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Abstract

Usually gradient descent is merely a way to find a minimum, abandoned if a more
efficient technique is available. Here we investigate the detailed properties of the
gradient descent process, and the related topics of how gradients can be computed,
what the limitations on gradient descent are, and how the second-order information
that governs the dynamics of gradient descent can be probed. To develop our in-
tuitions, gradient descent is applied to a simple robot arm dynamics compensation
problem, using backpropagation on a temporal windows architecture. The results
suggest that smooth filters can be easily learned, but that the deterministic gradient
descent process can be slow and can exhibit oscillations. Algorithms to compute the
gradient of recurrent networks are then surveyed in a general framework, leading to
some unifications, a deeper understanding of recurrent networks, and some algorith-
mic extensions. By regarding deterministic gradient descent as a dynamic system we
obtain results concerning its convergence, and a quantitative theory of its behavior
when a saturating or “robust” error measure is used. Since second-order structure
enters into the dynamics, an efficient exact technique for multiplying a vector by the
Hessian of a gradient system is derived and applied.

Keywords: neural networks, control, optimization, gradient descent, Newton
method, convergence rate, Hessian
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Chapter 1

Overview

This thesis takes the gradient descent process seriously. Typically, gradient descent
is treated as just a way to find the minimum of an error function, to be abandoned
if a more efficient optimization technique is found. Here, we instead investigate the
detailed properties of the gradient descent process, and the related topics of how
gradients can be computed, and how second-order information, which governs the
local dynamics of a gradient system, can be efficiently obtained in high-dimensional
systems.

To give a global overview: we try gradient descent on a typical problem, in order
to develop our intuitions; we review and unify gradient calculation techniques for
recurrent networks; we apply dynamical systems methods to the analysis of gradient
descent; and we find an efficient way to extract the second-order information relevant
to the gradient descent process.

In chapter 2 we review applications of neural network function approximators to
the dynamics compensation problem, and we use neural network function approxima-
tors to learn a particular dynamics compensation task. In the process, we find that
pre-processing the signals from the plant into velocities and accelerations is unneces-
sary, as the network spontaneously develops filters to compute these quantities. This
motivates us to attempt to reduce the number of free parameters of our networks by
investigating temporally continuous recurrent neural networks.

In chapter 3 we discuss and review recurrent neural networks, and derive some
algorithms for computing the derivatives of error measures of the performance of these
networks with respect to their internal parameters, or weights. These algorithms
calculate the gradient of the system, the sensitivity of the error with respect to the
free parameters. This gradient is in turn used in various procedures that modify the
weights to minimize the error. This is normally done using simple gradient descent,
a process discussed in chapter 4.

In some simulated control experiments with indirect neural network control archi-
tectures, learning was very slow, and some unexpected gentle rhythmic oscillations

1



CHAPTER 1. OVERVIEW 2

were noted. In chapter 4 we treat the deterministic gradient descent process as a
dynamical system, and show how its parameters can be controlled to optimize its
rate of convergence, and what the limits on this rate are. After reviewing known
results on simple gradient descent and gradient descent with momentum, we present
a novel analysis of gradient descent with second-order momentum. We then note
some anomalies that arise when this linear analysis is applied in the nonlinear error
surfaces that are used in practice, and perform a novel nonlinear dynamics system
analysis of gradient descent on a saturating error surface, and on a narrowing valley.
This analysis results in a satisfying quantitative theory which explains the previ-
ously mysterious oscillatory phenomena, which has been observed but only discussed
informally, becoming part of the backpropagation folklore.

One way of thinking about the limits on the convergence of deterministic gra-
dient descent is that, although the system can be well approximated by a locally
linear model, this linear system is ill conditioned, and the control parameters, i.e. the
learning rate and momentum, cannot decouple the system along the eigenvectors of
the Hessian, and so cannot decompose the single ill conditioned system into multiple
better conditioned systems. This decoupling could be done easily if one knew the
eigenvectors of the Hessian of the system, but even computing the Hessian itself is
prohibitive (in both space and time) for the high dimensional systems in which we
are interested.

In chapter 5, by viewing the Taylor expansion of the error made in chapter 4 as a
general formula, rather than only in the specific context of gradient descent, we are
led to a highly efficient technique for computing not the Hessian itself, but rather its
product with a vector. This technique applies to a wide class of gradient systems,
including feedforward systems like backpropagation networks, recurrent fixedpoint
networks, stochastic Boltzmann machines, and weight perturbation networks. This
leads to a new class of iterative algorithms for computing properties of the Hessian
without computing the full matrix itself. For instance, the power method can use this
technique to calculate the principal eigenvector of the Hessian, or to estimate it well
in a stochastic setting. A trivial conjugate-gradient method can use it to multiply an
arbitrary vector by the inverse Hessian, sometimes even more efficiently than could
be done were the entire inverse Hessian already known. We use the power method to
find the principal eigenspace of the Hessian, and then decouple minimization in the
principal eigenspace from that in the remaining orthogonal space, speeding stochastic
gradient descent. (Unfortunately, initial benchmarks using this technique, although
promising, were not superior to other known methods.) A fast approximate line search
can be based on this procedure, and has been used in the Scaled Conjugate Gradient
algorithm. The shape of the Eigenvalues spectrum can be estimated using just a
score of multiplications by the Hessian. There are also some potential applications to
generalization.

Chapter 6 concludes the thesis with a discussion of potential applications and
directions for future research.
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1.1 Summary of Contributions

Because of the organization of this thesis, consisting of alternation of tutorial and
background information with new results, and because its breadth may limit some
readers’ interest to a portion of the thesis, it may be helpful to have a roadmap of
the original contributions contained herein. For that reason, I have compiled below,
in stylized bullet form, a summary of the important contributions.

• Time constants of hidden units can be learned using backpropagation through
continuous time.

• Modifications of the backpropagation through time (BPTT) and and real-time
recurrent learning (RTTL) procedures that can learn time delays.

• Continuous-time BPTT can be used to train continuous-time deterministic re-
current networks to be effective oscillatory pattern generators which are respon-
sive to their environmental input.

• Teacher-forcing, which has hitherto been on somewhat shaky theoretical ground,
can be understood as learning the derivative of the target function.

• Second-order momentum is useless, even in the deterministic gradient case—
previously an open theoretical question.

• The previously-rumored discrepancy between the linear theory of gradient de-
scent and gradient descent in backpropagation networks in practice can be char-
acterized and precisely accounted for by a dynamic system analysis of gradient
descent on a nonlinear error surface.

• A novel O(n)-time and O(n)-space algorithm finds the exact product of the
Hessian matrix with a vector—a quantity previously only approximated using
O(n2)-space and O(n2)-time (and worse) methods.



Chapter 2

Dynamics Compensation

Capsule: Some of the work described in this chapter was included in
Goldberg and Pearlmutter (1988, 1989).

2.1 Introduction: An Idiosyncratic Overview of

Control Theory

For a less revisionist picture of control, the reader is directed to one of the
popular textbooks, such as Craig (1986) or VanLandingham (1985)

The field of control might be abstractly defined as the study of methods for ma-
nipulating the inputs to a system (called a plant or, here, sometimes an arm) in order
to cause it to behave in a desired fashion. This is conventionally divided into open-
loop control, in which the inputs are not modulated in response to the outputs of
the plant, and closed-loop control, in which the inputs respond to the outputs of the
plant being controlled.

The field of control is further characterized by the nature of the systems to be
dealt with. They are in general continuous, rather than combinatorial (although
the increasingly important area of dynamic programming control (Bellman, 1957)
violates this dictum) and the control inputs are likewise continuous. Even with these
restrictions, this would leave problems such as path planning within the domain of
control. Indeed, problems like path planning are considered to be on the borders
of control theory: essentially, when path planning does not involve combinatorial
considerations, it is clearly control theory; when it does, it depends on the techniques
being used, etc. To grossly oversimplify, mainstream control theory is mostly about
low-level control, in which the desired response of the plant is known, and the job of
the controller is to ensure that the plant continuously tracks a given reference signal.

4



CHAPTER 2. DYNAMICS COMPENSATION 5

Under these conditions, almost all plants are well approximated as linear systems
in a local neighborhood containing both the current state of the plant and its desired
state, plus some constant term.

2.1.1 Linear Control Theory

The optimal control of linear systems is the field of linear control theory. In linear
control theory, an nth order plant can be characterized by the linear equations

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)

where the vector x is the n-dimensional state of the system, the vector u is the control
input, t is time, and the vector y is the output available to the feedback controller.

It can be shown that such a system is observable, meaning that its internal state
x can be determined by observation of y, if and only if the observability matrix

Mo = [C|CA| · · · |CAn−1]

(where the vertical bars denote matrix concatenation) is of rank n.

It can be also be shown that such a linear system has the dual property of control-
lability, meaning that the system can be driven to a desired state x = xd by suitable
choice of u, if and only if the controllability matrix

Mc = [B|AB| · · · |An−1B]

is of rank n. If the system is controllable then any point can be reached in n timesteps,
and if not then only the subspace spanned by the columns of Mc can be reached.

Similar notions hold for continuous time linear systems, which can in fact be
treated by the above formalism by assuming the system to be sampled at some rate.

It is straightforward to design a suitable controller given knowledge of A, B, and
C. In a proportional derivative or PD controller the control signals are generated by
a linear function of the difference between the plant output (and its first derivative)
and the target values. These simple PD controllers suffice across a broad range of
control situations, but frequently exhibit long-term error in the presence of persistent
disturbances. Their extension, the proportional integral derivative or PID controller,
adds a simplistic ability to compensate for persistent disturbances by adding to the
PD controller’s outputs a linear function of the integrated distance from their targets
of the plant outputs, to counteract long-term disturbances. Such PID controllers are
adequate for many real-world control applications.

There are two broad families of techniques for generating suitable controllers for a
plant: direct methods and indirect methods. In indirect methods, one uses feedback
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from the plant to determine the parameters of a plant model, and then uses this plant
model to generate a suitable controller. In direct methods, one uses the feedback from
the plant to directly construct a controller, without attempting to model the plant.

2.1.2 Linearization and Dynamics Compensation

Given the above linear control theory, and the further theory that allows one to easily
create an optimal controller for a given linear system, one approach to control a plant
is to assume that the constant terms on local linear approximations to a plant are
small, and use a linear controller suitable to the region of state space which the plant
occupies at each instant. Thus, one is faced with the problem of either finding a
locally linear model of the plant, if one is performing indirect control; or of finding
a controller suitable for the current local linear neighborhood, assuming one is doing
direct control.

A problem with this approach is that the assumption that the constant offsets
are small is typically violated. The obvious response is to cancel this constant term
precisely, at each point in phase space, and use the above approach. This problem, of
canceling the offsets, is called dynamics compensation and involves the construction
of an inverse dynamical model of the plant. This inverse dynamical model solves for
the required plant inputs needed to exert forces that maintain the plant’s dynamic
state.

To be concrete: for a robot arm, the torques necessary to obtain given accelerations
at a joint depend on the configuration of the arm. For instance, the shoulder motor
must exert greater torque to accelerate an arm when the elbow is extended than
when it is bent. Also, if zero torque is exerted at all the joints, the arm will slump
downward because of gravity. Compensating for this force of gravity is also part of
dynamics compensation—but typically, for a robot arm, the problem is decoupled
into forces that do not change with motion, the kinematic dynamics, and those that
are a function of velocity, like centrifugal forces.

