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Abstract

Many of today’s high level parallel languages support dynamic, fine-grained parallelism. These languages
allow the user to expose all the parallelism in the program, which is typically of a much higher degree
than the number of processors. Hence an efficient scheduling algorithm is required to assign computations
to processors at runtime. Besides having low overheads and good load balancing, it is important for
the scheduling algorithm to minimize the space usage of the parallel program. In this paper, we first
present a general framework to model non-preemptive parallel computations based on task graphs, in
which schedules of the graphs represent executions of the computations. We then prove bounds on the
space and time requirements of certain classes of schedules that can be generated by an offline scheduler.
Next, we present an online scheduling algorithm that is provably space-efficient and time-efficient for
multithreaded computations with nested parallelism. If a serial execution requires S1 units of memory for
a computation of depth D and work W, our algorithm results in an execution on p processors that requires
S1 + O(pD logp) units of memory, and O(W/p + D log p) time, including scheduling overheads. Finally,
we demonstrate that our scheduling algorithm is efficient in practice. We have implemented a runtime
system that uses our algorithm to schedule parallel threads. The results of executing parallel programs on
this system show that our scheduling algorithm significantly reduces memory usage compared to previous
techniques, without compromising performance.
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1 Introduction

Many of today’s high level parallel programming languages provide constructs to express dynamic, fine-
grained parallelism. Such languages include data-parallel languages such as NESL [3] and HPF [21], as
well as control-parallel languages such as ID [1], Cilk [5], CC++ [12], Sisal [17], and Proteus [26]. These
languages allow the user to expose all the parallelism in the program, which is typically of a much higher
degree than the number of processors. The language implementation is responsible for scheduling this
parallelism onto the processors. If the scheduling is done at runtime, then the performance of the high-level
code relies heavily on the scheduling algorithm, which should have low scheduling overheads and good
load balancing.

Several systems providing dynamic parallelism have been implemented with efficient runtime sched-
ulers [7, 11, 13, 18, 19, 22, 23, 29, 30, 31], resulting in good parallel performance. However, in addition to
good time performance, the memory requirements of the parallel computation must be taken into consid-
eration. In an attempt to expose a sufficient degree of parallelism to keep all processors busy, schedulers
often create many more parallel threads than necessary, leading to excessive memory usage [15, 28, 32].
Further, the order in which the threads are scheduled can greatly affect the total size of the live data at any
instance during the parallel execution, and unless the threads are scheduled carefully, the parallel execution
of a program may require much more memory than its serial execution. Since the price of the memory
is a significant portion of the price of a parallel computer, and parallel computers are typically used to
run big problem sizes, reducing memory usage is often as important as reducing running time. Many
researchers have addressed this problem in the past. Early attempts to reduce the memory usage of parallel
computations were based on heuristics that limited the parallelism [10, 15, 28, 32], and are not guaranteed
to be space-efficient in general. These were followed by scheduling techniques that provide proven space
bounds for parallel programs [6, 8, 9]. If S} is the space required by the serial execution, these techniques
generate executions for a multithreaded computation on p processors that require no more than p - .S space.
A scheduling algorithm that significantly improved this bound was recently proposed [2], and was used to
prove time and space bounds for the implementation of NESL [4]. It generates a schedule that uses only
S1 4+ O(p- D - logp) space on a standard p-processor EREW PRAM, where D is the depth of the parallel
computation (i.e., the longest sequence of dependencies or the critical path in the computation). This bound
is lower than the previous bound of p - §; when D < Sj, which is true for parallel programs that have a
sufficient degree of parallelism. The low space bound is achieved by ensuring that the parallel execution
follows an order of computations that is as close as possible to the serial execution. However, the algorithm
has scheduling overheads that are too high for it to be practical. Since it is synchronous, threads need to be
rescheduled after every unit computation to guarantee the space bounds. Moreover, it ignores the issue of
locality — a thread may be moved from processor to processor at every timestep.

In this paper, we describe a general framework to model parallel computations, in which portions of a
thread can be executed non-preemptively. In this framework, a parallel computation is represented by a task
graph, and executions of the computation are represented by non-preemptive schedules of the task graph.
We define two classes of efficient schedules that can be generated offline for any task graph, and prove
upper bounds on their space and time requirements. We then present an online, asynchronous scheduling
algorithm called Async-Q, which generates a schedule with the same space bound of S; + O(p - D - logp)
(including scheduler space) that is obtained in [2]; the algorithm assumes an EREW PRAM with a unit
time fetch-and-add operation. As with their scheduling algorithm, our Async-Q algorithm applies to task
graphs representing nested parallelism. However, our algorithm overcomes the above problems with their
scheduling algorithm: it allows a thread to execute non-preemptively on the same processor until it reaches
a point that requires a big allocation of space. This results in better locality, and since threads are suspended
and rescheduled less often, it has low scheduling overheads. The asynchronous nature of our algorithm



results in an execution order that differs from the order generated by the algorithm in [2]. This requires a
different approach to prove space-efficiency. In addition to proving space-efficiency, as with [2], we bound
the time required to execute the schedule generated by our algorithm in terms of the total work (number
of operations) W and depth D of the parallel computation. If the space dynamically allocated within the
computation is O(W), the generated schedule runs in O(W/p + D - log p) time. The algorithm assumes a
shared memory programming model, and applies to languages providing nested parallelism. These include
nested data-parallel languages, and control-parallel languages with a fork-join style of parallelism. The
central data structure used in the algorithm is a shared scheduling queue, in which parallel threads are
prioritized according to their serial execution order. Large allocations of space in the parallel computation
are delayed (lowered in priority), so that other, higher priority threads can be executed instead.

We have built a runtime system that uses our algorithm to schedule parallel threads on the SGI Power
Challenge. To test its effectiveness in reducing memory usage, we have executed a number of parallel
programs on it, and compared their space and time requirements with previous scheduling techniques.
The experimental results show that, compared to previous scheduling techniques, our system significantly
reduces the maximum amount of live data at any time during the execution of the programs. In addition,
good single-processor performance and high parallel speedups indicate that the scheduling overheads in our
system are low, that is, memory requirements can be effectively reduced without compromising performance.

1.1 An example

The following pseudocode illustrates the main ideas behind our scheduling algorithm, and how they reduce
memory usage compared to previous scheduling techniques.

In parallel for i = 1 ton
Temporary B[n]
In parallel for j = 1 ton
F(B,i,3)
Free B

This code has two levels of parallelism: the i-loop at the outer level, and the j-loop at the inner level.
In general, the number of iterations in each loop may not be known at compile time. Space for an array
B is allocated at the start of each i-iteration, which is freed at the end of the iteration. Assuming that
F(B,1i,7) does not allocate any space, the serial execution requires O(n) space, since the space for array
B is reused for each i-iteration. Now consider the parallel implementation of this function on p processors,
where p < n. Previous scheduling systems [6, 8, 9, 19, 23, 28, 32], which include both heuristic-based and
provably space-efficient techniques, would schedule the outer level of parallelism first. This results in all the
p processors executing one i-iteration each, and hence the total space allocated is O (p - n). Our scheduling
algorithm also starts by scheduling the outer parallelism, but stalls big allocations of space. Moreover, it
gives a greater priority to the inner parallelism. As a result, the processors suspend the execution of their
respective i-iterations before they allocate O(n) space each, and execute j-iterations belonging to a single
i-iteration instead. This allows the parallel computation to run in just O(n + p - D - log p) space, where
D depends on the depth of the function F. Note that giving a higher priority to the inner parallelism keeps
the order of computations close to that of the serial execution, which results in low memory usage. As an
example, F (B, 1,J) could be a simple function that is used to sort an array A:

F(B,1,3)
B[j] = if (A[i]1>A[]j]) then 1 else 0



so that summing the elements of B just before it is freed in iteration i gives the rank of element A[i] (the
summing of the elements of B is not shown in the above code).

As another related example, consider n users of a parallel machine, each running parallel code. The
user programs allocate a large block of space as they start and deallocate it when they finish. In this case the
outer parallelism is across the users and the inner parallelism is within each user’s program. A scheduler
that schedules the outer parallelism would schedule p user programs to run simultaneously, requiring a total
memory equal to the sum over the memory requirements of p programs. On the other hand, our scheduling
algorithm would schedule one program at a time, as long as there is sufficient parallelism within each
program to keep the processors busy. In this case, the total memory required is just the maximum over the
memory requirement of each user’s program.

A disadvantage of our scheduling technique is that if the inner parallelism is fine-grained, then scheduling
it with a higher priority may lead to poor locality and high scheduling overheads. We overcome this
disadvantage by grouping the fine-grained iterations of innermost loops into chunks. Our experimental
results demonstrate that this approach is sufficient to yield good performance in time and space (see
Section 7). In the results reported in this paper we have blocked the iterations into chunks by hand, but in
Section 8 we discuss some ongoing work on automatically chunking the iterations.

1.2 Outline of the paper

The remainder of this paper is organized as follows. In Section 2 we describe an existing model of parallel
computations based on DAGs and schedules, and extend it to represent computations consisting of non-
preemptive, variable-length tasks, with latencies between the tasks. The upper bound for the space required
by a certain class of schedules that are based on serial schedules, is presented in Section 3. We define
a new class of schedules called Q-prioritized schedules and bound their space requirements in Section 4.
Our Async-Q scheduling algorithm generates )-prioritized schedules. The next three sections describe the
Async-Q algorithm and its implementation: Section 5 outlines the programming model that the algorithm
implements; the Async-Q algorithm, along with proofs for upper bounds on the space and time requirements
of the schedules generated by it, are presented in Section 6; Section 7 briefly describes our implementation
of a runtime system based on the Async-Q algorithm and presents the results of implementing five parallel
programs on it. Finally, we summarize and discuss future work in Section 8.

2 Modeling parallel computations: graphs and schedules

In this section, we describe a model for parallel computations based on directed acyclic graphs (DAGs),
similar to the one defined in [2]. In this model, a paralle] computation can be represented by a DAG
called a computation graph. In a computation graph G = (V, E}, each node v € V corresponds to a
unit computation, which requires a single timestep to be executed on one processor. Each edge (u,v) € F
is a dependence edge, which imposes the condition that the computation represented by v can be executed
only after the computation represented by u. For every edge (u,v) € E, we call u the parent of v, and v
the child of u. Any node with no parents is called a root node. The work W (the total number of unit
computations) performed in the.parallel computation is the total number of nodes in G. A computation
with W work requires W timesteps to execute on one processor. The depth D of the parallel computation is
the number of nodes on the longest path in G. A computation with depth D requires D timesteps to execute
on an infinite number of processors.

A schedule for a computation graph G = (V, E) is a sequence (V1,V,,...,Vr) that satisfies the
following conditions.

