cannot do that in any useful way.

Proposition 4.4.1 Under the semantics of Figure 4.2, nondeterministic query is not intensionally

more expressive than deterministic query.

Proof: Let P be a nondeterministic program which computes the function f , and suppose it

uses amb(x; y), with x 6= y. Since P must compute a deterministic answer (by the de�nition of

intensional expressiveness), the amb(x; y) must be \determinized" somehow. Essentially, the only

way that could be achieved is to throw it out: either not use it, or use it in one branch of a

conditional that always chooses the other branch, or use it as the argument to a function whose

result is independent of its input. But then we can certainly write a deterministic version of P that

computes f with the same e�ciency. 2

60 CHAPTER 4. CIRCUIT SEMANTICS

Dpat[[x
� is ij]]� =

(
(not (poll x�);?); if exhausted(x�; i; j; p1; : : : ; pk; �)

(tt ;?); otherwise

exhausted(xo; i; j; p1; : : : ; pk; �) =

8><
>:

tt ; if
((9l;m: D[[elj]]� = tt ^ D[[emj]]� = �)_

(9l: D[[elj]]� = yo)) ^ (p1nj * � � � * pknj)

� ; otherwise

exhausted(x�; i; j; p1; : : : ; pk; �) =

(
tt ; if (9l: D[[elj]]� = y�) ^ (p1nj * � � � * pknj)

� ; otherwise

Figure 4.6: Semantics for nondeterministic query

We still want to restrict ourselves to programs that compute functions, even though they may use

nondeterministic query, but we need a di�erent interpretation for the meaning of nondeterministic

query. One possibility is shown in Figure 4.6. The idea is to allow the \don't care" symbol

to represent ? in certain circumstances, e.g., when the corresponding pattern position has been

exhaustively checked for all other alternatives, and the remainder of the pattern is consistent. The

semantics is the same as in Figure 4.2 except for the \don't care" symbol. Let us say that such a

symbol is found at location j in the ith pattern (written ij). If the other patterns exhaustively check

the input at location j and are otherwise consistent (pnj refers to the pattern p without location j),

then the meaning of matching x� to \ " is a poll of the input. Poll is a nondeterministic construct

[68] which checks whether an input is available:

poll ? = � ; poll x = tt ; if x 6= ?:

The p1 through pk are the k patterns from the general form of a query (cf. Figure 4.1(b)). The

notation elj refers to the element at location j in the lth pattern. The function exhausted has two

cases: if the input is of type boolean, then it looks for both a tt and � elements in the corresponding

position in the other patterns. If the input is an integer, it looks for a variable in the corresponding

position (since once cannot exhaust all other integers by enumeration in the other patterns). In

both the boolean and the integer case, the remainder of the pattern is checked for consistency.

Example 4.4.2 We present examples of interpreting \don't care" as ? and others where we do

not. In the following:

tt

�

(tt ; 1)

(� ; 1)

(; 1)

(1;�)

(x;�)

(;�);

the \don't care" is interpreted as ?. However, in the following two examples it is not:

(tt ; 1)

(� ; 0)

(; 1)

(1;�)

(2;�)

(;�):

Now we can identify a subset of the nondeterministic queries which return deterministic results,

assuming we can detect unde�ned inputs. When we have a \ ij" interpreted as ? we can take its

4.5. CIRCUIT SEMANTICS REVISITED 61

meaning to be D[[ij]]� = ?, where we have added the element ? to the at domains Dbool;Dint,

with ? v ?. Then under the above de�nition of consistency we obtain the desired queries.

An example of a query which returns deterministic answers, assuming we can detect unde�ned

inputs, is the not? program presented earlier. Because D[[]]� = ?, the three patterns are not

consistent, and so it is �ne for the result of the last pattern to be di�erent. If we extend the not?
query with another line, such as) � , then the query will no longer return deterministic answers,

since both \ " symbols will be interpreted as ?.

We call the extension of PCF with deterministic query DPCF, and the extension with non-

deterministic query NPCF. It is quite obvious that NPCF is extensionally more expressive than

DPCF, but we are interested in the following question: Is NPCF intensionally more expressive than

DPCF? Since NPCF is an extension of DPCF it can certainly compute as e�ciently as DPCF.

However, to show that NPCF is more expressive, we must exhibit a function expressible in both

DPCF and NPCF, and prove that DPCF cannot compute it as e�ciently. This question turns out

to be analogous to a problem in computational complexity theory, that of comparing monotone

and De Morgan boolean circuits. Before showing why, we return to our circuit semantics.

4.5 Circuit semantics revisited

As we have seen, the basic idea of circuit semantics is very simple and has much in common with

dataow networks: view each construct of PCF as a gate, and view a computation as data owing

through the gate. The whole program becomes a circuit. Earlier we considered the circuits as being

executed bottom-up. This reected our intuition about recursion being unwound on demand. But

now we wish to view them as being executed top-down, given our upcoming comparison with

boolean circuits. We shall also make very precise the relationship between the dimensions of a

circuit and various parallel evaluation orders for PCF, and introduce new gates to model queries.

4.5.1 Circuits for PCF

Figure 4.7(a)(b) shows the circuits representing constants and variables. The truth values and

the integers are represented by nodes with no inputs. Nodes may have several outputs (fan-out

is unlimited). Each of the functional constants is a node with the required number of inputs. A

variable is represented by a wire, or for higher-order functions, a placeholder circuit labelled with

the variable name. Figure 4.7(c) shows an input that is ignored; we need such a convention to

write functions like the K combinator. The representation of conditionals in Figure 4.7(a) shows

one of the essential di�erences with dataow networks, which use switch and merge nodes to avoid

evaluating more than one branch of the conditional during data-driven (top-down) execution. For

demand-driven (bottom-up) execution of the network the di�erence is irrelevant. Figure 4.7(d)(e)

shows the representation of lambda abstraction and application. This points out the other major

di�erence with dataow networks: there are no application nodes. Figure 4.8 shows the circuits

representing three simple PCF terms. Note that our representation builds in sharing of arguments

of ground type (but functional arguments are not shared).

Since it is rather di�cult to reason about circuit dimensions in pictorial form, we de�ne a

model for the dimensions of a circuit. Figure 4.9 is an extended semantics for PCF, returning

step-counting versions of a term, S-Terms (cf. t-programs in [77]), computing its depth and size.

Evaluating the step-counting depth and size translations of a program gives us its depth and size.

We assume renaming of bound variables, so that all identi�ers are unique. The � environment in the

size translation ensures sharing of arguments of ground type. Whenever a variable x of ground type

62 CHAPTER 4. CIRCUIT SEMANTICS

ntt

x f

...(a)

(b) (c)

+=

(d) (e)

N

MM

x

Figure 4.7: Circuits for (a) constants, (b) variables, (c) ignored inputs, (d) abstraction, (e) appli-

cation, (f) query

x y

(a) (b) (c)

+

2

f

f
x

Figure 4.8: Examples: (a) (�x: x+ x)2, (b) �xy: x, (c) �fx: f(fx)

4.5. CIRCUIT SEMANTICS REVISITED 63

is encountered, the environment � is checked. If the variable does not occur in the environment,

i.e., eta(x) = ?, then � is extended with the binding x 7! 1. On subsequent encounters of the same

variable, its size will not be counted. Recall that we assume renaming of bound variables, in order

to avoid any clashes in �. �1 is the �rst projection. The syntax of S-Terms uses � rather than �

merely to emphasize the distinction between the programming language and the meta-language.

Example 4.5.1 Consider the program (�x: x + x)2, whose circuit semantics is depicted in Fig-

ure 4.8(a). The meaning of the program under the extended semantics is:

E [[(�x: x+ x)2]]? = (4; (�x: 1 +max(x; x))1; (�x: 1 + x+ 0)1):

Obtaining the S-term for the depth is straightforward. We describe in more detail how the size

S-term is calculated:

size((�x: x+ x)2)? = (s1; s2; �); where

(s1; �
0) = size(�x: x+ x)? = (�x: s01; �

0);

(s2; �
00) = size(2)�0;

It is in the evaluation of (s01; �
0) = size(x+ x)? that we use the environment:

s01 = size(x+ x)? = (1 + s11 + s12; �12); where

(s11; �11) = size(x)? = (x; x 7! 1);

(s12; �12) = size(x)(x 7! 1) = (0; x 7! 1):

From the above we deduce that:

size(�x: x+ x)? = (�x: 1 + x+ 0; x 7! 1); and

size(2)(x 7! 1) = (1; x 7! 1):

Evaluating the depth and size step-counting programs, we get a depth and size of 2, which match

the circuit dimensions in Figure 4.8(a).

We now prove that the circuit dimensions are indeed matched by the extended semantics.

Proposition 4.5.2 For a PCF program M , E [[M]]? = (v; d; s) if and only if the circuit representing

M has depth d and size s.

Proof: By induction on the structure ofM . We need an induction hypothesis that works at higher

types (cf. [70] for a similar example). We de�ne predicates Match� by induction on types:

1. If M� is a program, then M� has property Match� if E [[M�]]? = (v; d; s) if and only if the

circuit representing M has depth d and size s.

2. If M�! � is a closed term, then it has property Match�! � if whenever N� is a closed term

with property Match�, M�! � N� has property Match� .

3. IfM� is an open term with free variables x�11 ; : : : ; x
�n
n , then it has property Match� if the term

[N1=x1] � � � [Nn=xn]M
� has property Match� whenever N1; : : : ; Nn are closed terms having

properties Match�1 ; : : : ;Match�n , respectively.

64 CHAPTER 4. CIRCUIT SEMANTICS

E : Terms!Environments!(
S
D� � S-Terms� S-Terms)

E [[M]]� = (D[[M]]�; depth(M); �1(size(M)?)); where

depth : Terms!S-Terms

depth(tt) = 1

depth(n) = 1

depth(M1 =M2) = 1 +max(depth(M1); depth(M2))

depth(M1 +M2) = 1 +max(depth(M1); depth(M2))

depth(�� M1 M2 M3) = 1 +max(depth(M1); depth(M2); depth(M3))

depth(x�) = x�

depth(M1 M2) = depth(M1) depth(M2)

depth(�x�: M) = �x�: depth(M)

size: Terms!Environments!(S-Terms� Environments)

size(tt)� = (1; �)

size(n)� = (1; �)

size(M1 =M2)� = (1 + s1 + s2; �
00); where (s1; �

0) = size(M1)�; (s2; �
00) = size(M2)�

0

size(M1 +M2)� = (1 + s1 + s2; �
00); where (s1; �

0) = size(M1)�; (s2; �
00) = size(M2)�

0

size(�� M1 M2 M3)� = (1 + s1 + s2 + s3; �
000); where

(s1; �
0) = size(M1)�; (s2; �

00) = size(M2)�
0; (s3; �

000) = size(M2)�
00

size(x�)� =

8><
>:

(x�; �[x� 7! 1]); if � 2 fo; �g and �(x�) = ?

(0; �); if � 2 fo; �g and �(x�) = 1

(x�; �); otherwise

size(M1 M2)� = (s1s2; �
00);where (s1; �

0) = size(M1)�; (s2; �
00) = size(M2)�

0

size(�x�: M)� = (�x� : s1; �
0); where (s1; �

0) = size(M)�

Figure 4.9: Extended semantics for PCF

4.5. CIRCUIT SEMANTICS REVISITED 65

We call a term M� matching if it has property Match�. We need to prove that all terms are

matching. This is obvious for boolean and integer constants. We only consider one functional

constant, as the proof is similar for the others.

1. M � M1 +M2. By induction hypothesis, M1;M2 have property Match�. We have several

cases depending on whether the terms M1;M2 are closed or open:

(a) M1;M2 are both closed. Then by case (1) of the de�nition of Match�, E [[M1]]? =

(v1; d1; s1) and E [[M2]]? = (v2; d2; s2) i� the circuits representingM1;M2 have dimensions

d1; s1 and d2; s2, respectively. Since both terms are closed there is no possible sharing, so

by the de�nition of E and of the circuits, the depth and size ofM1+M2 are 1+max(d1; d2),

1 + s1 + s2, respectively.

(b) M1 is open,M2 is closed. By case (3) of the de�nition of Match�, any closed instantiation

of M1 with matching terms will have property Match�. Since M2 is closed, there is no

sharing between M1 and M2, so, as before, the dimensions match.

(c) M1;M2 are both open. Consider the set S = FV (M1)\FV (M2), restricted to variables

of ground type. By case (3) of the induction hypothesis, any closed instantiation of

M1;M2 with matching terms will have property Match�. Then the depth of M1 +M2

will be the same in the two models, since sharing is not relevant. The size of M1 +M2

in the circuit model will only count each instantiation of a shared variable x� 2 S once.

But that is exactly what the � environment is for in the E model. Therefore, the size

will also match.

2. M � x�. Any closed instantiation of x� by a term satisfying Match� will have the same

property.

3. M �M�! �
1 M�

2 . By the induction hypothesis, M�! �
1 satis�es property Match�! � and M�

2

has property Match�. If bothM1;M2 are closed, then by case (2) of the induction hypothesis,

M�! �
1 M�

2 has property Match� . IfM1;M2 are open, then construct the set S as above. Any

closed instantiation of M1;M2 with matching terms will result in the sharing of x 2 S, both

in circuits and in the E model. Therefore M�! �
1 M�

2 will have property Match� .

4. M � �x�: M � . By the induction hypothesis, M � has property Match� . We need to show

that �x�: M � has property Match�! � . Suppose that �x�: M � is closed. If � 2 fo; �g, then

for any input N� both the circuits and the E model will only include one copy of N�. The

depth function from the E model actually does no sharing, but this is irrelevant, as the depth

is una�ected. Then (�x�: M �)N� will have property Match� . For general �, there are no

sharing issues, so the result again has property Match� . Now suppose �x�: M � is open.

Any closed instantiation of �x�: M � with matching terms will result in the same sharing

of common variables in both circuits and the E model. Therefore, �x�: M � has property

Match�! � .

Since all M� have property Match�, certainly the programs enjoy this property as well, which by

case (1) of the de�nition of Match� establishes our proposition. 2
Before undertaking a comparison of our circuit model with various evaluation strategies, we

discuss the issues involved. Consider the following PCF program: P � �� tt 2 M , where M is an

expression whose evaluation takes many steps before returning an integer. The circuit represen-

tation of P will include a piece corresponding to M . But in call-by-name PCF (or call-by-need,

a particular implementation of call-by-name), M will not be evaluated, so the size of the circuit

66 CHAPTER 4. CIRCUIT SEMANTICS

representing P will be a wild overestimate. Of course, we could evaluate the circuit bottom-up,

thus avoiding evaluation of M , but this would preclude any meaningful discussion of circuit size or

depth. The problem is that circuits are most closely related to dataow networks, which, in turn,

are most naturally implemented in a data-driven fashion, an embodiment of call-by-value. Even

though call-by-name (call-by-need) can also be implemented in parallel using graph reduction, that

model is basically the equivalent of upside-down demand-driven evaluation of a dataow network.

Thus it seems reasonable to con�ne ourselves to comparisons with evaluation strategies which are

natural for dataow networks.

We compare our circuit model to two di�erent evaluation strategies: parallel call-by-value (c-b-

v) [49, 9] and call-by-speculation (c-b-s) [49, 75, 41]. Given an application f x, in parallel c-b-v the

function f and the argument x are evaluated in parallel and after both evaluations are completed,

then the body of the function f is evaluated. Therefore, parallel c-b-v takes advantage of horizontal

parallelism (evaluating two tasks simultaneously), and also to a lesser extent of vertical parallelism

(pipelining).

In c-b-s, we also evaluate f and x in parallel, but we do not require that the evaluation of x

be complete before we evaluate the body of f . Thus c-b-s allows fully pipelined parallelism. If x

gives rise to a large computation that is not used by f we will get a result much faster, but the

computation will still continue for some time. C-b-s thus introduces a distinction between minimum

and maximum time to evaluate an expression.

Figure 4.10 shows a pro�ling semantics for parallel c-b-v in the style of [9]. Judgments have the

form � ` M �!cbv v; d;w, meaning that in environment �, M evaluates to v in d steps (depth)

and with w work. The possible results of an evaluation are values, ranged over by v, and they are

either constants or function closures:

v : : = c j cl(�; x;M):

The rule for addition is typical of the treatment of most constructs, in that the depth of

the computation is the maximum of the depths of the subcomputations, with the addition of a

constant for the evaluation of the construct itself. The size of of the computation is the sum of the

subcomputation plus a constant. In the case of conditionals, the condition is evaluated �rst, and

then the appropriate branch is chosen. Finally, the rule for application shows that evaluation of

the function body waits for evaluation of the argument to complete.

The constants chosen for the depth and work in several of the rules are di�erent from [9], as we

want to achieve an exact match with our circuit semantics. The di�erences are not signi�cant.

The correspondence between our circuit semantics and parallel c-b-v is fairly simple: as long as

we have conditionals in a program, the models are incomparable, for the reasons mentioned earlier.

However, without conditionals, circuits will take less time and do less work than predicted by the

operational semantics, in the following sense:

Proposition 4.5.3 Given a PCF program M with E [[M]]? = (v; d; s), and ? ` M �!cbv v; t; w,

the following hold:

1. If M is conditional-free, then s � w;

2. If M is conditional-free, then d � t.

Proof: By induction on M as in the proof of Proposition 4.5.2. We de�ne predicates Val� by

induction on types:

4.5. CIRCUIT SEMANTICS REVISITED 67

� ` tt �!cbv tt ; 1; 1

� ` M1 �!cbv v1; d1; w1 � ` M2 �!cbv v2; d2; w2

� ` M1 +M2 �!cbv v1 + v2; 1 + max(d1; d2); 1 + w1 + w2

� ` M1 �!cbv tt ; d1; w1 � ` M2 �!cbv v2; d2; w2

� ` �� M1M2M3 �!cbv v2; 1 + d1 + d2; 1 + w1 + w2

� ` M1 �!cbv � ; d1; w1 � ` M3 �!cbv v3; d3; w3

� ` �� M1M2M3 �!cbv v3; 1 + d1 + d3; 1 + w1 + w3

�(x) = v

� ` x �!cbv v; 0; 0

� ` �x: M �!cbv cl(�; x;M); 0; 0

� ` M1 �!cbv cl(�
0; x;M 0

1); d1; w1

� ` M2 �!cbv v2; d2; w2
�0[x=v2] ` M 0

1 �!cbv v; d3; w3

� ` M1 M2 �!cbv v;max(d1; d2) + d3; w1 + w2 + w3

Figure 4.10: Pro�ling semantics for parallel call-by-value

68 CHAPTER 4. CIRCUIT SEMANTICS

1. If M� is a program, then M� has property Val� if E [[M�]]? = (v; d; s) if and only if ? `

M �!cbv v; t; w, with s � w; d � t.

2. If M�! � is a closed term, then it has property Val�! � if whenever N� is a closed term with

property Val�, M�! � N� has property Val� .

3. If M� is an open term with free variables x�11 ; : : : ; x
�n
n , then it has property Val� if the

instantiation [N1=x1] � � � [Nn=xn]M
� has property Val� whenever N1; : : : ; Nn are closed terms

having properties Val�1 ; : : : ;Val�n , respectively.

The result is easily veri�able for constants (except, of course, for conditionals), so we only consider

the induction step:

1. M � x�. Any closed instantiation of x� by a term satisfying Val� will have the same property.

2. M � M�! �
1 M�

2 . By the induction hypothesis, M�! �
1 has property Val�! � and M�

2 has

property Val�. If both M1;M2 are closed, then by case (2) of the induction hypothesis,

M�! �
1 M�

2 has property Val� . If M1;M2 are open, then construct the set S = FV (M1) \

FV (M2), restricted to variables of ground type. Any closed instantiation of M1;M2 with

closed terms satisfying Val will result in the sharing of x2S, in both circuits and parallel

c-b-v. Therefore M�! �
1 M�

2 will have property Val� .

3. M � �x�: M � . We need to show that �x�: M � has property Val�! � . By the induction

hypothesis, M � has property Val� . Suppose that �x�: M � is closed. Let N� be a closed term

satisfying Val�. If M � is closed (i.e., x� is not used in M �), then depth((�x� : M �)N�) =

depth(M �) and similarly for size. SinceM � has property Val� , so must (�x�: M �)N� (parallel

c-b-v requires more time and work to evaluate (�x� : M �)N� than M �). This is the origin of

the inequalities in the proposition: parallel c-b-v will evaluate unused arguments.

If M � is open, then if � 2 fo; �g, N� will be shared in both circuits and parallel c-b-v, so the

depth and work will be the same. For general �, by the third part of the induction hypothesis,

[N�=x�]M � will have property Val� .

Now suppose �x�: M � is open. Any closed instantiation of �x�: M � with closed terms

satisfying Val will result in the same sharing of common variables of ground type in both

circuits and parallel c-b-v. Therefore, �x�: M � has property Val�! � .

Since all terms M� have property Val�, so do the programs, which establishes our result. 2
Figure 4.11 shows a pro�ling semantics for c-b-s, in the style of [41]. Because of the distinction

between minimum and maximum depth, the judgments are di�erent from the parallel c-b-v ones.

They are of the form

�; d ` M �!cbs v; d
0; d̂0; w;

meaning that in environment �, evaluating M at depth d leads to result v which will be available

at depth d0, while the whole computation will be done at depth d̂0 and use w work. In addition,

the environment � has to keep track at which depth a value becomes available. This is equivalent

to the e�ect achieved in Roe's semantics [75] with time stamps.

The rules for constant, addition, and abstraction are not signi�cantly di�erent from the parallel

c-b-v case, because minimum and maximum depth are the same. The rule for variables takes

into account the depth at which a value becomes available. The rules for conditionals, show that

minimum depth is the same as before, but maximum depth incorporates the evaluation of all

4.5. CIRCUIT SEMANTICS REVISITED 69

�; d ` tt �!cbs tt ; d+ 1; d + 1; 1

�; d ` M1 �!cbs v1; d1; d̂1; w1 �; d ` M2 �!cbs v2; d2; d̂2; w2

�; d ` M1 +M2 �!cbs v1 + v2; 1 + max(d1; d2); 1 +max(d̂1; d̂2); 1 + w1 + w2

�; d ` M1 �!cbs tt ; d1; d̂1; w1

�; d ` M2 �!cbs v2; d2; d̂2; w2
�; d ` M3 �!cbs v3; d3; d̂3; w3

�; d ` �� M1M2M3 �!cbs v2; 1 + max(d1; d2); 1 +max(d̂1; d̂2; d̂3); 1 + w1 + w2 + w3

�; d ` M1 �!cbs � ; d1; d̂1; w1

�; d ` M2 �!cbs v2; d2; d̂2; w2
�; d ` M3 �!cbs v3; d3; d̂3; w3

�; d ` �� M1M2M3 �!cbs v3; 1 + max(d1; d3); 1 +max(d̂1; d̂2; d̂3); 1 + w1 + w2 + w3

�(x) = v; d0

�; d ` x �!cbs v;max(d; d0);max(d; d0); 0

�; d ` �x: M �!cbs cl(�; x;M); d; d; 0

�; d ` M1 �!cbs cl(�
0; x;M 0

1); d1; d̂1; w1

�; d ` M2 �!cbs v2; d2; d̂2; w2
�0[x=v2; d2]; d1 ` M 0

1 �!cbs v; d3; d̂3; w3

�; d ` M1 M2 �!cbs v; d3;max(d̂1; d̂2; d̂3); w1 + w2 + w3

Figure 4.11: Pro�ling semantics for call-by-speculation

70 CHAPTER 4. CIRCUIT SEMANTICS

branches. Similarly, the maximum depth of an application includes the evaluation of the function,

the argument, and of the function body, while the minimum depth will only include the evaluation

of the argument if it is used.

It should be fairly clear by now that the circuit semantics is very closely related to c-b-s. In fact,

it would be a slight improvement on it were it not for conditionals. A circuit will always do less

work than c-b-s, but its depth might be larger than the c-b-s minimum depth. In a conditional-free

program P , however, the depth of the circuit semantics of P is the same as the c-b-s minimum

depth.

Proposition 4.5.4 If E [[M]]? = (v; d; s), and ?; 0 ` M �!cbs v
0; t; t̂; w, then v = v0 and we have:

(1) s � w; (2) d � t̂; (3) if M is conditional-free, then d = t.

Proof: Similar to the proof of Proposition 4.5.3. 2

There is another order of evaluation to which we could compare our circuit model. Hudak and

Anderson [49] consider parallel eager evaluation, a version of parallel c-b-v. Instead of requiring

the argument to complete evaluating before the body of the function is evaluated, we require that it

complete before the function call returns. This gives extra parallelism over parallel c-b-v, but might

still evaluate some arguments unnecessarily. The correspondence between parallel eager evaluation

and circuits would be the same as that between parallel c-b-v and circuits.

4.5.2 Circuits for query

The circuit semantics of query is a straightforward implementation of the semantics presented

earlier. Accordingly, we need to expand our set of basic gates with those of Figure 4.7(f). An

\if-then" gate is just shorthand for an if-then-else statement, with a ? \else" part. And is parallel-

and. For space reasons amb is depicted at times with more than two inputs; the understanding is

that a k-ary amb gate stands for a balanced tree of binary amb gates.

Figure 4.12(a) shows the circuit semantics of parallel-or. The not gate is shorthand for�o x � tt .

Figure 4.12(b) shows the circuit semantics of not? from Section 5.2, which essentially performs

negation with respect to ? (note how \ " is used to represent ?).

4.6 On the method and the metric

This section describes our methodology for comparing DPCF and NPCF. First, we re�ne the notion

of intensional expressiveness to take into account both measures of program complexity induced

by the circuit semantics: work and time. Then we compare our circuit model with the tradi-

tional parallel computation model, the PRAM, establishing a simple connection via an analogue of

Brent's theorem. Finally, we detail the hardware assumption we make that allows us to compare

nondeterministic and deterministic programs.

4.6.1 Intensional expressiveness and parallel complexity

Given a program P , the circuit semantics of P provides a de�nition of its parallel complexity: the

parallel time and the parallel work required to execute it. Accordingly, we can de�ne two notions

of intensional expressiveness.

We say that language L1 is intensionally more work-expressive than L2 (L1 �w L2), if any

function computable by L2 with a program whose size under the circuit semantics is s2 can be

4.6. ON THE METHOD AND THE METRIC 71

if

tt tt ff

x y

ifif

not not

amb

and

if

ttff

x

ifif

not ff

poll

amb

not

(a) (b)

Figure 4.12: Circuit semantics for: (a) por, (b) not?

computed by an L1 program with circuit size s1 � s2. Similarly, L1 is intensionally more time-

expressive than L2 (L1 �t L2), if any function computable by L2 with a program whose depth

under the circuit semantics is d2 can be computed by an L1 program with circuit depth d1 � d2.

As mentioned in the introduction, we are interested in asymptotic complexity: for a function f

of n arguments, we want to compare the size and depth of circuits computing f as functions of n.

In particular, we would like to establish separation results of the type L1 �w L2 and L1 �t L2.

4.6.2 Comparison with the PRAM

We compare our parallel complexity model, circuit semantics, with the standard model from the

theory of parallel algorithms, the PRAM [23]. This comparison will be needed later when we

establish a connection between PCF programs and boolean circuits.

Suppose we have a program M whose parallel complexity according to the circuit semantics

is size s and depth d. The question we have to address is how long it takes to execute M on a

p-processor PRAM.

We can imagine the process of executing M in two parts: construction and execution. First

we construct the circuit semantics of M , then we execute it. We consider the execution part �rst,

since it is very simple.

Proposition 4.6.1 [Execution] Given the circuit semantics of program M , of size s and depth d,

it can be simulated on a p-processor CREW PRAM in O(s=p+ d).