Similarly, gravity and centrifugal (coriolis) forces exert toques on the joints of a
robot arm, and these depend on the configuration and velocity of the arm. There are
two ways to handle such effects: to ignore them, and allow the controller to treat these
forces as disturbances to be corrected, or to predict them and exert compensatory
forces. The latter dynamics compensation approach demands that the compensatory
control offsets be computed from the outputs of the plant. This is conventionally done
by using physics and intimate knowledge of the structure of the arm (Hollerbach,
1980; Brady, Hollerbach, Johnson, Lozano-Perez, and Mason, 1982). In this chapter
we show the feasibility of using neural networks to learn these compensatory forces.

There are many hundreds of papers on learning dynamics compensation, from
table-based approaches (Raibert and Horn, 1978; Atkeson and Reinkensmeyer, 1988,
1990) to algebraic calculation of the inverse dynamics based on a model with few
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Fixed Shoulder (joint 1)

Elbow (joint 2)

Tip Mass

Figure 2.1: The two degree of freedom simulated direct drive arm taken from Brady
et al. (1982).

free parameters (An, Atkeson, and Hollerbach, 1988a, 1988b) to neural networks
(Kuperstein and Wang, 1990; Tzirkel-Hancock and Fallside, 1991; Kawato, Setoyama,
and Suzuki, 1988; Goldberg and Pearlmutter, 1989). In this chapter we present an
expanded version of this last paper.

2.2 Simulated Arm

The arm sketched in figure 2.1 was simulated. Its equations of motion, and values for
the free parameters, were taken from Brady et al. (1982), and the gravitational term
was set to zero. A network with 10 hidden units which was trained on 298 points, each
of which consisted of a point chosen randomly and uniformly from the phase space
of a simulated arm1 and a corresponding random desired acceleration. The input to
the network consisted of the positions, velocities and desired accelerations of the two
joints, and the required output was the appropriate torques to exert. The network
was trained in batch mode all the way to the bottom of its local minimum, i.e. to the
point where the derivative of the error was nearly zero.2 This training took 12,000
epochs (in an epoch the network is exposed to the entire corpus of training cases and
the weights are updated) while the learning parameters were constantly adjusted for
maximum learning speed.

Figure 2.2 shows a Hinton diagram of the weights of the trained network. It is

1The phase space of the arm consists of the positions and velocities of the two joints.
2In general, when training on a training corpus and testing using a different testing corpus,

performance on the training corpus rises monotonically to an asymptote while performance on the
test corpus first rises to a maximum and then falls to an asymptote. Many researchers, quite
reasonably, use the best test corpus performance achieved as the generalization rate, which can be
seen as a form of regularization. In our work, we use the more pessimistic asymptotic test corpus
performance.
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Figure 2.2: This Hinton diagram shows the weights in a recursive fashion: each of
the twelve large structures represents a unit. The bottom row of each unit displays
the weights from the inputs, the center two bars display the weights from the hidden
units, and the two positions on the right in the top row represent the two output
units. The remaining weight is the bias connection. The 10 units in the lower two
rows are hidden; the two output units at the top are the torques for joints 1 and 2,
from left to right. The input units (not displayed) are, from left to right, the position,
velocity and desired acceleration of the shoulder joint and the position, velocity and
desired acceleration of the elbow joint. The values displayed in the upper left hand
corners of the units are biases. The magnitude of the largest weight is 9.63.

RMSS Error

Random Training Set Random Test Set Trajectory E
0.0682 0.0829 0.0676

Table 2.1: Root mean square/standard deviation (RMSS) errors on various synthetic
data sets. The training set and random test set each consist of 298 points chosen
randomly with a uniform distribution from phase space and desired accelerations.
Trajectory E involves moving both the shoulder and elbow joints through a sinusoid.

interesting to try to figure out how the network is performing this task; the hidden
units each seem to be sensitive to only a particular range of velocities of the shoulder
joint (joint 1). The position of the shoulder is almost completely ignored (the blob
in the low left hand corner of each unit is nearly absent), as it should be because of
the rotational symmetry of the plant and the lack of gravitational forces.

Quantitative measures of the performance of this network, both its training set
and on some testing sets are shown in table 2.1. The excellent performance on the
random test set indicates that the network has generalized well from its sample of
298 points. The performance on trajectory E, as well as the graphs shown in figure
2.3, show that the network performs well in that portion of phase space in which the
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Torque for trajectory A joint 1

Torque for trajectory E joint 1

Figure 2.3: The network of figure 2.2 was used to generate torques to be applied in
some simulated trajectories. The fine line is the required torque for the simulated
arm, and the bold line is the torque output by the network.

trajectories lie.

2.3 Experiments on an Actual Robot Arm

The actual robot arm used for these experiments is the blue CMU Direct Drive Arm II,
used with the kind and invaluable assistance of Pradeep Khosla. Other experiments
were run on Lee Weiss’ 2D direct drive arm, and we express our gratitude to him.
Regretably, logistic difficulties prevented us from including data gathered from his
arm in this document.
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In our experiments with real robot arms, we primarily used variations of the
architecture depicted in figure 2.4. The input to the networks consisted solely of a
temporal window of positions for joint i, namely xi(t−n∆t), . . . , xi(t), . . . , xi(t+m∆t)
for i = 1, 2; explicit velocity and acceleration data were not given to the networks.
The required output was τi(t) for i = 1, 2, the torque vector that was applied to joint
i at time t. This technique assumes that the torques are not varying too rapidly, an
assumption which was guaranteed by our use in all the experiments described here of
a ∆t of 10 milliseconds.

A difficulty with this approach is gathering adequate sample data from the arm.
Rather than attempt to sample all of phase space well, which is very difficult, we
decided to use a family of trajectories and to sample a distribution on this family to
obtain both training and testing trajectories. We trained the networks on 5 randomly
chosen trajectories, and tested them on another randomly chosen 2. Plots of the actual
torques overlayed with plots of the torques predicted by the network are shown in
figure 2.5. We show here networks with three different window sizes: n = m = 5,
n = m = 10, and n = m = 20, where n is the number of timesteps included in the
window prior to the current time, and m is the number after. Thus the total window
size is n+m+ 1. After some experimentation we settled on simply using ten hidden
units in all of our networks.

Table 2.2 shows performance by networks of various window sizes on both the data
they were trained on and some independent data drawn from the same distribution
(i.e. different trajectories but drawn from the same ensemble of trajectories) as the
training data. This is the usual technique for testing generalization.

All of these networks had ten hidden units, and each was trained exhaustively, as
in the earlier experiments with the simulated arm. Observe that performance on the
training set gets better as the window gets larger, while performance on the test set
first improves as window size grows, and then worsens. This evidence of a tradeoff
between window size and generalization is a special case of the ubiquitous phenomenon
of a bias/variance tradeoff. We conjecture that the improved generalization between
a window of size n = m = 5 and a window of size m = n = 10 is caused by the
fact that a window of size five simply does not see enough data to make sufficiently
accurate estimates of the acceleration. In contrast, the network with a window of
size of m = n = 20 seems to have used a portion of its extra capacity to memorize
some of the training set, thus improving performance on the training set in a way
that impairs generalization.

Evidence of this memorization is visible in figure 2.8, where some of the hidden
units have receptive fields which have isolated black and white dots, an indication
that they respond to some particular pattern of noise that occured in the training
set.

Figures 2.6, 2.7, and 2.8 show Hinton diagrams of the weights developed by the
networks after being trained on the training corpus well beyond the point of dimin-
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desired output

torque applied to joint 2

torque applied to joint 1

position of joint 1

position of joint 2

hidden units

output units

input units

Figure 2.4: This architecture is used extensively below. The input is a window of joint
positions; the desired output is the torques applied to the two joints at the center
of the temporal window. The output units receive input from both the hidden units
and the input units.

ishing returns, i.e. well beyond the point that the test set error began to rise. The
top two are the output units, with the shoulder torque on the left and the elbow
torque on the right. The rest are hidden units. Within each unit, the two stripes on
the bottom show the weights of the incoming connections from the input units, with
time starting on the left and moving to the right, and the position of the shoulder
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Window Size Training Data Test Trajectory E Test Trajectory I
11 0.01296 0.04675 (3.6) 0.03573 (2.8)
21 0.00489 0.02224 (4.5) 0.02445 (5.0)
41 0.00435 0.02862 (6.6) 0.04074 (9.4)

Table 2.2: RMS errors of networks with different window sizes on both testing and
training data. The ratio between the error shown and the error on the training set is
in parenthesis.

on the bottom row and the elbow just above it. The top two dots on each of the
hidden units are the weights of its outgoing connections to the output units, which
are also displayed in the middle portion of the output units. The single remaining
unexplained blob is each unit’s bias, the strength of a connection from a unit which
is always on. White blobs are positive and black blobs are negative.

An attempt to figure out how the networks work yields some insights, although
a complete understanding is virtually impossible. The easiest things to interpret are
the weights of connections from the input units, which form temporally smooth filters
shaped to detect a linear combination of position, velocity, and acceleration. At first
glance most of the units appear to have one-dimensional mexican hat or difference of
gaussian receptive fields, which leads one to suspect that they respond almost solely to
acceleration. But on closer examination one sees that the zero crossings are frequently
quite asymmetric, an indication that velocity is also being responded to. A yet closer
examination, possible only with access to the actual weights, shows that the sum of
all the elements of the filters is usually not zero, so the absolute position also has
some influence. The linear combination of acceleration and velocity stands out in the
network of figure 2.8, in which some of the filters are strikingly asymmetric. It should
be remembered that the networks had no built in notion of temporal adjacency, but
developed these filters purely in order to map each input to the appropriate output.

The roles of the individual hidden units are much more difficult to fathom. Since
the weights are so large, most units are saturated most of the time. Each unit has a
transition window in which it is not saturated which is reached only under the correct
circumstances. For example, a unit might respond to 3.4x1+1.2dx1/dt−2.1x2, being
saturated at 0 if this value is less than 2.3 and at 1 if the value is greater than 2.6,
and having a non-binary value only within that narrow range. Thus, the input space
is chopped up into soft hyperplanes along these dimensions. The use made of the
hidden units by the output units provides little information about their roles in the
network in intuitive terms, as the values are used in concert, canceling each other out
delicately under various circumstances. In a word, the networks are not modular: it
is difficult to understand the roles of the various pieces in isolation.
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Window Size 11 (see figure 2.6)

Window Size 21 (see figure 2.7)

Window Size 41 (see figure 2.8)

Figure 2.5: These graphs show torque profiles that are to drive joint 1 (the shoulder)
through trajectory E, which was the more difficult of the two test trajectories. The
“correct” torque profile is drawn with a fine line, while the torque profiles generated
by networks are drawn with bold lines. Note the high frequency artifacts in the target
profiles, which result from physical chatter and vibration. These are due to the gain
of the PD controller being near the limits of the system.

2.4 Analysis of the Weights as Convolutions

We can interpret the weights between the first and third layers (shown in the upper
right-hand parts of figures 2.6 2.7, and 2.8) as temporally smooth filters shaped to
detect a linear combination of position, velocity, and acceleration. As we saw before,
on close examination one can see Mexican-hat shaped receptive fields with asymmetric
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Figure 2.6: This network has a window size of m = n = 5. The largest weight has a
magnitude of 18.9.

