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Abstract

High-bandwidth, high-throughput applications with hard latency
constraints are difficult to implement on a general-purpose parallel
computer. Multiple developer-controlled “trial-and-error” cycles
are usually needed before applications can reliably meet
throughput and latency constraints, even on platforms having ample
network bandwidth and computation power. Not only is reliable
execution difficult to achieve for code developed in this manner,
the code itself is difficult to modify or reuse without upsetting
the delicate timing balance achieved.

Local computation performance can usually be bounded, but
communication performance is often more difficult to predict.
While hardware-supported connections can offer minimal quality-of-
service bandwidth and latency guarantees, limited connection
resources make scheduling the full application difficult. This
thesis introduces a new approach: use multiple sets of
connections, and allow tasks to perform local communication
context switches and dynamically swap, within tasks, between
statically scheduled sets of connections.

The mechanics of swapping connection sets, starting a task, and
ending a task can be encapsulated into a small set of control
primitives built upon fast, efficient barrier synchronization. If
the control primitives are constructed to give predictable
performance, the tasks created using those primitives will have
predictable performance as well. Most important, complex tasks
can be hierarchically constructed by assembling simpler tasks into
larger structures while still maintaining predictable performance.

To demonstrate this scalable predictability, the TCS (Tasks and
Connection. Sets) programming model is introduced and implemented
on a real target machine, iWarp. The prototype is used to
implement a variety of communication patterns and then compared
with fast message-passing implementations on the same machine.
Finally, the scalable, hierarchical nature of TCS tasks is
demonstrated by implementing a portion of a real-time computer
vision application. TCS is shown to be well-suited not only for
this application, but also for similar applications requiring
continuous high-bandwidth input, low-latency output, and multiple
computations per datum.
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Chapter 1 -
Introduction

1.1 Introduction

High-bandwidth, high-throughput applications with hard latency
constraints are often difficult to implement on a general-purpose
parallel computer. Hardware-supported connections can offer
minimal quality-of-service bandwidth and latency guarantees, but
finite connection resources makes application scheduling
difficult; machines usually lack sufficient connections to enable
statically scheduling a complex application. Conversely, a purely
dynamic connection resource allocation scheme may not be able to
guarantee resource availability at run-time, which could lead to
missed latency constraints. A hybrid approach that can work for
many of these applications is to use multiple sets of connections,
allowing tasks to perform local communication context switches and
dynamically swap, within tasks, between statically scheduled sets

of connections.

The mechanics of swapping connection sets, starting a task, and
ending a task can be encapsulated into a small set of control
primitives built upon fast, efficient barrier synchronization.
Expressing the application using these primitives exposes the
application’s potential runtime communication complexity to the
linker, which can then make globally-optimal communication
resource allocations. One knows at link time whether or not
sufficient resources exist to meet the run-time demands; there are
no surprises with run-time resource unavailability. Furthermore,
if the control primitives are constructed to give predictable
performance, the tasks created using those primitives will have
predictable performance. Most important, complex tasks can be
hierarchically constructed by assembling simpler tasks into larger

structures while still maintaining predictable performance.



To demonstrate this scalable predictability, the TCS (Tasks and
Connection Sets) programming model is introduced and implemented
on a real target machine, iWarp. TCS allows parallel tasks to
perform local communication context switches, reliably swapping
(in predictable time) between predefined sets of connections
having guaranteed worst-case latency and bandwidth. Three key
machine features are required to support TCS:

(1) the network switches must allow their connection state
to be directly configured by the local processing
elements,

(2) connections must be reliable and offer guaranteed
worst-case bandwidth and latency, and

(3) some form of fast, reliable barrier synchronization
must be available.

Unlike message-passing communication (which handles all
communication resource assignments at runtime), TCS requires that
the connection sets (but not their usage patterns) be known at
compile time; communication resource assignment is resolved at
link time. Thig link time global foreknowledge of the permissible
runtime connection states allows the TCS toolchain to make
communication resource assignments that will meet the requested
bandwidth criteria, or else return an error message at link time.
If a TCS application successfully links, the requested connection
sets are guaranteed to be available at runtime. Realtime problems
having deadlines on the order of milliseconds can be addressed by
solutions with execution times predictable to within a few

microseconds.

To demonstrate the utility and validity of the idea, the TCS
prototype was used to implement a variety of communication
patterns representative of real application patterns. For
comparison, the same communication patterns were also implemented
using a fast message-passing system on the same machine. While
message-passing and TCS both can provide fast, predictable
performance for uncongested patterns, dense communications
patterns (such as all-to-all) lead to unpredictable link
congestion which causes message-passing to lose both performance
and predictability. TCS is shown to maintain good, predictable



performance even with dense communication patterns.

Finally, the scalable, hierarchical nature of TCS tasks is
demonstrated by implementing a portion of a real-time computer
vision application. The vision application is realized as a TCS
task constructed by assembling smaller TCS tasks. TCS is shown to
be well-suited not only for this application, but also for similar
applications requiring continuous high-bandwidth input, low-
latency output, and multiple computations per input datum.

1.2 Why TCS?
Consider the following problem: a ball is thrown through the field

of view of a watching camera. A computer attached to the camera
locates the ball in several consecutive frames, then plots a
predicted trajectory for the ball. Current ball position and
predicted ball trajectory are superimposed over a display showing
the live camera video (Figure 1.1). No hardware-supported frame-
buffers are used; the only special hardware is a fast, unbuffered
analog-to-digital converter (which converts the incoming video
pixels to binary numbers), a comparitor to detect video sync
edges, and a digital-to-analog converter to convert an output
stream of pixel values to an NTSC videoc output. The real-time
nature of this problem is apparent in that the incoming video
pixels must be sampled, forwarded through the system, and output

to the video monitor in a timely manner. Latencies are additive,
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Figure 1.1 Locate a thrown ball in a live video feed, then predict
its future trajectory.




and thus for the system to be useful, the ball’s position must be
detected and future positions predicted and plotted all within one
frame time. Otherwise, the result is just a “comet trail” drawn
behind the ball on the screen. This is a fairly demanding (but
statically schedulable) communication problem. What makes the
problem interesting is that the “ball finding” computations and
the trajectory prediction occur asynchronously with respect to the

incoming video stream.

Other example applications with similar latency, computation, and
throughput constraints include:
(1) Phased array multi-sensor acoustic processing, such as an
ultrasonic anti-collision system on a car’s rear bumper;
(2) Phased array sonar processing [35,36];
(3) Real-time medical imaging, including:

(a) correcting for patient movements in the imaging plane
“on-the-fly” while doing functional (multiple scan) MR
imaging;

(b) precisely quantifying radiation therapy dosages by
generating a CT-like image “on-the-fly” from the
radiation treatment (realtime noninvasive internal
dosimetry), and comparing these against prior,
conventional CT (Computed Tomography) scans used for
dose planning, so that treatment can be redirected or
aborted if sensitive tissues (such as the spinal cord)
become overly-irradiated. Off-line portal image
evaluation is discussed in [19] and [31] to detect
damage inflicted, but on-line realtime 3D internal

dosimetry is not yet practiced.

While by no means an exhaustive application list, the scope is
broad enough to draw some generalizations. Common features shared
by these examples include:
1) Large amounts of computation (multiplication and addition)
are required per data point.
2) Real-world data is sampled in high-bandwidth, time-critical
bursts.
3) The problems have some inherently parallel aspect, whether it



be multiple sensors acguiring data to be processed, or
whether it be the means by which the data itself is processed
4) The output of the process has a time-critical nature; the
output is often used as feedback in some sort of control loop
which may or may not be completely automated (that is, a

human may be in the loop).

1.3 The prototypical parallel target machine

A parallel computer exists as a group of cells interconnected via
a communication network. Each cell is a single functional
computer within the larger parallel machine, complete with
processor, local memory, specialty I/0 devices (if any), and a
connection to the machine's communication network. While some
architectures may use more than one processor per cell, for the
purposes of this thesis the cell igs treated as the smallest
functional computing unit. Due to the real-time nature of the
applications being addressed, stand-alone cells must offer

predictable execution times.

Fast, predictable, low-latency interprocessor communication
emerges as a requirement for this parallel machine. While not an
explicit part of any application definition per se, little is
gained if multiple cells can acquire high-speed data in parallel
but cannot pass that data on for correlation at the same rate.
Buffering can compensate for small discrepancies in bandwidth, but
the basic communication capacity needs to be available. Fast
communication involves two major issues: the communication
protocol used (how two cells talk), and the network implementation
(which cells can talk to which other cells, how fast can they

talk, and how many can talk at once).

Conventional supercomputers often accept high latencies as the
price for high bandwidth, and accordingly pipeline their
computations and data transfers in huge blocks[45,47]. For
instance, while image N is being computed, data for image N+1 is
being loaded, and image N-1 is being written out. If the
computation goal is just to generate weather maps, this pipeline

latency is not a problem. Due to the time-critical nature of



applications such as those listed in section 1.2, though, long
pipeline delays cannot be afforded. A driver backing up needs to
know what's behind the car now, not what was behind the car

several scans ago.

While general-purpose message-passing (such as offered by MPI
libraries[15,27]) is a commonly used communication paradigm for
parallel machines, a number of characteristics make it undesirable
for the types of applications discussed. First of all, the
overhead and unpredictable delays an interrupt-driven message-
passing system implies can’'t be afforded in a real-time control
problem. Second, message-passing systems typically evaluate
routing issues ("how do I send a message from A to B") on a
message-by-message basis at runtime. For all the applications
shown, the necessary communication patterns can be worked out at
compile time. The precise usage of those communication patterns
may be unknown, but the patterns themselves can be known. It is
far more efficient, then, to work out the communication resource
and routing assignments once, when compiling or linking, rather
than re-evaluating them for each and every message sent at runtime
[17,22].

Instead of message-passing, a connection-like mechanism is needed
for communication between processors. A connection acts as a
"first-in, first-out" buffer connecting the output of one cell to
the input of another. Data written into the connection (from the
output of the sending cell) is available to be read out (at the
input of the receiving cell) in the same order it was written in.
The actual means by which connections are implemented is
unimportant, provided that the implementation can offer minimal-
quality-of-service bandwidth and latency guarantees, and that an
adequate number of connections can be supported. These guarantees
are necessary to insure that processors can forward data fast

enough to keep up with input data bursts.

Point-to-point wires between communicating cells are the most
direct means of supporting connections. This approach has several

difficulties, the biggest being that communication paths are



essentially "programmed with solder"; reconfiguring to support
different communication patterns becomes impossible. Supporting
multiple applications, each having different connection
requirements, on a machine with finite resources, implies the

ability to reconfigure the machine between application runs.

The ability to reconfigure connections while running an
application (and not just between applications) is also desirable.
To provide low-latency communication, any connection
implementation requires some sort of direct hardware support.
Because low-latency connections must rely on a finite physical
resource, the total number available will have some finite limit.
If an application requires more connections than the underlying
implementation is able to support at one time, the application's
needs could still be met if the implementation supports
reconfigurable connections. Reconfigurable connections allow
resources to be allocated that guarantee minimal-quality-of-
service for one connection, and when the connection is no longer
needed, those resources can be revoked and reallocated to support
another connection. Because most parallel applications exhibit a
"locality of communication", only a few connections are usually
needed during any particular stage of program execution[l17].
Thus, a few reconfigurable connections are usually adequate to

meet an application's needs.

1.4 "Tasking" - sharing the load

Once a specific parallel system is established as sufficient to
meet the application's requirements, the challenge becomes mapping
the application components, or tasks, to different cells within
the machine. A task is a functional unit of computation; all
applications consist of one or more communicating tasks. The
specific cells that a task is mapped to are referred to as that
task's allocation. Two tasks running on different cell
allocations are said to be parallel tasks. Two non-communicating
tasks which have at least one cell in common between their cell
allocations are said to be sequential tasks; they cannot both run
at the same time. A task will not execute until all the cells of

its allocation are ready to run that task.



Parallel tasks may either be synchronous or asynchronous. In a
synchronous tasking model, all tasks start together and end
together, much like a marching band. The brass, woodwinds, and
percussion all start together, march together, and stop together.
If an application requires multiple task sets over time, a global
barrier separates the different task sets so that all tasks in a
set begin together. Everything runs on a fixed schedule which
must make worst-case assumptions; thus, tasks can be blocked due
to conditions entirely beyond their concern. In a more flexible,
asynchronous tasking environment, a task will only block until the
resources it needs are available, then execute. This model more
closely resembles dinner in a restaurant: arriving parties are
seated and served as tables become available. Once the resources
become available (a sufficiently large table becomes free), dinner

proceeds independently of the other parties in the restaurant.

Actually, the restaurant analogy can be extended to illustrate
some of the problems of synchronous tasking on a large parallel
system. Consider a large catered dinner event, such as a wedding
reception. In this case, arriving parties are seated and left to
sip ice water until all other guests have been seated. Meanwhile,
the servers are left standing idle. Once all guestsgs are seated,
the meal is served one course at a time. If a sufficient number
of servers are available, all guests are simultaneously given
their soup, then the soup bowls are cleared away. All guests are
simultaneously given their salad, then the salad bowls are cleared
away. No guest receives a salad until the last guest has had his
soup bowl removed. Unfortunately, most catered dinners suffer
from limited “busboy bandwidth”. Food service is not
simultaneous, but rather occurs in a wave, as the servers shuttle
food from kitchen to successive tables. Guests who have finished
their soup are forced to wait until all other guests have finished
their soup before they can begin their salad. The larger the
group of guests (or the larger the number of processors in the
machine) the worse this “wave of waiting” becomes. Globally
synchronous execution in a parallel machine not only forces cells
to wait for their neighbors at each stage, but also magnifies the

problems of finite communication bandwidth. The asynchronous



tasking model means cells spend less time waiting, but allocating

communication resources becomes a more difficult problem.

The problem, in essence, is "how can one combine connection-based
communication (which implies static scheduling/resource
allocation), with a flexible tasking model {(which inherently

involves dynamic resource allocation)?"

1.5 Thesis

By placing some restrictions on the tasking model (statically
allocating the potential communication resources an application
may need), the application goals {(multiple interacting tasks,
high-bandwidth I/0, multiple computations per data point, hard
latency constraints) can be met while maintaining effective
processor utilization. Given a parallel computer with connections
having guaranteed minimal-guality-of-service and a local
connection state that is directly-writable by the local computing
cell, one can construct a small set of barrier-based control
primitives that yield predictable performance. By exposing the
communication complexity to the linker, these primitives can be
used to create parallel tasks which also exhibit predictable
performance, and those tasks can in turn be hierarchically
assembled to create even more complex tasks while still

maintaining predictability.

A prototype programming system, TCS, was created to demonstrate
the validity of this hypothesis. TCS applications are composed of
tasks that communicate via sets of unidirectional connections.
Tasks can be hierarchically constructed by assembling simpler
tasks, and complex communication patterns can be expressed as a
series of local communication phases within the task. Tasks (with
latency constraints in the tens to hundreds of microseconds) are
built with a small set of barrier-based control primitives which
offer predictable (to within a microsecond) performance. Properly
constructed, tasks using these primitives also exhibit predictable
execution times apd can be assembled into more complex tasks that
maintain their predictability. Their communication resources are

statically scheduled by the linker as sets of connections within
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each task, but dynamically invoked by the task at run-time.

1.6 Structure of thesis

The next few chapters explore the characteristics of TCS
connection-based communication and explain the hierarchical nature
of the four TCS control primitives: barrier synchronization, local
communication context switch, task start, and task end. Both the
communication and the control primitives are implemented on a real
target machine, and their performance is measured and compared

with predicted performance.

Chapter 2 explains the TCS programming model in more detail and
explains the functions of the barrier synchronization, local

communication context switch, task start, and task end primitives.

Chapter 3 introduces the target machine, iWarp, and outlinesg the
three major communication mechanisms it provides: PCT-supported
connections, RTS message-passing, and deposit message-passing.
These communication mechanisms are explored and characterized.
PCT-supported connections are the mechanism used to implement TCS

connections.

Chapter 4 deals with barrier synchronization: what it is, relevant
aspects, and ways to implement it. The interaction between a
barrier implementation’s physical signaling scheme and messaging
brotocol is first predicted, then illustrated by constructing and
benchmarking barrier implementations built from the three
communication mechanisms introduced in Chapter 3. Based on these
results, a 1-D (N-1) ring built using PCT-supported connections is

chosen as the basis for the TCS barrier primitive.

Chapter 5 introduces the remaining TCS control primitives. The
barrier primitive introduced in Chapter 4 underlies all dynamic
resource allocation at runtime, and it is used in constructing the

remaining three primitives: local communication context switch,

task start, and task end.

Chapter 6 uses the TCS control primitives and a prototype



connection linker to create three single-task communication
patterns representative of real application communication:
scatter/gather, reduction/broadcast, and all-to-all. The TCS
implementations are shown to have predictable (within a few
percent) performance regardless of transfer size and number of
cells. A message-passing implementation, based on deposits, was
shown to have comparable performance and predictability with
simple patterns on an unloaded machine, but as congestion

increased, message-passing was unable to maintain predictable

performance.

Chapter 7 demonstrates the hierarchical nature of TCS tasking,

11

constructing a real-time video-rate motion-detector by assembling

several simpler tasks. This composite task was predicted to meet

video requirements as it was assembled, then it was benchmarked to

verify predicted performance.

Chapter 8 discusses related work which is significant for using

sets of connections, dynamic tasking on a parallel machine, or

both.

Chapter 9 is the conclusion and summarizes the key points of the

thesis.
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Chapter 2 -
The TCS Programming Model

2.1 The model for addressing the problem:

TCS (for Tasks and Connection S8ets) is a general computation model
for reconfigurable connection-based parallel machines which
exploits certain machine properties. In particular, special
advantage is taken of hardware-supported, low-latency connections
for communication within and between running tasks. Task-internal
communication, and the synchronization barriers needed for
connection resource management, are all concealed within the task
that decouples the task's internal execution from its neighbors.
Communication between tasks is self-synchronizing and is the only

synchronizing operation crossing task boundaries.

Under this model, all communication occurs through unidirectional
connections. Connections provide communication both within tasks

(internal connections) and between tasks (external connections)

internal connections - — —»

external connections =

Figure 2.1 Cells within a task communicate via internal
connections. Inter-task communication occurs
via external connections.
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(Figure 2.1). While the external connections persist for the
lifetime of a task, internal connections within the task may be
reconfigured under the task's local control. Connections are
grouped into networks, and networks are in turn grouped into
netgroups. A netgroup is just a set of local connections. A
connection may only belong to one network, but a network may
belong to more than one netgroup. A task may have only one
netgroup active at any time. A connection is active if the
network it belongs to is in the active netgroup; active
connections may be used for communication. If the connection does
not belong to the active netgroup, no communication resources are
supporting it and it may not be used for communication. Tasks can

perform communication context switches to change the active

netgroup.

Good candidate applications for the model have the following
characteristics:
(1) they process multiple "sets" of dataj;
(2) they can be expressed as a collection of communicating tasks,
each task having:

(a) a fixed set of communication patterns (but not
necessarily knowledge of the order in which the
patterns will be used), and

(b) a good estimate of required execution time, though the
actual run time may have data dependencies.

Having a fixed set of communication patterns allows static
allocation of the communication resources, which in turn allows
making some guarantees about minimum runtime communication
performance. Having an accurate estimate of task execution time
is important when mapping tasks to cells; using too few cells to
support a task could result in a computational bottleneck, and

using too many is a waste of resources.

Purely systolic applications, with a static set of connections
ordered at compile-time, can be cleanly implemented using TCS, but
would not see a substantial benefit over globally synchronous
tasking models. TCS will allow efficient use of systolic tasks as

part of a larger, non-systolic application, though.
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The benefits of using the TCS model include:

(1) support for mapping problems (such as the examples shown)
onto realizable parallel architectures;

(2) the ability to express loosely-coupled tasks without any
artificial couplings; there is no requirement for the
developer to construct artificial global phases. Eliminating
artificial couplings enables faster performance by

eliminating unnecessary synchronization barriers.

2.2 Tasking under the TCS model
TCS tasks rely on cell-to-cell connections and four control

primitives: barrier synchronization, connection reconfiguration
(also known as a communication context switch), task start, and
task end. Connection {communication) performance is a function of
the underlying hardware and communication resource scheduling. In
the next few chapters the performance of the control primitives
are characterized and (most important!) shown to be predictable
(to within ten percent or better) using simple models. Barrier
synchronization is the fundamental primitive upon which both
connection reconfiguration and task start are both based. 1In
fact, the TCS control primitives are hierarchical in nature, and
thus a fast barrier implementation is a key implementation concern
because it is repeatedly encountered at each hierarchical tasking

level.

Tasks consist of program code executing on a predetermined (at
link time) cell allocation as a coordinated entity, together with
all communication generated by that program code, and the external
ports used to communicate with other tasks. A task begins
execution when it is invoked (task start) by a parent task; parent
task operation is suspended on those cells, and the child task
executes. When the child task terminates, parent task execution
resumes. The lifetime of a task lasts from when all task members
(the cell allocation) complete a barrier synchronization on task
startup, until all members complete a barrier synchronization on
task termination. Only one task may be actively executing on a

single cell at a time.
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A parent task can pass invocation parameters to the child tasks it
starts. Each cell in the parent task's allocation passes the same
set of parameters to the child task, but the values of the
parameters can vary from cell to cell.

For example, consider Figures 2.2 and 2.3. 1In 2.2, an application
igs starting that includes the tasks Video In, Tee-off, and Ball
Detect.

Videoln ~ Tee-Off

‘o o oHoo
| | | Ball Detect
o o oo o

e

o o oo o

internal connectiong ~ ~ =«

external connegtions ~———

Figure 2.2 Three of the tasks used in the “predict and
plot the ball’s trajectory” example.

video In then invokes two child tasks, Sample Camera and Pack

Pixels (Figure 2.3). Sample camera acquires data from four video
cameras at once (4 bytes, 1 byte per camera, packed as one 32-bit
word), and forwards the data to Pack Pixels, which takes 4 words,

discards data from the 3 irrelevant cameras, and packs the 4 bytes

Sample Pack

Video In mera — Jlixs_l_j Tee-Off
O-n (Ao

X : 1 |
| ] Ball Detect

| : |
g=-b—=hy 0 o
T o oo o

internal connections g

extemal connections —
Figure 2.3 Vvideo In has invoked two children, Sample
Camera and Pack Pixels.




16

of data from the relevant camera into a new word and outputs it
using an external connection inherited from the parent task (Video
In). Thus, the complex task Video In has been constructed by

assembling two simpler, smaller tasks.

2.3 Task relations

As a task begins execution, all members of the task’s cell
allocation synchronize to verify that all cells needed to run that
task are indeed ready. If the task has any "personal" external
connections (as opposed to an external connection inherited from a
parent), the local work needed to set up an external connection is
done, and another synchronization is performed, which now includes
both communicating tasks' cell allocations. This second barrier
is necessary to ensure that no data is sent before the receiving
end of the connection is established. External connections
persist for the entire lifetime of a task, hence, an additional
barrier synchronization is necessary between communicating tasks
when the task terminates to ensure the connection is no longer

needed before tearing it down.

Because only one task may be actively executing on a cell at a
time, tasks with overlapping cell allocations may not execute
concurrently. Therefore, concurrent tasks that need to
communicate with each other must be mapped onto the machine such
that their allocations do not overlap. Conversely, if a task
wishes to invoke a child task, the child must lie entirely within
the allocation of the parent task. If a task wishes to invoke two
communicating child tasks, both must lie within the parent's

allocation without overlapping (See Figure 2.3).

