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Abstract

Image morphing techniques can create a smooth transition between two images. However,
one of the main weakness of the image morphing technique is that intermediate images in
the transition often have physically incorrect shading such as highlights and shadows. More-
over, we cannot alter viewing and lighting conditions when creating the intermediate
images. That is because those images are obtained by simply interpolating pixel intensities
of the two 2D images without knowledge of 3D object shape and reflectance properties. In
this context, 3D shape morphing techniques have a definite advantage in that arbitrary view-
ing and illumination conditions can be used for creating new images. Unfortunately, previ-
ous 3D morphing techniques do not account for object surface reflectance properties or
reflection models when generating intermediate images. This often results in undesired
shading artifacts. In this paper, we consider a new approach for 3D shape and reflectance
morphing of two real 3D objects. Our morphing method consists of two components: shape
and reflectance property measurement, and smooth interpolation of those measured proper-
ties. The measured shape and reflectance parameters are stored in a 2D image, each of
whose image pixel has reflectance parameters and an (X, Y,Z) location of the correspond-
ing surface point. The 2D image is referred to as the object image in this paper. A range
image and a color image sequence of an object are used to create an object image for each of
the two real objects. Then, those two object images are used to create an intermediate object
image by interpolating the shape and reflectance parameters. Finally, the newly created
intermediate object image is used to render the intermediate image of the two objects.
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1 Introduction

Recently, image morphing techniques for creating a smooth transition between two
images have been extensively studied. These techniques are based on interpolation of coordinates
(and colors) of image pixels in two images. Surprisingly convincing image transitions can be cre-
ated when the interpolation is designed carefully [1] and [11].

However, one of the fundamental weaknesses of the image morphing technique is that
intermediate images often have physically incorrect shading such as highlights and shadows.
Moreover, we cannot create intermediate images under different viewing and lighting conditions.
This is because those images are created by simply interpolating pixel intensities of the two 2D
images without knowledge of viewing and illumination conditions and 3D object shapes. In this
context, 3D shape morphing techniques have a definite advantage in that arbitrary viewing and
illumination conditions can be used for creating new images [2], [5], and [6]. Unfortunately, those
3D morphing techniques do not account for object surface reflectance properties or reflection
models for generating new images. This often results in undesired shading artifacts (e.g., shadows
and highlights fail to match shape changes occurring in the morph).

Recently, techniques to measure object shape and reflectance properties by using both
range images and intensity images have been studied. Ikeuchi and Sato [3] originally developed a
method to measure object shapes and reflection function parameters from a range image and black
and white intensity image pair. The surface shape was first recovered from the range image, and
then the surface normals of the recovered object surface and the intensity image were used for
reflectance parameter estimation. The main drawback of this method is that it assumes uniform
reflectance properties over the object surface. Kay and Caelli [4] introduced another method to
use a range image and 4 or 8 intensity images taken under different illumination conditions. By
increasing the number of intensity images, they estimated reflection function parameters locally
for each image pixel. Unlike the algorithm proposed by Sato and Ikeuchi, the method can handle
object surfaces with varying reflectance properties. However, it is reported that parameter estima-
tion can be unstable especially when the specular reflection component is not observed strongly.
Sato and Ikeuchi [10] proposed another approach for measuring object shape and reflectance
properties from a sequence of range and color images. This method differs from previous ones in
that reflectance parameters are estimated based on results of reflection component separation.
This makes parameter estimation more reliable than previously reported methods.