1. Fori=1,....,T,V; CV,



V1= {a, b} Va={f, g, h}
Vo= {c, d} V4= {e, i, ]}

Figure 1: An example computation graph and a p-schedule of length 4 for it (withp > 3). Fori = 1,...,4,V; is the
set of nodes scheduled at timestep ¢. Each node can be scheduled only after all its parents have been scheduled.

2. V= Uie{l,‘..,T} Vi,and Vi,j € {1’ .- '1T}1 Viu V} = ¢, and,

3. Viu,v) € E,ueV,andv eV, = j>1.
A p-schedule is a schedule S, = (V1,V3,...,Vy) such that Vi € {1,...,T}, |V;| < p. For example,
Figure 1 shows a simple computation graph and a p-schedule for it. The execution of a parallel computation
on p processors can be represented by a p-schedule of its computation graph. Thus the set of nodes V;
represents the unit computations executed by the processors in timestep ¢. The length |S,| of a p-schedule
S, is the number of timesteps required for its execution on p processors. Note that a 1-schedule represents
a serial execution. We say a node v is scheduled in timestep ¢ if v € V;. At the end of any timestep in a
schedule, each node can be in one of three states: dormant, ready, and computed. A node v is computed at
the end of ¢ timesteps, if v € Ujeq1,....1y Vi, that is, if it has been scheduled in the first £ steps. Any node with
at least one parent that is not computed is said to be dormant. When all the parents of a node are computed,
but the node itself is yet to be computed, we say it is ready. Thus, at the beginning of a schedule, all root
nodes are ready, and all other nodes are dormant. At the end, all nodes are computed. If ,.,q,(v) is the
timestep at the beginning of which any node v € V becomes ready, and ;5.4 (v) is the timestep in which it
is scheduled, then condition 3 above implies that £cheq (V) > tready (V) = max{tsched (u) + 1| (u,v) € E}.
Greedy schedules. Let R; be the set of ready nodes at the beginning of timestep ¢. At most pnodes from E;
are scheduled in timestep ¢ of a p-schedule. E;,; contains the remaining nodes of E; plus nodes which
became ready at the end of step t. A p-schedule is a greedy schedule if it satisfies the additional condition:

4 Vt=1,...,T, |Vil = min(p, |R).

Thus if p or more nodes are ready at the beginning of timestep ¢, p nodes will be scheduled, that is, | V;| = p;
otherwise all the (fewer than p) ready nodes will be scheduled. For example, the schedule in Figure 1 is a
greedy p-schedule for p = 3.

Modeling space allocations. To model memory allocations in the parallel computation that a computation
graph G = (V, F) represents, we add a weight function w that maps nodes v € V to integers. w(v)
represents the units of memory allocated by the unit computation corresponding to v. We assume that a unit
computation can perform either a single allocation or a single deallocation; if the computation deallocates
memory, w(v) < 0. The space requirement space(S) of any schedule § = (Vi,...,Vr) of G is the
maximum space allocated during the execution represented by &, and is defined as follows.

space(S) = Jmax ( Z Z w(v)) (1

yorey =1, ’UEVJ'
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Let the excess weight W, of G be the sum of all node weights that are greater than one, that is,
W, =Y {w(v) | v € V and w(v) > 1}. Blelloch, Gibbons and Matias proved the following theorem in [2].

Theorem 2.1 Let G be a computation graph with weight function w and depth D, and let S be any 1-
schedule of G. Then for all p > 1 and all m > 1, there is a p-schedule &, such that

space(S,) < space(S1) +m-p- D, and |Sp| < |S1|/p+ D+ We/(m - p). "

2.1 Latency-weighted computation graphs

In this section, we extend the definition of a computation graph by allowing weights on the edges. We
will call such a graph a latency-weighted computation graph, or simply a latency-weighted DAG. Let G =
(V, E) be a latency-weighted DAG representing a parallel computation. Each edge (u,v) € E has a
nonnegative weight !(u, v) which represents the latency between the computations of the nodes u and v.
The latency-weighted length of a path in G is the sum of the total number of nodes in the path plus the sum
of the latencies on the edges along the path. We define latency-weighted depth D; of G to be the maximum
over the latency-weighted lengths of all paths in . Since all latencies are nonnegative, IJ; > D. Note that
a computation graph is a special case of a latency-weighted DAG in which the latencies on all the edges are

Zero.

Schedules for latency-weighted DAGs. The definition of a schedule for a latency weighted DAG G is
identical to the definition of a schedule for a computation graph given earlier in Section 2, except that
condition 3 is replaced by

3. Y(u,v) € E,u€Viandv € V; = j > i+ (u,v).

Thus a latency /(u, v) implies that v cannot be scheduled until at least /(u, v) timesteps after u is scheduled,
that is, teched (V) > tready (v) = max{tscheq(u) + 1(u,v) + 1| (%, v) € E}. A latency-weighted DAG can
be used to model a parallel computation with latencies between its unit computations, and a p-schedule
for such a DAG represents an execution of the parallel computation on p processors. Any schedule of &
will have a length of at least D;, that is, the parallel computation represented by G will require at least [);
timesteps to execute on any number of processors. Similarly, even if G has work W, a serial execution may
require more than ¥ time due to the latencies.

2.2 Time bound for greedy schedules

The definition of a greedy scheduling algorithm can be easily extended to latency-weighted DAGs. A node v
is added to the set of ready nodes after all its parents have been computed, and all the latencies imposed by
the edges into v are satisfied (i.e., at timestep ¢,cqdy (v)). Blumofe and Leiserson [6] showed that any greedy
p-schedule for a computation graph with depth D and work W has a length of at most W/p + D. In this
section, we prove a similar upper bound on the length of any greedy p-schedule for latency-weighted DAGs.

Lemma 2.2 Given a latency-weighted computation graph G with W nodes and latency-weighted depth D,
any greedy p-schedule of G will require at most W/p 4 D) timesteps.

Proof: We transform G into a DAG G’ by replacing each edge (u, v) with a chain of [(u, v) dummy nodes.
The dummy nodes do not represent real work, but require a timestep to be executed. Any dummy node that
becomes ready at the end of timestep ¢ — 1 is automatically scheduled in timestep ¢. Therefore, replacing
each edge (u, v) with [(u, v) dummy nodes imposes the required condition that v becomes ready /(u, v)
timesteps after u is scheduled. The depth of G’ is D;.
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Let S, = (Vi, ..., V) be a greedy p-schedule for G'. Fori = 1,...,T, V; may contain at most p
real nodes, and any number of dummy nodes. This schedule corresponds to a parallel execution where the
dummy nodes do not require processors to be executed, and hence all the dummy nodes ready at a timestep
are scheduled in that timestep. The greedy p-schedule S, of G’ can be converted into a greedy p-schedule
of G having the same length, by simply deleting the dummy nodes from S,,.

We now prove that any greedy p-schedule S, of G’ will have a length of at most W/p+ D;. Let G denote
the subgraph of G’ containing nodes that have not yet been computed at the beginning of timestep 7. Note
that G| = G'. Let n; be the number of real nodes (not including dummy nodes) scheduled in timestep i.
Since &, is a p-schedule, n; < p. If n; = p, there can be at most W/p such timesteps, since there are W
nodes in the graph. If n; < p, consider the set of nodes R; that are ready at the beginning of timestep ¢, that
is, the set of root nodes in G Since this is a greedy schedule, there are less than p real nodes in E;. Hence
all the real nodes in R; get scheduled in timestep ¢. In addition, all the dummy nodes in £; get scheduled
in this step, since they are ready, and do not require processors. Since all the nodes in R; are scheduled,
the depth of G/, ; is one less than the depth of G}. Since D is the depth of G, there are at most D; such
timesteps. Thus §,, (and hence Sp) can have at most W/p + D timesteps. M

Space requirements for schedules of latency-weighted DAGs. As with computation graphs, the space
allocations of the computations can be modeled by a weight function w. Given a latency-weighted DAG G =
(V, E), for all v € V, the integer weight w(v) represents the units of memory allocated by the unit
computation corresponding to v. The definition of the space requirement space(S) of a schedule S for a
latency-weighted DAG is the same as that in equation 1. Let the maximum weight M of G be defined as
M = max {w(v) | v € V}. We state the following theorem, which is a special case of a theorem we prove

later in the paper.

Theorem 2.3 Let G be a latency-weighted DAG with maximum weight M and latency-weighted depth D,
and let 8y be any 1-schedule of G. Then for all p > 1, there is a greedy p-schedule S, such that
space(S,) < space(S1) + M -p- Dy M

2.3 Task graphs

In this section, we define a class of DAGs called task graphs. A task graph G = (V, F) is a DAG with
weights on the nodes and edges. We will call each node of G a task, which can require multiple timesteps
to be executed. Each task v € V is labeled with a nonnegative integer weight ¢(v), which is the duration
of task v (the time required to execute v, or the number of serial, unit-sized computations in »). Each
edge (u,v) € E has a weight /(u, v), which represents the latency between tasks u and v.

We will use task graphs to represent parallel computations in which variable-length tasks are executed
non-preemptively: once a task v is scheduled on a processor, it executes to completion in ¢(v) timesteps.
The work W of a task graph G is defined as W = 3~ v t(v). The length of a path in G is the sum of the
durations of the tasks along the path. Similarly, the latency-weighted length is the sum of the durations of the
tasks plus the sum of the latencies on the edges along the path. The depth D of G is the maximum over the
lengths of all the paths in G, and the latency-weighted depth [); is the maximum over the latency-weighted
lengths of all the paths in G. A latency-weighted DAG is a special case of a task graph in which ¢(v) = 1
for every task v.

Schedules for task graphs. A non-preemptive p-schedule S, for a task graph is a sequence (V1, V2, ..., V1)
which satisfies the following conditions.

L V=U=g..my Vi



1{f)=3 t{g)=2

Vi = {a, b} Vs= {c,d, e}
V2 = {a} Vg = {f}
Va={} V7 = {f, g}
V= {d} Vg = {f, g}

Figure 2: An example task graph and a p-schedule for it (with p > 3). Each oval represents a variable-length task.
For each task v, t(v) denotes the duration of the task, that is, the number of consecutive timesteps for which v must
execute. Each edge is labeled (in bold) with its latency. For i = 1,...,8, V; is the set of tasks being executed during

timestep 2 of the p-schedule.

2. We say v is scheduled in timestep ¢ if v ¢ V;_1 and v € V;. If v is scheduled at timestep ¢, then
veV; < i<j<it+t(v).

3. Viel,...,T, |Vi]| <p.

4. A task is completed in timestep 1 if v € V; and v ¢ Viy1. V{u,v) € E, if u is completed in
timestep 4, and v is scheduled in timestep j, then j > 4 + [(u, v).

