Equivalence Checking Using Abstract BDDs

S. Jha Y. Lu M. Minea E. M. Clarke

October 29, 1996
CMU-CS-96-187

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

We introduce a new equivalence checking method based on abstract BDDs
(aBDDs). The basic idea is the following: given an abstraction function, aB-
DDs reduce the size of BDDs by merging nodes that have the same abstract
value. An aBDD has bounded size and can be constructed without construct-
ing the original BDD. We show that this method of equivalence checking is
complete for an important class of arithmetic circuits that includes integer
multiplication. The efficiency of this technique is illustrated by experiments
on ISCAS’85 benchmark circuits.

The reseach was sponsored in part by the National Science Foundation (NSF) under
grant no. CCR-9217549, by the Semiconductor Research Corporation (SRC) under con-
tract 95-DJ-294, and by the Wright Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under
grant F33615-93-1-1330.

The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied,
of NSF, SRC, ARPA or the U.S. Government.

Keywords: consistent function, binary decision graph, binary decision di-
agram(BDD), abstract BDD.

1 Introduction

Formal verification is becoming extremely important as the size of VLSI cir-
cuits keeps increasing. Binary decision diagrams (BDDs) [1] have proved to
be critical for the success of many of these verification techniques. BDDs can
handle medium size circuits very efficiently. Numerous techniques have been
developed in order to handle larger circuits. Some of these techniques are
improved data structures, typed edges, static variable ordering, and dynamic
variable reordering. Breadth-first techniques have been developed that re-
duce cache misses during traversal. Recently, a new data structure called a
Binary Moment Diagram (BMD) [3] has been introduced to deal with arith-
metic circuits. Hybrid Decision Diagrams (HDDs) [6] combine MTBDDs [4]
and BMDs to deal with both control and arithmetic circuits.

Although all of these methods are useful, none provides an upper bound
for the BDD size. Thus, the node explosion problem for BDDs still exists.
Kimura [7] has proposed the use of residue BDDs, which have bounded size,
to overcome this problem. He has used them successfully to verify some large
arithmetic circuits. In this paper, we generalize the idea of residue BDDs
and define a new data structure called an abstract BDD (aBDD). Given an
abstraction function, aBDDs reduce the size of BDDs by merging nodes that
have the same abstract value. We prove that aBDDs have bounded size
and can be built directly from combinational circuits. Residue BDDs are
a special case of aBDDs. In fact, our results explain exactly when residue
BDD techniques work. Some of the disadvantages of residue BDDs are also
eliminated. For example, it is known that residue BDDs may not work well
on control circuits. Qur results show that aBDDs can be used effectively for
both arithmetic and control circuits, providing in some cases a size reduction
of more than two orders of magnitude.

Our paper is organized as follows. In Section 2 contains the basic defini-
tions, lemmas and theorems that are needed to insure the correctness of our
method. A condition that guarantees a canonical representation by aBDDs
is given in Section 3. Section 4 discusses a method for equivalence checking
using aBDDs. Some experimental results are reported in in Section 5, and
we conclude with Section 6.

2 Abstract BDDs

Let B = {0,1}.- B™ is the set of 0-1 vectors of size n. A 0-1 vector of size
¢ will be denoted by & = (zq, -+, z;—1). The concatenation of vectors ¥ and
¥ is written as & - §. For example, (0,0,1) - (1,0) is the vector (0,0,1,1,0).
The symbol 0; represents the vector of all zeroes of length 3.

An abstraction function is a surjection a : B® — D, where D is some
arbitrary range. In general, an abstraction function may map multiple values
of the domain B” to a single value in the range D. Usually the range D will
be much smaller than the domain B". The size of D is denoted by |D)|.

An abstraction function @ : B® — D induces an equivalence relation on
vectors in B™: for Z,i € B™ define ¢ = y iff A(z) = h(y). The equiv-
alence relation = partitions the 0-1 vectors into equivalence classes. We
choose unique representatives from each equivalence class and construct a
representative function 2 such that h(z) is the unique representative in the
equivalence class of z. From the initial abstraction function @ we have thus
generated a function A : B® — B™. Hence, we can assume without loss of
generality that the range of the abstraction function is B™. Moreover, it is
easy to see by construction that A is idempotent, i.e, 2{(h(Z)) = h(Z). Next,
we define what it means for the abstraction function function h : B® — B"
to be consistent.