Figure 2.7: This network has a window size of m = n = 10. The largest weight has a
magnitude of 11.7.

zero crossings, an indication that both position and velocity are being responded to.
Because these filters are applied to the input at each possible offset, we can view them
as convolution functions and analyze them formally in those terms.

If we imagine the weights to be samples from a continuous function that is con-
volved with the position of the joint, we can decompose this function f(x), −w ≤
x ≤ w, into a constant part fc, an odd part fo(x), and an even part fe(x), using the
equations

fc =
1

2w

∫ w

−w
f(x) dx
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Output
Units





Hidden
Units





Figure 2.8: This network has a window size of m = n = 20. The largest weight has a
magnitude of 4.2.

joint 2 to unit 51
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Figure 2.9: A graph of the inputs to a unit from the network with a window size of 21
regarded as a convolution function (bold line) and decomposed into constant, even,
and odd components. These weights appear to form a velocity filter.
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joint 1 to unit 53
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Figure 2.10: A graph of the inputs to a unit from the network with a window size
of 21 regarded as a convolution function (bold line) and decomposed into constant,
even, and odd components. These weights appear to form an acceleration filter.

fe(x) =
f(x) + f(−x)

2
− fc

fo(x) =
f(x)− f(−x)

2

which have the property that fo(x) = fo(−x), fe(x) = −fe(−x), and f(x) = fe(x) +
fo(x) + fc. The fc term is not strictly necessary, but using it to take out the pure dc
component enables the visual display of the position sensitivity, and also permits the
visual interpretation of the odd component as being acceleration (and higher order
derivative) sensitive, without contaminating it with position sensitivity, which would
then be visually indiscernible.

Figure 2.9 shows that the weights on the connections from the elbow joint to a
particular unit from the network with a window size of 21 can be understood as a
simple velocity filter. Figure 2.10 shows another unit from that network whose weights
from the shoulder joint form a simple acceleration filter, and figure 2.11 shows a unit
which is activated by a linear combination of velocity and acceleration.

The filter functions we have examined so far have been extremely smooth. This
is generally the case in the network with window size 21, but in the network with
window size 41 a new phenomenon appears. In figure 2.12 we see some curves with
rough edges. Below, when we look at generalization, we shall partly account for this
behavior. Notice that in figure 2.12, the odd component crosses zero near the edges
of the window, suggesting that this unit responds in part to jerk (the derivative of
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Figure 2.11: A graph of the inputs to a unit from the network with a window size
of 21 regarded as a convolution function (bold line) and decomposed into constant,
even, and odd components. These weights appear to form a filter that responds to a
combination of velocity and acceleration.

acceleration.)

The concern that any function can be decomposed into even and odd componants,
and that this sort of analysis of even random weights would result in finding filters
for velocity, acceleration, etc, can be easily dismissed. In figure 2.13 we see a pattern
of weights which is not smooth, and thus the decomposition in these terms proves
entirely unilluminating.

2.5 Conclusion

In this chapter we have seen that a simple simulated inverse kinematics problem and
an inverse dynamics problem are both easily solved using standard backpropagation
neural network technology. In the latter case, temporal windows were a crucial ad-
ditional technique used to allow the extraction of relevent higher-order properties
of the input signal (velocity, acceleration, etc.) without the necessity for providing
these inputs manually. Performance on both training and testing sets was good, with
the errors generally being smaller than perturbations caused by other effects upon
the system. Examination of the weights of the trained networks gave insight into
their function, and trying networks of different sizes explored various points along
the bias/variance spectrum. As a toy application of neural networks, this effort was
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joint 2 to unit 93
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Figure 2.12: A graph of the inputs to a unit from the network with a window size
of 41 regarded as a convolution function (bold line) and decomposed into constant,
even, and odd components. These weights appear to form a filter that responds to a
combination of acceleration and jerk, and also to a particular pattern of noise.

successful. However, the training was slow, and we therefore now turn our attention
to why training can be slow, how the factors leading to slow training can be measured,
and how the training can be accelerated.
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joint 1 to unit 85
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Figure 2.13: A graph of the inputs to a unit from the network with a window size
of 41 regarded as a convolution function (bold line) and decomposed into constant,
even, and odd components. These weights do not appear to be amenable to analysis
as a temporal filter, as they are not even piecewise smooth.



Chapter 3

Gradient Calculation for Dynamic

Recurrent Neural Networks

Some of the work described in this chapter was included in Pearlmutter (1989a, 1989b,
1990a, 1990b, 1992b, 1995)

Capsule: We survey learning algorithms for recurrent neural networks
with hidden units, and put the various techniques into a common frame-
work. We discuss fixedpoint learning algorithms, namely recurrent back-
propagation and deterministic Boltzmann Machines, and non-fixedpoint
algorithms, namely backpropagation through time, Elman’s history cutoff,
and Jordan’s output feedback architecture. Forward propagation, an on-
line technique that uses adjoint equations, and variations thereof, are also
discussed. In many cases, the unified presentation leads to generalizations
of various sorts. We discuss advantages and disadvantages of temporally
continuous neural networks in contrast to clocked ones, and continue with
some “tricks of the trade” for training, using, and simulating continuous
time and recurrent neural networks. We present some simulations, and at
the end, address issues of computational complexity and learning speed.

3.1 Introduction

3.1.1 Why Recurrent Networks

The motivation for exploring recurrent architectures is their potential for dealing with
two sorts of temporal behavior. First, recurrent networks are capable of settling to a

20
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solution that satisfies many constraints (McClelland, Rumelhart, and Hinton, 1986),
as in a vision system which relaxes to an interpretation of an image which maximally
satisfies a complex set of conflicting constraints (Marr and Poggio, 1976, 1978; Hinton,
1977; Davis and Rosenfeld, 1981; Szeliski, 1986), a system which relaxes to find a
posture for a robot satisfying many criteria (Hinton, 1976), and models of language
parsing (Waltz and Pollack, 1985). Although algorithms suitable for building systems
of this type are reviewed to some extent below, such as the algorithm used in Qian and
Sejnowski (1989), the bulk of this chapter is concerned with the problem of causing
networks to exhibit particular desired detailed temporal behavior, which has found
application in signal processing (Nerrand, Roussel-Ragot, L. Personnaz, and Marcos,
1993; Karjala, Himmelblau, and Miikkulainen, 1992), speech and language processing
(Watrous, Laedendorf, and Kuhn, 1990; Poddar and Unnikrishnan, 1991; Albesano,
Gemello, and Mana, 1992), and neuroscience (Lockery, Fang, and Sejnowski, 1990;
Doya, Boyle, and Selverston, 1993; Doya, Selverston, and Rowat, 1994).

It should be noted by engineers that many real-world problems which one might
think would require recurrent architectures for their solution turn out to be solvable
with feedforward architectures, sometimes augmented with preprocessed inputs such
as tapped delay lines, and various other architectural embellishments (Chauvin and
Rumelhart, 1995; Gorman and Sejnowski, 1988; Lang and Hinton, 1988; Waibel,
Hanazawa, Hinton, Shikano, and Lang, 1989; Lang, Hinton, and Waibel, 1990; Lang
and Hinton, 1990; Tank and Hopfield, 1987a; Day and Davenport, 1993; Jordan, 1989;
on Underspecified Target Trajectories, 1990; Weigend, Rumelhart, and Huberman,
1991; de Vries and Principe, 1991; Back and Tsoi, 1991; Juang, Kung, and Camm,
1991; Nerrand et al., 1993; Hush and Horne, 1993; de Vries and Principe, 1992;
Maxwell, Giles, Lee, and Chen, 1986; LeCun, Boser, Denker, Henderson, Howard,
Hubbard, and Jackel, 1989; Tsung and Cottrell, 1995). For this reason, if one is
interested in solving a particular problem, it would be only prudent to try a vari-
ety of non-recurrent architectures before resorting to the more powerful and general
recurrent networks.

This chapter is concerned with learning algorithms for recurrent networks them-
selves, and not with recurrent networks as elements of larger systems, such as special-
ized architectures for control (Kawato et al., 1988; Jordan and Jacobs, 1990; Naren-
dra and Parthasarathy, 1990; Miller, Sutton, and Werbos, 1990). Also, since we are
concerned with learning, we will not discuss the computational power of recurrent
networks considered as abstract machines (Siegelmann and Sontag, 1991; Kilian and
Siegelmann, 1993; Siegelmann and Sontag, 1993). Although we consider techniques
for trajectory learning, we will not review practical applications thereof. In particular,
grammar learning, although intriguing and progressing rapidly (Cottrell and Small,
1983; Cleeremans, Servan-Schreiber, and McClelland, 1989; Watrous and Kuhn, 1992;
Giles, Miller, Chen, Sun, Chen, and Lee, 1992; Mozer and Das, 1993; Das, Giles, and
Sun, 1993; Kolen, 1994; Das and Mozer, 1994), typically involves recurrent neural
networks as components of more complex systems, and also at present is inferior in
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practice to discrete algorithmic techniques (Angluin, 1987; Lang, 1992). Grammar
learning is therefore beyond our scope here. Similarly, learning of multiscale phenom-
ena, which again typically consists of larger systems containing recurrent networks as
components (Hochreiter, 1991; Mozer, 1992; Schmidhuber, 1992c, 1992d), will not be
discussed.

3.1.2 Why Hidden Units

We will restrict our attention to training procedures for networks which may include
hidden units, units which have no particular desired behavior and are not directly
involved in the input or output of the network. They can be thought of as non-
observable intermediate stages in the process leading from input to output.

With the practical successes of backpropagation, it seems gratuitous to expound
the virtues of hidden units and internal representations. Hidden units make it possible
for networks to discover and exploit regularities of the task at hand, such as symme-
tries or replicated structure (Hinton, 1986; Sejnowski, Kienker, and Hinton, 1986),
and training procedures capable of exploiting hidden units, such as the Boltzmann
machine learning procedure (Ackley, Hinton, and Sejnowski, 1985) and backpropaga-
tion (Rumelhart, Hinton, and Williams, 1986b; Werbos, 1974; Parker, 1985; Howard,
1960), are behind much of the current excitement in the neural network field (Touret-
zky and Pomerleau, 1989). Also, training algorithms that do not operate with hidden
units, such as the Widrow-Hoff LMS procedure (Widrow and Hoff, 1960), can be
used to train recurrent networks without hidden units, so recurrent networks without
hidden units reduce to non-recurrent networks without hidden units, and therefore
do not need special learning algorithms.

Consider a neural network governed by the equations

dy

dt
= f(y(t), w, I(t)) (3.1)

where y is the time-varying state vector, w the parameters to be modified by the
learning, and I a time-varying vector of external input. Given some error metric
E ′(y, t), our task is to modify w to reduce E =

∫
E ′(y, t)dt. Our strategy will be gra-

dient descent, so the main portion of our work will be finding algorithms to calculate
the gradient ∇wE, the vector whose elements are ∂E/∂wi.

The above formulation is for a continuous time system. The alternative to this is
a clocked system, which obeys an equation of the form y(t + ∆t) = f(y(t), w, I(t)).
Without loss of generality, for clocked systems we will use ∆t = 1, giving

y(t+ 1) = f(y(t), w, I(t)), (3.2)

with t an integer.
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Certainly, barring high-frequency components in I, the behavior of (3.1) can be
precisely duplicated by (3.2) with suitable choice of f in the latter. For this reason, in
order to determine the practical tradeoffs of one against the other, we must consider
particular functional forms for f. We will consider the most common neural network
formulation,

dyi
dt

= −yi + σ(xi) + Ii (3.3)

where yi is the state or activation level of unit i,

xi =
∑

j

wjiyj (3.4)

is the total input to unit i, wij is the strength of the connection from unit i to unit j,
and σ is a differentiable function.1 The initial conditions yi(t0) and driving functions
Ii(t) are the inputs to the system.