Proof: This follows from Brent's theorem [23], which establishes bounds for simulating boolean

circuits on the PRAM. Our circuits satisfy the necessary conditions for Brent's theorem: we have

bounded fan-in, and we assume that each gate can be simulated in O(1) time. 2

For our purposes, we do not need a Construction proposition. Rather, we want to know if

there is any di�erence in construction time between DPCF and NPCF programs. Since the only

72 CHAPTER 4. CIRCUIT SEMANTICS

di�erence is in the treatment of queries, we only consider the time needed to generate circuits for

each of the two kinds of queries.

Proposition 4.6.2 [Construction equivalence] It takes asymptotically the same time on a p-proc-

essor PRAM to construct circuits for deterministic and nondeterministic interpretations of a query.

Proof: To implement deterministic query we need to look at every element of each pattern at least

once. Then the time required to process a query on n variables and containing k patterns be must

be at least O(nk=p).

For the nondeterministic interpretation, we have to check if any \ " is supposed to be ?. This

can be achieved as follows: First check if any column in the pattern exhaustively checks for all

possibilities, and identify all \ " that occur in those columns. Also, keep track if the column

consists entirely of variables and \ ". This can be done in O(nk=p).

If all columns contain only variables and \ ", then all \ " from exhaustively checked columns

are ?, and we are done. Otherwise, pick one column, call it i, that is exhaustively checked with

more than variables and \ ", and verify the rest of the pattern for consistency. This also takes

O(nk=p).

If consistent, then all \ " from column i are ?, and we are done, since including column i in

any future consistency check will fail. If not consistent, then again we are done for the same reason.

Since we only take O(nk=p) to �nd out which \ " mean ?, it takes the same time to generate

circuits for both deterministic and nondeterministic query. 2

4.6.3 How to compare determinism and nondeterminism

Our notion of intensional expressiveness involves comparing the complexity of computing func-

tions, so we have to make sure our nondeterministic programs return deterministic values. Since

a purely nondeterministic interpretation of query fails to be intensionally more expressive (Propo-

sition 4.4.1), we chose an interpretation that allows us to get deterministic answers, assuming we

can detect unde�ned inputs. This section discusses our assumption in more detail.

There has been a considerable amount of research in the area of algorithms for unreliable

distributed systems. For instance, a whole �eld is devoted to consensus problems in such systems

[34]. In such algorithms, a key assumption is that one can detect the failure of a process to send

a message. Without this assumption, i.e., in a fully asynchronous model, the consensus problem

is not solvable. The physical realization of this assumption is quite reasonable, and does not even

require fully synchronous hardware. Lamport [58] has shown how to detect failure to send messages

through the use of timeouts. This requires a model with accurate clocks and bounds on message

transit times.

We shall assume that we are able to detect unde�ned inputs through the use of such hardware.

Since DPCF cannot take advantage of this (by the de�nition of deterministic query), in a sense,

our question has become: Does the ability to detect unde�ned inputs in NPCF imply that NPCF

�w DPCF and/or NPCF �t DPCF?

The di�culty in answering this question stems from the fact that we have to exhibit a function

computable by both NPCF and DPCF, but which can be computed faster or with less work by

NPCF. It is not enough to say that NPCF can compute generalized functions because they have no

deterministic counterpart. On the other hand, DPCF is quite powerful. It can express parallel-or

and parallel-and, so it can implement comparators for boolean values which work with unde�ned

inputs. Using comparators we can implement asymptotically very e�cient sorting networks, such

as the AKS network [3], which can sort n inputs in depth O(lgn) and size O(n lgn). Since a DPCF

4.7. A CONNECTION WITH BOOLEAN CIRCUITS 73

program must output a single value we cannot just implement the sorting network, but we can use

it internally, for instance, to compute the majority function, by �rst sorting the input and then

picking the middle value [87].

Such considerations led us to examine more closely the similarity between DPCF and NPCF

programs and boolean circuits. It turns out that there is a very close correspondence.

4.7 A connection with boolean circuits

This section contains a formal connection between our DPCF and NPCF languages and boolean

circuits. Since there are di�erent kinds of boolean circuits in the literature, depending on the basis,

we �rst give a very brief overview of the circuits we are interested in.

4.7.1 Boolean circuits

A boolean circuit computes a boolean function f : f0; 1gn!f0; 1g. For our purposes, a boolean

circuit is a directed acyclic graph whose inputs are sources of the graph, and whose nodes (gates)

are selected from a set called the basis. The fan-out of the inputs and gates in the circuit is

unbounded. The fan-in is 2. Normally, a circuit can have more than one output, but we are only

interested in single-output circuits, since our DPCF and NPCF programs only return one output.

Gates in the basis are single output. Among the many bases studied, two are of interest to

us: the monotone basis f^;_g, and the De Morgan basis f^;_;:g. The monotone basis is not

complete, i.e. not every boolean function is computable by monotone circuits (only the monotone

functions are), but it is of particular interest to researchers in complexity theory, since strong lower

bounds have been obtained for monotone circuits [87]. The De Morgan basis is complete.

There are two measures for the e�ciency of a circuit. The size or complexity is the number of

gates in the circuit; this intuitively measures the work needed to compute the output. The depth is

the number of gates in the circuit on the longest path from the input to any output; this measures

the time required to compute the output.

There are several complexity classes de�ned in terms of circuits. We de�ne those which will be

used in what follows (cf. [10]). A family of circuits is a sequence (C1, C2, . . .), where Cn takes n

input variables. A uniform family is one where the description of Cn can easily be computed from

n. The classes NCk (ACk), for k � 0, consist of all functions computable by a uniform family of

polynomial size, O(logk n) depth circuits with constant (unbounded) fan-in. NC =
S
k�0NC

k, and

similarly AC =
S
k�0AC

k. It is easy to show that for all k � 0, ACk � NCk+1 � ACk+1, therefore

NC = AC.

4.7.2 The connection

The main idea of the connection is very simple and can best be described by a picture. Figure 4.13

shows the domain of booleans for circuits, and the domains of booleans and natural numbers

for DPCF and NPCF. Booleans are ordered di�erently in the circuit world than in programming

language semantics. Monotone means the same thing in both places, but with respect to a di�erent

ordering. That is why negation is not monotone in the case of circuits, but it certainly is expressible

in PCF, which only computes continuous (hence monotone) functions. Therefore, 0 has the same

rôle in the circuit world that ? has for PCF programs.

When a monotone circuit is presented with an input, there is no way for the circuit to determine

if that input is 0, since all it can do is AND and OR the inputs. This is really the same situation

74 CHAPTER 4. CIRCUIT SEMANTICS

...

0

1 tt ff 0 1 2

(a) (b)

Figure 4.13: Domains for (a) boolean circuits, (b) DPCF and NPCF programs

as when a DPCF program can have unde�ned inputs. The DPCF constructs cannot help identify

unde�ned inputs.

The e�ect of the hardware assumption we made is now clear. NPCF can detect unde�ned

inputs, so it essentially has negation with respect to bottom (cf. Figure 4.12(b)). Therefore, NPCF

resembles De Morgan circuits.

Since DPCF and NPCF operate on a di�erent domain than boolean circuits, we need a way to

take a function computed by a boolean circuit, say f : f0; 1gn!f0; 1g and view it as a function

on PCF domain elements, say ?; tt (the choice of tt rather than � is arbitrary). Let us call the

equivalent of f in the PCF world fpcf . Conversely, given g: f?; ttg
n!f?; ttg in PCF, we de�ne

gbool to be its counterpart in the circuit world.

DPCF and NPCF are at least as powerful as boolean circuits. Given a circuit, we can divide it

into \blocks," each implementable by a DPCF (NPCF) function, and select a suitable application

order that does not duplicate work, thus constructing an equivalent program. For the reasons listed

above, monotone circuits are as powerful as DPCF when presented with unde�ned inputs.

Proposition 4.7.1 Given a monotone (De Morgan) circuit computing f we can construct from it

a DPCF (NPCF) program computing fpcf , with the same dimensions in the circuit semantics.

Proof: We only discuss the monotone case here as the other case is similar.

It is clear that the only problems we might encounter occur when the fan-out is larger than 1

for some nodes. If the fan-out is always 1, the circuit is a tree, and can be represented by a formula.

If the fan-out is larger than 1 for some node, then we have to be careful we do not duplicate work

in the DPCF program. Since a link in the circuit is equivalent to an application in DPCF, we

want to �gure out an application order such that in the circuit semantics we end up with the same

structure as the original circuit.

We give an algorithm to construct the DPCF program. First, we identify all nodes with fan-out

> 1 in the circuit. Then, beginning at the bottom, we identify all the parts of the circuit which are

trees. That is, we go as far as possible up the circuit in all directions, until we get to the recipient

of a multiple output. This determines one DPCF function. We continue in similar fashion from

the origins of the multiple outputs. We have now divided the circuit into blocks, and all we need

to do is �gure out an application order.

We start with the last block in the circuit (the one containing the output node); call it F0. Let

N be the set of all of its immediate neighbors. F0 will be a function of jN j arguments. We apply

F0 to all elements of N from which there is no path going into another element of N . This works

because there are no cycles in the circuit. We continue like this with all elements from N which

were used, and which receive inputs. A minor issue is the ordering of the inputs when doing the

4.7. A CONNECTION WITH BOOLEAN CIRCUITS 75

F
3

F
0

F
1

F
2

F
0

F
1

F
2

F
3

(a) (b)

Figure 4.14: Two circuits

applications. We need to order them so that the element of N for which there exists the longest

path into F0 is the last input. In case of ties the order is not important.

We also have to make sure the variable names are the same in di�erent blocks when they have

to be bound to the same input. For instance, consider the following case: we have three nodes,

F0, F1, and F2, with F1 having a link into F0, and F2 having links into both F0 and F1. Then

the nodes will have the form F0 � �xy: f0, F1 � �z: f1, and the application order will be F0F1F2.

When we \hook up" F0 and F1 we have to change all the z's in F1 to y's. Equivalently, we could

have F1 � �y: f1 and use a � substitution rule that allows variable capture.

This procedure yields a DPCF program whose circuit semantics quite obviously looks the same

as the original circuit, and therefore has the same size and depth. 2

Example 4.7.2 We give an example to illustrate the algorithm described above. Figure 4.14 shows

the block structure of two circuits. Case (a) would give rise to the following program Pa (for

simplicity, we assume � substitution with variable capture, as discussed above):

F0 � �xy: f0; F1 � �zx: f1; F2 � �x: f2

Pa � F0(F1F2)F3:

Case (b) would result in the construction of the following Pb:

F0 � �xy: f0; F1 � �yz: f1; F2 � �y: f2

Pb � F0F1F2F3:

Now we show that monotone circuits are as powerful as DPCF for a certain class of functions.

For our applications, we do not need the equivalent statement for De Morgan circuits and NPCF

programs.

Proposition 4.7.3 If DPCF can compute f : f?; ttgn! tt , then monotone circuits can compute

fbool with a circuit whose dimensions are the same as the circuit semantics of the DPCF program.

Proof: Let us assume the function f is not constant, otherwise the proof is trivial. We can divide

the constructs of DPCF into sequential and parallel. There is only one parallel construct, query.

76 CHAPTER 4. CIRCUIT SEMANTICS

The sequential constructs, if presented with an unde�ned input, will all return ?. Therefore, in

order to obtain any result when computing f we must use query.

We can translate the tt in the input to anything else we would like: � , any integer. We cannot

translate ?. The functions computable in DPCF on ? and any other non-bottom input are the

same: AND, OR, constant functions. Since we must use query to make any progress, and since

queries on ? and any other input are all the same, it doesn't matter what the other input is. So

translating the tt from the input makes no di�erence. We would simply have to translate back at

the output.

We can then eliminate the unnecessary translations and leave only the queries. The circuit

semantics of the resulting program with ?, tt inputs changed to 0,1 inputs respectively, is a valid

monotone circuit computing fbool. 2

Note that we can consider the DPCF program for f to be conditional-free, therefore, according

to Propositions 4.5.3,4.5.4, the result implies that a boolean circuit can compute fbool with at least

the same e�ciency that DPCF can compute f under either parallel c-b-v or c-b-s.

4.8 Applications

Given the correspondence we have established between DPCF, NPCF, and boolean circuits, we can

use strong results from complexity theory to prove equivalent statements about our programming

languages. These results are applicable for either parallel c-b-v or c-b-s (cf. discussion at the end

of previous section), and also contain implications about evaluation on the PRAM.

Improving on an earlier superpolynomial bound by Razborov, Tardos [84] proved a very strong

separation result between monotone and De Morgan circuit complexity:

Theorem 4.8.1 [Tardos] There exists a polynomial time computable monotone function whose

monotone complexity is exponential.

The monotone function discussed is the perfect matching function [23], which takes an adjacency

matrix as input and returns 1 if the graph has a perfect matching. DPCF and NPCF programs

would compute the same function on f?; ttgn inputs.

Since perfect matching is in P , there exists a De Morgan circuit of polynomial size for it [10].

By Proposition 4.7.1 there is an NPCF program for it which does a polynomial amount of work.

Since the monotone complexity of perfect matching is exponential, by Proposition 4.7.3 any DPCF

program for it will do an exponential amount of work. Therefore, we have:

Proposition 4.8.2 There exists a function computable by an NPCF program with polynomial work,

but for which the best DPCF program does exponential work.

By Propositions 4.6.1,4.6.2, the result can be stated in term of execution time on the PRAM:

there exists a function computable by both DPCF and NPCF but which requires exponentially

more time to execute on a PRAM for DPCF than NPCF.

A strong separation result between monotone and De Morgan circuits is also known for circuit

depth [72].

Theorem 4.8.3 [Raz & Wigderson] There is a monotone function in NC 1 that has no monotone

NC circuits.

4.9. DISCUSSION 77

The function referred to in Theorem 4.8.3 is a variant of the matching function (matching of

size n=3, where n is the number of vertices in the graph). By a similar argument as above we can

apply this result to NPCF and DPCF programs.

Proposition 4.8.4 There exists a function computable by an NPCF program in logarithmic time,

and for which the best DPCF program takes more than polylogarithmic time.

4.9 Discussion

We have de�ned a new, intensional denotational semantics for functional languages, circuit se-

mantics. Circuit semantics associates a gate with each basic construct of the language, and takes

the meaning of a program to be a circuit. The dimensions of the circuit enable reasoning about

running time and work required for execution. We have established circuit semantics as a parallel

complexity model, by comparing it to the time and work required to execute programs under sev-

eral parallel evaluation strategies, and in the PRAM model. We have also used circuit semantics

to obtain relative intensional expressiveness results for parallel extensions of PCF.

We have shown that deterministic query is intensionally more expressive than pif�, which, in

turn, is intensionally more expressive than por and pifo. Thus, we have the beginnings of a hierarchy

of intensional expressiveness for deterministic parallelism. In the process, we have exhibited lan-

guages which are extensionally but not intensionally equivalent. The constructs por, pifo, and pif�
are interde�nable in the continuous function model of PCF. However, PCF + pif� is intensionally

more expressive than PCF + por (or pifo). A natural question raised by this is whether there exists

a language that is extensionally more expressive but intensionally less expressive (on the common

subset of computable functions) than another language. The case of the Girard-Reynolds system

F versus G�odel's system T might be an example of this, but the matter is not settled yet (cf. [20]).

In order to compare deterministic and nondeterministic query, we were forced to make an as-

sumption about having the ability to detect unde�ned inputs. Though somewhat unaesthetic, this

assumption allowed us to view the question as a similar one from complexity theory, that of com-

paring monotone and De Morgan boolean circuits. After establishing a connection between the

dimensions of a program under the circuit semantics and the complexity and depth of a corre-

sponding boolean function, we were able to show that nondeterministic query is intensionally more

expressive than its deterministic counterpart: it can lead to exponentially faster programs, and also

programs that do exponentially less work.

Although we have used results from circuit complexity, we have not \given anything back." It

would be interesting to �nd out if the connection between DPCF programs and monotone circuits

has some wider applicability in the area of circuit complexity. It seems unrealistic to hope that

it would be easier to prove, say, strong lower bounds for the complexity of slice functions [87]

by examining DPCF programs with unde�ned inputs. But perhaps the more general connection

between functional parallel programs with unde�ned inputs and boolean circuits can be fruitfully

exploited.

78 CHAPTER 4. CIRCUIT SEMANTICS

Chapter 5

Type Inference

This chapter marks the beginning of the second part of the thesis. After our explorations of circuit

semantics in the context of parallel extensions of PCF, we return to CDS0 and design a type

inference system for it. Our ultimate intent is to use this type inference system to analyze PCF-like

languages, taking advantage of the intensional information provided by sequential algorithms. We

achieve this goal in the next chapter, where we introduce a high-level lazy, functional language,

show how to translate it to CDS0, and build a re�nement type inference system on top of our type

inference system.

We �rst present some general considerations in designing a type system for CDS0 in Section 5.1.

Section 5.2 discusses CDS0 type de�nitions in detail. We de�ne the meaning of subtyping and in-

tersection types for ground dcds in Section 5.3, and do the same for sequential algorithms in

Section 5.4. A decision procedure for subtyping in the monomorphic case is shown in Section 5.5.

We present the monomorphic type inference rules and prove soundness of monomorphic type in-

ference in Section 5.6. Next, we show how polymorphism and overloading can arise in CDS0 in

Section 5.7, and describe how to decide subtyping in the presence of type variables in Section 5.8.

Finally, Section 5.9 gives the rules for type inference incorporating polymorphism and overloading

and shows soundness of the extended system.

5.1 Issues in designing a type system for CDS0

The types in CDS0 are the dcds's. The original intent [5, 7] was that CDS0 would be typechecked.

The meaning of typing judgments was taken to be, x : � if x 2 D(�). So the user would type in an

expression and a type, and the system would check if the expression belongs to the set of states of

that type. Unfortunately, this was never implemented.

Our intent is to devise a type inference system. The motivation for this is twofold: First, CDS0

is, in a sense, a low-level programming language. Writing programs in CDS0 is sometimes di�cult,

and a type inference system would greatly ease the task. Second, and more important, sequential

algorithms form an intensional semantics for sequential programming languages, and we would like

a way of extracting the intensional information present in an algorithm. We can imagine sequential

algorithms as an intermediate language in the compilation of a functional language, an intermediate

language which makes many kinds of analyses of program properties easier. Our type inference

system will be the foundation on which we build our program analysis.

There are several implications of our desire to build a type inference system for CDS0, among

them the need for a de�nition of subtyping for dcds's, and the need to introduce intersection types.

79

80 CHAPTER 5. TYPE INFERENCE

We discuss each in turn, also pointing out peculiarities of CDS0 which must be reected in the

type system.

If we take the original meaning of typing judgments and add subtyping, we are forced to say

that � � � if and only if D(�) � D(�), i.e., we get a system in which subtyping is equivalent

to inclusion of sets of states. So a supertype will be \bigger" than a subtype: it will have more

cells, more values per cell, and a \weaker" (more permissive) enabling relation. It turns out that

this notion of subtyping does not accord with the usual notion of subtyping from object-oriented

languages [43]. Consider the following de�nitions of dcds's for points and colored points:

let point = dcds

cell X values [..]

cell Y values [..]

end;

let cPoint = dcds

cell X values [..]

cell Y values [..]

cell C values red, green, blue

end;

With the view of subtyping as inclusion of sets of states it would be the case that point � cPoint.

This is the exact opposite from what would happen in an object-oriented language. For example,

the same types de�ned as record types look as follows (the language is a generic record language,

similar to one from [42]):

type point = { X : Int, Y : Int };

type color = red | green | blue;

type cPoint = { X : Int, Y : Int, C : color };

For record types, a subtype is \more speci�c" than a supertype, that is, when viewed as a property,

it is applicable to fewer records, and so cPoint � point.

Another problem with the notion of subtyping as inclusion of sets of states is caused by the

computation model of CDS0. The model is one of incrementally growing a state, by �lling an

accessible cell with a value. One would expect that, as we add information, the type would decrease,

because we are becoming more speci�c. However, the exact opposite would happen: given the state

fX = 3; Y = 4g : point, if we add the event C = red, we get a cPoint, which is higher in the type

hierarchy.

For the reasons mentioned above, we want a notion of subtyping for dcds's which makes them

more like records. The di�culty in doing this comes from the fact that we cannot o�er the same

guarantees. A record with type cPoint is guaranteed to contain all the �elds X, Y , and C �lled

with some value. That way we can \coerce" it to be a point by throwing away the color �eld.

In CDS0, with its computation model of incrementally growing a state, we cannot o�er the same

guarantee because we have to be able to type \incomplete" information. For example, we have to

say that fC = redg : cPoint, even though it does not have the X and Y cells �lled.

Our solution is to imagine that each cell in a dcds de�nition has a variant as a value, one

of whose elements is the special value
, and the rest of which is the regular list of values from

the de�nition. Recall that according to CDS0's operational semantics (see Appendix A.1), asking

for the value of a cell that is not �lled in a state produces the result
, which is printed by the

interpreter as a blank:

5.2. THE LANGUAGE OF TYPES 81

{C=red};

request? X;

-->

request? Y;

-->

If we take this view, then we can make cPoint a subtype of point because we can coerce any state

of cPoint to one of point by throwing away events involving cell C. Cells X, Y , might be �lled

with the special value
, but they are guaranteed to be there.

In general, when we assign a type to a state, we will imagine all initial cells present in the type

but not �lled in the state, �lled with
. In addition, we want to do the least amount of �lling

in necessary. For instance, if we are presented with the state fX = 3g, we will assign it the type

point, because we have to �ll only one cell with
, rather than cPoint, when we would have to �ll

two cells. The formalization of these ideas does not take the form presented above (we will not be

translating CDS0's type de�nitions into a type language with variants and the value
) but this is

the intuition behind the de�nitions in this chapter.

Given our view of dcds's as records, we can easily encode records in our language. Fields are

cells, and the type of a �eld becomes an enumeration of constituent values. In fact, dcds are much

richer, since they have accessibility conditions, but we shall not be using accessibility conditions in

any essential way in our de�nition of subtyping.

Aside from the need for subtyping, another implication of our decision to have type inference is

the need for intersection types. All dcds's are user de�ned, and there is no restriction on di�erent

dcds's having distinct cell names and values, so it is possible to have a state belonging to several

of them.

If we want to be able to perform type inference on the full version of CDS0, we also need to

have polymorphism and overloading. As we have seen in Section 2.3.4, we can write algorithms

with generic (i.e., variable) cell names and values. A fully generic algorithm (such as the already

presented identity algorithm) will give rise to a polymorphic type, while a partially generic algorithm

(cell names and/or values are partially speci�ed) will give rise to an overloaded type.

5.2 The language of types

We now cover dcds de�nitions in more detail. There are two kinds of dcds's: ground and higher-
order. The ground dcds's are all user-de�ned. The following simpli�ed grammar describes their
syntax (the full grammar can be found in Appendix C.1):

hgroundi : : = hdcds declai j local hdcds declai in hdcds declai end

hdcds declai : : = letrec hdcdsi j let hdcdsi

hdcdsi : : = hIDi = dcds fhcomponentig� end

hcomponenti : : = cell hnamei values hvalue listi haccessi

j graft hdcdsi:hnamei haccessi

hvalue listi : : = fhnameig+

haccessi : : = � j access henablingi j haccessi or henablingi

henablingi : : = heventi j heventi ; henablingi

heventi : : = hnamei = hnamei

82 CHAPTER 5. TYPE INFERENCE

We have already de�ned booleans and integers in Section 2.3.1. We provide a few more examples

of dcds de�nitions which will be used in what follows. First we de�ne re�nements of bool; intuitively,

a boolean is either true of false:

let true = dcds cell B values tt end;

let false = dcds cell B values ff end;

Next, we de�ne integer lists. This is another example of the use of recursion and grafting,

similar to integer streams from Section 2.3.1:

letrec intlist = dcds

cell EMPTY values true, false

graft (int.l) access EMPTY = false

graft (intlist.l) access EMPTY=false

end;

The �rst few cells of intlist, together with their access conditions, look like this:

show more 3 intlist;

{

EMPTY values true, false,

(EMPTY.l) values true, false access EMPTY=false,

((EMPTY.l).l) values true, false access (EMPTY.l)=false,

(N.l) values [..] access EMPTY=false,

((N.l).l) values [..] access (EMPTY.l)=false,

(((N.l).l).l) values [..] access ((EMPTY.l).l)=false}

Structurally, intlist is quite similar to the lazy natural numbers. There is only one initial cell,

EMPTY . If EMPTY = false, we can �ll the value of the �rst integer in the list, N:l, and we are

allowed to �ll EMPTY:l. The cells of the form EMPTY:l : : : form the \backbone" on which the

actual integers of the list attach to, like vertebrae.

Following the example in the introductory chapter, we re�ne intlist into empty lists, lists of a

single element, and lists of two or more elements. Specifying empty and singleton lists is simple:

let empty_intlist = dcds

cell EMPTY values true

end;

let one_intlist = dcds

cell EMPTY values false

cell (N.l) values [..] access EMPTY = false

cell (EMPTY.l) values true access EMPTY = false

end;

De�ning lists of two or more elements is complicated by the fact that we need an intermediate

dcds de�nition, yet we do not want the intermediate de�nition to appear ultimately in our subtype

hierarchy and be used for type inference, so we use a local de�nition:

5.3. GROUND DCDS 83

local letrec partial_intlist = dcds

cell (EMPTY.l) values true, false access EMPTY = false

cell (N.l) values [..] access EMPTY = false

graft (partial_intlist.l) access EMPTY = false

end

in let many_intlist = dcds

cell EMPTY values false

cell (N.l) values [..] access EMPTY = false

cell (EMPTY.l) values false access EMPTY = false

cell ((N.l).l) values [..] access (EMPTY.l) = false

graft (partial_intlist.l)

end

end;

This de�nition does what we want; the �rst few cells look as follows:

show more 6 many_intlist;

{

EMPTY values false,

(N.l) values [..] access EMPTY=false,

(EMPTY.l) values false access EMPTY=false,

((N.l).l) values [..] access (EMPTY.l)=false,

((EMPTY.l).l) values true, false access (EMPTY.l)=false,

(((EMPTY.l).l).l) values true, false access ((EMPTY.l).l)=false,

((N.l).l) values [..] access (EMPTY.l)=false,

(((N.l).l).l) values [..] access ((EMPTY.l).l)=false}

The language of our types is given by the following grammar, where g stands for the names of

ground dcds de�nitions:

� : : = g j � j � � � j �! � j
V
[�1::�n] j f�1::�ng j 8�: �

We shall use the variables �; �; �; �; �; : : :, to range over types, and �, �, . . . , to range over type

variables. We use the notation
V
[�1::�n] for intersection types and f�1::�ng for overloaded types;

sometimes the range of the subscript will be speci�ed using a \comprehension" notation,
V
[�i j : : :],

and f�i j : : :g.

5.3 Ground dcds

In what follows it will be convenient to assume that a dcds M is given by a tuple (C; Vc;`c), that

is, a set C of cell names, a family Vc of sets of values for each cell c 2 C, and a family of enabling

(accessibility) relations `c for each cell. This is slightly di�erent from, but obviously equivalent to,

De�nition 2.2.1.

5.3.1 Subtyping

Intuitively, there are two cases in which a dcds should be considered a subtype of another: As in

the example of points and colored points, a subtype could be an extension of the supertype, adding

84 CHAPTER 5. TYPE INFERENCE

more cells. Also, we would expect the re�nements of bool and intlist to be subtypes; in this case,

the subtype has fewer cells, and belongs, in a sense, to a partition of the supertype. Our de�nition

of subtyping formalizes this intuition.

Since all types are user-de�ned, the subtyping relation and the types we assign terms will vary

depending on what types have been de�ned. Our de�nitions will be predicated by a set of de�ned

types, L.

De�nition 5.3.1 (Maximal state) A state x is maximal if A(x) = ;.