Since 8, is a non-preemptive schedule, condition 2 ensures that every task v appears in exactly t(v) consecu-
tive steps of S,,. Figure 2 shows an example task graph and a non-preemptive p-schedule for it. Let ¢,cq4y (v)
be the timestep in which task v becomes ready, that is, when all the parents of v have been completed, and all
the latencies imposed by edges into v are satisfied. If £;,.q (v) is the timestep in which vis scheduled, then the
above conditions imply that tscped (V) > tready (V) = max{tscheq(v) +t(u) + 1(u,v) | (u,v) € E}. We
say a task is being executed during timestep 7 if v € V;. Henceforth, we will restrict our discussion of
schedules for task graphs to non-preemptive schedules, since we use task graphs to represent non-preemptive
computations.

Greedy schedules for task graphs. Let R; be the set of tasks that are ready at the beginning of timestep ¢ of
a p-schedule for a task graph. Since the schedule represents the non-preemptive execution of variable-length
tasks on p processors, fewer than p processors may become idle at any timestep. Let n; of the p processors
become idle at the end of timestep ¢ — 1 (i.e., p — n; continue executing tasks scheduled previously). A
p-schedule that satisfies the following additional condition is a greedy p-schedule.

5. Atevery timestep ¢, min(n;, | R:|) tasks are scheduled, that is, |V;| = min(n, |Ry|) + (p — n¢).

For example, the p-schedule in Figure 2 is greedy for p = 3. We prove the following lemma about the upper
bound on the length of a greedy p-schedule.

Lemma 2.4 Given a task graph G with W work and latency-weighted depth D), any greedy p-schedule
of G will require at most W/p + D, timesteps.



Proof: We convert G into a latency-weighted DAG G’ by replacing each task of duration ¢(v) into a chain
of t(v) nodes, each representing a unit computation. We will call these new nodes vy, v, . . ., vy(,). The
new edges in the chain are assigned zero latencies. The work, depth and latency-weighted depth of G' are
equal to those of G.

We now show that any greedy p-schedule S, = (V1, ..., V) for G can be converted into an equivalent
greedy p-schedule S, = (V{,...,Vz) of G": we simply replace the " occurrence of task v in S, with
the node v;. Thus if V; contains the i*" occurrence of task v, then v; € V. The resulting schedule S,
is a p-schedule for G’ of the same length as S,. Let R, be the set of ready tasks of G at timestep ¢, and
let R, be the set of ready nodes of G at timestep ¢. Note that Yv € Ry, v1 € R;. In addition, for every
task v, Vi € 2, ...,t(v), if the v;_; € V;_; then v; € R} (i.e., when a node in the chain representing a task
is scheduled, its child is ready in the next timestep).

Let 7; be the number of processors that become idle at any timestep ¢ of S,. Since S, is a greedy
schedule, min(n;, | Ry|) tasks are scheduled at timestep ¢ of S,. This implies that (p — n;) processors were
busy executing unit-sized computations of previously scheduled tasks. Therefore, |R;| = |Ry| + (p — n1).
Hence in &, the number of nodes scheduled in timestep i of Sy, are min(ny, |B:|)+(p—n1) = min(p, | Rj|).
Hence S, is a greedy schedule for G, and by Lemma 2.2, has a length of at most W/p + D;. Since S, has
the same length as S}, S, has a length of at most W/p + D. .

Prioritized schedules. At every step of execution of a schedule, the scheduling algorithm must decide
which of the ready tasks to schedule in that step. For example, it may pick tasks at random, or according
to some predetermined priorities. Let R; be the set of ready tasks at the beginning of timestep ¢, and
let 7, C R, be the set of tasks that are scheduled in timestep ¢. Let the tasks in R; be assigned priorities.
If at every step t, r; is a subset of R, with the highest priorities (i.e., Vu € r; and v € (R; — ry),
priority(u) > priority(v)), we call the resulting schedule a prioritized schedule. This definition is
similar to the class of list schedules described in [16]. We call a prioritized schedule that is greedy a
greedy prioritized schedule. Let S; = ({v1}, {v2}, . .., {va}) be a 1-schedule for a task graph with n tasks.
As defined in [2], we say a prioritized p-schedule is based on &y if the relative priorities of tasks are based
on their serial execution order: Vi,j € {1,...,n}, ¢ < j = priority(v;) > priority(v;). Thus v; gets
the highest priority and v,, gets the lowest priority. If the task graph G and the serial schedule &; for G
are known beforehand, a simple, offline scheduling algorithm can generate the prioritized p-schedule for G
based on &;. However, if the task graph G is revealed at runtime, an online scheduling algorithm that can
dynamically find the ready tasks with the highest priorities is required to generate a prioritized p-schedule.

3 Modeling space allocations with task graphs

As with computation graphs, we add integer weights to the tasks to model space allocations. However,
since a task may consist of multiple unit computations, each of which may perform a space allocation or
deallocation, a single weight is insufficient to model all the space allocations taking place in a task. Therefore,
we introduce two new integer weights for each task v in a task graph G the net memory allocation n(v),
and the memory requirement h(v). n(v) is the difference between the total memory allocated and the total
memory deallocated in v, and may be negative. h(v) is the high-water mark of memory allocation, that
is, the maximum memory allocated throughout the execution of task v. The task v can be executed on
a processor given at least 2(v) units of memory to allocate and deallocate from. For every task v in G,
h(v) > n(v).

As before, the space requirement space(S) of a schedule & = (Vi,...,Vr) for G is the max-
imum memory allocated during the execution represented by S. We now calculate an upper bound
for space(S). Let F; be the set of tasks that have been completed at or before timestep i of S, that is,



Ei={veV;|(j <i)and(v¢ Viy1)}. Let s be the total units of memory allocated across all processors

at the end of timestep ¢. Then .
<Y )+ > h(v) (2)
vek; veV;~E;

since every task v that has been completed at or before timestep 7 has allocated n(v) units of memory, and
every other task u being executed at timestep i may have allocated at most () units of memory. The space
requirement of S is defined as space(S) = max(s!, s%,...,sT). Note that this is a conservative estimate
of the space required by the actual execution, because even if multiple tasks are executed at any timestep Z,
each such task v may not have allocated all the ~(v) units of memory it requires in that timestep. However,
if S is a serial schedule, then the above expression for space(S) is an exact value for the space requirement
of the execution it represents. This is true because at most one task v is executed in each timestep of S, and
it is executed to completion; therefore it will allocate A(v) units of memory at some timestep before it is

completed.

3.1 Space bounds for prioritized p-schedules

Consider a task graph G = (V, F) with latency-weighted depth ;. Let the maximum task space M
of G be the maximum over the memory requirements of all tasks in G that is, M = max,ecyv{h(v)}.
Let S, be a prioritized p-schedule for G based on a 1-schedule §;. In this section, we will prove that
space(S,) < space(S1) + M - (p—1) - (D1 — 1).

To prove the space bound, we first convert G into an equivalent computation graph G’ as follows.

1. Replace each task v € G with a chain (v1, . . ., vyy)) of t(v) nodes, each of which represents a unit
computation. We call the first node of this chain, v1, a heavy node, and the remaining nodes light
nodes.

2. Replace each edge (u,v) € E with a chain of I(u, v) dummy nodes. Each dummy node takes a
timestep to be computed, and all the dummy nodes ready at the start of any timestep ¢ of any schedule

for G’ are scheduled in that timestep.

All the edges in G’ are assigned zero latencies, making G’ a computation graph. Note that the depth
of G’ is D;. We define mnodes(v) to be the set of nodes in the chain (vy, ..., vy(,)) that replaces a
task v. Fori = 1,...,¢(v), the node v; in G’ represents the 7** unit computation of the task v in G; we
define task(v;) = v. Let 7(G’) be the set of heavy nodes in G'. Figure 3 shows a sample task graph G,
and its equivalent computation graph G’

A valid p-schedule S, = (V{,...,Vy) for G’ is obtained from S, by replacing the i* occurrence of
task v with the node v;, and adding all the dummy nodes ready at the beginning of any timestep ¢ to V.
Note that V contains at most p real nodes, and an arbitrary number of dummy nodes. A heavy nodev; € V/
if the task v is scheduled in timestep ¢ of S,,. Every light or dummy node is scheduled exactly one timestep
after its only parent is scheduled. We obtain a 1-schedule S} for G’ from &1 in a similar manner.

Fori=1,...,T,let Cy = (V] U V4 U ... U V) be the configuration of S, after step ¢, that is, the
set of nodes that have been computed at the end of step t. Similarly, let C} be the configuration of &)
after step ¢. Given a configuration C; of &}, we call C} the largest contained serial configuration of C;
if C} C C;, and either j is the last step of Sy, or C} +1 € Ci. Thus C} is the largest configuration of &;
contained within C;. We define P(C;) = C; — C’} to be the set of premature nodes in C;, and Py(C;) =
P(C;) N H(G') to be the set of heavy premature nodes C;. Figure 4 shows an example computation graph
with a prioritized p-schedule, and the set of premature nodes in a configuration of the p-schedule.



Figure 3: A transformation of a task graph G into a computation graph G’. Each edge (u,v) in G is labeled with
the latency /(w, v). The heavy nodes in G’ are shown as bold, and the dummy nodes are shown as small circles added
along the edges (the arrows on edges into dummy nodes are not explicitly drawn here).

St = [{a}, {c}, {e}, {d}, (i}, {i}, {g}, {b}. {h}. (i} ]
Sp = [{a, b}, {c, d, h}, {e, 1, o}, {i. j}]

Cs= {a,b,cdefgh}

C;= {a,cedf}

Figure 4: A simple computation graph with a prioritized p-schedule S, based on a 1-schedule Sy, where p > 3. C3
is the configuration of S, after 3 timesteps, and C1 is its largest-contained serial configuration. The set of premature
nodes in Cs is P(C3) = C3 — Ci = {b,9, h}.
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Lemma 3.1 The number of heavy premature nodes in any configuration C; ofSZ', isatmost(p— 1) - (D; — 1),

that is,
max{|Pr(C;)|: 1 < i<T} < (p—1)-(D; = 1)

Proof The nodes in any configuration C'! of S can be partitioned by level!. Forl = 1,..., Dy, let C'[]]
be the set of nodes in C! at level I. We say the timestep ¢ of S; completes a level I’ of C'! if it is the first

timestep at the end of which all nodes in C'[1], ..., C'[I'] are computed; that s, if
1. Jed{l,...,l'}, C € Ci-1, and,
2. Vie{l,...,l'}, Cl]C C,.