Child tasks have limited external communication options: they may
have external connections between themselves and other (non-
overlapping) child tasks invoked from the same parent, or they may
communicate with tasks external to the parent's allocation via
external connections inherited from the parent. Child modules may
not create new external connections extending outside the parent’s
cell allocation; this restriction is necessary to keep the

encapsulation “pure”. The parent module presents a particular
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interface to the application. If an invoked child were to “reach
out” of the parent’s allocation without the parent’s express
knowledge, the parent module’s interface would no longer be
sufficient: a calling task (or application) would need to know
about both the parent and the child. Because knowledge of the
parent’s interface alone would no longer be sufficient, the
parent’s ability to encapsulate communication complexity would be
lost. By allowing child tasks to inherit a parent's external
connections, complicated multi-stage tasks can be assembled from a
collection of simpler tasks, while concealing the internal
complexity from the calling task or application. For example, in
Figure 2.3, Pack Pixels is shown inheriting the external

connection from Video In to Tee-0ff.

A parent task may communicate with its child only via parameters
and pointers; there is no concept of a connection between a parent
and child because parent execution suspends while the child task
runs. Parent tasks may invoke children to an arbitrary depth, but
recursion and reentrancy are expressly forbidden. The absolute
depth of task invocation must be known at link time to ensure
adeguate communication resources can be available at runtime. If
variable depth recursion were allowed, runtime resources could not
be guaranteed at link time unless some arbitrary depth limit were
pre-established. The depth limit approach is unacceptable because
(1) all scheduling would have to assume the worst-case depth
limit, resulting in inefficient resource utilization, and
(2) some program would inevitably try to exceed the pre-
established limit at runtime and c¢rash, violating our
guaranteed predictability.
Thus, to ensure predictability and allow efficient resource

allocation, the absolute depth of task invocation must be known at

link time.

2.4 Utilizing reconfigurable connections

All communication within and between tasks occurs via
unidirectional connections. A connection is a long-lived
bandwidth reservation between a source port on a source cell and a

destination port on a destination cell. Data put into the source
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port is guaranteed to be available at the destination port within
a time interval determined by the connection's level of service.

A port is a software construct belonging to the task which makes
the connection (which is really just a bandwidth reservation)
accessible to the program code. While it is realized by specific
hardware resources belonging to the cell, it is managed as an
entity belonging to the task. A connection can be thought of as a
pipe connecting two cells; the ports are the openings of the pipe.
Data poured into the uphill end of the pipe flows out the downhill

end.

All communication between cells within a task occurs via internal
connections, defined by a source cell, source port name (needed by
the source cell code), destination cell, destination port name
(needed by the destination cell code), and an optional bandwidth
reservation. Connections used together are grouped by the
application developer (or a higher-level compiler) into networks.
Task-local communication phases, called netgroups, are defined by
grouping networks together. A connection may only belong to a
single network, but a network (and hence its connections) may
belong to several netgroups (Figure 2.4). All aspects of internal
connections (connections, networks, and netgroups) are entirely
contained within the task definition. Only one netgroup may be

active within a task at a given time.

o

::j

‘|

[

|

| [
| |

: 1
I

~

netgroup #1 netgroup #2 netgroup #3
active active active
internal connections - — —» I

external connections —>

Figure 2.4 Netgroups allow finite physical connection
resources to support multiple local
communication phases.
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Communication between tasks occurs through external connections,
which join external ports on each task. External ports may either
be defined as part of the task, or may be passed in to a child
task from a parent. Because external connections are not wholly
owned by the task (the task only owns one of the external ports,
and cannot specify bandwidth), external connections need to be
defined by a higher-level (parent) task, or at the application

level.

If a task has external ports, a barrier synchronization is
required at the beginning of task execution covering all cells
belonging to both communicating tasks, ensuring that all cells of
each task's allocations are ready. This operation is necessary to
ensure no data is sent via an external port before the connection
is established. Similarly, another barrier is required at task
termination to ensure all communication stops have completed
before reclaiming the external connection resources. Barrier
synchronizations are also needed whenever a task changes the
active netgroup, but requires only the participation of the task's
cell allocation. No other cell, external controller, nor any
other agent outside of the task's allocation is required to
participate when changing the active netgroup. Connection

reconfiguration within a task occurs purely under local control.

Note that all connections are defined by endpoints and bandwidth;
no routing information is included as part of any connection

definition. The mapping of connections to physical communication
resources, including their routing on the target machine, is the

linker’s concern, not the application designer’s.

2.5 Implementing applications

Applications exist as one or more communicating tasks executing on
physical cells on a real machine. A TCS "program" isn't a single

entity; it exists as a database containing the executable program

code for each task for each cell, as well as the hardware-specific
connection resource mappings for each cell. A TCS program is

created by mapping the cell allocations of specific module
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instances to specific cells on a target machine, linking the
program code of the tasks and their children for the individual
target machine cells, routing the connections and assigning
specific hardware resources to support those connections,
evaluating what barrier synchronizations memberships are needed,
and assigning the necessary resources, then creating the loadable
images for code, synchronization, and communication. To run a TCS
application, the program code, synchronization information, and
communication information must be loaded onto all cells in the

machine, then all cells can begin execution.

2.6 Chapter summary

This chapter introduced the TCS programming model. TCS
applications are constructed from multicellular tasks which
communicate by means of unidirectional connections. Internal task
communication occurs via internal connections, which are grouped
into networks, and networks are grouped into sets called
netgroups. Only one netgroup may be active at a time; tasks may
perform local communication context switches to change the set of
active connections from one netgroup to another. External
connections support communication between tasks and persist for
the lifetime of the task. Task execution is controlled using a
small set of primitives: task start, local communication context
switch, and task end. These primitives are all built upon a
fourth control primitive, barrier synchronization, which will be

covered in more detailil in Chapter 4.
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Chapter 3 -
Target Platform Communication

Mechanisms

The last chapter introduced the TCS machine model and the notion
of TCS connections. This chapter introduces iWarp[l1l2], the target
machine, and shows how TCS connections can be supported on this
hardware. Two different message passing implementations, RTS
message-passing and deposit message-passing, are introduced for
comparison, and the performance of TCS connections and message
passing communication are characterized in isolation on an
unloaded machine. While both message passing and TCS are shown to
offer good performance and predictability for large transfers, TCS

maintains a substantial performance advantage for small transfers.

3.1 Target machine overview
An iWarp array is the target platform used to validate the TCS
model because it offers a rich set of communication hardware that

allows fair comparisons of different communication models.

3.1.1 iWarp array
The target machine is composed of 64 processing cells arranged as

an 8x8 torus, plus one host-interface cell (Figure 3.1). Each

—

X : :
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Figure 3.1 The iWarp array configuration - an 8x8
torus plus a host interface.
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cell is composed of an iWarp chip (or iWarp component) plus 512K
static RAM. Each iWarp component contains a VLIW CPU (the
computation agent) and a network interface (the communication

agent) .

3.1.2 iwarp Communication agent

j] ~ Each communication agent has
& f eight external physical network
g ==t conhections, four in and four
dep | | N out. These are designated as X
— "r—" — or Y, Up/Left or Down/Right, and
ﬁ' ﬂ In or Out. Each external network
_:‘
connection has a maximum
bandwidth of 40 MB/sec
Figure 3.2 iWarp (Figure 3.2).
connectivity.

Internally, the communication agent has 20 eight-word FIFOs known
as PCTs. Each PCT can be configured to receive data from an
external physical network connection or from the computation
agent, and each PCT can send data either to an external network

connection or to the computation agent.

3.1.3 PCT-supported connections

Connections are built by chaining together PCTs on adjacent cells,
building a contiguous path from source to destination (Figure
3.3). A connection consumes physical link bandwidth only if it is
actively forwarding data. If two connections share the same
physical link but only one is carrying data, the one carrying data
gets full link bandwidth. If both connections are actively
carrying data, each gets only half the link bandwidth, multiplexed
between them on a word-by-word basis. For a given connectivity,
congestion (and therefore available bandwidth) depends on both
routing and connection activity. In Figure 3.4, both examples
show a connection from each cell in the bottom row to the center

cell in the top row. In the left-hand example, if all three
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(0,0) (0,1)
H
(1.0 (1.1)
local remote local remote
PCT Direction PCT PCT Direction PCT
] Y-Dow| PCT1 PCTQ | inbound
Cell PCT1 |inbound| - Cell PCT1
©0 |per2 | - . ©1 | pcr2
1 ] ¥ H ] I i ]
B ' I 1 [ ] 1 t
local remote local remote
PCT Direction PCT PCT Direction PCT
PCTO | Y-Up | PCT1 peTo | vup | pero
Cell POT 1 | inbound]| - Cell PCT1
0 |pern | xmign] pCTO 0 |per2
[ [ ¥ i [ : ' H
[} 3 ¥ i i ' ' t
Figure 3.3 Example PCT configuration illustrating how

three connections could be supported via PCTs

connections are active at once, only one-third of the physical
link bandwidth is available to each connection. In the right-hand
example, the same source/destination connectivity is provided, but
no congestion occurs - each connection is routed over a different

physical network link.

Figure 3.4 For a given connectivity, the routing
affects the maximum bandwidth available.

The computation agent can read or write from connections by
accessing the PCTs of the communication agent either through gates

or spools. A gate is a special register that can map an iWarp
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component’s PCT in the communication agent into the computation
agent’s register file. CPU operations treat a gate like any other
register, but reading a gate pulls data from the front of the
mapped PCT's FIFO. Writing to a gate appends data at the back of
the PCT's FIFO. Each iWarp component has two read-only gates and
two write-only gates, which can be mapped to any of the twenty

PCTs.

A spool is a hardware feature that provides DMA-like transfers
between a block of memory and a PCT. Each active spool “steals”
up to one-third of the computation agent’s CPU cycles, but
requires no other direct CPU action once a transfer has been

started.

Connections may be created (or destroyved) by one of two
mechanisms:
(1) Source routing

Special tagged words may be launched at the connection’s
source that automatically set the state of the communication
agents as they pass through the array. PCT assignments
dynamically occur as the communication agents forward the
connection header along. The computation agent at the
destination can be notified of an incoming connection either
by polling or by an interrupt, depending on how it has

configured its communication agent.

If a resource needed to complete a route is busy, the
communication agent will block the connection until the

resource becomes available.

(2) Direct configuration
As the name implies, with direct configuration the
computation agent directly writes the state of the
communication agent to set a specific PCT configuration.
While source routing requires only computation agent
participation at the source and destination of a connection,
direct reconfiguration requires the active participation of

computation engines along the entire path from source to
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destination. Furthermore, while the communication agent is
responsible for PCT assignment/reclamation in the source
routing approach, direct configuration requires all PCT
assignments to be known prior to runtime. Direct
configuration offers two potential performance advantages:
the state of the communication agents along the route of a
connection can all be configured together in parallel, and
multiple connections can be configured in parallel. With
source routing, as a connection header makes its way through
the system, it must sequentially configure the state of the
communication agent at each step of the way. With direct
configuration, the state for the entire path can be
configured at once. Furthermore, with source routing, a cell
can only launch one connection header at a time. With direct
configuration, an entire set of connections may be

established simultaneously.

Because direct configuration requires the participation of
cells other than just the connection source and destination,
some form of barrier synchronization is needed whenever a
connection state change is needed. For instance, in Figure
3.3, the connection from cell (1,0) to (0,1) passes through
(1,1). Cell (1,1) needs to be certain the connection is no

longer needed before it reclaims the PCT.

3.1.4 Physical communication schemes
PCT-based connections form the basis of all iWarp communication
mechanisms, but how those connections are used yields three very

different physical signaling mechanisms.

3.1.4.1 PCT-supported static (TCS) connections

TCS connections are implemented using the direct configuration
approach but allow for PCT subsets to be configured; that is, a
TCS module may only need to reconfigure PCTs 1 through 8, and will
leave the remaining 12 {(which may be supporting other connections

or the runtime system) alone.



26

3.1.4.2 RTS message-passing

The iWarp runtime system, or RTS, is a low-level system monitor
that allows programs to be loaded and executed on array cells,
provides proxy I/0 service for the array cells, and allows a
cell’s internal state to be examined or modified by the host. To
provide these services, the RTS requires a communication system
that provides connectivity to all cells with minimal use of cell
resources. The RTS communication system is implemented as a
general-purpose messade-passing system built upon a unidirectional
token-ring communication structure. Each cell forfeits two PCTs
to the runtime system to build a large, single closed-loop
connection that passes through all cells exactly once; this loop
then supports a token-ring-like communication mechanism. At boot
time, the host interface cell injects a token into this closed
ring; the token circles endlessly until a cell requires RTS
services. When a cell needs to send a message, it acguires the
token, then injects its message into the ring. The message
follows the ring until it reaches its destination, upon arrival it
signals an interrupt at the destination cell, and the destination
cell consumes and processes it. An acknowledgment is sent from
the destination in a ringward direction until it reaches the
message source. The source consumes the acknowledgment then re-

injects the RTS token into the ring.

This communication mechanism, RTS message-passing, 1s available to
user programs and provides a simple means for any two arbitrary
cells in the array to communicate. All communication requires
circumnavigating the array at least once (the message travels
partway around the ring; the acknowledgment completes the round-
trip), generating interrupts at the source and destination cells
{and consequently causing in program context swaps). Only one
cell pair can use the ring at a time, therefore, the total
bandwidth available through this mechanism is limited, especially
impacting multiple short message transfers which could otherwise

occur in parallel.

3.1.4.3 Deposit message-passing
Deposit message-passing i1s an iWarp communication library [42,43]
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providing message-passing services similar to RTS message-passing,
but with vastly improved performance. Features include: multiple
cells can send at once, cells can receive and send at the same
time, and fewer copies and program context swaps are used when
communicating. The sender specifies the address of the buffer to
be used by the receiver. Deposit message-passing regquires nine
PCTs and two spools be dedicated to the message-passing system,
but allows all cells to send and receive at once. Messages are
implemented as source-routed dynamic connections. Only one
message at a time is supported over a physical network link, but
the message has the full link bandwidth available to it once it
does go through. The PCTs used by a message are immediately
deallocated as the message trailer passes through each of the
communication agents along its route. Routing is calculated on-
the-fly when a message is launched. Unlike RTS message-passing
(or even Nx-based message-passing), deposit message-passing
assumes a pre-allocated memory buffer at the destination so that
protocol overhead is much reduced. This reduced processing

overhead in turn results in a more efficient implementation.

In summation, three general communication options are available on
the iWarp:
(1) static PCT-supported connections, which are routed prior to
runtime and can last longer than just one message time,
(2) RTS message-passing, which provides a token-ring like
communication system, and
(3) deposit message-passing, which uses source-routed dynamic
connections and allows simultaneous sending and receiving by
all cells at once.
TCS connections are a special form of static PCT-supported
connections that allow small groups of cells to reconfigure
independently of the rest of the array without disturbing existing

connections passing through the cells.

3.1.5 Known system irregularities
While the iWarp is a good target platform, it has a few
eccentricities that make accurate performance prediction

difficult, but not impossible.
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3.1.5.1 Network contention unfairness

In theory, multiple connections sharing a physical network
connection share the bandwidth fairly. In reality, the on-chip
pathway scheduler views PCTs as four groups of five PCTs each.
Each pass through the scheduler (for each of the four outgoing
physical connections) the scheduler looks at the four groups in a
round-robin fashion, and chooses a PCT within that group in a
round-robin manner. If a group has no PCTs with data to send,
that group is skipped. Thus, scheduling is fair if all PCTs with
data to be sent lie within one group, or if the same number of
PCTs lies in each of the different groups. Otherwise, PCTs
belonging to groups with a small number of active PCTs get a
disproportionately higher percentage of bandwidth.

For example, consider three PCTs with data in group one, and one
PCT with data in group two, all competing for the same outgoing
pathway. The one PCT in group two would get one-half of the
physical pathway bandwidth, and each of the three PCTs in group
one would get one-sixth of the physical pathway bandwidth (rather

than one-fourth as expected under a fair scheduling scheme).

3.1.5.2 DQ contention

Every PCT that receives a word from a network connection must
return an acknowledgment word to the cell that sent the data.
This acknowledgment word is called a D@ (short for “dequeued
message acknowledgment”) and is carried on a special, physically
separate link parallel to the data link but running in the reverse
direction. In an ideal world, the DQ bandwidth would be the same
as the forward link bandwidth. Unfortunately, under certain
conditions, when multiple connections pass through a cell and at
least one connection changes direction in the cell (for example,
the message had been going up but turned left at the cell),
congestion occurs within the cell’s DQ-processing hardware, and
DQs are forwarded in an unfair manner. This amount of congestion
can be predicted, and if the forward links are fed no faster than
the congested rate (by intentionally sending data at a reduced
rate), forward pathway bandwidth is shared fairly (within the

constraints of Section 3.5.1). If one tries to feed the forward
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prathways faster than the DQ congestion-limited rate, the DQ
signals are returned in an unpredictable manner, and forward data
flow is choked by the lack of DQ signals showing available buffer

space.

3.1.5.3 Uneven forward link bandwidth

Theoretically, the iWarp is supposed to deliver 40Mbytes/sec on
each pathway. In reality, the scheduler tends to “skip” sending a
word every thousand words or so, yielding a true bandwidth closer
to 39.96Mbytes/sec.

3.1.6 iWarp platform summary
While the communication hardware has a few anomalies, they are
known and can be accounted for in performance models that maintain

detailed knowledge of the underlying PCT assignments.

Three general communication methods are available: PCT-supported
connections, RTS message-passing, and deposit message-passing.
While the PCT-supported connections require resource allocation
prior to runtime, both message-passing schemes handle
communication resource allocation on-the-fly. The RTS message-
passing has the lowest resource requirements and, given its token-

ring-like nature, the lowest expected performance.

Because the iWarp cells use static RAM for main memory,
computation performance can be accurately predicted. Figures 3.5
and 3.6 show communication times, both predicted and measured, for
short and long transfers using simple point-to-point PCT-based
connections, demonstrating that communication performance (at the

lowest level) is both predictable and repeatable.

3.2 Measured iWarp communication performance

The iWarp architecture provides three general communication
schemes: PCT-based connections, RTS message-passing, and deposit
message passing. This section quantitatively measures the
performance of these communication schemes for varyving quantities
of data and varying distances. Times are measured in “clock

cycles”. Each iWarp component has an on-chip, program-accessible



clock/counter.
the counter runs at only one-eighth of the processor clock rate.

Eight system clock ticks occur for every counter clock tick.

Counter ticks are multiplied by 8 to yield the number of system

clock cycles.

Thus, while times are reported in “system clock
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While the iWarp runs at a 20MHz system clock rate,

ticks,” the actual resolution is only to every eighth clock tick.

3.2.1 PCT-based connection communication

Figures 3.5 and 3.6 show the measured times for single-word

exchanges on the iWarp for distances ranging from 1 to 7 cell-

widths.

(cell A sends a word to B, B receives the word then sends a word

back to A,

cell A receives it) and dividing by 2.

Figure 3.5

Times are measured by taking the round-trip exchange time

shows that single-word exchanges have a repeatability well within

the measurement error of the timer,

and Figure 3.6 shows that runs

of 8-word exchanges have a time-per-exchange that is repeatable to

within a single clock.

1 2 cells | 3 cells |4 cells |5 cells | 6 cells | 7 cells
cell
Avg time 12 19 22 28 32 38 42
max time 12 20 24 28 36 40 44
min time 12 16 20 28 32 36 40
Figure 3.5 - PCT-supported-connection single-word communication
time (in clocks), average, maximum, and minimum
times vs. distance, for 1000 single-word
sequential exchange runs. Max measured error is 4
clocks.
1 2 cells | 3 cells | 4 cells |5 cells | 6 cells | 7 cells
cell
Avg time 10 16 20 26 30 36 40
max time 10 16 20 26 30 36 40
min time 10 16 20 26 30 36 40
Figure 3.6 - PCT-supported-connection single-word communication
time (in clocks), average, maximum, and minimum
times vs. distance, for 1000 eight-word exchanges.

Max measured error less than 1 clock.
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These measurements (particularly Figure 3.5) demonstrate that
communication latencies within a real machine are neither uniform
nor constant. Notice that in Figure 3.5 the communication time
increments by 6 then 4 then 6 then 4 etc. This variation is due
to the physical construction of the iWarp; cells are grouped four
to a board. Cell-to-cell communication within a board incurs a
latency of 4 clocks/cell, whereas communication between two cells
on adjacent boards incurs a 6 clocks/cell latency. Furthermore,
communication that “turns a corner” at a cell (such as transitions
from left-to-right travel to up-to-down travel) incurs an
additional 1 clock penalty. Assuming a 5 clocks/cell
communication latency is a reasonable approximation that

simplifies the modeling.

Connection communication cost can be modeled as having:

(1) a fixed set-up cost for sending,

(2) a per-word transfer cost which is a function of available
network bandwidth (depends on runtime link usage, but known
at link time),

(3) a distance-dependent network-latency cost, and

(4) a fixed set-up cost for receiving.

Connection xfer time = (Send_Overhead + Recv_Overhead) +

(Msg_size / Network BW) + (Dist x cost_per cell_hop)

This simple model allows comparisons between predicted vs.
measured communication using PCT-supported connections for
multiple-word exchanges. The following tables (Figures 3.7 and
3.8) show varying predicted and measured (avg, max, and min)
exchange times for payloads ranging from four bytes to 16 Kbytes

over distances of one to seven cells.