De�nition 5.3.2 (Subtyping for ground types) Given the set of de�ned types, L, and two

ground dcds, � = (C�; V �
c ;`

�
c) and � = (C� ; V �

c ;`
�
c), we say that � � � if either of the following

hold:

1. � \extends" � (written � <e �), i.e.,

(a) C� � C�

(b) 8c 2 C� : V �
c � V �

c

(c) 8c 2 C� : `�c = `�c

2. � belongs to a \partition" of � (written � �p �), i.e.,

(a) C� � C�

(b) 8c 2 C�: V �
c � V �

c

(c) 8c 2 C�: `�c = `�c

(d) x 2 D(�) =) x 2 D(�) and any maximal state x 2 D(�) is also maximal in D(�)

(i.e., 6 9y 2 D(�); y � x =)6 9y 2 D(�); y � x for any x 2 D(�)).

3. There exists a �nite chain �1; : : : ; �n in L such that � �� �1 �� � � � �� �n �� � , where ��
ranges over f<e;�pg.

Example 5.3.3 Given our dcds de�nitions of the previous section, we have the following subtype

relation:

cPoint <e point empty intlist �p intlist

true �p bool one intlist �p intlist

false �p bool many intlist �p intlist:

It is clear why cPoint is a subtype by extension of point: it has more cells, as many values and

the same accessibility condition for the common cells. For the subtyping by partition, the only

interesting case is 2d. As can be veri�ed, all maximal states in the subtypes are maximal in the

supertypes.

Example 5.3.4 We provide an example of subtyping in which case 3 of the de�nition comes into

play. Consider the following dcds:

let empty_colored = dcds

cell EMPTY values true

cell C values red, green, blue

end;

5.3. GROUND DCDS 85

We have empty colored <e empty intlist and empty intlist �p intlist. However, empty colored

and intlist are incomparable given only the �rst two cases of the de�nition. Using case 3 we can

conclude that empty colored � intlist.

The de�nition of subtyping can be a little confusing, because a ground dcds with more states

can be either above or below one with fewer states. This might seem to imply that we can have

a contradictory situation, where two non-identical dcds's are simultaneously above and below each

other. The following propositions show that not to be the case.

Proposition 5.3.5 It is not possible to have simultaneously � <e � and � �p �, when � 6= � .

Proof: By the de�nition of subtyping, in order for both � <e � and � �p � to hold, the following

conditions must hold:

1. C� � C�

2. 8c 2 C� : V �
c = V �

c

3. 8c 2 C� : `�c = `�c

4. D(�) � D(�)

5. all maximal states of � are maximal in �

It is the last condition that cannot be met. There are three possible ways of adding more cells to

� to get �: (i) the extra cells are not initial, (ii) they are initial, or (iii) there is a combination of

initial and non-initial cells. The last two cases clearly cannot work, because we can easily extend

any maximal state in � by �lling one of the initial cells. For case (i), it would have to be the case

that the extra cells in � are enabled by states of � which are not maximal, AND the maximal states

of � contain no enabling substate for cells of �. But that implies that the states that enable a � cell

cannot be extended in � to become maximal, i.e., they are already maximal. This is contradictory.

2

It might also seem strange to build transitivity into the de�nition of subtyping, as we have

done. The reason for this is that de�ning subtyping between dcds's with incomparable sets of cells

(i.e., given �, � such that neither C� � C� nor C� � C�) is di�cult to do without making the

relation trivial. The way we chose to de�ne subtyping makes it dependent on the set L of dcds's

de�ned in the system. This implies that it is possible for two dcds's to be unrelated, but to become

so with the addition of a new dcds de�nition (cf. Example 5.3.4). We now show that subtyping is

a partial order, listing �rst two obvious lemmas about the properties of <e and �p.

Lemma 5.3.6 <e is transitive and (vacuously) anti-symmetric.

Lemma 5.3.7 �p is a partial order.

Proposition 5.3.8 � is a partial order.

Proof: Reexivity is obvious from Lemma 5.3.7. Transitivity is built into the de�nition (case 3).

Anti-symmetry is somewhat more complicated to establish. Suppose we have

� �� �1 �� � � � �� �n �� �; and

� �� �1 �� � � � �� �m �� �;

86 CHAPTER 5. TYPE INFERENCE

where each �� ranges over f<e;�pg. Then it is the case that C�
T
C� 6= ;. Departing from �,

for instance, it is impossible to lose all of C� through a chain of subtypes, since the accessibility

conditions do not change, therefore all initial cells must exist in the subtypes. By cases 1c and 2c

of the de�nition, it follows that 8c 2 C�
T
C� : V �

c = V �
c and `�c = `�c . We will now show this is

not possible assuming � 6= � .

When subtyping by extension, we can introduce new dependencies, but only among the newly

introduced cells. When subtyping by partition, the only way in which we can \eliminate" cells from

the supertype is if they depend on some initial cell, which also appears in the subtype, but with

fewer values (not the ones enabling the missing cells; cf. part 2d of the de�nition). The upshot of

this is that starting with �, say, we can eliminate some of C� by subtyping, only by reducing the

value set of at least one cell that is left over. This will not work because of our earlier requirement

of matching values for the surviving piece. On the other hand, we can simply extend �, thus

making C� � C� . But then when we try to go the other way (by subtyping from � to �), we have

to eliminate C� n C�, which cannot be done except by losing values in C� as we argued earlier.

Therefore, it must be the case that � = � . 2
To summarize, the following rules about subtyping hold (all typing rules are also listed in

Appendix A.2 for ease of reference):

(Sub-Refl) � � �

(Sub-Trans)
� � � � � �

� � �

To this we add a rule about subtyping for products, which cannot be derived from our de�nition

of subtyping for ground dcds.

(Sub-Prod)
�1 � �1 �2 � �2

�1 � �2 � �1 � �2

We now formalize the notion of coercion. Given � � � , we would expect there to be a way of

uniformly transforming any state of � into one of � . In particular, it should be the case that not

all states of � get mapped into the empty state, because, otherwise, any type can be coerced into

any type (since the empty state belongs to every type). So we want our coercions to satisfy this

extra condition. We will use '; to range over coercions.

De�nition 5.3.9 (Coercion) A coercion from � to � , where �; � are two types, is a function

' : �! � , which is a restriction on the range of the identity on �, id�, i.e., range ' � range id�,

and such that it does not map all states of � to the empty state, i.e., range ' 6= ;, unless � is the

empty dcds.

Proposition 5.3.10 [Subtyping and ground coercions] If � � � , then there exists a coercion

' : �! � such that if x 2 D(�) then '(x) 2 D(�).

Proof: By cases depending on the kind of subtyping.

1. � <e � . Then '(x) = fc = v 2 x j c 2 C�g.

2. � �p � . Then ' is the identity on �.

3. There exists a �nite chain �1; : : : ; �n in L such that � �� �1 �� � � � �� �n �� � , where

each �� ranges over f<e;�pg. Then construct a coercion 'i for each piece of the chain and

' � 'n+1 � � � � � '1.

5.3. GROUND DCDS 87

The �rst two cases obviously give rise to coercions. For the last case, recall from the proof of

Proposition 5.3.8 that C�
T
C� 6= ;, therefore the composition of the coercions will also satisfy the

coercion requirements. 2
We formalize what we mean by a subtype hierarchy. We will use S to range over subtype

hierarchies. Our de�nitions will now be predicated by S.

De�nition 5.3.11 (Subtype hierarchy) A subtype hierarchy is a partially ordered set hL;�i,

where L is the set of de�ned types, and � is the subtype relation.

We are �nally in a position to begin formalizing some of our intuitions from Section 5.1. We

de�ne a notion of minimal type with fewest assumptions: If, given a state x, it is the case that

x 2 D(�) for several �, we want to call the lowest such � the minimal type of x (let us defer,

for now, the possibility that there is no single lowest � to the next section, where we introduce

intersection types). However, if x 2 D(�) and x 2 D(�) with � <e � , then x would require more

assumptions to be considered a member of �, and so we would choose � as the minimal type with

fewest assumptions. Note that we reason about assumptions in a very indirect fashion, as compared

to the presentation of Section 5.1.

De�nition 5.3.12 (Minimal type with fewest assumptions) Given a subtype hierarchy S

and a state x, we say that � is the minimal type with fewest assumptions of x, if x 2 D(�)

and 6 9�: � <e � and x 2 D(�), and � is the lowest type with this property.

Example 5.3.13 Assuming the dcds de�nitions of the previous section, the minimal type with

fewest assumptions of fX = 3g is point, and the minimal type with fewest assumptions of fC = redg

is cPoint.

The re�nement types are the subtypes by partition (�p). We are particularly interested in the

case when enough partitions of a type are de�ned so that, taken together, they \cover" the type.

De�nition 5.3.14 (Complete partition) A set of types f�1; : : : ; �ng is called a complete parti-

tion of a type � if 8i: �i �p � and D(�) =
S
iD(�i) and 8i 6= j: �i and �j are incomparable.

Example 5.3.15 ftrue; falseg is a complete partition of bool, and fempty; one;manyg is a com-

plete partition of intlist. If, for instance, true were not de�ned, then the partition of bool would

not be complete.

5.3.2 Intersection types

In the previous section we ignored the possibility that a state might have several, incomparable,

minimal types with fewest assumptions. To handle such cases, we introduce intersection types. In

general, the type of a state will be an intersection of types.

De�nition 5.3.16 (Minimal type) Given a subtype hierarchy S and a state x, we say thatV
[�1::�n] is the minimal type of x if the �i are all the incomparable minimal types of x with fewest

assumptions.

We now present our replacement to the original notion of typing judgments in CDS0. The idea

is to say that x : � even in cases when x 62 D(�), provided there exists a type � below � for which

x : � does hold. Then we can coerce x to something that is in D(�). So we still use the original

notion of belonging to the set of states, but only to get a \foothold" into the subtype hierarchy,

and from there we apply the subtyping rules.

88 CHAPTER 5. TYPE INFERENCE

(And-Intro)
x : �1 � � � x : �n
x :
V
[�1::�n]

(And-Elim)
x :
V
[�1::�n]

x : �i

(Sub-And-R)
8i: � � �i

� �
V
[�1::�n]

(Sub-And-L)
V
[�1::�n] � �i

Figure 5.1: Typing and subtyping for intersection types

De�nition 5.3.17 (Meaning of typing judgments for ground states) Given a subtype hi-

erarchy S and a state x, we say that x : � , if � � � , where � is the minimal type of x.

Example 5.3.18 The minimal type of fC = redg is cPoint and not point, because it is the case

that fC = redg 2 cPoint and there is no type below cPoint for which this holds. On the other

hand, fC = redg 62 point. However, we do have fC = redg : point, since cPoint � point, and so

we can coerce fC = redg into a state of point (in this case it is ;).

Our typing and subtyping rules for intersection types are summarized in Figure 5.1.

In the general setting of intersection types, we can state and prove a property which we would

expect to hold of any typing system based on dcds's, i.e., that incremental computation decreases

the type of a state. If we extend a ground state by a new event, we want the type of the new state

to be at most as high as before.

Theorem 5.3.19 Incremental computation does not increase the minimal type of a ground state.

Proof: Suppose we have two states, x; y, such that x�<c y, and x : �; y : � , where �; � 2 S, our

subtype hierarchy. We want to show that the minimal type of y is not above the minimal type of

x.

By the de�nition of typing judgments, the minimal types of x, y will have forms
V
[�1::�n] andV

[�1::�m], respectively. We need to show that 8�i 9�j: �j � �i.

Pick a �i. Suppose it is incomparable to all the �j. But then it should be included among them

as part of the minimal type of y. Now suppose there is a �j such that �i � �j. It has to be the case

that �i <e �j, otherwise �i would have been listed as one of the minimal types of y, instead of �j .

But then, since x 2 �j , �i should not be among the minimal types of x; �j should be listed instead.

Therefore, there is a �j such that �j � �i. 2

5.4 Sequential algorithms

Higher-order dcds's, whose states are the sequential algorithms, are treated somewhat di�erently

from ground dcds's. Intersection types are also present, and the meaning of a typing judgment

does not change, however, an analogue of Theorem 5.3.19 does not hold for higher-order states.

5.4. SEQUENTIAL ALGORITHMS 89

5.4.1 Subtyping

As in the case of products, we cannot apply the de�nition of subtyping for ground dcds's to the

higher-order case. Instead, we have to impose an ordering from outside. The subtyping rule for

arrow is conventional and for the same reason; we want it to encode the idea of substitutability. Even

though sequential algorithms are more than just functions (they contain intensional information),

we should be able to collapse intensional substitutability to the extensional one.

(Sub-Arrow)
�2 � �1 �1 � �2

�1! �1 � �2! �2

If a higher-order type is a subtype of another, it should still be possible to coerce states of the

former into states of the latter.

Proposition 5.4.1 [Subtyping and higher-order coercions] If �1! �1 � �2! �2, then there exists

a coercion ' : (�1! �1)!(�2! �2) such that if x 2 D(�1! �1) then '(x) 2 D(�2! �2).

Proof: By Sub-Arrow we have �2 � �1 and �1 � �2 and by Proposition 5.3.10 there exist

coercions 'in : �2! �1 and 'out : �1! �2. We de�ne an event-by-event version of ', called 'e,

based on the kinds of events of �1! �1:

1. xc0 = valof c, where c0 2 C�1 , x 2 D(�1) and c 2 C
�1 . Then

'e(xc
0 = valof c) =

(
;; if 'in(x) 6= x; or 'in(fc = �g) = ;; or 'out(fc

0 = �g) = ;

fxc0 = valof cg; otherwise

The notation c = � means �ll cell c with any reasonable value; we are interested if a particular

coercion elides all events involving c.

2. xc0 = output v0, where c0 2 C�1 , v0 2 V �1
c0 , and x 2 D(�1). Then

'e(xc
0 = output v0) =

(
;; if 'in(x) 6= x; or 'out(fc

0 = v0g) = ;

fxc0 = output v0g; otherwise

Then '(x) =
S
(map 'e x). 2

Example 5.4.2 Suppose we are given the following state of bool! cPoint:

{ {}X = valof B, {B=tt}X = output 3, {B=ff}X = output 4,

{}C = valof B, {B=tt}C = output red }.

Since bool! cPoint � true! point, there should be a coercion that transforms the above state into

one of true! point. The result of applying the coercion generated by Proposition 5.4.1 is:

{ {}X = valof B, {B=tt}X = output 3 }.

The meaning of typing judgments in the higher-order case is the the same as in the ground case:

again we use \belongs to the set of states of" as a foothold, and then use the subtyping rules.

De�nition 5.4.3 (Meaning of typing judgments for algorithms) Given an algorithm a, we

say that a : �! � if a 2 D(�0! � 0), where �0! � 0 � �! � .

90 CHAPTER 5. TYPE INFERENCE

We note that this de�nition has an interesting implication, as established by the following

proposition.

Proposition 5.4.4 If a : �! � , then given an input x : �, a:x : � .

Proof: Assume a 2 D(�0! � 0), where �0! � 0 � �! � . Given an x : �, i.e., x 2 D(�in) for some

�in � �, we have �in � � � �0. Therefore, we can coerce the x to a �0, so a:x 2 D(� 0), which

implies a:x : � . 2

5.4.2 Intersection types

In general, an algorithm will have an intersection type. Suppose the type of the inputs for algorithm

a is
V
[�1::�n], and the outputs have type

V
[�1::�m]. What should the type of the algorithm be in

that case? We would not want it to be
V
[�1::�n]!

V
[�1::�m], because, as would be apparent by

examination of the Sub-Arrow rule, we would not then be able to apply the algorithm to an input

of type �i. A natural choice, then, would be
V
[�i!

V
[�1::�m] j i 2 1::n], but this is inconvenient,

because of the nested intersections.

We will construct a canonical type for a with all the intersections at the outer level. The type

of a will be
V
[�i! �j j i 2 1::n; j 2 1::m]. The justi�cation for this is provided by the following

subtyping rule which establishes an equivalence between our canonical type and the natural type

one would expect for the algorithm:

(Sub-And-Dist)
V
[�! �1 :: �! �n] � �!

V
[�1::�n]

The equivalence is due to the fact that we can deduce the opposite of Sub-And-Dist using

Sub-And-L, Sub-Arrow, and Sub-And-R. By Sub-And-L we have
V
[�1::�n] � �i for each i.

By Sub-Arrow it follows that �!
V
[�1::�n] � �! �i for each i. Therefore, by Sub-And-R, we

conclude that �!
V
[�1::�n] �

V
[�! �1 :: �! �n].

De�nition 5.4.5 (Canonical type for algorithms) Given an algorithm a, with minimal input

type
V
[�1::�n] and minimal output type

V
[�1::�m], then the canonical type of a will be given byV

[�i! �j j i 2 1::n; j 2 1::m].

Our canonical type provides a valid type for an algorithm a. If a :
V
[�i! �j j i 2 1::n; j 2 1::m],

then it is the case that a : �i! �j for each i and j. In addition, we can apply a to any input x : �i,

for any i, and we can conclude that a:x : �j, for all j, therefore, a:x :
V
[�1::�n].

5.5 Decidability of monomorphic subtyping

It is not at all obvious, at �rst glance, how one can decide when a dcds � is a subtype of another,

� . There are three problematic requirements: checking when the set of cells of � is a subset of

the set of cells of � , checking that all states of � are also states of � , and verifying the maximality

requirement for subtyping by partition. Fortunately, dcds's are in�nite regular trees [24], so it is

possible to decide each of the above properties.

First, note that deciding subtyping is easy when we have dcds's with a �nite number of cells.

The interesting case occurs with dcds's that have an in�nite number of cells. There are two ways

in which such dcds's can arise: a dcds de�nition with a cell name that contains an in�nite interval

tag, such as R:[::] (cf. Appendix C.1), or by recursion.

5.5. DECIDABILITY OF MONOMORPHIC SUBTYPING 91

The �rst case is easy to handle, since the representation is very compact. We can check if

another dcds contains cells of the type R:[::] simply by comparing the endpoints of the intervals.

For the second case, we can view a dcds as a tree: all cells are leaves and grafting creates a subtree.

A recursive dcds (with possibly other recursive dcds's embedded in it by grafts) is an in�nite regular

tree. The access conditions on cells pose no problem, as they also have a regular structure.

We shall �rst present an algorithm for deciding subset-of on dcds states. The same algorithm

can be used, with only minor modi�cations, to decide inclusion of sets of cells. Note that in both

subtyping by extension and by partition, the accessibility condition is required to be the same

on the common subset of cells of the subtype and supertype. Without much additional e�ort,

however, we can decide subset-of in the general setting of di�erent access conditions. Consequently,

we present a de�nition of \weaker-than" for accessibility conditions. A weaker access condition is

more permissive, i.e., easier to satisfy. We view an enabling relation for a cell c (`c) as consisting

of a family E of sets of events which enable c (also written E ` c).

De�nition 5.5.1 (Weaker-than access condition) Given two enabling relations on a cell of a

dcds, we say that E1 ` c � E2 ` c (read `1c is weaker than `2c) i� 8E2 2 E2: 9E1 2 E1: E1 � E2.

The basic idea is to prove subset-of by induction on the size of cell names. A graft will always

increase the length of a cell name. As we \unroll" an in�nite dcds one layer at a time, all cell names

will get longer. If a dcds has not been able to generate the cells from another dcds, we need not

continue checking past a point determined by the length of those cells.

De�nition 5.5.2 (Cell name length) The length of a cell name c is the number of tags in it.

In order to de�ne the concept of unrolling a dcds, we have to �x a representation for dcds's.

This is probably easiest to accomplish by using the actual Standard ML representation from our

implementation:

datatype cva = Plain of cell * value list * access list

| Delay of idcds * ((cell * value list * access list) ->

(cell * value list * access list))

and idcds = Nonrec of cva list

| Rec of cva list * ((cell * value list * access list) ->

(cell * value list * access list)) *

((cell * value list * access list) ->

(cell * value list * access list))

The internal representation of a dcds (idcds) is a list of cell, values, and access conditions (cva)

packaged as either a non-recursive or recursive dcds. It is not important what the representation

for cells, values, and access conditions is for our purposes. In the case of a recursive dcds, we also

package two functions: one to generate the initial recursive step, and another for all subsequent

steps (the reason for having two functions is not relevant). A cva can be either a plain triplet of a

cell, a list of values, and access conditions, or, when we graft a recursive dcds into another, a pair

of the grafted dcds and a function that applies the graft tag. In particular, note that something

packaged as a non-recursive dcds at top-level can actually have recursive dcds's embedded in it.

The depth of a dcds is a measure of how deeply embedded a recursive graft is. In the case

of a non-recursive dcds, it is simply the number of cva entries, whereas for recursive dcds's, we

increment the number of cva entries by one. In both cases, we increment the depth by one plus

92 CHAPTER 5. TYPE INFERENCE

the maximum depth of any recursive graft. We present the actual Standard ML code for the depth

function, since it is very simple.

De�nition 5.5.3 (Dcds depth) The depth of a dcds � is given by the following mutually recursive

functions:

fun findDelay [] = 0

| findDelay ((Delay(d,_))::l) = 1 + max(depth d, findDelay l)

| findDelay ((Plain(_,_,_))::l) = findDelay l

and depth (Nonrec cvas) = (length cvas) + (findDelay cvas)

| depth (Rec(cvas,_,_)) = 1 + (length cvas) + (findDelay cvas)

Example 5.5.4 We apply the de�nition of depth to some of the previously presented dcds's:

depth(bool) = 1

depth(intlist) = 3

depth(many intlist) = 8

Note that the actual number returned by depth is not meaningful in and of itself. It counts the

number of cva elements with the addition of a large \penalty" for embedded recursive grafts. Most

importantly, it is designed to work in conjunction with the unrolling of a dcds, which essentially

retraces the computation of depth, by listing the cva elements of the dcds up to some speci�ed

limit.

De�nition 5.5.5 (Dcds unrolling) Unrolling a dcds � d times builds a cva list of �, such that

any embedded recursion at depth d gets to apply its recursive graft at least once. A simpli�ed version

of our implementation (it omits the raising of exceptions with error messages in certain cases) is

given in Figure 5.2.

The function iterate takes a single cva element and the functions which apply the tags from a

recursive dcds, and generates the speci�ed number of new cva elements. The function listCva takes

a list of cva elements and emits at least the speci�ed number of elements from the list (assuming

the list is long enough). In the case of a nonrecursive dcds de�nition, listCva will list exactly the

speci�ed number of cva elements. For recursive de�nitions, it will list at least the number speci�ed.

We have already seen some examples of unrolling a dcds at the beginning of this chapter. The

command show more d � from our CDS0 interpreter actually performs unroll(d; �). We refer the

reader to Section 5.2 for examples of usage of this function on intlist and many intlist.

We list some properties of the de�nitions of unrolling and depth, which will be needed in

establishing the correctness of our decision procedures.

Lemma 5.5.6 Given a dcds � with depth(�) = d�, the computation of unroll(d�; �) results in the

computation of unroll(d; �), where � is the innermost embedded recursive dcds in �, and d � d� ,

where d� is the depth of � .

Proof: By examination of the code for unroll it is apparent that it simply retraces the computation

of depth. When presented with a nonrecursive dcds, unroll subtracts one from its running total for

each plain cva element. When it encounters an embedded recursive dcds � , unroll calls iterate on

it with an argument equal to the remaining count, which will be at least as large as the depth of

5.5. DECIDABILITY OF MONOMORPHIC SUBTYPING 93

fun iterate (0,_,_,_) _ = []

| iterate (i, first, f1, fi) (c,v,a) =

if (first) (* first iteration: apply f1 *)

then if (i = 1) then [(c,v,a)]

else let val newCva = f1(c,v,a)

in (c,v,a)::(newCva::(iterate(i-2,false,f1,fi) newCva))

end

else let val newCva = fi(c,v,a)

in newCva::(iterate (i-1,false,f1,fi) newCva)

end

fun listCva (0, _) = []

| listCva (i, []) = []

| listCva (i, cva::l) =

(case cva of

(Plain(c,v,a)) => [(c,v,a)] @ (listCva(i-1,l))

| (Delay(Rec(cvaList,f1,fi),f)) =>

let val recPart = map (iterate(i,true,f1,fi))

(listCva(i,cvaList))

val ordered = flatten recPart

in (map f ordered) @ (listCva(i-1,l))

end)

fun unroll i (Nonrec cvaList) = listCva(i, cvaList)

| unroll i (Rec(cvaList,f1,fi)) =

let val recPart = map (iterate(i,true,f1,fi)) (listCva(i,cvaList))

in flatten recPart

end

Figure 5.2: De�nition of unrolling

94 CHAPTER 5. TYPE INFERENCE

� , depending on its exact position in the list of cva elements. Suppose � is last in the list of a dcds

de�nition � (least favorable position from our point of view); further, suppose there are i plain cva

elements, and that dcds � has depth d� . Then the depth of � will be d� = i + 2 + d� . The call

unroll(d�; �) will then lead to the call unroll(d� + 2; �), which establishes our result. 2

Proposition 5.5.7 Given a dcds � with depth(�) = d�, the computation of unroll(d�; �) results

in a cva list such that the innermost embedded recursive dcds in � gets to apply its recursive graft

at least once.

Proof: According to Lemma 5.5.6, the call unroll(d�; �) will result in a call unroll(d; �) with � the

innermost embedded recursive dcds, and d � d� , the depth of � . Then it su�ces to examine what

happens when unroll is applied to a simple recursive dcds with an argument equal to the depth of

that dcds.

Suppose � is a simple recursive dcds (i.e., it contains no embedded recursive dcds's) and it

has depth d� . Unroll(d� ; �) will call iterate with argument d� for every cva element in � . There

must be at least one cva element, hence d� � 2 and therefore, iterate will get to apply at least one

recursive graft. 2
From the previous two results, it is easy to derive the following Corollary, which will prove

useful in what follows.

Corollary 5.5.8 Given a dcds � with depth(�) = d�, the computation of unroll(d� + n; �) results

in a cva list such that the innermost embedded recursive dcds in � gets to apply its recursive graft

at least n+ 1 times.

When given two in�nite dcds's � and � , and having to decide whether D(�) � D(�), the idea

is to unroll each dcds up to some point and check the �nite cva lists for subset-of. We need to

be careful to unroll enough of each dcds in order to make the comparison. Consider the following

example:

letrec M1 = dcds letrec M2 = dcds

cell (N.l) values [..] cell (N.l) values [..]

graft (M1.l) cell ((N.l).l) values [..]

end; graft (M2.s)

end;

Dcds M1 has cells of the form N:l : : : with one or more l tags while M2 has cells of the form

N:l:s : : : or N:l:l:s : : : with zero or more s tags. If we only unrolled M1 and M2 once and made

the comparison, we would conclude that D(M1) � D(M2), which is false. We need to unroll M1

enough times to allow it to di�erentiate itself from the nonrecursive part of M2, and only then can

we unroll M2 enough times to enable it to generate all of M1's cells, if it can. With this in mind,

we present our decision procedure for subset-of.

Algorithm 5.5.9 (Deciding subset-of for dcds states) Given two dcds's, � and � , to deter-

mine if D(�) � D(�) do the following:

1. Let d� = depth(�) and d� = depth(�).

2. Let L = unroll(d� ; �).

3. Let name� = length of longest cell name in L.

5.5. DECIDABILITY OF MONOMORPHIC SUBTYPING 95

4. Let L� = unroll(d� + name� ; �).

5. Let name� = length of longest cell name in L�.

6. Let L� = unroll(d� + name�; �).

7. Compare the �nite L�, L� for subset-of.

Example 5.5.10 We show the algorithm in operation on the two dcds's de�ned above, M1 and

M2, deciding whether D(M1) � D(M2). First we �nd the depth:

depth(M1) = 2; and depth(M2) = 3:

Unrolling M2 3 times produces:

show more 3 M2;

{

(N.l) values [..],

((N.l).s) values [..],

(((N.l).s).s) values [..],

((N.l).l) values [..],

(((N.l).l).s) values [..],

((((N.l).l).s).s) values [..]}

Therefore, the length of the longest cell name in the exposed portion of M2 is 4. Now we unroll M1

6 times which produces:

show more 6 M1;

{

(N.l) values [..],

((N.l).l) values [..],

(((N.l).l).l) values [..],

((((N.l).l).l).l) values [..],

(((((N.l).l).l).l).l) values [..],

((((((N.l).l).l).l).l).l) values [..]}

The longest cell name here is 6, so we next unroll M2 9 times, in order to give it a chance to

generate all cell names in this portion of M1:

show more 9 M2;

{

(N.l) values [..],

((N.l).s) values [..],

(((N.l).s).s) values [..],

((((N.l).s).s).s) values [..],

(((((N.l).s).s).s).s) values [..],

((((((N.l).s).s).s).s).s) values [..],

(((((((N.l).s).s).s).s).s).s) values [..],

((((((((N.l).s).s).s).s).s).s).s) values [..],

(((((((((N.l).s).s).s).s).s).s).s).s) values [..],

96 CHAPTER 5. TYPE INFERENCE

((N.l).l) values [..],

(((N.l).l).s) values [..],

((((N.l).l).s).s) values [..],

(((((N.l).l).s).s).s) values [..],

((((((N.l).l).s).s).s).s) values [..],

(((((((N.l).l).s).s).s).s).s) values [..],

((((((((N.l).l).s).s).s).s).s).s) values [..],

(((((((((N.l).l).s).s).s).s).s).s).s) values [..],

((((((((((N.l).l).s).s).s).s).s).s).s).s) values [..]}

Comparing the �nite unrollings of M1 and M2 is enough to convince us that D(M1) 6� D(M2).

