The Amulet Environment: New Models for
Effective User Interface Software Development

Brad A. Myers, Rich McDaniel, Rob Miller,
Alan Ferrency, Patrick Doane, Andrew Faulring,
Ellen Borison, Andy Mickish, and Alex Klimovitski

November, 1996
CMU-CS-96-189
CMU-HCII- 96-104

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

bam@cs.cmu.edu
http://www.cs.cmu.edu/~amulet

Abstract
The Amulet user interface development environment makes it easier for programmers to
create highly-interactive, graphical user interface software for Unix, Windows or
Macintosh. Amulet uses new models for objects, constraints, animation, input, output,
commands, and undo. The object system is a prototype-instance model in which there is
no distinction between classes and instances or between methods and data. The constraint
system allows any value of any object to be computed by arbitrary code and supports
multiple constraint solvers. Animations can be attached to existing objects with a single
line of code. Input from the user is handled by “Interactor” objects which support reuse of
‘behavior objects. The output model provides a declarative definition of the graphics, and
supports automatic refresh. Command objects encapsulate all of the information needed
about operations, including support for various ways to undo them. An key feature of the
Amulet design is that all graphical objects and behaviors of those objects are explicitly
represented at run-time, so the system can provide a number of high-level built-in
functions, including automatic display and editing of objects, and external analysis and
control of interfaces. Amulet integrates these capabilities in a flexible and effective manner.

Copyright © 1996 — Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, Arpa
Order No. B326. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or
implied, of NCCOSC or the U.S. Government.

Keywords: Toolkits, User Interface Tools, User Interface Development Environments,
User Interface Management Systems (UIMSs).

The Amulet Environment -1

1. Introduction

Creating user interface software has proven to be very difficult and expensive. User
interface software is often large and complex, and challenging to implement, debug, and
modify. One study found that an average of 48% of the applications’ code is devoted to the
user interface, and that about 50% of the implementation time is devoted to the user
interface portion [25]. Most of today’s toolkits and interactive tools are still quite hard to
use and lack flexibility. For example, to create new kinds of widgets, such as a scroll bar
with two handles, or to add support for gesture recognition, is quite difficult with today’s

tools.

Amulet, a new user interface development environment for C++ that runs on X/11,
Windows 95, Windows NT, and the Macintosh, facilitates user interface research and
development. Amulet aims to make the design, prototyping, implementation and evaluation
of user interfaces significantly easier, while supporting flexible experimentation with new
styles. Amulet includes many design and implementation innovations including new

models for objects, constraints, animation, input, output, commands, and undo.

In addition to incorporating innovations into its own design, Amulet has an open
architecture to enable user interface researchers and developers to easily investigate their
own innovations. For example, Amulet is the first system that supports multiple constraint
solvers operating at the same time, so that researchers might easily investigate new kinds of
constraint solvers. The undo model also supports new designs. The widgets are
implemented in an open fashion using the Amulet intrinsics so that researchers can replace
or modify the widgets. The goal is that researchers will only have to implement the parts
that they are interested in, relying on the Amulet library for everything else. In addition,
we aim for Amulet to be useful for students and general developers. Therefore, we have
tried to make Amulet easy to learn, and to have sufficient robustness, performance and

documentation to attract a wide audience.

Amulet, which stands for Automatic Manufacture of Usable and Learnable Editors and
Toolkits, is implemented in C++. Amulet is based on our group’s substantial experience
from creating the Garnet user interface development environment [22], which was
implemented in Common Lisp. Amulet brings to C++ the dynamic and rapid user interface
design and implementation capabilities that Garnet provided in Lisp, while adding many

new capabilities.

Since Amulet provides a structure for implementing the application-specific parts of a

user interface, it can properly be called an application framework [19]. It is clearly much

The Amulet Environment)

more than a “toolkit,” which generally refers to a collection of widgets such as scroll bars
and buttons. A key reason that Amulet provides a higher level of support than other
systems is that all of the user interface objects are available at run-time for inspection and
manipulation through a standard protocol, so that high-level, built-in utilities can be
provided, which, in other toolkits, must be re-implemented for each application. For
example, the graphical selection handles widget can get the list of graphical objects, and
move and résize the selected object, through a standard protocol, even if the objects are
custom-created and application-specific. Other facilities provided by Amulet include undo
and operations like cut, copy, paste, save and load. This paper provides an overview of all
the parts of the Amulet system.

|
i
|

%1_ =

e T

SRRt S) TR] S T N

Es U SRR AR R AR

Figure 1: A simple circuit design program created with Amulet.

The Amulet Environment -3

2. Goals

An important research objective of the Amulet project is to provide high-level support for
the insides of application programs. Conventional toolkits like the Macintosh Toolbox and
Motif provide a collection of widgets like menus, scroll-bars, buttons and text input fields.
However, for graphical applications like drawing editors, CAD programs, visual language
editors, visualizations, and charting programs, most of the programming for the user
interface deals with the contents of the graphic windows, which do not contain any
widgets. Consider the user interface shown in Figure 1. Other toolkits will provide the
menubar at the top, and possibly the palette on the left, but they provide no help with the
main area where the circuits are drawn. Instead, programmers must program directly at the
window manager level without much support. In contrast, Amulet provides high-level
support for these kinds of graphical applications, including

* Automatically redrawing the graphics,
* Constraints that automatically keep the wires attached to the circuit elements,
* Widgets such as selection handles which make interactive behaviors easy to implement,
and,
* Built-in editing commands, such as cut, copy, paste, to top and bottom, and undo, that
can often be used directly from the library without modification.
These facilities are made possible because Amulet’s novel models make the components
and structure of the user interface and application visible and manipulable by standard

utilities.

We distribute Amulet for use by others because we feel this will help to demonstrate that
the innovations in Amulet are sound and effective, and will hopefully facilitate technology
transfer. Amulet is in the public domain and can be used for free. Version 1 of Amulet
was released in July 1995 and Version 2 was released in May 1996. To get Amulet,
including the complete source code, visit http: / /www.cs.cmu.edu/~amulet or send mail

t0 amulet@cs.cmu. edu.

We want to make Amulet useful for:

* Researchers. Over 25 research projects all over the world are already using Amulet,
including a number of thesis projects at all levels.

* Students. By aiming for Amulet to be useful to students, we are continually striving
to make Amulet easier to learn. The success of SUIT [27] and Microsoft’s Visual
Basic show that it is possible to provide useful functionality in a way that is easy to
learn, but unlike those other systems, Amulet provides a natural growth path to the
complete fully-functional system. Amulet has been used in three courses at Carnegie-

The Amulet Environment -4

Mellon University and at least two courses elsewhere, which have provided feedback
used in refining the interface.

* General Developers. We also want Amulet to be useful for general user interface
software construction. For this reason, Amulet runs on X/11, Windows 93,
Windows NT, and the Macintosh. We also provide a high level of robustness,
documentation and performance. A complete reference manual including a tutorial is
available [20]. A few commercial products are even being built with Amulet.

3. Example: A Circuit Designer

Suppose you wanted to build an application like the circuit design program of Figure 1.
This program should work in the standard way:

» Clicking on the palette on a circuit element, and then in the work window should create
an object of that type. Gridding should be used to help lay out the objects neatly.

* The wires should be dragged from the source gate to the destination gate with the usual
“rubber-band” feedback.

* Selection handles should appear on objects when they are selected, and objects can be
dragged (moved) in the standard way. Multiple objects should be selected in the
standard way, either by holding down the SHIFT key while clicking on objects, or
dragging out a region. The wires must stay attached when elements are dragged.
Growing of the gates should not be allowed.

* All the standard editing operations should be supported, such as cut, copy, paste,
clear, clear-all, select-all, to-top, and to-bottom. When a gate is deleted, any attached
wires must be removed.

* All operations must be undo-able.

* Circuit diagrams can be saved to a file and loaded back in.

In addition, this program should provide some advanced features:

» The program should simulate the operation of the circuit by showing the values
calculated by the gates. The input nodes can be toggled and the outputs should display
the correct values. Animations should be used to make the execution more
understandable.

« Instead of repeatedly going back to the palette, the user should instead be able to use
gestures to create all the kinds of objects using the right mouse button (on the
Macintosh, using the Option keyboard key while pressing on the one mouse button).
For a gesture, the path of the mouse is important, not just its start and end position.
For example, the user can draw an “0” to make ani OR gate, an “A” to make an AND
gate, a “>* to make a NOT gate, a line to make wires, etc. The dot gesture should be

undo, to make it easy to correct errors.

The Amulet Environment -5

» The application should run on Unix, Windows NT, Windows 95, or the Macintosh
and use widgets with an appropriate look-and-feel on each platform.

With most toolkits, such as Motif, Microsoft Foundation Classes, MetroWerks
PowerPlant, Visual Basic, Borland’s Delphi, Java AWT, etc., the code for this application
would be tens of thousands of lines of code. However, using Amulet, this entire
application requires only 850 lines of C++ code, due to Amulet’s high-level features such
as:

* Graphical objects with automatic refresh.

» Interactors that handle standard behaviors.

* Command Objects that handle editing operations.

* Constraints that maintain relationships among objects.
* Gesture Recognition as a built-in kind of Interactor.
* Animations, as a special form of constraint.

The rest of this paper will describe these and other features of Amulet that make creating

interactive applications easier.