Let C; be any configuration of &, and let C’} be the largest contained serial configuration of C;. Let v
be the first node in S that is not in C} (if no such node exists, then C} is the set of all nodes in &,
and |P(C;)| = 0). This implies that v ¢ Cj, or else it would be in C}. Since task(v) is scheduled in S
before task(u) for any u € Py(C;), task(v) has a higher priority than task(u).

We show that any timestep ¢, such that V/ NPy (C;) # ¢, thatis, any timestep ¢ in which heavy premature
nodes are scheduled, must complete a level | < D; of C{. Consider such a timestep ¢. Let { < D; be the
smallest level such that C’} [] € Cy—y, that is, the smallest level of C| that is not yet complete at the end of
timestep ¢ — 1. If there is no such level, that is, if all the levels 1,..., D; — 1 are complete, then all parents
of node v, which must be in these levels, are computed, and v is ready. If v is a light or dummy node,
it is must be scheduled at or before timestep ¢, which is a contradiction. If v is a heavy node, it must be
scheduled with or before any heavy premature node u € Py (C;) (since task(v) has a higher priority than
task(u)), which is also a contradiction. Therefore, at least one level I' < D exists, which is not complete
at the end of timestep ¢ — 1.

Let U be the set of nodes in C’} [[’] that are not yet scheduled at the end of timestep ¢ — 1. All the nodes
in U are ready, since all their parents in lower levels are computed. Therefore all the light and dummy
nodes in U are scheduled in timestep ¢. Remember that &, is a prioritized schedule; therefore at every step
of 8, the ready tasks with the highest priorities are scheduled. But tasks with heavy nodes in Py, (C;) have
lower priorities than tasks with heavy nodes in U. Since at least one of the heavy nodes in P, (C}) gets
scheduled in timestep ¢, all the heavy nodes in U must be scheduled with it. Therefore all the nodes in U are
scheduled in timestep ¢, that is, ¢ completes level /. There can be at most (D; — 1) timesteps that complete
alevel of C’} less than D;. At least one node from that level is scheduled in each such timestep ¢, and hence
at most (p — 1) heavy premature nodes may be scheduled with it. Therefore, the total number of heavy
premature nodes | P, (C;)| scheduled in the first ¢ timesteps of S, is at most (p — 1) - (D; — 1). B

Lemma 3.2 Let P(C;) be the set of premature nodes in any configuration C; of S,.  Then
v € P(C;) = (t=10r vy € P(Ci)).

Proof: If t = 1 we are done. Assume that ¢ > 1, and v;_; ¢ P(C;). Since v;_; is a parent of v;
and v; € C;, we must have v;_; € C;. Since w1 ¢ P(Cy), vi—1 € C ]1, where C’} is the largest contained
serial configuration of C;. But v, is scheduled in & in the timestep after v;.., and hence must also belong
to C}; otherwise C} would not be the largest contained serial configuration of C;. This is a contradiction.
Therefore, for every node v; € P(C;), all the nodes in its chain up to v; (including the heavy node v1) must

be in P(C}). 2

!The length of the longest path from root nodes to a node v in a graph is the level of . Level 1 consists of all the root nodes.
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Corollary 3.3 The number of distinct tasks v such that nodes(v) N P(C;) # ¢ is |Pr(C5)|.

Lemma 3.4 Let Szlo be the p-schedule for the computation graph G', obtained from the prioritized p-schedule
S, for G basedon S1.. Let C; be the configuration of S, after timestep v, and let Py (C;) be the set of heavy
premature nodes in C;. Then, space(S,) < space(81) + M - (max;—;,... 1 |Pr(Ci)|)

Proof: For a set of nodes C from G’, let F(C') be the set of tasks v of G such that nodes(v) C C, and
let A(C) be the tasks v such that nodes(v) N C' # ¢ and nodes(v) € C. Thus F'(C') is the set of tasks that
have all their nodes in C, and A(C) is the set of tasks that have some, but not all of their nodes in C'. Note
that for every configuration C} of 81, _]A(C’})l < 1. Let s; be the upper bound on the total space allocated
at the end of timestep ¢ of S, and let s} be the exact space allocated at the end of timestep 7 of Sy, as defined
in equation 2 in Section 3. Note that dummy nodes are not associated with any task, and do not allocate any
space; hence we ignore them while measuring the space requirement.
Then

cn&
IA

>, n(v)+ 3 h(v)

vEF(C5) vEA(C)

= Z n(v) + Z h{v)+

veF(CY) vEA(CY)

>, n+ Y hv)

veF(P(Cy)) vEA(P(CS))

If|A(C Jl) | = 0,letk = j; otherwise, let k be the timestep of S1 at the end of which the single task v € A(C Jl)
has allocated % (v) units of memory®. Then s, = 3, F(cty 7(v) + Xvea(cor) (v). Therefore
J J

sj, < s+ > a4+ > h(v)

vEF(P(CY)) veA(P(Ci))

< s+ M |PR(C)
since Vv, n(v) < h(v) < M, and using Corollary 3.3.
Therefore, space(S,) = max(szl,, .. .,sg;) < space(Sy) + M - max;—1,..7 [P, (Cy)|. -

Theorem 3.5 Let G be a task graph with latency-weighted depth D), and maximum task space M. Let S,
be the prioritized p-schedule based on any 1-schedule 8\ for G. Then,

space(S,) < space(Ss)+ M - (p—1) - (D; - 1).

Proof: We transform G into an equivalent computation graph G’ of depth D;, and S, into a schedule S,
for G, as described in this section. The required result follows using Lemmas 3.1 and 3 4. i

2Since the maximum requirement of v is A(v), there must be at least one such timestep.
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4 ()-prioritized schedules

Later in this paper, we describe a scheduling algorithm that generates a class of p-schedules that are based on
serial schedules, but are not completely prioritized: at every timestep £, the tasks scheduled may not be the
tasks with the highest priority. This deviation from the serial execution order allows a simple and efficient
implementation of the scheduling algorithm. To define the generated class of schedules more precisely in
this section, we introduce the concept of a work queue. The work queue is a FIFO queue of tasks, which are
a subset of the ready tasks. When any processor becomes idle, that is, when the current task executing on
the processor is completed, the task at the head of the work queue is scheduled on that processor. If n > 1
processors become idle in the same timestep, we assume that they all simultaneously pick a task each from
the first » tasks in the work queue to begin executing in that timestep. If the number of tasks in the work
queue is less than the number of processors that are idle, the tasks are assigned to an arbitrary subset of the
idle processors, while the remaining busy wait. A scheduling algorithm inserts ready tasks into the work
queue.

Let G = (V, E) be a task graph with a 1-schedule ;. As with prioritized schedules, the tasks of G are
assigned priorities based on their order in S1. Let the maximum size ¢z of the work queue be the maximum
number of tasks that it can hold. At the start of any timestep ¢, let 12, be the set of ready tasks, let ¢); be the
subset of these tasks that are in the work queue, and let R} = R; — (); be the set of remaining ready tasks.
Thus |R;| = |R}| + |Q¢| is the total number of ready tasks. We define a queuing step as a timestep in which
nodes are added to the work queue. If a timestep ¢ is a queuing step, then at most min(gmaz — |Q:], | R}|)
tasks are moved from R} to Q;; otherwise no tasks are moved to ¢);. In addition, the set of tasks moved to Q)
in the queuing step ¢ must be the tasks with the highest priorities in R;. Figure 5 shows the movement of
tasks in the system. The resulting schedule (V1, . .., V1), where V; is the set of tasks executing at timestep ¢,
is called a Q-prioritized schedule based on §;. On p processors (i.e., when for i = 1,...,7, |[Vi| < p),
the resulting schedule is a ()-prioritized p-schedule. Note that for a given g,qs, several (Q-prioritized
p-schedules may exist for the same S, since we do not specify which timesteps are queuing steps, and how
many tasks must be moved to the work queue in each queuing step. Figure 6 shows one possible p-schedule
(using p = 2) of a simple task graph. Tasks in a ()-prioritized schedule may be scheduled several timesteps
after they are inserted into the work queue; therefore, by the time a task is scheduled, it may no longer be

among the highest priority ready tasks.

work queue

£ min( tQql, IR{ 1)

9rmax™
tasks

capacity = q

max

processors

Figure 5: The movement of tasks in the system generating a ()-prioritized schedule. (2: is the set of ready tasks in
the FIFO work queue at the start of timestep’ ¢; R is the set of remaining ready tasks. R; includes tasks that become
ready at the start of timestep ¢. In each queuing step ¢, at most min(¢maz — |@:|, | R¢]) tasks are moved from R}, to the
work-queue. Thus the work queue can never have more than ¢y, tasks.

We call u the last parent of v in a schedule, if it is the last of v’s parents to be completed in the schedule.
For any task v € V, let ¢(v) be the number of queuing steps that take place after the last parent of v has
been completed and before task v is ready. We define the queuing frequency 6 of a Q-prioritized schedule

as § = max,cv{q(v)}.
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t Pl Q| Ry QF | Vi
1 a,b - b a a
2 b - - b |ab
3 _ _ - - _
4 _ _ _ - _
5 c,d - d C c
6 |def| — f |delde
7 f - - f | df
'8 - - - f
9 g - g - f
10 g - | -] 8] 8
11 - - - - g
(@ )]

Figure 6: (a) An example task graph G. (b) One of the many possible Q-prioritized p-schedules S, = (V1, ..., V11)
for G, using p = 2 and gmq; = 2, assuming an alphabetical priority on the tasks. ¢); is the set of tasks in the work
queue at the start of timestep ¢, while R} is the set of remaining ready tasks. Q7 and R;" are the respective sets after
tasks are moved from R, to (; at the start of timestep . The set of tasks moved from R} to @; must be the ones with
the highest priorities in .. If either of the two processors is idle at timestep ¢, it picks up a task from @} to execute in
that timestep. The queueing steps are £ = 1,2,5,6,7, 10.

4.1 Space requirements of (}-prioritized schedules

In this section, we prove an upper bound on the space requirements of {)-prioritized schedules. Let
G = (V, E) be any task graph. Consider any Q-prioritized p-schedule S, based on a 1-schedule Sy,
generated using a work queue of capacity ¢,qz, and having a quening frequency d.

We first convert G into a latency-weighted DAG G, by replacing every task v with a chain of
nodes (vy, .. .,vt(v)). As described in Section 3.1, we call the first node of this chain a heavy node,
and the remaining nodes light nodes; every new edge in this chain is assigned a latency of zero. Note
that unlike the transformation in Section 3.1, we do not replace each edge of G with dummy nodes in G”;
since G’ is a latency-weighted DAG, we leave the latencies on the edges unchanged.