Both single and multi-word exchanges can be measured. Even for
exchanges as large as 16 Kbytes, communication performance on the
unloaded network is both extremely repeatable and predictable (to
within a microsecond). Figure 3.7 shows the results of 1000
“short bursts” of communication; Figure 3.8 shows the results of

longer bursts. As can be seen, even the longer bursts maintain
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predictability within half a microsecond, which is better than one
percent. The iWarp connection hardware’s high degree of
predictability is key to obtaining fast, predictable barrier
performance, which enables construction of the other TCS control
modules. As will be shown shortly, while certain kinds of message
passing can maintain predictability on an unloaded machine, the
TCS connections will maintain predictability even on a heavily
loaded machine. Certain simplifying approximations at the task
level of modeling will degrade the predictability somewhat from
the degree shown in Figure 3.8; still, predictability within three

percent or better can be expected.
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bytes 1 cell | 2 cells | 3 cells 4 cells 5 cells | 6 cells | 7 cells
4 43 49 53 59 63 69 73
(predict) (43) (48) (53) (58) (63) (68) (73)
max 43 60 64 68 72 80 84
min 42 48 52 56 60 68 72
16 49 55 59 65 69 75 79
(predict) (49) (54) (59) (64) (69) (74) (79)
max - 60 64 68 76 80 88 88
min 48 52 56 64 68 72 76
64 73 79 83 89 93 99 103
(predict) (73) (78) (83) (88) (93) (98) (103)
max 84 88 92 100 104 108 116
min 72 76 80 88 92 96 100
256 169 175 179 185 189 195 199
(predict) (169) (174) (179) (184) (189) (194) (199)
max 180 188 188 196 196 204 208
min 168 172 176 184 188 192 196
1024 553 559 563 569 573 579 583
(predict) (553) (558) (563) (568) (573) (578) (583)
max 564 572 576 580 584 588 596
min 552 556 560 568 572 576 580
4096 2089 2095 2099 2105 2109 2115 2119
(predict) (2091) (2096) (2101) (2106) (2111) (2116) (2121)
max 2100 2104 2112 2116 2120 2124 2132
min 2088 2092 2096 2104 2108 2112 2116
16384 8233 8239 8243 8249 8253 8259 8263
(predict) (8241) (8246) (8251) (8256) (8261) (8266) (8271)
max 8240 8252 8252 8260 8264 8268 8272
min 8232 8236 8240 8248 8252 8256 8260
Figure 3.7 PCT-supported connection communication time (in
clocks), average, predicted, maximum, minimum, vs. size

and distance, 1000 single-ping runs (error +/- 4

clocks/measurement)
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byvtes 1 cell | 2 cells |3 cells | 4 cells | 5 cells | 6 cells |7 cells
4 42 48 52 58 62 68 72
(predict) (43) (48) (53) (58) (63) (68) (73)
max 42 48 52 58 62 68 72
min 42 48 52 58 62 68 72
16 48 54 58 64 68 74 78
(predict) (49) (54) (59) (64) (69) (74) (79)
max 48 54 58 64 68 74 78
min 48 54 58 64 68 74 78
64 72 78 82 88 92 98 102
(predict) (73) (78) (83) (88) (93) (98) (103)
max 72 78 82 88 92 98 102
min 72 78 82 88 92 o8 102
256 168 174 178 184 188 194 198
(predict) (169) (174) (179) (184) (189) (194) (199)
max 168 174 178 184 188 194 198
min 168 174 178 184 188 194 198
1024 552 558 562 568 572 578 582
(predict) (553) (558) (563) (568) (573) (578) (583)
max 552 558 562 568 572 578 582
min 552 558 562 568 572 578 582
4096 2088 2094 2098 2104 2108 2114 2118
(predict) (2091) (2096) (2101) (2106) (2111) (2116) (2121)
max 2088 2094 2098 2104 2108 2114 2118
min 2088 2094 2098 2104 2108 2114 2118
16384 8232 8238 8242 8248 8252 8258 8262
(predict) (8241) (8246) (8251) (8256) (8261) (8266) (8271)
max 8232 8238 8242 8248 8252 8258 8262
min 8232 8238 8242 8248 8252 8258 8262

Figure 3.8 PCT-supported connection commuication time (in clocks),

average,

distance,

predicted, maximum,

1000 eight-ping runs,

minimum,

vs.

size and

(error < 1 clock)
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3.2.2 RTS Message-passing communication

RTS message passing is the low-resource-overhead communication
mechanism provided by the runtime system. It enables any two
arbitrary cells to communicate over a token-ring-like network
constructed from just two PCTs per cell. While its token-ring
nature serializes all communication and hence makes it undesirable
for high-bandwidth parallel communication, it is worth examining
as a model for a collision-free network with serialized access.
The following table (Figure 3.9) shows measured performance for

messages of varying size.

message distance (cells)

byvtes 1 cell |2 cells | 3 cells | 4 cells 5 cells | 6 cells | 7 cells
32 27964 28200 27966 28200 27966 28198 28839
max 28180 28204 28180 28204 28180 28200 28840
min 27884 27600 27884 27600 27884 27600 28540
64 27980 28215 27982 28215 27982 28217 28855
max 28196 28216 28196 28216 28196 28220 28856
min 27664 27904 27904 27904 27904 27900 28844
256 28076 28311 28078 28311 28078 28313 28951
max 28292 28312 28292 28312 28292 28316 28952
min 27996 28016 28000 27992 28000 28000 28940
1024 28460 28695 28462 28695 28462 28695 29337
max 28676 28696 28676 28696 28676 28696 29340
min 28380 28384 28384 28384 28384 28380 29040
4096 29996 30231 29998 30233 29998 30231 30873
max 30212 30232 30212 30236 30212 30232 30876
min 29680 29920 29920 29920 29920 29916 30576
16384 36140 36375 36142 36375 36142 36375 37017
max 36356 36376 36356 36376 36356 36376 37020
min 36060 36064 36064 36060 36064 36064 36752
Figure 3.9 - measured RTS message-passing time (in
clocks), average, maximum, and minimum vs.

payload size and distance for 1000 single-

ping runs

Given that RTS message-passing requires multiple context switches
and utilizes code not accessible to the programmer, one cannot
easily predict communication performance for this communication

mechanism. Thus, Figure 3.9 merely reflects the measured
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performance. Note that on an unloaded machine, RTS message
passing also shows repeatable performance to within one-half to
one-percent, but its absolute average communication time is
roughly 400 times slower than PCT-supported connections for small
messages (64 bytes) and 4 times slower for large messages (16
Kilobytes). As multiple cells exchange messages, the token-ring-
like nature of this communication mechanism will lead to greater

performance variance as cells vie for the limited ring bandwidth.

3.2.3 Deposit message-passing

Deposit message-passing[22] uses a foreground-send/background-
receive communication model; thus all communication incurs the
cost of a program context switch on every receive. As with PCT-
based connections, communication costs can be modeled rather
simply. Costs include:

(1) a fixed set-up cost for sending;

(2) a per-word transfer cost which is a function of
available network bandwidth (depends on physical link
usage at runtime);

(3) a distance-dependent network-latency cost;

(4) a fixed set-up cost for receiving. Depending on the
communication pattern, this set-up at the receiving
cell may be done in parallel with the sending cell’s
set-up, and the cost may be “hidden” in the overlap.
Patterns which require simultaneous sending and
receiving cannot hide the receive cost.

Putting these together, the message passing transfer time is
modeled as follows:
Mp_ xfer time = (Send_overhead + Recv_overhead) =+
(Msg Size/Network BW) + (Dist x cost_per_cell_ hop)

While this looks similar to the formula expressed in Section
3.2.1, the difference is that the Network_BW is not known at link
time, and in fact is resolved on-the-fly at runtime. One group of
messages may block another, temporarily reducing available
bandwidth to zero. The tables shown in Figures 3.10 and 3.11 list
the transfer times predicted by the above equation, as well as the

measured average, maximum, and minimum times for 1000 individual



runs.

On an unloaded machine (as used for this set of

measurements) 100% of the bandwidth is available for each

measurement as only a single message is flowing at a time.
to the extent that the

4/6 cell latency differences {due to physical board crossings) is

one expects (and sees) good repeatability,

vigible in the measurements.

message distance (cells)
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Thus,

byvtes 1l cell | 2 cells [ 3 cells | 4 cells | 5 cells | 6 cells | 7 cells
4 258 264 269 275 278 283 289
(predict) (260) (265) (270) (275) (280) (285) (290)
max 260 268 272 280 280 288 292
min 256 260 268 272 276 280 288
16 324 328 336 340 344 348 356
(predict) (372) (377) (382) (387) (392) (397) (402)
max 324 328 336 340 344 352 356
min 324 328 336 340 344 348 356
64 350 355 360 364 369 375 378
(predict) (396) (401) (406) (411) (416) (421) (426)
max 352 360 364 384 372 380 400
min 348 352 360 360 364 368 372
256 448 451 456 465 465 468 479
{(predict) (492) (497) (502) (507) (512) (517) (522)
max 448 452 456 468 476 476 484
min 448 448 456 460 464 468 472
1024 833 835 843 848 849 856 860
(predict) (876) (881) (886) (891) (896) (901) (906)
max 836 840 844 880 880 896 876
min 832 832 840 848 848 856 860
4096 2364 2371 2376 2385 2385 2390 2400
(predict) (2414) (2419) (2424) (2429) (2434) (2439) (2444)
max 2364 2372 2376 2388 2392 2400 2420
min 2364 2368 2376 2380 2384 2388 2400
16384 8510 8515 8520 8524 8529 8536 8540
(predict) (8564) (8569) (8574) (8579) (8584) (8589) (8594)
max 8516 8516 8520 8540 8536 8544 8548
min 8508 8512 8520 8524 8528 8536 8540

Figure 3.10

Deposit message-passing time (in clocks),

average,

vs.

predicted, maximum,

and minimum,

payload size and distance for 1000

gingle-ping runs




Despite requiring a program context-switch for receiving,

performance is still predictable to the same percentage (one
While

percent or better) as PCT-supported connections.
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performance is worse than connections for small messages (roughly

a factor of six on 64-byte transfers), for large messages (16
Kbytes) the performance difference between deposit message-
message distance (cells)
bytes 1 cell | 2 cells | 3 cells [ 4 cells | 5 cells 6 cells | 7 cells
4 255 262 265 271 276 282 285
(predict) (260) (265) (270) (275) (280) (285) (290)
max 256 262 266 271 276 282 285
min 255 262 265 271 276 282 285
16 371 376 379 385 390 395 399
(predict) (372) (377) (382) (387) (392) (397) (402)
max 371 376 379 386 391 395 399
min 371 376 379 385 390 395 399
64 399 402 409 412 416 422 426
(predict) (396) (401) (406) (411) (416) (421) (426)
max 399 402 409 412 417 422 426
min 399 402 409 412 416 422 426
256 492 500 503 508 514 519 522
(predict) (492) (497) (502) (507) (512) (517) (522)
max 492 500 503 508 516 519 522
min 492 500 503 508 514 519 522
1024 880 885 894 896 899 907 910
(predict) (876) (881) (886) (891) (896) (901) (906)
max 881 885 894 897 9200 909 911
min 880 885 894 896 899 907 910
4096 2412 2420 2423 2428 2434 2439 2442
(predict) (2414) (2419) (2424) (2429) (2434) (2439) (2444)
max 2412 2420 2423 2428 2434 2439 2444
min 2412 2420 2423 2428 2434 2439 2442
16384 8560 8565 8574 8576 8579 8586 8590
(predict) (8564) (8569) (8574) (8579) (8584) (8589) (8594)
max 8560 8565 8574 8577 8580 8587 8592
min 8660 8565 8573 8576 8579 8586 8590

Figure 3.11

Deposit message-passing time (in clocks),

average, predicted, maximum,

vs.

payload size and distance for 1000

sixteen-ping runs

and minimum,




39

passing and connections is under five percent. On an unloaded
system, deposit message-passing is between four and one hundred

times faster than RTS message-passing.

3.3 Chapter summary

For simple cell-to-cell transfers on an unloaded system, both
deposit message-passing and PCT-supported connections offer fast,
predictable performance. Relative to message passing, connections
offer better performance with small transfers (only a few words
per exchange). For large transfers, the small amount of
additional overhead incurred by deposit message passing is swamped
by the (Msg size / Network BW) factor, and the two offer
comparable performance. Because RTS message-passing requires
multiple context swaps and always requires passage through all
cells in the system (both of which increase latency regardless of
message size), it consistently offers the worst performance, and
offers repeatable performance only on an unloaded system. As
network load increases, RTS ring access is granted on a “first-

come, first-serve” policy regardless of cell bandwidth usage.

For building fast, efficient parallel applications on iWarp, the
choices are thus limited to either deposit message-passing or PCT-
supported connections. TCS uses PCT-supported connections for
communication. Not only were connections shown to be the fastest
of the three available communication methods, they were also shown
to offer predictable performance (better than one percent, which
is less than a microsecond) on an unloaded machine. If the
network bandwidth can be known/controlled, PCT-supported

connections should be predictable even on a heavily loaded system.
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Chapter 4 -

Barrier Synchronization

4.1 Introduction

Fast barrier synchronization is vital for good TCS performance.
TCS tasks rely on local communication context switches to swap
between sets of connections; each communication context switch
requires three barriers. Barriers are also needed when child
tasks are started or ended. Because barriers play this vital role
in resource allocation, they must have predictable performance
(otherwise tasks using them would not be predictable), and they
need to be fast (since they are used so frequently). This chapter
examines some of the major issues regarding barrier
synchronization and explores the trade-offs made when implementing

a barrier synchronization scheme.

4.1.1 what is a barrier, and what does it do?

A synchronization barrier, or barrier, is a named rendezvous point
in parallel program code which is shared across multiple cells.
When a barrier is encountered in a cell's program, the cell's
foreground execution is suspended until all other cells sharing
that barrier (barrier members) reach the same named barrier in
their code as well. Barrier execution time is defined as the time
elapsed from when the last cell reaches the barrier, until the
last cell exits the barrier, assuming that all members of the
barrier arrive at the same time and that no background processing
occurs. While barrier synchronization is a necessary tool for
sharing resources in a parallel environment, it doesn't accomplish
any productive work. Good application performance requires
minimizing the impact of barrier synchronization on total

application execution time.

Until recently, most parallel applications only needed a barrier
or two at startup and termination; since the time spent

synchronizing was small relative to the total application
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execution time, barrier execution speed wasn't relevant to overall
application performance. More recently, though, applications have
been developed that require thousands of barriers for connection
reconfigurations, or that rely on barrier synchronization to
control congestion in a message-passing system[25]. As barrier
use increases, barrier execution speed plays a larger role in

overall application performance.

4.1.2 Barrier properties

Regardless of the underlying implementation, a barrier has a name
and a cell membership. The barrier name uniquely identifies the
group of cells (barrier members) who participate in the barrier.
Cells may be members of more than one barrier, and a parallel
computer may support multiple barriers executing at once. Two
barriers with non-overlapping memberships may execute
simultaneously; barriers which share members (overlapping
memberships) will either be forced into sequential execution or
deadlock, depending on the ordering of the barriers in the overlap
cells' programs. A cell may only participate in a single barrier
at one time. (If a cell supports multitasking, each job on the
physical cell will be treated as a single task running on a
separate "logical cell." While the physical cell may be executing
multiple barriers at once, each logical cell is still limited to

executing a single barrier at a time.)

4.2 Issues affecting barrier synchronization implementations
This section will first present the canonical barrier
implementation, then look at some of the issues that must be dealt

with when creating a real implementation.

4.2.1 The canonical barrier implementation

As cells that are members of barrier foo reach the barrier in
their code, they suspend their foreground execution until all
other members reach the barrier point as well. Members resume
foreground execution as they become aware that all other members
have arrived. In essence, barrier execution is an all-to-all
information exchange between the members ("I am here at foo") that

must occur before execution resumes. How that information
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exchange occurs is a function of the physical signaling scheme and
the messaging protocol, and will be addressed later. What's
important now is recognizing that barrier execution time is
essentially the time needed for the barrier members to complete an

all-to-all information exchange.

The all-to-all communication occurs via an exchange of messages.

A barrier implementation's performance, the impact of how messages
are encoded, signaled, and distributed, can be modeled with just
two parameters: the message time, and the number of parallel
message times. The message time is the time needed for one cell
to compose and send a message to another, and for the recipient to
receive and decode it. Message time encompasses both the software
overhead of creating/launching the message and receiving/decoding
it, as well as the network latency in delivery. The number of
parallel message times reflects the number of messages which need
to be sent in the barrier and the degree to which multiple
messages may be sent simultaneously. Assuming no other load on
the synchronization network, barrier execution time is just the
product of the effective message time and the effective number of

parallel message times.

4.2.2 Scalability of a barrier implementation

Scalability characterizes how quickly an implementation's
performance changes as the number of cells increases (in other
words, how quickly does it slow down as N becomes large?).
Depending on one's definitions of "performance" and "number of
cells", scalability can have (at least) four different meanings:

(1) barrier execution time vs. number of barrier members
(2) barrier execution time vs. number of cells in the machine

(3) Dbarrier execution time vs. number of simultaneous barriers
supported

(4) number of simultaneous barriers supported vs. number of cells
in the machine

4.2.2.1 Barrier execution time vs. number of barrier members’
As shown earlier, barrier execution time equals the product of the

implementation's message time and the number of parallel message
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times needed per barrier. Barrier execution time depends on the
scalability of both message time and the number of parallel
message times needed per barrier as the number of barrier members
increases. Just looking at the number of messages needed vs.
number of barrier members is a useless (though oft cited) means of
predicting performance because it ignores the possibility of
message times getting longer with more barrier members, as well as

the speedup allowed by multiple cells sending in parallel.

4.2.2.2 Barrier execution time vs. number of cells in the machine
Again, the real concern is the scalability of message time and the
number of parallel message times needed vs. the number of cells in
the machine. Depending on the implementation, message time may
scale with the number of cells in the machine, the number of

barrier members, or both.

4.2.2.3 Barrier execution time vs. number of simultaneous barriers
The number of parallel message times needed to execute a barrier
is independent of the number of other barriers executing; it is a
measure of the communication overlap allowed by the
implementation, not a guarantee. Since each cell (or logical
cell) can only be executing one barrier at a time, it is unaware
of the existence of other barriers which may be executing on the
machine at the same time. The cell's pattern of message exchange
(who sends what to whom in what order) will thus be the same for a
given barrier regardless of whether or not other barriers are (or
could be) executing, although individual messages may be blocked
or delayed. Thus, only the message time can be affected as the
number of simultaneous barriers on the machine increases. The
scalability of barrier execution time vs. number of simultaneous
barriers thus solely depends on the scalability of the message
time vs. the number of simultaneous barriers. Depending on the
implementation, the message time may scale based on the number of
simultaneous barriers allowed for by the implementation (static
sync network bandwidth allocation), or it may depend on the number
of simultaneous barriers executing (dynamic sync network bandwidth

allocation).
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4.2.2.4 Number of simultaneous barriers vs. number of cells

This "performance measure” is more of a philosophical guestion
than a stand-alone metric. Before answering "How hard is it to
allow more simultaneous barriers as the number of cells
increases?", one needs to ask "How many barrier channels are
desirable for a multicomputer of N cells?". A related question
is: "How many distinct simultaneous barriers can be supported at
once by a pool of K barrier resource sets?" In other words, can
two distinct barriers with non-overlapping memberships share the
same underlying resources? The answer to this third question

colors the answer to the first, and is highly implementation

dependent, reflecting both how multiple barriers are implemented

and the allowable barrier memberships supported.

4.2.3 Barrier message memory
When a barrier executes, the member cells perform an all-to-all

information exchange; the details of how information is actually

sighaled and received is the responsibility of the

implementation's physical signaling scheme and messaging protocol.

"Barrier message memory" is an important characteristic of all

implementations which ensures barrier synchronization information

is not lost during the all-to-all information exchange. Two major

cases need to be handled:

(1)

(2)

If a cell arrives at a barrier in advance of the other
barrier members, its information must not be lost, even
though other barrier members aren't executing the barrier
code yet. If the cell is re-entering a named barrier that it
had previously completed, other members must not confuse the
cell's second execution of the barrier with a continuation of

the first execution of the barrier.

The programming model states that when a barrier is
encountered in a cell's program, the cell's foreground
execution is suspended until all other barrier members reach
the same barrier in their code as well. Real implementations
have an additional constraint: a cell not only needs to know
that all other members have arrived; it must also be certain

that everyone else will know that it has arrived. Note that
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the cell does not need to wait until everyone else knows that
it has arrived; the cell merely has to know:

(1) that everyone else has arrived, and

(2) that everyone will know that it has arrived.
This is an important distinction, because forcing all other
cells to know the cell has arrived requires in effect,

executing an unnecessary second barrier.

All barrier synchronization implementations must include some form
of barrier message memory that can satisfy these two cases.
Lacking either one will cause unexplained program behaviour as

barriers randomly fail to complete.

4.2.4 Barrier skew
Real cells running a real application seldom reach a barrier at

the same time; rather than all reaching the barrier together, one
cell will be first and another will be last. Consequently, the
cells reaching the barrier first can start the computations
necessary to process the barrier earlier than the one arriving
last. Barrier skew reflects the difference in time between when
the first cell exits the barrier and when the last cell exits the
barrier. Barrier skew is generally, though not always, influenced

by the timing skew between cells entering the barrier.

Since barrier performance will be no worse than the case of all
cells entering the barrier together, barrier skew will be ignored
in this paper. Still, it remains an interesting area for research

on possible future optimizations.

4.3 Design Space for Barrier Implementations

Synchronization schemes can be roughly categorized by the services
provided and how those services are implemented. Users only see
the functionality offered by the synchronization services:
flexibility for defining (and redefining) barrier memberships, the
number of barriers supported on their target machine, and barrier
execution time. Similar user services could be provided with very
different implementations. Precise classification is complicated

by the fact that sophisticated messaging protocols can emulate
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capabilities lacking in hardware (usually at the expense of speed
or number of simultaneous barriers supported). Still, a
particular implementation can be placed within a four-dimensional
design space, and certain performance generalizations can be made
from this categorization. The four not-quite-orthogonal axes
describing the design space are:

(1) physical signaling scheme,

(2) messaging protocol,

(3) allowable barrier memberships,

(4) barrier capacity of the implementation.
Knowing where an existing implementation sits in this space offers
clues to expected barrier performance and scalability.
Conversely, given target platform hardware and membership/capacity
requirements, these axes can help guide choice of an appropriate
signaling scheme and messaging protocol. Initially, each axis
will be looked at in isolation. Later, various combinations of
physical signaling scheme and messaging protocol will be assembled

to show how they interact in real barrier implementations.

4.3.1 Physical signaling scheme

Barrier synchronization requires an all-to-all information
exchange between the barrier members. The physical signaling
scheme determines how information is carried, and who a cell may
directly communicate with. While the messaging protocol
determines which cell talks to whom and when, the physical
signaling scheme puts hard constraints on the messaging protocol
by defining the allowed communication. The message time for a
barrier is strongly dependent on the physical signaling scheme,
ranging from a few clocks for a hardware broadcast/combining
network to thousands of clocks for an implementation based on the
machine's general message-passing facilities. Physical signaling
methods generally fall into one of the following five classes:

Class S1 - low-level hardware broadcast/combining network (1l's of
clocks) :

Class S2 - multiplexed hardware broadcast/combining network (10's
of clocks)

Class S3 - special messages on a private network (100's of clocks)
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Class S4 - special messages on the regular communication network
(100s to 1000s of clocks)

Class S5- general messages on the regular communication network
(1000s of clocks)

Lower-class signaling methods generally execute faster but can
support only a limited number of simultaneous barriers. Capacity
of lower-class signaling implementations can be increased at the
cost of greater hardware complexity. Higher-class physical
signaling methods more closely resemble a general-purpose network;

increased capacity occurs at the expense of slowing signal times.

4.3.1.1 Class S1 physical signaling -

Low-level hardware broadcast with network combining
Class S1 signaling is the simplest and most direct method of
signaling, whereby a cell indicates its readiness by setting an
absolute voltage level on a wire to indicate a logical “ready” or
“not ready”. A simple logical combining of all the cells’ signals
is done and the results continually broadcast back to all
participants. Both the combining network and the broadcast
network may either be buffered or unbuffered. Buffering allows
greater scalability, but requires extra hardware and adds latency
with each stage. The unbuffered implementation is faster for
small implementations, but scales poorly with large numbers of

cells.

4.3.1.1.1 Unbuffered broadcast

This scheme provides a true broadcast capability, and allows use
of efficient messaging protocols that can complete in just one
message time because all communication can be simultaneously
overlapped. The simplest hardware broadcast network is the
distributed-NOR circuit shown in Figure 4.1, similar to that
discussed by Hwang and Shang in [29]. This is a NOR circuit,
wired to all cells, such that any cell can pull the signal line
low or let it float high. Only if all cells let the line float
high will the test bit be read as high. The barrier is
initialized with all participating cells pulling their barrier

lines low, and either disconnecting all non-participating cells by
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Figure 4.1 A single hardware barrier channel

partitioning the network (Figure 4.15), or having the non-
participating cells let their lines float high (and subsequently
ignore them). When participating cells enter the barrier region,
they release their barrier lines and let them float high. When
the last cell enters the barrier, all cells will then read the
line as high. This barrier only requires one message time to
complete; if all cells enter the barrier together, they will all
release their barrier lines together, and could all probe their

test bits together.

While conceptually simple, this barrier implementation has several
drawbacks. While it only requires one message time to complete,
that "one message time" scales linearly with the number of cells.
Cells need tco allow the voltage on the wire to stabilize after
releasing the line before reading it; how fast the line stabilizes
is a function of the line's capacitance and inductance, which is
in turn a function of the line length, with is proportional to the
number of cells wired together. For twice as many cells, one
needs a wire twice as long to hook them up, and the settling time
required also doubles. This implementation’s execution time is
independent of the number of barriers supported; each barrier has
its own copy of the circuit; adding more channels means
replicating hardware but doesn't affect any single barrier's

speed.



49

laich

D o 0 o | D a
Eh Ech fakch | falch

10 08l Call Otest Coll 1 5at Cell 15t Cell 250t Cell 211 Colln3set Cell n31est Calln-2set Celln2fest Cell 1 sl Coltne1 lost

Figure 4.2 Single channel buffered hardware barrier
circuit.