3.1. Graphical Objects

An important goal is to make Amulet easy to learn and use for developers, even though it
has a large number of features. Therefore, we have concentrated on giving Amulet a
uniform structure based on a few simple concepts. The main concept is that everything in
Amulet is represented as an object which has a set of slots . A “slot” has a name and can
hold a value of any type, for example the slot named Am_LEFT! might hold the value 10.
Slots are similar to member variables or instance variables in other object systems. A new
object is created by making an instance or copy of another object, which is called the
prototype. An “instance” starts off inheriting all of its slot values from the prototype, and
the slots can then be set with new values. A copy immediately gets a copy of all values in
the prototype. For example, the following creates an And_Gate as an instance of the built-
in Bitmap object, and then sets the IMAGE slot to the appropriate picture.

Am_Object And_Gate = Am_Bitmap.Create()
.Set(Am_IMAGE, and_bitmap_image);

Any object can serve as a prototype to create other objects. There is nothing special about
the objects in the Amulet library. For example, the following creates an instance of the
And_Gate and then puts it in a particular place:

’”

1Because C++ does not support separate name spaces, all exported names in Amulet start with “Am_".

The Amulet Environment -6

Am_Object new_gate = And_Gate.Create()
Set(Am_LEFT, 10)
.Set(Am_TOP, 43);

We allow the Sets to be chained together, but the previous code could instead be written:

Am_Object new_gate = And_Gate.Create();
new_gate.Set(Am_LEFT, 10);
new_gate.Set(Am_TOP, 43);

To make objects appear on the screen, they are simply added as a part to a window which
is added to the screen. Because all the graphics on the screen are represented by objects in
memory, changes to the screen are accomplished simply by setting the slots of objects with
new values. For example, the new_gate could be made red by simply doing:

new_gate.Set(Am_LINE_STYLE, Am_RED);
When slots are set, Amulet automatically redraws the object, as well as any other objects
that overlap it, so the screen is appropriately updated.

The following is the complete “hello world” program in Amulet, that displays a string,
and redraws the string if the window becomes covered and then uncovered. This program
would be about 2 pages long in Motif.

#include <amulet.h>
void main (void) {
Am_lInitialize (); /initialize Amulet

Am_Screen
/fadd a window to the screen using all of the default values

Add_Part (Am_Window.Create ()
Add_Part (Am_Text.Create () /create a text object and add it to the window
.Set (Am_TEXT, "Hello World!"))); //set the string
Am_Main_Event_Loop (); /display the window and then handle all input events
Am_Cleanup (); #clean up Amulet

}

3.2 Interactors

To make objects respond to input, an instance of an Interactor object is attached to the
graphics. Different types of Interactors handle different types of behaviors. For example,
to make the new_gate object be movable, a move-grow Interactor can be attached to it:

new_gate.Add_Part(Am_Move_Grow_Interactor.Create();
By default, the Interactor starts when the left mouse button is hit over the object, but this is
easily changed by setting a slot of the Interactor. The following will allow new_gate to be
selected with the right mouse button:

new_gate.Add_Part(Am_Choice_Interactor.Create()
.Set(Am_START_WHEN, “right_down”);

The Amulet Environment -7

When an instance is made of an object that has parts, then Amulet makes instances of all
the parts as well. Widgets, like buttons and scrollbars, contain graphical and Interactor
objects as parts, but the designer can make an instance of the widget in the same way as
instances of primitive objects are created:

Am_Object my_button = Am_Button.Create ()
.Add_Part(Am_COMMAND, Am_Quit_Command.Create()
.Set (Am_LABEL, "Goodbye, world!"))));

Y U

All of widgets in the Amulet library are defined with multiple looks-and-
can be written using Amulet, and it can then be compiled on Unix, Microsoft Windows or
the Macintosh without editing the source code, and it will have the correct look and feel for

the target platform.

3.4 Command Objects

When Interactors or widgets are operated by the user, instead of calling “call-back
procedures” as in other toolkits, they allocate an instance of a Command object, and
execute its “do” method. Command objects also support Undoing, Redoing and Repeating
operations, as well as enabling and disabling (graying out), and help for operations. Many
commands are available in the Amulet library and can often be used without change. The
code above uses the built-in Quit command, so my_button can be added to a window to
form the complete “goodbye world” program, which exits when the button is pressed.

3.5 Constraints

Another important feature of Amulet is the support for constraints, which are
relationships that are declared once and then maintained by the system. Amulet supports
multiple kinds of constraints, but the main kind is formula constraints, which act like
spreadsheet formulas. When put into a slot of an object, formulas compute the value of the
slot based on slots of other objects. Formula constraints can contain arbitrary C++ code,
and use a special form of Get (called Gv) that not only returns the value, but also registers
the constraint to be re-evaluated if the dependent value changes. For example, the left of
the scrolling region in Figure 1 stays to the right of the tool palette, even if the size of the
tool palette changes, by using the following formula in its am_LEFT slot:

/! define a formula called right_of _tool_panel_formula which returns an int
Am_Define_Formula(int, right_of_tool_panel_formula) {
/I 5 pixels away from the right of the tool_panel
return (int)tool_panel.GV(Am_LEFT) + (int)tool_panel.GV(Am_WIDTH) + 5;

}

's't.:rolling_window.Set(Am_LEFT, right_of_tool_panel_formuia);

The Amulet Environment -8

3.6 Gesture Recognition

One of the built-in types of interactor objects supports gesture recognition. Using an
interactive tool called “Agate”, the designer gives about 10 examples of each gesture
desired in the interface, and associates a string name with each gesture. Then, in the
program, the designer can associate each name with an operation. Built-in commands
provide a standard interface between the “normal” direct manipulation commands, for
example to create and delete objects, and the gestures. For example, part of the code to
handle gestures in the circuit program is:

Am_Object gesture_reader = Am_Gesture_Interactor.Create("gesture_reader")
lIgestures work when you hold down the right mouse button
.Set (Am_START_WHEN, "any_right_down")
/fan object to show the gesture while in-progress (interim feedback)
.Set (Am_FEEDBACK_OBJECT, gesture_feedback)
/Ithe gesture classifier read from a file that was created using the Agate tool
.Set (Am_CLASSIFIER, gc)
llfirst, a command to handle gestures that are not recognized
Add_Part(Am_COMMAND, Am_Gesture_Unrecognized_Command.Create())
llnow, a list of commands, one for each of the gestures defined by example
.Set (Am_ITEMS, Am_Value_List ()
llfirst, the gesture for the “And” gate
.Add (Am_Gesture_Create_Command.Create()
.Set (Am_LABEL, "and") //string defined in Agate for this gesture
.Set (NEW_OBJECT_PROTO, and_proto) /object to create
.Set (Am_CREATE_NEW_OBJECT_METHOD, gesture_creator))
/Inext, the gesture for the “OR” gate
Add (Am_Gesture_Create_Command.Create()
.Set (Am_LABEL, "or")
.Set (NEW_OBJECT_PROTO, or_proto)
.Set (Am_CREATE_NEW_OBJECT_METHOD, gesture_creator));

3.7 Animations

Amulet has a flexible constraint system, which allows new kinds of constraint solvers to
be created. We used this facility to create an animation constraint solver. When an
animation constraint is attached to a slot and the slot changes value, the animation constraint
removes the new value, re-sets the slot with the old value, and smoothly sets the slot with
values interpolated from the old value to the new value. For example, to move the little red
numbers along with wires in the circuit program, the following code is used:

The Amulet Environment -9

/ffirst create the animator object
Am_Object number_animator = Am_Interpolator.Create ();

/lnow create the prototype number to be moved
animation_proto = Am_Text.Create("animation_proto")
.Set(Am_TEXT, “0”)
Set(Am_FONT, small_font)
.Set(Am_LINE_STYLE, Am_Red)
.Set(Am_LEFT, Am_Animate_With (number_animator))
.Set(Am_TOP, Am_Animate_With (number_animator));

/lwhen ready to start an animation, first turn animations off and set the position
/lto one end of the wire .
anim.Set(Am_LEFT, (int)line.Get(Am_X1), Am_NO_ANIMATION);
anim.Set(Am_TOP, (int)line.Get(Am_Y1)-10, Am_NO_ANIMATIONY);
//then set the left and top again, to the other end of the wire, but this time letting
lithe animations make the object move smoothly
anim.Set(Am_LEFT, (int)line.Get(Am_X2));
anim.Set(Am_TOP, (int)line.Get(Am_Y2)-10);

4. Details of the Design

The Amulet toolkit is divided into a number of layers (see Figure 2). These layers
include an abstract interface to the window managers, novel models for objects,
constraints, input, output, and commands, and a set of widgets. The following sections
describe the overall design of each of these.

Widgets

Command Objects

“Interactors” “Opal”
Input Handling Output Handling

Constraint System

IIOR EII
Object System

“Gem!!
Graphics & Input Layer

Windows NT, Windows 95, X11, or
Macintosh

Figure 2: The overall structure of the Amulet system.

The Amulet Environment - 10

4.1. Gem: Abstract Interface to the Window Managers

Amulet provides a portable interface to various window managers called “Gem,” which
stands for the Graphics and Events Manager. Gem uses ordinary C++ objects and
mechanisms to provide a simplé graphics and input interface used by the rest of Amulet.
Any code written using Gem will port to different windowing systems without change.
Typical Amulet users never see the Gem interface, however, since the higher-level parts of
the Amulet toolkit provide access to the same capabilities in an easier way. The circuit
program of Figure 1 did not require any programming at the Gem layer. We export the
Gem interface for advanced Amulet users. If the programmer wants to make something
very efficient, calling Gem directly may be appropriate. For example, although widgets
such as buttons and scrollbars can be implemented using the high-level Opal output model,
as was done in Garnet [22], Amulet’s widgets are implemented more efficiently using

Gem-level drawing routines.