The p-schedule S, for G is converted into a p-schedule S}, for G’ by replacing the it* occurrence of
task v with the node v;. Similarly, the 1-schedule & is converted into a 1-schedule S} for G’. Remember
that the scheduling algorithm uses a work queue to store ready tasks. We will view this as a queue of nodes;
if it holds the task v, we will instead say it holds the heavy node wp, which is the first node of v to be
scheduled when v is removed from the queue. Thus the work queue may contain up to g, heavy nodes.

The level for each node in G’ is the maximum number of nodes along any path from a root node to
that node. As in Section 3.1, for every configuration C' of Sf, we denote the nodes at level [ in C!
by C![1]. Let C; be the i** configuration of S, and let C be the largest contained serial configuration
of C;. Remember that the set of premature nodes in C; is defined as P(C;) = C; — C’; , and the set of heavy
premature nodes is Py, (C;) = P(C;) NH(G"), where #(G") is the set of heavy nodes in G'.

Lemma 4.1 Let C; be the configuration of S,, after timestep i, and let Pn(C;) be the number of heavy
premature nodes in C;. Then,

max{|Px(C;)|: 1 € i <T}<((6+1) gmac+p—1)-D
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Proof: LetC Jl be the largest contained serial configuration of C;. Let ¢; be the timestep that completes level [
of C}. Since there are no nodes in G’ at level 0, we define tgtobe 0. For{ = 1,..., D, let I; = (¢;_, t;] be
the interval beginning after timestep ¢;_ and ending with timestep ;.

We will bound the number of heavy premature nodes scheduled in any such interval of §,,. Consider
any arbitrary interval 7;. By the end of timestep ¢;_;, all the nodes i C’} [l — 1] are computed. Hence, all
the light nodes in C'}[I], which must be scheduled one timestep after their parent, are computed by the end
of timestep ¢;_1 + 1. However, due to latencies on the edges, all the heavy nodes in C' Jl [/] may not even be
ready in timestep £;_; + 1. At the start of this timestep, the work queue may contain at most ¢,,,, heavy
premature nodes. Let ¢, > t;_; be the timestep in which the last node in le- [/] becomes ready?. Since &
is the queuing frequency of Sp,, at most § queuing steps can take place after ¢,; and before ¢,. There
may result in at most & - gynq, heavy nodes being added to the work queue, and all of these nodes may be
premature.

Let U be the subset of heavy nodes in C} [{] that are ready but are not yet in the work queue at the start
of timestep t,; the remaining nodes in C} []] are either computed or in the work queue. For any v € U
and v € P,(C;), task(u) has a higher priority than task(v). Therefore, timestep ¢, onwards, all nodes
in U must be added to the work queue before any premature nodes. Since the work queue is a FIFO,
a total of at most ((§ + 1) - gmas) heavy premature nodes get scheduled before all the nodes in U are
scheduled. By definition, the last node(s) in U gets scheduled at timestep ¢;; in this timestep, at most (p — 1)
premature nodes may be scheduled along with the last node in U. Thus, a total of ((6 + 1) - ¢maz +p — 1)
heavy premature nodes may get scheduled in the interval I;. Since there are at most D such intervals, at
most ((§ + 1) - gmaz + p — 1) - D heavy premature nodes may be scheduled in the first i timesteps of S,

thatis, forany i = 1,..., T, [Pa(C)| < ((6 + 1) - ¢az +p— 1) - D. .

Lemma 4.2 Let C; be the configuration of S,, after timestep i, and let Py,(C;) be the set of heavy premature
nodes in C;. Then, space(S,) < space(S1) + M - (maxi—1,...1 |Pr(Ci)|)

Proof: The proof is identical to the proof of Lemma 3 4. 5

Theorem 4.3 Let G be a task graph with depth D and maximum task space M. Let S\ be any
1-schedule of G, and let S, be any Q-prioritized greedy p-schedule for G based on &
and generated using a work queue of capacity Qme.. If 0 is the queuing frequency of S,, then
space(S,) < space(S1) + (6 +1) “ gmez +p—1)- M - D.

Proof: We transform G into a latency-weighted DAG G’ as described in this section. Then the required
result follows from Lemmas 4.1 and 4.2. -

Consider a @Q-prioritized p-schedule S,= (V1,..., Vr) of a task graph G based on a 1-schedule ;.
Let G’ be the corresponding latency-weighted computation graph, with a corresponding p-schedule S,,. We
will call the set of tasks TC; = U,y ; V; the task configuration of S, after i timesteps. If C; is the
corresponding configuration of S, and P(C;) is the set of premature nodes in C, the set of tasks that have
their nodes in P(C;) are the premature tasks in T'C;.

5 Programming model for online scheduler

So far we have presented results for efficient schedules that can be generated offline for any parallel
computation represented by a task graph. In the next section, we present an efficient, online scheduling

*If C}[1] has no nodes that are not ready, then t, = t1—1 + 1.
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algorithm for executing a class of parallel computations. We describe the class of parallel computations in
this section.

The algorithm is applicable to languages that support nested parallelism, which include data-parallel
languages (with nested parallel loops and nested parallel function calls), control-parallel languages (with
fork-join constructs), and any mix of the two. The system assumes a shared memory programming model,
in which parallel programs can be described in terms of threads. The computation starts with one initial
(root) thread. On encountering a parallel loop (or fork), a thread forks one child thread for each iteration and
then suspends itself. Each child thread may, in turn, fork more threads. We assume that the child threads
do not communicate with each other. They synchronize at the end of the iteration and terminate. The last
child thread to reach the synchronization point awakens the suspended parent thread. A thread may fork any
number of child threads, and this number need not be known at compile time. When a thread forks child
threads, we assume there is a known ordering among the child threads, which is the order in which they are

forked in a serial execution.

5.1 Parallel computation as a task graph

The entire multithreaded computation can be represented by a task graph G, as defined in Section 2.3.
This task graph is formed at runtime by splitting each thread into a series of tasks, such that each task v
has a memory requirement A(v) < K units, where K > 1 is a constant. We assume for now that no
unit computation allocates more than K space; this assumption will be relaxed later. Thus a task v in G
represents a series of ¢(v) consecutive unit computations of a thread, requires no more than K space, and
is executed non-preemptively on one processor. For the model of nested parallelism described above, the
parallel computation results in a series-parallel task graph. A series-parallel task graph, similar to a series-
parallel computation graph [2], can be defined inductively: the graph G consisting of a single task (which
is both its source and sink) and no edges, is series parallel. If GGy, ..., Gy, n > 1 are series parallel, then
the graph obtained by adding to G1 U ... U G, anew source task u, with edges from u to the source tasks
of G1, ..., Gy, and a new sink task v, with edges from the sink tasks of G1, ..., G/, to v is series-parallel.

For a series parallel task graph G, a depth-first 1-schedule or 1DF-schedule is defined as follows. In
the first step of a 1DF-schedule, schedule the root task. At every subsequent step, schedule the first ready
child of the most recently scheduled task with a ready child®. Let S; be a 1DF-schedule. We say the i*
task to be scheduled in Sy has a 1DF-number . Figure 7 shows an example series parallel task graph; each
task is labeled with its IDF-number. In most implementations of the above programming model, the serial
execution can be represented by a 1DF-schedule. In the next section, we describe an online scheduling
algorithm that dynamically creates the series parallel task graph G' for a nested parallel computation, and
generates a ()-prioritized schedule for G based on its 1DF-schedule §;. The scheduling algorithm is an
online algorithm because neither the task graph G, nor the 1DF-schedule S; are given as input; they are
revealed as the parallel computation proceeds>. We show how the tasks in a series-parallel task graph can
be ordered by their priorities (serial execution orders) at runtime. Note that a similar scheduling algorithm
will apply to any task graph for which such an order can be maintained at runtime.

6 Async-Q: An efficient scheduling algorithm

In this section, we describe an asynchronous scheduling algorithm called Async-Q. Let &) be the sched-
ule representing the serial depth-first execution of a parallel computation of depth d. Later in the pa-
per we show that the Async-Q algorithm results in an execution on p processors that requires at most

4Recall that the children of a task have a known ordering.
5This differs from offline algorithms where the task graph is known beforehand.
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Figure 7: A series-parallel task graph, with variable-length tasks. Each task is labeled with its 1DF-number, that is,
the order in which it is scheduled in a 1DF-schedule. We have assumed a left-to-right ordering among child tasks.

space(S) + O(pd log p) memory; we also bound the number of timesteps required for the resulting execu-
tion.

As described in Section 5.1, each thread can be represented by a series of tasks. At any timestep during
the execution, we define the header task of a thread as the first task of the thread that is not yet computed,
that is, the task representing the series of computations that are either being executed or are to be executed
next. The Async-Q scheduling algorithm maintains the ready set K, which is a set of threads with ready
header tasks. The threads in R are ordered by the priorities of their header tasks. We will explain later how
the relative ordering of the threads is maintained, even though the task graph is revealed at runtime. For
simplicity, we will call the priority of the header task of a thread the priority of the thread itself®. In addition
to R, there are two FIFO queues called ();, and (). The threads with the highest priorities are moved
from R to Q,u:. Processors pick threads from the head of (J.; and start executing their computations.
Let m be the running count of the net space allocated by a processor after it picks a thread from () ,,; ; ™ may
change with every timestep. Since each task v represents a series of computations of a single thread, and is
allowed to have a memory requirement 4 (v) of at most K units, each processor executes a thread until the
thread terminates, or until it reaches a unit computation that is either a fork, or one that would cause m to
exceed K units. At this point, we say the header task of the thread has been computed. Threads are thus
split into a series of tasks at runtime. After a processor computes the header task of the thread, it inserts the
thread into (;,-

The scheduler is a computation responsible for moving threads from @;, to R, creating child threads
for a thread that forks, and moving threads with the highest priorities from £ to (),,;. Figure 8 shows the
migration of threads between the three data structures. The scheduler computation consists of a while loop;
we will call each iteration of the loop a scheduling iteration. We will say a task v is in Qs (Qou: o1 R) if
the thread with v as its header task is in (;, (Qous or I). If the last parent of a task v is in (J;,, when a
scheduling iteration starts, then we say that v becomes ready at the end of that scheduling iteration; if it is
among the highest priority tasks in R and is moved to the work queue, it is now available to be scheduled.