This defines a rather general dynamic system. Even assuming that the external
input terms Ii(t) are held constant, it is possible for the system to exhibit a wide
range of asymptotic behaviors. The simplest is that the system reaches a stable
fixedpoint; in the next section, we will discuss two different techniques for modifying
the fixedpoints of networks that exhibit them.

More complicated possible asymptotic behaviors include limit cycles and even
chaos. Later, we will describe a number of gradient based training procedures that
can be applied to training networks to exhibit desired limit cycles, or particular
detailed temporal behavior. We will not discuss specialized non-gradient methods
for learning limit cycle attractors, such as Baird (1990), Baird and Eeckman (1991).
Although it has been theorized that chaotic dynamics play a significant computational
role in the brain (Skarda and Freeman, 1987; Freeman, 1987), there are no specialized
training procedures for chaotic attractors in networks with hidden units. However,
Crutchfield and McNamara (1987) and Lapedes and Farber (1987) have had success
with the identification of chaotic systems using models without hidden state, and
there is no reason to believe that learning the dynamics of chaotic systems is more
difficult than learning the dynamics of non-chaotic ones.

Special learning algorithms are available for various restricted cases. There are
fixedpoint learning algorithms (for details see Pineda (1987), Almeida (1987), Hinton
(1989), Baldi and Pineda (1991), or for a survey see Pearlmutter (1990a)) that take
advantage of the special relationships holding at a fixedpoint to reduce the storage
requirements to O(m), the number of weights, and the time requirements to the time
required for the network to settle down. There are continuous-time feed-forward

1Typically σ(ξ) = (1+e−ξ)−1, in which case σ′(ξ) = σ(ξ)(1−σ(ξ)), or the scaled σ(ξ) = tanh(ξ),
in which case σ′(ξ) = (1 + σ(ξ))(1 − σ(ξ)) = 1 − σ2(ξ). The latter symmetric squashing function
is usually preferable, as it leads to a better conditioned Hessian, which speeds gradient descent
(LeCun, Kanter, and Solla, 1991). However, the former was used in all the simulations presented in
this chapter.
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learning algorithms that are as efficient in both time and space as algorithms for pure
feedforward networks, but are applicable only when w is upper-triangular but not
necessarily zero-diagonal, in other words, when the network is feedforward except for
recurrent self-connections (surveyed in Pearlmutter (1990b), or see Gori, Bengio, and
de Mori (1989), Kuhn (1987), Mozer (1989), Uchiyama, Shimohara, and Tokunaga
(1989), Day and Davenport (1993) for more detail.)

Later, we will describe a number of training procedures that, for a price in space
or time, do not rely on such restrictions and can be applied to training networks to
exhibit desired limit cycles, or particular detailed temporal behavior.

3.1.3 Continuous vs. Discrete Time

We will be concerned predominantly with continuous time networks, as in (3.3).
However, all of the learning procedures we will discuss can be equally well applied
to discrete time systems, which obey equations like (3.2). Continuous time has ad-
vantages for expository purposes, in that the derivative of the state of a unit with
respect to time is well defined, allowing calculus to be used instead of tedious explicit
temporal indexing, making for simpler derivations and exposition.

When a continuous time system is simulated on a digital computer, it is usu-
ally converted into a set of simple first order difference equations, which is formally
identical to a discrete time network. However, regarding the discrete time network
running on the computer as a simulation of a continuous time network has a num-
ber of advantages. First, more sophisticated and faster simulation techniques than
simple first order difference equations can be used (Press, Flannery, Teukolsky, and
Verrerling, 1988). Second, even if simple first order equations are used, the size of the
time step can be varied to suit changing circumstances; for instance, if the network
is being used for a signal processing application and faster sensors and computers
become available, the size of the time step could be decreased without retraining the
network. Third, because continuous time units are stiff in time, they tend to retain
information better through time. Another way of putting this is that their bias in
the learning theory sense is towards temporally continuous tasks, which is certainly
advantageous if the task being performed is in fact temporally continuous.

Another advantage of continuous time networks is somewhat more subtle. Even for
tasks which themselves have no temporal content, such as constraint satisfaction, the
natural way for a recurrent network to perform the required computation is for each
unit to represent nearly the same thing at nearby points in time. Using continuous
time units makes this the default behavior; in the absence of other forces, units
will tend to retain their state through time. In contrast, in discrete time networks,
there is no a priori reason for a unit’s state at one point in time to have any special
relationship to its state at the next point in time.

A pleasant added benefit of units tending to maintain their states through time
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is that it helps make information about the past decay more slowly, speeding up
learning about the relationship between temporally distant events (Bengio, Simard,
and Frasconi, 1994; Hihi and Bengio, 1996; Hochreiter, 1991).

3.2 Learning in Networks with Fixedpoints

The fixedpoint learning algorithms we will discuss assume that the networks involved
converge to stable fixedpoints.2 Networks that converge to fixedpoints are interesting
because of the class of things they can compute, in particular constraint satisfaction
and associative memory tasks. In such tasks, the problem is usually given to the
network either by the initial conditions or by a constant external input, and the
answer is given by the state of the network once it has reached its fixedpoint. This is
precisely analogous to the relaxation algorithms used to solve such things as steady
state heat equations, except that the constraints need not have spatial structure or
uniformity.

3.2.1 Will a Fixedpoint Exist?

One problem with fixedpoints is that recurrent networks do not always converge to
them. However, there are a number of special cases that guarantee convergence to a
fixedpoint.

• Some simple linear conditions on the weights, such as zero-diagonal symmetry
(wij = wji, wii = 0) guarantee that the Lyapunov function

L = −
∑

i,j

wijyiyj +
∑

i

(yi log yi + (1− yi) log(1− yi)) (3.5)

decreases until a fixedpoint is reached (Cohen and Grossberg, 1983). This
weight symmetry condition arises naturally if weights are considered to be
Bayesian constraints, as in Boltzmann Machines (Hinton and Sejnowski, 1983).

• A unique fixedpoint is reached regardless of initial conditions if
∑

ij w
2
ij <

max(σ′) where max(σ′) is the maximal value of σ′(x) for any x (Atiya, 1988),
but in practice much weaker bounds on the weights seem to suffice, as indicated
by empirical studies of the dynamics of networks with random weights (Renals
and Rohwer, 1990).

• Other empirical studies indicate that applying fixedpoint learning algorithms
stabilizes networks, causing them to exhibit asymptotic fixedpoint behavior

2Technically, these algorithms only require that a fixedpoint be reached, not that it be stable.
However, it is unlikely (with probability zero) that a network will converge to an unstable fixedpoint,
and in practice the posibility of convergence to unstable fixedpoints can be safely ignored.
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Figure 3.1: This energy landscape, represented by the curved surface, and the balls,
representing states of the network, illustrate some potential problems with fixed-
points. The initial conditions a and b can differ infinitesimally but map to different
fixedpoints, so the mapping of initial conditions to fixedpoints is not continuous. Like-
wise, an infinitesimal change to the weights can change which fixedpoint the system
evolves to from a given starting point by moving the boundary between the basins of
attraction of two attractors. Similarly, point c can be changed from a fixedpoint to a
non-fixedpoint by an infinitesimal change to the weights.

(Allen and Alspector, 1989; Galland and Hinton, 1989). There is as yet no
theoretical explanation for this phenomenon, and it has not been replicated
with larger networks.

One algorithm that is capable of learning fixedpoints, but does not require the
network being trained to settle to a fixedpoint in order to operate, is backpropagation
through time (Rumelhart et al., 1986b). This has been used by Nowlan to train a
constraint satisfaction network for the eight queens problem, where shaping was used
to gradually train a discrete time network without hidden units to exhibit the desired
attractors (Nowlan, 1988). However, the other fixedpoint algorithms we will con-
sider take advantage of the special properties of a fixedpoint to simplify the learning
algorithm.

3.2.2 Problems with Fixedpoints

Even when it can be guaranteed that a network settles to a fixedpoint, fixedpoint
learning algorithms can still run into trouble. The learning procedures discussed
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here all compute the derivative of some error measure with respect to the internal
parameters of the network. This gradient is then used by an optimization procedure,
typically some variant of gradient descent, to minimize the error. Such optimization
procedures assume that the mapping from the network’s internal parameters to the
consequent error is continuous, and can fail spectacularly when this assumption is
violated.

Consider mapping the initial conditions ỹ(t0) to the resultant fixedpoints, ỹ(t∞) =
F(ỹ(t0)). Although the dynamics of the network are all continuous, F need not be.
For purposes of visualization, consider a symmetric network, whose dynamics thus
cause the state of the network to descend the energy function of equation (3.5). As
shown schematically in figure 3.1, even an infinitesimal change to the initial condi-
tions, or to the location of a ridge, or to the slope of an intermediate point along the
trajectory, can change which fixedpoint the system ends up in. In other words, F is
not continuous. This means that as a learning algorithm changes the locations of the
fixedpoints by changing the weights, it is possible for it to cross such a discontinuity,
making the error jump suddenly; and this remains true no matter how gradually the
weights are changed.

3.2.3 Recurrent Backpropagation

It was shown independently by Pineda (1987) and Almeida (1987) that the error
backpropagation algorithm (Parker, 1985; Rumelhart et al., 1986b; Werbos, 1974) is
a special case of a more general error gradient computation procedure. The back-
propagation equations are

xi =
∑

j

wjiyj

yi = σ(xi) + Ii (3.6)

zi = σ′(xi)
∑

j

wijzj + ei (3.7)

∂E

∂wij
= yizj (3.8)

where zi is the ordered partial derivative of E with respect to yi as defined in Wer-
bos (1974), E is an error measure over y(t∞), and ei = ∂E/∂yi(t∞) is the simple
derivative of E with respect to the final state of a unit. In the original derivations of
backpropagation, the weight matrix is assumed to be triangular with zero diagonal
elements, which is another way of saying that the connections are acyclic. This en-
sures that a fixedpoint is reached, and allows it to be computed very efficiently in a
single pass through the units. But the backpropagation equations remain valid even
with recurrent connections, assuming a fixedpoint is found.

If we assume that equation (3.3) reaches a fixedpoint, which we will denote y(t∞),
then equation (3.6) must be satisfied. And if (3.6) is satisfied, and assuming we can
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find zi that satisfy (3.7), then (3.8) will give us the derivatives we seek, even in the
presence of recurrent connections. (For a simple task, Ottaway, Simard, and Ballard
(1989) reports that reaching the precise fixedpoint is not crucial to learning.)

One way to compute a fixedpoint for (3.6) is to relax to a solution. By subtracting
yi from each side, we get

0 = −yi + σ(xi) + Ii.

At a fixedpoint, dyi/dt = 0, so the equation

k
dyi
dt

= −yi + σ(xi) + Ii

has the appropriate fixedpoints. Now we note that when −yi + σ(xi) + Ii is greater
than zero, we can reduce its value by increasing yi, so under these circumstances
dyi/dt should be positive, so k should be greater than zero. We can choose k = 1,
giving (3.3) as a technique for relaxing to a fixedpoint of (3.6).