4.2. Object System

The “Ore” (Qbject Registering and Encoding) layer of Amulet implements a prototype-
instance object system on top of C++. In a prototype-instance object system, there is no
distinction between classes and instances: every object can be used as a prototype for other
objects. Slots of the prototype can be inherited by instances, so that changes to the
prototype’s slot will be seen by any instances which do not override it.

4.2.1 Slots

Programming with a prototype-instance object system is a quite different style than
conventional object-oriented languages. Much of the code is devoted to defining the slots
and default values for prototype objects, and then creating instances, possibly overriding
some slots. For example, to create an instance of the zero_one_proto object, which is the
prototype for the zero-one buttons, the program just does:

Am_Object new_obj = zero_one_proto.Create ()
.Set (Am_LEFT, new_obj_left)
Set (Am_TOP, new_obj_top);
Slots can be set with any type of value:

obj.Set(Am_LEFT, 40);
obj.Set(Am_TEXT, “Hello”);
obj.Set(OTHER_OBJ, and_gate1);

The object system is dynamic in that slots in objects can be added and removed from
objects at run time, and the types in slots can also change. Amulet performs run time type

checking if a type is declared for the slot.

The Amulet Environment - 11

To allow the same Set and Get to work for all types in C++, we provide accessor and
setting methods for the standard built-in types, void (untyped) pointers, Amulet objects,
and a special class called a “Wrapper.” Any new C++ type that the programmer wants to
store into objects and have Amulet type-check can be made a subclass of Wrapper. Amulet
will then also handle memory management for them.

C++’s overloading and type-conversion capabilities make the interface very convenient.
For example, the Am_Object class defines a number of Set routines:

Am_Object Set (Am_Slot_Key key, Am_Wrapper* value);
Am_Object Set (Am_Slot_Key key, void* value);
Am_Object Set (Am_Slot_Key key, int value);

Am_Object Set (Am_Slot_Key key, float value);
Am_Object Set (Am_Slot_Key key, char value);
Am_Object Set (Am_Slot_Key key, const char* value);

The compiler will choose the correct one based on which type is actually used. Note that
Set returns the original object, allowing Sets to be cascaded, so the code above could

instead be:
obj.Set(Am_LEFT, 40).Set(Am_TEXT, “Hello”).Set(OTHER_OBJ, and_gate1);

C++ does not allow overloaded functions to be chosen based on the return type, but we
were able to get around this by returning a special Am_Value type, which then has type-
conversion routines into the various primitive types. This allows code like:

int i = circuit_object_proto .Get(Am_VALUE);
bool b = this_command.Get(Am_GROW_INACTIVE);

/fthe next statement will work no matter what type is in the slot
Am_Value v = tool_panel.Get(Am_IMPLEMENTATION_PARENT);

if (v.type == Am_BQOOL) ...
In the last lines we use the special Am_Value type which permits programmers to

dynamically access and set the type and value.

4.2.2 Slot Inheritance

When an instance of an object is created, the slots that are not specified inherit their
values from the prototype object’s. If a slot of the prototype is changed, then the value also
changes in all of the instances that do not override that property. For example, changing
the Am_WIDGET_LOOK slot in the zero_one_proto will change the look in all instances,
so it is easy to see what the circuit program will look like when running on a Macintosh or
Windows. However, changing the Am_LEFT of the zero_one_proto will not affect
new_obj since it has a local value for Am_LEFT. If the programmer does not want this
behavior, then Amulet allows the inheritance of each slot to be specified as “copy” or
“local”. When an instance is made for a slot with copy inheritance, the value is copied into
a new slot created in the instance, so later changes to the prototype do not affect the

The Amulet Environment -12

instance. A slot can be declared “local”, so the slot does not appear in the instance at all.
This is useful for slots that hold information that is particular to the object. In the definition
of the circuit_object_proto, the slots that will hold the connect input and output wires are
declared to be local so that when copies or instances are made of an object, every instance
of a circuit element will have unique wires. Therefore, if the user duplicates a circuit
element, Amulet ensures that the copy will start off with its input and output slots empty.

The inheritance mechanism is an important distinction with other prototype-instance
object systems, such as SELF [4], in which all the slots are always copied into instances so
changes to prototypes never affect instances. Although Amulet’s model requires slightly
more overhead, we think it is useful for prototyping to be able to change properties of
prototypes and see the effect on all instances immediately.

4.2.3 Methods

An important feature of Amulet’s object system is that there is no distinction between
methods and data: any instance can override an inherited method as easily as inherited data.
In a conventional class-instance model such as SmallTalk or C++, instances can have
different data, but only sub-classes can have different methods. Thus, in cases where each
instance needs a unique method, conventional systems must use a mechanism other than
the regular method invocation. For example, a button widget might use a regular C++
method for drawing, but would have to use a different mechanism for the call-back
procedure used when the user clicks on the button, since each instance of the button needs
a different call-back. In Amulet, the draw method and the callback use the same
mechanism. In the circuit code, we set a method into the tool panel so that whenever the
user changes modes, the selection will be cleared. This method is coded as:

Am_Define_Method(Am_Object_Method, void, clear_selection,
(Am_Object /*emd*/)){
my_selection.Set(Am_VALUE, NULL);
}

and it can be put into a slot the same way as data is set into slots:
tool_panel.Get_Part(Am_COMMAND)
Set(Am_DO_METHOD, clear_selection);
4.2.4 Part-Owner Hierarchy

The object system also implements a part-owner hierarchy. The owner is usually a
“group” (aggregate) object or a window, and the parts are either other groups or primitives
like rectangles, lines and text. However, we have found many other uses for the part-
owner hierarchy that are independent of graphical relationships. Supporting the part-owner
hierarchy in the object system allows Amulet to provide “structural inheritance,” which

The Amulet Environment - 13

means that when an instance is made of a group which contains parts, the new instance will
have instances of all the prototype’s parts, as shown in Figure 3. Thus, programmers can
create instances of any type of object without knowing whether it is a primitive or a group,
and the system will make sure that the instance has the same structure as the prototype.
Changing the xor_gate from a simple bitmap to a group containing a bitmap and three lines
as input and output ports only required changing the prototype—none of the uses of the

prototype needed to change.

Am_Graphical_Object " Am_ Soreen
Am_Grou p jD- Win dow_74
circuit_object_proto Prototype: Scrolling_Group_72
-
~xor_proto ks Xor_58

Key: FTCTORE et fICTURE_59]
< |s Instance Of [OUTPUT_1_PORT |t 1_]

[=] s Pantof [RPUT_T_PORT]| g fNPUT_1_PORT_61
[NPUT_2_PORT] [NPUT_2_PORT &2]

Figure 3: The xor_proto object contains 4 parts: a bitmap called PICTURE, and output
and input ports which are instances of lines. The xor_proto is an instance of the
circuit_object_proto, which in turn is an instance of an Am_Group, which is an
Am_Graphical_Object. When an instance is made of the xor_prototype, Amulet
automatically creates instances of each of the parts. If instances are not named,
then Amulet makes up a name by appending a number. The instance, called
xor_58, has been made a part of a scrolling group, which is part of a window,
which is part of the screen, so it will be visible.

Some systems, such as FormsVBT [2] have hard-wired some slots to inherit values from
their prototypes and others to inherit from their owners. Because the constraint mechanism
is so easy to use and flexible in Amulet, it is sufficient to use constraints whenever slots

should get their values from their owners rather than from their prototypes.

Amulet also provides a special form of group called an Am_Map that computes its parts
dynamically. The Am_Map object uses a constraint to build a list of parts, usually based
on a single prototype object, called the “item prototype.” Typically, a list of strings,
objects, commands, or something else, is provided, and the Am_Map creates an instance of
the item prototype for each value in the list, setting a particular slot of the instance with the
corresponding value from the list. The programmer will define a constraint somewhere in
the item prototype that depends on the particular value copied from the list. Note that due
to the flexibility of Amulet’s constraint system (discussed below), any slot of the item can

The Amulet Environment - 14

depend on the list of values supplied. For example, a list of strings might be supplied for a
menu, a list of objects for a palette, or a list of locations for a scatter plot.

4.2.5 Other features

Amulet’s object system also contains many other features that may be useful for
programmers who need extra control. Automatic memory management using a reference
counting scheme is available for objects and “wrappers” (used to “wrap” C++ types so they
can be put into Amulet objects with full type-checking). A flexible “demon” mechanism
allows procedures to be attached to objects or slots for invocation when the slots change.
This mechanism enables Amulet to redraw objects when their graphical properties change.
Programmers can also create their own demons. Type checking of slots is supported by
Amulet, so that programmers can declare that a slot can only hold a specific kind of value.
A complete set of querying functions allows determining objects’ properties at run-time.
These are used by the debugging facilities described below, and they can also be useful for
application programs. All of these features are described in full in another paper [16].

4.2.6 Performance

The main disadvantage of the prototype-instance model over the conventional class-
instance model has been performance. When slots are accessed, the system must perform a
search through the object to see if the slot is there, and if not, it must search the prototypes
up to the root. The same search is needed for both method and data slots. Dynamic type
checking also adds some overhead. The forward and backward pointers and space for the
types add space overhead. The SELF prototype-instance system [4] uses extensive
compiler techniques to try to remove some of this search, but we have not found this
necessary, and the performance of the Amulet system is quite good. There are no
noticeable delays for normal size programs on a variety of modern hardware platforms.
For example, the circuit program executes fine on Unix, Macintosh and PC platforms.