Definition 1 An abstraction function 2 : B® — B" is called consistent iff
for all 1 < i <n, VZ,§ € B the following equation is true.

WE-Opi) =h(F-0ns) = VZ€ B " [R(Z-2) = h(F-2)]

For example, consider the abstraction function A : B® — B"™ induced by a
linear abstraction function a defined below:

n—1
a((aco, v 7mn—1)) = Z b,x,
1=0

where b; (0 < ¢ < n — 1) are real numbers. It is not hard to see that A is
a consistent abstraction function. As a different example, the function that
computes the residue of a positive integer with respect to a prime number
is also a consistent abstraction function (we assume the usual conversion
between integers and bit vectors). In the remainder of this paper we will
assume that all abstraction functions are both consistent and idempotent.

4

An abstraction function A : B®™ — B" induces an abstraction function
h' : B® — B' in the following way: given an & € B’, h'(Z) is the vector
consisting of the first ¢ bits of A(Z - 6,1_1) When the size of the domain is
clear from the context, we will still use A to denote A’.

Let f : B® — B be an n-argument boolean function. An abstraction
function h : B® — B"™ induces a transformation on boolean functions ac-
cording to the following relation. We denote the transformed function as fj,
and define it as follows:

Jo = foh

Lemma 1 Let f,p,q: B* — B be boolean functions, ® any logic operation,
and h : B — B" be an abstraction function. If f = p@gq, then fr = pr ® qs.

Proof: Let ¥ € B” be an arbitrary vector. We have the following equa-
tions:

fu(@) = (foh

The result follows. O
We next show how the above results can be applied when representing

boolean functions by binary decision graphs.

Definition 2 A levelized binary decision graph (levelized BDG) with n levels
is a 7T-tuple (V, left,right, level, 19,11, r00t), where

e 1 is the set of nodes.

left : (V-{to,t1}) — V is the left child function with the restriction
that level(v) = level(left(v)) — 1.

right : (V-{to,t1}) — V is the right child function with the restriction
that level(v) = level(right(v)) — 1.

level : V — {0,---,n}.

o iy € V is the zero node with level(v) = n.

e t; € V is the one node with level(v) = n.

e root € V is the distinguished root node and level(root) = 0.
o Tor all v € V-{{o, %1}, 1 < level(v) <n— 1.

Given a levelized BDG T, we define a function noder : |J, B — V. Let
p € B be a 0-1 vector or path of length i. noder(p) = v iff we get to node
v by following the path p from the root. Notice that a levelized BDG T
corresponds to a boolean function 8(7) : B* — B in the following manner:

* O(T)((y1,- -, yn)) = 0iff noder((y1,---,yn)) = to.
o (1) (91, +>yn)) = 1iff noder((y1,- -, yn)) = t1.

Given an abstraction function & : B® — D, we show how to construct an
abstract levelized BDG from a given levelized BDG. Without loss of gener-
ality, assume we have chosen the representative z of an equivalence class to
be the lexicographically least element in that equivalence class. Therefore, if
< denotes lexicographical ordering, and h(z) = z, then & < y for all y such
that h(z) = A(y).

The algorithm that constructs an abstract levelized BDG is given in Fig-
ure 1. Its arguments are a node v € V and a vector path € U ,B* rep-
resenting the path from the root to that node. The initial call to the al-
gorithm is DFS(root,€), where ¢ denotes the empty vector. The algorithm
maintains a cache of pairs (v, path), which is initially empty. The routine
lookup_cache(p') returns the node v’ such that (v',p’) is in the cache.