The pseudocode for the Async-Q algorithm is given in Figure 9. [Qoy:| is the number of tasks in Q oy
The computation starts with B containing the root thread, and (;,, and Qo+ being empty. We will call the
processors executing the worker computation the workers.A parent thread that suspends after forking is not
stored explicitly in R; instead, we delete the thread after it forks, and allow the last child thread that reaches
the synchronization point to continue as the parent thread. Initially, the system contains only the root thread,
which is in the ready state. We say a thread is ready if it has a ready header task. When the parent of a
thread T reaches the point where it forks 7 and its siblings, 7 is created as a ready thread in . When it is

%Since a thread may bave a different header task at different timesteps, the priority of a thread may change with time.
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Figure 8: The movement of threads between the processors and the scheduling queues. Qi and Qoy: are FIFOs,
and R is a set of threads with ready header tasks, ordered by the priorities of the header tasks. The dashed lines indicate
the movement of threads by the scheduler, whereas the solid lines indicate the movement of threads by the worker

processors (the processors that execute the threads).

worker:
begin
while (there exist threads in the system)
T = remove-thread(Q out );
execute the header task of T;
insert-thread(t, Qin);
end

scheduler:
begin
while (there exist threads in the system)
move all threads from Q;,, to R;
for every terminated thread T in R that is the last to synchronize,
retain T in R to execute as its parent;
delete all other terminated threads from R;
for every thread in R that forks, replace it with its child threads;
move min(|R|, ¢maz — |Qout|) threads with the highest priority

from R to Qout.
end

Figure 9: The Async-Q scheduling algorithm. The worker and scheduler computations execute asynchronously in
parallel. g4z is the maximum size of Qoys, and |Qou¢| is the number of tasks in Qou:. A parent thread that suspends
after forking is not stored explicitly; its last child to synchronize continues the computations of the parent. The function
remove-thread(Q)ou:) busy waits until a thread becomes available and is removed from Qy;.
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Figure 10: The state transition diagram for threads in the scheduling system. All threads inside the rectangular box
exist in the system; initially only the root thread exists as a ready thread. The dead threads in 12 are deleted by the
scheduler in every scheduling iteration. All threads are deleted from the system by the end of the execution.

moved from R to Qous, it becomes active, and remains active until it is returned to /2. If it has terminated, it
becomes dead,; if it has reached a fork, it is replaced by its child threads in R and hence becomes dead; if it is
suspended due to a memory allocation, or is the last child to reach a synchronization point, it becomes ready
on insertion into R’. A dead thread is removed from the system on deletion from R. The state transition
diagram for threads is shown in Figure 10.

6.1 Scheduler implementation

To ensure efficient implementation of the scheduler, we set the maximum $ize gp,,, 0f Q,y: to be plogp,
where p is the total number of processors. In this section, we describe how the scheduler can maintain
the ordered set of ready threads R, prioritized by the 1DF-numbers of their header tasks. Let a constant
fraction ap of the processors (0 < & < 1) be devoted to executing the scheduler. The remaining (1 — a)p
processors execute as workers. We assume a unit time fetch-and-add operation in our system. This makes
the access to the queues Q;,, and ), unit time for all processors.

The ready set R can be implemented as an array of threads, stored in decreasing order of priorities, say,
from left to right. Initially R contains the root thread. When a thread is moved from R to Qoy:, a stub for
the thread is kept in its original position, and a pointer to the stub is stored in the thread. The header task of
this thread is subsequently executed by a worker processor which then inserts the thread into (J;,. When
the scheduler moves the thread from @);,, to R, it puts it back in the position of its stub. Thus every active
thread has one stubin 2. A thread returned to R may either terminate, or reach a computation that allocates
more memory or performs a fork. If the thread terminates (is not the last child to reach a synchronization
point), it is deleted from R; if it reaches a fork, it is marked as a seed thread. Otherwise it simply remains
in R with a new header task®. For each seed representing an n-way fork, the scheduler replaces it with its
n child threads, which are stored from left to right in decreasing order of the 1DF-numbers of their header

tasks®.

Lemma 6.1 The threads in R are always in decreasing order of priorities.

Proof: This can be proved by induction; the proof is similar to the one given in [2], and we present the
outline here. Before the execution begins, F contains just the root thread, and therefore it is ordered by the

"The last child thread to reach the synchronization point becomes ready to continue as the parent thread.

8The new header task starts with the unit computation that would have caused the memory requirement of the previous header
task to exceeded K, or is the first header task of the parent after a synchronization point.

This is just the predefined order in which the child threads are forked in &1.
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Figure 11: The new state transition diagram for threads using a lazy implementation of the scheduler. This differs
from the previous diagram in Figure 10 in two ways: first, a thread, on reaching a fork, becomes a seed that implicitly
represents its child threads, instead of being eagerly replaced by them; second, all dead threads in 12 need not be deleted

in every scheduling iteration.

IDF-numbers. Assume that at some timestep the threads in R are in decreasing order of the 1DF-numbers of
their header tasks. For a thread that forks, replacing it with its child threads in the order of their 1DF-numbers,
and allowing the last child thread that synchronizes to continue as the parent thread, maintains the ordering
by 1DF-numbers. A thread whose header task has been executed, but does not fork, is returned to its original
position with a new header task. The new header task, which is the child of the old header task, has the
same 1DF-number as the parent, relative to header tasks of other threads. Deleting threads from R does not
affect the ordering of threads in R. Therefore the ordering of threads in /£ by 1DF-numbers is preserved

after every operation on K. a

In every iteration, the scheduler needs to move the leftmost min(| R|, ¢maz — |Qout|) threads to Q oy, since
by Lemma 6.1, these are the threads with the highest priorities.

6.2 Lazy scheduler

Eagerly creating all the child threads from a seed may cause the size of R to exceed the space bounds stated
at the beginning of Section 6. In this section, we describe a lazy implementation of the scheduler, using
which we later prove that the size of R is within the stated space bounds. When a thread forks child threads,
we lazily create the child threads; all the child threads that are still to be created are represented by the
seed thread. Similarly, we perform all deletions lazily: every thread that terminates is simply marked in K
as a dead thread, to be deleted in some subsequent scheduling iteration. The new state-transition diagram
for the threads is shown in Figure 11. We will call all threads that are ready, or are seed or active threads
as live threads. Note that each live thread has one entry in R. A seed is simply a compact representation
for one or more ready sibling threads. For every (explicitly represented) ready or seed thread T in R, we
use a nonnegative integer ¢(7) to describe its state: ¢(7) equals the number of ready threads 7 represents.
Then for every seed 7, ¢(7) is the number of child threads still to be created from v. For every ready thread
in R, ¢(7) = 1, since it represents itself.

Consider any scheduling iteration of the lazy scheduler. Let r be the total number of ready threads
represented in R after threads from );, are moved to R at the beginning of the iteration. Let ¢, =
min(r, plogp—|Qout|) be the number of threads the scheduling iteration will move to Qoy;. The scheduling
iteration of a lazy scheduler is defined as follows.

1. Collect all the threads from ();,, and move them to R, that is, update their states in .
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2. Delete all the dead threads up to the leftmost max(2, g, + 1) ready or seed threads.

3. Perform a prefix-sums computation on the ¢(7) values of the leftmost g, ready or seed threads to find
the set C of the leftmost ¢ ready threads represented by these threads. For every thread in C' that
is represented implicitly by a seed, create an entry for the thread in R, marking it as a ready thread.
Mark the seeds for which all child threads have been created as dead.

4. Move the threads in the set C from R to (.., leaving stubs in E to mark their positions.

Consider a thread 7 that is the last child thread to reach the synchronization point in a fork, and is not the
rightmost child. Some of 7’s siblings, which have terminated, may be represented as dead threads to its
right. Since 7 now represents the parent thread after the synchronization point, it has a higher 1DF-number
than the dead threads to its immediate right. Thus due to lazy deletions, dead threads may be out of order
in R. However, since the scheduler deletes all dead threads to the immediate right of any ready thread (or
seed representing a ready thread) before it is scheduled, no descendents of the ready thread may be created
until these dead threads are deleted. Thus a thread may be out of order with only the dead threads to its
immediate right.

The synchronization (join) between child threads of a forking thread can be easily implemented using
fetch-and-decrement operation on a synchronization counter associated with the fork. Each child that reaches
the synchronization point decrements the counter by one. The last child to reach the synchronization point
(the one that decrements the counter to zero) marks itself as ready, and continues as the parent; the remaining
child threads mark themselves as dead.

Recall that a thread is active when it is either in () ,,; or J;,,, or when it is being executed on a processor.
Once a scheduling iteration empties Q;y, at most plogp + (1 — a)p threads are active. The iteration creates
at most another plogp active threads before it ends, and no more threads are made active until the next
scheduling step. Therefore at most 2plogp + (1 — a)p threads can be active at any timestep, and each has
one stub in E. We now prove the following bound on the time required to execute a scheduling iteration.

Lemma 6.2 A scheduling iteration that deletes n dead threads runs in O (n/p+logp) time on ap processors.

Proof: Let g, < plogp be the number of threads the scheduling iteration must move to oy At the
beginning of the scheduling iteration, ), contains at most 2plogp + (1 — a)p threads. Since each of these
threads has a pointer to its stub in R, ap processors can move the threads to R in O(logp) time. Let T be
the max(2, ¢, + l)th ready or seed thread in R (starting from the left end). The scheduler needs to delete all
dead threads to the left of 7. In the worst case, all the stubs are to the left of 7 in R. However, the number of
stubs in R is at most 2plog p + (1 — o) p. Since there are n dead threads to the left of 7, they can be deleted
from n + 2plogp + (1 — «)p threads in O(n/p + logp) timesteps on ap processors. After the deletions,
the leftmost g, < plogp ready threads are among the first 3plogp + (1 — «)p threads in R; therefore the
prefix-sums computation will require O (log p) time. Finally, g, new child threads can be created and added
in order to the left end of R in O(logp) time. Note that all deletions and additions are at the left end of R,
which are simple operations in an array'°. Thus the entire scheduling iteration runs in O (n/p + log p) time.

£

6.3 Space and time bounds

In this section, we prove an upper bound on the space and time required by the Async-Q scheduling algorithm
and the resulting schedules. We first prove the following result about the generated task graph and schedule.

19The additions and deletions must skip over the stubs to the left of 7, which can add at most a O(log p) delay.
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Lemma 6.3 For a parallel computation withwork w and depth d, in which every unit computation allocates
at most K space, the Async-Q algorithm, with ¢p,q, = plogp, creates a task graph G withwork W = O (w),
depth D = O(d), latency-weighted depth D) = O(w/p + dlogp), and maximum task space K. The
algorithm generates a Q-prioritized schedule for G with a queuing frequency of at most 2.

Proof: As described in Section 6, the Async-Q algorithm splits each thread into a series of tasks at runtime.
Let GG be the resulting task graph. Since each thread is executed non-preemptively as long as it does not
terminate or fork, and allocates at most a net of X units of memory, each resulting task v has a memory
requirement 4 (v) of at most K units. For each task v in GG, a processor performs two unit-time accesses to the
queues Qo and Q;,. Thus the total work performed by the processor for task v is ¢(v) 42, where t(v) > 1
and 3 t(v) = w. Therefore the total work of GG is O(w), and similarly, the depth is O(d).