We optimized our previous Garnet prototype-instance object system for speed by copying
all values to all instances, even if they were the same as the prototype’s. However, this
had a significant space penalty, so in Amulet, we only store the local slots, which in
practice is only about half of the slots.

The times for various Get and Sets are shown in the following table for Amulet compiled
fully optimized. The Unix timings were performed on a Sun SPARC 20, the Macintosh
timings on a PowerMac 8500/150, and the PC timings are on a 133 MHz Pentium running
Windows 95.

The Amulet Environment

Times in
Microseconds Get Slot Set Slot
Unix 2.5 2.9
Mac 1.7 1.9
PC 1.7 1.4

4.2.7 Discussion

There are many advantages of the prototype-instance model. Having no distinction
between classes and instances, or between methods and data, means that there are fewer
concepts for the programmer to learn and a consistent mechanism can be used everywhere.
Another advantage of the prototype-instance object system is that it is very dynamic and
flexible. All of the properties of objects can be set and queried at run time, and interactive
tools can easily read and set these properties. In fact, most of today’s toolkits implement
some form of “attribute-value pairs” to hold the properties of the widgets, but Amulet’s
object system provides significantly more flexibility and capabilities.

Amulet’s predecessor, Garnet, also used a prototype-instance object system [21], as have
a few other systems such as SELF [4], Apple’s NewtonScript and General Magic’s
MagicCap. Amulet’s design is more complete and flexible, and we fixed a number of
problems we experienced with Garnet, including adding control over the inheritance of
slots, automatic management of a part-owner hierarchy along with the prototype instance
hierarchy, support for multiple constraint solvers, and a flexible demon mechanism.
Finally, it is worth pointing out that we are able to provide dynamic slot typing, a dynamic
prototype-instance system, and constraints in C++ without using a preprocessor or a

scripting language.

Garnet supported multiple inheritance, but we found it was not useful or necessary. In
Amulet, we instead use the constraint mechanism to copy values among objects, which
provides complete flexibility and control. Omitting multiple-inheritance has simplified
much of Amulet’s implementation leading to an easier-to-understand object creation
procedure and better efficiency when searching for slots. It also eliminates the ambiguity
and complexity for the programmer of resolving collisions of slot names from multiple

prototypes.

Although designed to support the creation of graphical objects, many Amulet users have
discovered that the prototype-instance object system is useful for representing their internal
application data. The flexibility and dynamic nature of the objects make them ideal when
varied and changing data types are necessary. Amulet objects are somewhat like “frames”
used by artificial intelligence systems, so Al applications may find the model useful. The

The Amulet Environment - 16

constraint system is also useful for maintaining data dependencies and consistency in

application-specific data structures.

4.3. Constraints

Amulet integrates constraint solving with the object system. This means that instead of
containing a constant value like a number or a string, any slot of any object can contain an
expression which computes the value. If the expression references slots of other objects,
then when those objects are changed, the expression is automatically re-evaluated. Thus,
the constraints are primarily “one-way,” like those of Artkit [9] and Rendezvous [7]. This
kind of constraint resembles a spreadsheet formula, so it is called a “formula constraint” in
Amulet. Constraint expressions can contain arbitrary C++ code, and the only restriction is
that accesses to slots of objects must use a special function, called GV. In addition to
returning the value of the slot, GV also sets up a dependency link so that the constraint will
be re-evaluated when the other object changes.

Currently, Amulet does not use a preprocessor, so the syntax for specifying constraints is
a little verbose. The macro Am_Define_Formula creates a constraint object of the specified
name uvsing the code that follows. The constraint object stores a pointer to the procedure to
execute, the name of the constraint for debugging and tracing, and the list of slots used by
and using this constraint. As an example, the following constraint from the circuit program
determines the picture used for the zero-one buttons based on the value. Note that
constraints can return any type. Here, the constraint is returning an image array, which is
Amulet’s machine-independent representation for a bitmap.

Am_Define_Image_Formula(zero_one_formula) {
int value = self.GV(Am_VALUE);
if (value ==1) return one_image;
else if (value == 0) return zero_image;
else return question_image;
}
obj.Set(Am_IMAGE, zero_one_formula);
The circuit program uses 24 custom constraints not counting all the constraints that are built
into the objects themselves (for example, the built-in Am_Text object has constraints in its
width and height slots that compute its dimensions based on the current string and font).
Formulas are set into slots using the standard Set. In the future we hope to add a pre-
processor to support a conventional “dot” notation for slot access (obj.slot) and to allow

constraint expressions to appear inside the Set instead of only as a top-level procedure.

Slots are accessed the same way whether they contain constraints or constant values, and
the code containing the Get normally does not know how the value was calculated. For

The Amulet Environment -17

example, the button widget does not care that the image was computed with a constraint.
The object system is tied into the graphics system using demons so that whenever the value
of a slot changes, either because the programmer set it or due to constraints, the object will

be redrawn automatically.

wm @l
zero_one_58 wire_32
ALUE

zero_one_ 5
INPUT _1)/

ALUE OR ey
wire_32 Obijects
PICtuLeL {jBEutton) VALUE Slots
D —» Constraint depends on
[==] is Part of

Figure 4: The VALUE slot of the zero_one objects have a constraint that depends on
either the value of the input wire, if it exists, or else the value of the button if
there is no wire (if the INPUT_1 slot is NULL). The button in the PICTURE
slot has a constraint that depends on the value for the zero_one object so it will
have the right value when there is a wire. This creates a cycle of constraints.

The Amulet constraint solver handles cycles in the constraints, so that a slot of object A
can depend on a slot of object B and vice versa. This is used in the circuit program so that
the zero-one buttons get their values from the input wires if present, and if not present then
the value comes from the toggle button. This is implemented, as shown in Figure 4, by
having a constraint from the zero-one-proto to the button, and another constraint from the
button to the zero-one value. In evaluating circular constraints, Amulet simply goes around
the cycle once, and uses the old value of any constraint that is already being evaluated. If
the programmer uses constraints that are consistent, the values will be correct and this can

be an effective way to set up mutual dependencies.
4.3.1 Indirect Constraints

The Amulet constraint system supports dynamic computation of the objects to which a
constraint refers, so a constraint can not only compute the value to return, but also which
objects and slots to reference. This allows such constraints as “the width is the maximum
of all the components” which will be updated whenever components are added or removed
as well as when one of the components’ position changes. An example from the circuit

program is that the value of a gate is computed by first accessing the input wire objects

The Amulet Environment - 18

from the INPUT slots of the gate, and then indirectly accessing the value of the line
objects. For example, the value of the OR gate is calculated using the formula:

Am_Define_Formula(int, OR_value) {
Am_Object in_line_1 = self. GV(INPUT_1);
Am_Object in_line_2 = self. GV(INPUT_2);
if (in_line_1.Valid() && in_line_2.Valid()) {

int v1 = in_line_1.Get(Am_VALUE);
int v2 = in_line_2.Get(Am_VALUE);
return vi | v2;

}

else return -1; //return for when have an illegal value
}

Most other constraint systems cannot handle these kinds of constraints. These “indirect
constraints” [31] are also important for supporting object inheritance. When an instance is
created of an object, Amulet also creates instances of any constraints in that object. These
constraints refer to other objects indirectly using the structure of the groups. For example,
in Figure 3, the constraint for the top of the INPUT_1_PORT is computed based on the
center of the picture, which is its sibling in the part-owner hierarchy:

Am_Define_Formula(int, picture_center_y) {
Am_Object picture = self.GV_Sibling(PICTURE);
return (int)picture.GV(Am_TOP)+(int)picture. GV(Am_HEIGHT)/2;

Note that even though many input and output port objects share this same constraint, they
will each calculate different values because the pictures will be at different places.

4.3.2 Multiple Constraints

Amulet also allows slots to contain multiple constraints at the same time. We find this
very useful for situations where an inherited formula is necessary for the correct operation
of an object, but the programmer wants an additional formula so values can flow in
multiple directions. For example, we set a constraint into the Am_VALUE slot of the
button widgets used in the zero-one objects to display the value of the input port, if any.
Internally, however, the button widget uses a constraint in the Am_VALUE slot to make
the slot change values when the user clicks on the widget. Both of these constraints can
co-exist in the Amulet constraint system. When there are multiple constraints in a slot,
normally only one will become invalid at a time, and so that one will be the one that is
requested to recalculate the slot’s value. When multiple constraints become invalid at the
same time, Amulet evaluates the constraint that first becomes invalid.

4.3.3 Side Effects

Our experience with Garnet suggested that people wanted to put side effects into
constraint expressions, and use them like “demon procedures” or “active values.”

The Amulet Environment - 19

Therefore, Amulet’s constraints are eagerly evaluated and can contain arbitrary side effects,
even creating and destroying objects. For example, a constraint is used in the Am_Map
object to create the instances of the item prototype based on the list in the Am_ITEMS slot.
This constraint creates objects which themselves will contain constraints which need to be
evaluated. Another use is that even though formula constraints must be put into a single
slot, they can have the effect of multiple outputs by simply setting the other slots as side
effects. For example, for efficiency, the constraint on the first end point of the wires are
put into the X1 slot, but also sets the Y1 slot:

Am_Define_Formula(int, line_x1y1) {

Am_Object source_obj = self. GV(INPUT_1);

int x1 = (int)source_obj.GV(AmM_WIDTH) + (int)source_obj.GV(Am_LEFT);
int y1 = (int)source_obj.GV(Am_HEIGHT)/2 + (int)source_obj.GV(Am_TOP);
self.Set(Am_Y1, y1); //set Y1 by side effects for efficiency

return xi1;

}

Unlike previous systems such as Rendezvous [7], Amulet does not require the
programmer to use a special mechanism for side effects: the regular Set and Create calls are
used. This works because we store any new constraints that need to be evaluated in a
queue. When a constraint evaluation creates new constraints that need to be evaluated, they
are simply added to the end of the queue. Amulet continues to evaluate constraints on the
queue until the queue is empty, at which point Amulet redraws the objects that have

changed.