In this paper, we consider a new approach for 3D shape and reflectance morphing of two
real 3D objects. Our morphing method consists of two components: shape and reflectance prop-
erty measurement, and smooth interpolation of the measured properties. For measuring shape and
reflectance parameters, the method proposed by Sato and Ikeuchi [10] is used in our analysis.
First, a range image and a color image sequence are obtained for each of the two objects while the
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objects are rotated. Then, for each range image pixel, the sequence of observed colors of a surface
point corresponding to the range image pixel is determined. The observed color sequence is sepa-
rated into the diffuse and specular reflection components by the algorithm used originally by Sato
and Ikeuchi [9]. Subsequently, parameters of a reflection function used in our analysis are esti-
mated reliably for the separated reflection components. The reflection model used here is a linear
combination of the Lambertian model and a simplified Torrance-Sparrow model [13]. The esti-
mated reflectance parameters of each surface point are combined with its measured (X, Y, Z)
location, and then stored in a new 2D image. Therefore, each pixel of the 2D image has reflec-
tance parameters as well as a (X, Y, Z) location. The 2D image containing the (X, Y, Z) loca-
tion and reflectance parameters is referred to as an object image in this paper. After object images
are created for the two objects, the two object images are used to create a new intermediate object
image by interpolating the shape and reflectance properties of the two object images. Pixelwise
correspondences between the two object images used for the interpolation is established from cor-
respondence of manually drawn line pairs in the two object images [1]. Finally, the newly created
intermediate object image is used to render new images of the object under arbitrary viewing and
illumination conditions.

The paper is organized as follows. Section 2.1 and Section 2.2 describe our image acquisi-
tion system and determination of observed color sequences for each range-image pixel. Section
2.3 introduces the reflection model used in our experiment. The algorithm for separating the dif-
fuse and specular reflection components is explained in Section 2.4, and reflectance parameter
estimation is discussed in Section 2.5. Section 3 explains how to establish pixelwise correspon-
dences between two object images based on manually drawn line pairs. Our approach is applied
to two real objects, and experimental results are shown in Section 4. Concluding remarks are pre-
sented in Section 5.
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2 Measuring Shape and Reflectance Properties

This section describes a method to recover object surface reflectance properties from a
range image and a color image sequence. First, we describe the image acquisition system in our
analysis followed by a description of the algorithm used for reflectance parameter estimation.

2.1 Image Acquisition System

A range image is obtained using a light-stripe range finder with a liquid crystal shutter and
a color CCD video camera [8]. It can compute 3D point locations corresponding to image pixels
based on optical triangulation. For each range image, a set of three images is obtained containing
X, Y and Z locations of all pixels. Each of the range-image pixels represents an (X, Y, Z) loca-
tion of a corresponding point on an object surface. The same color camera is used for digitizing
color images. Therefore, pixels of the range images and the color images directly correspond. The
color video camera is calibrated to ensure linear response from all three color bands. The experi-
mental setup used in our experiments is illustrated in Figure 1. A single incandescent lamp is used
as a point light source. In our experiments, the light source color is assumed to be given by cali-
bration. The light source is located nearby the camera lens so that both the viewing direction and
the illumination direction are approximately the same. This light source location is chosen to
avoid the problem of self-shadowing.

First, the range finder is calibrated using a calibration box of known size and shape. The
calibration produces a 3 x4 matrix II which represents the projection transformation between
the world coordinate system and the image coordinate system. The object whose shape and reflec-
tance information are to be recovered is mounted to the end of a PUMA 560 manipulator whose
location with respect to the world coordinate system is given by calibration. The object orienta-
tion is controlled using the PUMA manipulator, and the object location is given as a 4 X 4 trans-
formation matrix T for each digitized image. First, one range image is captured to determining
the shape of the object surface facing to the camera. Then, a sequence of color images is captured
at a fixed angle step of object orientation. The projection transformation matrix IT and the trans-
formation matrix 7 will be used for determining an observed color sequence for each of the range
image pixels. The observed color sequence represents how a surface point corresponding to the
range image pixel appears as the object rotates, and it will be used for analyzing reflectance prop-

erties of the object.
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Figure 1 Image acquisition system
2.2 Observed Color Sequence for Each Point on Object Surface

For measuring reflectance properties of the object surface, a sequence of observed colors
has to be determined for each point on the object surface. In this section, we describe how to
determine the observed color sequence.