Theorem 5.5.11 Given two dcds's, � and � , Algorithm 5.5.9 will claim D(�) � D(�) i� it is the

case that D(�) � D(�).

Proof: Completeness is relatively simple to establish. Suppose D(�) � D(�). The only issue is

whether we have unrolled � enough times to let it generate all cva elements in L�. But � is being

unrolled d� + name� times, which, according to Corollary 5.5.8, will make the deepest embedded

recursive dcds in � apply its tag at least name�+1 times. But clearly, there is nothing to be gained

by unrolling � any further, because any new cell names we generate will be strictly longer than the

cell names in L�. Therefore, if D(�) � D(�), all cva elements in L� will have been generated by

that point.

Correctness is more di�cult to establish. We need to prove that if according to Algorithm 5.5.9

D(�) � D(�), then that is indeed the case. To do this, we need to show that � cannot possibly

generate a cva element not in � .

For simplicity, let us assume that each recursive dcds in � applies a di�erent tag. The proof is

by contradiction. Let c be the shortest cell name generated by � which is not in � . Then c will

have the form:

c = name+ k�t+ r�n�t;

where name is the part of the cell name that does not contain any of the tags applied by recursive

steps, k�t denotes the addition of k� tags t which are the same as the ones from the recursive step

but already existed in c prior to any unrolling, and r�n�t denotes n� unrollings, each of which

applies r�t tags at a time. We have used the addition symbol (+) to denote the application of a

tag (i.e., N:l:l = N + 2l).

First we will show that n� > 2. In step 2 of the algorithm we unroll � for d� times, so

name� � 1, and in step 4 we unroll � for d� + name� times. By Corollary 5.5.8, this means that

the deepest recursion in � applies at least name� + 1 � 2 tags. But any cell in L� is in � , and so

our counterexample cell c must have more than 2 tags.

Since c is, by assumption, the shortest counterexample, its immediate precursors are in � . Let

us denote them c0; c00. They have the following form:

c0 = name+ k�t+ r�(n� � 1)t;

c00 = name+ k�t+ r�(n� � 2)t:

Since c0; c00 are in � , there must be a way to construct them in � . Because the �rst 4 steps of

the algorithm unroll � enough times to di�erentiate it from the nonrecursive part of � , c0 and c00

5.5. DECIDABILITY OF MONOMORPHIC SUBTYPING 97

must be generated by � recursively:

c0 = name+ k� t+ r�n� t;

c00 = name+ k� t+ r� (n� � k)t;

where, as before, k� t denotes the tags coming from the nonrecursive part of � , and r� t is the number

of tags placed by one unrolling of � . We now show that if � can recursively generate two successive

cells of �, then it can generate any subsequent one.

By taking the di�erence of c0 and c00 on both the � and � side, we get the number of tags that

are di�erent. We use the notation c0 � c00 for this:

c0 � c00 = r�t = r�kt:

But this means that what takes � one unrolling to accomplish, can be done with k unrollings of � ,

and so we can actually express c in � :

c = name+ k� t+ r� (n� + k)t:

But then c is not a counterexample after all and we have established a contradiction. This means

that � can generate all cells in �, and that, indeed, D(�) � D(�). 2
The same kind of argument can carried out in the more general setting of dcds's with recursive

components which apply the same tags. The di�erence is that a cell name like c will have a more

complicated general form, since recursive contributions can come from several places.

We make use of Algorithm 5.5.9 in deciding whether all maximal states in the subtype are

maximal in the supertype. In particular, we will use the �nite lists of cva elements L�; L� .

Algorithm 5.5.12 (Deciding maximality requirement) Given �; � , such that D(�) � D(�)

compute L�; L� as in Algorithm 5.5.9 and check:

1. All initial cells in � are in � (with V �
c � V �

c).

2. All cells enabled by the common values (from both � and �) of the initial cells in � are in �,

and so on, recursively.

The algorithm terminates because we are only examining the �nite L�; L� . Completeness is

again simple to establish. For correctness we can use an argument similar to the one from the proof

of Theorem 5.5.11. As before, we are examining �nite pieces of in�nite dcds's that already have

the relevant structure of the whole.

Example 5.5.13 We show how to decide the maximality requirement for one intlist and intlist.

Since one intlist is not recursive, we do not need to unroll intlist as many times as dictated by

Algorithm 5.5.9. It is enough to unroll intlist its depth (3) plus the longest cell name in one intlist

(1). The lists we get then are:

show more 3 one_intlist;

{

EMPTY values false,

(N.l) values [..] access EMPTY=false,

(EMPTY.l) values true access EMPTY=false}

show more 4 intlist;

98 CHAPTER 5. TYPE INFERENCE

{

EMPTY values true, false,

(EMPTY.l) values true, false access EMPTY=false,

((EMPTY.l).l) values true, false access (EMPTY.l)=false,

(((EMPTY.l).l).l) values true, false access ((EMPTY.l).l)=false,

(N.l) values [..] access EMPTY=false,

((N.l).l) values [..] access (EMPTY.l)=false,

(((N.l).l).l) values [..] access ((EMPTY.l).l)=false,

((((N.l).l).l).l) values [..] access (((EMPTY.l).l).l)=false}

There is only one initial cell in intlist, EMPTY and it is also initial in one intlist with a smaller

set of values. The two cells enabled by fEMPTY = falseg in intlist are (N:l) and (EMPTY:l)

and they are also enabled in one intlist, again with a smaller set of values. Nothing is enabled

by fEMPTY = false; (N:l) = n; (EMPTY:l) = trueg in intlist and there are no more cells in

one intlist, so the maximal states in one intlist are indeed maximal in intlist as well.

5.6 Monomorphic type inference

Type inference systems which contain subtyping normally incorporate the notion of substitutability

using a subsumption typing rule:

(Sub)
a : � � � �

a : �

We will not have this rule explicitly in our system, because it would not be syntax-directed. Instead

it will be absorbed into the other rules.

Our type inference system for expressions is shown in Figure 5.3. The form of the rules deserves

some explanation. We consider the rule for application. As noted before, in general, an algorithm

will have an intersection type. Suppose algorithm a :
V
[�1! �1 :: �n! �n]. By applyingAnd-Elim

we can deduce a : �i! �i for each i. Suppose algorithm b :
V
[�1::�m]. Again, by And-Elim, b : �j

for each j. But then for each j for which it is the case that there exists an i such that �j � �i,

we can apply the subsumption rule to either the type of a or b to get an application argument

of the right type, so we can obtain a:b : �i. We then collect all the �i's for which we can do this

in an intersection as the �nal type of the application. The other rules have a similar form. For

instance, the rule for �xpoint also incorporates subsumption. If a : �i! �i with �i � �i, then by

Sub-Arrow �i! �i � �i!�i and by subsumption a : �i!�i. Therefore, fix(a) : �i. Using

And-Elim, And-Intro we can do this for each �i that matches the condition.

Now we present our type inference algorithm.

Algorithm 5.6.1 (Monomorphic type inference) Given an expression e, Am(e) is de�ned as

follows:

1. If e is a ground state, x, we match it to all dcds in the subtype hierarchy, and construct its

minimal type,
V
[�1::�n].

2. If e is an algorithm a, or equivalently a higher-order state x, we collect all input cells and

values, xin, and get its minimal type,
V
[�1::�n]. We do the same for the outputs, xout, and

we get the minimal type
V
[�1::�m]. The type of the algorithm will be the canonical type:

V
[�1! �1 :: �1! �m :: �n! �1 :: �n! �m]

5.6. MONOMORPHIC TYPE INFERENCE 99

(App)
a :
V
[�i! �i j i 2 1::n] b :

V
[�1::�m]

a:b :
V
[�i j 9j: �j � �i]

(Comp)
a :
V
[�i! �i j i 2 1::n] b :

V
[�j! � 0j j j 2 1::m]

ajb :
V
[�j! �i j �

0
j � �i]

(Fix)
a :
V
[�i! �i j i 2 1::n]

fix(a) :
V
[�i j �i � �i]

(Curry)
a :
V
[(�i � �0i)! �i j i 2 1::n]

curry(a) :
V
[�i!�0i! �i j i 2 1::n]

(Uncurry)
a :
V
[�i!�0i! �i j i 2 1::n]

uncurry(a) :
V
[(�i � �0i)! �i j i 2 1::n]

(Pair)
a :
V
[�i! �i j i 2 1::n] b :

V
[�j! �j j j 2 1::m]

< a; b > :
V
[�i!(�i � �j) j �j � �i]

(Prod)
a :
V
[�1::�n] b :

V
[� 01::�

0
m]

(a; b) :
V
[�i � � 0j j i 2 1::n; j 2 1::m]

Figure 5.3: Monomorphic type inference rules

3. If e is a combinator expression, we apply the inference rules.

Theorem 5.6.2 (Soundness of monomorphic type inference) If Am(e) = � then e : � .

Proof: By induction on the structure of e:

1. e � x. If e is a ground state, we assign it its minimal type,
V
[�1::�n], so � �

V
[�1::�n] and

indeed e : � .

2. e � a or e � x higher-order. When e is a an algorithm, or equivalently, a higher-order state,

we get the minimal type for the input and output dcds and construct a canonical type with

intersections at the outermost level,
V
[�i! �i j i 2 1::n]. It is the case that for each i,

a : �i! �i, because a 2 D(�i! �i). Then a :
V
[�i! �i j i 2 1::n].

3. e � a:b. By the induction hypothesis, a :
V
[�i! �i j i 2 1::n] and b :

V
[�1::�m]. According

to the de�nition of typing judgments, in the case of a, for each i, a 2 D(�0i! � 0i) with

�0i! � 0i � �! � , and, in the case of b, for each j, b 2 D(�0j), where �
0
j � �j . For the i such

that there exists a j with �j � �i, we have �
0
j � �j � �i � �0i. Then there exists a coercion

'in : �0j!�0i. But then it will be the case that a:b 2 D(� 0i), therefore a:b : �i. Doing this for

every i that satis�es the condition, we get a:b :
V
[�i j 9j: �j � �i].

4. e �< a; b >. By the induction hypothesis, we have a :
V
[�i! �i j i 2 1::n] and also

b :
V
[�j! �j j j 2 1::m]. For i such that there exists j with �j � �i, we obtain a coercion

'in : �j!�i. Since a : �i! �i, by the de�nition of typing judgments, a 2 D(�0i! � 0i), with

100 CHAPTER 5. TYPE INFERENCE

�i � �0i and �
0
i � �i. Similarly, b 2 D(�0j! � 0j) with �j � �0j and �

0
j � �j . Then for some x : �i,

< a; b > :x 2 D(� 0i � � 0j), which implies < a; b > :x : �i � �j. Then < a; b > : �i!(�i � �j).

Doing this for all j that meet the requirement, yields the desired type.

5. e � curry(a). By the induction hypothesis, a :
V
[(�i��

0
i)! �i j i 2 1::n]. By And-Elim, for

each i, a : (�i��
0
i)! �i. This means that a 2 D((s�s0)! t) with (s�s0)! t � (�i��

0
i)! �i.

This implies, by Sub-Arrow, that �i � �0i � s� s0 and t � �i. Further, by Sub-Prod, we

have �i � s and �0i � s0. But then, by Sub-Arrow again, s! s0! t � �i!�0i! �i. Since

curry(a) 2 D(s! s0! t), this implies that a : �i!�0i! �i. Doing this for all i yields the

desired type.

6. Composition and �xpoint are similar to application and pair. Uncurry and product are similar

to curry.

2

Completeness, in the sense of always deducing the lowest type, is not possible in this system for

undecidability reasons. The user may de�ne a certain type hierarchy which requires us to decide,

for instance, whether an algorithm terminates, in order to assign it the lowest type.

Example 5.6.3 We presented a CDS0 algorithm for boolean negation in Figure 2.3. We illustrate

our monomorphic type inference algorithm on the expression not:fB = ttg. When typing not, we

collect all input cells and their values, and all output cells and their values. Let us assume that the

only dcds's de�ned in our system are bool and intlist. The inputs are cell B with values tt ;� , and

likewise for the outputs. The only matching dcds is bool, so we conclude:

not : bool! bool; fB = ttg : bool:

By App we then conclude:

not:fB = ttg : bool:

5.7 Polymorphism and overloading

We have seen in Section 2.3.4 how to write algorithms with generic (i.e., variable) cell names and

values. Variable names begin with the special symbol \$". When both cell and value references in

an algorithm are variable, we get a polymorphic type. When only one or the other is, or their shape

is constrained in some way, we get an overloaded type. The other way of getting overloaded types

is to have a missing cell or value name, so that we only know either the cell name or the value. In

that case, as well, we are reduced to matching what we have to the entire subtype hierarchy, which

might result in di�erent, incompatible matches.

We have already encountered the polymorphic identity in Section 2.3.4. Figure 5.4 shows some

more examples of polymorphic algorithms and an example of an overloaded algorithm. The �rst

projection is almost the same as the polymorphic identity, except it �nds its input in the left side

of a product. Conditional is an example of a mix of generic and nonvariable cell names and values.

The input to cond is of the form (bool��)�� (which explains the tags on the cells) and the output

has type �. The last example shows overloading. Minus is an algorithm that will work on any dcds

which has some initial cells whose values are pairs of an integer and something else. For instance,

if we had the following dcds's de�ned in the system,

5.7. POLYMORPHISM AND OVERLOADING 101

let fst = algo

request $C do

valof ($C.1) is

$V: output $V

end

end

end;

let minus = algo

request $C do

valof $C is

($V.$W): output (~$V.$W)

end

end

end;

let cond = algo

request $C do

valof ((B.1).1) is

tt: valof (($C.2).1) is

$V: output $V

end

ff: valof ($C.2) is

$W: output $W

end

end

end

end;

Figure 5.4: First projection, conditional, and an overloaded algorithm

let fractions = dcds

cell R values ([..].[1..])

end;

let series = dcds

cell (R.[0..]) values ([..].[1..])

end;

minus should work on both, even though they have disjoint sets of cells.

When typing an algorithm with variable cell and value references, we have to decide, �rst, if

it is a polymorphic or an overloaded reference (polymorphic references have no constraints on the

shape of the value, excluding product tags, and both cell and value are variable), and second, we

need to look for matches between variables used in the input and output.

For example, in the case of the polymorphic identity, we have $C; $V in both input and output,

so assume the input has type � and the output �, the matching stage will conclude that � 7! �,

and the �nal type will be 8�: �!�. The �rst projection is similar: we have $C:1; $V in the input

and $C; $V in the output, which gives rise to the types � � � and respectively. The matching

stage will conclude that � 7! , so the resulting type is 8�: �� �!�.

Polymorphic types will be handled in the standard way, using instantiation and generalization

rules. There will be di�culties, however, with instantiating polymorphic types. In general, we will

have to solve a constraint satisfaction problem. This is discussed in more detail in the next section.

For overloaded types we do not want to use \meet" to put together the various branches, because

an algorithm with an overloaded type will not simultaneously have all the types in the branches.

It depends on particular instantiations. Therefore, we introduce new notation.

De�nition 5.7.1 (Overloaded types) An algorithm a has type f�1! �1 :: �n! �ng (abbreviated

f�i! �i j i 2 1::ng), when there exist instantiations of the variable cell and value names in a so

that a : �i! �i for each i. The instantiations do not have to be the same for each i.

Note that it is possible to have a ground state that is overloaded, but it does not make computational

sense, and so we will disallow it.

We add the following subtyping rules: one that relates di�erent overloaded types, and one that

relates intersection and overloaded types.

(Sub-Over) f�i! �i j i 2 1::ng � f�j! �j j j 2 1::mg 8j: 9i: �i! �i � �j! �j

102 CHAPTER 5. TYPE INFERENCE

(Sub-Meet-Over)
V
[�i! �i j i 2 1::n] � f�i! �i j i 2 1::ng

Note that we do not treat overloaded types like unions. If we had, we would have had a rule of the

form �i! �i � f�i! �i j i 2 1::ng, but this is wrong from the substitutability point of view.

Given the above de�nition, and our earlier type declarations, we want to say that:

minus : ffractions! fractions; series! seriesg:

When it comes time to apply an overloaded type we have to be careful because we have no

control over what is in the various branches. The only thing we know is that the branches all

have the same shape. Therefore, it is possible for an input to match several branches. Since the

algorithm does not simultaneously have all the types in its branches, we would have then to union

the output types of the matching branches. Thus we introduce union types.

De�nition 5.7.2 (Union types) Given two types, �; � , the union of � and � (written
W
[�; �]) is

the least upper bound of �; � in the subtype hierarchy.

We do not introduce union types in their full generality. In particular, we will not have unions

belong to any reported type. Rather, they will be used internally. When the union of two types

does not exist in the subtype hierarchy, this will result in a type error.

5.8 Subtyping with polymorphic types

When adding polymorphism to our subtyping system, it is not enough to introduce rules of the

form � � � and � � �. The problem is that there may be several possible instantiations of �,

but that only some meet the requirement. Consider applying an algorithm of type (�� �)!� to

true� false. By App, it must be the case that true� false � ���, which by Sub-Prod implies

true � � and false � �. If we just instantiate � to, say, true, the whole thing fails. So, in general,

what we need to do is solve a constraint satisfaction problem. In our example there is a very simple

solution, � 7! bool, so the resulting type is bool.

Algorithm 5.8.1 (Subtyping polymorphic types) Given the need to satisfy � � � do the fol-

lowing:

1. Recursively break down � and � using the subtyping rules, until we arrive at subtyping between

ground dcds and type variables.

2. Collect all constraints on type variables.

3. Pick a type variable. Suppose it is �. Collect all constraints on � from the list. They will

have the form:

� � �1; : : : ; � � �n; and � � �1; : : : ; � � �m:

4. If any of the constraints have right hand sides involving type variables go back to previous

step and pick another �. If all type variables have constraints with other type variables then:

� If all right hand sides of all constraints of all type variables are all type variables, then

attempt to unify them.

� If some right hand sides involve non variables, then choose those �rst for next step.

5.9. TYPE INFERENCE WITH POLYMORPHISM AND OVERLOADING 103

5. Unify all the �i and all the �j. This may generate new constraints for some type variables. If

uni�cation fails we fail.

6. Let the new constraints be � � � 0 and � � �0. If it is not the case that �0 � � 0 we fail.

Else, for all in the subtype hierarchy between �0 and � 0, make the substitution � 7! for �

everywhere, and attempt to resolve all other constraints.

7. If attempt fails, backtrack and try another . If no more we fail.

8. Do the same for all remaining type constraints.

The subtyping algorithm works by essentially trying out all possibilities. It terminates because

the subtype hierarchy is �nite, and because we require the least upper bound and greatest lower

bound of a set of types to actually be present in the subtype hierarchy. That is, if we needed

to �nd something satisfying true � � and false � � and there were no supertype of both true

and false, we would fail, rather than return the type
W
[true; false]. If the algorithm produces

a substitution, then it is guaranteed to be correct because we terminate successfully only if all

constraints are satis�ed. Completeness of the algorithm follows from the fact that we are trying

out all possibilities from the subtype hierarchy.

Example 5.8.2 Suppose our constraints are:

� � false

� � �

� � true

� � bool:

Then step 4 of the algorithm will have us proceed with the constraints on � �rst. There is nothing to

unify in the right hand sides, so we have true � � � bool. We make the substitution � 7! true and

attempt to solve for �, which fails in step 6 of the algorithm, because false 6� true. We backtrack

and try the only remaining choice for �, i.e., � 7! bool. This succeeds, with � 7! bool as well.

5.9 Type inference with polymorphism and overloading

We add rules for generalization and instantiation, and note that we only apply generalization when

typing a polymorphic algorithm, and we only apply instantiation when trying to subtype with type

variables. We also need to add rules about overloaded types. Figure 5.5 contains the all the new

rules.

There are only slight modi�cations to make our algorithm for monomorphic type inference work

in the more general setting.

Algorithm 5.9.1 (Polymorphic type inference) Given an expression e, Ap(e) is de�ned as

follows:

1. If e is a ground state, x, we match it to all dcds in the subtype hierarchy, and construct its

minimal type,
V
[�1::�n].

2. If e is an algorithm a, or equivalently a higher-order state x, we collect all input cells and

values, xin, and all output cells and values, xout and:

104 CHAPTER 5. TYPE INFERENCE

(Gen)
e : �

e : 8�: �

(Inst)
e : 8�: �

e : [�=�]�

(App-Over)
a : f�i! �i j i 2 1::ng b : �

a:b :
W
[�i j � � �i]

(Comp-Over)
a : f�i! �i j i 2 1::ng b : �! � 0

ajb : �!
W
[�i j � 0 � �i]

(Fix-Over)
a : f�i! �i j i 2 1::ng

fix(a) :
W
[�i j �i � �i]

(Curry-Over)
a : f(�i � �0i)! �i j i 2 1::ng

curry(a) : f�i!�0i! �i j i 2 1::ng

(Uncurry-Over)
a : f�i!�0i! �i j i 2 1::ng

uncurry(a) : f(�i � �0i)! �i j i 2 1::ng

Figure 5.5: Type inference rules for polymorphism and overloading

(a) If e is fully polymorphic, �gure out matches between input and output cell names and

values and generate polymorphic type. Generalize it.

(b) If e is overloaded, �gure out matches between input and output and generate overloaded

type f�1! �1 :: �n! �ng.

(c) If e is monomorphic, �nd minimal type for input
V
[�1::�n], and output

V
[�1::�m] and

generate canonical type,V
[�1! �1 :: �1! �m :: �n! �1 :: �n! �m]

3. If e is a combinator expression, we apply the inference rules.

Theorem 5.9.2 (Soundness of polymorphic type inference) If Ap(e) = � then e : � .

Proof: By induction on the structure of e. We only discuss some of the new rules, as the old ones

carry through unchanged.

1. e � a or e � x higher-order. When e is a an algorithm, or equivalently, a higher-order state,

there are several possibilities. If e contains generic cell and value references (of the kind

$c; $v), we generate a polymorphic type and apply Gen. Since the references are generic, it

is the case that for any instantiation, e will have that type. If e is overloaded, we collect all

matching dcds, and generate an overloaded type f�i! �i j i 2 1::ng. It is the case that for

each i there exists an instantiation of the cells and values in e such that e : �i! �i.

2. e � a:b, with a : f�i! �i j i 2 1::ng and b : �. When � � �i it means that there exists

one particular instantiation of a, such that a:b : �i. By collecting all such i and computing

5.9. TYPE INFERENCE WITH POLYMORPHISM AND OVERLOADING 105

� =
W
[�i] (assuming it exists), we are ensuring that regardless of which instantiation is used,

a:b : �.

3. The other cases are handled similarly to application.

2

Example 5.9.3 We have already explained how to obtain a polymorphic type for the �rst projec-

tion, fst, from Figure 5.4. We now illustrate step 2a of the algorithm by showing how to generate

a type for the conditional algorithm, also found in Figure 5.4.

The input cells and values of cond are ((B:1):1) = tt ;� , (($C:2):1) = $V , and ($C:2) = $W .

The output is $C = $V; $W . Because of the product tags, the type generated for the input is

(bool � �)� �. The output gets type . In the matching stage, we observe that the input from the

second and third component of the product is fully polymorphic and matches the output, therefore

we make the substitutions � 7! and � 7! . The �nal type is then (bool � �)� �!�.

106 CHAPTER 5. TYPE INFERENCE

Chapter 6

Re�nement Type Inference

In this chapter, we bring together several disparate ideas into a novel application of sequential

algorithms, and an example of the practical utility of intensional semantics. In the introduction, we

asked the question of how to take advantage of the intensional information present in an intensional

semantics for the purpose of program analysis. We provide an answer to that question here, for the

semantics of sequential algorithms, by using CDS0 to perform re�nement type inference for lazy,

functional programming languages. The techniques we use to achieve this are completely di�erent

from those used by Freeman and Pfenning, and described in Chapter 2; in fact, they are more

closely related to the work of Hughes and Ferguson on abstract interpretation using sequential

algorithms, also presented in the same chapter.

In our system, the user may choose to re�ne a type, by de�ning �nitely many re�nements of

that type. Any type may be re�ned, and the user need not explicitly state which types re�ne

which type; this is automatically inferred by the system. A type and its re�nements can always be

distinguished by examining a �nite number of cells, which we shall call relevant cells from the point

of view of re�nement type inference. This is due to the fact that only �nitely many re�nements of

any type can be de�ned.

When presented with a CDS0 algorithm (i.e., not a combinator expression), it turns out to be

quite easy to generate a re�nement type by examining its de�nition, and tracing out all possible

execution paths, collecting information about which inputs lead to which outputs. This information

about the dependence of parts of the output on parts of the input is used to generate the re�nement

type.

When presented with a CDS0 combinator expression, we �rst obtain a regular type for it

using the framework described in the previous chapter. We then use the regular type to generate

the appropriate relevant cells and we enter an interactive questions and answers session with the

expression, asking for its value at the relevant cells. The result of the questions and answers session

is a state, which is a small approximation of the expression. We obtain a re�nement type for the

state using the same techniques as for a CDS0 algorithm. Note that we do not have re�nement

type inference rules; instead we perform abstract interpretation on the expression directly.

We begin with some introductory examples of how to obtain re�nement types for algorithms

in Section 6.1. We then formalize the notion of re�nement type in Section 6.2, and present an

algorithm for obtaining re�nement types for CDS0 algorithms (or states) in Section 6.3. To give

our results a wider applicability, we introduce a simple lazy functional language in Section 6.4,

which we also call, par abus de langage, PCF, and show how to compile it to CDS0. Then we

describe how to perform abstract interpretation on CDS0 expressions in Section 6.5. Finally, in

Section 6.6, we show how to obtain a re�nement type for an expression, by performing abstract

107

108 CHAPTER 6. REFINEMENT TYPE INFERENCE

interpretation at the relevant cells. We prove soundness for our re�nement type inference system.

6.1 Introductory examples

We begin by introducing some algorithms on integer lists. These algorithms will not only be

used to demonstrate how to perform re�nement type inference, but will also serve as a categorical

combinator compilation target for the list functions of our higher-level language. Figure 6.1 lists

algorithms for null, head, tail, and cons. Given our earlier dcds de�nitions for bool, int, and intlist,

the algorithms will have the expected regular types:

null : intlist! bool;

hd : intlist! int;

tl : intlist! intlist;

cons : (int� intlist)! intlist:

These types will be obtained by our type inference system from the previous chapter, simply by

collecting all input and output cells and values, and matching them to the dcds's in the subtype

hierarchy.

The algorithms for null and head are very simple. Null just needs to check if the only initial

cell, EMPTY , is �lled with true or false. Hd �rst has to �nd EMPTY = false in order to be

allowed to ask for the value of cell N:l, which it copies over to the output.