Lemma 2 Let T be a levelized BDG, A : B* — B™ be an abstraction
function, and T} be the corresponding abstract levelized BDG as constructed
by the DFS algorithm. Then the boolean function &(7}) corresponding to T},
is the transformation under h of the boolean function (7") corresponding to

T:

b(Th) = b(T)n
— bT)oh

function DFS (v, path)
P’ = h(path);
if p’ # path
v' = lookup_cache(p');
return v';
else
if nonterminal(v)
left(v) = DFS(left(v),path - (0));
right(v) = DFS(right(v), path - (1));
endif;
insert_cache(p’,v);
return v;

endif

Figure 1: Pseudocode for transformation of levelized BDG

Proof: Given a path p, the arguments to our procedure are (noder(p), p).
The algorithm DFS visits nodes in lexicographical order of their paths. Let
p be a path such that h(p) = p. Since p is lexicographically less than all
the paths p’ such that A(p’) = p, the node noder(p) will be visited before all
the nodes noder(p') where h(p') = p. Hence, when the procedure is invoked
with the parameters (noder(p’),p’) the pair (noder(h(p')), h(p')) is already
in the cache. In this case, DI'S will return the node noder(h(p')), and hence
noder, (p') = noder(h(p')). We still must prove that this relation is true
for any node reached in the subtree rooted at noder(p’) by following down
an arbitrary path y. Since the subtree of noder, (p') is same as the subtree
of noder, (p), we have noder, (p’' - y) = nodeg,(p - y) = noder(h(p-y)) =
noder(h(p'-y)). The last equality holds because % is a consistent abstraction
function and k(p’) = h(p), and therefore h(p' - y) = h(p-y). Since we have
now proved that noder, (p) = noder(h(p)) holds for any path p, the desired
result follows from the definition of b(7}). O

Given a levelized BDG T, let n; be the number of nodes v € V whose
level is 4. The width of T' is max!'> n;.

Lemma 3 Given an abstraction function h : B® — D and a levelized BDG

T, the width of T), is less than or equal to |D)|.

Proof: Let p; and p, be two paths of length ¢ such that A(p;) = A(p2). In
the levelized BDG T}, we have noder, (p1) = noder, (p2). Thus, if two paths
p1 and po agree on the abstraction value, then they lead to the same node.
Hence, at each level the number of nodes in the levelized BDG T} is bounded
by the size of the range of k. O

Let ® be an arbitrary operation on boolean functions. The lemma given
below states that abstraction of levelized BDGs can be done compositionally.

Lemma 4 Assume that we have three levelized BDGs T, T, and T?. If
b(T) = b(T") © b(T?), then we have the following equation:

b(Th) = b(T,) @ b(T;)
Proof: The proof follows from the following equations:

b(Tr) = b(T)n (By Lemma 2)
= b(T")r © b(T?);, (By Lemma 1)
= b(Ty) ®b(T}) (By Lemma 2)

Levelized BDDs are obtained from levelized BDGs in the following man-
ner: Given an levelized BDG T', we merge two nodes v and v’ (whose level
is the same) iff the subtrees rooted at them are isomorphic. Reduced or-
dered BDDs, on the other hand, add an extra level of optimization because
redundant nodes are removed, as described in [1]. For example, Figure 2
gives the BDD for the function (2o V ;). Figure 3 shows the corresponding
levelized BDD for the function (zq V 21). Because of the merging of isomor-
phic subtrees, we must modify algorithm DFS. We call our new algorithm
BDD_DFS and it is described in Figure 4. Given a levelized BDD T' (which
is a levelized BDG), T}, is called an abstract BDD or aBDD. Notice that the
aBDD obtained in this manner is levelized.

In the algorithm given in Figure 4, T, denotes the subtree rooted at the
node v. T, &~ T,y means that the trees rooted at v and v’ are isomorphic.

3 Uniqueness of Representation

Assume that we have two boolean functions f and ¢ and let Ty and T, be the
levelized BDDs for f and g. Given an abstraction function k, h(Ty) # h(T,)

8

Figure 2: Example:BDD for 2o V 2,

Figure 3: Example:Levelized BDD for (z¢ V z4)

function BDD_DFS(v,path)
p’ = h(path);
if p’ # path
v' = lookup_cache(p');
return v’;
else
if nonterminal(v)
left(v) = DFS(left(v),path - (0));
right(v) = DFS(right(v), path - (1));
if there exists v; in cache such that 7, = T,
return vy;
endif;
endif;
insert_cache(p’,v);
return v;
endif

Figure 4: Pseudocode for modified DFS of levelized BD Ds

10

implies that f # g, but (7)) = h(1,) does not necessarily imply that f = g.
In other words, aBDDs are not canonical. In this section we prove that with
some restrictions we can obtain the canonicity property.