4.3.1.1.2 Buffered broadcast

Message time scaling can be reduced from linear to logarithmic by
adding hardware "buffering" to the line. (Figure 4.2) This adds a
constant delay per buffering stage, but by keeping the hookup
wires short, the settling time remains constant. With a buffered
system, message time only scales O(logN) because buffering
latencies are a function of the number of layers (which are
proportional to logN), but the settling time per layer remains
constant. An unbuffered system scales as O(N) because the
settling time needed is proportional to wire length. For a small
multicomputer housed in a single cabinet, the unbuffered system
offers simpler implementation, and the small size ensures a fast
message time. For a system distributed across multiple cabinets,
the buffered system offers a clear advantage. This is similar to
an approach suggested by O’Keefe and Dietz in [37,38] and Beckmann
et al in [7].

An insidious problem with this type of low-level hardware is
supporting barrier message memory. Both the buffered and

unbuffered networks shown can allow a cell to know that everyone
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else has entered the barrier, but, as shown, they cannot ensure
that everyone else will know that the last cell has arrived. If
the last cell arrives, lets the barrier signal line float high,
sees 1t as high, and then resets itself, other cells doing
background processing while waiting at the barrier may never see
the line go high. Thus, some form of message memory must be added
either at the message protocol level (in other words, use a
second, uninterruptible barrier to ensure everyone's reached the
first; because the second barrier is uninterruptible, everyone
will complete within a known amount of time), or each channel's
cell interface must be augmented with hardware to provide a

message memory similar to that shown in Figure 4.3.

Cell signal lines Sync network signal lines
' Cell 0 barrier test
Cell 0 barrier clear A
s ©°
latch
Cell 0 test (from network)
Ly
Cell O barrier set s
latch Cell 0 set {to network)
Cell 0 barrier set
for all time
Figure 4.3 Modifying the cell’s interface to the

synchronization network allows a more
reliable barrier message memory.

4.3.1.2 Class S2 physical signaling -

Multiplexed low-level hardware broadcast/combining
Both the buffered and unbuffered broadcast implementations allow
fast information exchange, but the amount of hardware required
scales with the number of simultaneous barriers needed. An
alternate approach to this problem is to time division multiplex
several barrier signals ("barrier channels") onto a single
broadcast network. With this technique, message time becomes the

sum of two components: a propagation/settling time (same as Class
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S1) that scales with the number of processors, and a serialization
latency that scales linearly with the number of barriers supported
(each channel has to "wait its turn" to be broadcast and
received). The settling time required between each "barrier
channel" sets the reasonable limit on how many channels may be
reasonably multiplexed over a single network. If more channels

are required, additional copies of the synchronization network

will be needed.

4.3.1.3 Class S3 physical signaling -

special messages on a private network
Multiplexing several barriers on a single wire is little more than
static bandwidth allocation to a fixed number of "barrier
channels". A drawback of this approach is that barriers consume
bandwidth whether they are executing or not, limiting the total
number of barriers a machine may support. An application's
barrier synchronization needs must be mapped to the fixed set of
barrier channels, becoming a "graph coloring" problem similar to
register allocation. 2An alternative is to make the
synchronization network more general-purpose and use more
sophisticated messages (as opposed to single bit ready/not ready)
for barrier communication. While this approach will run about an
order of magnitude slower than simple multiplexed bits on a wire
(due to the greater overhead of processing/decoding the messages),
it allows demand-driven allocation of sync network bandwidth to
barriers as they execute, and, coupled with a more sophisticated
messaging protocol, can allow use of simpler network hardware.
Intelligent choice of a messaging protocol can relax the network
connectivity requirements, resulting in simpler wiring; for
example, explicit hardware broadcasting capabilities may not be
necessary. Furthermore, by using a more general-purpose messaging
scheme, greater numbers of simultaneous barriers may be supported

merely by allocating additional cell memory to buffer barrier

data.

By using a private synchronization network (as opposed to using
the machine's general communication network), communication

latency between cells is controllable. The designer has firm
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control over the message types and sizés which need to be
supported, allowing for a more restrictive (and hence simpler)
hardware/firmware network design. At the same time, the designer
gains flexibility in terms of protocols allowed (as opposed to a
simple ready-bit-on-a-wire), as well as the number of simultaneous
barriers supported, at the expense of greater processing overhead
and potentially longer communication latencies. The Alliant FX-8
is one example of a shared memory multicomputer that uses a
separate, dedicated bus for barrier synchronization messages.
Rather than tieing up shared memory bus bandwidth with spin-wait
locks on shared variables, the designers elected to give barrier

traffic its own private network[2].

Barrier message memory, particularly handling the early sync
message, 1is cumbersome to address with hardware alone in a Class
S3 or higher signaling scheme and needs greater involvement of the
messaging protocol. An early sync message may:
(1) generate an interrupt at the recipient cell and be buffered
for future use,

(2) block the network until the message can be serviced,

(3) continue circulating through the network until the message is
actively received, or

(4) be discarded, relying on a higher software level to guarantee
message arrival (via retransmission until successful).
Each of these options offers the developer a tradeoff between
communication network bandwidth, application bandwidth needs, and

any time-critical CPU demands the application may require.

Applications unfettered with real-time requirements do well with
interrupt-driven buffering, since at most N-1 buffers are needed
(that is, if every other cell in the array tries to execute a
different barrier with the cell in question). On the other hand,
applications with real-time requirements may not be able to afford
servicing interrupts while in their critical loop. If one is
doing only global synchronizations, blocking the synchronization
network until the message can be serviced may yield the fastest
and simplest implementation. Conversely, if multiple subset

barriers are possible, blocking the network will almost certainly
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cause deadlock. Allowing the message to endlessly circulate
consumes network bandwidth, perhaps slowing down "real" data
transfers in progress (if synchronization shares the general
purpose communication network). Discarding early messages
complicates the necessary handshake protocol and can more than
double the time needed to complete the barrier (since some cells

will always be early).

4.3.1.4 Class S4 physical signaling -

Special messages on a general network
If a private synchronization network is not available (such as
when one is "retro-fitting" an existing machine with barrier
capabilities), one can often "make do" utilizing special-purpose
messages over the general network. Using "virtual channels" or
similar capabilities, one can send barrier data over the general
communication network but utilize private data handlers to launch
and receive barrier information, resulting in lower barrier
communication overhead than obtainable with the regular
communication facilities. This approach still requires having
low-level program access to the machine's communication hardware,
but avoids the need for "programming in solder". Allowable
messaging protocols are restricted by the connectivity allowed by
the private data handlers. Depending on the machine, the private
data handlers may sacrifice some of the connectivity normally
offered by the regular communication facilities in exchange for
lower communication latencies. This would force the use of a
messaging protocol that requires a greater number of parallel
messages, but may guarantee significantly shorter message times.
Barrier message memory issues are the same as for Class S3. This
general signaling approach is discussed in [10] but, as far as we

know, was not implemented.

4.3.1.5 Class S5 physical signaling -

General messages on a general network
This approach offers the most flexibility in choice of messaging
protocols but permits the least control over message times or
connectivity. Due to copyving and buffering overhead, this

approach usually has the slowest execution time but the greatest
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portability to other platforms. Furthermore, if the appropriate
messaging protocol is used, the problems of barrier message memory
can be transparently handled by the underlying communication
services. One cannot avoid the use of interrupts, so one might as
well let the regular communication buffers hold the early

messages.

4.3.1.5 Physical signaling summary

Physical signaling implementations require a tradeoff between
messaging speed and barrier capacity. At one end of the spectrum,
the simple “bit-on-a-wire” scheme of Figure 4.1 provides fast
signaling times but only supports one barrier per hardware
instance. Time-division multiplexing multiple barrier signals on
the wire will increase capacity at the expense of increasing
message latency. At the other end of the spectrum is using the
general purpose communication facilities to send and receive
messages. This allows much greater flexibility for arbitrary
barrier subsets and multiple simultaneous barriers on the machine
at the expense of a much higher latency. Sharing the general-
purpose network can be speeded up by using special, optimized
private messages over the same physical network, at the expense of
the type/shape of barrier subsets (memberships) supported
{completely arbitrary vs. contiguous blocks only). While TCS uses
only one physical signaling method, other real-world barrier
implementations may use a hierarchy of signaling methods.

Barriers that are used infrequently can utilize a slower signaling
implementation that doesn’t require any specialized resources,
whereas a few frequently-executed barriers within an inner program
loop could benefit from rare, specialized hardware. As will be
explored later in Section 4.5, choosing a physical signaling
scheme regquires a tradeoff between speed, capacity, and resource

cost.

4.3.2 Messaging protocol
Given a group of N cells entering a barrier, none are allowed to

exit until all have arrived. In essence, this boils down to each
cell asking its N-1 neighbors "Are you ready yet?", and answering

"Yes" when queried by its neighbors. Consider the two-cell
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’ “Are you roady yet?"

"Are you ready yet?”

Figure 4.4 The simplest two-cell synchronization

synchronization shown in Figure 4.4. Once a cell has 1) Answered
"Yes, I'm ready" to its neighbor's gquery, and 2) received a "Yesg"

to its own query, it is free to leave the barrier.

Obviously, this scheme carries some redundant communication.
Assume A enters the barrier first and sends the "Are you ready
yet?" message to B. The message will sit at B until B enters the
barrier as well (barrier message memory). B shouldn't need to ask
A "Are you ready?" because A's message in B's buffer implicitly
indicates readiness. Suppose that instead of a question/answer
exchange, each processor simply sends the message "I'm ready,
tell me when you are" to its neighbor. In effect, the message
sent is "overloaded" so that a single message sent from one cell
to another really carries the weight of two messages sent by two
different cells. Modifying the handshake protocol in this manner
reduces the synchronization to what is shown in Figure 4.5.

How many message times does this barrier require to complete? If

the synchronization network supports multiple simultaneous

’ o
/ “I'mready. Toll me when you arg,” \,\

k|

"F'm ready. Tell me when you are.”

Figure 4.5 Reduced protocol two-cell sync
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communications, the cells can overlap their message transmissions,
and the barrier will complete in just one message time. On the
other hand, if the network only supports a single message at a
time (say, the two cells share an ethernet connection), the
messages become sgserialized due to the network access restriction,
and the barrier requires two message times to complete. In both
cases, two messages were required to complete the barrier. The
number of parallel message times, though, varied based on the
underlying physical signaling scheme. Choosing a protocol that
minimizes redundant communication (whether directly, or because of
serialization at the physical signaling laver) is key to good

barrier performance.

The "ideal messaging protocol" for a given system is strongly
influenced by the underlying signhaling scheme being used. Major
issues affecting the choice of protocol include degree of support
for broadcast capabilities, and the number of barrier messages
that can be sent simultaneously (both by the system as a whole,
and by individual cells). Regardless of the protocol chosen, all
cells need to transmit at least one message per barrier. By using
a protoecol that takes advantage of the underlying signaling
mechanism, one can execute some of those communications in

parallel, reducing the number of message times needed per barrier.

Messaging protocols fall into two general classes of
communication: those that rely on some form of broadcast or
multicast (Class Pl), and those that use only private, point-to-

point messaging (Class P2).

4.3.2.1 Class Pl messaging protocol-
Broadcast communication

Synchronization protocols based on some form of broadcast
messaging can be further subdivided into 4 subclasses:

(a) shared global channel, all-to-all, with network combining;

(b) shared global channel, one-to-all;

{c) private channel, all-to-all, with network combining;

(d) private channel, one-to-all.

Each of these will be examined in more detail.
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Combining
Network

Stage 1 Stage 2

Figure 4.6 Class Pla protocol. Synchronization
completes in one message time when the
protocol and underlying hardware support a
broadcast-combining network.

Combining
Network

4.3.2.1.1 Class Pla messaging protocol -

Shared global channel, all-to-all, with network combining
This protocol assumes that the cells have a Class S1 or Class S2
physical signaling scheme, similar to what is shown in Figures 4.1
and 4.2. When executing a barrier, each cell sends a single
message (usually just setting a single bit) to the combining
network to indicate readiness, and waits until the network
combining function indicates that the barrier is complete. Once
the cell is assured that all other cells will know that it reached
the barrier as well, the cell is free to leave. With the correct
underlying hardware, this protocol can complete in one message
time (if all cells enter the barrier together), because all cells

can send and receive at once (Figure 4.6).

4.3.2.1.2 Class Plb -

Shared global channel, one-to-all, no network combining
This assumes an ethernet-like communication network, where one
cell can broadcast and all other cells can listen (Figure 4.7).

Unfortunately, this scheme offers the worst performance of the
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Figure 4.7 Class Plb protocol. Example of an eight-cell
barrier executing using one-to-all
broadcasts.

broadcast protocols, with best-case execution requiring N
sequential message times to synchronize a barrier with N members.
Because every cell participating in the barrier needs to send
information at least once (otherwise no one can know it has
reached the barrier), because there is only a single, shared
global channel, and because there is no inherent combining in the
network, all N broadcasts occur sequentially. There is no way to
get parallel barrier transmission; the best you can hope for is
parallel receives. The only way to obtain good performance with
this protocol is to have an underlying physical signaling

implementation that offers a very fast message time.

4.3.2.1.3 Class Plc -

Private channel, all-to-all, with network combining
This is similar to Class Pla (shown in Figure 4.6), except that
multiple "barrier channels" are visible at the protocol level.
This means that systems lacking the additional message memory
hardware can still get the functionality of barrier message memory
by utilizing a second "barrier channel" in the network. Cells
which are not members of a barrier simply indicate they are "ready

for all time" to the network, and thereafter ignore that channel.
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Figure 4.8 Class Pld protocol. Optimal for a network that
allows both private communication and broadcasts.

4.3.2.1.4 Class Pld -

Private channel, one-to-all, no network combining
With appropriate hardware, this messaging protopol offers similar
performance and scalability to Class P2 protocols, except that the
effective message time is somewhat shorter because all
communications are unidirectional. By utilizing "private
channelsg", multiple cells can communicate at once. The
synchronization is composed of N-1 unidirectional messages
(occurring in log,N time with the appropriate underlying signaling
mechanism), plus one broadcast at the end to complete the barrier.
In this scheme, a cell either transmits or receives, but never
does both at once (Figure 4.8). Note that this is in contrast to
the handshaking done in Class P2 protocols where a cell can send
and receive at the same time. By reducing the overhead per
message (since each communication is unidirectional), this
protocol could have a shorter message time than a Class P2
protocol, which uses only private messages (no broadcasts), but

requires bidirectional communication at each stage.
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Note that there are still N transmissions being made; if this
protocol is used with a physical signaling scheme that only
supports global broadcasts (such as ethernet), the communications
will become serialized and occur in N message times, not (logyN +
1).

4.3.2.2 Class P2 -

Point-to-point messaging protocols (no broadcasts)
All of the Class Pl protocols relied on a final broadcast to
inform all member cells that the barrier had been completed. If
the underlying physical signaling mechanism does not allow a final
broadcast, some other means of distributing the information is
required. A further complication is that arbitrary connectivity
may not be supported; cells may be restricted in whom they can
communicate with. If the synchronization services share network
bandwidth with the application, it may also be important to
restrict the total number of messages used to synchronize.

4.3.2.2.1 Optimizing point-to-point messaging protocols
The underlying problem remains: an all-to-all information
exchange has to occur. Since communication is restricted to
point-to-point messages, there are several principles to make a
protocol fast:

(1) Reduce the per-cell, per-barrier communication;

(2) Control the synchronization network loading;

(3) Reduce the total number of messages carried by the

synchronization network;
(4) Overload messages where possible so that a single

communication carries the information of multiple messages.

Depending on the underlying physical signaling scheme, different
principles carry different weight. While they apply to broadcast-
based protocols as well, they're particularly relevant to point-

to-point messaging protocols.

4.3.2.2.1.1 Reduce the per-cell per-barrier communication
The simplest example of reducing communication is the evolution

of the handshake from a two-message split handshake (Figure 4.4)
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to the reduced protocol single-message handshake shown in Figure
4.5. Pure hardware schemes (Figures 4.1 and 4.2) take this to an
extreme with the communication consisting of a single voltage

transition.

4.3.2.2.1.2 Control the synchronization network loading
Consider the four-cell synchronization problem shown in Figure
4.9. Each cell sends a single "I'm ready, tell me when you are"
message to each of its three neighbors, then waits until it

receives all three replies.

|

4 oo oo oo
"

D

Figure 4.9 Four-processor all-to-all handshaking

Allowing one cell to "proxy" for another reduces the all-to-all
communication pattern shown in Figure 4.9 to the three-stage

communication shown in Figure 4.10.

[ PR
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Stage 1 Stage 2 Stage 3
Figure 4.10 During each communication stage a cell

proxies to its downstream neighbor for all
the upstream neighbors it has heard from. At
the final stage, each cell receives a proxy
message for all other cells.



62

Each cell runs the same algorithm. For a barrier of N cells
communicating in a unidirectional ring:

for I=0 to (N-1) {
send a message to my downstream neighbor;
wait for a message from my upstream neighbor;

}
Consider cell A. At the beginning of the barrier, stage 1, A

sends a single "I'm ready, tell me when you are" message to B,
then waits until it receives a similar message from D. Once it
has received the message from D, it begins stage 2, and again
sends a single "I'm ready, tell me when you are" message to B.
This second message carries more information that the first,
though, because sending it means that A has received a message
from D. Thus, the stage 2 message B receives from A really means
"A and D are both ready, tell us when you are". (The two parallel
arrows in stage 2 of Figure 4.10 represent a single message
carrying information about two cells; the three parallel arrows in
stage 3 represent a message carrying information about three
cells.) A meanwhile waits to receive the second message from D,
which in turn means "D and € are both ready, tell us when you
are." After receiving this second message, A then sends the third
and final message to B which carries the meaning "A, D, and C are
ready, tell us when yvou are." Once A receives its final message
from D, it knows that D, €, and B are all ready, hence all cells
have entered the barrier, and that A may now safely exit the

barrier.

While the number of messages sent using the scheme shown in Figure
4.10 is the same as shown in Figure 4.9 (N x(N-1)), several things
are being accomplished. First, only limited network connectivity
is needed; each cell sends messages in a single direction to a
single recipient. This makes it easier to build a separate,
dedicated network for synchronization messages, or to add a small
synchronization facility to an existing messaging system.
Furthermore, the rate at which messages enter the network is
controlled. Each cell can only send a single message at a time;
the cell must then wait until it receives a message before sending
out the next. Finally, the message transmission is fully

parallelized. To the extent the underlying physical signaling
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scheme allows, each cell can send and receive a message at the

same time, so the barrier completes in only (N-1) message times.

4.3.2.2,1.3 Reduce the total number of messages carried by the
synchronization network
If the synchronization network does not support multiple
simultaneous sends and receives, then message transmission becomes
serialized. The protocol shown in Figure 4.10, which runs in just
3 message times (on a four-cell membership) if multiple sends and
receives are supported by the underlying physical signaling
mechanism, would require 12 message times to complete if message
transmission were serialized due to network access restrictions.
In other words, if an ethernet-like signaling scheme is all that's
available, a Class Plb messaging protocol using broadcasts (which
could complete in 4 message times) would be more efficient.
Alternatively, the total number of messages sent for
synchronization may need to be limited to conserve network
bandwidth. In both cases, the aim is to use a messaging protocol
that reduces the total number of messages, rather than trying to

achieve parallelism. Such an approach is shown in Figure 4.11.

At stage 1, cell A sends an "I'm ready, tell me when you are"
message to cell B. When B receives A's message, it then sends a
message "A and B are ready, tell me when you are" message to cell
C (stage 2). At the end of stage 3, cell D knows that all cells
have entered the barrier. While D now has knowledge that all
cells have entered the barrier, no one else knows D's status. D
is obliged to send at least one message so that the other cells
can know that D reached the barrier too. At stage 4, cell A
receives the message from D that all cells have entered the
barrier, then forwards that message to B. By stage 6, all cells
are aware that all other cells have entered the barrier and hence

can exit the barrier.

This approach, hereafter referred to as "token twice around" or
token 2x, is fairly easy to program on a message-passing system.
One cell is the "master" (A in Figure 4.11), and runs the

following code:
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Figure 4.11 The "token twice around" scheme requires fewer
messages than Figure 4.9, but all messages are

now serialized. The last two stages carry no

new information.

(1) send a token to

(2) wait to receive

downstream neighbor

a token from upstream neighbor

(3) send a token again to downstream neighbor
(4) wait to receive a token from upstream neighbor, and discard it

The other cells are "slaves" and run the "mirror image” of the

above code.

(1) wait to receive
(2) send a token to
(3) wait to receive

a token from upstream neighbor
downstream neighbor
a token again from upstream neighbor

(4) send a token again to downstream neighbor
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While this simple scheme possesses a rather nice symmetry, it
lacks efficiency. In the four-cell example shown above (Figure
4.11), the last two communication stages do not carry any new
information. Keeping those two redundant stages simplifies
implementation, but eliminating them reduces the number of message

times from eight down to six, in this case yielding a 25% speedup.

4.3.2.2.1.4 Overload messages where possible so that a single
communication carries the information of multiple
messages
Each of the previous two examples shows some degree of
overloading. As a message is relayed around the ring, it
signifies readiness of greater numbers of cells at each stage. A
transmission indicates not only the sender's readiness, but also
the readiness of everyone the sender has heard from (whether
directly or by proxy). Taken to the extreme, proxying can be
extended across multiple dimensions as well as just for upstream

cells.

Consider the nine cell group shown in the left half of Figure
4.12. Assuming that the synchronization network allows multiple
simultaneous message transmissions, one can see that a
synchronization scheme like that of Figure 4.10 would complete in
N-1 message times (8, in this case). If the one large ring is
split into two orthogonal sets of three rings each (shown in the

right half of Figure 4.12), synchronization occurs in only 4

LOH—[H

O—rH Lﬁg:ﬂl}
Dz[l [H

Simple 1D ring 2D pr;;(ying, 3-member rings

Figure 4.12 One large ring can be broken up into sets of
smaller rings
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message times, twice as fast as using a single ring.

Figure 4.13 shows how the synchronization proceeds. Stages 1 and
2 synchronize all three processors in each of the three rows.
Stages 3 and 4 not only synchronize the three cells within the
three columns, but also carry information about the rows those
cells are in. The synchronization messages within the columns are
overloaded to carry the information that the rows are already
synchronized. At the end of stage 2, each cell knows that all
other cells in its row have entered the barrier. At the end of
stage 4, each cell knows that all cells have entered the barrier.

By proxying in two dimensions rather than just one, the problem of
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Figure 4.13 Synchronization occurs in four stages: two

horizontal stages, and two vertical stages.
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synchronizing nine cells is reduced into two sequential
synchronizations of three parallel three-cell groups. Each three-
cell synchronization requires 2 message times to complete. Thus,
the total synchronization requires just 2*(3-1) = 4 message times.
This is only half the time required for synchronization using a
single ring and only a quarter of the time needed for a "token

twice around" barrier.

The general method of overloading messages by splitting the rings
into more groups of smaller loops can be continued until only
loops of two or three cells remain. In essence, one embeds the
largest complete hypercube into a group of processors, then
"buddies up" the remaining processors with members of the
hypercube. The synchronization algorithm then becomes:

(1) handshake with your buddy if you have one,

(2) if you are a hypercube member, complete the hypercube
synchronization,

(3) handshake with your buddy.

Assuming the network can handle multiple messages, and that all
messages have the same latency, this is the fastest way to

synchronize a group of processors with N>9.