T l has two kinds of cells in the output: cells of the form EMPTY:l:l : : :, with zero or more l

tags, and cells of the form N:l:l : : :, with one or more l tags. Just as in the case of the algorithms

on lazy natural numbers from Chapter 3, we use a variable, $T, to stand for zero or more tags. The

general form of the cell names will then be EMPTY:$T and N:$T:l. When trying to �ll an output

cell of the form EMPTY:$T we need to copy over the contents of the input cell EMPTY:$T:l.

Before asking for the value of that cell, we must list in a from construct an input state that enables

our output cell. Similarly for the output cells of the form N:$T:l: we �rst list an input state that

enables those output cells in a from construct, then copy over the contents of input cell N:$T:l:l.

Despite its longer length, cons is actually simpler than tl, with a similar structure. In this case

our output cells have the general form EMPTY:$T:l:l and N:$T:l:l, which does not include the

�rst three cells of intlist, so we list them separately, as base cases. The trees which compute the

values of N:l and EMPTY:l do not need a from construct, because the cell EMPTY is guaranteed

to be �lled with false in the output, regardless of the input.

Now we make the simple observation that instead of collecting all input cells and their values

and all output cells and their values and matching that to various dcds's to obtain a type, a process

which essentially attens the structure of a sequential algorithm, we could take advantage of the tree

structure by just collecting input and output cell and value information for each path through the

algorithm. A path is any sequence of from and valof statements that ends in an output statement.

We collect this information for our integer list algorithms in Table 6.1.

Before going further, let us assume that aside from the dcds's bool, int, and intlist, we have

also de�ned the previously encountered re�nements of bool and intlist: true, false, empty intlist,

one intlist, and many intlist. The question that arises is: What happens if, for each algorithm,

we assign a type to each of its lines in Table 6.1? The answer turns out to be that we would get

the re�nement type for the algorithm.

Let us denote a re�nement typing judgment by the notation \ :r ". If algorithm a has re�nement

type � , we will write this a :r � . Further, let us abbreviate the names of the re�nements of intlist

6.1. INTRODUCTORY EXAMPLES 109

let null = algo

request B do

valof EMPTY is

true : output tt

false : output ff

end

end

end;

let hd = algo

request N do

valof EMPTY is

false : valof (N.l) is

$V : output $V

end

end

end

end;

let tl = algo

request (EMPTY.$T) do

from {(EMPTY.$T)=false} do

valof ((EMPTY.$T).l) is

$B : output $B

end

end

end

request ((N.$T).l) do

from {(EMPTY.$T)=false,

((EMPTY.$T).l)=false} do

valof (((N.$T).l).l) is

$V : output $V

end

end

end

end;

let cons = algo

request EMPTY do

output false

end

request (N.l) do

valof (N.1) is

$V : output $V

end

end

request (EMPTY.l) do

valof (EMPTY.2) is

$B : output $B

end

end

request (((EMPTY.$T).l).l) do

from {((EMPTY.$T).2)=false} do

valof (((EMPTY.$T).l).2) is

$B : output $B

end

end

end

request (((N.$T).l).l) do

from {((EMPTY.$T).2)=false} do

valof (((N.$T).l).2) is

$V : output $V

end

end

end

end;

Figure 6.1: Algorithms on integer lists

110 CHAPTER 6. REFINEMENT TYPE INFERENCE

null

input output

EMPTY = true B = tt

EMPTY = false B = ff

hd

input output

EMPTY = false, N.l = $V N = $V

tl

input output

EMPTY.$T = false, EMPTY.$T.l = $B EMPTY.$T = $B

EMPTY.$T = false, EMPTY.$T.l.l = false, N.$T.l.l = $V N.$T.l = $V

cons

input output

; EMPTY = false

N.1 = $V N.l = $V

EMPTY.2 = $B EMPTY.l = $B

EMPTY.$T.2 = false, EMPTY.$T.l.2 = $B EMPTY.$T.l.l = $B

EMPTY.$T.2 = false, N.$T.l.2 = $V N.$T.l.l = $V

Table 6.1: Input and output dependence for integer list algorithms

to empty, one, and many. Then, we would expect to be able to deduce the following re�nement

typing judgements from Table 6.1:

null :r
V
[empty! true; one! false;many! false]

hd :r
V
[one! int;many! int]

tl :r
V
[one! empty;many! intlist]

cons :r
V
[(int� empty)! one; (int� one)!many; (int�many)!many]

In the rest of this section, we shall attempt to make the inference of such re�nement types

plausible, by looking at how to do it for the algorithms null, hd, and tl in more detail. We defer a

detailed discussion of cons to Section 6.3, where we introduce our actual algorithm for performing

re�nement type inference for algorithms.

The procedure is quite simple for null and hd. Recall from our dcds de�nitions for empty,

one, and many in Section 5.2, that the event EMPTY = true could only come from dcds empty.

So the �rst line in the table for null generates the re�nement type empty! true. The event

EMPTY = false could come from either one or many. So the second line in null's table generates

the \raw" type:

V
[one;many]! false:

By distributing the meet over the arrow (just as we did last chapter in constructing the canonical

type for an algorithm), and combining the result with the type of the �rst line, we arrive at null's

�nal re�nement type:

null :r
V
[empty! true; one! false;many! false]:

The only line in the input/output dependence table for hd gives us the following raw type:

V
[one;many]! int:

6.1. INTRODUCTORY EXAMPLES 111

Again, we distribute the meet over the arrow to obtain the re�nement type:

hd :r
V
[one! int;many! int]:

The procedure is much more interesting in the case of tl, because we end up with meets on both

sides of the arrow in the raw type, and we have to introduce a dependency checking phase, which

attempts to eliminate the meets.

The �rst line of the table for tl gives us the following raw type:V
[one;many]!

V
[empty; one;many]:

We cannot simply distribute the meets in this case, because cell and value variables are involved,

and it is quite possible that certain instantiations of those variables will preclude some of the types

generated by a na��ve distribution of the meets. What we have to do then is to consider each

case in which the input comes from one of the types in
V
[one;many], which will give us certain

variable instantiations, and then see what happens to the type of the output when we use those

instantiations.

In our particular example, this works as follows: The input can be in either one, or many.

Suppose it is in one. That means that $T gets bound to the empty tag, and $B 7! true. This

implies that the output event is EMPTY = true, which can only come from empty. So we have

\proven" a dependence between input one and output empty, therefore the type one! empty will

be one of the members of tl's re�nement type.

Now suppose the input comes from many. In this case, there are in�nitely many possible

instantiations of the variables $T and $B. We cannot check all of them, but we can unroll many

enough times so that a \relevant" portion is exposed. This will be made precise later. For now,

let us suppose we have unrolled it as in Section 5.2. For each cell name and value list in the

resultant cva list, we match against the events in the input part of the �rst line of tl's input/output

dependence table. Nothing interesting happens until we come to the following line from the cva

list:

((EMPTY.l).l) values true, false access (EMPTY.l)=false

When we match this against EMPTY:$T:l = $B from the input, we get $T 7! l and $B 7!

true; false. Applying this substitution to the output variables, we get EMPTY:l with values

true; false. It turns out that this can only come from intlist, and hence we obtain another piece of

the re�nement type: many! intlist. In retrospect, this should not prove surprising, since we are

not distinguishing between two and three-element lists: When presented with an input from many,

tl can either return something in one, or something in many, so we must lose some precision and

give the resultant type of intlist.

The second line of the table for tl gives us the following raw type:

many!
V
[one;many]:

This merely con�rms what we already knew: There are instantiations of the variables such that

the output is in one and others such that the output is in many, therefore we must take the union

of one and many as the type of the result. We then obtain the following re�nement type for tl:

tl :r
V
[one! empty;many! intlist]:

A natural question that arises after reading our informal description of the type inference

algorithm is: What happens when one cannot establish a dependence between input and output

112 CHAPTER 6. REFINEMENT TYPE INFERENCE

(Ref-Refl) � v �

(Ref-Sub)
���p�

� v �

(Ref-And)
V
[�1::�n] v

V
[�1::�m] 8i 9j: �i v �j

(Ref-Arrow)
�1 v �2 �1 v �2

�1! �1 v �2! �2

(Ref-Prod)
�1 v �2 �1 v �2

�1 � �1 v �2 � �2

Figure 6.2: De�nition of re�nement

types? The answer is that one can always establish a dependence when variables are involved. This

is due to the fact that we are only dealing with CDS0 algorithms or states and not combinator

expressions, hence we do not have recursion (we will show how to handle recursion when we discuss

re�nement type inference for combinator expressions). It will always be possible to determine, for

a certain instantiations of variables in the input, what happens to the output. The only time this

will not be possible is when the input and output are actually states that belong to the intersection

of several dcds's. For example, the event EMPTY = false belongs to both one and many. In

such cases it is correct to distribute the meet.

6.2 Re�nement types

Before presenting in more detail the algorithm for assigning a re�nement type to a sequential

algorithm, we shall be more precise about what we mean by re�nement types and re�nement

typing judgments.

Intuitively, as described in the previous chapter, where we set the foundations for our typing

system, a re�nement � of a type � is a subtype by partition, i.e., such that � �p � . In general, we

will allow a chain of subtypes by partition, ���p� . Of particular interest will be the cases when a

type is completely partitioned, as we will not be able to get meaningful re�nement types otherwise.

For the non-ground types, we present type inference rules for determining when a type is a

re�nement of another.

De�nition 6.2.1 (Re�nement) We say that � v � (� re�nes �) if it can be deduced from the

inference rules in Figure 6.2.

Note that Ref-Sub actually implies Ref-Refl since it is always the case that � �p � . We list

Ref-Refl separately for clarity. The rule Ref-Arrow may seem a little strange, because it looks

like a covariant subtyping rule, but it means something else: it says that both the input and output

re�nement types should be re�nements of the respective regular types. For instance, we want to

have true! false v bool! bool (think of the case of boolean negation, from the �rst chapter).

The rule Ref-Prod is not surprising. It codi�es what we would expect. For example, it should

be the case that true� false v bool � bool.

6.2. REFINEMENT TYPES 113

The rule Ref-And says that each member of the left hand side meet must be a re�nement of

some member of the right hand side meet. Most useful to us will be the case when the right hand

side is not a meet, in which case the rule says that all types on the left hand side must re�ne the

right hand side. For example,

V
[empty! true; one! false;many! false] v intlist! bool:

Also note that the above de�nition implies that a re�nement type has the same shape as the

regular type that it re�nes.

The meaning of a re�nement typing judgment for ground states is the same as for regular typing

judgments. However, for algorithms things are di�erent, because an algorithm will not belong as

a state to a subtype of the re�nement type. Rather, the re�nement type is the type of just one

\slice" of the algorithm. Consider the algorithm null. It is the case that null 2 D(intlist! bool)

but null 62 D(empty! true). Instead, in view of the actual origin of the re�nement types as types

of paths through an algorithm, the meaning of a re�nement type should be of the form: If the

input has a certain re�nement type, then the output has a certain re�nement type. Considering

null again, if an input x has re�nement type empty then it will be the case that a:x will have

re�nement type true. With this in mind, we present the following de�nition.

De�nition 6.2.2 (Meaning of re�nement typing judgments) Given a sequential algorithm

a :
V
[�i! �i j i 2 1::n], we say that a :r

V
[�j! �j j j 2 1::m] if

V
[�j! �j j j 2 1::m] vV

[�i! �i j i 2 1::n] and if for any j, given x :r �j, a:x :r �j.

As a sanity check, we have the following proposition which relates regular typing judgments to

re�nement typing judgments.

Proposition 6.2.3 If a : �! � then a :r �! � .

Proof: By induction on � and � . In the base case, for a ground type, the meaning of : and :r is

identical. Now suppose it is the case that if x : � then x :r � and similarly for � . But according to

Proposition 5.4.4, given x : �, a:x : � . This establishes our result. 2

Adding re�nement types to our subtype hierarchy can change the regular types of algorithms

in ways we may not want. For example, if we de�ne the three re�nements of intlist, the regular

type of tl becomes many! intlist. This is due to our requirement that all input cells and values

belong to the same dcds, and similarly for the output. So, whereas before we could apply tl to

a one-element list, now we cannot. The solution is to specify to the type inference system which

types should only be used as re�nements. We introduce a special de�nition for this purpose:

refine true, false, empty_intlist, one_intlist, many_intlist;

This way, the re�nement types will only be used for re�nement type inference. Also, this implies

that we will have two subtype hierarchies: a regular one, and a re�nement one, which is an extension

of the regular subtype hierarchy.

Note that, as opposed to the Freeman-Pfenning approach, we are not telling the system which

types are the re�nements of a particular type, but simply that it should use certain types only for

re�nement type inference.

114 CHAPTER 6. REFINEMENT TYPE INFERENCE

6.3 Re�nement type inference for algorithms

We are now almost ready to present our re�nement type inference algorithm. There is one additional

consideration, aside from the issues raised in previous sections, that must be faced, and that is

what to do when we have type variables in the re�nement type but not in the regular type. A

simple example is provided by the left conjunction land, de�ned in Figure 2.3. The input/output

dependence information is shown below:

land

input output

B.1 = tt, B.2 = tt B = tt

B.1 = tt, B.2 = ff B = ff

B.1 = ff B = ff

The �rst two lines of the table give the types true � true! true and true � false! false, but

the third line results in false � �! false. We know from the regular type of this algorithm,

bool � bool! bool that the type variable � really corresponds to bool. The question is: Should we

instantiate it to bool only, or also to its re�nements?

Note that this question is a very di�erent one from the problem of instantiations of polymorphic

re�nement type variables in Freeman and Pfenning. In our case it is more a matter of how to report

the type to the user; such types will not be used with re�nement type inference rules. In addition,

by Proposition 6.2.3, any choice we make would be correct. We simply want the type returned to

the user to give an accurate impression of what the algorithm can do.

In our particular example of land and, in general, whenever the type variable matches a ground

type, we can instantiate it only to the regular type. This is because such type variables can only

occur in the input (remember, we are collecting all paths that end in an output statement, so we

could not have a type variable in the re�nement type output that does not correspond to a type

variable as well in the regular type output). So the type we would report for land,V
[true� true! true; true� false! false; false� bool! false];

would accurately imply that we can apply land to anything below bool, in its right input, and still

get false, as long as the left input is false.

However, if the type variable corresponds to a higher-order type from the regular type, we will

instantiate it to all possible re�nements. For example, if � 7! bool! bool, our instantiation would

be: V
[true! true; true! false; true! bool; false! true;

false! false; false! bool; bool! true; bool! false; bool! bool]:

We now present our algorithm for re�nement type inference.

Algorithm 6.3.1 (Re�nement types for algorithms) Given a :
V
[�i! �i], to obtain the re-

�nement type of a do the following:

1. Collect dependence information for each path through the algorithm.

2. For each path, �nd the re�nement type for the output and for its respective input.

3. If there are type variables in the re�nement type, attempt to eliminate them by matching

against regular type. If type variable matches a ground type, only instantiate it to regular

type, else instantiate it to all possible re�nements of higher-order type.

6.3. REFINEMENT TYPE INFERENCE FOR ALGORITHMS 115

4. If both of the input and output types in the previous step contain meets then attempt to

eliminate them by examining dependence information. If unsuccessful, distribute the meet. If

input is higher-order, do not distribute the left hand side meet.

5. If the type of any path is not a re�nement of the regular type, eliminate it.

6. Eliminate types that are re�ned by other types (i.e., eliminate less speci�c types), unless the

less speci�c types are produced by the dependence examination step (step 4).

7. If the dependence information implied �! �1 and also �! �2 then replace these types with

�!
W
[�1; �2].

8. Meet together the types of all remaining paths.

Each of the steps of the algorithm is executed in succession. There is no need to iterate.

However, the algorithm does call itself recursively in step 2. Since the size of the input for each

recursive call is strictly decreasing, the algorithm is guaranteed to terminate.

As an example, consider the operation of this algorithm on cons, the longest of the integer list

algorithms. Table 6.2 show the various paths through cons with their respective types after step 2

of the algorithm. In step 3 we instantiate the type variables obtaining (without listing duplicates,

here or later):

(int� intlist)!
V
[one;many];

(int�
V
[empty; one;many])!

V
[one;many];

(int�
V
[one;many])!many:

In step 4, we attempt to �nd dependencies and eliminate meets, and can do so in the second line

above. We obtain the following types after step 4:

V
[(int� intlist)! one; (int� intlist)!many]V
[(int� empty)! one; (int� one)!many; (int�many)!many]V
[(int� one)!many; (int�many)!many]

During step 6 of the algorithm we get rid of the �rst and third lines, which are both re�ned by the

second one, and we obtain the �nal re�nement type:

cons :r
V
[(int� empty)! one; (int� one)!many; (int�many)!many]:

We now provide more detail and justi�cation for the various steps of the algorithm. Step 4 is

the dependence examination step. We have a type of the form

V
[�1::�i]!

V
[�1::�j];

and we attempt to �nd matches between the �i's and the �j's. As described before, we will let the

input be in each of the �i's and see if that narrows down the choice of �j's for the output.

We need to decide how much to unroll each of the �i. Suppose the line of the dependence table

that gave rise to our type had cells with maximum length l. Further, suppose that the maximum

depth of any of the �i, �j is d. Then we would unroll each of the types d + l times. In view of

the results of the previous chapter, this would guarantee that our types would have a chance to

generate any appropriate cell in the dependence table.

116 CHAPTER 6. REFINEMENT TYPE INFERENCE

cons

input output \raw" type

; EMPTY = false �!
V
[one;many]

N.1 = $V N.l = $V (int� �)!
V
[one;many]

EMPTY.2 = $B EMPTY.l = $B (��
V
[empty; one;many])!

V
[one;many]

EMPTY.$T.2 = false,

EMPTY.$T.l.2 = $B
EMPTY.$T.l.l = $B (��

V
[one;many])!many

EMPTY.$T.2 = false,

N.$T.l.2 = $V
N.$T.l.l = $V (��

V
[one;many])!many

Table 6.2: First two steps in �nding re�nement type for cons.

Step 5 eliminates some types that may arise due to subtyping by extension. For example, if the

regular type of an algorithm were cPoint! bool, it is possible that a path through the algorithm

will have type point! true. We will not accept this as a re�nement, because it does not involve

subtyping by partition. There is no meaningful way in which a point can be considered a re�nement

of a cPoint.

Step 6 eliminates types that may have resulted from instantiation of type variables, which are,

therefore, not as precise as types where we have established dependence between certain input and

output types. We have seen an example of this in the operation of the algorithm on cons.

Step 7 takes into account the situations when we must lose precision in the re�nement type.

If it is the case that our dependence information implied both �! �1 and also �! �2 then we

cannot know which is the resultant type given an input in � so we must replace these types with

�!
W
[�1; �2]. The union

W
[�1; �2] is guaranteed to exist, because both �1; �2 are re�nements of the

same type (which we ensured in step 5). Step 7 does not apply to cases when we could not establish

dependencies in step 4 and distributed a right hand side meet. As described before, such cases arise

in the absence of variables in the cell names and values, when a state belongs to several dcds's.

Theorem 6.3.2 [Soundness of re�nement type inference] If, according to Algorithm 6.3.1, a :r �

then, indeed, a :r � .

Proof: In broad outline, Algorithm 6.3.1 works by assigning a re�nement type to each input and

each output in all paths through the algorithm. This certainly leads to sound re�nement types,

according to our de�nition of the meaning of re�nement typing judgments. The only problems

might be caused by the modi�cations we make to the re�nement types along the way, such as

eliminating meets, instantiating type variables, and taking unions. We discuss each of these in

turn.

We have already discussed the instantiation of type variables from step 3 of the algorithm.

Because of Proposition 6.2.3, it is sound to instantiate regular types. Certainly instantiating re-

�nement types also is sound.

The elimination of meets from step 4 is sound because we will either prove dependence or have

a state that belongs to several dcds's. As we have argued before, we can always prove dependence

when cell and values variables are involved, because we do not have recursion at this level. As can

be seen from the CDS0 syntax in Appendix C.1, the constraints which can be placed on variables

are very simple, and easily decidable.

Finally, when we take unions in step 7, it still true that given x :r �, a:x :r
W
[�1; �2], because

�1 �
W
[�1; �2], and same for �2.

6.4. A HIGHER-LEVEL LANGUAGE 117

In conclusion, each path will have a re�nement type �! � such that, given x :r �, a:x :r � . Also,

we explicitly eliminate any types which are not re�nements of the regular type in step 5. Therefore,

our algorithm will lead to a re�nement of the original type. 2

6.4 A higher-level language

As we have already explained when we introduced CDS0 in Section 2.3, the language was meant to

be a compilation target from the beginning. The examples presented so far make it quite clear that

one would not want to be programming directly in CDS0, unless one wanted to write programs

which take advantage of its intensional features, and which cannot be written in an extensional

language. For most purposes, one would want to use a higher-level language. We introduce such a

language in this section, and show how to compile it to CDS0.

6.4.1 PCF

The higher-level language is a lazy, higher-order, polymorphic, functional language. We call it PCF

for historical reasons: the original CDS0 interpreter of Devin [30] also had a PCF interpreter, which

actually corresponded to the original PCF [70]. We started with a similar language but added more

features, until we arrived at a full-featured functional language. We have kept the name.

A slightly simpli�ed grammar for the language is given in Figure 6.3. The full version can be

found in Appendix C.2. The language is typed in the usual way.

The syntax is somewhat similar to that of Standard ML of New Jersey: the binding of identi�ers

to expressions, lambda abstraction, products, and list functions are the same. The �rst and second

projections are slightly di�erent, as are some of the basic operations. The main di�erence comes

in the de�nition of recursive functions, where we have sacri�ced some ease of readability for ease

of compilation.

The programs for boolean negation and formap from the introduction are examples of programs

written in this language.

6.4.2 Compilation to CDS0

The compilation to CDS0 is the same as that to categorical combinators [26]; the combinators denote

sequential algorithms, therefore, an entire PCF program will also denote a sequential algorithm.

The idea of the compilation is to have variables stored in an environment, and have a PCF ex-

pression denote a function from the environment to its value. An environment containing variables

x0; : : : ; xn is implemented as nested pairs of the form ((: : : (fg; xn); : : :); x0), where fg denotes the

empty environment: in our case the empty CDS0 state.

The �rst step in the compilation is translation of the PCF expression to de Bruijn notation [26],

in which variables are replaced by natural numbers. The de Bruijn terms are built as follows:

1. Any natural number is a term,

2. If M and N are terms, then MN is a term,

3. If M is a term, then �: M is a term,

4. If M is a term, then fix M is a term, and so on for all other PCF built-in functions.

118 CHAPTER 6. REFINEMENT TYPE INFERENCE

hprogrami : : = hexpri

j val id = hexpri

hexpri : : = hconsti

j id

j hexpri hexpri

j fn id => hexpri

j let id = hexpri in hexpri end

j letrec id = hexpri in hexpri end

j hexpri hopi hexpri

j if hexpri then hexpri else hexpri

j (hexpri; hexpri)

j fst (hexpri)

j snd (hexpri)

j hexpri : : hexpri

j hd hexpri

j tl hexpri

j []

j null hexpri

j (hexpri)

hconsti : : = true j false j integers

hopi : : = + j � j � j = j = j < j > j <= j >= j and j or

Figure 6.3: Syntax of higher-level language

6.4. A HIGHER-LEVEL LANGUAGE 119

xDB(x0;:::;xn) = min(j j x = xj)

(fn x => M)DB(x0;:::;xn) = �: MDB(x;x0;:::;xn)

(MN)DB(x0;:::;xn) =MDB(x0;:::;xn)NDB(x0;:::;xn)

(let x = M in N)DB(x0;:::;xn) = ((fn x => N) M)DB(x0;:::;xn)

(letrec x = M in N)DB(x0;:::;xn) = ((fn x => N) (fix (fn x => M)))DB(x0 ;:::;xn)

(M;N)DB(x0 ;:::;xn) = (MDB(x0;:::;xn); NDB(x0;:::;xn))

(fst M)DB(x0;:::;xn) = fst MDB(x0;:::;xn)

� � �

Figure 6.4: Translation to de Bruijn notation

The translation of a term M is called MDB(x0;:::;xn), where FV (M) � fx0; : : : ; xng, and it works

by keeping track of the variables already encountered, which act as an environment. It is shown

in Figure 6.4. We have listed only one of the constants of PCF; the translation for the others is

similar.

Now that we have replaced variables with natural numbers, we will use the numbers as indices

into the environment. For instance, variable 0 will become snd, variable 1 will be mapped to

snd j fst and so on. A variable becomes code which pulls out a particular location from the

environment.

The translation of a term M in de Bruijn notation to categorical combinators, denoted MCC ,

is shown in Figure 6.5, again listing only some of the constants from the de Bruijn notation as the

code for the others is similar.

The translation deserves some comment. The basic constants of the language, i.e., true, false,

and the integers, are encoded as non-strict algorithms from the environment to states of bool or

int. The algorithm curry(fst) :fB = ttg, for instance, has type 8�: �! bool. When applied to an

environment, it ignores it and returns a state of bool.

Lambda abstraction becomes currying. In the code for application, uncurry(id) is the CDS0

application algorithm. When taking �xpoints, we need a version of the �xpoint combinator which

works with environments; we call it Yenv. It has the type 8�: (env!�!�)! env!�, and its

implementation is:

let Yenv = curry(Y | uncurry(id));

Y is the normal �xpoint combinator, of type 8�: (�!�)!�, which we implement by doing a

\manual" translation from PCF to CDS0. In PCF the code for Y is:

fix (fn f => fn x => x (f x));

which becomes the following CDS0 code:

let Y = fix((curry(curry(uncurry(id) |

<snd, uncurry(id) | <snd|fst, snd>>))).emptyenv);

We need to de�ne a CDS0 algorithm for every built-in function of PCF. We have already

de�ned the identity (id), �rst projection (fst), conditional (cond), left conjunction land, and the

120 CHAPTER 6. REFINEMENT TYPE INFERENCE

trueCC = curry(fst) : fB = ttg

falseCC = curry(fst) : fB = � g

nCC = curry(fst) : fN = ng

xiCC = snd j fsti

(�: M)CC = curry(MCC)

(MN)CC = uncurry(id) j < MCC ; NCC >

(M;N)CC =< MCC ; NCC >

(fix M)CC = Yenv : MCC

(fst M)CC = fst j MCC

(snd M)CC = snd j MCC

(if M then N1 else N2)CC = cond j << MCC ; N1CC >;N2CC >

(M and N)CC = land j < MCC ; NCC >

� � �

Figure 6.5: Translation to categorical combinators

list algorithms. We give a sampling of the others, by de�ning addition and integer equality test.

The complete list of CDS0 algorithms which are used to compile PCF is given in Appendix B.3.

The algorithm for addition has type int � int! int and it works by using variables to record

the values of the inputs and adding them:

let plus = algo

request N do

valof (N.1) is

$V1: valof (N.2) is

$V2: output $V1 + $V2

end

end

end

end;

The integer equality test, of type int� int! bool, works in similar fashion (the notation \!="

means \not equal to"):

let equal = algo

request B do

valof (N.1) is

$V1: valof (N.2) is

$V2 with $V2 = $V1: output tt

$V2 with $V2 != $V1: output ff

end

end

end

end;

6.5. ABSTRACT INTERPRETATION 121

Given a PCF programM , the �nal result of the compilation to CDS0 isMCC : fg, i.e., we apply

the categorical combinator translation of the program to the empty environment. For examples of

translations of PCF programs, we turn to not and map from the introduction. We instruct our

PCF interpreter to print out the code for the two programs:

$ print not;

not = curry (cond | < < snd, curry (fst) . B=ff >,

curry (fst) . B=tt >) . emptyenv

$ print map;

map = uncurry (id) | < curry (snd),

Yenv . curry (curry (curry (cond | < < null | snd, curry (fst) . nil >,

cons | < uncurry (id) | < snd | fst, hd | snd >,

uncurry (id) | < uncurry (id) | < snd | fst | fst, snd | fst >,

tl | snd > > >))) > . emptyenv

6.5 Abstract interpretation

When performing re�nement type inference on CDS0 expressions or PCF programs, we will need

to ask for the values of various cells in the expression. This section describes how we can do that

without looping, and without always having to resort to a hard bound on the number of recursive

iterations.