Definition 3 A function f : B™ — B™ respects the abstraction function
h: B" — B™, if and only if

Va,y . h(z) = h(y) = f(z) = f(y)
In particular, f(h(z)) respects h for any abstraction function 4 : B® — B™.

Lemma 5 Let f: B® — B be a boolean function which respects an abstrac-
tion function h: B® — N™. Let TS be the levelized BDD for f. In this case,

T/ =17,

Proof: Let p; and p, be paths of length ¢. Moreover, assume that h(p;) =
k(p:). Each node v in the BDD T corresponds to a boolean function. We
denote the boolean function corresponding to the node v by b(v). Since f
respects h, we have f(p1) = f(p2). Then the following holds.

b(noders(p1)) = b(noders(p2))

In BDDs, nodes at the same level which represent the same boolean func-
tion are identified. Since TV is a BDD, noders(p1) = noders(pz). Sup-
pose we execute the algorithm BDD_DFS on the levelized BDD T7. Be-
cause of our observation, whenever we call BDD_DFS with the arguments
(noders(p1), p1) and (nodeqs(ps), p2) such that h(p1) = h(p2), we are guaran-
teed that noders(p1) = noders(pz). Hence, the algorithm BDD_DFS leaves
T intact.O

A set of abstraction functions {h1,--,h,}, where h; : B® — B™ for
1 < ¢ < pis said to preserve the domain B™ iff given two vectors £ and ¢
such that ¥ # ¢ there exists a k such that 2x(Z) # hr(¥). As an example, for
n = 32, the abstraction functions corresponding to taking the modulus with
respect to 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 preserve the domain {0, 1}32. This
follows from the Chinese remainder theorem.

Let f : B™ — B” be a function and A& : B* — B" be an abstraction
function. Given a function f : B® — B", we represent it by a vector of
n boolean functions (fi, -, fn). Assume that we are given a function f

11

and a set of p abstraction functions {Ay, -, h,} where h; : B® — B". Let
(f1, -+, fa) be the array of boolean functions corresponding to f. Let 7% be
the levelized BDD corresponding to the boolean function f;o0h;. Since f;oh;
respects hj, Lemma 5 implies that 7,7 = T%. Let M(f) be a m x p matrix of
aBDDs such that M(f);; = T3’ = T*. The matrix is schematically shown
below:

Tl!l .es Tlvp
T2,1 . T2,p
Tm,l . Tm,p

The theorem given below proves that under certain conditions M(f) is a
canonical representation for f.

Theorem 1 Assume that f: B®™ — B"™ and ¢ : B® — B" are two functions.
Let (f1,---, fa) and (g1,- -, gn) be the corresponding arrays of boolean func-
tions. Also assume that h; : B® — B"™ (1 < i < p) is a set of abstraction
functions that preserves the domain B". If we have h; 0 f = h; 0 f o h; and

hiog=h;ogoh;foralll <i<p,then f=giff M(f)= M(g).

Proof

It is obvious that if f = g, the corresponding matrices are equal, M(f) =
M (g). Consider the case f # g. This means that there exists a vector @ € B™
such that f(@) # ¢g(d). Since the set of abstraction functions 4; preserves
the domain B", there exists a k, where hx(f(@)) # hr(¢(d@)). From the
hypothesis, we conclude that hgx(f(2x(@))) # hie(g(hx())), and therefore,
f(he(@)) # g(he(@)). Since both f and g are arrays of boolean functions,
there must be a j for which f;(h(d)) # g;(hz(d)). This means that f; o Ay
is different from g; o hy and therefore M(f) # M(g). O