Equation (3.7) is linear once y is determined (y appears in the equation through
the intermediate variable x, and also through the error terms ei), so (3.7) has a unique
solution. Any technique for solving a set of linear equations could be used. Since we
are computing a fixedpoint of (3.6) using the associated differential equation (3.3), it
is tempting to do the same for (3.7) using

dzi
dt

= −zi + σ′(xi)
∑

j

wijzj + ei. (3.9)

These equations admit to direct analog implementation. In a real analog imple-
mentation, different time constants would probably be used for (3.3) and (3.9), and
under the assumption that the time y and z spend settling is negligible compared to
the time they spend at their fixedpoints and that the rate of weight change η is slow
compared to the speed of presentation of new training samples, the weights would
likely be updated continuously by an equation like

dwij

dt
= −η dE

dwij

= −ηyizj (3.10)

or, if a momentum term 0 < α < 1 is desired,

d2wij

dt2
+ (1− α)

dwij

dt
+ ηyizj = 0. (3.11)

Simulation of an Associative Network

In this section we will simulate a recurrent backpropagation network learning a higher
order associative task, that of associating three pieces of information: two four bit
shift registers, A and B, and a direction bit, D. If D is off, then B is equal to A. If D
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Register A

Register B

Rotate?

Bias +0.5

Hidden
 Units

Figure 3.2: The architecture of a network
to solve an associative version of the four
bit rotation problem.

Figure 3.3: A Hinton diagram of weights
learned by the network of figure 3.2.

is on, then B is equal to A rotated one bit to the right, with wraparound. The task
is to reconstruct one of these three pieces of information, given the other two.

The architecture of the network is shown in figure 3.2. Three groups of visible
units hold A, B, and D. An undifferentiated group of ten hidden units is fully and
bidirectionally connected to all the visible units. There are no connections between
visible units. An extra unit, called a bias unit, is used to implement thresholds. This
unit has no incoming connections, and is forced to always have a value of 1 by a
constant external input of 0.5. Connections go from it to each other unit, allowing
units to have biases, which are equivalent to the negative of the threshold, without
complicating the mathematics. Inputs are represented by an external input of +0.5
for an on bit, −0.5 for an off bit, and 0 for a bit to be completed by the network.

The network was trained by giving it external inputs that put randomly chosen
consistent patterns on two of the three visible groups, and training the third group
to attain the correct value. The error metric was the squared deviation of each
I/O unit from its desired state, except that units were not penalized for being “too
correct.”3 All 96 patterns were successfully learned, except for the ones which were

3A unit with external input could be pushed outside the [0,1] bounds of the range of the σ(·)
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Figure 3.4: Network state for all the cases in the four bit rotation problem. This
display shows the states of the units, arranged as in figure 3.2. Each row of six shows
one value for register A. There are 24 = 16 such rows. Within each row, the three
diagrams on the left show the network’s state when completing the direction bit,
register B, and register A, unshifted. The right three are the same, except with a
shift. Note that all completions are correct except in the two cases where the rotation
bit can not be determined from the two shift registers, namely a pattern of 0000 or
1111.

ambiguous, as shown in the state diagrams of figure 3.4. The weights after this
training, which took about 300 epochs, are shown in figure 3.3. By inspection, many
weights are large and decidedly asymmetric; but during training, no instabilities were
observed. The network consistently settled to a fixedpoint within twenty simulated
time units. When the network was tested on untrained completion problems, such

used.
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as reconstructing D as well as half of A and B from partially, but unambiguously,
specified A and B, performance was poor. Redoing the training with weight symmetry
enforced, however, caused the network to learn not only the training data but also to
do well on these untrained completions.

Qian and Sejnowski (1989) successfully applied the Pineda (1987), Almeida (1987)
recurrent backpropagation learning procedure to learning weights for a relaxation
procedure for dense stereo disparity problems with transparent surfaces. By training
on examples, they were able to learn appropriate weights instead of deriving them
from a simplified and unrealistic analytical model of the distribution of surfaces to
be encountered, as is usual.

3.2.4 Deterministic Boltzmann Machines

The Mean Field form of the stochastic Boltzmann Machine learning rule, or MFT
Boltzmann Machines, (Peterson and Anderson, 1987a) have been shown to descend
an error functional (Hinton, 1989). Stochastic Boltzmann Machines themselves (Ack-
ley et al., 1985) are beyond our scope here; instead, we give only the probabilistic
interpretation of MFT Boltzmann Machines, without derivation.

In a a deterministic Boltzmann Machine, the transfer function of (3.3) is σ(ξ) =
(1+e−ξ/T )−1, where T is the temperature, which starts at a high value and is gradually
lowered to a target temperature each time the network is presented with a new input;
without loss of generality, we assume this target temperature to be T = 1. The weights
are assumed to be symmetric and zero-diagonal. Input is handled in a different way
than in the other procedures we discuss: the external inputs Ii are set to zero, and a
subset of the units, rather than obeying (3.3), have their values set externally. Such
units are said to be clamped.4

In learning, a set of input units (states over which we will index with α) are
clamped to some values, the output units are similarly clamped to their correct cor-
responding values, the network is allowed to settle, and the quantities

p+ij = 〈yiyj〉 =
∑

α,β

P (α)y
(α,β)
i y

(α,β)
j . (3.12)

are accumulated, where 〈·〉 denotes an average over the environmental distribution,
the + superscript denote clamping of both input and output, and α is used to index
the input units and β indexes the output units. The same procedure is then repeated,
but with the output units (states of which we will index by β) not clamped, yielding

p−ij = 〈yiyj〉 =
∑

α

P (α)y
(α)
i y

(α)
j (3.13)

4The clamping convention is for notational convenience only, as the two input schemes are for-
mally equivalent, in that clamping can be used to implement external input (by allocating an extra
unit whose outgoing weights are frozen at one), and external inputs can be used to implement
clamping, by freezing to zero all the incoming weights of the unit to be clamped.
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where the − superscript denotes clamping of only the inputs and not the outputs. At
this point, it is the case that

∂G

∂wij
= p+ij − p−ij (3.14)

where

G =
∑

α,β

P (α) log
P (β|α)
P−(β|α) (3.15)

is a measure of the information theoretic difference between the clamped and un-
clamped distribution of the output units given the clamped input units. P−(β|α)
measures how probable the network says β is given α, and its definition is beyond the
scope of this chapter, while P (β|α) is the probability of β being the correct output
when α is the input, as given by the target distribution to be learned.

This learning rule (3.14) is a version of Hebb’s rule in which the sign of synaptic
modification is alternated, positive during the “waking” phase and negative during
the “hallucinating” phase.

Even before the learning rule was rigorously justified, deterministic Boltzmann
Machines were applied to a number of tasks (Peterson and Anderson, 1987b, 1987a).
Although weight symmetry is assumed in the definition of energy which is used in
the definition of probability, and is thus fundamental to these mathematics, it seems
that in practice weight asymmetry can be tolerated in large networks (Galland and
Hinton, 1989). This makes MFT Boltzmann Machines the most biologically plausible
of the various learning procedures we discuss, but it is difficult to see how it would
be possible to extend them to learning more complex phenomena, like limit cycles or
paths through state space. We now turn out attention to networks capable of these
more complex feats.

3.3 Computing the Gradient Without Assuming a

Fixedpoint

Now we get to the heart of the matter—the computation of ∇wE, the gradient of
the error E with respect to the vector of free parameters w, where the error is not
defined at a fixedpoint but rather is a function of the network’s detailed temporal
behavior. The techniques we will discuss here, like those of section 3.2, are quite
general purpose: they can accommodate hidden units as well as various architectural
embellishments, such as second-order connections (Hinton and Lang, 1985; Maxwell
et al., 1986; Sejnowski, 1986; Watrous and Kuhn, 1992), weight sharing (Lang and
Hinton, 1990; LeCun et al., 1989), and in general any of the architectureal modifica-
tions made to neural networks to customize them for their problem domain. We will
consider two major gradient calculation techniques, and then a few more derived from
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Figure 3.5: A recurrent network is shown on the left, and a representation of that
network unfolded in time through four time steps is shown on the right.

them. The first is the obvious extension of backpropagation through time (BPTT)
to continuous time (Werbos, 1990; Pearlmutter, 1989a; Howard, 1960).

3.3.1 Backpropagation Through Time

The fixedpoint learning procedures discussed above are unable to learn non-fixedpoint
attractors, or to produce desired temporal behavior over a bounded interval, or even to
learn to reach their fixedpoints quickly. Here, we turn to a learning procedure suitable
for such non-fixedpoint situations. This learning procedure essentially converts a
network evolving through time into a network whose activation is flowing through a
number of layers, translating time into space, as shown in figure 3.5. Backpropagation
then becomes applicable. The technique is therefore called Backpropagation Through
Time, or BPTT.

Consider minimizing E(y), some functional of the trajectory taken by y between
t0 and t1. For instance, E =

∫ t1
t0
(y0(t)− d(t))2dt measures the deviation of y0(t) from

the function d(t), and minimizing this E would teach the network to have y0(t) imitate
d(t). Below, we derive a technique for computing ∂E(y)/∂wij efficiently, thus allowing
us to do gradient descent in the weights so as to minimize E. Backpropagation
through time has been used to train discrete time networks to perform a variety of
tasks (Rumelhart et al., 1986b; Nowlan, 1988). Here, we will derive the continuous
time version of backpropagation through time, as in Pearlmutter (1989a), and use it
in two toy domains.

In this derivation, we take the conceptually simple approach of unfolding the con-
tinuous time network into a discrete time network with a step of ∆t, applying back-
propagation to this discrete time network, and taking the limit as ∆t approaches zero
to get a continuous time learning rule. The derivative in (3.3) can be approximated
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Figure 3.6: The infinitesimal changes
to y considered in e1(t).
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Figure 3.7: The infinitesimal changes
to y considered in z1(t).

with
dyi
dt

(t) ≈ yi(t +∆t)− yi(t)

∆t
, (3.16)

which yields a first order difference approximation to (3.3),

ỹi(t +∆t) = (1−∆t)ỹi(t) + ∆tσ(x̃i(t)) + ∆tIi(t). (3.17)

Tildes are used throughout for temporally discretized versions of continuous functions.

Let us define ei to be the first variation of E with respect to the function yi(t), as
in figure 3.6,

ei(t) =
δE

δyi(t)
. (3.18)

In the usual case E is of the form

E =
∫ t1

t0
f(y(t), t) dt (3.19)

so ei(t) = ∂f(y(t), t)/∂yi(t). Intuitively, ei(t) measures how much a small change to
yi at time t affects E if everything else is left unchanged.

As usual in backpropagation, let us define

z̃i(t) =
∂+E

∂ỹi(t)
(3.20)

where the ∂+ denotes the ordered derivative of Werbos (1988b), with variables ordered
here by time and not unit index. Intuitively, z̃i(t) measures how much a small change
to ỹi at time t affects E when this change is propagated forward through time and
influences the remainder of the trajectory, as in figure 3.7. Of course, zi is the limit of
z̃i as ∆t→ 0. This z is the δ of the standard backpropagation “generalized δ rule.”