6.5.1 Loop detection

The Hughes and Ferguson approach to loop detection for sequential algorithms, which we described

in Section 2.5, does not work well in our case because we use the CDS02 operational semantics

(which we chose for overall e�ciency over CDS01, as explained in Section 2.3.7). Our cell names

can incorporate expressions, and grow quite large, therefore we cannot simply check for equality

of cell names to detect when a cell depends on itself. It is possible to simplify the cell names,

and collect information about dependence of output cells on input cells, as Hughes and Ferguson

do. In fact, our �rst approach had this form, but it did not detect many loops, and, just like the

Hughes and Ferguson implementation, was extremely space-ine�cient. This forced us to develop

an alternative approach, one that is better suited to CDS02.

Recall from Section 2.3.7, that the �xpoint rule has the form:

(Fix') fix(A) ? c!A:fix(A) ? c

In the process of computing fix(A) ? c, we may ask the questions fix(A) ? c1, fix(A) ? c2, and

so on. If it is the case that, for some index i, we end up wanting to know fix(A) ? ci, with ci = c,

then, clearly, this is a looping computation.

The problem is that the cell names ci, c, may contain expressions embedded into them, so we

cannot easily check for equality. What we shall do is apply a stock simpli�cation to the cell names,

without trying to evaluate the expressions inside, and check for syntactic equality. This works fairly

well for PCF programs, and does not usually apply to CDS0 programs.

The simpli�cation we perform is to replace cell names of the form (snd:(x1; x2))c with x2c.

It turns out that when recursions get unwound in PCF, expressions of the form snd:(x1; x2) get

concatenated to cell names. This is due to the actual code for Y from the previous section, which is

122 CHAPTER 6. REFINEMENT TYPE INFERENCE

the only possible source for �xpoint computations in PCF. The questions we ask when evaluating

PCF expressions will have the form Y ? xc, where x is a complex expression.

We give an example of how this works in practice. Consider the following PCF program:

val loop10 = letrec f = fn b => if b then true else f b in f end;

This program clearly loops when presented with a false input. The �rst two unrollings of the

�xpoint computation when the question loop10 ?fB = � gB is asked, will lead to questions of the

form f ? c1 and f ? c2 with Y = fix f , and the cells being:

c1 = uncurry (id) . (curry (curry (cond | <<snd, curry (fst) . {B=tt}>,

uncurry (id) | <snd | fst, snd>>)), emptyenv)

{B=ff} B

c2 = snd . ((emptyenv, Y), uncurry (id) . (curry (curry (cond |

<<snd, curry (fst) . {B=tt}>, uncurry (id) | <snd | fst, snd>>)),

emptyenv))

snd . ((emptyenv, (uncurry (id) | <snd | fst, snd>) . ((emptyenv, Y),

uncurry (id) . (curry (curry (cond | <<snd, curry (fst) . {B=tt}>,

uncurry (id) | <snd | fst, snd>>)), emptyenv))), {B=ff})

B

Applying the simpli�cation to c2 shows it to be syntactically equal to c1, and so we have proved

that loop10 deserves its name.

6.5.2 Depth-bounding

We cannot detect all loops in the manner presented above. Even fairly simple functions, which

loop on some input which is slightly modi�ed and then modi�ed back to the original form, cannot

always be detected. For example, the following PCF function loops:

val loop9 = letrec f = fn l => if null l then let l1 = f (1::l) in f l1 end

else f (tl l)

in f end;

This cannot be detected, because we do not simplify expressions of the form tl (x: : l) to l. We

could add such new simpli�cation rules, but we would, of course, still not be able to detect all loops

because it is undecidable.

In fact, since our language is lazy, we have to contend with in�nite data structures. It is possible

to de�ne, for instance, an in�nite list of ones:

val ones = Y (letrec f = fn l => 1::(f l) in f end);

If we had a length function, detecting a loop in length ones would not be possible, even in the

Hughes and Ferguson approach. So rather than add more simpli�cation rules, we add a bound on

the number of recursive iterations, a bound already made necessary by the presence of in�nite data

structures.

We modify the operational semantics of �xpoint to keep track of how many times it has been

called while computing a value for the same cell. If that reaches a certain bound, we interrupt the

computation. We note that, in practice, the bound can be set to a very low value (for instance,

30), since if an expression will not loop, its computation will unroll to a shallow depth. This is

6.6. REFINEMENT TYPE INFERENCE FOR EXPRESSIONS 123

dependent on the dcds's de�ned in the system, and in particular on the re�nements (as will be

explained in the next section). The re�nements we use can be distinguished by examining at most

three cells, which usually leads to short computations.

6.6 Re�nement type inference for expressions

Given a CDS0 combinator expression, or equivalently, a PCF program, we shall perform re�nement

type inference for it by �rst obtaining its regular type, seeing if the regular type admits any possible

re�nements, then generating an initial set of relevant cells with which to query our expression. In the

process of querying the expression, we will have uncovered a state, which is a small approximation

to the combinator expression. We then perform re�nement type inference on the state using the

techniques of Section 6.3.

A ground type will admit re�nements when it has subtypes by partition in the re�nement

subtype hierarchy. A compound type will not admit re�nements when either:

� The type is fully polymorphic, or

� No components of the type admit re�nements.

For example, if int has no re�nements, the type int! int does not admit re�nements, but int! bool

does, when re�nements true and false are de�ned.

6.6.1 Generating relevant cells

A given type and its re�nements can always be distinguished by examination of a �nite number of

cells. This is due to the fact that only �nitely many re�nements of a type can be de�ned. In this

section we discuss how to automatically generate such cells. First we consider ground dcds's.

Recall from De�nition 5.3.2, that a subtype by partition has the same initial cells as the super-

type, but some may have fewer values. We are interested in exactly those cells. In particular, we

want those distinguishing cells which do not have an in�nite number of possible values. After we

collect such initial cells, we shall look at all cells enabled by the initial cells, and collect distinguish-

ing cells, and so on. We stop when there is no di�erence between the supertype and the subtype's

cells.

Algorithm 6.6.1 (Generating ground relevant cells) Given a type � and a collection of its

re�nements, �i, the set of relevant cells is generated as follows:

1. Find maximum depth among � , �i, and unroll each dcds to that depth.

2. Collect all initial cells from � and the �i. Let us call such sets of cells, I� , I�i .

3. Compare the I�i among each other: if the same cell exists in two of the I�i , but with di�erent

values, and the set of values is not in�nite, add it to the list of relevant cells.

4. Compare the I� to the I�i as above.

5. Generate the set of cells reachable from the initial cells for � and the �i, and perform the

same comparison as above. When adding a non-initial relevant cell, add also the cells which

may enable it.

124 CHAPTER 6. REFINEMENT TYPE INFERENCE

6. If there is no di�erence between the sets of cells for two �i, or a �i and � at this stage, but

there was in the previous generation of cells, add all cells with non-in�nite value lists.

7. Continue in this fashion, until all cells are the same, or no more cells can become enabled.

Example 6.6.2 As an example, we apply Algorithm 6.6.1 to intlist and its re�nements, empty,

one, and many. The maximum depth among the four dcds's, as we have seen in the previous

chapter, is 8 (the depth of many). The sets of initial cells generated from unrolling each of the four

dcds's 8 times are:

Iintlist = Iempty = Ione = Imany = fEMPTY g

Relevant = ;

Cell EMPTY exists in all I sets and it does have a di�erent set of values, because of empty.

Furthermore, the set of values is not in�nite. Therefore we add it to the set of relevant cells. We

generate the new I sets:

Iintlist = Ione = Imany = fN:l; EMPTY:lg

Relevant = fEMPTY g

Cell N:l has the same set of (in�nite) values in each of the I sets, so we discard it. However,

EMPTY:l again has di�erent (�nite) sets of values, so we add to the relevant cells, and generate

the next level of reachable cells:

Iintlist = Imany = fN:l:l; EMPTY:l:lg

Relevant = fEMPTY;EMPTY:lg

Cell N:l:l is not suitable again, but also EMPTY:l:l has the same values in both intlist and many.

However, since the previous generation of cells had a di�erence (step 6), we add EMPTY:l:l to the

set of relevant cells:

Relevant = fEMPTY;EMPTY:l; EMPTY:l:lg

Using Algorithm 6.6.1, we can generate relevant cells for higher-order types. We shall never

need to do this in its full generality, rather, for a higher-order type, we shall need to generate the

initial set of relevant cells, and to �nd the relevant cells enabled by a state. Both these tasks are

easy to accomplish using De�nition 2.2.13 for the exponentiation dcds.

6.6.2 The algorithm

We are now ready to present our algorithm for re�nement type inference for expressions.

Algorithm 6.6.3 (Re�nement types for expressions) Given an expression e, do the follow-

ing to �nd its re�nement type:

1. Find regular type � for e.

2. If � does not admit re�nements, return it as the re�nement type. Otherwise generate initial

set I� of relevant cells of � .

3. For each cell c 2 I� , ask the question e ? c.

6.6. REFINEMENT TYPE INFERENCE FOR EXPRESSIONS 125

4. If e ? c ! v, then add the event (c; v) to an approximation x of e. Find out what relevant

cells are enabled by (c; v) and add them to I� .

5. If e ? c ! valof c0, then, if c0 is a relevant cell, and it has a �nite set of possible values,

then for each possible value v0, add fc0 = v0gc to I� .

6. If e ? c ! loop, then go on to the next cell in I� .

7. When the set I� is exhausted, apply Algorithm 6.3.1 to the approximation x.

The algorithm always terminates because we are using the techniques of the previous section

to evaluate e ? c, and because there are �nitely many relevant cells.

The state x is clearly an approximation to the expression e. Since we apply Algorithm 6.3.1 to

x to generate the re�nement type, an algorithm whose soundness we have proven in Theorem 6.3.2,

it follows that Algorithm 6.6.3 is also sound. Hence,

Theorem 6.6.4 [Soundness of re�nement type inference for expressions] If, according to Algo-

rithm 6.6.3, e :r � then, indeed, e :r � .

126 CHAPTER 6. REFINEMENT TYPE INFERENCE

Chapter 7

Implementation and Examples

In this chapter, we present an overview of our implementation and demonstrate the practical utility

of our approach to re�nement type inference with many examples. Section 7.1 covers the imple-

mentation, also pointing out di�erences with the theory of the previous two chapters. Section 7.2

contains CDS0 examples, and Section 7.3 PCF examples.

7.1 Implementation

Our prototype implementation of CDS0 with type inference and re�nement type inference is in

Standard ML of New Jersey, version 0.93. The implementation consists of about 15,000 lines of

code, of which about 5,000 are automatically generated by YACC and LEX, or are part of the

YACC base environment. The reason for the large number of lines of YACC and LEX code is that

we have three interpreters as part of the system: a CDS0 interpreter, a PCF interpreter, and a cell

name interpreter, for accepting user input in the request loop.

In the rest of this section, we shall attempt to give an idea of the structure of the CDS0

interpreter, and also describe our internal representation for certain notions presented in previous

chapters.

7.1.1 Brief overview

Figure 7.1 shows a schematic diagram of the module dependencies in our implementation. Underly-

ing the whole implementation are de�nitions of the CDS0 parse tree, CDS0 internal representations,

CDS0 runtime environment, and PCF parse tree. The Parser module is a conglomeration of the

three parsers and lexers already mentioned. Printer is a somewhat pretty printer, and Match per-

forms the binding of cell and value variables during execution. PcfCode implements the translation

to categorical combinators, and Internal the translation from CDS0 parse trees to forests. The

translation to internal type representation (idcds) is in Type, which also implements algorithms for

deciding subtyping for ground dcds's. Deciding subtyping for type expressions is done in Subtype,

and the type inference of regular types is in TypeChecker . The Evaluator implements the CDS02

operational semantics. QandA is the questions and answers module, which generates relevant cells,

and �nds a relevant approximation to an expression. The Re�ne module puts together type infer-

ence and re�nement type inference. Finally, Toplevel takes care of the top level loop, the request

loop, and of error reporting.

Of some interest to the reader may be our implementation of forests, �rst described in Sec-

tion 2.3.6. The datatype de�nitions are listed in Figure 7.2, omitting type de�nition of tag, which

127

128 CHAPTER 7. IMPLEMENTATION AND EXAMPLES

CDSBasic, CDSInternal, CDSEnv, PCFBasic

Parser

Toplevel

Refine

TypeChecker

Subtype QandA

Type Evaluator

InternalPcfCode

Printer Match

Figure 7.1: Module dependencies in our CDS0 implementation

is not relevant here. Typical of all our CDS0 de�nitions, the types of the internal representations

of cells (icell), values (ivalue) and forests, are mutually recursive. This is due to the fact that

we are implementing the CDS02 operational semantics, which allows expressions as part of a cell

name. Hence, a cell name can be a name, a variable, a graft, a constrained name, or a functional

name consisting of a forest and a cell name. The representation of tree instructions is just as in the

theory. A basic forest is one given by enumeration of events, and is a pair of an integer and a list

of trees; the integer speci�es the degree of curri�cation, i.e., the number of inputs. For instance, a

forest of type int will have degree 0, while a forest of type int! int! int has degree 2.

We would also like to point out the internal representation used by the questions and answers

module for the relevant portion of a type, which we call an annotated type:

datatype refineUnit = Ground of typeExp * typeExp list

| Ho of annotated

withtype outputRefinement = (int list * refineUnit) list

and inputRefinement = (int * int list * refineUnit) list

and annotated = int * outputRefinement * inputRefinement

A typeExp is a type expression, being either a ground dcds name, a variable, an arrow, and so

on. The basic building block of an annotated type is a ground re�neUnit , which lists the regular

type name, and also a list of all re�nements of that type. This is used to generate relevant cells.

The integer lists in the intput and output re�nement types keep track of the product tag, if any,

of that piece of type. In addition, an inputRe�nement also stores the index of the input it came

from. Finally, an annotated type is a triple of an integer specifying the degree of curri�cation, an

outputRe�nement and an inputRe�nement .

7.1. IMPLEMENTATION 129

datatype icell = Icell_name of string

| Icell_var of string

| Icell_fun of forest * icell

| Icell_graft of icell * tag

| Icell_with of icell * iboolexp

and ivalue = Ival_string of string

| Ival_output of ivalue

| Ival_valof of icell

| Ival_arexpr of arexpr

| Ival_omega

| Ival_with of string * iboolexp

| Ival_pair of ivalue * ivalue

and iboolexp = Iboolexp_gt of arexpr * arexpr

| Iboolexp_gteq of arexpr * arexpr

| Iboolexp_lt of arexpr * arexpr

| Iboolexp_lteq of arexpr * arexpr

| Iboolexp_eq of ivalue * ivalue

| Iboolexp_noteq of ivalue * ivalue

| Iboolexp_or of iboolexp * iboolexp

| Iboolexp_and of iboolexp * iboolexp

and tree_instruction = tree_Valof of icell * int * tree_query list

| tree_From of icell * int * tree_query list

| tree_Result of int * ivalue

and forest = forest_basic of int * tree list

| forest_apply of forest * forest

| forest_comp of forest * forest

| forest_fix of forest

| forest_curry of forest

| forest_uncurry of forest

| forest_pair of forest list

| forest_prod of forest list

withtype tree_query = ivalue * tree_instruction

and tree = icell * tree_instruction

Figure 7.2: Internal representation of forests

130 CHAPTER 7. IMPLEMENTATION AND EXAMPLES

7.1.2 Di�erences between implementation and theory

The implementation of our CDS0 interpreter is a very close match to the theory previously de-

veloped. However, there are certain di�erences. None of them are fundamental in any theoretical

sense; rather they are due to lack of time required for implementation. We enumerate the more

important discrepancies below:

1. Overloaded types are treated like intersection types. Overloading is a side issue as far as

re�nement type inference is concerned. We have described how to handle it when presenting

our type inference algorithm for CDS0 for the sake of completeness, because it is part of

CDS0.

2. Not all dependencies between input and output variables (cf. Algorithm 6.3.1) are detected. In

particular, those dependencies involving variables in arithmetic expressions are not detected.

This would require a bit of machinery to implement fully, but it is not problematic from a

theoretical point of view. It is not particularly relevant, because we have concentrated on

examples in which this does not occur.

3. We treat certain types which have a mixture of polymorphic and non-polymorphic types as

having a fully polymorphic type, even though they may still admit re�nements. This could

be detected, and the re�nement type found, but its omission does not materially a�ect the

kinds of examples we can handle.

7.2 CDS0 examples

Even though our implementation is a prototype, and no particular attention has been paid to fast

execution, our results demonstrate that our approach to re�nement type inference is practical.

Unless speci�ed, all examples presented below run in under one second. There are certain excep-

tions, however, which will be pointed out. When we mention running time, we are referring to our

benchmark system, which is a Pentium Pro 200MHz with 256K L2 cache, 64 MB of RAM and 128

MB swap space, running Linux Red Hat 4.0. The running time is elapsed time.

Most of the CDS0 examples we present are algorithm de�nitions. This is due to the fact that

the low-level nature of the language makes it di�cult to write complex expressions. We begin with

examples from Curien's book [26].

When the CDS0 interpreter starts up, it loads the base PCF environment, and leaves the user

at the CDS0 prompt, denoted by #. This will be discussed in detail in the next section. Typing is

optional so we turn it on, and de�ne some of the types we have already encountered.

CDS0 version 1.1 --- June 11, 1997

typing on;

let bool = dcds cell B values tt,ff end;

Type bool defined.

let int = dcds cell N values [..] end;

Type int defined.

let true = dcds cell B values tt end;

Type true defined.

let false = dcds cell B values ff end;

Type false defined.

refine true, false;

7.2. CDS0 EXAMPLES 131

Now very simple examples will have the expected types:

{B=tt};

r: true

: bool

request? ;

{N=1};

r: int

: int

request? ;

{X=3};

Error: Type inference: term does not have a type

request? ;

Re�nement typing judgments are denoted by \r:", and regular typing judgments by \:". The

state fB = ttg has the expected re�nement type true and regular type bool, while fN = 1g has int

as both regular and re�nement type. Note that typing in some state involving cells not occurring

in any previously de�ned dcds results in a type error, but the interpreter permits evaluation to

continue.

We arrive at more interesting results when we type in algorithms. We try this for boolean

negation and left conjunction:

let not =

algo

request B do

valof B is

tt : output ff

ff : output tt

end

end

end;

r: /\[false -> true, true -> false]

: bool -> bool

Abbreviation "not" defined.

let land =

algo

request B do

valof (B.1) is

tt: valof (B.2) is

tt: output tt

ff: output ff

end

ff: output ff

end

end

end;

r: /\[(false * bool) -> false, (true * true) -> true, (true * false) -> false]

: (bool * bool) -> bool

Abbreviation "land" defined.

132 CHAPTER 7. IMPLEMENTATION AND EXAMPLES

Obtaining the re�nement types above involves a simple application of Algorithm 6.3.1. The case

of land involves instantiation of a type variable to bool, as discussed in the previous chapter.

We can de�ne a curried version of land in two ways: one is the curry land from Figure 2.5, but

we can also apply curry to land, thus obtaining a combinator expression. Obtaining a re�nement

type for the combinator expression involves a di�erent algorithm altogether than for curry land,

but, as expected, the types are the same:

curry(land);

r: /\[false -> bool -> false, true -> false -> false, true -> true -> true]

: bool -> bool -> bool

request? ;

let curry_land =

algo

request {}B do

valof B is

tt: output valof B

ff: output output ff

end

end

request {B=tt}B do

from {B=tt} do

output output tt

end

end

request {B=ff}B do

from {B=tt} do

output output ff

end

end

end;

r: /\[false -> bool -> false, true -> false -> false, true -> true -> true]

: bool -> bool -> bool

Abbreviation "curry_land" defined.

We can implement a right conjunction, and also a left strict conjunction. The interesting thing

is that we can distinguish between these programs and left conjunction based on their re�nement

type:

let rand = algo

request B do

valof (B.2) is

tt: valof (B.1) is

tt: output tt

ff: output ff

end

ff: output ff

end

end

end;

7.2. CDS0 EXAMPLES 133

r: /\[(bool * false) -> false, (true * true) -> true, (false * true) -> false]

: (bool * bool) -> bool

Abbreviation "rand" defined.

let lsand =

algo

request B do

valof (B.1) is

tt: valof (B.2) is

tt: output tt

ff: output ff

end

ff: valof (B.2) is

tt: output ff

ff: output ff

end

end

end

end;

r: /\[(false * false) -> false, (true * true) -> true, (false * true) -> false,

(true * false) -> false]

: (bool * bool) -> bool

Abbreviation "lsand" defined.

rand has the re�nement type (bool � false)! false, while land has type (false � bool)! false.

The idea is that we can use the re�nement type to infer strictness information. lsand does not

have any re�nement type involving bool.

One kind of program that we can write in CDS0 but not in PCF is an algorithm that does se-

mantic manipulation. By this we mean that the algorithm does di�erent things depending on

how its input reacts to various inputs. A fascinating example of such an algorithm is called

AND TASTER, and was �rst described by Berry and Curien [7]. The algorithm takes as in-

put an algorithm on (bool � bool)! bool and determines if it is a conjunction algorithm, and if so

which one. The full text of the algorithm is given in Appendix B.5. Here we de�ne the type of its

output, together with re�nements.

let and_type =

dcds

cell WHICH_AND values IS_LEFT_AND, IS_LEFT_STRICT_AND,

IS_RIGHT_AND, IS_RIGHT_STRICT_AND,

IS_NOT_AN_AND

end;

Type and_type defined.

let is_and_type =

dcds

cell WHICH_AND values IS_LEFT_AND, IS_LEFT_STRICT_AND,

IS_RIGHT_AND, IS_RIGHT_STRICT_AND

end;

Type is_and_type defined.

134 CHAPTER 7. IMPLEMENTATION AND EXAMPLES

let is_not_and_type =

dcds

cell WHICH_AND values IS_NOT_AN_AND

end;

Type is_not_and_type defined.

refine is_and_type, is_not_and_type;

Given these re�nements, AND TASTER has an incredibly detailed type, which is also listed in

Appendix B.5. In this case, the intensional information is overwhelming: there is a type for each

possible branch through the program, and so the re�nement type ends up being not much more

succinct than the code itself.

We now turn our attention to the implementation of lazy natural numbers we presented earlier,

and show how our re�nement types helped catch an error. We begin by de�ning lazy natural

numbers and two re�nements, empty, and non-empty:

letrec lnat =

dcds

cell B values 0,1

graft (lnat.s) access B = 1

end;

Type lnat defined.

let empty_lnat = dcds

cell B values 0

end;

Type empty_lnat defined.

local letrec partial_lnat = dcds

cell (B.s) values 0,1 access B = 1

graft (partial_lnat.s) access B = 1

end

in let some_lnat = dcds

cell B values 1

cell (B.s) values 0,1 access B = 1

graft (partial_lnat.s)

end

end;

Type some_lnat defined.

refine empty_lnat, some_lnat;

Some of the algorithms on lazy natural numbers presented earlied have the expected re�nement

types. The re�nement type of successor can be simpli�ed by removing the middle type, but our

interpreter currently does not handle this.

let Somega = fix(Srec);

r: some_lnat

: lnat

Abbreviation "Somega" defined.

let S = fix(succ_rec);

r: /\[some_lnat -> some_lnat, lnat -> some_lnat, empty_lnat -> some_lnat]

: lnat -> lnat

Abbreviation "S" defined.

7.3. PCF 135

It turns out that our �rst implementation of left minimum was erroneous, in that if it received

a 0 in the left input, it still checked the right input, instead of placing a 0 on the output right away.

Given a right input which looped, this program, of course, would loop in that situation. We did

not catch this error until we implemented re�nement type inference, and observed the following

type for the program:

let bad_left_min = fix(bad_left_min_rec);

r: /\[(some_lnat * some_lnat) -> some_lnat,

(empty_lnat * empty_lnat) -> empty_lnat,

(some_lnat * empty_lnat) -> empty_lnat,

(empty_lnat * some_lnat) -> empty_lnat]

: (lnat * lnat) -> lnat

Abbreviation "bad_left_min" defined.

This provided a clue that the program did not do what we intended. The revised, correct program,

shown in Appendix B.1, has the expected type:

let left_min = fix(left_min_rec);

r: /\[(some_lnat * some_lnat) -> some_lnat, (empty_lnat * lnat) -> empty_lnat,

(some_lnat * empty_lnat) -> empty_lnat]

: (lnat * lnat) -> lnat

Abbreviation "left_min" defined.

7.3 PCF

We mentioned previously that upon startup the CDS0 interpreter loads in the base PCF environ-

ment. This consists of the type de�nitions and the combinators required to compile PCF to CDS0.

There are actually two base environments for PCF that we implemented: one contains re�nement

types and one does not. We �rst discuss the types obtained for the terms in the base environments

before turning our attention to PCF.

7.3.1 Base environment

There are two ways of starting up the CDS0 interpreter: regular or re�nement typing. The choice

of typing only applies to PCF. We discuss re�nement typing, since it subsumes regular typing.

The complete listing of CDS0 programs which make up the re�nement compilation environment is

given in Appendix B.3. The complete transcript of the interpreter processing the CDS0 programs

is given in Appendix B.4. Here we discuss an abbreviated list. Note that the re�nement type and

regular type are listed before the name of the algorithm.

- cds0(refined);

-- Loading PCF constants.

Type bool defined.

Type int defined.

Type true defined.

Type false defined.

r: /\[((false * 'a) * 'b) -> 'b, ((true * 'c) * 'd) -> 'c]

: ((bool * 'a) * 'a) -> 'a

Abbreviation "cond" defined.

136 CHAPTER 7. IMPLEMENTATION AND EXAMPLES

r: ('a * 'b) -> 'a

: ('a * 'b) -> 'a

Abbreviation "fst" defined.

r: ('a * 'b) -> 'b

: ('a * 'b) -> 'b

Abbreviation "snd" defined.

r: (int * int) -> int

: (int * int) -> int

Abbreviation "plus" defined.

...

r: (int * int) -> bool

: (int * int) -> bool

Abbreviation "equal" defined.

...

r: 'a -> 'a

: 'a -> 'a

Abbreviation "id" defined.

r: 'a

: 'a

Abbreviation "emptyenv" defined.

r: ('a -> 'a) -> 'a

: ('a -> 'a) -> 'a

Abbreviation "Y" defined.

r: ('a -> 'b -> 'b) -> 'a -> 'b

: ('a -> 'b -> 'b) -> 'a -> 'b

Abbreviation "Yenv" defined.

Type intlist defined.

Type empty_intlist defined.

Type one_intlist defined.

Type many_intlist defined.

r: empty_intlist

: intlist

Abbreviation "nil" defined.

r: /\[one_intlist -> false, empty_intlist -> true, many_intlist -> false]

: intlist -> bool

Abbreviation "null" defined.

r: /\[(int * one_intlist) -> many_intlist, (int * many_intlist) -> many_intlist,

(int * empty_intlist) -> one_intlist]

: (int * intlist) -> intlist

Abbreviation "cons" defined.

r: /\[one_intlist -> int, many_intlist -> int]

: intlist -> int

Abbreviation "hd" defined.

r: /\[many_intlist -> intlist, one_intlist -> empty_intlist]

: intlist -> intlist

Abbreviation "tl" defined.

7.3. PCF 137

The �rst interesting type to observe is that for conditional. When collecting cell names and

values along the two possible paths to an output through cond, we can establish a dependence

between the variable cell names and values: when input is true, the output cell $C, gets its value

from the left input and when the input is false, it gets its value from the right input. By unifying

the matching type variables, we can obtain the more precise re�nement type.

The identity, projections, Y and Yenv combinators have fully polymorphic types, and so do not

admit re�nements. Also having a polymorphic type is the empty environment, which is implemented

as the empty state. The reason for this is that the empty state can be part of any dcds.