When using side effects in constraints, programmers must be careful to avoid situations
that will create an infinite loop. Constraints without side effects will always be evaluated
exactly once each time the values change, since Amulet orders the constraint evaluation and
checks for cycles of constraints, as discussed above. However, a programmer could set up
a set of constraints that invalidated each other through side effects. If the constraints are
consistent, so that slots are set to the same values no matter which constraints are used,
then the evaluation will terminate even if the constraints contain cycles of dependencies and
side effects. However, if the constraints calculate and set different values, an infinite loop

can result.
4.3.4 Multiple Solvers

An important research area in user interface software is creating new kinds of constraint
solvers (e.g. [6, 9, 30]). Therefore, Amulet contains an architecture that allows multiple
solvers to co-exist. Currently, in addition to the one-way solver described above, Amulet
supports a multi-output, multi-way solver called a “web,” and an animation constraint

solver.

The Amulet Environment -20

The web constraint can have an arbitrary number of input and output slots, and it can
dynamically compute the dependencies like formula constraints. Webs also keep track of
the order that dependencies change. We use this solver to keep the various slots of lines
and polygons consistent. The line object has two sets of input slots. One set is point based
and has slots called X1, Y1, X2, and Y2. The other set is rectangle-based and has slots
called LEFT, TOP, WIDTH, and HEIGHT which are set when the line is moved without
changing its orientation. However, if the slots X1, TOP, and WIDTH were set, the normal
one-way formula mechanism would not necessarily evaluate the constraints in the correct
order, but the web maintains the original order of slot changes, so the final result will be

correct.
4.3.4.1 Animations

We have also created an novel animation constraint solver for animating objects [24].
Adding animation to interfaces is a very difficult task with today’s toolkits, even though
there are many situations in which it would be useful and effective. An animation
constraint detects changes to the value of the slot, immediately restores the original value,
and causes the slot to take on a series of values interpolated between the original and new

values.

The advantage over previous approaches is that animation constraints provide
significantly better modularity and reuse. The programmer has independent control over
the graphics to be animated, the start and end values of the animation, the path through
value space, and the timing of the animation. Animations can be attached to any object,
even existing widgets from the toolkit, and any type of value can be animated: scalars,
coordinates, fonts, colors, line-widths, vertex lists (for polygons), booleans (for

visibility), etc.

A number of built-in animation constraints are used for special effects. For example,
Figure 5 shows the effects of different constraints added to the Visible slot of a pop-up
menu. A library of useful animation constraints is provided in the toolkit, including
support for exaggerated, cartoon-style effects such as slow-in-and-slow-out, anticipation,
and follow-through [5]. The programmer can also create custom animation types, if the

built-in ones are not sufficient.

The Amulet Environment -21

Push
SRS Push me too |

cption RMeni Fiirst iiam : ; :
Sdddas e Option Menu Firet item

At R,
w1 memnipiiuiie
S

Another menu item

N +iwe

@ | ®)

Figure 5: Animation constraints can be added to the VISIBLE slot of a popup menu to
make it (a) fade in using halftoning or (b) grow from the top.

Often, animation constraints can be added to an existing application with only a single
extra line of code, which makes it easy to explore many new uses for animations. For
example, undoing operations can animate the objects back to their original appearance,
which makes it easier for users to see what has happened. Of course, animations can also
be used to construct games (see Figure 6) and dynamic visualizations. The code to support

this animation in the circuit program is only about 30 lines.

= -

Figure 6: The ships, bullets and bombs are controlled by simple moving animators. For
example, the bullets can be sent to the top of the screen by simply attaching an
animation constraint to their TOP slot and then setting that slot to -10.

The Amulet Environment -22

4.3.4.2 Design

We were able to add animation and Web constraints to Amulet without modifying the
object system because there is a standard protocol that allows new solvers to be added.
Every slot can contain two lists of constraints: the set of constraints that depend on the
value of the slot, and the set of constraints on which the slot depends. Various messages to
the slots themselves are available to the constraints, including:

* Set (to change the value of the slot),

* Invalidate (to notify the slot that its current value is not valid), and

* Get (to access the current value).
The messages that slots can send to constraints include:

* Change (for when the slot’s value changes),

» Invalidated, which notifies all the constraints on a slot that some other constraint has

caused this slot to be invalid (this causes the invalidation to be propagated), and

* Get, which requests the constraint to calculate a new value for the slot.
The slot sends the Get message whenever the value of the slot is requested, and the
constraint is expected to generate a response. A constraint always has the option of not
returning a value, in which case the slot sends the Get message to a different constraint., If
no constraints return a value, then the slot will keep its original value and consider itself
valid. The main research questions in this scheme are: in what order will constraints be
sent the Get message, and how can multiple solvers coordinate setting the same slot? The
policy implemented for Amulet is straight-forward, and just queries the constraints in the
order they become invalid. Since practical constraints used for graphics do not usually
compete, this policy has proven adequate. As we develop more constraint solvers, we will

continue to investigate this issue.
4.3.5 Performance

For formula constraints which are valid (which already have the correct value), getting
the value takes the same time as a regular Get, as reported above. The table below shows
the times if the value of the slot needs to be recalculated. This includes the time to evaluate
the constraint function and maintain the dependencies. We will be investigating why Unix

seems so much slower than the other times.

Times in Formula
Microseconds re-evaluation
Unix 37.1
Mac 12.4
PC 19.7

The Amulet Environment -23

4.4. Opal Output Model

The graphical object layer of Amulet is called Opal, the Object Programming Aggregate
Layer. Opal hides the graphics part of Gem and provides a convenient interface to the
programmer by using a retained object model, also called a structured graphics model or a
display list. The programmer creates instances of the built-in graphical object prototypes,
like rectangles, lines, text, circles, and polygons, and adds them to a group or window.
Then Amulet automatically redraws the appropriate parts of the window if it becomes
uncovered, or if any properties of the objects change. This frees the programmer from
having to deal with refresh. Objects can simply be created and deleted and their properties
can be set. Furthermore, Opal automatically handles object creation and layout when the

data can be displayed as lists or tables.

Opal makes heavy use of the object and constraint models of Amulet. Of course, all
graphical objects are Amulet objects. Adding parts to graphical groups simply uses the
ORE-level Add_Part routine. Due to structural inheritance, the programmer can simply
create instances or copies of groups in the same way as primitive objects, and the object
system will automatically make instances or copies of the parts. The properties of objects
that programmers do not care about can simply be ignored because they will inherit
appropriate default values from prototypes. Due to this integration, simple programs are

quite short.

The retained object model allows Amulet to provide many facilities that must be
programmed by applications in other toolkits, including automatic refresh, as shown in
Figure 7. Amulet uses a relatively efficient algorithm that calculates which objects will be
affected when the object is erased, and redraws only the affected objects from back to
front. Double buffering is typically used to minimize flicker. The following table shows
the time it takes to redraw a small rectangle when its position is changed.

Times in Direct Drawing
Milliseconds Double Buffered| to the screen
Redraw on Unix 1.53 1.05
Redraw on Mac 1.91 1.46
Redraw on PC 2.1 0.53

The Amulet Environment - 24

Figure 7: A collection of Opal objects. The color of the star can be changed by simply
setting its FILL._STYLE slot, and Amulet will redraw the star and the other
objects that overlap it. The Amulet toolkit includes selection handles shown
around the rectangle which support selecting, moving and growing one or more
objects.

4.5. Interactors

Programming interactive behaviors has always been the hardest part of creating user
interface software, especially since most toolkits and window managers only provide a
stream of raw input events for each window which the programmer must interpret and
manage. Garnet introduced the “Interactor” model for handling input [18] which we
refined in Amulet. Each Interactor object type implements a particular kind of interactive
behavior, such as moving an object with the mouse, or selecting one of a set of objects. To
make a graphical object respond to input, the programmer simply attaches an instance of the
appropriate type of Interactor to the graphics. The graphical object itself does not handle

input events.

Internally, each Interactor operates similarly. It waits for a particular starting event over a
particular object or over any of a set of objects. For example, an Interactor to move the
circuit elements of Figure 1 would wait for a left mouse button down over any of the circuit
elements. When that event is seen, the Interactor starts running on the particular object
clicked on, processing certain events. The moving Interactor processes mouse move
events, while looking for a left button up event, or an abort event (usually Control-G,
Command-dot, or ESC). While the Interactor is running, the user is supplied feedback,
either as a separate object (such as a dotted rectangle following the mouse), or by having
the original object itself move. If the Interactor is aborted because the user hits an
appropriate key or by a program calls the abort method, the original object is restored to its
original state, the feedback object is hidden, and the Interactor goes back to waiting for a
start event. If the Interactor completes normally (because the mouse button was released),
then the feedback is hidden, the graphical object is updated appropriately, and a “command

The Amulet Environment -25

object” is allocated (sec Section 4.7). Interactors are highly parameterized so that the
programmer can specify the start, end, and abort events, the objects the Interactor operates
over and uses for feedback, along with other aspects such as gridding or how many objects
can be selected. As aresult, Amulet’s six types of Interactors are sufficient to cover all the
behaviors found in today’s interfaces. Evidence for this claim is that in none of the 30 or
so applications that have been created so far with Amulet, or the hundreds of applications
that were created with Garnet, did programmers ever need to go around the Interactors to
get to the underlying Window Manager events.