We represent world coordinates and image coordinates using homogeneous coordinates. A
point on the objec% surface with Euclidean coordinates (X, Y, Z) is expressed by a column ¥ector
P = [X,Y,Z,1] . An image pixel location (x,y) is represented by p = [x,y,1] . As
described in the previous section, the camera projection transformation is represented by a 3 x 4
matrix IT, and the object location and orientation are given by a 4 X4 object transformation
matrix 7. We represent the object transformation matrix for the frontal range image by T range
and that for the input color image frame f by Tf (f = L...n). Thus, the projection of a range
image pixel (i.e., corresponding point on the object surface) in the color image frame f is given as

-1
pp= 0TI P (f=1..n) a1

where the last component of p ¢ has to be normalized to give the projected image location (x, y) .
The observed color of the range-image pixel in the color image frame f is given as the (R, G, B)
color intensity at the pixel location (x, y) . To avoid unnecessary aliasing, bilinear interpolation is
used to sample the color intensity. If the range image pixel is not visible in the color image (i.e.,
the surface point is facing away from the camera, or it is occluded), the observed color for the
pixel is set to (R, G, B) = (0,0, 0) . By repeating this for all object orientations, we finally get
an observed color sequence for each of the range image pixels.
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2.3 Reflection model

In this section, we describe the reflectance model used in this work. The reflectance model
will be used later for separating the diffuse and surface reflection components from a sequence of
color images. The reflection component separation is described in Section 2.4. The model will
also be used for reflectance parameter estimation which is explained in Section 2.5.

A general reflection model is described in terms of three reflection components, namely
the diffuse lobe, the specular lobe, and the specular spike [7]. Unlike the diffuse lobe and the
specular lobe components, the specular spike component is not commonly observed in many
actual applications. The component can be observed only from mirror-like smooth surfaces where
reflected light rays of the specular spike component are concentrated in a specular direction. It is,
thus, difficult to observe the specular spike component from a coarsely sampled set of viewing
directions. Therefore, in many computer vision and computer graphics applications, reflection
models are represented by linear combinations of two reflection components: the diffuse lobe
component and the specular lobe component. These two reflection components are normally
called the diffuse reflection component and the specular reflection component, respectively. This
reflection model was formally introduced by Shafer as the dichromatic reflection model [12]. The
Torrance-Sparrow model [13] is used in our analysis for representing the diffuse and specular
reflection components. As Figure 1 illustrates, the illumination and viewing directions are fixed
and are assumed to be the same. The reflection model used for the particular experiment setup is
given as

2 2
I —K cosG+K 1 _e/zoam—RGB
- S - » ’
m mcos 9 (EQ2)

where O is the angle between the surface normal and the viewing direction (or the light source
direction), K, and K, are constants for the respective reflection components, and G, is the
standard dev1at10n of a facet slope o of the Torrance-Sparrow model. For the derlvatlon of the
reflection model, see the appendices of [10]. The direction of the light source and the camera with
respect to the surface normal is referred as the sensor direction 0 in this paper. In our analysis,
only reflections which bounce only once from the light source are considered. Therefore, the
reflection model is valid only for convex objects, and it cannot represent interreflections on con-
cave object surfaces. We empirically found that interreflection did not affect our analysis signifi-

cantly.

2.4 Reflection component separation

The algorithm to separate the two reflection components is described here. The separation
of the diffuse and specular components is important for robust estimation of reflectance parame-
ters. It has been reported that estimating all reflectance parameters at once tends to make compu-



page 6

tation unstable [4]. Therefore, the separation algorithm is applied prior to reflectance parameter
estimation. The separation algorithm was originally introduced for the case of a moving light
source by Sato and Ikeuchi [9]. In this paper, a similar algorithm is applied for the case of a mov-
ing object.

Using three color bands; red, green, and blue, the coefficients K, ., and Ko, in (EQ2),
become two linearly independent vectors, K, and K, unless the colors of the two reflection
components are accidentally the same

T T
Ep = [KD,R KD,G KD, B] K = I:KS,R KS,G Ks, B]
(EQ3)

These two vectors represent the colors of the diffuse and specular reflection components in the
dichromatic reflectance model [12].