We cannot obtain interesting re�nement types for the addition and equality check for integers

algorithms presented in the previous chapter. The type of addition does not admit re�nements. As

for the equality test, the types of its two paths are (int�int)! true and (int�int)! false. In the

last step of Algorithm 6.3.1, we make this into (int� int)! bool, because we must lose precision.

Finally, the algorithms on integer lists have the expected types, as discussed in the previous

chapter.

7.3.2 Examples

We can switch from the CDS0 interpreter to the PCF one by typing the command pcf. At this

time, the prompt changes to $ and the base enviroment for PCF becomes the current environment.

The re�nement types for all of the examples in this section are obtained through the use of Al-

gorithm 6.6.3, by entering a questions and answers session with the expression which exposes a

relevant state, which is then typed using Algorithm 6.3.1.

We begin with two examples on bool! bool: boolean negation and a function which always

returns true.

$ val not = fn x => if x then false else true;

r: /\[false -> true, true -> false]

: bool -> bool

Abbreviation "not" defined.

$ val exclmid = fn x => x or (not x);

r: /\[false -> true, true -> true]

: bool -> bool

Abbreviation "exclmid" defined.

The interesting thing to note here is that this version of not is implemented in a completely

di�erent fashion than the version we wrote in CDS0 directly (cf. Section 6.4.2). As expected, we

obtain the same re�nement type.

Now we consider some programs on integer lists. The map function we �rst presented in the

introduction has the re�nement type we had wanted:

val map = letrec mapf = fn f => fn l =>

if null l then [] else (f (hd l)) :: ((mapf f) (tl l))

in mapf

end;

r: /\[(int -> int) -> many_intlist -> many_intlist,

(int -> int) -> one_intlist -> one_intlist,

(int -> int) -> empty_intlist -> empty_intlist]

: (int -> int) -> intlist -> intlist

Abbreviation "map" defined.

138 CHAPTER 7. IMPLEMENTATION AND EXAMPLES

One of the strengths of our approach to re�nement type inference over the Freeman-Pfenning

one can be seen in the following examples:

$ val l3 = 1 :: (2 :: (3 :: []));

r: many_intlist

: intlist

Abbreviation "l3" defined.

$ tl l3;

r: many_intlist

: intlist

request? ;

$ tl (tl l3);

r: one_intlist

: intlist

Because we are not using type inference rules, we are able to obtain more precise re�nement types.

Recall that one of the re�nement types of tl ismany intlist! intlist, a type which entails inevitable

loss of precision. By using such a type with inference rules it is impossible to obtain anything other

than intlist for the re�nement types of the two expressions above. Since we query the expression

directly, we bypass this problem.

Another advantage of our approach is that we place no restrictions on polymorphic functions.

When presenting the Freeman-Pfenning approach in Section 2.6, we described how, in the case of an

example such as double not, the function double could not be polymorphic. Even then, obtaining

the re�nement type was complicated by instantiations of type variables which led to very long

re�nement types. In our case, the answer can be obtained very quickly; the questions and answers

session only needs to know the values of three cells in order to give a precise re�nement type:

$ val double = fn f => fn x => f (f x);

r: ('a -> 'a) -> 'a -> 'a

: ('a -> 'a) -> 'a -> 'a

Abbreviation "double" defined.

$ double not;

r: /\[false -> false, true -> true]

: bool -> bool

When performing the questions and answers session in Algorithm 6.6.3, we cannot construct

new queries when we need to know the values of cells that have an in�nite number of possible

values. Depending on the ow of control we may or may not be able to obtain precise types for

expressions with inputs that have such cells:

$ val f = fn x => fn y => fn l => (x+y)::l;

r: /\[int -> int -> many_intlist -> many_intlist,

int -> int -> one_intlist -> many_intlist,

int -> int -> empty_intlist -> one_intlist]

: int -> int -> intlist -> intlist

Abbreviation "f" defined.

$ val h = fn x => fn l => if x=3 then l else x::l;

r: int -> intlist -> intlist

7.3. PCF 139

: int -> intlist -> intlist

Abbreviation "h" defined.

In the �rst example above, we obtain something very precise, and very similar to the type of cons.

In the second example we are stuck, since we need to know the value of the input, which comes

from int. We cannot construct a relevant approximation, so we return the regular type as the

re�nement type.

Even when faced with rather complicated-looking expressions, we can usually obtain a re�ne-

ment type very quickly. Our system infers a precise type for test2 below with no perceptible wait

time. useless is a function which always returns an empty list.

$ val useless = letrec f = fn l => if null l then [] else f (tl l)

in f

end;

r: /\[many_intlist -> empty_intlist, empty_intlist -> empty_intlist,

one_intlist -> empty_intlist]

: intlist -> intlist

Abbreviation "useless" defined.

$ val times2 = fn x => x * 2;

r: int -> int

: int -> int

Abbreviation "times2" defined.

$ val test2 = 1 :: (useless ((map times2) (useless ((map times2) l3))));

r: one_intlist

: intlist

Abbreviation "test2" defined.

Sometimes we are only able to obtain partial information. Consider the following example of

the familiar predicate exists:

$ val exists = letrec f = fn p => fn l =>

if null l then false

else if p (hd l) then true

else (f p) (tl l)

in f end;

r: /\[(int -> false) -> empty_intlist -> false,

(int -> true) -> empty_intlist -> false,

(int -> bool) -> empty_intlist -> false]

: (int -> bool) -> intlist -> bool

Abbreviation "exists" defined.

Again, the type could have been simpli�ed by removing the last branch. We are only able to infer

what happens if the input is empty. When querying the expression with a non-empty input, we

receive a valof xc answer, where x is a complex expression asking, in essence, if the property holds

of the input. We cannot do anything with such an answer, so we give up. This brings us to one

of the weaknesses of our approach: we are not always able to obtain precise re�nement types for

expressions with higher-order inputs. Re�nement type inference rules, as in the Freeman-Pfenning

approach, would work better in such cases. As an example, consider the following program:

140 CHAPTER 7. IMPLEMENTATION AND EXAMPLES

$ val f11 = letrec f = fn b => fn g =>

if g b then true else (f false) g in f end;

r: bool -> (bool -> bool) -> bool

: bool -> (bool -> bool) -> bool

Abbreviation "f11" defined.

By making assumptions about all possible re�nement typings of g, a system with re�nement type

inference rules might be able to obtain more precise types.

We can obtain very detailed types very quickly, for certain many recursive functions, such as

append.

$ val append = letrec f = fn l1 => fn l2 => if null l1 then l2

else (hd l1) :: ((f (tl l1)) l2)

in f end;

r: /\[many_intlist -> intlist -> many_intlist,

many_intlist -> one_intlist -> many_intlist,

many_intlist -> many_intlist -> many_intlist,

many_intlist -> empty_intlist -> many_intlist,

one_intlist -> many_intlist -> many_intlist,

one_intlist -> one_intlist -> many_intlist,

one_intlist -> empty_intlist -> one_intlist,

empty_intlist -> many_intlist -> many_intlist,

empty_intlist -> one_intlist -> one_intlist,

empty_intlist -> empty_intlist -> empty_intlist]

: intlist -> intlist -> intlist

Abbreviation "append" defined.

However, we have encountered recursive functions where the performance of re�nement type infer-

ence su�ers from the limitations of CDS02.

$ val rev1 = letrec f = fn l => fn result =>

if null l then result

else (f (tl l)) ((hd l) :: result)

in f end;

...

: intlist -> intlist -> intlist

Abbreviation "rev1" defined.

$ val rev = fn l => (rev1 l) [];

r: /\[many_intlist -> many_intlist, empty_intlist -> empty_intlist,

one_intlist -> one_intlist]

: intlist -> intlist

Abbreviation "rev" defined.

We have omitted the re�nement type for rev1 because it is very similar to that of append. Obtaining

the re�nement type for rev1 takes 6 seconds, and for rev 16 seconds. These are the only programs

presented so far on which our interpreter takes more than a second. The poor performance is due

to the fact that the computation of �xpoints is not memoized in CDS02.

We end with some looping programs, one of which has a type which does not admit re�nements,

hence it is \sidestepped," one that is detected, and one that reaches the depth bound.

7.3. PCF 141

$ val loop2 = letrec f = fn x => f (x+1) in f end;

r: int -> 'a

: int -> 'a

Abbreviation "loop2" defined.

$ val loop6 = letrec f = fn l => if null l then [] else f l in f end;

This expression loops.

r: intlist -> intlist

: intlist -> intlist

Abbreviation "loop6" defined.

$ val loop8 = letrec f = fn l => if null l then [] else f (1::l) in f end;

This expression may loop. Refinement type inference gives up.

r: intlist -> intlist

: intlist -> intlist

Abbreviation "loop8" defined.

142 CHAPTER 7. IMPLEMENTATION AND EXAMPLES

Chapter 8

Conclusions and Further Work

In this chapter we conclude and present possible avenues for further work.

8.1 General conclusions

We believe we have provided ample evidence of both the theoretical and practical utility of studying

intensional semantics. Thus, the central claim of the thesis has been demonstrated. However, the

central claim was very broad, so we present a more detailed assessment of this work.

8.1.1 Relative intensional expressiveness

We de�ned the notion of relative intensional expressiveness between programming languages, de-

veloped a new intensional semantics, circuit semantics, and we set out to prove separation results.

Our goal was to compare languages, and not underlying computation models. We have been able

to compare primitive recursive algorithms with sequential algorithms and parallel algorithms, PCF

extended with por, pifo, pif� and deterministic query, and, �nally, PCF extended with deterministic

and non-deterministic query. However, in the process, we have been only partially successful in

staying true to our original goal of only comparing languages. Of the comparisons we have made,

three rely to some extent on assumptions about computation models:

1. When comparing CDS0 and CDSP, we allowed a construct to evaluate cells in parallel in

CDSP, but CDS0, due to the inherently sequential nature of its operational semantics, could

not do something similar. Thus, our comparison became partly a comparison of a sequential

and a parallel machine model.

2. Similarly, when comparing PCF extended with pif� versus query, we only allowed parallel

computations to be started by query, or the limited mechanism of pif�. This made the

comparison somewhat arti�cial, because there are possible parallel evaluation styles for PCF

as a whole.

3. The most egregious break with our original goal was made when comparing deterministic

and non-deterministic query. In order to obtain deterministic results, we focused on a sub-

set of non-deterministic queries which return deterministic answers under the assumption

of hardware that detects unde�ned inputs. Deterministic queries cannot take advantage of

this hardware. Using results from circuit complexity, we were then able to prove that non-

deterministic query is more expressive. But we believe the insight gained into connections

143

144 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

between complexity theory and programming languages theory, and in particular, between

DPCF and monotone circuits, o�sets the shortcomings of the method. Note that this con-

nection still applies if we add recursion to DPCF.

The major lesson we have learned from this is that it is interesting and worthwhile to attempt

intensional comparisons of programming languages, but that it is di�cult to achieve it in a com-

pletely fair fashion.

8.1.2 Re�nement type inference

We developed a novel type inference system based on concrete data structures, which have a more

elaborate structure than records, and we implemented it in our CDS0 interpreter. Gradually, we

realized that we could type the various paths through an algorithm separately and achieve what

was called in the literature a re�nement type. After becoming aware of the work of Hughes and

Ferguson, we developed our questions and answers approach to re�nement type inference, which has

bene�ts and drawbacks as compared to the only previous approach, that of Freeman and Pfenning.

The bene�ts are:

1. No restrictions are placed on the usage of polymorphic functions in order to obtain precise

re�nement types.

2. No need to consider all possible re�nements of a type, which leads to large time and space

savings, especially in the case of higher-order types.

3. Ability to obtain more precise re�nement types in many cases.

The drawbacks of our approach are:

1. Poor performance in the case of certain kinds of �xpoint computations, due to the underlying

CDS02 semantics.

2. Inability to obtain precise re�nement types in many cases, especially when higher-order inputs

are involved.

3. A more restrictive language for de�ning re�nement types. In particular, we cannot have

de�nitions such as the even and odd re�nements of boolean lists of Section 2.6.

There are other di�erences between the two systems, but they are not as important, For instance,

we do not have polymorphic lists. This can be easily remedied, however. As we have seen, the

relevant cells in a list, from the point of view of re�nement type inference, are the backbone cells,

EMPTY , EMPTY:l, and EMPTY:l:l. Regardless of which kinds of lists we considered, those

cells would remain the same, thus we can imagine extending CDS0 with \generic" list de�nitions.

Despite the drawbacks, we believe our system shows signs of being quite practical. We have

already bene�ted from it in �nding a programming error. There are two obstacles that we see

before the system becomes truly practical: the type de�nitions must currently be done in CDS0,

and there exist performance concerns for certain recursive functions. We believe these problems

can be solved, and we shall discuss this issue in the next section.

In the process of developing the re�nement type inference system, we established a new way

of using sequential algorithms to perform abstract interpretation. The previous approach, that of

Hughes and Ferguson, su�ered from severe space problems [51]. Our approach has speed problems

in the case of �xpoints. The natural question is how to combine the best of the two approaches.

This possibility is also discussed in the next section.

8.2. FURTHER WORK 145

8.2 Further work

We discuss possible areas of further work in three main categories: re�nement type inference, CDS0

applications, and extensions of CDS0.

8.2.1 Re�nement type inference

The obvious idea suggested by the comments in the previous section, is to have a mixed re�nement

type inference rules and abstract interpretation of the expression approach. Consider the following

program:

rev (tl ones);

where ones is the in�nite list of 1's de�ned earlier. Our system can infer a precise type for a piece

of the program:

$ tl ones;

r: many_intlist

: intlist

request? ;

The Freeman-Pfenning system can only infer intlist as the type of this expression. However, given

something known to have re�nement typemany intlist, that system could obtain typemany intlist

for the result of applying rev to it. Our system cannot infer many intlist as the �nal answer,

because the computation loops, so re�nement type inference gives up. A combined system would

be able to obtain the type many intlist for the whole expression. Of course, it is not clear how to

achieve this combination of the two approaches in detail, but it seems like a particularly interesting

area for future work.

There are several ways in which our implementation can be improved. Aside from removing

the discrepancies between the implementation and the theory, there are two main ways we could

strive for better performance:

1. Simpli�cation of categorical code. Currently, we perform no simpli�cations at all on the

combinator code which results from the compilation of PCF programs. This code is very

ine�cient. One of the major implementations of ML, CAML [61, 25], is based on the same

compilation to categorical combinators, and it relies on many optimizations. Adopting even

a small subset of these for our purposes would probably result in markedly improved perfor-

mance.

2. Memoization of �xpoint computations in CDS02. We believe this is the main performance

bottleneck. Developing a mixed CDS02/01 evaluation strategy that keeps tables around for

�xpoints should solve most of our performance problems.

As far as having to de�ne types in CDS0 is concerned, we believe this is not an enormous

problem. Having to write programs in CDS0 is more of a concern, but, as we have shown, that

can be avoided. It is possible to make the CDS0 type de�nitions more like to ML-style de�nitions.

The original paper on CDS0 [5] takes some steps in this direction, and one can probably go much

further.

146 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

8.2.2 Applications of CDS0

We have already mentioned that we believe CDS02 confers signi�cant advantages for the purpose

of abstract interpretation over CDS01. It seems Hughes and Ferguson have considered the space

problems of CDS01 insurmountable [51]. We plan on developing strictness analysis based on CDS02,

and hope to see the same great performance mentioned in [33] without the massive storage use.

Another area we plan to investigate is the use of CDS02 pro�ling semantics for the purpose of

complexity analysis of lazy, higher-order programs. We have already made a start in Chapter 3, by

providing operational semantics rules extended with step information. It would be quite interesting

to analyze some of the problems in Wadler [85] and Sands [78] with our approach. One of the great

strengths of sequential algorithms is that they provide a uniform way of moving from �rst-order

to higher-order, and so a lot of the problems encountered in the previously cited approaches might

disappear.

Finally, CDS0 is an implementation of a game semantics, and much has been written about

connections between game semantics and parallel implementations of functional languages (see [1],

for instance). The idea is that a sequential computation can be broken down into a network

of concurrent processes which exchange information. We are of the opinion that our re�nement

type inference framework can be extended for the purpose of analyzing such networks of processes

communicating through channels, and we have already started work in this direction.

8.2.3 Extensions of CDS0

We briey mention two ideas on extensions of CDS0, which are somewhat distantly related to our

current work. First, we are considering the possibility of allowing non-ground dcds de�nitions, and

extending the language with channels. The idea would be to be able to send higher-order messages

along a channel in a piece-meal fashion. It is not clear yet how this extension would a�ect the type

system we developed for CDS0.

Second, we are envisioning a parallel extension of CDS0 for arti�cial intelligence applications.

One of the most interesting features of CDS0 is the ability to write semantics-manipulation al-

gorithms, such as AND TASTER. Imagine a language for programming virtual worlds in which

agents can meet and interact based on each other's semantics. We could use re�nement types in

such a system to obtain very interesting behavioral information on agents.

Appendix A

Summary of Major De�nitions

A.1 CDS0 operational semantics

A.1.1 Evaluation of forests

(Tree1)
c0i = c0

Tree (c01; ins1); : : : ;Tree (c0n; insn) ? x1 � � � xnc
0 ! ins i ? x1 � � � xnc0

(Tree2)
8i: c0i 6= c0

Tree (c01; ins1); : : : ;Tree (c0n; insn) ? x1 � � � xnc
0 !

(Result) Result v0 ? x1 � � � xnc
0 ! v0

(Valof)

xp ? c !

8><
>:
vi
v; and 8i: vi 6= v

Valof (c; p) is

v1 : ins1
: : :

end

9>>>=
>>>;

? x1 � � � xnc0 !

8><
>:

insi ? x1 � � � xnc
0

outputp�1 valof c

(From)

xp ? c !

8><
>:
vi
v; and 8i: vi 6= v

From (c; p) is

v1 : ins1
: : :

end

9>>>=
>>>;

? x1 � � � xnc0 !

8><
>:

insi ? x1 � � � xnc
0

fail with no-access

A.1.2 CDS02 rules

(App)

A ? Bc0!

8><
>:

valof c

output v0

A:B ? c0!

8><
>:

v0

147

148 APPENDIX A. SUMMARY OF MAJOR DEFINITIONS

(Comp)

A ? (B:x)c00!

8><
>:

valof c0 B?xc0! valof c

output v00

AjB ? xc00!

8><
>:

valof c

output v0

(Fix)

A ? fix(A)c!

8><
>:

valof c0

output v

fix(A) ? c!

8><
>:

v

(Pair) < A1; : : : ; An > ? x(c:i)!Ai ? xc

(Prod)
nY
i=1

Ai ? (c:i)!Ai ? c

(Curry)

A ? (x� y)c00!

8>>><
>>>:

valof (c:1)

valof (c0:2)

output v00

curry(A) ? xyc00!

8>>><
>>>:

valof c

output valof c0

output output v00

(Uncurry)

A ? (�1:x)(�2:y)c
00!

8>>><
>>>:

valof c

output valof c0

output output v00

uncurry(A) ? xc00!

8>>><
>>>:

valof (c:1)

valof (c0:2)

output v00

A.2 CDS0 typing rules

A.2.1 Subtyping and intersection types

(Sub-Refl) � � �

(Sub-Trans)
� � � � � �

� � �

(Sub-Prod)
�1 � �1 �2 � �2

�1 � �2 � �1 � �2

A.2. CDS0 TYPING RULES 149

(And-Intro)
x : �1 � � � x : �n
x :
V
[�1::�n]

(And-Elim)
x :
V
[�1::�n]

x : �i

(Sub-And-R)
8i: � � �i

� �
V
[�1::�n]

(Sub-And-L)
V
[�1::�n] � �i

(Sub-Arrow)
�2 � �1 �1 � �2

�1! �1 � �2! �2

(Sub-And-Dist)
V
[�! �1 :: �! �n] � �!

V
[�1::�n]

(Sub-Over) f�i! �i j i 2 1::ng � f�j! �j j j 2 1::mg 8j: 9i: �i! �i � �j! �j

(Sub-Meet-Over)
V
[�i! �i j i 2 1::n] � f�i! �i j i 2 1::ng

A.2.2 Monomorphic type inference

(App)
a :
V
[�i! �i j i 2 1::n] b :

V
[�1::�m]

a:b :
V
[�i j 9j: �j � �i]

(Comp)
a :
V
[�i! �i j i 2 1::n] b :

V
[�j! � 0j j j 2 1::m]

ajb :
V
[�j! �i j �

0
j � �i]

(Fix)
a :
V
[�i! �i j i 2 1::n]

fix(a) :
V
[�i j �i � �i]

(Curry)
a :
V
[(�i � �0i)! �i j i 2 1::n]

curry(a) :
V
[�i!�0i! �i j i 2 1::n]

(Uncurry)
a :
V
[�i!�0i! �i j i 2 1::n]

uncurry(a) :
V
[(�i � �0i)! �i j i 2 1::n]

(Pair)
a :
V
[�i! �i j i 2 1::n] b :

V
[�j! �j j j 2 1::m]

< a; b > :
V
[�i!(�i � �j) j �j � �i]

(Prod)
a :
V
[�1::�n] b :

V
[� 01::�

0
m]

(a; b) :
V
[�i � � 0j j i 2 1::n; j 2 1::m]

A.2.3 Polymorphic type inference

(Gen)
e : �

e : 8�: �

(Inst)
e : 8�: �

e : [�=�]�

(App-Over)
a : f�i! �i j i 2 1::ng b : �

a:b :
W
[�i j � � �i]

150 APPENDIX A. SUMMARY OF MAJOR DEFINITIONS

(Comp-Over)
a : f�i! �i j i 2 1::ng b : �! � 0

ajb : �!
W
[�i j � 0 � �i]

(Fix-Over)
a : f�i! �i j i 2 1::ng

fix(a) :
W
[�i j �i � �i]

(Curry-Over)
a : f(�i � �0i)! �i j i 2 1::ng

curry(a) : f�i!�0i! �i j i 2 1::ng

(Uncurry-Over)
a : f�i!�0i! �i j i 2 1::ng

uncurry(a) : f(�i � �0i)! �i j i 2 1::ng

A.2.4 Re�nement types

(Ref-Refl) � v �

(Ref-Sub)
���p�

� v �

(Ref-And)
V
[�1::�n] v

V
[�1::�m] 8i 9j: �i v �j

(Ref-Arrow)
�1 v �2 �1 v �2

�1! �1 v �2! �2

(Ref-Prod)
�1 v �2 �1 v �2

�1 � �1 v �2 � �2

Appendix B

CDS0 and CDSP Algorithms

B.1 left min

let left_min_rec = algo

request {}B do

output valof (B.1)

end

request {(B.1)=0}B do

output output 0

end

request {(B.1)=1}B do

output valof (B.2)

end

request {(B.1)=1,(B.2)=0}B do

output output 0

end

request {(B.1)=1,(B.2)=1}B do

output output 1

end

request {}((B.$V).s) do

valof {}(B.$V) is

valof ((B.$V).1) : output valof (((B.$V).s).1)

end

end

request {(((B.$V).s).1)=0}((B.$V).s) do

from {{}(B.$V)=valof ((B.$V).1)} do

valof {((B.$V).1)=0}(B.$V) is

output 0 : output output 0

end

end

end

request {(((B.$V).s).1)=1}((B.$V).s) do

from {{}(B.$V)=valof ((B.$V).1)} do

valof {((B.$V).1)=1}(B.$V) is

valof ((B.$V).2) : output valof (((B.$V).s).2)

end

end

end

request {(((B.$V).s).1)=1,(((B.$V).s).2)=0}((B.$V).s) do

151

152 APPENDIX B. CDS0 AND CDSP ALGORITHMS

from {{}(B.$V)=valof ((B.$V).1),{((B.$V).1)=1}(B.$V)=valof ((B.$V).2)} do

valof {((B.$V).1)=1,((B.$V).2)=0}(B.$V) is

output 0 : output output 0

end

end

end

request {(((B.$V).s).1)=1,(((B.$V).s).2)=1}((B.$V).s) do

from {{}(B.$V)=valof ((B.$V).1),{((B.$V).1)=1}(B.$V)=valof ((B.$V).2)} do

valof {((B.$V).1)=1,((B.$V).2)=1}(B.$V) is

output 1 : output output 1

end

end

end

end;

let left_min = fix(left_min_rec);

B.2 min

let min_rec = algo

request {}B do

output query {(B.1), (B.2)} is

{0, _} => output 0

{_, 0} => output 0

{1, 1} => output 1

end

end

request {}((B.$V).s) do

valof {}(B.$V) is

query {((B.$V).1), ((B.$V).2)} is

{0, _} => output 0

{_, 0} => output 0

{1, 1} => output 1

end : output query{ (((B.$V).s).1), (((B.$V).s).2)} is

{0, _} => output 0

{_, 0} => output 0

{1, 1} => output 1

end

end

end

end;

let min = fix(min_rec);

B.3 CDS0 algorithms used to compile PCF

We list the base environment of CDS0 dcds declarations and algorithms which are used to compile

PCF programs. There are two versions of this base environment: one de�nes re�nements of bool

and intlist, and the other does not. We show the code for the re�ned version.