As an example, consider the function mult : B® — B™ which multiples
two integers with % bits (we are assuming no overflow). For a vector & =
(o, ...,%i—1) € B* we define val(Z) = YiZyx; * 2. The function mult is
defined by the following equation:

val(mult(zo, -+, 2n_1)) = wval(zo,---, :c%_l) * val(:c%,- L, Ty)

where £ mod p denotes the residue with respect to a positive integer p. As-
sume that we have m relatively prime positive integers pi, ..., p, such that

12

PL-P2--Pm = 2". Let h; : B™ — B™ be the abstraction function corre-
sponding to taking the residue with respect to p;. By the Chinese remainder
theorem, the set of abstraction functions {hy,--, hy,} preserves the domain
B™. Moreover, h; o f = h; 0 f o h; because

(zxy)mod p; = ((z mod p;)+* (y mod p;)) mod p;

for any positive integer p (* denotes the multiplication of integers). Trans-
lated into our notation the equation given above becomes

hiomult = h;omultoh;

Therefore, mult satisfies the condition in the hypothesis and the theorem ap-
plies to this scenario. More generally, this theorem will be true for arithmetic
functions with residue abstractions.

4 Equivalence checking using aBDDs

Because of their bounded size, aBDDs can be used to verify the equivalence
of large circuits. The general procedure is as follows.

1. Given a circuit, choose a set of appropriate abstraction functions.

2. Select an abstraction function A out of the set.

3. Build aBDDs for the specification and the implementation circuit using
the abstraction function A.

4. Compare the two aBDDs that are obtained for specification and im-
plementation. If they are different, an error is detected. Otherwise, choose
a different abstraction function from the set and repeat step 3 until all ab-
straction functions in the set have been considered.

Next, we give a description of our algorithm. Since our algorithm to build
an aBDD assumes that we are working with a levelized BDD, we have to
levelize a BDD before we apply our abstraction algorithm. For example,
assume that f = p A ¢. Assume we have already built the aBDD for p and ¢
(with respect to the abstraction function k). Lets call these aBDDs #(7T},) and
h(T,). Next, we build the BDD corresponding to A(T,) AR(T,). After that we
levelize the BDD and apply our abstraction algorithm to obtain the aBDD
for f (technically, applying abstraction is redundant, as shown in lemma 4).

13

In general, levelizing a BDD can be a very expensive operation. Hence,
we have devised a method which does not have to construct the levelized
BDD explicitly. If a BDD is reduced instead of levelized, there may be
nodes missing along some paths from the root to the terminal nodes. We
implicitly visit the missing nodes without creating them and only construct
the necessary additional nodes while performing abstraction.

Let us use an example to describe the algorithm. Assume that we have
an abstraction function A and circuit in Figure 5. The aBDD associated
with line z is A(T,). At the beginning, let us assume that we have aBDDs
at input lines a,b,¢,d. By performing the and operation, we have BDD
T. = h(T,) A (1) at line e. Next we perform abstraction on levelized BDD
of T, and obtain the aBDD A(Z.). The same procedure is performed on line
f. After we obtain aBDDs on both lines e and f, aBDD for output g can be
generated by using the same method.

a

o [r-

D

Figure 5: Example:Building aBDD from Circuits

¢}

D

Finally, we describe an optimization which we call delayed abstraction.
Given a BDD f, building the abstract BDD can be quite expensive. If we
have to perform the abstraction after each BDD operation, our algorithm
can take a long time. We have modified our algorithm so that we only apply
the abstraction operation, when the BDD sizes exceed a certain pre-set limit.