The six types of Interactors currently in Amulet are:

* Choice Interactor, which is used to choose one or more object from a set. The user
can move the mouse among the objects (getting interim feedback) until the correct item
is found, and then there will often be final feedback to show the final selection. The
Choice Interactor can be used for selecting among a set of buttons or menu items, and
for choosing among the objects that have been dynamically created in a graphics
editor. Parameters to the Choice Interactor include whether a single or multiple items
can be selected.

* One Shot Interactor, which is used to cause something to happen immediately
when an event occurs, for example when a mouse button is pressed over an object, or
when a particular keyboard key is hit.

* Move Grow Interactor, which is used to have a graphical object move or change
size with the mouse. It can be used for dragging the indicator of a scroll bar widget,
or for moving and growing objects in a graphics editor. Parameters support gridding
and minimum sizes.

* New Points Interactor, which is used to enter new points, such as when creating
new objects. For example, you might use this to allow the user to drag out a rubber-
band rectangle for defining where a new object should go. Parameters include how
many points are needed for the object, gridding, and minimum sizes.

* Text Edit Interactor, which supports editing the text string of a text object.
Parameters include a flexible key translation table so that the programmer can easily
modify and add editing functions. The built-in functions support the standard text
editing behaviors.

* Gesture Interactor, which supports free-hand gestures, such as drawing an “X”
over an object to delete it, or encircling the set of objects to be selected. Gestures can
be defined by example using the “Agate” gesture trainer (see Figure 8), and can be
easily added to conventional direct manipulation interfaces without writing much
additional code. For example, adding gestures to the circuit program took about 50

The Amulet Environment -26

lines of code, most of it to associate the seven gestures with the appropriate existing
command. Gesture recognition in Amulet uses an algorithm created by Dean Rubine
[28].

Y

I cnezero | and

Add class | Delete c}.asnl

Claszs: [ngt LAl &

fa)

35

Delete ucanplnl =

N

R e oo s

Figure 8: The Agate interactive tool allows gestures to be created by example. Here, the
gesture set defined for the circuit program is shown. A file is written describing
the gestures which can then be read by a gesture Interactor and used in
applications. “Agate” stands for A Gesture-recognizer And Trainer by Example
and is based on a similar tool in Garnet [14].

The Interactors are implemented using Amulet objects, so parameters are simply slots the
programmer can set, or leave at their default values. Constraints can also be used to
compute the parameters. For example, the Am_ACTIVE slot of an Interactor often
contains a constraint depending on the global mode, and a constraint in a single move-grow

The Amulet Environment 27

Interactor might determine whether objects are moved or grown based on which mouse

button was held down.

Normally, the Interactor operates on the object it is attached to. An important feature of
Amulet’s Interactors is that they can also operate on a set of objects. For example, the
choice Interactor can select among any elements of a group, and the move-grow Interactor
can be attached to a window to manipulate any object added as a part of the window. By
default, Interactors make this choice based on the type of object they are attached to (group
vs. non-group), but the programmer can explicitly specify which is desired.

As an example of the use of Interactors, in the circuit program, the following code is used
to create new lines. Note that the constraint line_tool_is_selected is used to make this
behavior be available only when the correct tool in the palette is selected.

created_objs
.Add_Part (Am_New_Points_Interactor.Create("create_line")
.Set(Am_AS_LINE, true) /want to create a new line
.Set(Am_FEEDBACK_OBJECT, Ifeedback)/feedback while dragging
.Set(Am_CREATE_NEW_OBJECT_METHOD, create_new_line)
.Set(Am_ACTIVE, line_tool_is_selected))

The circuit program uses the selection handles widget provided by the Amulet library to
select and move objects, so no new code needed to be written for these functions. The
following are some examples from other applications that show how Interactors can be
used for moving and selecting objects. Note that in the simplest cases, an object can be
made interactive with a single line of code:

/Hallow my_object to be moved while the left mouse button is held down
my_object.Add_Part(Am_Move_Grow_Interactor.Create());

/allow any part added to my_group to be grown using the right button

my_group.Add_Part(Am_Move_Grow_Interactor.Create()
.Set(Am_GROWING, true)
.Set(Am_START_EVENT, “RIGHT_DOWN"));

/Hallow one or more parts of my_group to be selected with the left button
my_group.Add_Part(Am_Choice_Interactor.Create()
Set(Am_HOW_SET, Am_CHOICE_LIST_TOGGLE));

4.5.1 Discussion

The Interactor model is a successful implementation of the “Model-View-Controller” idea
from Smalltalk [12]. The model contains the data, the view presents the data, and the
controller manipulates the view. Most previous systems, including the original Smalltalk
implementation, had the View and Controller tightly linked, in that the controller would
have to be reimplemented whenever the view was changed, and vice versa. Indeed, many
later systems such as Andrew [26] and InterViews [15] combined the view and controller

The Amulet Environment - 28

and called both the “View.” In contrast, Amulet’s Interactors are independent of graphics,

and can be reused in many different contexts.

Another common design in other systems is to just have each graphical object have a
standard set of methods or events that it handles, for example for becoming selected and
moving. Visual Basic is an example of this design the programmer can code methods that
are activated when the user clicks on or drags an object. There are a number of advantages
to Amulet’s design of having explicit objects (the Interactors) representing the behaviors of
the graphics. First, it provides significantly greater reuse for such common features as
gridding, undo, and enabling and disabling operations, since these are provided in a single
place, instead of being re-implemented with each graphical object. Second, being able to
analyze, inspect, and manipulate the behavior objects makes debugging and tracing easier,
and enables external agents, tutors and alternative interfaces like speech and gestures to
control the interface without modifications to the graphical objects or the existing behavior

logic.

4.6. Widgets

Amulet supplies a complete set of widgets, including pull-down menus, buttons, check
boxes, radio buttons, text-input fields, scroll bars, etc. Each widget has a different
drawing routine for the Motif, Microsoft Windows, and the Macintosh look and feel (see
Figure 9). Amulet re-implements all the widgets rather than using the built-in widgets from
the various toolkits so that we can provide flexibility and control to programmers who want
to investigate new behaviors. This is necessary, for example, to create a scroll bar with
two handles [1] or to support multiple people operating with a widget at the same time for a
multi-user application. Widgets are completely integrated with the object, constraint and
command models, so properties of widgets can be computed by constraints, and the actions
of widgets are represented by command objects (see section 4.7), so they are easily
undone. The various kinds of button and menu widgets can accept strings, bitmaps or
arbitrary Amulet objects to display as the labels (most other toolkits only allow strings or
bitmaps). This is easy in Amulet since there is a standard way for the buttons to query
objects for their size and tell them where to draw. In the circuit program, the actual
prototypes of the gates are displayed in the button panel, so it was not necessary to
construct bitmap pictures of the gates. Since widgets are objects, it is easy to use
constraints to compute their parameters. This design is used in many places in the circuit
program, for example to enable and disable the widgets based on the appropriate global
state, and to lay them out appropriately. Amulet’s widgets also have an extra parameter to
disable them without greying out, which was added so the actual widgets can be used by

The Amulet Environment - 29

interface-builder programs which need the widgets to be selected and moved when clicked
on, instead of performing their normal functions. This feature proved useful for the circuit
program as well, since the zero-one button prototype is disabled when displayed in the tool
panel, but we do not want the number to be grayed out.

Butbml [(:u!tE v Hamburger Cola C Cola
\s ChesessBurgay Rootbesr (" ChesseBurger Rootheer
| Bandwlich v Bandwich Orange
- « Hot Dog Sxmge | ¢ Txbeiveg .
Fries ke I~ Pries ey
- £ Chicken = i fa Chichen Lenrnald
[T prink Pl onle bl | [prink -
; \s Fish Coffee = LT Coffes
J Ll Hot Checolate e Hot Choocolate
Nme:l i "-'“i

(5] O mewmee=
A

CheegeBurger
O g

X Bandwich) Hot Dog Hat:
Fri Lemcnaid
O i @ Chicken
& priak O Fish Coffee
D Prize Hot Chocolate

Nme:'

S)

Figure 9: Some of the widgets in Amulet with the Motif, Windows 95, and Macintosh
look-and-feel in a window running under Motif. All of the widgets are
implemented using Amulet intrinsics, and the choice of the look-and-feel is
controlled by a slot which defaults to an appropriate value for the particular
machine, but can also be set explicitly.

In addition, Amulet supplies other widgets for the insides of application programs. For
example, the selections-handles widget implements the familiar squares around the edges of
graphical objects that show what is selected and allows the selected objects to be moved
and resized (see Figure 7). The circuit program uses this widget as well, but disables the
growing of objects, since they must stay the same size. All other toolkits require
programmers to re-implement selection handles and all their standard behaviors in every
application, but in Amulet, programmers only need to add an instance of this widget to their

window .

4.7. Command Objects

Often, the Interactors and widgets operate simply by setting the appropriate slots of
objects and having the values computed by constraints. For example, toggling the zero-
one button changes its value, and all other values are computed with constraints. In other
cases, extra actions are required. Rather than using a “call-back procedure” as in other

The Amulet Environment - 130

toolkits, Amulet allocates a command object and calls its “Do” method [23]. Amulet’s
commands also provide slots and methods to handle undo, selective undo and repeat,
enabling and disabling the command (graying it out), help, and “balloon help” messages.
Thus, unlike MacApp [33], the command objects provide a single place for describing a

behavior.