We can use the chain rule for ordered derivatives to calculate z̃i(t) in terms of
the z̃j(t + ∆t). According to the chain rule, we add all the separate influences that
varying ỹi(t) has on E. It has a direct contribution of ∆tei(t), which comprises the
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first term of our equation for z̃i(t). Varying ỹi(t) by dỹi(t) has an effect on ỹi(t+∆t)
of dỹi(t) (1−∆t), giving us a second term, namely (1−∆t)z̃(t+∆t).

Each weight wij makes ỹi(t) influence ỹj(t + ∆t), i 6= j. Let us compute this
influence in stages. Varying ỹi(t) by dỹi(t) varies x̃j(t) by dỹi(t) wij , which varies
σ(x̃j(t)) by dỹi(t) wij σ

′(x̃j(t)), which varies ỹj(t+∆t) by dỹi(t) wij σ
′(x̃j(t)) ∆t. This

gives us our third and final term,
∑

j wij σ
′(x̃j(t)) ∆t z̃j(t+∆t). Combining these,

z̃i(t) = ∆t ei(t) + (1−∆t)z̃i(t+∆t) +
∑

j

wijσ
′(x̃j(t))∆tz̃j(t+∆t). (3.21)

If we put this in the form of (3.16) and take the limit as ∆t → 0 we obtain the
differential equation

dz

dt
=

df(y, w, I)

dy
z +

δE

δy
(3.22)

dE

dw
=

∫ t1

t0
y
df(y, w, I)

dw
zdt. (3.23)

with boundary condition z(t1) = 0. Thus we have derived appropriate adjoint equa-
tions to (3.1). They are similar to the analogous discrete-time backwards error equa-
tions,

z(t − 1) =
df(y, w, I)

dy
z +

∂E

∂y(t)
(3.24)

dE

dw
=

∑

t

y
df(y, w, I)

dw
z. (3.25)

where the error to be minimized is E. If this error is of the usual form of an integral
E =

∫
E ′(y(t), t)dt then we get the simple form δE/δy = dE ′/dy.

For the particular form of (3.3), this comes to

dzi
dt

= zi − ei −
∑

j

wijσ
′(xj)zj. (3.26)

For boundary conditions note that by (3.18) and (3.20) z̃i(t1) = ∆tei(t1), so in the
limit as ∆t→ 0 we have zi(t1) = 0.

Consider making an infinitesimal change dwij to wij for a period ∆t starting at t.
This will cause a corresponding infinitesimal change in E of yi(t)σ

′(xj(t))∆tzj(t)dwij.
Since we wish to know the effect of making this infinitesimal change to wij throughout
time, we integrate over the entire interval, yielding

∂E

∂wij
=
∫ t1

t0
yiσ

′(xj)zjdt. (3.27)

One can also derive (3.26), (3.27) and (3.37) using the calculus of variations and
Lagrange multipliers, as in optimal control theory (Bryson, 1962; Dreyfus, 1965). In
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fact, the idea of using gradient descent to optimize complex systems was explored
by control theorists in the late 1950s. Although their mathematical techniques and
algorithms are identical to those reviewed here, and thus handled hidden units, they
refrained from exploring systems with so many degrees of freedom, perhaps in fear of
local minima.

It is also interesting to note that the recurrent backpropagation learning rule
(section 3.2.3) can be derived from these. Let Ii be held constant, assume that the
network settles to a fixedpoint, and let E be integrated for one time unit before t1.
As t1 → ∞, (3.26) and (3.27) reduce to the recurrent backpropagation equations
(3.9) and (3.8), so in this sense backpropagation through time is a generalization of
recurrent backpropagation.

There are two ways to go about finding such derivations. One is direct, using
the calculus of variations (Bryson, 1962). The other is to take the continuous time
equations, approximate them by difference equations, precisely calculate the adjoint
equations for this discrete time system, and then approximate back to get the contin-
uous time adjoint equations, as in Pearlmutter (1990a). An advantage of the latter
approach is that, when simulating on a digital computer, one actually simulates the
difference equations. The derivation ensures that the simulated adjoint difference
equations are the precise adjoints to the simulated forward difference equations, so
the computed derivatives contain no approximation errors.

3.3.2 Real Time Recurrent Learning

An online, exact, and stable, but computationally expensive, procedure for deter-
mining the derivatives of functions of the states of a dynamic system with respect to
that system’s internal parameters has been discovered and applied to recurrent neural
networks a number of times (Werbos, 1982; Robinson and Fallside, 1988; Gherrity,
1989; Williams and Zipser, 1989); for reviews see also Pearlmutter (1990b, 1990a),
Narendra and Parthasarathy (1991). It is called by various researchers forward prop-

agation, forward perturbation, or real time recurrent learning, RTRL. Like BPTT,
the technique was known and applied to other sorts of systems since the 1950s; for
a hook into this literature see Jacobson (1968), Bellman (1973) or the closely related
Extended Kalman Filter (Gelb et al., 1974). In the general case of (3.1), RTRL is

dE

dw
=
∫ t1

t0
γ
δE

δy
dt (3.28)

where γ(t0) = 0 and
dγ

dt
=

df(y, w, I)

dw
+

df(y, w, I)

dy
γ. (3.29)

The γ matrix is the sensitivity of the states y(t) to a change of the weights w.

Under the assumption that the weights are changing slowly, RTRL can be made an
online algorithm by updating the weights continuously instead of actually integrating
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(3.28),
dw

dt
= −ηγ δE

δy
, (3.30)

where η is the learning rate, or, if a momentum term 0 < α < 1 is also desired,

α
d2w

dt2
+ (1− α)

dw

dt
+ ηγ

δE

δy
= 0. (3.31)

For the special case of a fully connected recurrent neural network, as described by
(3.3), applying the general RTRL formulas above yields

dγijk
dt

=
∂fk
∂yk

γijk + ([j = k]yj +
∑

l

wlkγijl)
∂fk
∂netk

(3.32)

dwij

dt
(t) = −η

∑

k

∂g

∂yk
(t)γijk(t). (3.33)

Regretably, the computation of γ is very expensive, and also non-local. The γ
array has nm elements, where n is the number of states and m the number of weights,
which is typically on the order of n2. Updating γ requires O(n3m) operations in the
general case, but the particular structure of a neural network causes some of the
matrices to be sparse, which reduces the burden to O(n2m). This remain too high to
make the technique practical for large networks. Nevertheless, because of its ease of
implementation, RTRL is used by many researchers working with small networks.

3.3.3 More Efficient Online Techniques

One way to reduce the complexity of the RTRL algorithm is to simply leave out
elements of γ that one has reason to believe will remain approximately zero. This
approach, in particular ignoring the coupling terms which relate the states of units
in one module to weights in another, has been explored by Zipser (1990).

Another is to use BPTT with a history cutoff of k units of time, termed BPTT(k)
by Williams and Peng (1990), and make a small weight change each timestep. This
obviates the need for epochs, resulting in a purely online technique, and is probably
the best technique for most practical problems.

A third is to take blocks of s timesteps using BPTT, but use RTRL to encapsulate
the history before the start of each block. This requires O(s−1n2m + nm) time
per step, on average, and O(nm + sm) space. Choosing s = n makes this O(nm)
time and O(nm) space, which dominates RTRL. This technique has been discovered
independently a number of times (Williams and Zipser, 1995; Schmidhuber, 1992b).

Finally, one can note that, although the forward equations for y are nonlinear,
and therefore require numeric integration, the backwards equations for z in BPTT
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are linear. Since the dE/dw terms are linear integrations of the z, this means that
they are linear functions of the external inputs, namely the ei terms. As shown by
(Sun, Chen, and Lee, 1992), this allows one, during the forward pass, to compute a
matrix relating the external error signal to the elements of ∇w, allowing a fully online
algorithm with O(nm) time and space complexity.

3.3.4 Time Constants

A major advantage of temporally continuous networks is that one can add additional
parameters that control the temporal bahavior in ways known to relate to natural
tasks. An example of this is time constants, which were learned in the context of neu-
ral networks in Mozer (1989), Hochreiter (1991), Mozer (1992), Nguyen and Cottrell
(1993). If we add a time constant Ti to each unit i, modifying (3.3) to

Ti
dyi
dt

= −yi + σ(xi) + Ii, (3.34)

and carry these terms through the derivation of section 3.3.1, equations (3.26) and
(3.27) become

dzi
dt

=
1

Ti
zi − ei −

∑

j

1

Tj
wijσ

′(xj)zj . (3.35)

and
∂E

∂wij
=

1

Tj

∫ t1

t0
yiσ

′(xj)zjdt. (3.36)

In order to learn these time constants rather than just set them by hand, we need
to compute ∂E(y)/∂Ti. If we substitute ρi = T −1

i into (3.34), find ∂E/∂ρi with a
derivation similar to that of (3.27), and substitute Ti back in we get

∂E

∂Ti
= − 1

Ti

∫ t1

t0
zi
dyi
dt

dt. (3.37)

3.3.5 Time Delays

Consider a network in which signals take finite time to travel over each link, so that
(3.4) is modified to

xi(t) =
∑

j

wjiyj(t− τji), (3.38)

τji being the time delay along the connection from unit j to unit i. Let us include
the variable time constants of section 3.3.4 as well. Such time delays merely add
analogous time delays to (3.35) and (3.36),

dzi
dt

(t) =
1

Ti

zi(t)− ei(t)−
∑

j

wijσ
′(xj(t+ τij))

1

Tj

zj(t+ τij), (3.39)
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∂E

∂wij

=
1

Tj

∫ t1

t0
yi(t)σ

′(xj(t+ τij))zj(t+ τij)dt, (3.40)

while (3.37) remains unchanged. If we set τij = ∆t, these modified equations alleviate
concern over time skew when simulating networks of this sort, obviating any need
for accurate numerical simulations of the differential equations and allowing simple
difference equations to be used without fear of inaccurate error derivatives.

Instead of regarding the time delays as a fixed part of the architecture, we can
imagine modifiable time delays. Given modifiable time delays, we would like to be
able to learn appropriate values for them, which can be accomplished using gradient
descent by

∂E

∂τij
=
∫ t1

t0
zj(t)σ

′(xj(t))wij
dyi
dt

(t− τij)dt. (3.41)

Watrous et al. (1990) applied recurrent networks with immutable time delays in
the domain of speech. Feedforward networks with immutable time delays (TDNNs)
have been applied with great success in the same domain by Lang et al. (1990). A
variant of TDNNs which learn the time delays was explored by Bodenhausen (1990).
The synapses in their networks, rather than having point taps, have gaussian en-
velopes whose widths and centers were both learned. Similar synaptic architectures
using alpha function envelopes (which obviate the need for a history buffer) whose pa-
rameters were learned were proposed and used in systems without hidden units (Tank
and Hopfield, 1987b; de Vries and Principe, 1991). A continuous time feedforward
network with learned time delays was successfully applied to a difficult time-series
prediction task by Day and Davenport (1993).

In the sections on time constants and delays, we have carried out the derivative
derivations for BPTT. All the other techniques also remain applicable to this case,
with straightforward derivations. The analogous derivations for RTRL are carried out
in Pearlmutter (1990a). However, we will not here simulate networks with modifiable
time delays.

An interesting class of architectures would have the state of one unit modulate the
time delay along some arbitrary link in the network or the time constant of some other
unit. Such a “higher order time delay” architecture seems appropriate for tasks in
which time warping is an issue, such as speech recognition. The gradients with respect
to higher order time delay can be readily calculated by appropriate augmentation of
either BPTT or RTRL.