First, the color intensities in the R, G, and B channels from n input images of the object
are measured for each range image pixel as described in Section 2.2. It is important to note that all
intensities are measured for the same range image pixel. The three sequences of intensity values
are stored in the columns of an n X 3 matrix M . Considering the reflectance model and two color
vectors in (EQ2) and (EQ3), the intensity values in the R, G, and B channels can be represented as

M= MR M, MB]
cose1 E(Gl)
cosB, E(6,)
- 2 2 KD,R KD, G KD,B
KS,R KS,G KS,B
_cosen E (Bn)d
T
_ [ =D
= lepad|”
~S5
=GK (EQ4)

where £ (0) = (exp(—ez/ ZGi))/ cos@, and the two vectors G, and G g represent the inten-
sity values of the diffuse and specular reflection components with respect to the sensor direction
6. The vectors K, and K ¢ represent the diffuse and the specular reflection color vectors, respec-
tively. We call the two matrices G and K, the geometry matrix and the color matrix, respectively.



page 7

Suppose we have an estimate of the color matrix K. Then, the two reflection components
represented by the geometry matrix G are obtained by projecting the observed reflection stored in
M onto the two color vectors K D and K g

G = MK" (EQS5)

where K" is the 3 x 2 pseudoinverse matrix of the color matrix K.

The derivation shown above is based on the assumption that the color matrix K is known.
In our experiments, the specular reflection color vector X ¢1s directly measured by a calibration
procedure. Therefore, only the diffuse color vector K D is unknown and needs to be determined.

From (EQ2), it can be seen that the distribution of the specular reflection component is
limited to a fixed angle, depending on o . Therefore, if two vectors, W, = [I rilei L BJD
(i = 1,2) are sampled on the 0 axis at large enough interval, at least one of these vectors will be
equal to the color vector of the diffuse reflection component X p- (i.e., it has no specular reflection
component.) The desired color vector of the diffuse reflection component X, is the vector W,
which subtends the largest angle with respect to the vector K - The angle between the two color
vectors can be calculated as B = acos (K- w,/ (|I§ Sl lwil) ).

Once we get the color matrix K, the geometry matrix G can be calculated from (EQS5).
Each of the diffuse and specular reflection components is then given as

T
Mg = GK¢

T
My = Gk,

(EQ8)

2.5 Specular Parameter Estimation for Segmented Regions

In the previous section, we described our method for separating the two reflection compo-
nents from a sequence of observed colors of each range image pixel. In this section, we will dis-
cuss how to estimate parameters of the reflectance model for the range image pixel using the
separated reflection components.

By applying the separation algorithm as explained above, we obtain a sequence of the dif-
fuse reflection intensities and a sequence of the specular reflection intensities for each range
image pixel. This information is sufficient to estimate reflectance parameters of the reflection
model (EQ2) separately for the two reflection components. As (EQ2) shows, the reflectance
model is a function of the angle between the surface normal and the viewing direction 6. There-
fore, for estimating reflectance parameters: K D, m’ K S, m> and Oy the angle O has to be com-
puted as the object is rotated. Since the projection transformation matrix is already given and the
object orientation is known in the world coordinate system, it is straightforward to compute the
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surface normal vector and a viewing direction vector (or a illumination vector) at a surface point
corresponding to each range image pixel. Thus, the angle 8 between the surface normal and the
viewing direction vector can be computed. After the angle 6 is computed, the reflectance param-
eters for the diffuse reflection component (K, | ) and the specular reflection component (K,
and o, ) are estimated separately. In our expenments the camera output is calibrated so that the
specular reflection color has the same value from the three color channels. Therefore, only one
color band is used to estimate K¢ in our experiment.

By repeating the estimation procedure for all range image pixels, we can estimate the dif-
fuse reflection component parameters for all range image pixels if those pixels are illuminated in
one or more frames of the image sequence. On the other hand, the specular reflection component
can be observed only from a few viewing directions. Due to this fact, the specular reflection com-
ponent can be observed only in a small subset of all range image pixels. We cannot estimate the
specular reflection component parameters for those pixels in which the specular reflection compo-
nent is not observed. Even if the specular reflection component is observed, the parameter estima-
tion can become unreliable if the specular reflection is not sufficiently strong.