Next, we show that the schedule generated is a ()-prioritized schedule with a queuing frequency ¢ of at
most 2. If r is the number of ready threads represented in R, the scheduler puts min{r, plogp — | .|) tasks
into Q. Moreover, these tasks are the tasks with the highest priorities in R. Therefore, using ),y as the
FIFO work queue of maximum Size ¢, = plogp, and the ordered set K to represent the set of ready tasks
that are not in the work queue, the Async-Q algorithm is a (-prioritized scheduling algorithm. With (1—a)p
processors executing the worker computation, the resulting schedule is a )-prioritized (1 — o) p-schedule.
The first timestep after any scheduling iteration ends is a queuning step, since all the tasks moved to (),y: in
that iteration are available in this step. Consider any task v in G. Let ¢ be the timestep in which the last
parent 4 of v is completed. u is placed in (;, at timestep ¢ + 1. In the worst case, a scheduling iteration
may end in timestep ¢, making ¢ + 1 a queuing step. Further, the next scheduling iteration may begin in
timestep ¢ + 1, and will result in the second queuning step. However, the next scheduling iteration must find u
in Q;,,; therefore, the third queuing step, which takes place in the timestep following the end of the this next
scheduling iteration, is the timestep in which v becomes ready. Thus only two queuing step can take place
after u is computed and before v becomes ready, that is, § < 2.

Finally, we show that D; = O(W/p + Dlogp). Consider any path in G. Let ! be its length. For any
edge e = (u, v) along the path, if  is the last parent of v, then v becomes ready at the end of at most two
scheduling iterations after u is computed. Therefore the latency /{u, v) is the duration of the two scheduling
iterations. Let n. and n/ be the number of dead threads deleted by these two scheduling iterations. Then,
using Lemma 6.2, I(u, v) = O(ne/p + n./p + log p). Since each thread is deleted by the scheduler at most
once, a total of O(w) deletions take place. Since any path in G has at most (d — 1) edges, the latency
weighted depth of the path is the sum of the latencies on at most 4 edges, whichis O(w/p + dlogp). a

We can now bound the length of the resulting schedule.

Lemma 6.4 Let G be the task graph created by the Async-Q algorithm for a parallel computation with
work w and depth d, and let S, be the (1 — a)p-schedule generated for G. If qmar = plogp, then

|Sp| = O(w/p+ dlogp).

Proof: We will show that S, is a greedy schedule, with O (w/p) additional timesteps in which the workers
may be idle. Consider any scheduling iteration. Let ¢; be the timestep at which the ith scheduling iteration
ends. After tasks are inserted into Q. by the ¢t* scheduling iteration, there are two possibilities:

1. |Qout| < plogp. This implies that all the ready tasks are in o, and no new tasks become ready
until the end of the next scheduling iteration. Therefore, at every timestep 7 such that ¢; < 7 < #;41,
if m, processors become idle and r; tasks are ready, min(m, r;) tasks are scheduled.

2. |Qout| = plogp. Since (1 — a)p worker processors will require at least logp/(1 — o) timesteps
to execute plog p tasks, none of the processors will be idle for the first log p/(1 — ) steps after ;.
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However, if the (s + 1)** scheduling iteration, which is currently executing, has to delete n;; dead
threads, it may execute for O (n;+/p+log p) timesteps. Thus in the worst case, the processors will be
busy for log p/(1 — «) steps and then remain idle for another O(n;41/p + logp) steps, until the next
scheduling iteration ends. We call such timesteps idling timesteps. If the worker processors execute
tasks for log p/(1 — «) timesteps, and then remain idle for another O (log p) timesteps, the number of
such idling steps is within a constant factor of the number of steps when all workers are busy. There
can be at most w/(1 — a)p = O(w/p) steps in which the all worker processors are busy; therefore
the additional O (log p) idling steps caused by the scheduling iteration can add up to at most O (w/p).
In addition, since each thread is deleted only once, at most w threads can be deleted. Therefore, if
the (i + 1)** scheduling iteration results in an additional O (n;.1/p) idle steps, they add up to O(w/p)
idle steps over all the scheduling iterations. Therefore, a total of O(w/p) idling steps can result due

the scheduler.

All timesteps besides the idling steps caused by the scheduler obey the conditions required to make it a
greedy schedule, and therefore add up to O(w)/p+ D; = O(w/p + dlogp) (using Lemmas 6.3 and 2.4).
Along with the idling steps, the schedule requires a total of O(w/p + dlog p) timesteps. B

We now prove an upper bound on the space requirement of the resulting schedule.

Lemma 6.5 Let G be the task graph created by the Async-Q algorithm for a parallel computation with
work w and depth d, and let S, be the Q-prioritized schedule generated for G. If gmec = plogp, then

space(S,) < space(Sy) + O(dplogp)

Proof By Lemma 6.3, G has a depth O(d), and a maximum task space K’; S, is a (Q-prioritized schedule
on (1 — a)p processors with quening frequency § = 2. Therefore, using Theorem 4.3, the space requirement
is given as space(S,) < space(S1) + ((6 + 1) - gmaz + (1 — a)p — 1) - K - D. The required result follows
using ¢ = plogpand 6 = 2. "

We still need to prove that the space required by the scheduler for R, ();, and (),.; does not exceed the
above space requirement of the generated ()-prioritized schedule.

Lemma 6.6 The total space required for storing threads in 0, (Qout, and R while executing a parallel
computation of depth d on p processors is O(dplogp).

Proof: Qy: may hold at most g,,., = plogp threads at any time. Similarly, s, may hold at most
2plogp + (1 — a)pthreads, which is the maximum number of active threads. Each thread can be represented
using a constant amount of space. Therefore the space required for (;, and oy is O (plogp).

We now bound the space required for R. Recall that a thread is live if it is a stub, ready or seed thread.
Thus R consists of live threads and dead threads. Consider any task configuration 7'C’; (after ¢ timesteps)
of S,. Since S, is a Q-prioritized schedule on (1 — «)p processors with a queuing frequency of 2, and
USes ¢mqe = plogp, TC; may have at most O(dplogp) premature tasks (Lemma 4.1). We call a thread a
premature thread if at least one of its tasks that was scheduled or put on (Qou: is premature. The number
of live threads is at most the number of premature threads, plus the number of stubs (which is O(plogp)),
plus the number of live threads that are not premature (which is bounded by the maximum number of live
threads in S1). The 1DE-schedule &; may have at most d live threads at any timestep. Therefore, the total
number of live threads after timestep ¢ is at most O (dplogp).

The scheduler performs lazy deletions of dead threads; therefore, the number of dead threads in £ must
also be counted. Recall that in every scheduling iteration, the scheduler deletes at least all the dead threads
up to the second ready or seed thread. There can be at most O (dp log p) premature threads in R, all of which
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may be dead. We will show that after the current scheduling iteration performs deletions, all dead threads
in R must be premature. Let 71 and 7, be the first two ready (or seed) threads in K. Since the scheduler
always deletes all dead threads up to 7, there can be no dead threads to the immediate right of 7| that
may have a lower 1DF-number than 71, that is, 7| has a lower 1DE-number number than all the dead threads
in R. Since all the dead threads have been executed before the ready threads represented by 71, they must
be premature. Therefore, all dead threads in R must be premature, and are O{dp log p) in number. Note
that when the next scheduling iteration begins, moving threads from (J;, to R does not increase the total
number of entries in R, even though some live threads may be marked as dead. After this iteration performs
deletions of dead threads and before it creates new entries in R, there are once again at most O(dplogp)
dead threads in R. Thus at any time, the space required for R is O(dplogp). i

We say an algorithm executes a schedule if it results in an execution of a parallel computation that is
represented by the schedule. We can now state the following theorem using Lemmas 6.4, 6.5 and 6.6.

Theorem 6.7 Let S1 be the 1DF-schedule for a parallel computation with w work and d depth, in
which at most a constant amount of memory is allocated at each timestep. The Async-Q algorithm,
With Gmes = plogp, generates a schedule for the parallel computation and executes it on p processors
in O(w/p + dlogp) timesteps, requiring a total of space(S1) + O(dplogp) units of memory. 7

Handling arbitrarily big allocations.

So far we had assumed that consecutive unit computations can be grouped together into tasks such
that no task has a memory requirement of more than a constant K units. However, there may be some
unit computations that allocate more than K units; they are handled in the following manner, similar to
the technique suggested in [2]. The key idea is to delay the big allocations, so that if tasks with lower
IDF-numbers become ready, they will be executed instead. Consider a unit computation of a thread that
allocates m units of space (m > K), in a parallel computation with work w and depth d. We transform
the computation by inserting a fork of m/K parallel threads before the memory allocation (see Figure
12). These new child threads do not allocate any space, or perform any work; each of them consists of
a dummy task. By the time the last of these new threads gets executed, and the execution of the original
parent thread is resumed, we have scheduled m /K tasks. Since m /K tasks may allocate a total of m space
(which they do not in this case), the original parent thread may now proceed with the allocation of m space
without exceeding our space bound. This transformation of the parallel computation increases its depth
by at most a constant factor. Let Sx be the excess allocation in the parallel computation, defined as the
sum of all memory allocations greater than K units. Then the work in the transformed computation is at
most w + Sk /K.

Theorem 6.7 can now be generalized to allow arbitrarily big allocations of space. Note that the space
and time bounds include the overheads of the scheduler.

Theorem 6.8 Let S; be the 1DF-schedule for a parallel computation with w work and d depth. For any
constant K > 1, let Sk be the excess allocation in the parallel computation. The Async-Q algorithm,
With @mez = plogp, generates a schedule for the parallel computation and executes it on p processors in
O(w/p+ Sk/pK + dlogp) timesteps, requiring a total of space(S1) + O(dp log p) units of memory. m

7 Implementation and results

We have built a runtime system that uses the Async-Q algorithm to schedule parallel threads, and have run
several experiments to analyze both the time and the memory required by parallel computations. In this
section we briefly describe the implementation of the system, followed by the experimental results.
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Figure 12: A transformation of the parallel computation to handle a large allocation of space within a unit computation
without violating the space bound. The nodes represent unit computations within threads; the threads are sequences
of such nodes. Consecutive nodes of a thread are grouped into tasks, shown as outlines around the nodes. Each node
is labeled with the amount of memory its computational step allocates. When a thread needs to allocate m space
(m > K), we insert m/ K parallel child threads before the allocation. Each child thread consists of a dummy node that
does not allocate any space. After these child threads complete execution, the original allocation can be performed.