Furthermore, commands promote re-use because commands for such high-level
behaviors such as move-object, create-object, change-property, become-selected, cut,
copy, paste, duplicate, quit, to-top and bottom, group and ungroup, undo and redo, and
drag-and-drop are supplied in a library and can often be used by applications without
change. This is possible because the retained object model means that there is a standard
way to access and manipulate even application-specific objects. The circuit program uses
the standard operations from the library.

The commands in Amulet are hierarchical, so that a behavior may be composed of high-
level and low-level commands [23]. For example, a scroll bar command might internally
use a move-object command. This improves modularity and re-use because each command
is limited to its own local actions. This feature was necessary for the circuit program
because the built-in Delete commands know how to delete the selected objects, but would
not have deleted the attached wires. Therefore, the circuit program needed another
command to delete the attached wires, and this was linked to the built-in command. This
command contained an undo method to put the wires back.

4.7.1 Undo

All of the built-in operations in Amulet support undo. Thus, if programmers use the
standard Interactors and command objects, all operations are automatically undoable
without writing any extra code. If the programmer creates custom commands that perform
application-specific actions, like deleting the wires when the gates are deleted, then a
custom undo method will have to be written as well. However, we have found that the
Amulet object and constraint models make writing undo methods very easy since any
needed data can be stored as slots in the command objects, and due to constraints, undoing

operations is usually only a matter of resetting some slots.

Amulet’s commands also support investigation of various undo mechanisms. Currently,
Amulet supplies three different undo mechanisms that the developer can choose from:
single undo like the Macintosh, multiple undo like Microsoft Word Version 6 and Emacs,
and a novel form of undo and repeat, where any previous command, including scrolling
and selections, can be selectively undone, repeated on the same object, or repeated on a
new selection [23]. Figure 10 shows the experimental dialog box which is supplied to

The Amulet Environment - 131

support this new style and allow users to select a previously executed command.
Researchers can also create their own undo mechanism and integrate it into the Amulet

system.

21. Repeat Change color <Am Polygon 10359> =
20. Belect Am Rectangle 925 = LIST(3) [Am Axe
19, Select Rm Axrc 933 = LIST(2) [Am Arc 942
18. Unde Change color <Am Polygon 1059> = LIS
17, Change coloxr <Am Are 942> = Am Blue

16. Belect Am RArc 942 = LIST(1) [Am_ Arc 942]

15. Change <oloxr <hm Polygon 1059> = Am Red

14. Bcroll Vertical = 0
13. Belect Em Polygen 1059 = LIST{1l) [Am Poly

12. Create Bm Polygom 1059
&

i r_ Record Selections
10. Change ¢olor <Am Rectangle 825> = Lm Oxany| #

11%(F3). Bcxroll Vertical = 4490

I_ Record Scrolling

N e e P

Undo I.ast'.l Reicity Tnulonna -Z’:)mundl Uncdo 'Ihisl Repeat 'I'hisl

Repeat This on Current Selscrtiml Flash Objectl I-}:q).h:uxl

Mark Command. .. | Dmal

Figure 10: The experimental dialog box that allows users to access the regular undo and
redo operations (the first two buttons below the scrolling list). Other buttons
operate on the command selected in the list (here, number 15), and will undo it,
repeat it, or repeat it on new objects. “Flash Object” shows the object associated
with the command. The “Expand” button will allow a command which operates
on multiple objects to be separated into separate commands. Commands can be
“Marked” to allow them to be repeated with a single keystroke. Command 11
has been marked with the F9 keyboard key as an accelerator. The display of
each command shows the action, the name of the objects affected, and the new
value. The radio buttons on the right cause scrolling and selection commands to
be queued, so that, for example, an accidental deselection of a set of objects can
be undone.

5. Debugging Tools

Debugging interactive applications requires additional mechanisms than supplied with
conventional development environments. Amulet provides an interactive Inspector that
displays the object’s properties, traces the execution of Interactors, pauses, single-steps
and traces animations, and displays the dependencies of constraints (see Figure 11). From
the Inspector, programmers can also set breakpoints or have messages printed whenever

The Amulet Environment -32

the value of a slot changes. Furthermore, extensive error checking (when debugging is
enabled) and helpful messages make Amulet applications easy to develop and debug. We
try to make sure that programmers using Amulet never see “Segmentation fault” or other

common but unhelpful C++ error messages.

Inspecting: Hire T33>

Instance of<lire>

Part of<oreated obis>

[Elote: Eoxrbed by name.

AS_LINE 11

HEIGHT {constraint =HEB® 0x20e92c) 3123

HIT_THREGHOTD 0

INACTIVE COMONDE 1<Line M3 _Inactive 734>

INPUT 1 :<hnd Gate 101>

INPUT_PLACE 13

N VALUE [0 TIPSR e walue andm 0153 £ IS
FT {constraint =*REE* 0x20e§7c) 1116

LING_BTYLE »Am Black i

OUTFUT_3 :<Or Gate 717>

OUTPUT PLACE 51

TOP (canstraint =*WHEBY m:20e32c) 263

VRAIDE 11

VISIBLIE :

83usit RO

| BT
Ox 150 £d4

ep o out
| in slot IN_VALUE of<Wirae 733>
| INPUT 1 of<Wire 733> = <And Gake 701>
VAIVE of<ind Gate 701> = 1
Contains Constraint and value Oxl15Sc54
INPUT_1 of<ind Gabe_7015 = <Nirm 1216>
VALUE of<iiire 1216> = 1
INFUT 2 of<lind_Gate T01> = <Wire 1225%
VA : 1226>

Figure 11: Inspecting a wire in the circuit program, and the constraint in its Am_VALUE
slot. The slots which are inherited are shown in blue. Notice that the names of
methods, constraints and objects are shown.

6. Status and Future Work

The current version of Amulet (V2.0) has been released for Unix, Windows NT,
Windows 95, and the Macintosh (to get Amulet, see http://www.cs.cmu.edu/~amulet).
There are over 30 projects all over the world using this version, and Figure 12 shows a few
examples of the applications built with Amulet. Version 3, which includes support for
animations and the Macintosh and Windows 95 look-and-feel, will be released soon.

In the future, we will be investigating techniques to support speech recognition, 3-D,
visualizations, World-Wide Web access and editing, and multiple people operating at the
same time (also called Computer-Supported Cooperative Work — CSCW). An important
focus will be on interactive tools that allow most of the user interface to be specified
without conventional programming. Our ultimate goal is to allow the user interface
designer to simply draw examples of the graphics of the interface, and then demonstrate the
interactive behaviors to show how the interface should react to the user. The motivation for
this is that whereas today’s programming frameworks such as MacApp [33], have

The Amulet Environment -133

demonstrated productivity gains of factors of 2 to 5, interactive tools like HyperCard, the
NeXT Interface Builder, and Visual Basic have demonstrated productivity gains of factors
of 10 to 50. We want to create an interface builder for Amulet to lay out widgets, which
will probably incorporate ideas from SILK, where gestures can be used to sketch interface
ideas [13]. Another tool in progress is GAMUT, which is an interactive tool for creating

games and educational software by demonstration [17].

18 o focons Visal e on Gl M

file Edit &8 fetions
SUBRIUTING cankldih) 4mmmm - T
H INTRINSIC mod TR
! INTEGERM i, j, k. 1 . Remap Data
H REAL*8 b, newb, oldb . Irelevanit Code
i DIMENSION b (300, 200, 100) i Fod
H l=1 s Stnde Veclor
a— 0«1, W 1 -
}m+.=._.....=~ Bh § = 1, 200, 1 - Pccess Matrix.
oldb = b (1, j. i) Referancs info
: frray
1 = (-50298)+300+5+60000+i Lt fmiiesat
MR ﬁb k = 2, ggg- i
).,,),,. newb = 0.25+k (1+k, j, i)+0.25+01db+0.5%b (k, j, i)
}m oldb = bk, j, i)
p b(k 3§, i) = newb
1 = (~60299) +k+300+5+60000+i
ENDDO
1 = (-59999) +300+§+60000%i
ENDDO
ENDDO
RETURN
END
7
— I P
Roady.

o |

Flle ‘Edlt ﬂplluﬂs Node Leuout Coter Stule Shige

. Ph
Initial T . "”“‘%
@ ® 7

Uariables

Types

|

. Called == K
Conns —3~
Final . Net —>
™, n
™,
® |
Select Usry I
7

) J-

Figure 12: Examples of two applications built using Amulet. The top one is the Data
Access Visualization Environment, a program designed to aid programmers in
optimizing and parallelizing Fortran programs. (Courtesy of Galen C. Hunt,
Computer Science Department, University of Rochester.) The bottom picture is
of a system to visualize the counter-examples discovered by the Nitpick analyzer
for software specifications in Z, created as a class project by Craig Damon and
Geoff Langdale at CMU.

The Amulet Environment -34

7. Related Work

Amulet builds on many years of work on user interface toolkits (see [19] for a survey).
It is primarily influenced by our previous Garnet toolkit [22]. The main other research
project investigating the prototype-instance model is SELF [4]. There are many differences
between the SELF and Amulet models, however. SELF is its own language, so it does not
have to integrate with an existing language. SELF uses a pure copy-down semantics, so
after an instance is created, changes to the prototype are not reflected in the instances.