For the above reasons, we decided to assign the specular reflection component parameters
based on region segmentation. In our experiments, it is assumed that the object surface can be
segmented into a finite number of regions which have uniform diffuse color, and all range image
pixels within each region have the same specular reflection component parameters. By using the
segmentation algorithm, the specular reflection parameters of each region can be estimated from
range image pixels with strong specularity. The estimated parameters are assigned to the rest of
range image pixels in the region. The range image pixels with strong specularity can be easily
selected after the reflectance components are separated. The limitation of this approach is that the
specular reflection parameters for a region cannot be estimated if no specularity is observed in the
region. In that case, the specular reflection parameters of neighboring regions can be assigned to
the region as an approximation. It is important to note that segmentation and parameter estimation
are used only for the specular reflection component. The diffuse reflection component parameters
are estimated locally regardless of specularity.

After reflectance parameters are estimated for each of the range image pixels, each range
image pixel has 5 associated reflectance parameters (K D,R’ K D.G K D.B K¢, and o). Com-
bining those parameters with the (X, Y, Z) location of the range image pixel, we obtain a new
image with 8 bands (X, Y, Z, KD R’ KD,G’ KD,B, KS, and ca). We call this image an object
image since it contains both shape and reflectance properties of the object. Using this technique,
we obtain the object images of two real objects. These object images will be later used for creat-
ing a new object model whose shape and reflectance properties are interpolated from the two real
objects.
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3 Interpolation of shape and reflectance properties

After object images of the real objects are created, we can generate new object images by
interpolating between the obtained object images. For this purpose, we need to define pixelwise
correspondence between the two object images. In this section, we describe how to define the pix-
elwise correspondence and how to interpolate the two object images based on the correspondence.

Several algorithms for establishing pixelwise correspondence between two images have
been developed. In our analysis, we used the mapping introduced by Beier and Neely [1] to define
the pixelwise correspondence between the two object images, each of which has 8 bands
X,Y,Z,K DR K D, G’ K D, B K and O, ). A user selects mpa.lrs of corresponding line features
each of which is spe01ﬁed by pairs of plxel coordmates P Q where i is the image number
(i = 1,2) and n is the index of the line pair (n = 1...m). Flrst we consider a mapping deﬁned
by one pair of lines in the two obJect images (Flgure 2). A pair of corresponding lines P Q1 in
the first object image and P Q2 in the second object image defines a coordinate mapping from

the first image pixel coordinate X, to the second image pixel coordinate Xn such that

(x-e)(a-2)  (x-r) (-2,
n—P'; 2 n_Pn
(EQ7)
X'Z’ = (Qz ) M (EQ8)

where (V) is the vector perpendicular to and the same length as the input vector V. (There are
two perpendicular vectors defined this manner. Either the left or right one can be used as long as it
is consistently used throughout.) The value u represents the position along the line segment
P Q . The value u is O at the pomt P and 1 at the point Q and can be less than O and greater
than 1 outside the line segment P Q The value v represents the perpendicular distance from X
to the line segment P Q . Then, (EQ8) determines the second image coordmate X, which corre-
sponds to the first 1mage coordinate X, based on the nth line pairs P’ 1@ and P2Q2

(n=1...m).
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the first object image the second object image

Figure 2 pixel correspondence by a line pair [1]

For multiple pairs of lines, the second image coordinate X, is given by a linear combina-
tion of displacements X; — X, for all line pairs (n = 1...m). The weight of the linear combina-
tion is determined by the distance from the first image coordinate X | to the line segment PrllQ'll as

- b

P
0y -
wo= — (EQ9)
a+ dist(Xl, P O J

where a, b, and p are constants which are used to change the relative effect of the lines. In our
implementation, weused a = 0.1, 5 = 2.0,and p = 0.2.

Finally, the second image coordinate X, is given as

%wn(X; _Xl)

27 1
2w,
n

(EQ10)

Once the pixelwise correspondences are established, an intermediate object image can be
created as linear interpolation of the two object images. For each pixel X 1 of the first object
image, the corresponding pixel X, in the second object image is determined. Then, a new inter-
mediate object image pixel is given as linear interpolation of values of the two object image pixels
X, and X, . Smooth transition of object shapes and reflectance properties are obtained by gradu-
ally changing the ratio of the interpolation.
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4 Experimental Results

4.1 Measurement

In the previous sections, we described our method for obtaining new object models whose
shape and reflectance properties are interpolated from two real objects. The method includes four
steps: (1) separate the two fundamental reflection components using a range image and a
sequence of color images, (2) estimate the reflection model parameters from the separated reflec-
tion components, and store them with the (X, ¥, Z) coordinates as an object image, (3) establish
pixelwise correspondences between two object images, and create an intermediate object image
by interpolating the two object images, and (4) synthesize images of the interpolated object using
(EQ2). We applied the method to actual range and color images taken in a laboratory setup in
order to demonstrate the feasibility of the proposed method.