The runtime system has been implemented on the SGI Power Challenge, which has a shared memory
architecture with processors and memory connected via a fast shared-bus interconnect. Since the number of
processors on this architecture is not very large, a serial implementation of the scheduler does not create a
bottleneck in our runtime system. Therefore, for simplicity, we have implemented the scheduler as a serial
computation, and the worker processors take turns executing it. The parallel programs executed on this
system have been explicitly hand-coded in the continuation-passing style, similar to the code generated by
the Cilk preprocessor [5]. Each continuation points to a C function representing the next computation of a
thread, and a structure containing all its arguments. These continuations are created and moved between the
queues. A worker processor takes a continuation off the out-queue, and simply applies the function pointed
to by the continuation, to its arguments. The high-level program is broken into such functions at points
where it executes a parallel fork, a recursive call, or a memory allocation.

We implemented five parallel programs on our runtime system: blocked recursive matrix multiplication,
Strassen’s matrix multiplication [33], the Fast Multipole Method for the n-body problem [20], sparse matrix
vector multiplication and the ID3 algorithm for building decision trees [27]. The implementation of these
programs is described in appendix A, along with the problem sizes we used in our experiments.

7.1 Time performance

The above programs were executed on an 8-processor Power Challenge. Figure 13 shows the speedups
for the above programs for up to 7 processors (this was the maximum number of processors available for
dedicated use). The speedup for each program is with respect to its efficient serial C version, which does not
use our runtime system. Since the serial C program runs faster than our runtime system running on a single
processor, the speedup shown for one processor is less than 1. However, for all the programs, it is close to 1,
implying that the overheads in our system are low. The timings on our system include the delay introduced
before large allocations, in the form of m /K dummy threads for an allocation of m bytes. We have used
a value of K = 1000 bytes in our experiments. Figure 13 also shows the speedups for the same programs
running on an existing space-efficient system Cilk [5]; the time performance on our system is comparable

with that on Cilk.
Figure 14 shows the breakup of the running time for one of the programs, blocked recursive matrix
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Figure 13: The speedups achieved on up to 7 processors of a Power-Challenge machine, using a value of K=1000bytes.
The speedup on p processors is the time taken for the serial C version of the program divided by the time for our
runtime system to run it on p processors. For each application, the solid line represents the speedup on our system,
while the dashed line represents the speedup on the Cilk [5] system. The low overheads of our runtime system account

for the speedups for p = 1 being marginally lower than 1.
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Figure 14: The total processor time (the running time multiplied by the number of processors p) for blocked recursive
matrix multiplication. “Serial work” is the time taken by a single processor executing the equivalent serial C program.
For ideal speedups, all the other components would be zero. The other components are overheads of the parallel
execution and the runtime system. “Idle time” is the total time spent waiting for threads to appear in the out-queue;
“queue access” is the total time spent by the worker processors inserting threads into ();, and removing them from
Qous. “Scheduling” is the total time spent as the scheduler, and “work overhead” includes overheads of creating
continuations, building structures to hold arguments, executing dummy threads, and (de)allocating memory from a
shared pool of memory, as well as the effects of cache misses and bus contention.
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multiplication. The results show that the percentage of time spent waiting for threads to appear in the out-
queue increases as the number of processors increases, as should be expected. A parallel implementation
of the scheduler will be more efficient for a larger number of processors.

For nested parallel loops, we group iterations of the innermost loop into equal-sized chunks, provided it
does not contain calls to any recursive functions!!. Scheduling a chunk at a time improves performance by
reducing scheduling overheads and providing good locality, especially for fine-grained iterations. We are
currently working on ways to incorporate coarsening in the algorithm itself, instead of relying on compiler

support.

7.2 Space performance

Figure 15 shows the memory usage for each application. Here we compare three implementations for
each program. One implementation is on the existing Cilk [5] system. The other two implementations are on
our scheduling system; in one case, large memory allocations are delayed by inserting dummy nodes, and in
the other case they are allowed to proceed immediately. For the programs we have implemented, the version
without the delay results in approximately the same space requirements as would result from scheduling the
outermost level of parallelism. For example, in Strassen’s matrix multiplication, our algorithm without the
delay would allocate temporary space required for p branches at the top level of the recursion tree before
reverting to the execution of the subtree under the first branch. On the other hand, scheduling the outer
parallelism would allocate space for the p branches at the top level, and then execute each subtree serially.
Hence we use our algorithm without the delay to estimate the memory requirements of previous techniques
like [14, 23], which schedule the outer parallelism with higher priority. Cilk uses less memory than this
estimate due to its use of randomization: an idle processor steals the topmost thread (representing the
outermost parallelism) from the private queue of a randomly picked processor; this thread may not represent
the outermost parallelism in the entire computation. Previous techniques like [8, 9, 19] use a strategy similar
to that of Cilk. The results show that when big allocations are delayed with dummy nodes, our algorithm
results in a significantly lower memory usage in all the programs. We have not compared it to naive
scheduling techniques, such as breadth-first schedules, which have much higher memory requirements.

As mentioned above, the number of dummy threads introduced depends on the number of bytes K that a
thread is allowed to allocate without being preempted. Hence there is a trade-off between memory usage and
running time. For example, Figure 16 shows how the running time and memory usage for blocked recursive
matrix multiplication are affected by K. For all the programs we implemented, the trade-off curves looked
similar, and a value of K = 1000 bytes resulted in a good balance between space and time performance.
The curve may vary for other parallel programs; however, the user can experimentally choose a suitable
value to satisfy her space or time requirements.

8 Summary and discussion

We have presented a model for non-preemptive parallel computations based on a class of DAGs called
task graphs, and described how executions of the computations can be represented by schedules of such
graphs. We defined two classes of schedules: prioritized schedules and ¢)-prioritized schedules, and proved
a bound on their space requirements. The Async-Q scheduling algorithm presented in this paper generates
(Q-prioritized schedules; we bounded the space and time requirements of the schedules generated by the
algorithm. Finally, we described an implementation of a runtime system that uses the Async-Q algorithm
to schedule threads in a multithreaded computation. The results of implementing five parallel programs on

Tt should be possible to automate such coarsening with compiler support.
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Figure 15: The memory requirements of the parallel programs. For p = 1 the memory usage shown is for the serial C
version. We compare the memory usage of each program when the big memory allocations are delayed by inserting
dummy threads (using X = 1000), with when they are allowed to proceed without any delay, as well as with the
memory usage on Cilk [5]. The version without the delay on our system (labeled as “No delay™) is an estimate of
the memory usage resulting from previous scheduling techniques. These results show that delaying big allocations
significantly changes the order of execution of the threads, and results in much lower memory usage, especially as the
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Figure 16: The variation of running time and memory usage with X (in bytes) for multiplying two 512 x 512
matrices using blocked recursive matrix multiplication on 7 processors. For very small K, many dummy threads are

inserted, which results in a high running time. For very large K, very few dummy threads are inserted, causing only a

small delay before a big memory allocation, resulting in high memory usage. K=500-2000 bytes results in both good
performance and low memory usage.

this system demonstrate that our approach is more effective in reducing space usage compared to previous
scheduling techniques, and at the same time, yields good parallel performance.

We are currently considering methods to further improve the scheduling algorithm, particularly to
provide better support for fine-grained computations. At present, fine-grained iterations of innermost
loops are statically grouped into fixed-size chunks. A dynamic, decreasing-size chunking scheme such

as [24, 25, 34] can be used instead. We are considering ways of automatically introducing such coarsening
at runtime through the scheduling algorithm; for example, by allowing the execution order to differ to a
limited extent from the order dictated by the 1DF-numbers. We also plan to reduce contention due to a

shared queue by introducing multiple queues; the processors will access separate queues at any given time
We finally plan to implement faster parallel calls to efficiently execute fine-grained computations.
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A Parallel programs implemented on our runtime system

In this section, we describe the implementation of the programs used to demonstrate the effectiveness of our
scheduling algorithm. The five programs are:

e Blocked recursive matrix multiply. This program multiplies two dense » X n matrices using a
simple recursive divide-and-conquer method, and performs O(n®) work. The recursion stops when
the blocks are down to the size of 64x64, after which the standard row-column matrix multiply is
executed serially. This algorithm significantly outperforms the row-column matrix multiply for large
matrices (e.g., by a factor of over 4 for 1024 x 1024 matrices) because its use of blocks results in
better cache locality. At each step, the eight recursive calls are made in parallel. Each recursive call
needs to allocate temporary storage, which is deallocated before returning from the call. The results
reported are for the multiplication of two 512 x 512 matrices of double-precision floats.

e Strassen’s matrix multiply. The DAG for this algorithm is very similar to that of the blocked recursive
matrix multiply, but performs only O (n?#%7) work and makes seven recursive calls at each step [33].
Once again, a simple serial matrix multiply is used at the leaves of the recursion tree. The sizes of
matrices multiplied were the same as for the previous program.

o Fast multipole method (FMM). This is an n-body algorithm that calculates the forces between n bodies
in O (n) work [20]. We have implemented the most time-consuming phases of the algorithm, which
are a bottom-up traversal of the octree followed by a top-down traversal. In the top-down traversal,
the forces on the cells in a level of the octree, due to their neighboring cells are calculated in parallel.
For each cell, the forces over all its neighbors are also calculated in parallel, for which temporary
storage needs to be allocated. This storage is freed when the forces over the neighbors have been
added to get the resulting force on that cell. With two levels of parallelism, the structure of this code
looks very similar to the pseudocode described in Section 1. We executed the FMM on a uniform
octree with 4 levels (8° leaves), using 5 multipole terms to calculate the forces.

o Sparse matrix-vector multiplication. This multiplies an m X n sparse matrix witha n x 1 vector. The
dot product of each row of the matrix with the vector is calculated to get the corresponding element
of the resulting vector. There are two levels of parallelism: over each row of the matrix, and over
the elements of each row multiplied with the corresponding elements of the vector to calculate the
dot product. For our experiments, we used m = 12 and n = 800000, and 30% of the elements were
non-zeroes. (Using a large value of n provides sufficient parallelism within a row, but using large
values of m leads to a very large size of the input matrix, making the amount of dynamic memory
allocated in the program negligible in comparison.)

e ID3. This algorithm by Quinlan [27] builds a decision tree from a set of training examples in a top-
down manner, using a recursive divide-and-conquer strategy. At the root node, the attribute that best
classifies the training data is picked, and recursive calls are made to build subtrees, with each subtree
using training examples with a particular value of that attribute. Each recursive call is made in parallel,
and the computation of picking the best attribute at a node, which involves counting the number of
examples in each class for different values for each attribute, is also parallelized. Temporary space
is allocated to store the subset of training examples used to build each subtree, and is freed once
the subtree is built. In our experiments we built a tree from 1.5 million test examples, each with 4

multi-valued attributes.
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