Consider the group of thirteen processors shown in Figure 4.14.
Logically, they can be thought of as a 3-ary 2-cube, with five of
the eight nodes having "buddies". Stage 1 is the hypercube and
non-hypercube buddies hahdshaking. Stages 2 through 4 are the
hypercube members handshaking along each dimension. Stage 5 is
the hypercube buddies and non-hypercube buddies handshaking again.
Obviously, powers-of-two cell groups will run one or two message-
times faster than non-powers of two because the hypercube/non-
hypercube buddy handshakes at the beginning and end are

eliminated.

While the underlving communication network has a certain
dimensionality, the messaging protocol can "embed" and use a
higher order dimensionality. For instance, in a sixty-four cell
system, a global 1D ring-based synchronization would take N-1, or
63, message times, and require N* (N-1) messages. One could embed
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Figure 4.14 Thirteen cell synchronization with hypercube
buddies

a 6-ary 2-cube into the ring, and reduce the communication
requirements to N*6 messages, occurring in 6 message times. In a
machine where message time is dominated by network latency rather
than processing overhead, though, message times for the two may be
different and are not directly comparable. 1In the global 1D (N-1)
ring, the message time is merely the time needed to send to one's
adjacent neighbor. With a hypercube embedded in a ring, though,
message times are longer by a factor of N/2 to N, because one of
the handshake partners is always somewhere between half-way around
the ring to all the way around the ring. Even though the embedded
hypercube uses fewer total messages and completes in “fewer
message times", its message times are N/2 to N times longer due to
the higher network latency. When embedding higher-order
communication into a lower-order network, message time isn't a
constant; rather, it scales with N. The N-1 ring, a "worse"
technique (because it runs in N rather than logzN time) will
always run faster than a "more efficient" higher-order embedded
network in a network latency-dominated system (as opposed to a

message-processing overhead-dominated system) because the N-1 ring
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needs only 1 message-trip-time around the ring to complete.
Embedded higher-order schemes will require multiple trips around

the ring.

If multiple network dimensions are available, using them will
speed things up by reducing message latency. For instance,
splitting an 8x8 2D torus into a set of horizontal eight-member
rings and vertical eight-member rings reduces the total message
distance (and hence time) per ring from 63 hops (N-1 where N=64)
to only 7 hops (N=8). Thus, by using proxying in 2 dimensions,
total synchronization time drops from 63 next-neighbor message
times to 2*(8-1) = 14 next-neighbor message times, a better than

4-fold improvement.

4.3.2.3 Messaging Protocol Conclusions
Barrier messaging protocols fall into two general classes: those
that rely on some form of broadcast, and those that rely on
private messages. All private-message protocols reduce to some
combination of two basic schemes:

(1) pass a token twice around a ring of cells (referred to

hereafter as the token 2x method), or
(2) for each cell in a ring of N cells to perform (N-1) sends and
receives (referred to hereafter as (N-1) send/recv).

At its most parallel, the token 2x method becomes a
reduction/broadcast tree embedded into the physical network, and
the (N-1l) send/receive becomes handshakes on an embedded hypercube
(Figure 4.14). For best performance, when using a non-broadcast
physical signaling scheme that serializes message transmission
(such as RTS-based message-passing), one should use the token 2x
method (good) or the embedded reduction/broadcast (better) to
minimize the number of messages sent. If the underlying physical
signaling scheme supports parallel messaging, the 1D (N-1) method
(or some higher embedding) is a better messaging choice (by
roughly a factor of two) over the token 2x method. A number of
people have observed that reduction/broadcast maps nicely (that
is, no congestion) to hypercubes[46], but the reduction/broadcast
requires two separate send and receive stages. Handshaking allows

simultaneous sending and receiving, thus completing in roughly
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half the time of a reduction/broadcast.

4.3.3 Allowable barrier memberships

Connectivity between participating barrier members affects both
proxying efficiency as well as the amount of information needed to
identify the participating members. For example, a compact 3x3
block can be represented more compactly (and with less
information) than 9 random cells which are scattered throughout
the array. Consider a group of nine cells with a connecting
message ring. Assume that any cells not participating in the
barrier would simply let messages pass through. This scheme
easily lets one synchronize an arbitrary subset of N cells out of
the nine in (N-1) message times, assuming all cells in the subset

knew how many were participating.

If two dimensional connectivity were available, synchronizing all
nine could be done more efficiently using 2D rings as shown in
Figure 4.13. This requires only four message times, but reguires
more information at each cell than the single 1D loop. All cells
now need to know the number of participating cells in each
dimension of communication, and some subgroups are completely

impossible to synchronize with this scheme.

Figure 4.15 shows a subset of five cells out of the nine. While
the simple 1D ring is able to synchronize the shown subset of
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Simple 1D ring 2D proxying, 3-member rings
Figure 4.15 Faster barrier schemes can't handle arbitrary
subsets and still deliver high performance.
Some tradeoffs are necessary.
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five, the 2D proxying scheme (twice as fast when synchronizing the
whole group of nine) is unable to work with this barrier
membership. The upper-right-hand cell is simply unable to
communicate with the other members either directly or via proxying
through another member cell. Thus, by restricting the allowable
subsets, faster barrier implementations may be used. It is
generally faster, and less complex, to implement a synchronization
scheme that allows restricted partitioning than to implement one

that allows arbitrary subset partitions.

Four general classes of barrier membership exist; listed in order
of increasing implementation complexity, they are:

(1) a single global, system-wide barrier;

(2) multiple barriers with fixed, non-overlapping memberships;

(3) multiple barriers with fixed, overlapping memberships;

(4) multiple barriers with arbitrarily overlapping memberships.
The following sections describes each in more detail.

4.3.3.1 Class M1 -

A single global, system-wide barrier
The simplest barrier is the single global barrier which
synchronizes the entire array. Only one sync may be pending at
any cell; anything else is a deadlock condition. For any given
implementation style (dedicated hardware vs. general message-
passing), this barrier can be made faster than any comparable
subset-capable design that synchronizes the whole array because
only a minimum of information is needed in the synchronization
message. The underlying physical signaling scheme doesn’t even
need to carry a barrier ID because it can have only one value.
Only a single "barrier message memory" per cell is required, since

at most one message can be outstanding.

4.3.3.2 Class M2 -

Fixed, non-overlapping memberships
Subset barriers are allowed, but only certain subsets are
permissible, and the subsets may not overlap. If one builds a
dedicated synchronization network in hardware, one can easily

allow for partitioning within the network by isolating a
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particular subset (Figure 4.16). A system using Class S3 or S4
physical signaling may want to use a partitioning scheme like this
in the interest of performance, such as restricting subsets to
rectangles on a 2D mesh or blocks on a 3D mesh, so that more
efficient handshake protocols may be used. Because barriers are
non-overlapping, only one sync may be pending at a single node at
any one time. This restriction means only a single wire is needed
for a hardware implementation, or a single buffer for a message-

based or hybrid implementation.

4.3.3.3 Class M3 -

Fixed, overlapping memberships
Subset barriers are allowed, and may overlap. This is more
difficult to implement with a low level (Class S1 or S2) physical
signaling scheme because multiple barriers may be pending at each
cell. The sync and acknowledgment signals must be kept separate,
so multiple hardware instances are necessary. If a cell has three
pending syncs, three copies of the synchronization hardware at
each cell are needed, along with three copies of the fan-in/fan-
out network. This resource issue isn’t as significant in a
higher-class physical signaling implementation, but additional

buffering (one buffer per pending sync) is still needed.

4.3.3.4 Class 4 -

Arbitrarily overlapping memberships
This implementation is the most difficult to directly build in
hardware, as this scheme requires either buillding multiple copies
of a reconfigurable synchronization network, or else suffering a
configuration dependent performance. Essentially, one copy of
network interface hardware 1s necessary per possible pending sync

allowed per cell.

4.3.4. Barrier capacity

Barrier capacity is a measure of "how many different barriers can
be supported simultaneously"? Since hardware and bandwidth are
required to support each pending sync, this is an important design
decision. Even a pure message-passing-based system needs hardware

memory buffers to store the incoming messages until they can be
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processed. Barrier IDs can be virtualized (so that over the
course of an application, a cell may participate in hundreds or
thousands of different barriers by re-using barrier resources),
but the total number that may be pending at a single cell, or on
the machine as a whole, is a constraint of the physical

implementation.

Consider the simple hardware barrier scheme shown back in Figure
4.1. Now imagine adding a second pull-up resistor, and a switch
in the middle of the network capable of splitting it into two
parts (Figure 4.16). Within the restriction of the barrier
memberships being non-overlapping, one barrier channel
implementation is serving the needs for two barriers. If two
barriers with an overlapping membership (one cell can be a member
of both) were needed, then two distinct channels must be

implemented.

| .
b e Sr b a’»ﬁ e o o -—1|n o [n af K
|
latch) | lateh| ‘ latch fatch|
|

Cell 0 set Cell 0 test Cell 1 set Cell 1 test Celln-1 set Cell n-1 test Cell n set Celln test

Figure 4.16 A simple implementation of a single hardware
barrier that can be partitioned to provide two
distinct, non-overlapping barrier channels.

While only a hardware implementation example is shown here, the
same sort of techniques apply to message-based systems. For
instance, suppose one used a 1D ring snake passing through a group
of cells to carry the barrier messages. One could either use two
distinct barrier IDs on the barrier messages, or one could re-
route the 1D ring snakes so that they do not overlap (Figure
4.17)[16]. Using two disjoint ring snakes for communication

allows reuse of the barrier IDs, meaning fewer barrier IDs have to
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Two barrier IDs sharing One barrier ID on two
the same ring snake disjoint ring snakes
Figure 4.17 By splitting the communication network, a

message-passing based system can use fewer
barrier IDs while still providing the same
number of disjoint subsets.

be supported overall, which implies fewer bits are needed to
communicate readiness, resulting in shorter barrier messages and
smaller storage requirements for buffering early sync messages.
If fewer "barrier channels" are implemented, less buffer space

must be reserved.

Because "number of simultaneous barriers supported" can be a vague
number, "barrier capacity" is a more accurate description of the
implementation's capabilities. Barrier capacity has two
components:
(1) How many barriers can be pending simultaneously at a single
cell with a particular implementation, and
(2) Does the implementation allow partitioning (as shown in
Figures 4.16 and 4.17)7
The answer to (1) tells us about the intrinsic "capacity" of the
synchronization implementation, and the answer to (2) tells us how
effectively that capacity can be allocated to support application

barrier needs.

4.4 Design methodology

Now that the design space (physical signaling scheme, messaging
protocol, allowable barrier memberships, barrier capacity) has
been defined, this knowledge can be used to create an appropriate

barrier implementation with a given a set of finite resources.
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4.4.1 The questions

The relevant design questions cover three general areas:

(1) Resources availablity (physical signaling and messaging
schemes) on the target machine.

Physical signaling

What physical signaling schemes are available? What connectivity

do they offer, and to what degree do they allow sending messages

in parallel?

Messaging
For the physical signaling schemes available, what message schemes
make sense? How fast is a message time for each, and will it

allow messaging in parallel?

(2) What demands will be placed on the implementation (memberships
(global, non-overlapping subsets, arbitrary subsets) and when
they are defined (compile time, link time, run time))?

Barrier memberships

What memberships are required, and when are they set (compile

time, link time, run time)?

Barrier capacity
What kind of capacity is needed? 1Is a single global barrier

sufficient, or are multiple (potentially overlapping) barriers

required?

(3) what are the performance criteria for declaring a “better”
implementation (raw execution speed, minimal resource
consumption, or speed within some resource constraint)?

How frequently is this barrier going to be used (thus how

important is barrier speed)? Is a barrier’s overhead execution

allowed to interrupt a foreground program, or must the barrier
avoid delaying foreground execution? How much importance is
attached to speed vs. minimizing communication resource

consumption?
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4.5 Crafting a barrier implementation
The first part of the chapter outlined a barrier synchronization
design space (physical signaling scheme, messaging protocol,
barrier memberships, and barrier capacity), followed by a general
methodology for creating a barrier. This section reviews the non-
broadcast physical signaling options on iWarp, then combines them
with various prototypical messaging protocols to show how barrier
performance is affected by the combination of signaling scheme and
messaging protocol. Design assumptions include:

(1) barrier memberships will be contiguous blocks with dimensions

that are multiples of two, and
(2) multiple simultaneous barriers need to be supported, with up

to four possible barriers pending at a given cell.

4.5.1 Physical signaling on iWarp

Figure 4.18 summarizes the results of Chapter 3: PCT-based
connections offer about an order of magnitude better performance
than deposit message passing, and several orders magnitude better

performance than RTS-based message passing.

Physical

signaling 1 cell [2 cells |3 cells | 4 cells [ 5 cells | 6 cells | 7 cells

RTS-based 27964 28200 27966 28200 27966 28198 28839
message-
passing
(32 bytes)

Deposit 258 264 269 275 278 283 289
message-
passing

(4 bytes)

PCT-based 10 16 20 26 30 36 40
connections
(4 byvtes)

Figure 4.18 Measured average message times (clocks) on iWarp

for the three signaling schemes vs. distance.

These results strongly support using PCT-based connections for the
TCS barrier, but it is worth studying the interaction of all three
signaling schemes with the different messaging protocols. RTS-

based message passing is a good model for any real-world single-



77

access collision-free communication method {(such as FDDI).

Deposit message-passing is a reasonable model for general-purpose

message-passing in a machine that supports parallel communication

(such as an MPI library on a group of machines connected through a
crossbar switch), and PCT-based connections serve as a general

model for connection-based communication.

4.5.2 Non-broadcast messaging protocols on iWarp

Two general non-broadcast messaging models exist for barrier
synchronization: one is passing a token twice around a ring of
cells (token 2x), and the other is performing (N-1) send and
receive operations at each of the N cells in the ring ((N-1)
send/recv). At their most parallel, the token 2x method evolves
to a ring-embedded reduction/broadcast tree, and (N-1) send/recv

becomes handshakes on a hypercube.

Figure 4.19 shows the models for barrier execution time for the
two prototypical barrier messaging schemes, and their two fully-
parallel derivatives, for a group of N cells. The token 2x
method generates a total of 2N messages and has an expected
execution time of [startup + (2N x message_ time)]. "Startup" is
the time required to enter the barrier subroutine and obtain
control of the particular communication resource, and was measured
at 40 clocks in the test code. The (N-1) send/recv method
generates a total of Nx(N-1l) messages; execution time depends on
the degree to which parallel messaging can occur. If the
underlying physical sighaling scheme serializes all messages,
execution requires [startup + (N x (N-1) x message_time)] clocks.
If the physical signaling scheme supports full parallel messaging,
execution requires only [(N-1) x message_time]. The number of
messages sent is (N x (N-1)) in both cases, but the non-parallel
case takes N-times longer to send them. The parallel derivatives
(embedded reduction/broadcast tree, handshakes on a hypercube) are
listed as well, but note that their values for message_time may be

larger.

The following constants were measured on iWarp, and should be used

when evaluating the model equations of Figure 4.19:



startup time is 40 clocks
RTS-based message_time is 28340 clocks

of all cell-to-cell communication times);
Deposit-MP message_time is 260 clocks
PCT-based message_time is 11.5 clocks

(measured) ;
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(measured as an average

(derived from Figure 4.17);

(derived from Figure 4.17).

Execution Time with Execution Time with
Messaging Number of Fully-Parallelized Fully-Sequentialized
Scheme Messages Messaging Messaging
1D ring, startup + ((N-1) startup + (N x (N-1)
{(N-1) N x (N-1) . X message_time) X message_time)
send/receives
fully-embedded N x (log,N) | startup + (log,N startup + (N x (log,N)
hypercube, X message_time) X message_time)
handshakes on
each dimension
1D ring, token 2x | 2N* startup + (2 x N startup + (2 X N
around X message_time) X message_time)
fully-embedded startup + (2 x log,N | startup + (2 X N
reduction / 2 x (N-1) X message_time) X message_time)
broadcast tree

* The 1D ring,

message times,

chapter,

2N-2 messages.

but the last two messages,

token 2x method is generally implemented using 2N
as shown earlier in this

carry no new information and could be omitted, yvielding

Figure 4.19 Relevant iWarp barrier messaging schemes

This table implies that a physical signaling scheme that supports

parallel messaging (such as PCT connections or deposit message-

passing)

parallel derivative of it) than the token 2x method.

runs faster using the (N-1) send/recv method (or a more-

Conversely,

(N-1) send/recv and its derivatives do worse on a fully-

sequentialized messaging system (such as a token-ring or

ethernet) .

4.5.3 Putting it together

Now that the major components

(the physical iWarp signaling

schemes and the messaging schemes) have been introduced, they are
put together in various combinations to show how their interaction

affects real-world barrier performance.
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4.5.3.1 RTS message-passing and various messaging schemes

Figure 4.18 shows the measured message time for communication
across distances of 1 to 7 cells, using RTS-based message passing,
deposit message-passing, and low-level hardware-supported (PCT)
connections. These data indicate that PCT-based next-neighbor
message time is 11.5 clocks and RTS-based message time is around
28,340 clocks. Using these derived message times, performance
can be predicted for synchronization barriers using the different

messaging schemes.

Figure 4.20 shows measured barrier performance on iWarp using RTS
message-passing as the underlying signaling scheme for a variety
of messaging schemes. The token 2x messaging scheme inherently
serializes all messages (Figure 4.11), and performance is as
predicted. The reduction/broadcast messaging scheme attempts to
send multiple messages at once. Given the token-ring-like nature
of the underlying RTS message-passing system, one expects (and
indeed sees) execution time scaling as O(N) for both the token 2x
and reduction/broadcast barriers using RTS message-passing,
whereas the (N-1) send/recv messaging scheme’s execution times
explode exponentially with increasing numbers of cells due to the
N messages being serialized. The absolute performance of
reduction/broadcast is better than the token 2x method (3.6
million clocks vs. 2.1 million clocks at 64 cells), despite
sending the same number of messages on a serial network, because
the on-cell computation needed for messaging can be done in
parallel even though the actual sending of messages on the token
ring remain serialized. The (N-l1l)send/recv also showed that some
-messaging overlap occurred (performance was not as bad as
predicted for “no overlap” during sending), but not much. For RTS
message-passing, the (N-1l) send/recv method offered the worst-
overall performance, and the embedded reduction/broadcast (the

most-parallel form of token 2x) offered the best performance.
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Messaging 4 cells 8 cells 16 cells 32 cells 64 cells
scheme
RTS/Token2x 223,564 448,371 910,282 1,815,121 3,648,581
{(predicted) (226,760) (453,480) (906,920) (1,813,800) (3,627,560)
RTS/Reduction- 136,592 264,622 511,648 1,043,711 2,119,398
Broadcast
(pred overlap) (113,400) (170,080) (226,760) (283,440) (340,120)
RTS / (N-1) 220,961 950,134 4,021,443 16,485,541 23,861,298
send/recv
-100runs
(pred overlap) (85,060) (198,420) (425,140) (878,580) (1,785,460)
{(no overlap) (340,120) (1,587,080) {6,801,640) (28,113,320) (114,266,920)

* the (N-1) send/recv implementation was measured over just 100

runs

Figure 4.20 -

Predicted and measured barrier execution times in

clocks (1000 runs) using RTS message passing with

various messaging schemes for varying barrier

membership sizes.

Messaging 4 cells 8 cells 16 cells 32 cells 64 cells
scheme

DMP/ Token 2x 2,141 4,339 8,706 17,403 34,798
(predicted) (2,200) (4,400) (8,800) (17,600) (35,200)
DMP/Reduction/ 1,488 2,079 2,623 3,142 3,687
Broadcast
(predicted) (1,692) (2,322) (2,952) (3,582) (4,212)
DMP/1D (N- 1)
send/recv 1,264 2,982 6,669 13,569 27,361
(predicted) (1,515) (3,535) (7,575) (15,655) (31,815)
DMP/hypercube 822 1,244 1,673 2,074 2,532
(predicted) (1,090) (1,635) (2,180) (2,725) (3,270)

Figure 4.21 -

Predicted and measured barrier execution times (in

clocks) using deposit message-passing (1000 runs)

with various messaging schemes for varying barrier

sizes.
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4.5.3.2 Deposit message-passing and various messaging schemes
Figure 4.21 shows the results of similar performance predictions
and measurements for deposit message-passing. Unlike the RTS
message-passing implementation, the deposit message-passing
implementation of (N-1) send/recv shows better performance than
the token 2x method, and the logical extension of (N-1) send/recv,
handshakes on a hypercube, offers between 1.5 and 2 times better

performance than the reduction/broadcast.

4.5.3.3 PCT~supported connection and various messaging schemes
Figure 4.22 shows the performance of the token 2x and (N-1)
send/recv methods using connections supported by two PCTs-per-
cell. The error in the predictions is primarily due to the use of
a simplified latency model. Note that PCT-supported connections
allow overlap of sending and receiving, as well as allowing all
cells to send at once. As a result, the (N-1) send/recv method
outperforms the tokemn 2x method by almost a constant factor of 2.
Because PCTs are scarce, higher order embeddings (such as a full
hypercube for hypercube handshakes) are too expensive to
implement, especially since one of the design criteria for this
exercise is to be able to support four pending barriers per cell.
Thus, a 2D (N-1) send/recv implementation, with proxyving in 2
dimensionsg, was only implemented for the 64-cell case because, at
that size, it could map cleanly onto the underlying network using
the array “backloops” (because the underlying network is a torus
rather than a flat array) requiring only a single additional PCT.
To implement the 2D (N-1) send/recv for any other size would
require 3 additional PCTs; more resources than can be afforded.
In any event, even the simple 1D (N-1) send/receive implemented
with two PCTs is roughly three times faster than the fastest
deposit message-passing implementation, and for special, whole-
array cases, the 2D implementation is achievable for even greater
speed. PFurthermore, the worst-case difference between predicted

and measured performance is 1 to 2 microseconds.

Figure 4.23 demonstrates how barrier skew (the time between when
the first cell exits a barrier and the last cell exits) is

affected by the messaging scheme. While not extensively covered
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Messaging 4 cells 8 cells 16 cells 32 cells 64 cells

scheme

PCT/Token 2x 152 247 426 795 1513
(predicted) (160) (264) (448) (816) (1552)
max 160 248 432 808 1520
min 152 240 424 792 1512
PCT/1D (N-1)

send/recv 97 146 242 423 800
(predicted) (110) (156) (248) (432) (800)
max 104 152 248 432 808
min 88 144 232 416 792
PCT 2D (N-1)

send/recv 448
(predicted) N/A N/A N/A N/A (456)
max 448
min 448
Figure 4.22- Predicted and measured barrier execution times

PCT-supported connection-based barriers (1000
runs) for varying messaging schemes and barrier

membership sizes.

by this thesis, it is worth noting that the “token 2x“ method has
a constant skew whether any stragglers (cells which enter the
barrier much later than all the other participants) are present or
not because cells always exit the barrier sequentially in a
ringward order. Also note that in the presence of stragglers
(real-world conditions) the higher-order embedded ring (2D in this
case) has a lower skew than the lower-order embedded ring (1D) (64
cells is the only example shown). This result will hold for
higher-order embeddings because the maximum skew is a function of
the total number of parallel message times needed to complete:
high-order embeddings will have fewer parallel message times
total, and hence cannot “get as far behind”.