The target objects used in our experiment are two plastic toys with an approximate height
of 170mm. These objects are multi-colored, and each painted surface region appears to have a
uniform color. One frontal range image and a sequence of color images of each object are taken
using the image acquisition system described in Section 2.1. A frontal range image is captured
before rotating the object (object orientation = 0°). Then, a sequence of color images are taken by
rotating the object. In our experiment, color images are taken at 3° intervals from —90° to 90°
(60 color images total). The input range images for the two plastic toys are shown as a mesh in
Figure 3. The input color image sequences of the objects are shown in Color Figure 1 and Color

Figure 2.

object 1 object 2
Figure 3 Measured shapes

4.2 Reflection component separation

By projecting a range image pixel onto all input color images, a sequence of observed col-
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ors is determined for the range image pixel as explained in Section 2.2. Figure 4 (a) illustrates a
typical observed color sequence for a range image pixel with specularity. The intensities are set to
zero before image frame 8 and after image frame 53 because the surface point corresponding to
the range image pixel is not visible from the camera due to self-occlusion. The specular reflection
component can be observed near image frame 29. When the specular reflection component exists,
the output color intensity is a linear combination of the diffuse reflection component and the spec-
ular reflection component. In this example, the observed specular reflection is relatively small
compared to the diffuse reflection component. As a result, estimating reflectance parameters for
both the diffuse and specular reflection components together could be sensitive to various distur-
bances such as image noise. That is why the reflection component separation is performed in prior
to parameter estimation in our analysis. By separating the two reflection components, reflectance
parameters can be estimated separately in a robust manner.

The algorithm to separate the diffuse and specular reflection components was applied to
the observed color sequence for each range image pixel. The red, green, and blue intensities of the
observed color sequence are stored in the matrix M as its columns (EQ4). Then, the matrix G is
computed from the matrix M and the matrix K which is estimated as described in Section 2.4.
Finally, the diffuse and specular reflection components are given as shown in (EQ6). This reflec-
tion component separation is repeated for all range image pixels. The separation result for the
observed color change in Figure 4 (a) is shown in Figure 4 (b). After the reflection component
separation, reflectance parameters can be estimated separately. The result of parameter estimation
will be shown in Section 4.3.

1400 | 1 1400 | o difluse red
o diffuse graen
e o diffuse blua
120.0 o blus 1 1200 | 4 specular red
@ | < specular green
0 ® | v specular blua
100.0 o © 100.0
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o
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| o x ° -
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40.0 o © 400 = °  naon@fPobfdadag,
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xx » ° " a
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| (00008570007 Pos%00® S e o008 0000000 B 000000000004,
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image frame numbar image frame number
(a) (b)

Figure 4 Observed color sequence (a) and separation result (b)
4.3 Reflectance Parameter Estimation for Segmented Regions

By using the separated diffuse reflection components, the object surface was segmented
based on the hue of the diffuse reflection components, as explained in Section 2.5. The results of
the region segmentation are shown in Figure 5 (segmented regions are represented as grey levels).
For estimating specular reflection component parameters, 10 range image pixels with the largest
specular reflection component are selected for each of the segmented regions. Then, the specular
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reflection component parameters of the reflection model (EQ2) are estimated for each of those
selected range image pixels. Finally, the average of the estimated parameters of the selected range
image pixels is used as the specular reflection component parameters of the segmented region.
The estimated specular reflection parameters are assigned to all range image pixels within the seg-
mented region. The results of the estimated specular reflection component parameters are shown
in Table 1 and Table 2.