5 Experimental Results

We have implemented our algorithm in C. OQur experiments were performed
on a Sun SPARC 10 workstation with 200 Mbytes of memory. The experi-
ments were performed on the ISCAS’85 benchmark circuits. Table 1 presents

14

the comparison of our method to the traditional OBDD method. The results
for aBDDs without delayed abstraction are given in the table below. The
abstraction function used is

n
a(To, -, Tn) = Y T
1=0

In Table 1, Maz # Nodes is the maximum number of BDD nodes that
appear in memory, which is usually much larger than the final BDD size.
Avg. Time is the average time to detect a design error. The OBDD results for
c2670, c6288 and c7552 are not reported because they exceeded the memory
limit.

| circuits | Errs Det.Errs | Max # Nodes Avg.Time]
| OBDD | aBDD | OBDD | aBDD | OBDD aBDD
c432 202 202 151 6239 4604 1.45 8.75

c499 288 288 270 96508 9481 | 22.74 18.35
c880 210 510 299 | 698891 | 10507 | 138.25 66.19
c1355 912 912 843 | 132984 | 10296 | 32.95 47.57
cl908 | 756 752 629 | 105424 6386 | 35.95 26.07

c2670 10 | unable 5 — | 132593 - | 5449.37
¢3540 100 100 41 | 1582309 9927 | 299.89 107.98
cb315 10 | unable 10 — | 208795 - | 4618.01
c6288 10 | unable 6 - 7317 — 86.52
c7552 10 | unable 9 — | 366462 - 111963.65

Table 1. Comparison between OBDD method and aBDD method

We compare the results with and without delayed abstraction in Table 2.
M, denotes the aBDD without delayed abstraction. M, denotes the aBDD
with delayed abstraction and a pre-set node limit of 500, i.e., the abstraction
function is only applied to BDDs with more than 500 nodes.

15

| circuits | Errs | Det.Errs | Max # Nodes Avg.Time }

| My | M M, M M | M,
c432 10 10| 10 4511 4617 8.82 1.49
c880 10 8| 10 7589 8167 66.64 27.19
c2670 10 5 6 | 132593 | 64363 | 5449.37 | 2315.64
c6288 10 6 6 7317 | 11407 86.52 61.34
c7552 10 9| 10 | 366462 | 184764 | 11963.65 | 2750.45

Table 2. Comparison of Different aBDDs

6 Conclusion

In this paper, we present a new transformation on BDDs, called abstrac-
tion, which produces BDDs of bounded size. The transformed BDDs are
called aBBDs and can be constructed directly from the circuit, without first
generating the original BDDs. This technique makes it possible to show
inequivalence of combinational circuits. If the aBDDs for two circuits are
different, then the circuits correspond to two different boolean functions. On
the other hand, if the two circuits are equivalent, the boolean functions may
still be different. In spite of this lack of completess, experimental results
show that the technique is able to find a suprisingly large number of errors in
practice. Moreover, we identify an important class of functions for which this
technique is complete. This class includes many common arithmetic circuits
including integer multiplication.

References

[1] Randal E. Bryant, ”Graph-Based Algorithms for Boolean Function Ma-
nipulation”, IEFE Trans. on Comput., Vol. C-35, No.8, pp.677-691,
Aug. 1986.

[2] Randal E. Bryant, ”Binary Decision Diagrams and Beyond: Enabling
Technologies for Formal Verification”, Proc. Intl. Conf. Comput. Aided
Design, pp.236-243, 1995.

16

[3] Randal E. Bryant, Yirng-An Chen, ”Verification of Arithmetic Circuits
with Binary Moment Diagrams”, 32nd Design Automation Conference,
pp-535-541, 1995.

[4] Edmund M. Clarke, K. L. McMillan, Xudong Zhao, Masahiro Fujita,
Jerry C.-Y. Yang, ”Spectral Transformation for Large Boolean Func-
tions with Applications to Technology Mapping”, 80th Design Automa-
tion Conference, pp.54-60, 1993.

[5] Edmund M. Clarke, Orna Grumberg, David E. Long, "Model Checking
and Abstraction”, ACM Transactions on Programming Languages and
System, Vol.16, No.5, pp.1512-1542, Sept. 1994.

[6] Edmund M. Clarke, Masahiro Fujita, Xudong Zhao, "Hybrid Decision
Diagrams: Overcoming the Limitations of MTBDDs and BMDs”, Proc.
Intl. Conf. Comput. Aided Design, pp.159-163, 1995.

[7] Shinji Kimura, ”Residue BDD and Its Application to the Verification of
Arithmetic Circuits”, 32nd Design Automation Conference, 1995.

17