4.5.4 Conclusions

PCT-supported connections let us build fast barriers with
predictable and repeatable performance. Furthermore, while the
physical signaling scheme has a great effect on barrier
performance, getting the best performance from a particular

signaling scheme implies choosing a messaging scheme appropriate
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Messaging 4 cells 8 cells 16 cells | 32 cells 64 cells

PCT/Token 2x
No stragglers

avg skew 32 79 170 336 711
max skew 32 80 176 360 712
min skew 32 64 168 336 704

PCT/Token 2x
1 straggler

avg skew 32 76 168 351 712
max skew 40 80 168 352 712
min skew 32 72 168 344 712

PCT/1D (N-1)
No stragglers

avg skew 8 8 10 11 8
max skew 16 16 16 16 16
min skew 8 8 8 8 8

PCT 1D (N-1)
1l straggler

avg skew 22 63 131 267 547
max skew 24 64 136 272 552
min skew 16 56 128 264 544

PCT 2D (N-1)
No stragglers

avg skew N/A N/A N/A N/A 96
max skew 96
min skew 96

PCT 2D (N-1)
1 straggler

avg skew N/A N/A N/A N/&a 122

max skew 128

min skew 128
Figure 4.23- Measured barrier skews (in clocks) for the three

PCT-supported connection-based barriers (1000
runs) with all cells entering barrier together (no
stragglers), and with one cell entering 2000
clocks after all other cells (1 straggler).

to the physical scheme. Because PCT-supported connections allow
full overlap of sending and receiving, Figure 4.22 shows that the
(N-1) send/recv method (which generates Nx(N-1l) messages) runs

nearly twice as fast as the token 2x method (which only generates

2N messages). As a compromise between resource economy and speed,
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the TCS barrier will use 1D rings of PCT-supported connections for
barrier memberships smaller than the whole array, and 2D rings for
whole-array barriers, with the (N-1l) send/receive messaging
protocol. Resource cost will be 1 outgoing PCT, plus one PCT per
possible pending barrier per cell (five total if the goal is to

support up to four pending barriers per cell).

4.6 Chapter summary
This chapter explained the function of barrier synchronization,

examined means of efficiently implementing barrier schemes, and
explored some of the advantages/drawbacks of various
implementations. Those principles were applied to implement
barrier synchronization on a real target machine, iWarp. Finally,
those implementations were benchmarked to demonstrate that their
measured performance agrees well with the p redictions. In the
end, a barrier mechanism was developed for TCS that can
synchronize a group of 4 cells in under 160 clocks (8
microseconds), and a group of 32 cells in less than 816 clocks (41
microseconds). As a special case, the entire array (64 cells) can
be synchronized is just 456 clocks (23 microseconds). Not only
fast, this barrier mechanism is predictable to within 1 to 2
microseconds. This fast barrier mechanism allows tasks to
coordinate at a very fine granularity level (tens of microseconds,
in contrast to application latency requirements in the

milliseconds).
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Chapter 5 -
TCS Control Primitives

5.1 Introduction

Chapter 4 provides a fast (8 to 40 microseconds), predictable
(within one microsecond) barrier synchronization primitive. This
chapter uses this primitive to construct the three remaining TCS
control primitives: connection set reconfiguration, task start,
and task end. Given the fast, predictable barrier synchronization
primitive, the remaining primitives can also be implemented to

vield fast, predictable performance.

5.2 Connection set reconfiguration

Connection sets can be reconfigured on the iWarp in one of two
ways: source-routed connection setup/tear down, and switch-based
reconfiguration. Because each iWarp cell has direct access to its
network switch state, the cell can simply do a direct, brute-force
reconfiguration of the relevant PCT entries. The general
procedure is:

barrier sync(task members);
Turn off global events;

barrier_sync(task_members);
reconfigure switch(new _set);
barrier sync(task_members);
Turn global events back on;

This direct approach offers several advantages, including
(1) exact knowledge of the communication resources each
connection will be using,
(2) switch reconfiguration time is a constant, regardless of the
connection set being switched, and
(3) simple implementation.
The operation to "reconfigure the switch" amounts to a few
memory-to-register transfers (which have a predictable execution

time), and a barrier_sync() operation is just the primitive
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discussed in the previous chapter. Thus, because each component
has predictable performance, the total operation should have
predictable performance as well, and we discuss this aspect

(hierarchical predictability) in Chapter 7.

5.2.1 Reconfiguration model
As shown in the pseudocode in Section 5.2, switch-based connection

set reconfiguration requires three barrier synchronization
operations plus the time for the actual reconfiguration. The
first barrier ensures all cells are executing foreground code,
preventing any possible deadlocks with a cell waiting for RTS
services (such as file I/0). Once the first barrier completes,
interrupts (such as event handlers) are turned off and a second
barrier executes. This barrier is necessary to safely put the RTS
to sleep. At this point the cells can reconfigure their switch
state. A final barrier is needed to let all cells know the
reconfiguration is complete, and then interrupts can be turned

back on. The reconfigure execution time model is therefore:

reconfig time = switch reconfiguration_ time +
(3x(barrier lookup_ time + barrier time(N)))

where barrier lookup_time is the time needed to look up the
resource configuration needed for the barrier (that is, what
dimensionality of embedded rings does this barrier use, how many
cells are in each dimension, and which PCTs are used for each
dimension), and barrier time(N) is just the barrier execution time

from Figure 4.21 (the PCT 1D ring (N-1) send/recv row).

5.2.2 Measured performance and predictions on iWarp
Barrier_lookup_time was measured as 12 clocks, and
switch reconfiguration_time was measured as 162 clocks; no

variations are expected in these as they are just local memory

operations.

Figure 5.1 uses the barrier times from Figure 4.21 for the 1D PCT
ring, and the equation expressed in Section 5.2.1, and combines

them to predict reconfiguration time vs. numbers of cells. Those
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4 cells 8 cells 16 cells | 32 cells 64 cells
reconfigure time 444 598 872 1425 2551
(predicted) (465) (612) (900) (1443) (2574)
max 448 616 888 1456 2584
min 440 576 848 1392 2520

Figure 5.1 Reconfiguration times (in clocks) for various-sized
groups of cells, using the simple 1D (N-1) ring
barriers as shown in Figure 4.9, 1000 runs.

predictions are then compared to the measured reconfiguratioen

times.

Figures 5.1 (for 1-D barrier rings) and 5.2 (a 64-cell 2-D set of
barrier rings) shows good repeatability for the reconfigurations,
although the predictions tend to diverge from the measured values
by roughly 5%. These measured reconfiguration times are used in
future pattern predictions rather than predicted reconfiguration

times.
64 cells
reconfigure time 680
{predicted) (692)
max 712
min 680
Figure 5.2 Reconfiguration times (in clocks) for whole array,
using a more complex 2D (N-1l) ring barrier, 1000
runs.
5.2.3 Connection-set reconfiguration conclusions
Given a predictable barrier synchronization primitive, one can

construct a predictable reconfiguration primitive. Because the

reconfiguration primitive requires multiple barriers, barrier
performance has a significant impact on reconfiguration

performance. Using a barrier synchronization method based on PCT-

supported connections yields a reconfiguration primitive capable
of reconfiguring the entire array over 7,800 times per second, and

by using a faster barrier synchronization scheme, that number can

be driven even higher.
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5.3 Task creation

A parent task can create child tasks within its cell allocation.
When a child is started, parent execution on the child task's
cells is suspended until the child task ends. Child tasks may
communicate with each other via "external connections". Children
located within the same parent may create their own “external
connections”; children located within different parent tasks must

“inherit” the appropriate external connections from their parents.

Consider a parent task's child tasks to be vertices of a graph.
Let external connections between these child tasks be represented
as edges joining the vertices representing those tasks. Thus, two
vertices are joined by an edge if and only if there is an external
connection between the tasks they represent. These vertices and
edges form connected components, whose "size" is equal to the

number of all the cells in each of the connected child tasks.

When created, these connected child tasks require a barrier with a
membership of all the cells belonging to the connected component:;
separate barriers for each task are not adequate. Because
connected child tasks communicate, one child task could
conceivably start before another. The connected component barrier

prevents this unwanted early data arrival.

Reconfiguring a single task requires only local barrier
synchronization once the task is running, but starting the task
requires the participation of all cells belonging to the larger

connected component.

As long as the child task cell allocations are disjoint, deadlock

cannot occur on task creation.

5.3.1 Task creation model

Creating a task requires the following operations on each cell of

the child task:

Do the overhead operations necessary for switching task contexts:
Push the parent task info onto a stack;

Look up the barrier information for the task being created;



89

Look up the external connection information for the task

being created;

Set the task's internal connection pointers to the correct
structure representing the "Connection-to-PCT" mapping they

should be using.

Perform a reconfiguration as shown in Section 5.2:
barrier sync(Connected_component);
Turn off global events:;
barrier sync(Connected_component);
reconfigure switch(Connected_component's external
connections) ;
barrier sync{(Connected_component);
Turn global events back on;

Task create (or task start) is essentially the reconfiguration
primitive (applied to a larger connected component rather than an
individual task), prefixed by some additional information table

look-up and pointer-reassignment.

The execution model is nearly the same as the reconfiguration
primitive with only the addition of the task-change overhead.

Each part of the task-changing operation occurs in a fixed amount
of time: pushing the parent task info, looking up the barrier and
connection information, and setting the pointer values for the
child task. All the connection information and barrier
information is pre-computed at link time; at runtime the
information is retrieved via a predictable-time indexed table

look-up. The execution model is then:

Task start_time = task change overhead_time +
reconfiguration(N)

Note that in the above equation, N is the number of cells in the
total connected component, not just the number of cells in the

task.



5.3.2 Measured performance and predictions on iWarp

Task change overhead was measured as 130 clocks.

Figure 5.3 shows the predicted task creation times,

based on a

measured task change overhead of 130 clocks and the measured

reconfiguration times from Figure 5.1,

the actual, measured creation times.

and then compares them to

As expected, performance is

similar to that of Figure 5.1, plus some additional overhead.

4 cells | 8 cells | 16 cells | 32 cells 64 cells
creation time 575 725 1000 1550 2681
(predicted) (574) (728) (978) (1555) (2681)
max 576 736 1008 1560 2688
min 568 704 992 1544 2680
Figure 5.3 Child task start times (in clocks) vs.

connected-component size (in cells) (using 1D ring

barrier), 1000 runs. Measurement error 8 clocks.

5.3.3 Task creation conclusion
The iWarp RTS is minimal, supporting only a single foreground
process at a time. Only a small amount of state needs to be
stored when creating a child task, and this can be done in a fixed
amount of time. The task creation primitive is constructed by
combining this process context switch with the reconfiguration
primitive from Section 5.2. Because the process context switch
can be quickly done in predictable time, and Section 5.2

established that a communication context switch can be quickly

done in predictable time, one can build a task creation primitive

that is both fast and predictable (to within 1.5 microseconds).

5.4 Task end
Once a child task completes,
If the child task has external connections to other child tasks,

it cedes control back to the parent.

it must ensure that those other tasks have completed as well
before it terminates. This is necessary to prevent the external

connections from being destroyed until both ends of the connection
Thus,

connected component that synchronized on task creation will again

agree that the connection is no longer needed. the same
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synchronize on the task end.

No actual reconfiguration needs to be done at the end of a task;
control is merely returned to the parent task. Only one barrier
is required at the end of a task, and no reconfiguration is

needed, so the execution time is therefore both predictable and

repeatable.

5.4.1 Task end model

The task end is functionally very simple: a barrier ensures all
connected component cells are done, parent task information is
restored from a stack, and control is returned to the parent. No
additional reconfiguration is needed at the task end because a
child is not allowed to disturb an existing parent’s connection
when the child was invoked. Because the child couldn’t disturb
the parent’s connections, there is nothing of the parent’s state
that must be restored when the child terminates.

Appropriate pseudocode for task end is simply:

barrier sync(connected_component);

restore parent task info from stack;
and the execution model is simply:
task_end time = barrier time(N) + parent_task restoration_time

where N is the size of the connected component, and

barrier_time(N) is the barrier execution time from Figure 4.21.

5.4.2 Measured performance and predictions on iWarp
Parent_task_restoration_time was measured as 70 clocks.

Figure 5.4 shows the predicted and measured "task end" times using
the model of 5.4.1, and the barrier prediction information from

Figure 4.21.



92

4 cells 8 cells 16 cells 32 cells 64 cells
task ending time 165 216 310 489 870
{(predicted) (167) (218) (312) (493) (870)
max 168 216 312 496 872
min 152 216 304 488 864
Figure 5.4- Child task ending times (in clocks) vs.

connected-component size (in cells)

5.4.3 Task end conclusions

for 100 runs.

Because ending a task simply implies returning control to the

parent,

little work beyond a simple barrier is needed.

Predictable task termination simply requires a predictable

barrier.

5.5 Chapter summary

Several key points emerge from this chapter.

First of all, the

four TCS primitives can be built so that they run in a predictable

manner.

reconfiguration time,

synchronization,
The four TCS primitives have a simple, hierarchical

primitives.

construction,

Locally reconfigurable connections, with predictable
combined with fast, predictable barrier

are sufficient for implementing the four TCS

and imply a particular construction order.

Barrier

synchronization is needed for connection reconfiguration and task

end, and connection reconfiguration is needed for task creation.

Perhaps not as obvious is the fact that connections with local,

directly writable state make predictable connection
reconfiguration very easy to implement,

routed connections. Source-routed connections require a set-up

as opposed to source

dependent upon the both the number of connections being set-

up/torn-down,

connection set-up/take-down latency is increased if the link is

heavily loaded).
connections with source routing alone are not

connections,

Because of this uncertainty with source-routed

sufficient to enable predictable reconfiguration times, as

reconfiguration time becomes dependent on runtime network load.

as well as the runtime bandwidth utilization (since

This chapter demonstrated that the TCS primitives have predictable

performance in isolation.

The next chapter will show how they can




93

be assembled to create tasks that maintain predictable

communication performance for a variety of communication patterns.
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Chapter 6 -

TCS Validation - Communication

Patterns

6.1 Introduction

Chapter 3 showed that both message-passing and TCS connections can
be accurately characterized in isolation; however, real-world
applications involve multiple, potentially interacting
communications. In this section, three representative
communication patterns are modeled and implemented using both TCS
connections and deposit message-passing. We use deposit message-
passing because it offers the best performance of all message-
passing systems available on iWarp. These patterns are

scatter/gather, reduction/broadcast, and all-to-all.

Scatter/gather serializes all communication and thus provides
predictable performance with both models. Reduction/broadcast
involves a small amount of parallel communication; as a
consequence, message-passing loses some of its predictability.
This loss of predictability is shown to be the result of spurious
runtime link congestions, and by carefully re-mapping the
processors so runtime link congestion is avoided, the
reduction/broadcast using message-passing again becomes
predictable. Aall-to-all is a massively parallel communication
pattern. While deposit message-passing loses its predictability,
TCS maintains both a high degree of predictability (within a few
percent) while offering substantially better performance than

message-passing for large transfers.

6.2 Scatter/gather
Scatter/gather consists of:
(1) one cell sending data to all other cells;
(2) a barrier;
(3) one cell receiving data from all other cells.
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This simple pattern is easily modeled because all sends are
serialized (because only one cell is sending), and all incoming
data goes to a single cell (so reception becomes serialized as
well). If one cell is sending to N-1 other cells, the
gscatter/gather time is just the time to do N-1 sends, a barrier,
and N-1 receives. Although all cells are trying to send during
the gather phase, only one incoming message can be processed at a
time by the gathering cell, and hence no parallel messaging occurs

in this pattern.

6.2.1 Scatter/gather - message-passing
A simple model is sufficient to predict pattern execution time for

deposit message-passing. The predicted pattern time is

mp_predict = Constant_Overhead +
( (Number_of_cells - 1) x (Msg Send Time + Avg Net_ Latency +
(Msg _size / Network BW))) +
Barrier time +
( (Number_of_cells - 1) x (Msg Recv_Time + Avg Net_Latency +
(Msg_size / Network BW)))

where

Constant_Overhead was measured at 100 clocks;

Msg Send_Time was measured at 359 clocks;

Msg_Recv_time was measured at 230 clocks;
Avg_Net_Latency is 20 clocks (avg 4 hops on a torus x 5
clocks/hop) ;

Network_ BW = 1.998 bytes/clock.

Figure 6.1 shows the predicted and measured message-passing
scatter/gather times. Because the communication is serialized,
congestion is avoided, and predictability (and good performance)
are maintained. Because 4-byte transfers have a substantially
different communication implementation (no spools used), all
patterns will be evaluated using 16 bytes or more. This approach

keeps the comparisons between TCS and message-passing fair.



96

byvtes 4 cells 8 cells 16 cells 32 cells 64 cells
16 2433 4845 9643 19299 38445
(predict) (2407) (4907) (9907) (19907) (39907)
max 2436 4848 9648 19300 38448
min 2432 4844 9640 19296 38444
64 2551 5136 10266 20594 41093
{(predict) (2551) (5243) (10627) (21395) (42931)
max 2552 5140 10268 20596 41096
min 2548 5136 10264 20592 41092
256 3082 6379 12942 26061 52206
(predict) (3127) (6587) (13507) (27347) (55027)
max 3092 6380 12948 26064 52208
min 3080 6376 12940 26060 52204
1024 5375 11735 24408 49791 100475
(predict) (5431) (11963) (25027) (51155) (103411)
max 5376 11748 24416 49796 100504
min 5372 11724 24404 49760 100444
4096 14602 33265 70542 145101 294126
(predict) (14659) (33495) (71167) (146511) (297199)
max 14608 33268 70548 145104 294128
min 14600 33260 70540 145100 294124
Figure 6.1 Scatter/gather message-passing time (in clocks),

vVs.

size and number of cells for 1000 runs.

6.2.2 Scatter/gather - TCS Connections

A simple model is adequate for modeling connection-based
scatter/gather communication time as well, and gives us a
prediction within one or two percent. The major error source is
that the added latency per phase (due to the connection distance)
really isn't an average, but a worst case. Furthermore, at the
start of each gather phase, all N-1 cells returning data try to
send at once; this eagerness causes a momentary link congestion
that retards the first returned data. This brief effect can

quintuple the
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bytes 2x2 cells 4x4 cells 8x8 cells
16 1113 4204 35150
(predict) (1115) (4146) (35222)
max 1120 4296 35152
min 1112 4200 35144
64 1257 5032 38184
(predict) (1259) (4866) (38246)
max 1264 5120 38184
min 1256 5032 38168
256 1848 7984 51519
(predict) (1835) (7746) (50342)
max 1848 8072 51520
min 1848 7984 51496
1024 4144 19504 99636
(predict) (4142) (19266) (98726)
max 4144 19592 99640
min 4144 19504 99616
4096 13360 65584 293171
(predict) (13367) (65406) (292514)
max 13360 65672 293176
min 13360 65584 293152
16,384 50232 2495904 1067315
(predict) (50268) (249906) (1067414)
max 50232 249992 1067320
min 50232 249904 1067296

Figure 6.2 Scatter/gather TCS connection times (in clocks), vs.
payload size and number of participating cells for 1000

runs.

expected latency for the first gather. The effects of this
momentary "latency explosion" are limited to moderate size
transfers: for small transfers there isn't enough data to cause
the congestion, and for large transfers the network transfer time

swamps all other factors.

With this caveat, the predicted completion time can be modeled as:
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predict = Constant Overhead +
( (Number of cells-1) x 2 x (Avg Net_Latency +
(Msg size / Network BW))) +

(Reconfiguration time x Number of phases)

where
Constant_Overhead was measured at 398 clocks;
Network_BW = 1.998 bytes/clock;
Avg_Net_Latency = 38 clocks for 2x2,

59 clocks for 4x4,

66 clocks for 8x8;

Reconfiguration time = 444 clocks for 2x2,
872 clocks for 4x4,
2551 clocks for 8x8.
(these are the measured average reconfiguration times from Section
5.2)

Figure 6.2 shows the measured vs. predicted pattern communication
times for connections, with the predicted times based on the
measured reconfiguration times in Chapter 5. As with messages
alone, the TCS connection-based implementation outperforms
message-passing best for small transfers on small arrays. For
large transfers (in this mostly congestion-free pattern) the
transfer time is dominated by the link bandwidth, and both
message-passing and TCS connections yield similar performance

results.

6.2.3 Scatter/gather conclusions

Because the pattern is inherently serial, both message-passing and
TCS connections show predictable performance with this
communication pattern, with TCS offering significantly better

performance with the smaller-sized transfers.

6.3 Reduction/broadcast
Reduction occurs in log, (N} stages, with half as many cells
sending in each stage as in the previous stage. Broadcast is the

reverse of reduction, requiring another log,(N) stages. Parallel
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messaging occurg in all but the last stage of reduction, and all
but the first stage of the broadcast. This parallel messaging
creates link congestion for message-passing that causes it to lose
predictability. By carefully remapping the processors to
eliminate congestion the predictability can be regained; this
shows that the loss of predictability is due to the unknown link
congestion. TCS maintains its predictability (and performance)

throughout.

6.3.1 Reduction/broadcast using message-passing

Because the scatter/gather communication pattern focused all
communication through a single cell, all sends and receives were
serialized, and performance can be predicted with a fairly simple
model. In constrast, the reduction/broadcast communication
pattern involves different numbers of cells sending and receiving
during each stage, resulting in differing available network
bandwidths. Message-passing loses some of its predictability
because link congestion becomes unpredictable, yielding uncertain
link bandwidths for the different stages. Unless one has special
knowledge of the underlying network and cell mapping, only in the
final reduction stage and the first broadcast stage can the link
bandwidth be known with absolute confidence (100%). None of the
other stages can be absolutely known.

The predicted performance model is as follows:
mp_predict = Constant_Overhead +
(2 x Log,(Number_of_cells) x ( Per Iteration Overhead +
Msg Send_Time =+
Avg Net_ Latency +
(Msg_size/Network BW)) +

Barrier time;

where

Constant_Overhead measured at 100 clocks;

Msg_Send_Time measured at 359 clocks;

Per_ Iteration_Overhead measured at 40 clocks;

Avg_Net_Latency (for torus routing) is 20 clocks;

Network_BW = 1.998 bytes/clock (assume full network bandwidth even
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though this probably isn’t true for any stage except the last
reduction stage and the first broadcast stage);
Barrier time = 448 clocks regardless of the number of cells.

Note that a different barrier is being used here between the
stages. For ease of implementation, the 2D 64 cell (global)
barrier from Figure 4.22 (last line in the table) is used which

runs in 448 clocks.

Figure 6.3 shows the predicted vs. measured performance number for
the message-passing-based reduction/broadcast. As can be seen,
with large numbers of cells and large transfer sizes, the
predictive power is lost; with 1Kbyte transfers and 64 cells, the

predictions are off by almost a factor of 2. This loss of

bytes 4 cells 8 cells 16 cells 32 cells 64 cells
16 2321 4071 4901 6125 7567
{(predict) (2140) (2994) (3848) (4702) (5556)
max 2328 4072 4952 6200 7624
min 2040 3608 4472 5416 6584
64 2463 4276 5246 6583 8087
(predict) (2236) (3138) (4040) (4942) (5844)
max 2464 4448 5432 6680 8088
min 2128 3928 5072 5904 7656
256 3031 5644 6824 8473 10908
(predict) (2620) (3714) (4808) (5902) (6996)
max 3040 5728 7048 8488 11064
min 2848 5616 6488 8232 10896
1024 5327 10604 12555 15756 20891
(predict) (4156) (6018) (7880) (9742) (11604)
max 5328 10608 12560 16480 22448
min 5200 10600 12424 15048 19352
4096 14549 30681 35590 45015 60230
(predict) (10308) (15246) (20184) (25122) (30060)
max 14560 32960 37864 47296 61112
min 14416 28408 33344 42544 58616
Figure 6.3~ Reduction/broadcast message-passing time (in

clocks), vs. payload size and number of cells for

1000 runs, link bandwidth unknown.



predictability is due to unknown link congestions;

demonstrated by utilizing special knowledge of the message-passing
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this can be

routing engine to map the problem to cells so that no pathway

contention occurs within any stage.
guarantees 100% net bandwidth during each stage.
program but this alternate processor mapping,

that the predictions regain their accuracy.