Finally, SELF does not support constraints.

There are many research systems which support constraints. The idea for indirect
constraints and integrating constraints with a prototype-instance object system originated in
Garnet [30]. EVAL/vite [8] integrates constraints with C++ by using a preprocessor and a
special sub-language for the constraints. EVAL/vite is a one-way solver like Amulet’s
formula constraints. MultiGarnet [29] integrated a multi-way solver with Garnet’s one-
way solver, and inspired Amulet’s goal for providing an architecture to make this kind of
investigation easier. Rendezvous [7] was designed to help create multi-user applications in
Lisp. Like Amulet, Rendezvous allows multiple one-way constraints to be attached to a
variable. However, Rendezvous requires that variables be explicitly declared and uses a
different implementation algorithm. Also, Rendezvous requires that all side-effects from
constraints be deferred. The Artkit toolkit [10] provided a mechanism to support
animations, but it did not use the constraint system and it required writing new methods for

each object which was to be animated.

Amulet’s Interactors model is based on Garnet’s [18]. Using command objects to
support undo was introduced in MacApp [33] and has been used in many systems
including InterViews [32] and Gina [3]. Katie [11] introduced the idea of hierarchical
events and explored some implementation issues. There is a long history of research into
various new undo mechanisms, and Amulet is specifically designed to allow new
mechanisms to be explored. The selective undo mechanism in Amulet is closest to the Gina
mechanism [3], but adds the ability to repeat previous commands, and to undo selections

and scrolling.

8. Conclusions

We are very excited about the potential for Amulet to be a useful and efficient platform on
which to perform user interface research. We hope it will also be popular for user interface
education and for the implementation of real systems. The innovations in Amulet and the

The Amulet Environment - 135

integration of novel object, constraint, input, output, command, and undo models, make it

effective for supporting both today’s and tomorrow’s user interfaces.

Acknowledgments

We want to thank the many users of Amulet who have helped us find bugs and improve
the system. For help with this paper, we would like to thank Bernita Myers.

References

1. C. Ahlberg, C. Williamson, and B. Shneiderman. “Dynamic Queries for Information
Exploration: An Implementation and Evaluation,” in Proceedings ACM CHI’92
Conference. 1992. pp. 619-626.

2. G. Avrahami, K.P. Brooks, and M.H. Brown. “A Two-View Approach To
Constructing User Interfaces,” in Proceedings SIGGRAPH’89: Computer Graphics.
1989. Boston, MA: 23. pp. 137-146.

3. T. Berlage, “A Selective Undo Mechanism for Graphical User Interfaces Based on
Command Objects.” ACM Transactions on Computer Human Interaction, 1994. vol.
1, no. 3, pp. 269-294,

4. C. Chambers, D. Ungar, and E. Lee, “An Efficient Implementation of SELF, a
Dynamically-Typed Object-Oriented Language Based on Prototypes.” Sigplan
Notices, 1989. vol. 24, no. 10, pp. 49-70, ACM Conference on Object-Oriented
Programming; Systems Languages and Applications; OOPSLA’89.

5. B.-W. Chang and D. Ungar. “Animation: From Cartoons to the User Interface,” in
Proceedings UIST’93: ACM SIGGRAPH Symposium on User Interface Software
and Technology. 1993. Atlanta, GA: pp. 45-55.

6. M. Gleicher. “A Graphics Toolkit Based on Differential Constraints,” in Proceedings
UIST’93: ACM SIGGRAPH Symposium on User Interface Software and
Technology. 1993. Atlanta, GA: pp. 109-120.

7. R.D. Hill, “The Rendezvous Architecture and Language for Constructing Multiuser
Applications.” ACM Transactions on Computer-Human Interaction, 1994. vol. 1,
no. 2, pp. 81-125,

8. S.E. Hudson, “A System for Efficient and Flexible One-Way Constraint Evaluation in
C++,” 1993, Graphics Visualizaton and Usability Center, College of Computing,
Georgia Institute of Technology: 10.

9. S.E. Hudson and I. Smith. “Ultra-Lightweight Constraints,” in Proceedings UIST’96:
ACM SIGGRAPH Symposium on User Interface Software and Technology. 1996.
Seattle, WA: pp. To appear.

10. S.E. Hudson and J.T. Stasko. “Animation Support in a User Interface Toolkit:
Flexible, Robust, and Reusable Abstractions,” in Proceedings UIST’93: ACM
SIGGRAPH Symposium on User Interface Software and Technology. 1993.
Atlanta, GA: pp. 57-67.

11. D.S. Kosbie and B.A. Myers. “Extending Programming By Demonstration With
Hierarchical Event Histories,” in Human-Computer Interaction: 4th International

The Amulet Environment - 136

Conference EWHCI’94, Lecture Notes in Computer Science, Vol. 876,. 1994.
Berlin: Springer-Verlag. pp. 128-139.

12. G.E. Krasner and S.T. Pope, “A Description of the Model-View-Controller User
Interface Paradigm in the Smalltalk-80 system.” Journal of Object Oriented
Programming, 1988. vol. 1, no. 3, pp. 26-49,

13. J. Landay and B.A. Myers. “Interactive Sketching for the Early Stages of User
Interface Design,” in Proceedings SIGCHI’95: Human Factors in Computing
Systems. 1995. Denver, CO: pp. 43-50.

14. J.A. Landay and B.A. Myers. “Extending an Existing User Interface Toolkit to
Support Gesture Recognition,” in Adjunct Proceedings INTERCHI’93: Human
Factors in Computing Systems. 1993. Amsterdam, The Netherlands: pp. 91-92.

15. M.A. Linton, J.M. Vlissides, and P.R. Calder, “Composing user interfaces with
InterViews.” IEEE Computer, 1989. vol. 22, no. 2, pp. 8-22,

16. R. McDaniel and B.A. Myers, “A Dynamic And Flexible Prototype-Instance Object
And Constraint System In C++,” 1995, Carnegie Mellon University Computer
Science Department: also Human Computer Interaction Institute CMU-HCII-95-104.

17. R.G. McDaniel. “Improving Communication in Programming-by-Demonstration,” in
Conference Companion for CHI’96: Human Factors in Computing Systems. 1996.
Vancouver, BC, Canada: pp. 55-56.

18. B.A. Myers, “A New Model for Handling Input.” ACM Transactions on Information
Systems, 1990. vol. 8, no. 3, pp. 289-320,

19. B.A. Myers, “User Interface Software Tools.” ACM Transactions on Computer
Human Interaction, 1995. vol. 2, no. 1, pp. 64-103,

20. B.A. Myers, “The Amulet V2.0 Reference Manual,” 1996, Carnegie Mellon University
Computer Science Department:

21. B.A. Myers, D. Giuse, and B. Vander Zanden, “Declarative Programming in a
Prototype-Instance System: Object-Oriented Programming Without Writing
Methods.” Sigplan Notices, 1992. vol. 27, no. 10, pp. 184-200, ACM Conference
on Object-Oriented Programming; Systems Languages and Applications;
OOPSLA’92.

22. B.A. Myers, “Garnet: Comprehensive Support for Graphical, Highly-Interactive User
Interfaces.” IEEE Computer, 1990. vol. 23, no. 11, pp. 71-85,

23. B.A. Myers and D. Kosbie. “Reusable Hierarchical Command Objects,” in
Proceedings CHI’96: Human Factors in Computing Systems. 1996, Vancouver, BC,
Canada: pp. 260-267.

24. B.A. Myers. “Easily Adding Animations to Interfaces Using Constraints,” in
Proceedings UIST’96: ACM SIGGRAPH Symposium on User Interface Software
and Technology. 1996. Seattle, WA: pp. To appear.

25. B.A. Myers and M.B. Rosson. “Survey on User Interface Programming,” in
Proceedings SIGCHI’92: Human Factors in Computing Systems. 1992. Monterey,
CA: pp. 195-202.

26. A.J. Palay. “The Andrew Toolkit - An Overview,” in Proceedings Winter Usenix
Technical Conference. 1988. Dallas, Tex: pp. 9-21.

The Amulet Environment - 37

27. R. Pausch, N.R. II Young, and R. DeLine. “SUIT: The Pascal of User Interface
Toolkits,” in Proceedings UIST’91: ACM SIGGRAPH Symposium on User
Interface Software and Technology. 1991. Hilton Head, SC: pp. 117-125.

28. D. Rubine. “Specifying Gestures by Example,” in Proceedings SIGGRAPH’91:
Computer Graphics. 1991. Las Vegas, NV: 25. pp. 329-337.

29. M. Sannella. “SkyBlue: A Multi-Way Local Propagation Constraint Solver for User
Interface Construction,” in Proceedings UIST’94: ACM SIGGRAPH Symposium
on User Interface Software and Technology. 1994. Marina del Rey, CA: pp. 137-
146.

30. B. Vander Zanden, “An Incremental Algorithm for Satisfying Hierarchies of Multi-
way, Dataflow Constraints,” 1995, Computer Science Department, University of
Tennessee: 55.

31. B. Vander Zanden, “Integrating Pointer Variables into One-Way Constraint Models.”
ACM Transactions on Computer Human Interaction, 1994. vol. 1, no. 2, pp. 161-
213,

32. J.M. Vlissides and M.A. Linton, “Unidraw: A Framework for Building Domain-
Specific Graphical Editors.” ACM Transactions on Information Systems, 1990. vol.
8, no. 3, pp. 204-236,

33. D. Wilson, Programming with MacApp. 1990, Reading, MA: Addison-Wesley
Publishing Company.