In the presence of time delays, it is reasonable to have more than one connection
between a single pair of units, with different time delays along the different connec-
tions. Such “time delay neural networks” have proven useful in the domain of speech
recognition (Lang and Hinton, 1988; Lang et al., 1990; Waibel et al., 1989; Watrous,
1988). Having more than one connection from one unit to another requires us to
modify our notation somewhat; weights and time delays are modified to take a single
index, and we introduce some external apparatus to specify the source and destina-
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tion of each connection. Thus wi is the weight on a connection between unit L(i)
and unit R(i), and τi is the time delay along that connection. Using this notation we
write (3.38) as

xi(t) =
∑

j |L(j)=i

wjyR(j)(t− τj). (3.42)

Our equations would be more general if written in this notation, but readability would
suffer, and the translation is quite mechanical.

3.3.6 Extending RTRL to Time Constants and Time Delays

We have seen that BPTT can be easily applied to these new sorts of free parameters
we have been adding to our networks, namely time constants and time delays. Other
gradient calculation procedures also can be naturally applied to these new sorts of
free parameters. In this section, we apply RTRL, first to incorporate time constants
and then time delays.

If we begin with (3.34), first we must generalize (3.32) and (3.33) to correctly
modify the weights in the presence of time constants. If we substitute k for i in
(3.34), take the partial with respect to wij, and substitute in γ where possible, we
have a the differential equation for γ

Tk
γkij
dt

= −γkij + σ′(xk)
∑

l

wlkγlij, (3.43)

nearly the same as (3.32) except for a time constant.

We can derive analogous equations for the time constants themselves; define

qij(t) =
∂yi(t)

∂Tj
, (3.44)

take the partial of (3.3) with respect to Tj , and substitute in q. This yields

Ti

dqij
dt

= −qij −
dyi
dt

+ σ′(xi)
∑

k

wkiq
k
j (3.45)

which can be used to update the time constants using the continuous update rule

d Ti

dt
= −η

∑

j

ejq
j
i . (3.46)

Similarly, let us derive equations for modifying the time delays of section 3.3.5.
Define

rkij(t) =
∂yk(t)

∂τij
(3.47)
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and take the partial of (3.3) with respect to τij , arriving at a differential equations
for r,

Tk

drkij
dt

= −rkij + σ′(xk)(wij
dyi
dt

(t− τij)
︸ ︷︷ ︸
included if j = k

−
∑

l

wlkr
l
ij(t− τlk)). (3.48)

The time delays can be updated online using the continuous update equation

dτij
dt

= −η
∑

k

ekr
k
ij. (3.49)

3.4 Some Simulations

In the following simulations, we used networks without time delays, but with mutable
time constants. As in the associative network of section 3.2.3, an extra input unit
whose value was always held at 1 by a constant external input of 0.5, and which had
outgoing connections to all other units, was used to implement biases.

Using first order finite difference approximations, we integrated the system y for-
ward from t0 to t1, set the boundary conditions zi(t1) = 0, and integrated the system
z backwards from t1 to t0 while numerically integrating zj σ

′(xj) yi and zi dyi/dt, thus
computing ∂E/∂wij and ∂E/∂Ti. Since computing dzi/dt requires σ

′(xi), we stored
it and replayed it backwards as well. We also stored and replayed yi as it is used in
expressions being numerically integrated.

We used the error functional

E =
1

2

∑

i

∫ t1

t0
si( yi − di)

2dt (3.50)

where di(t) is the desired state of unit i at time t and si(t) is the importance of unit i
achieving that state at that time, in this case 0 except when i was an output unit and
after some time (5 units) had elapsed for the network to settle down. Throughout, we
used σ(ξ) = (1+e−ξ)−1. Time constants were initialized to 1, weights were initialized
to uniformly distributed random values between 1 and −1, and the initial values yi(t0)
were set to Ii(t0) + σ(0). The simulator used first order difference equations (3.17)
and (3.21) with ∆t = 0.1.

3.4.1 Exclusive Or

The network of figure 3.8 was trained to solve the xor problem. Aside from the
addition of time constants, the network topology was that used in Pineda (1987). We
defined E =

∑
k

1
2

∫ 3
2 (y

(k)
o −d (k))2dt where k ranges over the four cases, d is the correct

output, and yo is the state of the output unit. The inputs to the net I
(k)
1 and I

(k)
2
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input hidden output

Figure 3.8: The XOR network.

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

Figure 3.9: The states of the output unit in the four input cases plotted from t = 0
to t = 5 after 200 epochs of learning. The error was computed only between t = 2
and t = 3.

range over the four possible boolean combinations in the four different cases. With
suitable choice of step size and momentum training time was comparable to standard
backpropagation, averaging about one hundred epochs.

For this task it is to the network’s benefit for units to attain their final values as
quickly as possible, so there was a tendency to lower the time constants towards 0. To
avoid small time constants, which degrade the numerical accuracy of the simulation,
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Figure 3.10: Desired states d1 and d2 plotted against each other (left); actual states
y1 and y2 plotted against each other at epoch 1500 (center) and 12000 (right).

we introduced a term to decay the time constants towards 1. This decay factor was
not used in the other simulations described below, and was not really necessary in
this task if a suitably small ∆t was used in the simulation. An easier, and perhaps
more justifiable, approach is to simply introduce a minimum time constant; this was
done in later simulations.

What is interesting is that that even for this binary task, the network made use
of dynamic behavior. After extensive training the network behaved as expected,
saturating the output unit to the correct value. Earlier in training, however, we
occasionally (about one out of every ten training sessions) observed the output unit
at nearly the correct value between t = 2 and t = 3, but then saw it move in the
wrong direction at t = 3 and end up stabilizing at a wildly incorrect value. Another
dynamic effect, which was present in almost every run, is shown in figure 3.9. Here,
the output unit heads in the wrong direction initially and then corrects itself before
the error window. A very minor case of diving towards the correct value and then
moving away is seen in the lower left hand corner of figure 3.9.

3.4.2 A Circular Trajectory

We trained a network with no input units, four hidden units, and two output units,
all fully connected, to follow the circular trajectory of figure 3.10. This more complex
trajectory was intended to exhibit a limit cycle somewhat reminiscent of an inverte-
brate central pattern generator. It was required to be at the leftmost point on the
circle at t = 5 and to go around the circle twice, with each circuit taking 16 units of
time. The environment does not include desired outputs between t = 0 and t = 5,
and during this period the network moves from its initial position at (0.5, 0.5) to
the correct location at the leftmost point on the circular trajectory. Although the
network was run for ten circuits of its cycle, these overlap so closely that the separate
circuits are not visible.

Upon examining the network’s internals, we found that it devoted three of its
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Figure 3.11: Desired states d1 and d2 plotted against each other (left); actual states
y1 and y2 plotted against each other at epoch 3182 (center) and 20000 (right).

hidden units to maintaining and shaping a limit cycle, while the fourth hidden unit
decayed away quickly. Before it decayed, it pulled the other units to the appropriate
starting point of the limit cycle, and after it decayed it ceased to affect the rest of
the network. The network used different units for the limit behavior and the initial
behavior, an appropriate modularization.

3.4.3 A Figure Eight

A more interesting problem is one that cannot even in theory be performed without
hidden units, such as a figure eight shape. We were unable to train a network with
four hidden units to follow the figure eight shape shown in figure 3.11, so we used
a network with ten hidden units. Since the trajectory of the output units crosses
itself, and the units are governed by first order differential equations, hidden units
are necessary for this task regardless of the σ function. Training was more difficult
than for the circular trajectory, and shaping the network’s behavior by gradually
extending the length of time of the simulation proved useful.

From t = 0 to t = 5 the network moves in a short loop from its initial position at
(0.5, 0.5) to where it ought to be at t = 5, namely (0.5, 0.5). Following this, it goes
through the figure eight shaped cycle every 16 units of time. Although the network
was run for ten circuits of its cycle to produce this graph, these overlap so closely
that the separate circuits are not visible.

3.4.4 A Rotated Figure Eight

In this simulation a network was trained to generate a figure eight shaped trajectory
in two of its units, designated output units. The figure eight was to be rotated about
its center by an angle θ which was input to the network through two input units
which held the coordinates of a unit vector in the appropriate direction. This was
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Figure 3.12: The output of the rotated figure eight network at all the trained angles
(left) and some untrained angles (right).

intended to model a controlled modulation of a central pattern generator from tonic
modulatory input, as in the lobster stomatogastric ganglion (Norris, Coleman, and
Nusbaum, 1994). The target vector for the two output units was generated by

target = 0.4

(
cos θ − sin θ
sin θ cos θ

)(
sin πt/16
cosπt/16

)
+

(
0.5
0.5

)
(3.51)

while the input to the network was simply the angle θ, represented to avoid blemishes
as the direction vector (

sin θ
cos θ

)

Eight different values of θ, equally spaced about the circle, were used to generate
the training data. In experiments with 20 hidden units, the network was unable to
learn the task. Increasing the number of hidden units to 30 allowed the network
to learn the task, as shown on the left in figure 3.12. But as shown on the right in
figure 3.12, generalization is poor when the network is run with the eight input angles
furthest from the training angles, i.e. 22.5 degrees off.

The task would be simple to solve using second order connections, as they would
allow the problem to be decoupled. A few units could be devoted to each of the
orthogonal oscillations, and the connections could form a rotation matrix. The poor
generalization of the network shows that it is not solving the problem in such a
straightforward fashion, and suggests that for tasks of this sort it might be better to
use slightly higher order units.
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3.4.5 Computational Neuroscience: A Simulated Leech

Lockery, Fang, and Sejnowski (1990), Lockery and Kristan (1990a, 1990b), Lockery,
Wittenberg, Kristan, Qian, and Sejnowski (1990), Lockery and Sejnowski (1993) used
the continuous time BPTT method discussed above to fit a low level neurophysio-
logical model of the leech local bending reflex to data on sensory and motor neuron
activity. They modified the dynamic equations substantially in order to model their
system at a low level, using activity levels to represent currents rather than voltages.
Their trained model disagreed with human intuition concerning what the synaptic
strengths, and in fact signs, would be, but qualitatively matched empirical measure-
ments of interneuron synaptic strengths in the leech Hirudo medicinalis.

3.5 Stability and Perturbation Experiments

We can analytically determine the stability of the network by measuring the eigen-
values of Df where f is the function that maps the state of the network at one point
in time to its state at a later time. For instance, for a network exhibiting a limit cycle
one would typically use the function that maps the network’s state at some time in
the cycle to its state at the corresponding time in the next cycle. Unfortunately, this
gives only a local stability measure, and also does not factor out the effect of hidden
units.

In our attempt to judge the stability of the limit cycles exhibited above, rather
than calculating Df , where f(y(t)) = y(t+ 16), we simply modified the simulator to
introduce random perturbations and observed the effects of these perturbations upon
the evolution of the system.5 The two output units in the unrotated figure eight task
appear to be phase locked, as their phase relationship remains invariant even in the
face of major perturbations. This phase locking is unlike the solution that a human
would create by analytically determining weights through decoupling the two output
units and using linearized subnets to generate the desired oscillatory behavior, as
suggested by Merrick Furst.

The networks to which we introduced these perturbations had been trained to
produce simple limit cycles, one in a circular shape, and the other in a figure eight
shape. Neither of the networks had any input units; they produced only a single limit
cycle.