This contention-free mapping
Using the same

Figure 6.4 shows

bytes 4 cells 8 cells 16 cells 32 cells 64 cells
16 1958 2803 3682 4507 5383
(predict) (2140) (2994) (3848) (4702) (5556)
max 1976 2808 3696 4512 5384
min 1952 2744 3664 4464 5336
64 2085 2967 3865 4747 5629
(predict) (2236) (3138) (4040) (4942) (5844)
max 2088 2968 3872 4752 5632
min 2048 2044 3856 4704 5576
256 2465 3553 4649 5703 6789
(predict) (2620) (3714) (4808) (5902) (6996)
max 2472 3560 4656 5704 6800
min 2424 3456 4568 5616 6696
1024 3999 5839 7701 9512 11368
(predict) (4156) (6018) (7880) (9742) (11604)
max 4000 5840 7712 9528 11384
min 3968 5760 7624 9464 11280
4096 10145 15073 20003 24913 29830
(predict) (10308) (15246) (20184) (25122) (30060)
max 10152 15080 20008 24920 29832
min 10136 14976 19920 24824 29744

Figure 6.4- Reduction/broadcast message-passing time (in

clocks), vs. payload size and number of cells for
1000 runs,

6.3.2 Reduction/broadcast using TCS connections

As with message-passing,

the connection model for the

remapped to avoid link congestion

reduction/broadcast communication pattern is a bit more complex

than the scatter/gather.

2 x log,(N) stages are required: log,(N)
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reduction stages, and log,(N) broadcast stages. Each reduction
stage has half as many cells sending/receiving as the previous
stage, and each broadcast stage has twice as many
sending/receiving cells as the previous stage. The execution time

for the whole exchange can be modeled as follows:

Connection _predict = Constant_Overhead +
(Log, (Number of_ cells) x (Per_iteration overhead +
(2 x (Avg Net_Latency +
(Msg Size/Network BW))))) +
(Reconfiguration time x Number_of_ phases)

Where Constant_Overhead = 302 clocks;
Avg_Net_Latency = 38 clocks for 2x2,
59 clocks for 4x4,
66 clocks for 8x8;
Reconfiguration_time = 441 clocks for 2x2,
869 clocks for 4x4,
2550 clocks for 8x8;
Network_BW = 1.998 bytes/clock.

Figure 6.5 compares the measured to the predicted communication
times. Again, a fairly simple communication model is being used
(assuming average latencies, no link congestion, etc); still, even
at this level TCS maintains good predictability. Using the
measured reconfiguration times from Chapter 5 allows accurate
prediction (within two percent) of execution time with this more
complex communication pattern. In essense, TCS has traded
message-passing's unknown link congestion for a known
(programmer-visible and linker-visible) node congestion while

maintaining better performance.

6.3.3 Reduction/broadcast conclusions

While TCS connections still provide predictable performance,
message passing loses its predictability when the link congestion
becomes unknown. If extraordinary steps are taken {with regards
to placement and routing) to make the link congestions known,

message passing can regain its predictability at this level. TCS,



on the other hand, maintains its predictability with no extra

effort.

bytes 2x2 cells 4x4 cells 8x8 cells
16 208 1687 3801
{(predict) (927) (1715) (3752)
max 912 1688 3808
min 904 1664 3712
64 1003 1879 4089
(predict) (1023) (1907) (4040)
max 1008 1880 4096
min 992 1856 3992
256 1388 2647 5241
(predict) (1407) (2676) (5193)
max 1392 26438 5248
min 1384 2632 5152
1024 2924 5719 9848
(predict) (2945) (5751) (9806)
max 2928 5720 9856
min 2920 5696 9760
4096 9067 18007 28281
{(predict) (9095) {18051) (28256)
max 9072 18008 28288
min 9064 17984 28192
16,384 33643 67159 102009
(predict) (33695) (67252) (102058)
max 33648 67160 102016
min 33640 67136 101912

Figure 6.5 Reduction/broadcast times

connections vs. payload size and number of cells for

1000 runs.

6.4 All-to=-all communication
Personalized all-to-all communication requires each cell to send a

(in clocks) using TCS
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distinct message to every other cell, and each cell to receive a
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message from every other cell. Thus, N cells generate Nx(N-1)
sends and receives. Unlike the reduction/broadcast pattern, no
simple remapping exists that can eliminate this pattern’s

congestion.

6.4.1 Message-passing implementation
The predictive model for all-to-all communication using message-
passing is similar to the previous two communication patterns. To
prevent obvious congestions (such as every cell trying to send to
cell 0 first, leading to massive congestion at cell 0 and little
traffic elsewhere, followed by every cell trying to send to cell
1, etc.), each cell instead sends data using a randomly-ordered
schedule. Because message passing allows (in theory) everyone to
send and receive at once, one expects to be able to model the cost
of an all-to-all exchange among N cells as (N-1) sends, (N-1)
receives, program loop overhead, and a barrier at the end.
The predictive model is therefore just:
mp_predict = Constant_Loop_ Overhead +
(Number_ of cells-1) x (Per_Iteration Overhead + Msg Send Time +
Avg Net_Latency +(Msg Size/Network BW)) +
(Number of_cells-1) x (Msg Recv_Time + Avg Net_ Latency +
(Msg_Size/Network BW)) +

Barrier time (Number of cells);

where
Constant_Loop_Overhead measured at 100 clocks;
Msg_Send_Time measured at 359 clocks;
Msg_Recv_Time measured at 230 clocks;
Per_Tteration_Overhead measured at 40 clocks;
Avg_Net_Latency (for torus routing) is 20 clocks;
Network_BW = 1.998 bytes/clock;
Barrier_time = 77 clocks for 2x2,

127 clocks for 2x4,

219 clocks for 4x4,

404 clocks for 4x8,

780 clocks for 8x8.

As with the reduction/broadcast pattern, unknown link congestion
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makes reliable message-passing predictions difficult. Figure 6.6

shows the predicted vs. measured execution times for varying data
sizes and numbers of cells. For small numbers of cells (4 or 8
cells) and small exchanges (16 to 64 bytes), predictions remain

within a factor of two. As the problem size scales up, by the

bvtes 4 cells 8 cells 16 cells 32 cells | 64 cells
16 2837 6365 13365 28373 60269
(predict) (2072) (4782) (10194) (21019) (42675)
max 3424 7752 14984 30632 63000
min 2528 5768 12432 26592 57680
64 3088 7082 14956 34957 75197
(predict) (2216) (5118) (10914) (22507) (45699)
max 3832 8144 16792 38664 82760
min 2760 6344 13992 31416 71224
256 4044 9408 20403 54229 121200
(predict) (2792) (6462) (13794) (28459) (57795)
max 4984 11008 23040 59760 133120
min 3608 8184 18464 48816 114976
1024 7612 18441 41221 119557 279247
(predict) (5096) (11838) (25314) (52267) (106179)
max 9096 23112 46408 129328 296944
min 6336 15712 36872 110184 264488
4096 22112 54369 125301 384586 922385
(predict) (14324) (33370) (71454) (147623) (299967)
max 26976 69112 146600 428480 974512
min 16848 45472 112152 359008 874536
16,384 80240 198183 460277 1457334 3491392
{predict) (51224) (119470) (255954) (528923) (1074867)
max 101424 256624 518296 1595544 3477144
min 66024 162664 409808 1353016 3274592
32,768 157033 392011 907588 2880807 6932091
(predict) (100424) (234270) (501954) (1037323) {(2108067)
max 195816 477376 1044800 3274680 7353728
min 121392 333128 796152 2640976 6507808
Figure 6.6- All-to-all (randomized schedule) message-passing

time (in clocks), vs. payload size and number of

cells for 250 runs.
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time one is doing 16 Kbyte or 32 Kbyte transfers with 64 cells,

the predictions are off by more than a factor of three.

6.4.2 All-to-all communication using TCS connections

Supporting the all-to-all pattern using TCS connections

proved a bit more difficult than the other two patterns because
its complexity exposes some of the eccentricities of the iWarp
link scheduler {unfair forward bandwidth and DQ congestion -
introduced in Chapter 3). Because these eccentricities can be
modeled, they can still be accounted for in performance

predictions at the expense of a more complicated model.

Two types of congestion are present: forward link congestion, and
"DQ congestion". While the hardware can be coaxed to provide fair
forward link bandwidth by careful choice of PCT assignments, DQ
congestion greater than 2 is not handled fairly. Feeding data
into a link suffering from DQ congestion may result in
unpredictable bandwidth. Fortunately, if one "throttles" the rate
at which data is fed into a congested link so that the rate does
not exceed the DQ congestion, then bandwidth remains predictable.
For example, if a link has a DQ congestion of "3" and a forward
congestion of "2", things will work reliably provided no
connection through that link is fed at a rate greater than 1/3
link bandwidth. For links with a forward congestion of "1" and a
DQ congestion of "2", no throttling is necessary; the bandwidth
can be modeled as either full bandwidth (where DQ congestion=1) or
half-bandwidth (where DQ congestion=2).

For each array size (2x2, 4x4, 8x8) a set of communication
patterns was created using the "dragon router" AAPC code as
explained in [25]. The TCS communication linker analyzed those
routes to determine forward link congestion and DQ congestion in
each phase (something that is impossible to do with any message-
passing system as the message-passing model precludes a global
view of the machine’s communication state). Based on the linker's
analysis, DQ congestion was detected in half of the 4x4 phases,
and in all of the 8x8 phases. In the 4x4 case, the DQ congestion

was only 2; no throttling was needed to maintain fairness. The
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model was updated to reflect a forward link bandwidth of either
full bandwidth or half-bandwidth, depending on whether DQ
congestion is present or not. For the 8x8 case, it is necessary
to throttle all links down to 1/3 bandwidth to maintain scheduling

fairness (and thus predictability).

Additionally, a more complicated communication scheme is used in
this pattern to allow simultaneous sending and receiving: all
cells do foreground sends (throttled where necessary), and
background receives (spooling - Section 3.1.3). With the previous
communication patterns (scatter/gather and reduction/broadcast),
cells would only send or receive at each stage of the
communication pattern so message passing’s ability to send and
receive at once didn‘t offer an unfair advantage. With all-to-all
communication, cells can ideally be sending and receiving
simultaneously.: To prevent an unfair 2x memory bandwidth
advantage to message-passing {(which would render our comparisons
meaningless), “spooling receives” were added to the TCS
implementation. While all communication still uses connections,
data is put into the connection via a foreground send, and
received from the connection via a background receive. This

allows a more fair performance comparison between the two models.

As would be expected, the performance model for all-to-all
communication using foreground and background connections (with
throttling) is a bit more complicated than earlier models. The
current model involves the sum over all communication phases of
quantities that can vary in each phase, but all are known or can
be calculated by the communication linker. The model is

predict = 10; /* constant overhead */

for each communication phase {

predict += maximum connection path latency in phase /*determined by

linkexr*/

predict += Msg size / Network_ BW in_phase ; /* determined by linker
and throttling needed*/

predict += Barrier_time + Reconfiguration_time + Spool_setup +

other_ overhead;
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Barrier time was measured as 432 clocks;
Reconfiguration time was measured as 162 (using a faster
reconfiguration routine than presented in Section 5.2);

Spool_setup + Other_overhead was measured at 459.

bytes 2x2 cells 4dx4d cells 8x8 cells
16 3384 17054 68951
(predict) (3762) (18426) (75130)
max 3392 17088 68984
min 3384 17016 68920
64 3507 17603 73422
(predict) (3870) (19098) (79738)
max 3512 17640 73864
min 3504 17536 73384
256 3938 20074 91860
(predict) (4302) (21786) (98170)
max 3944 20128 92248
min 3936 20016 91808
1024 5666 30823 165587
{predict) (6030) (32538) (171898)
max 5672 30824 166016
min 5664 30816 165536
4096 12578 73851 460496
(predict) (12942) (75546) (466810)
max 12584 73856 460912
min 12576 73840 460448
16,384 40226 245810 1640150
(predict) (40590) (247586) (1646394)
max 40232 245816 1640536
min 40224 245808 1640088
32,768 77090 475204 3212189
(predict) (77454) (476978) (3219194)
max 77096 475232 3212584
min 77088 475200 3212152

Figure 6.7 All-to-all communication time for TCS connections

(in

clocks), vs. payload size and number of cells for 1000

runs.
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Figure 6.7 shows the predicted and measured performances for a
wide variety of transfer sizes. In many cases the predicted
values are within one percent of the measured values and,
performance-wise, usually a factor of 2 better than deposit
message-passing. For example, the 64 cell 32 Kbyte transfer takes
more than 6.9 million clocks under message-passing, but runs in

just a little over 3.2 million clocks with TCS.

6.4.3 All-to-all conclusions

While TCS requires a more sophisticated performance model
(involving different latency and bandwidth values for each phase),
the linker can easily generate the required analysis and still
make useful predictions of runtime performance, usually to within
a tenth of a percent. The message passing model has no good way to
account for link congestion, and its performance suffers
accordingly. Unlike the scatter/gather, no simple remapping
exists for the all-to-all pattern to completely avoid link

congestion.

6.5 Chapter summary

This chapter demonstrates that the TCS tasking primitives can be
assembled to construct tasks with complex communication patterns
on real hardware while maintaining predictable performance. On
unloaded hardware, both message-passing and TCS connections offer
predictable performance; scatter/gather was predictable when
implemented with both deposit message-passing and with TCS. As
communication patterns become more complex, though, message
passing hides the increased complexity as an unknown link
congestion, making reliable performance predictions difficult, if
not impossible. The reduction/broadcast implementations showed
deposit message-passing losing its predictability as link
congestion increased; it could only regain predictability by an
explicit re-mapping that avoided link congestion. The all-to-all
message-passing pattern was beyond simple modeling, whereas the
TCS implementation remains predictable, worst-case, to within 10%
(overestimate) of execution time. TCS exposes both link
congestion and node congestion to the programmer and to the

linker, allowing accurate performance predictions to be made.
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Furthermore, by exposing the communication to the linker, a TCS
implementation can account for known system eccentricities. For
instance, the prototype TCS linker for iWarp identifies potential
DQ bandwidth problems and recommends the appropriate throttling
strategy where needed to guarantee scheduling fairness,

maintaining its predictive capabilities.

Finally, regardless of any hardware idiosyncracies, deposit
message-passing is restricted to a local, run-time view of array
congestion, while TCS maintains a more global view of the
communication state at link time. TCS can thus choose routes
based on information that message-passing won’'t discover until
runtime. This information allows TCS to use globally optimal
routing; message-passing only has a local view of run-time
congestion at runtime and hence cannot perform global
optimizations. Thus, even for complex communication patterns, TCS
offers both better performance and better predictability than

deposit message-passing.
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Chapter 7 -
TCS Validation - Hierarchical Tasking

7.1 Introduction

Chapter 3 showed that connection-based communication can be done
in a fast, predictable manner. Chapter 4 used predictable
connections to create fast barriers with execution times
predictable to within a microsecond. Chapter 5 used the
predictable barriers to create predictable task control
primitives: connection reconfiguration, task create, and task end.
Chapter 6 showed how those primitives can be combined with
connections to create tasks having complex communication patterns
that still maintain predictable execution time. This chapter
shows how to compose more complex TCS tasks by assembling simpler

TCS tasks while still maintaining predictability.

TCS's dynamic tasking allows modular, continuous-flow, predictable
low-latency computations within a parallel application. Fast
barrier synchronization enables predictable task control at a
level of microseconds. The ability to construct complex tasks
from simpler tasks allows low-level complexity to be hidden from
higher level tasks. This encapsulation allows a modular approach
to application development as well as enabling reuse of functional

task blocks from one application in another.

This chapter demonstrates hierarchical tasking by giving an
example: constructing the real~-time video motion-detector
introduced in Chapter 1 as part of the “predict a thrown ball’'s
trajectory” application. Incoming pixels are compared against a
weighted moving average, then those new values are used to update
the average. The output is a video-rate binary image with an
output pixel value of 1 if the new value exceeds the moving
average by 20 or more, and an output pixel value of 0 otherwise.
This task will be implemented as a collection of smaller,

predictable tasks; the performance of the larger composgite task
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then is shown to be predictable based upon the known performances

of the smaller component tasks.

7.2 Implementing the motion-detector
This section discusses the performance requirements for the
motion-detector, the TCS module design of the motion detector, and

the testing setup for the module.

7.2.1 Requirements

When coded in a mixture of C and assembler and compiled for iWarp,
the motion-detection algorithm requires 28 clocks-per-pixel if no
motion is detected at the pixel, and 33 clocks-per-pixel if motion
is detected. Each incoming video frame arrives as 240 lines of
256 pixels per line. Because the data is sampled at video rates,
incoming data arrives in bursts of 256 pixels in 51.2 microseconds
during each 66.7 microsecond scanline, with a pause of roughly 600
microseconds occurring between frames. To maintain video
processing rates the motion detector needs to handle (240 x 256 =
61,440) pixels within no more than 16,666 microseconds.

Given a worst-case processing time of 33 clocks-per-pixel, 61,440
pixels would require 2,027,520 clock cycles worst case. Given that
the CPU executes 20 clocks per microsecond, a single processor
only has 333,333 clock cycles per video frame time. To meet the
processing requirements, at least 2,027,520/333,333 = 6.1

processors (which rounds up to 7) are required.

The amount of memory needed per processor also needs to be
considered. At a minimum, storage is required for the fresh pixel
data, the moving average, and the output image. For 61,440
pixels, this is 3 x 61,440 = 184,320 bytes of storage, which

easily fits within a single iWarp cell.

7.2.2 Utilizing multiple processors

At first glance, the simplest multiprocessor implementation would
seem to be to just distribute each incoming video image to a
separate cell. Not only does this introduce a rather high latency
(since no computation occurs until the whole frame is first read
in), but this approach also makes it difficult to maintain an
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accurate moving average for the comparison. Instead, the data
needs to be distributed among the processors so that the same

portion of each successive video frame arrives at the same

processor each time.

By distributing the data in a block-cyclic fashion, information
locality from one frame to the next can be maintained across the
different processors. The module has two special cells which act
as "gatekeepers": one for the fresh video data flowing into the
module, and the other for detector output video leaving the module
(See Figure 7.1). The remaining module cells are "workers", which
are given data by the incoming gatekeeper, and send their output
to the outgoing gatekeeper. Data is distributed and gathered in
fixed blocksizes, with the number of distribution/gather cycles

necessary per-frame determined by the blocksize.

7.2.3 The TCS implementation
While the “back-of-the-envelope” calculations in 7.2.1 mandated a

minimum of seven cells to meet performance goals, additional time
is needed for data distribution and gathering. If the work were
partitioned such that seven cells were working at any one time,
with one cell loading new data and another cell writing old
results, a total of nine worker cells would be needed. To
simplify the implementation by maintaining worker symmetry, the
number of worker cells was rounded up to ten. The detect motion

task is implemented roughly as follows:

detect_motion (NUMBER_OF_FRAMES, BLOCKS_PER_FRAME) {
for (i=0; i<NUMBER_OF_FRAMES; i++) {
switch(cell type) :
case WORKER:
id=WORKER cell ID
for (j=0; Jj<BLOCKS_ PER_FRAME; Jj++) {
taskstart (FILL(id)):
taskstart (COMPUTE) ;
taskstart (DRAIN(id));
}break;
case GATEWAY IN:
for (j=0; j<BLOCKS_PER_FRAME; j++) {
taskstart (FILL(j mod NUMBER_OF_ WORKERS))
}break;
case GATEWAY OUT:
for (j=0; j<BLOCKS_PER FRAME; j++) {
taskstart (DRAIN(j mod NUMBER_OF_ WORKERS))
}break;
} /% switch */
} /* for NUMBER_OF_FRAMES */
taskend () ;
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Figure 7.1 The “detect motion” task is implemented using
multiple small, dynamic tasks.

Because ten worker cells are sharing the load, and there are 240
lines of video per frame, each cell is responsible for processing
24 lines of video per frame. 24 lines of 256 pixels implies
between 172,032 and 202,752 clocks of processing, plus the drain
and fill times, per 333,333 clocks (frame time). Thus, the worker
efficiency will be between 51% and 62%. If a means existed to
somehow ensure there would be no phase variance between drain
rates and fill rates, the filling and draining could be bundled
into a single module, yielding a reduction of the number of
workers to eight cells. This would imply 30 lines of video per
cell, for 236,544 to 253,440 clocks, boosting efficiencies to

between 70% and 76%.
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For the ten worker cells implementation, latency as a function of
blocksize is predicted as

latency = network latency + data_loading latency + compute_time.

The network latency for 10 cells plus two “gatekeeper” cells,
using the 5 clocks-per-hop estimate, is 12x5 = 60 clocks. 2An
additional 3 hops are needed to travel from the cell doing the
timing to the module and back again, so this adds an additional 15
clocks for a total expected path latency of 75 clocks.

Because the data is coming in as live video samples, it can’t
arrive any faster than video rates. A standard NTSC video signal
is 30 interlaced frames/second, or 60 non-interlaced
frames/second. In either case, a scanline (including sync,
leading and trailing blanking (overscan), and pixel data) occurs
every 66.8 microseconds, of which only about 51.2 microseconds is
active pixel data. If we sample each line at 256 pixels per line,
the data arrives as 64 4-byte words over a 51.2 microsecond
interval, every 66.8 microseconds. At 20 clocks/microsecond, this
works out to 1,336 clocks per scanline; the rate is fixed by the
camera. If the module were unable to accept data at this rate,

incoming data would be lost.

Computation time is either 28 or 33 clocks per pixel, depending on
whether motion is actually detected or not. At 256 pixels per
scanline, this means a worst-case compute time of (33*256) = 8,448

clocks per scanline, and a best-case compute time of 7,168.

TCS task start and task end overheads are completely hidden within
the “idle” time between scanlines. A scan line lasts 66.8
microseconds, but the active video portion is only 51.2
microseconds, so there are (66.8 - 51.2 microseconds) = 15.6

microseconds => 312 clocks available per scanline.

7.3 Predictions

Because the video detect task has hard realtime input and output,
and the output needs low latency, we need to verify both that the
task can maintain throughput and meet specified latency

constraints.
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7.3.1 Throughput

As designed, provided there is sufficient time during the
horizontal retrace for task start and task end to execute, the
application should be able to support and maintain video-rate
throughput regardless of the block size of the data distributed
among the cells. Because of the nature of the pipeline, the
critical points are at the gateway cells executing the task

start (FILL) and task start{(DRAIN), and the FILL/DRAIN task ends.
As implemented for this module, task start for both FILL and DRAIN
occurs in 225 clocks, and task end occurs in 60 clocks. The total
time to start and terminate a f£ill or drain is just (225 + 60)=285
clocks, which is less than the 312 clock limit. Thus, throughput

is expected to be sustainable.

7.3.1 Latency

The next issue is latency: the time from when a pixel first enters
the gateway in cell to it leaving the gateway out cell (See Figure
7.1). Because the fill task start and the drain task end
operations are interleaved within the horizontal refresh interval,
their execution times don’t affect pixel latency. Only fill task
end and drain task start, plus computation, plus network latency,
affects pixel latency. Best case latency occurs with the smallest
possible block size; in this case, one scanline of data (256
pixels).

From previous measurements, computation time is 28 clocks/pixel

for no motion, and 33 clocks/pixel for motion.

For a data block size of 1 video line, then, worst-case latency
can be predicted by summing the various component worst-case
latencies:

network latency - 12 cells x (approximately) 5 clocks/cell

= 60 clocks (Chapter 3);

data loading latency (512 pixels @ 40 pixels/clock)= 1280 clocks;
£fill task end - 60 clocks (measured);

compute task start - 20 clocks (measured);

compute latency - 7168 (no motion) or 8448 (motion)

{computed from single-pixel measurements);

compute task end - 20 clocks (measured);

drain task start - 225 clocks (measured).
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Total latency is computed as 60 + 1280 + 60 + 20 + 7168 + 20 + 225
= 8,833 for a line with no motion, and

60 + 1280 + 60 + 20 + 8448 + 20 + 225 = 10,113 clocks for a line
with motion detected at every pixel. In reality, latency should
be slightly better than this because the drain task start should
complete faster due to a slight skew between the compute and the
previous worker’s drain. Measured drain task starting times
assume (worst case) that both cells entered the start barrier
together. 1In reality, one cell gets there first and waits; when
the second cell enters, due to the way the barrier is implemented,
the latecomer writes a value to its output PCT, reads a value from
its input PCT (which is already waiting from the early arriver),
and proceeds. The overhead of the network latency is hidden
because the network latency overlaps with the late-arriving cell’s
previous operations. Due to barrier skew, the task start

completes at the late-arriving cell in less than worst-case time.