Unlike the specular reflection parameter estimation, parameters of the diffuse reflection
component ( p.r Xp, o Kp, ) are estimated for each range image pixel individually. That is
because the diffuse reflection component at the range image pixel is guaranteed to be observed as
long as the range image pixel is illuminated and not occluded from the viewing direction. The
results of the diffuse reflection component parameter estimation are shown in Color Figure 3.
which shows the estimated parameters K D.R K D, G’ and KX p,pasa color image.

By combining the five estimated parameters (K p.r&p ¢ Kp p K. and c,) and three
measured values (X, Y, Z), we obtain object images for the two real objects. These two object
images are used to create intermediate object images which have interpolated shape and reflec-

tance properties.

-=~u.,.., 4 ""“'

st
.

esion: MY

object
Figure 5 Segmented object surface

region K Oy
0 17.31 0.301
1 37.00 0.280
2 40.33 0.269
3 42.17 0.301
4 46.38 0.238

Table 1 Estimated specular parameters for the object 1
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region K, o,
0 36.82 . 0293
1 43.69 0.187
2 78.15 0.166
3 78.55 0.197
4 82.71 0.231
5 91.54 0.166
6 43.69 0.189

Table 2 Estimated specular parameters for the object 2
4.4 Interpolation of Shape and Reflectance Parameters

By using the two object images, an interpolated object shape and reflectance properties are
created as explained in Section 3. Color Figure 4 shows 70 manually drawn corresponding line
pairs on the two object images in green. Based on the line pairs, pixelwise correspondence
between the two object images is determined. Then, the two images are linearly interpolated to
produce an intermediate object image. An example of the interpolated object shape and reflec-
tance parameters are shown in Figure 6, Color Figure 5, and Color Figure 6. In this particular
example, 50%-50% interpolation was used.

Figure 6 Interpolation of shape

4.5 Morphing Results

Finally, the interpolated object shape and reflectance properties are used to create new
color images in the morph. Color Figure 7 shows a synthesized color image of the object for 50%-
50% interpolation along with synthesized images for other interpolation ratios which are created
in the same manner as 50%-50% interpolation. The same viewing direction, light source direc-
tion, and object orientation are used for rendering Color Figure 7 as for frame 30 of the input
color images in Color Figure 1 and Color Figure 2. A different object orientation was used for
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rendering Color Figure 8. It is important to see that specularity appears naturally in those two syn-
thesized color images. This is because, unlike other methods, our method uses intermediate
reflectance parameters, as well as intermediate shapes, which are computed separately from the
two real objects. Therefore, images rendered using our approach do not contain false specularities
which are often created by other 2D or 3D morphing techniques.
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5 Conclusion

We have studied an approach for 3D shape and reflectance property morphing of two real
objects. Unlike previously developed 3D shape morphing techniques, our approach uses object
surface reflectance properties as well as object shapes for creating intermediate morphing results.
This enables us to render images with correct shading such as highlights and shadows. Our mor-
phing method consists of two components: shape and reflectance property measurement, and
smooth interpolation of those measured properties. First, a range image and a color image
sequence are used for obtaining an object shape and reflectance properties. The estimation of the
reflection parameters is performed reliably by separating the reflection components. The obtained
shape and reflectance parameters are stored in an extended range image which we call object
image. The reflection model used in our analysis is described as a linear combination of the Lam-
bertian model and a simplified Torrance-Sparrow model. After object images are created for the
two real objects, the object images are used to create a new intermediate object image which has
interpolated shape and reflectance properties. Finally, the newly created intermediate object
image is used to render new images of the objects in the morph. The proposed approach has been
applied to real range and color images of two plastic objects, and the effectiveness of the proposed
approach has been successfully demonstrated by showing intermediate morphing results with
proper shadings.



page 17

Color Figures

frame 0 frame 15 frame 30 frame 45 frame 59
Color Figure 1 Input color sequence for object 1

frame 0 frame 15 frame 30 frame 45 frame 59
Color Figure 2 Input color sequence for object 2

object 1 object 2
Color Figure 3 Estimated K,

ofbj‘ect 1 oﬁject 2
Color Figure 4 Edited line pairs (70 line pairs are shown in green)
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100%-0% 75%-25% 50%-50% 25%-75% 0%-100%
Color Figure 7 Synthesized interpolated objects

Color Figure 8 Side view of 50%-50% interpolation
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