(* Constants that are part of the PCF environment *)

(* Automatically loaded in when user switches to *)

B.3. CDS0 ALGORITHMS USED TO COMPILE PCF 153

(* PCF interpreter. *)

(* The basic types *)

let bool = dcds cell B values tt,ff end;

let int = dcds cell N values [..] end;

(* The refinement types *)

let true = dcds cell B values tt end;

let false = dcds cell B values ff end;

refine true, false;

(* The primitive operations *)

(* cond : ((bool * 'a) * 'a) -> 'a *)

let cond =

algo

request $C do

valof ((B.1).1) is

tt: valof (($C.2).1) is

$V: output $V

end

ff: valof ($C.2) is

$W: output $W

end

end

end

end;

(* fst : ('a * 'b) -> 'a *)

let fst = algo

request $C do

valof ($C.1) is

$V: output $V

end

end

end;

(* snd : ('a * 'b) -> 'a *)

let snd = algo

request $C do

valof ($C.2) is

$W: output $W

end

end

end;

(* plus : (int * int) -> int *)

let plus = algo

request N do

valof (N.1) is

$V1: valof (N.2) is

154 APPENDIX B. CDS0 AND CDSP ALGORITHMS

$V2: output $V1 + $V2

end

end

end

end;

let minus = algo

request N do

valof (N.1) is

$V1: valof (N.2) is

$V2: output $V1 - $V2

end

end

end

end;

let times = algo

request N do

valof (N.1) is

$V1: valof (N.2) is

$V2: output $V1 * $V2

end

end

end

end;

let div = algo

request N do

valof (N.1) is

$V1: valof (N.2) is

$V2: output $V1 / $V2

end

end

end

end;

(* equal : (int * int) -> bool *)

let equal = algo

request B do

valof (N.1) is

$V1: valof (N.2) is

$V2 with $V2 = $V1: output tt

$V2 with $V2 != $V1: output ff

end

end

end

end;

let less = algo

request B do

valof (N.1) is

$V1: valof (N.2) is

$V2 with $V2 > $V1: output tt

B.3. CDS0 ALGORITHMS USED TO COMPILE PCF 155

$V2 with $V2 <= $V1: output ff

end

end

end

end;

let grtr = algo

request B do

valof (N.1) is

$V1: valof (N.2) is

$V2 with $V2 < $V1: output tt

$V2 with $V2 >= $V1: output ff

end

end

end

end;

let leq = algo

request B do

valof (N.1) is

$V1: valof (N.2) is

$V2 with $V2 >= $V1: output tt

$V2 with $V2 < $V1: output ff

end

end

end

end;

let geq = algo

request B do

valof (N.1) is

$V1: valof (N.2) is

$V2 with $V2 <= $V1: output tt

$V2 with $V2 > $V1: output ff

end

end

end

end;

(* and : (bool * bool) -> bool *)

let land =

algo

request B do

valof (B.1) is

tt: valof (B.2) is

tt: output tt

ff: output ff

end

ff: output ff

end

end

end;

156 APPENDIX B. CDS0 AND CDSP ALGORITHMS

let lor =

algo

request B do

valof (B.1) is

tt: output tt

ff: valof (B.2) is

tt: output tt

ff: output ff

end

end

end

end;

(* Now things that are not explicitly in the language but are needed *)

(* in the translation to categorical combinators. *)

(* id : 'a -> 'a *)

let id = algo

request $C do

valof $C is

$V : output $V

end

end

end;

(* The empty environment *)

let emptyenv = {};

(* the "regular" fixpoint, Y : ('a -> 'a) -> 'a *)

(* Y = fix (fn f => fn x => x (f x)) *)

let Y = fix((curry(curry(uncurry(id) |

<snd, uncurry(id) | <snd|fst, snd>>))).emptyenv);

(* the "environment" fixpoint, Yenv : (env -> 'a -> 'a) -> env -> 'a *)

let Yenv = curry(Y | uncurry(id));

(* Integer lists *)

letrec intlist = dcds

cell EMPTY values true, false

graft (int.l) access EMPTY = false

graft (intlist.l) access EMPTY=false

end;

(* refined types *)

let empty_intlist = dcds

cell EMPTY values true

end;

let one_intlist = dcds

cell EMPTY values false

cell (N.l) values [..] access EMPTY = false

B.3. CDS0 ALGORITHMS USED TO COMPILE PCF 157

cell (EMPTY.l) values true access EMPTY = false

end;

local letrec partial_intlist = dcds

cell (EMPTY.l) values true, false access EMPTY = false

cell (N.l) values [..] access EMPTY = false

graft (partial_intlist.l) access EMPTY = false

end

in let many_intlist = dcds

cell EMPTY values false

cell (N.l) values [..] access EMPTY = false

cell (EMPTY.l) values false access EMPTY = false

cell ((N.l).l) values [..] access (EMPTY.l) = false

graft (partial_intlist.l)

end

end;

refine empty_intlist, one_intlist, many_intlist;

let nil = {EMPTY = true};

let null = algo

request B do

valof EMPTY is

true : output tt

false : output ff

end

end

end;

let cons = algo

request EMPTY do

output false

end

request (N.l) do

valof (N.1) is

$V : output $V

end

end

request (EMPTY.l) do

valof (EMPTY.2) is

$B : output $B

end

end

request (((EMPTY.$T).l).l) do

from {((EMPTY.$T).2)=false} do

valof (((EMPTY.$T).l).2) is

$B : output $B

end

end

end

request (((N.$T).l).l) do

from {((EMPTY.$T).2)=false} do

158 APPENDIX B. CDS0 AND CDSP ALGORITHMS

valof (((N.$T).l).2) is

$V : output $V

end

end

end

end;

let hd = algo

request N do

valof EMPTY is

false : valof (N.l) is

$V : output $V

end

end

end

end;

let tl = algo

request (EMPTY.$T) do

from {(EMPTY.$T)=false} do

valof ((EMPTY.$T).l) is

$B : output $B

end

end

end

request ((N.$T).l) do

from {(EMPTY.$T)=false, ((EMPTY.$T).l)=false} do

valof (((N.$T).l).l) is

$V : output $V

end

end

end

end;

B.4 Types for CDS0 algorithms in base environment

- cds0(refined);

-- Loading PCF constants.

Type bool defined.

Type int defined.

Type true defined.

Type false defined.

r: /\[((false * 'a) * 'b) -> 'b, ((true * 'c) * 'd) -> 'c]

: ((bool * 'a) * 'a) -> 'a

Abbreviation "cond" defined.

r: ('a * 'b) -> 'a

: ('a * 'b) -> 'a

Abbreviation "fst" defined.

r: ('a * 'b) -> 'b

: ('a * 'b) -> 'b

Abbreviation "snd" defined.

r: (int * int) -> int

B.4. TYPES FOR CDS0 ALGORITHMS IN BASE ENVIRONMENT 159

: (int * int) -> int

Abbreviation "plus" defined.

r: (int * int) -> int

: (int * int) -> int

Abbreviation "minus" defined.

r: (int * int) -> int

: (int * int) -> int

Abbreviation "times" defined.

r: (int * int) -> int

: (int * int) -> int

Abbreviation "div" defined.

r: (int * int) -> bool

: (int * int) -> bool

Abbreviation "equal" defined.

r: (int * int) -> bool

: (int * int) -> bool

Abbreviation "less" defined.

r: (int * int) -> bool

: (int * int) -> bool

Abbreviation "grtr" defined.

r: (int * int) -> bool

: (int * int) -> bool

Abbreviation "leq" defined.

r: (int * int) -> bool

: (int * int) -> bool

Abbreviation "geq" defined.

r: /\[(false * bool) -> false, (true * true) -> true, (true * false) -> false]

: (bool * bool) -> bool

Abbreviation "land" defined.

r: /\[(false * false) -> false, (true * bool) -> true, (false * true) -> true]

: (bool * bool) -> bool

Abbreviation "lor" defined.

r: 'a -> 'a

: 'a -> 'a

Abbreviation "id" defined.

r: 'a

: 'a

Abbreviation "emptyenv" defined.

r: ('a -> 'a) -> 'a

: ('a -> 'a) -> 'a

Abbreviation "Y" defined.

r: ('a -> 'b -> 'b) -> 'a -> 'b

: ('a -> 'b -> 'b) -> 'a -> 'b

Abbreviation "Yenv" defined.

Type intlist defined.

Type empty_intlist defined.

Type one_intlist defined.

Type many_intlist defined.

r: empty_intlist

: intlist

Abbreviation "nil" defined.

r: /\[one_intlist -> false, empty_intlist -> true, many_intlist -> false]

: intlist -> bool

160 APPENDIX B. CDS0 AND CDSP ALGORITHMS

Abbreviation "null" defined.

r: /\[(int * one_intlist) -> many_intlist, (int * many_intlist) -> many_intlist,

(int * empty_intlist) -> one_intlist]

: (int * intlist) -> intlist

Abbreviation "cons" defined.

r: /\[one_intlist -> int, many_intlist -> int]

: intlist -> int

Abbreviation "hd" defined.

r: /\[many_intlist -> intlist, one_intlist -> empty_intlist]

: intlist -> intlist

Abbreviation "tl" defined.

CDS0 version 1.1 --- June 11, 1997

#

B.5 AND TASTER

let AND_TASTER =

algo

request WHICH_AND do

valof {}B is

output tt: output IS_NOT_AN_AND

output ff: output IS_NOT_AN_AND

valof (B.1):

valof {(B.1)=tt}B is

output tt: output IS_NOT_AN_AND

output ff: output IS_NOT_AN_AND

valof (B.2):

valof {(B.1)=tt,(B.2)=tt}B is

output ff: output IS_NOT_AN_AND

output tt:

valof {(B.1)=tt,(B.2)=ff}B is

output tt: output IS_NOT_AN_AND

output ff:

valof {(B.1)=ff}B is

output tt: output IS_NOT_AN_AND

output ff: output IS_LEFT_AND

valof (B.2):

valof {(B.1)=ff,(B.2)=tt}B is

output tt: output IS_NOT_AN_AND

output ff:

valof {(B.1)=ff,(B.2)=ff}B is

output tt: output IS_NOT_AN_AND

output ff: output IS_LEFT_STRICT_AND

end

end

end

end

end

end

valof (B.2):

valof {(B.2)=tt}B is

B.5. AND TASTER 161

output tt: output IS_NOT_AN_AND

output ff: output IS_NOT_AN_AND

valof (B.1):

valof {(B.2)=tt,(B.1)=tt}B is

output ff: output IS_NOT_AN_AND

output tt:

valof {(B.2)=tt,(B.1)=ff}B is

output tt: output IS_NOT_AN_AND

output ff:

valof {(B.2)=ff}B is

output tt: output IS_NOT_AN_AND

output ff: output IS_RIGHT_AND

valof (B.1):

valof {(B.2)=ff,(B.1)=tt}B is

output tt: output IS_NOT_AN_AND

output ff:

valof {(B.2)=ff,(B.1)=ff}B is

output tt: output IS_NOT_AN_AND

output ff: output IS_RIGHT_STRICT_AND

end

end

end

end

end

end

end

end

end;

r: /\[/\[(false * false) -> false, (true * true) -> true,

(true * false) -> false, (false * true) -> false] -> is_and_type,

((bool * bool) -> true) -> is_not_and_type,

/\[(false * false) -> true, (true * true) -> true,

(true * false) -> false, (false * true) -> false] -> is_not_and_type,

((bool * bool) -> false) -> is_not_and_type,

/\[(true * false) -> true, (true * true) -> true,

(false * true) -> false] -> is_not_and_type,

((true * bool) -> true) -> is_not_and_type,

/\[(bool * false) -> false, (true * true) -> true,

(false * true) -> false] -> is_and_type,

((true * bool) -> false) -> is_not_and_type,

/\[(bool * false) -> true, (true * true) -> true,

(false * true) -> false] -> is_not_and_type,

((true * true) -> false) -> is_not_and_type,

/\[(false * true) -> true, (true * true) -> true] -> is_not_and_type,

/\[(true * false) -> true, (true * true) -> true] -> is_not_and_type,

((bool * true) -> false) -> is_not_and_type,

/\[(false * bool) -> true, (true * true) -> true,

(true * false) -> false] -> is_not_and_type,

((bool * true) -> true) -> is_not_and_type,

/\[(false * bool) -> false, (true * true) -> true,

(true * false) -> false] -> is_and_type,

/\[(false * false) -> false, (true * true) -> true,

162 APPENDIX B. CDS0 AND CDSP ALGORITHMS

(false * true) -> false, (true * false) -> false] -> is_and_type,

/\[(false * true) -> true, (true * true) -> true,

(true * false) -> false] -> is_not_and_type,

/\[(false * false) -> true, (true * true) -> true,

(false * true) -> false, (true * false) -> false] -> is_not_and_type]

: ((bool * bool) -> bool) -> and_type

Abbreviation "AND_TASTER" defined.

Appendix C

CDS0 and PCF Syntax

We present the syntax from our implementation of CDS0 and PCF in form similar to ML-Yacc

input (semantic actions being omitted). Names in capitals are terminals, all lower case are non-

terminals. Where there is the possibility for confusion, we have placed single quotes around a

symbol.

C.1 CDS0 syntax

prog :

| expr

| command

| dcds_decla

(* Expressions--begin *)

expr : { event_list }

| algo_decl

| CURRY (expr)

| UNCURRY (expr)

| expr `|' expr

| expr . expr

| < expr , expr >

| (expr , expr)

| FIX (expr)

| (expr)

| ID

(* Expressions--end *)

(* Commands--begin *)

command : LET ID = expr

| PRINT ID

| LOAD FILE

| LOADECHO FILE

| TRACE ON

| TRACE OFF

| TIMER ON

| TIMER OFF

| TYPING ON

| TYPING OFF

163

164 APPENDIX C. CDS0 AND PCF SYNTAX

| SHOW INTEGER ID

| SHOW MORE INTEGER ID

| HIERARCHY FILE

| ENV

| PCF

(* Commands--end *)

(* Dcds declaration--begin *)

dcds_decla : LETREC dcds_decl

| LET dcds_decl

dcds_decl : ID = DCDS component END

component :

| CELL cell_name VALUES value_list access_list component

| GRAFT cell_name access_list component

cell_name : ID

| VAR

| { event_list } cell_name

| (cell_name . tag)

tag : ID

| arexpr

| interval

value : ID

| VALOF cell_name

| OUTPUT value

| arexpr

| (value . value)

| VAR WITH boolexp

| interval

interval : [. .]

| [int . .]

| [. . int]

| [int . . int]

int : INTEGER

| ~ INTEGER

value_list : value

| value , value_list

access_list :

| ACCESS enabling

enabling : event_list

| event_list OR enabling

event_list :

| event

C.1. CDS0 SYNTAX 165

| event , event_list

event : cell_name = value

(* Dcds declaration--end *)

(* Arithmetic expression--begin *)

arexpr : int

| VAR

| ~ VAR

| ~ (arexpr)

| arexpr PLUS arexpr

| arexpr SUB arexpr

| arexpr MULT arexpr

| arexpr DIV arexpr

| (arexpr)

(* Arithmetic expression--end *)

(* Boolean expressions--begin *)

boolexp : arexpr > arexpr

| arexpr >= arexpr

| arexpr < arexpr

| arexpr <= arexpr

| value = value

| value != value

| boolexp OR boolexp

| boolexp AND boolexp

| (boolexp)

(* Boolean expressions--end *)

(* Algorithm declaration--begin *)

algo_decl : ALGO body_list END

body_list :

| body_list body

body : REQUEST ext_cell_name DO instruction END

ext_cell_name : cell_name

| cell_name WITH boolexp

instruction : OUTPUT value

| VALOF cell_name IS query_list END

| from_do_list

| OMEGA

from_do_list : from_do

| from_do_list from_do

from_do : FROM { event_list } DO instruction END

query : value `:' instruction

query_list :

166 APPENDIX C. CDS0 AND PCF SYNTAX

| query_list query

(* Algorithm declaration--end *)

C.2 PCF syntax

program :

| expr

| VAL ID = expr

| LOAD FILE

| PRINT ID

| QUIT

expr : TRUE

| FALSE

| int

| ID

| expr expr

| FN ID => expr

| LET ID = expr IN expr END

| LETREC ID = expr IN expr END

| bop

| IF expr THEN expr ELSE expr

| (expr , expr)

| FST expr

| SND expr

| expr :: expr

| HD expr

| TL expr

| []

| NULL expr

| (expr)

int : INTEGER

| ~ INTEGER

bop : expr + expr

| expr - expr

| expr * expr

| expr / expr

| expr = expr

| expr < expr

| expr > expr

| expr <= expr

| expr >= expr

| expr AND expr

| expr OR expr

Bibliography

[1] S. Abramsky, Computational interpretations of linear logic, in: Theoretical Computer Science

111 (1993), 3{57.

[2] S. Abramsky, R. Jagadeesan, P. Malacaria, Full abstraction for PCF (extended abstract), in:

Theoretical Aspects of Computer Software, Sendai, Japan, 1994 , (Springer LNCS 789, 1994),

1{15.

[3] M. Ajtai, J. Koml�os, E. Szemer�edi, An O(n lgn) sorting network, in: Proc. ACM Symposium

on the Theory of Computation, 1983 , 1{9.

[4] E.A. Ashcroft, A.A. Faustini, R. Jagannathan, An intensional parallel processing language for

applications programming, Technical Report SRI-CSL-89-1, SRI International, 1989.

[5] G. Berry, Programming with concrete data structures and sequential algorithms, in: Proc.

ACM Conf. on Functional Programming Languages And Computer Architecture, Wentworth-

by-the-Sea, 1981 , 49-57.

[6] G. Berry and P.-L. Curien, Sequential algorithms on concrete data structures, Theoretical

Computer Science 20 (1985), 265-321.

[7] G. Berry and P.-L. Curien, The kernel of the applicative language CDS: Theory and practice,

in: M. Nivat and J.C. Reynolds, eds., Algebraic Methods in Semantics (Cambridge University

Press, 1985) 35-87.

[8] G. Berry, P.-L. Curien, J.-J. L�evy, Full abstraction for sequential languages: the state of the

art, same source as [7], 89-132.

[9] G.E. Blelloch and J. Greiner, A parallel complexity model for functional languages, in: Proc.

ACM Conf. on Functional Programming Languages and Computer Architecture, 1995 .

[10] R.B. Boppana and M. Sipser, The complexity of �nite functions, in: J. van Leeuwen ed.,

Handbook of Theoretical Computer Science, Vol. A (Elsevier, 1990), 749{804.

[11] S. Brookes and S. Geva, Computational Comonads and Intensional Semantics, Technical Re-

port CMU-CS-91-190, Carnegie Mellon, 1991.

[12] S. Brookes and S. Geva, Towards a theory of parallel algorithms on concrete data structures,

Theoretical Computer Science 101 (1992) 177-221.

[13] S. Brookes and D. Dancanet, Sequential algorithms, deterministic parallelism, and intensional

expressiveness, in: Proc. ACM Symposium on Principles of Programming Languages, 1995 ,

13{24.

167

168 BIBLIOGRAPHY

[14] R. Cartwright, P.-L. Curien, M. Felleisen, Fully abstract semantics for observably sequential

languages, to appear in Information and Computation.

[15] R. Cartwright and M. Fagan, Soft typing, in: Proc. ACM SIGPLAN Conf. on Programming

Language Design and Implementation, 1991 , 278{292.

[16] G. Castagna, G. Ghelli, and G. Longo, A calculus for overloaded functions with subtyping, in:

Proc. ACM Conf. on Lisp and Functional Programming, 1992 , 182{192.

[17] P. Clote, A sequential programming language for the parallel complexity class NC, Boston

College, Technical report BCCS-88-07, 1988.

[18] A. Cobham, The intrinsic computational di�culty of functions, in: Y. Bar-Hillel, ed., Logic,

Methodology and Philosophy of Science II, Jerusalem 1964 (North-Holland, 1965), 24-30.

[19] L. Colson, About primitive recursive algorithms, in: G. Ausiello et al. eds., Proc. 16th Inter-

national Colloquium on Automata, Languages and Programming (Springer-Verlag LNCS 372,

1989), 194-206.

[20] L. Colson, Repr�esentation intentionelle d'algorithmes dans les syst�emes fonctionelles: une

�etude de cas, Th�ese de Doctorat, Universit�e Paris VII (1991).

[21] M. Coppo and P. Giannini, A complete type inference algorithm for simple intersection types,

in: Proc. 17th Colloq. on Trees and Algebra in Programming, 1992 , 102{123.

[22] T. Coquand, Une preuve directe du Th�eor�eme d'Ultime Obstination, Comptes Rendus de

l'Academie des Sciences, March 1992.

[23] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms (MIT Press, 1990).

[24] B. Courcelle, Fundamental properties of in�nite trees, in: Theoretical Computer Science 25

(1983), 95{109.

[25] G. Cousineau, P.-L. Curien, M. Mauny, The categorical abstract machine, in: Science of

Computer Programming 8 (1987) 173{202.

[26] P.-L. Curien, Categorical Combinators, Sequential Algorithms, and Functional Programming

(Birkh�auser, 1993).

[27] D. Dancanet and S. Brookes, Programming language expressiveness and circuit complexity,

in: Internat. Conf. on the Mathematical Foundations of Programming Semantics, 1996 .

[28] D. Dancanet, CDS0 User's Guide (version 1.1).

[29] R. David, The Inf function in the system F, manuscript.

[30] M. Devin, Le Langage CDS: Description, Impl�ementation, Compilation, Th�ese Docteur

Ing�enieur, Universit�e Paris VII (1984), Rapport LITP 85-13.

[31] A.A. Faustini and W.W. Wadge, Intensional programming, in: J.C. Boudreaux et al. eds., The

Role of Language in Problem Solving 2 , (North-Holland, 1987), 119-132.

[32] M. Felleisen, On the expressive power of programming languages, Science of Computer Pro-

gramming 17 (1991) 35{75.

BIBLIOGRAPHY 169

[33] A. Ferguson and J. Hughes, Fast abstract interpretation using sequential algorithms, in: Proc.

Padova Workshop on Static Analysis, 1993 .

[34] M.J. Fischer, The consensus problem in unreliable distributed systems (a brief survey), in: M.

Karpinski, ed., Proc. Internat. Conf. on Foundations of Computation Theory (Springer, 1983)

127{140.

[35] T. Freeman and F. Pfenning, Re�nement types for ML, in: Proc. ACM SIGPLAN Conf. on

Programming Language Design and Implementation, 1991 .

[36] T. Freeman, Re�nement types for ML, Doctoral Thesis, Carnegie Mellon University, Technical

Report CMU-CS-94-110, March 1994.

[37] Y.-C. Fuh and P. Mishra, Type inference with subtypes, in: Theoretical Computer Science 73

(1990), 155{175.

[38] J.-Y. Girard, Proof Theory and Logical Complexity I (Bibliopolis, 1987).

[39] J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types (Cambridge Tracts in Theoretical Com-

puter Science 7, 1990).

[40] J.-Y. Girard, A. Scedrov, P.J. Scott, Bounded linear logic: a modular approach to polynomial-

time computability, in: Theoretical Computer Science 97 (1992) 1{66.

[41] J. Greiner and G.E. Blelloch, A provably e�cient fully speculative parallel implementation,

in: Proc. ACM Symposium on Principles of Programming Languages, 1996 .

[42] C.A. Gunter, Semantics of Programming Languages (MIT Press, 1992).

[43] C.A. Gunter and J.C. Mitchell, Theoretical Aspects of Object-Oriented Programming (MIT

Press, 1994).

[44] D.J. Gurr, Semantic Frameworks for Complexity , Doctoral Thesis, University of Edinburgh,

Technical Report ECS-LFCS-91-130, January 1991.

[45] C. Hankin and S. Hunt, Approximate �xed points in abstract interpretation, in: European

Symposium on Programming , (Springer LNCS 582, 1992).

[46] J.R. Hindley, Types with intersection: An introduction, in: Formal Aspects of Computing 4

(1992), 470{486.

[47] C.A.R. Hoare, Communicating Sequential Processes, in: Communications of the ACM 21 (8)

1978, 666{677.

[48] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computa-

tion (Addison-Wesley, 1979).

[49] P. Hudak and S. Anderson, Pomset interpretations of parallel functional programs, in: Proc.

ACM Conf. on Functional Programming Languages and Computer Architecture, 1987 , 234{

256.

[50] J. Hughes and A. Ferguson, A loop-detecting interpreter for lazy, higher-order programs, in:

Proc. Glasgow Workshop on Functional Languages, 1992 .

170 BIBLIOGRAPHY

[51] J. Hughes, S. Hunt, C. Runciman, Higher-order functions as decision trees: Taming a space

monster, 1994, manuscript.

[52] J.M.E. Hyland and C.-H.L. Ong, On full abstraction for PCF: I, II, and III, manuscript.

[53] N.D. Jones, Constant time factors do matter, in: Proc. ACM Symposium on the Theory of

Computation, 1993, 602{611.

[54] N.D. Jones, Computability and complexity from a programming perspective, in: Proc. Math-

ematical Foundations of Programming Semantics, 1995.

[55] G. Kahn and D.B. MacQueen, Coroutines and networks of parallel processes, in: Information

Processing 77 (North-Holland, 1977) 993-998.

[56] G. Kahn and G.D. Plotkin, Concrete Domains, in: Theoretical Computer Science 121(1993).

Earlier available in French as: Domaines Concrets, IRIA Report 336, 1978.

[57] S.C. Kleene, Introduction to Metamathematics (North-Holland, 1952).

[58] L. Lamport, Using time instead of timeout for fault-tolerant distributed systems, in: ACM

Trans. on Programming Languages and Systems 6(2) 1984, 254{280.

[59] D. Leivant and J.-Y. Marion, Lambda calculus characterizations of poly-time, in: Typed

Lambda Calculi and Applications, 1993 , 274{288.

[60] D. Le Metayer, Mechanical Analysis of Program Complexity, in: ACM SIGPLAN Symposium

on Language Issues in Programming Environments, Seattle, 1985 69-73.

[61] M. Mauny and A. Suarez, Implementing functional languages in the categorical abstract ma-

chine, in: Proc. of the ACM Conf. on Lisp and Functional Programming, 1986 , 266{278.

[62] J. McCarthy, A basis for a mathematical theory of computation, in: Bra�ort and Hirschberg,

eds., Computer Programming and Formal Systems (North-Holland, 1963), 33{70.

[63] R. Milner, Fully abstract models of typed �-calculi, in: Theoretical Computer Science 4(1977),

1{22.

[64] Y. Moschovakis, Abstract recursion as a foundation for the theory of algorithms, in: M.M.

Richter et al. eds., Computation and Proof Theory (Springer-Verlag LNM 1104, 1984), 289{364.

[65] Y. Moschovakis, The Formal Language of Recursion, The Journal of Symbolic Logic, vol. 54,

1989, 1216{52.

[66] Y. Moschovakis, A mathematical modeling of pure, recursive algorithms, in: A. Meyer and

M.A. Taitslin eds., Logic at Botik '89: Symposium on Logical Foundations of Computer Science

(Springer-Verlag, 1989), 208{29.

[67] H. Nickau, Hereditarily sequential functionals: A game-theoretic approach to sequentiality ,

Doctoral Thesis, Universit�at Siegen (Shaker Verlag, 1996).

[68] P. Panangaden and V. Shanbhogue, On the expressive power of indeterminate network primi-

tives, Cornell University, Technical Report TR 87-891, 1987.

BIBLIOGRAPHY 171

[69] B.C. Pierce, Programming with intersection types and bounded polymorphism, Doctoral Thesis,

Carnegie Mellon University, Technical Report CMU-CS-91-205, December 1991.

[70] G.D. Plotkin, LCF considered as a programming language, in: Theoretical Computer Science

5(1977), 223-56.

[71] G.D. Plotkin, A structural approach to operational semantics, University of Aarhus, Technical

Report DAIMI FN-19, 1981.

[72] R. Raz and A. Wigderson, Monotone circuits for matching require linear depth, in: ACM

Symposium on the Theory of Computation, 1990 , 287{292.

[73] J. Reppy, CML: A Higher-Order Concurrent Language, revised version of paper presented at

SIGPLAN Conf. on Programming Language Design and Implementation, 1991 , 1993.

[74] J.C. Reynolds, Preliminary design of the programming language Forsythe, Carnegie Mellon

University, Technical Report CMU-CS-88-159, June 1988.

[75] P. Roe, Calculating lenient programs' performance, in: S.L. Peyton-Jones, G. Hutton, C.

Kehler Holst, eds., Functional Programming, Glasgow 1990 (Springer, 1990) 227{236.

[76] H. Rogers, Jr. , Theory of Recursive Functions and E�ective Computability (MIT Press, 1987).

[77] M. Rosendahl, Automatic complexity analysis, in: Proc. Functional Programming Languages

and Computer Architecture, 1989 , 144-156.

[78] D. Sands, Complexity analysis for a lazy higher-order language, in: Proc. Third European

Symposium on Programming, 1990 , 361-76.

[79] D. Sands, Time analysis, cost equivalence and program re�nement, in: Proc. Foundations of

Software Technology and Theoretical Computer Science, New Delhi, 1991 , 25-39.

[80] D.A. Schmidt, Denotational Semantics (Allyn and Bacon, 1986).

[81] A. Stoughton, Interde�nability of parallel operations in PCF, Theoretical Computer Science

79 (1991) 357-8.

[82] S. Sur and W. B�ohm, Functional, I-structure, and M-structure implementations of NAS bench-

mark FT, in: Parallel Architectures and Compilation Techniques, 1994 , 47{56.

[83] C. Talcott, Rum: An intensional theory of function and control abstractions, in: Workshop on

Foundations of Logic and Functional Programming, Trento, 1986 (Springer, 1988) 3-44.

[84] �E. Tardos, The gap between monotone and non-monotone circuit complexity is exponential,

Combinatorica 7 (4) (1987), 141{2.

[85] P. Wadler, Strictness analysis aids time analysis, in: Proc. Symposium on Principles of Pro-

gramming Languages, San Diego, 1988 , 119-32.

[86] B. Wegbreit, Mechanical Program Analysis, Communications of the ACM 18(9) 1975, 528-39.

[87] I. Wegener, The Complexity of Boolean Functions (Wiley, 1987).

172 BIBLIOGRAPHY

[88] J. Young and P. Hudak, Finding �xed points on function spaces, Technical Report

YALEU/DCS/RR-505, Dept. of Computer Science, Yale University, December 1986.

[89] W. Zimmermann, Automatic worst case complexity analysis of parallel programs, Technical

Report ICSI 90-066, International Computer Science Institute, 1990.

[90] W. Zimmermann, The automatic worst case analysis of parallel programs: simple parallel

sorting and algorithms on graphs, Technical Report ICSI 91-045, International Computer

Science Institute, 1991.