For data blocks larger than one scan line, the data loading
latency is calculated by multiplying the additional number of scan
lines by the time for a complete video scan line (66.8
microseconds = 1336 clocks). Thus, while a single line of wvideo
has a data-loading latency of 1280 clocks, additional lines
include the overhead of the horizontal blanking interval and hence
cost 1336 clocks. Unless one adds additional upstream buffering
(bad, because this increases total application latency), one can’t

get the per-line data loading latency lower than 1336 clocks.

7.4 Results
Given a 10-cell implementation and a fixed data size, the only

variable parameter is the block size of the cyclicly distributed
data. The TCS module is implemented to accept the "number of
video frames" and the "block size" (in number of lines) as
parameters, and is invoked as part of a larger module with varying
block sizes as shown in 4.23. As expected, the module latency
gets smaller with the smaller block sizes. Note that we can
predict (and achieve) latencies of milliseconds with accuracies in
the microseconds. Figure 7.2 represents a “best-case” video
input, with no motion detectable, and 7.3 is a “worst-case”, with

motion detected at every pixel. Note that the “maximum time” for
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Scanlines Avg, predicted, Avg, max, and min Worker
per block max, and min completion time Utilization
latency to first
pixel
24 203,040 33,533,136 51.5%
(204,425) 33,533,136
203,040 33,533,136
203,040
12 101,618 33,433,898 51.9%
(102,377) 33,433,904
101,624 33,433,896
101,616
8 67,824 33,400,834 52.3%
(68,361) 33,400,904
67,824 33,400,832
67,824
6 50,912 33,384,284 52.5%
(51,353) 33,384,288
50,912 33,384,280
50,912
4 34.019 33,367,755 52.9%
(34,345) 33,367,760
34,024 33,367,744
34,008
3 25,560 33,359,476 53.3%
(25,841) 33,359,480
25,568 33,359,472
25,560
2 17,119 33,351,223 53.9%
(17,337) 33,351,224
17,120 33,351,208
17,112
1 8,659 33,342,940 54.8%
(8,833) 33,342,944
10,008 33,342,936
8,640

Figure 7.2 Best-case (no motion) latency and completion times
(in clocks) for the detect motion task vs. block

size (in scanlines) for 100 frames of wvideo.

the 1 scanline/block entry in Figure 7.2 (10,008 clocks) is a
measurement artifact; the first run of the system was the 1

scanline/block, and that first frame through the system registered
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Scanlines Avg, predicted, Avg, max, and min Worker
per block max, and min completion time Utilization
latency to first
pixel
24 235,903 33,566,763 61.5%
(235,145) 33,566,768
236,296 33,566,760
235,896
12 117,953 33,450,728 62.1%
(117,737) 33,450,736
118,112 33,450,728
117,952
8 78,751 33,412,054 62.5%
(78,601) 33,412,056
78,872 33,412,048
78,744
6 59,148 33,392,694 62.7%
(59,033) 33,392,696
59,232 33,392,688
59,144
4 39,544 33,373,352 63.1%
(39,465) 33,373,360
39,576 33,373,352
39,544
3 29,696 33,363,680 63.7%
(29,681) 33,363,680
29,704 33,363,680
29,696
2 19,866 33,354,028 64.4%
(19,897) 33,354,032
19,872 33,354,024
19,744
1 10,005 33,344,342 65.5%
(10,113) 33,344,344
10,008 33,344,336
10,000
Figure 7.3 Worst-case {(motion at every pixel)} latency and

motion at all pixels.

completion times (in clocks) for the detect motion

task vs.

block size (in scanlines)

of video noise (simulates extreme motion).

In fact,

this agrees well with the

predicted value for the 1 scanline/block entry in Figure 7.3.

for 100 frames
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7.5 Chapter summary

While TCS primitives allow construction of single tasks with
predictable execution time, the real power of the TCS model is
that complex tasks can be created by assembling simpler tasks
while still maintaining predictable performance. Because the
synchronization barriers can be performed so quickly (on the order
of a few microseconds), complex applications can be composed at a
very fine level of granularity, which allows very low latency
while maintaining high bandwidth. For instance, with the video
motion detector task developed in this chapter, motion can be
continuously detected at video rates with latencies as low as 7.5

scanlines (10,008 clocks / 1335 clocks/scanline).

By expressing the application (or task) using the TCS primitives,
the application’s potential runtime communication complexity is
exposed to the linker, which can then make globally-optimized
communication resource allocations. Because these primitives are
built upon a very fast, predictable barrier synchronization
implementation, they enable task implementations to achieve a fine
level of granularity. Because the control primitives are
constructed to give predictable performance, the tasks created
using those primitives have predictable performance. Finally,
complex tasks can be constructed by assembling simpler tasks into

larger structures while still maintaining predictable performance.
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Chapter 8 -
Related Work

8.1 Chip/Poker (1982)

In the early 1980's Lawrence Snyder introduced the CHiP
architecture, a reconfigurable connection-based machine positioned
as a SPMD system([39]. Connections were established through off-
cell switching elements configured by a separate, global
controller. The individual cells executed locally-stored
programs, but network reconfiguration was an inherently global
operation due to the external, global switch control.

The physical network supported only a single channel per physical

link, but fanout configurations were supported.

Poker, the programming language/environment for ChiP, introduced
the concept of the "XYZ levels" necessary for effectively
programming this sort of machine. When using connections for
communication, a distinction needed to made between program code
(which executed the computations) and network code (which defined
the communication). Individual algorithms were expressed as a
combination of program and network code (the X and Y levels,
accordingly), and the full applications was created by combining
sets of algorithm implementations together (the Z level) [41].
The Poker programming environment was developed to support program
development at all levels. In his words,
...what does a whole Poker program look like? Answer: It
cannot be seen in toto. Unlike "regular" programs, Poker
programs are not monolithic pieces of program text. Instead,
they are databases[40].
The major drawbacks of the CHiP system were 1) lack of local
processor control over network configuration, and 2) lack of
virtual channel support. The former enforced a global synchronous
tasking model, and the latter made global reconfigurations more
expensive, since only a few connections can be supported per

configuration.
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8.2 GF-11 (1987)
While the IBM GF-11 was actually a SIMD machine rather than a MIMD

machine, it is worth mentioning here because it also carried the
idea that network connections constituted a separate program from
the actual computation program. A special switch controller
stored a program of 1024 different network configurations (each
requiring 8640 bits) that the main controller could summon at
runtime by sending a 10-bit configuration request. Since the
machine was SIMD, it only supported a single global task, but it
could rapidly reconfigure its connection setup, changing from one

configuration to another in only 200 nanoseconds[6].

8.3 Polymorphic Torus (1989)

Li and Maresca introduced a SIMD polymorphic torus machine that
combined the network switch with the individual processor. The
network switches are dynamically configured under local processor
control[32]. In one sense this was a step backward, in that
connection configuration must again be explicitly built into the
computation program code, but it was also an advance in that it
gave the local processors the power to self-configure on demand,
freeing the system of the control bottleneck an external

configuration agent would imply.

8.4 Transputer-based systems: C_NET and MARC
The INMOS T800 Transputer provides direct, on-chip hardware for
connections, but no routing support. A number of different

gsystems have been built combining the T800 chips with an external

routing/communication network.

C_NET (1992) supported reconfigurable connections between
processors, but relied upon an external agent for
reconfigurations. The C_NET programming model is similar to the
XYZ levels of Poker; program (computation) code is written for the
cells (similar to Poker X-level), a topology definition program is
written to define the communication that occurs (similar to Poker
Y-level), and phase programs map the program code and the
connection definitions to particular cells on the physical machine

(Poker Z-level) [1].
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MARC (1991) is another programming tool for a networked T800s, but
focusses on automatically placing and routing a set of
communicating processes than providing programmer support for

communication[11].

The T9000 promised support for virtual channels, so that multiple
channels could be time-division-multiplexed over a single physical
connection, but by the time the chip materialized with the
promised capabilities and clock rate, the computational

performance was no longer very competitive with conventional CPUs.

8.5 iwarp, PCS, ConSet, and PCS+

iWarp is a reconfigurable connection-based MIMD machine that
offers register-mappred network ports to allow low-latency
communication. It provides local network configuration control at
each cell, but the network can also operate in a semi-autonomous
manner. The first application development tools for it either
treated the machine as a SPMD device and used static communication
channels for data distribution and collection (Adapt, Apply), or
else set up a collection of static tasks (Assign) that utilized

static communication channels.

PCS was the first tool enabling explicit task-level programming on
the iWarp, but like Assign, PCS supported only a single
configuration per application. PCS generated only program code;
network configuration information was embedded by the toolchain

within the cell program code.

ConSet was the first iWarp tool to enable multiple sets of
different connections over the course of a single application.
While it used a SPMD view of the array (only a single global
task), it partitioned communication into a series of phases,
allowing more connections to be realized over a period of time
than was explicitly allowed by the available logical channels.
ConSet produced both cell program code and a separate network

program for the needed connection states[l1l6].

PCS+ was an augmented version of PCS which kept the tasking model
of PCS, but allowed tasks to be partitioned into "global
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communication phases". Each global phase was allowed to have a
different network configuration, but changing from one phase to
the next required global participation; the need for global
participation precluded PCS+ from supporting asynchronous tasking.
PCS+ kept the distinction between program code and network code
introduced in ConSet, and generated both a program code executable

and a network code executable as output[27,28].

8.6 HeNCE(1991), CODE(1992), and Paralex(1992)

A number of tools have been created for developing parallel
tasking applications running on top of a PVM or PVM-like message-
passing environment (high-latency, low-bandwidth network). The
basic "task unit" in each of these models is the graph. Mapping
of tasks to machines is based on a user-defined "cost matrix";
heterogeneous processors can be used in all of these systems.
HeNCE uses a static mapping of tasks to processors, determined at
compile time[8], whereas Paralex supports dynamic load
balancing[3]. CODE restricted mapping tasks to nodes within a
single multicomputer (a Sequent Symmetry), but also allows runtime
mapping of tasks to cells[34]. For all ow these tools,
communication and task ordering is specified by drawing "arcs" in
the graphs, which represent unbounded FIFO buffers connecting
*computation units". While these models and environments provide
a connection-like communication model, the implementations rely
upon a message-passing underpinning to provide the desired
functionality and cannot offer any sort of guaranteed bandwidth or

latency to the application designer.

One of CODE's major strengths is that the basic "task unit" in
CODE is the graph, and graphs may be hierarchically defined; that
is, one graph may invoke or "Call" another graph. CODE graph
instances do not exist until called at runtime; task creation is
dynamic. Like TCS, this design allows the hierarchical
composition of complex tasks by assembling and encapsulating a

collection of smaller, simpler tasks.

A characteristic of all of these models is that the programming
model is defined in terms of the capabilities of the toolchain

provided. The programming model, in effect, is the toolchain.
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8.7 Orca-C and ZPL (1992)
While Poker introduced the idea of dividing parallel code into
three levels: X-level (single-cell program code), Y-level
(communication phases), and Z-level (problem level), it was
restricted to a single Z-level routine per application. Orca-C
and ZPL ("Z-level Programming Language") were an attempt to

1. Allow more complex Z-level routines to be created from

simpler Z-level routines in a hierarchical fashion, and

2. Create scalable, reusable Z-level code.

The intent was that both Y and Z levels would be parameterized in
terms of size and connectivity, and that X-level code could have
easy access to block-partitioned data structures. This does allow
for easier scaling, but prohibits use of communication patterns

that cannot be easily expressed (short of a wirelist) [33].

8.8 Fortran M (1994)

Fortran M is essentially Fortran 77 plus a set of extension to
support tasking and communication between tasks.[13,18] while HPF
(High-Performance Fortran) provides a convenient means of
expressing data-parallel code, it does not really allow task-
parallel programming; Fortran-M allows modular, task-parallel
program creation. Programs create processes that communicate by
sending formatted messages over point-to-point channels. The
mapping of processes to physical cells is handled by explicit
directives in the program code. Communication and code placement
are bundled into a Fortran M program itself; process
creation/placement and communication channel creation/destruction
are dynamic. This allows greater program flexibility, but makes
any sort of static communication scheduling impossible.
Communication is “connection-like” in that data ordering is
preserved, but no guarantees are made regarding when data gets
delivered. Channel communication occurs via formatted packets
only, and is carried out by a lower-level message-passing
subsystem. In one of the creators words:

the primary difficulty that arises in compiling [Fortran-M]
is to achieve efficient implementations of communication,
synchronization, and process-management mechanisms.[13]
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8.9 Fx (1994)

Fx is an experimental Fortran compiler that “incorporates task
parallelism as directives in a data-parallel language based on
HPF.” Unlike Fortran M, which depends on explicitly written sends
and receives for communication, the Fx compiler is responsible for

generating all program communication.

An Fx program begins execution as a single data-parallel task
running on all nodes. When the flow of control reaches a
parallel section, the tasks specified by calls to task
subroutines are executed subject to data-dependence
constraints; that is, each task waits for its input,
executes, sends its output, and terminates. Parallelism is
obtained by executing different tasks on different sets of
nodes. [23]

Fx has several (rather severe) limitations. First of all, tasking
only goes one level deep; a task may not invoke child tasks.
Further, only one task-parallel region may exist per Fx program.
Finally, because communication is implied (and compiler generated)
rather than explicitly programmed, implementing systolic tasks or
algorithms requires a bit of “smoke and mirrors” work. While Fx
has been used for such tasks as real-time computer vision [44],
routing the communication to obtain sufficient bandwidth to
support continuous video was a user-controlled “trial-and-error”

operation [23].

8.10 Mentat (1987)

Mentat is a C++ -based “macro data flow” system intended to
provide a more-or-less transparent means of achieving parallelism.
Mentat computations are called “actors”, and “arcs” represent the
data dependencies between actors. Tokens, which represent data
and control information, flow between the actors along the arcs.
When an actor has tokens present on all of its incoming arcs, the
actor is “enabled” and then executes, sending the appropriate
tokens out on its outgoing arcs when complete. “Persistent
actors” can maintain state information between firings. Mentat
objects map one-to-one as processes running on a virtual machine,

which in turn is mapped onto a parallel computer. [20,21]

Because Mentat applications are written for a virtual machine,
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programs can be expected to be portable across different parallel
platforms. The downside is that by writing for a virtual machine,
programs cannot easily take advantage of machine-specific “special
features” that may offer better application performance. Object
creation (actors and arcs) is dynamic, allowing maximum
programming flexibility, but precluding static scheduling of

communication or placement.

8.11 static communication scheduling

Bianchini and Shen developed a “communication compiler” in 1986
that completely scheduled deterministic communication at compile
time, offering repeatable (and guaranteed) runtime communication
performance. In this system, “switching nodes” handled
communication switching and routing, and physically separate
“computation modules” handled computation. Each computation
module would communicate with other processors through its
corresponding switching node; the switching node would route the
message through other switching nodes to the appropriate
destination, according to a routing scheme evaluated at compile
time.[9] This approach works well for synchronous, deterministic
single-task systolic applications, but does not easily support
multiple tasks which may communicate non-systolicly, or a group of
tasks which, over time, execute on the same group of processors
and switching nodes, switching between tasks in a data-dependent

fashion.

The “Virtual Wires” work done more recently at MIT is a variant of
this approach, geared towards scheduling communication within and
between functional units of FPGAs. “Virtual wirelists” specifying
connectivity and bandwidth between logical functional components
are programmed and compiled, then mapped to available physical
connections and scheduled in a time-division-multiplexed manner.
In essence, “virtual wires” gave “logical channelg” to the pins
and interconnects of FPGAs. The increased utilization of pin and
interconnect bandwidth allowed greater explotation of each gate
array’s capabilities, resulting in a physically smaller system
[4,14].
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8.12 Chapter summary

A number of machines were built with explicit support for
reconfigurable connection-like communication, each having a
particular programming paradigm for utilizing connections. The
CHiP only allowed a single connection per “phase” per cell with an
external agent controlling network configuration; the GF-11 and
polymorphic torus were SIMD machines. All of these enforced a
globablly synchronous view of communication. More flexible,
dynamic programming paradigms were introduced that allowed
asynchronous tasking (and communication reconfiguration) (HeNCE,
CODE, Mentat), but these require a general-purpose message-passing
communication base that forfeits runtime communication guarantees.
They also differ in how they can encapsulate the complexity of
multiple, distributed communicating tasks as reusable program
elements. For instance, Fortran M allows nested task definitions,

while Fx does not.

The TCS model is unigue in that it allows runtime communication
guarantees to be requested at compile time (and confirmed at link
time) while still allowing non-communicating tasks to execute
asynchronously. The enabling technologies for these features are
(1) cells have local control over their network configuration,

(2) places where barrier synchronization is needed can be detected
(and inserted) at link time, and

(3) fast barrier synchronization services are available.
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Chapter 9 -

Thesis Summary

9.1 Conclusions
The results of this thesis can be summarized as follows:

(1) Connections that provide minimal quality-of-service
guarantees on latency and bandwidth are sufficient to build
fast, predictable barrier synchronization.

Chapter 4 showed that barrier synchronization is a special case of
all-to-all information exchange; the design space encompasses
physical signaling scheme, messaging protocol, allowable barrier
memberships, and barrier capacity. Connections provide a fast
physical signaling mechanism; by choosing a messaging protocol
appropriate to the barrier memberships and capacity regquired, one

can achieve fast yet predictable worst-case barrier performance.

The TCS barrier implementation on iWarp can synchronize a group of

4 cells in under 160 clocks (8 microseconds), and a group of 32

cells in less than 816 clocks (41 microseconds). As a special
case, an entire iWarp torus (64 cells) can be synchronized is just
456 clocks (23 microseconds). Not only fast, this barrier

mechanism has a worst-case performance predictable to within 1
microsecond. This fast barrier mechanism allows tasks to
coordinate at a very fine granularity level (tens of microseconds,
in contrast to application latency requirements in the

milliseconds).

(2) Given a connection implementation with connectivity state
directly writable by the local cell, and fast, predictable
barrier synchronization, a group of cells can perform
communication context switches in predictable time.

A communication context switch allows cells within a task to swap
between sets of active connections, hence allowing greater
effective connectivity than the hardware could statically provide.

Locally-writable connection state is important to prevent the
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unknown delays and artificial serialization that would be
inflicted by queuing requests at an external reconfiguration
agent, and fast barrier synchronization is necessary to keep the
cost of doing the communication context swap affordable. By
keeping the reconfiguration mechanism local to the cells affected,
their reconfigurations are unaffected by activity in the rest of
the array. By combining this local reconfiguration with a barrier
implementation that is predictable as well as fast,
reconfiguration itself can occur in predictable (to within

microseconds) worst-case time.

(3) Given connections offering minimal quality-of-service
guarantees and communication context switches, tasks can
perform complex communications in predictable time. If the
total connectivity required exceeds the intrinsic
capabilities of the target platform, communication can be
split into a series of local phases, each with its own set of
connections.

A number of communication patterns representative of real-world

application communications were implemented on the iWarp and

benchmarked. Scatter/gather, reduction/broadcast, and all-to-all
were implemented using both the TCS programming model and a fast
deposit message-passing implementation for a variety of data sizes
and varying numbers of cells. While message-passing offers
arbitrary connectivity, its predictability falters as the
communication patterns become more complex due to unknown runtime
network congestion. TCS, using sets of local connections,

maintained its predictability even for the all-to-all pattern.

(4) Given fast, predictable barrier synchronization, a simple set
of task control primitives can be constructed with
predictable performance. Tasks can then be constructed with
those primitives to have predictable execution time.

Chapter 5 outlines the three basic control primitives that are
built upon barrier synchronization: task start, task end, and
local communication context switch. Chapter 6 showed how those
control primitives are used to create tasks with communication
patterns of varying complexity, and demonstrated on the iWarp that
they did indeed maintain predictable (to within a few

microseconds) execution time.
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(5) Complex tasks can be hierarchically constructed from simpler
tasks; if the component tasks have predictable performance,
the resultant task can have predictable performance as well.

Chapter 7 showed how a complex task, a pipelined scatter/gather,
could be constructed from a collection of simpler tasks. This
complex composite task was predicted to meet, then demonstrated as
meeting, the throughput and latency constraints of the larger
application. Herein lies the power of the programming model:
complex tasks can be built to offer predictable runtime
performance by hierarchically assembling smaller, simpler tasks.
The task granularity achievable is limited by the performance of
the underlying barrier synchronization implementation; the faster

the barrier performance, the finer the granularity achievable.

(6) By expressing an application in this manner, its potential
runtime communication patterns are exposed at link time,
allowing the toolchain to make global communication and
barrier optimizations.

Link time routing allows the router to minimize runtime network
congestion, in turn providing better performance. For instance,
in Chapter 6, the TCS implementation of all-to-all data exchange
outperformed the message-passing implementation by a factor of
nearly three for 64-cell 32 Kbyte transfers. This performance was

due to congestion avoidance allowed by link time routing.

9.2 Future work

9.2.1 Barrier hierarchies

Just as a choice of routing can be done at link time, the choice
of barrier implementation can be made as well. A target platform
may have more than one barrier implementation: a fast but small
capacity barrier, and a slower, higher-capacity barrier. By doing
the barrier allocation at link time, the fast barrier can be used
in those “inner loop” situations where it provides greatest
benefit, and the slower barrier used where execution time is less
critical. This hierarchy of barrier implementations with a small
fast-barrier capacity and larger capacities with slower
performance is similar to a memory hierarchy, where one has only a

few bytes of on-chip register space but Megabytes of slower DRAM.
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Programs can be written in terms of generic barriers and
memberships, with the linker deciding which implementation to use.
Much as an optimizing compiler might promote a variable from a
memory variable to a register variable, so too could a linker
promote a barrier from one based on general-purpose messages based
on the general machine network to one which runs on scarcer,

special-purpose barrier hardware.

8.2.2 Other platforms

While most of this thesis’s work was done on iWarp, it should be
possible to carry it to other machines that offer similar
communication capabilities. Prospective target machines should
offer connection-based communication with minimal quality-of-
service bandwidth and latency guarantees, and a locally-accessible
connection state. Mesh-based architectures (which put the
switches close to the cells) are thus more likely candidates than
tree-based architectures (which put the cells at the base of a
hierarchy of switches). Furthermore, latency guarantees are as
critical as bandwidth guarantees, especially for connection-based
barrier implementations. Barrier messages are usually just a few
bytes of information; barrier execution time is thus dominated by

the physical signaling latency rather than signaling bandwidth.

9.3 Chapter summary
Connections with minimal quality-of-service bandwidth and latency

guarantees are sufficient to implement fast, predictable barrier
synchronization. Predictable barrier synchronization combined
with locally-writable connection state enables local communication
context switches, extending the connectivity within a task beyond
what the target platform intrinsically supports. Given fast,
predictable barrier synchronization and communication context
switches, a small set of task control primitives can be built that
allow task creation, execution, and destruction in predictable
time. Tasks that are built from those primitives can be
constructed to run in predictable time, and can be assembled into
more complex tasks while maintaining predictable performance.
Finally, by exposing an application’s potential runtime
communication to the linker, global communication optimization can

be performed.
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