The limit cycle on the right in figure 3.11 is symmetric, but when perturbations are
introduced, as in the right of figure 3.13, symmetry is broken. The portion of the limit
cycle moving from the upper left hand corner towards the lower right hand corner

5Actually, we wouldn’t care about the eigenvalues of Df per se, because we wouldn’t care about
perturbations in the direction of travel, as these effect only the phase, or perturbations that effect
only the hidden units. For this reason, we would want to project these out of the matrix Df before
computing the eigenvalues. This effect is achieved automatically in our display in figure 3.13.
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Figure 3.13: The output states y1 and y2 plotted against each other for a 1000 time
unit run, with all the units in the network perturbed by a random amount about
every 40 units of time. The perturbations in the circle network (left) were uniform in
±0.1, and in the figure eight network (right) in ±0.05.

has diverging lines, but we do not believe that they indicate high eigenvalues and
instability. The lines converge rapidly in the upward stroke on the right hand side of
the figure, and analogous unstable behavior is not present in the symmetric downward
stroke from the upper right hand corner towards the lower left. Analysis shows that
the instability is caused by the initialization circuitry being inappropriately activated.
Since the initialization circuitry is adapted for controlling just the initial behavior of
the network, when the net must delay at (0.5, 0.5) for a time before beginning the cycle
by moving towards the lower left corner, this circuitry is explicitly not symmetric.
The diverging lines seem to be caused by this circuitry being activated and exerting
a strong influence on the output units while the circuitry itself deactivates.

In fact, Simard, Rayzs, and Victorri (1991) developed a technique for learning the
local maximum eigenvalue of the transfer function, optionally projecting out direc-
tions whose eigenvalues are not of interest. This technique, which explicitly modulates
the behavior we only measured above, has not yet been applied in a control domain.

3.6 Other Non-fixedpoint Techniques

3.6.1 “Elman Nets”

Elman (1990) considers a version of backpropagation through time in discrete time
in which the temporal history is cut off. Typically, only one or two timesteps are
preserved, at the discretion of the architect. This cutoff makes backpropagation
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through time an online algorithm, as the backpropagation to be done to account
for the error at each point in time is done immediately. However, it makes the
computational expense per time step scale linearly with the number of timesteps of
history being maintained. Thus, accuracy of the computed derivative is smoothly
traded off against storage and computation.

The real question with Elman networks is whether the contribution to the error
from the history that has been cut off is significant. This question can only be an-
swered relative to a particular task. For instance, Elman (1988) finds some problems
amenable to the history cutoff, but resorts to full fledged backpropagation through
time for other tasks. Cleeremans et al. (1989) describe a regular language token pre-
diction task which is difficult for Elman nets when the transition probabilities are
equal, but find that breaking this symmetry allows these nets to learn the task.

3.6.2 The Moving Targets Method

LeCun (1985), Grossman, Meir, and Domany (1989), Rohwer (1990) propose a mov-
ing targets learning algorithm. Such an algorithm maintains a target value for each
hidden unit at each point in time. These target values are typically initialized either
randomly, or to the units’ initial untrained behavior. In learning, two phases alter-
nate. In one phase, the hidden units’ targets are improved, such that if the targets
are attained better performance would be achieved. In the other phase, the weights
are modified such that each unit comes closer to attaining its target values. The error
can be regarded as having two terms, one term which penalizes the units being too
far from their targets, and another which penalizes the targets for being too far from
the values actually attained. This technique has the appeal of decoupling temporally
distant actions during the learning of weights, and the disadvantage of requiring the
targets to be stored and updated. In the limit, as the internal targets approach equi-
librium, the moving targets method becomes equivalent to backpropagation though
time.

In continuous time, the moving targets method would entail decoupling the units
during learning, and storing a target trajectory for each unit, including the hidden
units. The weights would then be modified to make the trajectories consistent with
each other, while the trajectories of the hidden units would be similarly modified.
Unfortunately, as with teacher forcing (see section 3.6.4), even if the error is driven to
very low levels by such a procedure, there would be no guarantee that the resulting
network, if allowed to run free, would have dynamics close to that of the forced
dynamics.

The primary disadvantage of the technique is that each pattern to be learned
must have associated with it the targets for the hidden units, and these targets must
be learned just as the weights are. This makes the technique inapplicable for online
learning, in which each pattern is seen only once.
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3.6.3 Feedforward Networks with State

It is noteworthy that that the same basic mathematical technique of forward propaga-
tion can be applied to networks with a restricted architecture, feedforward networks
whose units have state (Gori et al., 1989; Kuhn, 1987; Uchiyama et al., 1989). This is
the same as requiring the wij matrix to be triangular, but allowing non-zero diagonal
terms. If we let the γ quantities be ordered derivatives, as in standard backpropaga-
tion, then this simplified architecture reduces the computational burden substantially.
The elimination of almost all temporal interaction makes γijk = 0 unless i = k, leaving
only O(n2) auxiliary equations, each of which can be updated with O(1) computation,
for a total update burden of O(n2), which is the same as conventional backpropaga-
tion. This favorable computational complexity makes it of practical significance even
for large feedforward recurrent networks. But these feedforward networks are outside
the scope of this chapter.

3.6.4 Teacher Forcing In Continuous Time

Williams and Zipser (1988) coin the term teacher forcing,, which consists of jamming
the desired output values into output units as the network runs. The teacher forces
the output units to have the correct states, even as the network runs—hence the
name. This technique is applied to discrete time clocked networks, as only then does
the concept of changing the state of an output unit each time step make sense.

The error is as usual, with the caveat that errors are to be measured before
output units are forced, not after. Williams and Zipser (1988) report that their
teacher forcing technique radically reduced training time for their recurrent networks,
although Pearlmutter (1990a) reports difficulties when teacher forcing was used in
networks with a larger number of hidden units.

Williams and Zipser’s application of teacher forcing to their networks is dependent
on discrete time steps, so applying teacher forcing to temporally continuous networks
requires a different approach. The approach we shall take is to add some controls
that one imagines being used to control the states of the output units, and use them
to keep the output units locked at their desired states. The error function to be
minimized will measure the amount of control that it was necessary to exert, with
zero error coming only when the no external forces at all need to be exerted.

Let

Fi =
1

Ti
(−yi + σ(xi) + Ii) (3.52)

so that (3.3) is just dyi/dt = Fi, and let us add a new forcing term fi(t) to (3.3),

dyi
dt

= Fi + fi. (3.53)
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Using Φ to denote the set of units to be forced, we will let di be the trajectory that
we will force yi to follow, for each i ∈ Φ. So we set

fi =
ddi
dt
− Fi (3.54)

and yi(t0) = di(t0) for i ∈ Φ and fi = 0 for i 6∈ Φ, with the consequence that yi = di
for i ∈ Φ. Now let the error functional be of the form

E =
∫ t1

t0
L(f(t), t)dt, (3.55)

where typically L =
∑

i∈Φ f 2
i .

We can modify the derivation in section 3.3.1 for this teacher forced system. For
i ∈ Φ a change to ỹi will be canceled immediately, so taking the limit as ∆t → 0
yields zi = 0. Because of this, it doesn’t matter what ei is for i ∈ Φ.

We can apply (3.18) to calculate ei for i 6∈ Φ. The chain rule is used to calculate
how a change in yi effects E through the fi, yielding

ei =
∑

j∈Φ

δE

δfj

∂fj
∂yi

or

ei =
∑

j∈Φ

∂L

∂fj
− 1

Tj
σ′(xj)wij (3.56)

For i 6∈ Φ (3.26) and (3.37) are unchanged, and for j 6∈ Φ and any i (3.27) also remains
unchanged. The only equations still required are ∂E/∂wij for j ∈ Φ and ∂E/∂Ti for
i ∈ Φ. To derive the first, consider the instantaneous effect of a small change to wij,
giving

∂E

∂wij

=
1

Tj

∫ t1

t0
yiσ

′(xj)
∂L

∂fi
dt. (3.57)

Analogously, for i ∈ Φ
∂E

∂Ti

= − 1

Ti

∫ t1

t0

∂L

∂fi

dyi
dt

dt. (3.58)

We are left with a system with a number of special cases depending on whether
units are in Φ or not. Interestingly, an equivalent system results if we leave (3.26),
(3.27), and (3.37) unchanged except for setting zi = ∂L/∂fi for i ∈ Φ and setting all
the ei = 0. It is an open question whether there is some other way of defining zi and
ei that results in this simplification.

However, by taking the limit as the step size goes to zero, it is possible to show
that the continuous time analogue of teacher forcing is to force the output states to
follow desired trajectories, with the error being the difference between the derivative
that the network attempts to apply to these units and the derivative of the desired
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trajectory. This casts light on teacher forcing in the discrete time case, which can be
seen as nearly the same thing.

Regretably it also shows that teacher forcing can result in a network with a sys-
tematic bias, or a network which, although when being forced has little error, when
running free rapidly drifts far from the desired trajectory, in a qualitative sense, as
reported by Williams and Zipser (1988) for some cases where oscillations trained with
teacher forcing exhibited radically and systematically lower frequency and amplitude
when running free.

3.6.5 Jordan Nets

Jordan (1986) used a backpropagation network with the outputs clocked back to
the inputs to generate temporal sequences. Although these networks were used long
before teacher forcing, from our perspective Jordan nets are simply a restricted class
of teacher forced recurrent networks, in particular, discrete time networks in which
the only recurrent connections emanate from output units. By teacher forcing these
output units, no real recurrent paths remain, so simple backpropagation through a
single time step suffices for training.

The main disadvantage of such an architecture is that state to be retained by
the network across time must be manifest in the desired outputs of the network, so
new persistent internal representations of temporal structures cannot be created. For
instance, it would be impossible to train such networks to perform the figure eight
task of section 3.4.3. In the usual control theory way, this difficulty can be partially
alleviated by cycling back to the inputs not just the previous timestep’s outputs,
but also those from a small number of previous timesteps. The tradeoffs between
using hidden units to encapsulate temporally hidden structure and using a temporal
window of values which must contain the desired information is problem dependent,
and depends in essence on how long a hidden variable can remain hidden without
being manifested in the observable state variables.

It is easy to construct a continuous time Jordan network, in which the units’ values
are continuous in time, the output units constantly have corrected values jammed into
them from external sources, and the only recurrent connections are from the outputs
back to the inputs. Above we explored teacher forcing in the general setting of fully
recurrent networks, but when applied to a Jordan network, the result is a system
that is no longer truly recurrent, at least as far as learning is concerned. This is
because the network maps the current visible state to the next visible state, with
no other information retained in the network. For this reason, a continuous time
Jordan network is precisely equivalent to training a layered network whose input is
the current measured value of the signal we wish the Jordan network to learn, and
whose target output is the first derivative of this signal to be learned.
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3.6.6 Teacher Forcing, RTRL, and the Kalman Filter

Matthews (1990), Williams (1992) have pointed out that RTRL is related to a version
of the (Kalman, 1960) filter, in the extension that allows it to apply to nonlinear
systems, namely the extended Kalman filter (EKF) (Mahra, 1970; Gelb et al., 1974;
Anderson and Moore, 1979). The EKF has time and space complexity of the same
order as those of RTRL. One advantage of using the EKF (instead of RTRL) for
learning the weights of a recurrent neural network, is that the EKF rationalizes teacher
forcing: it modifies both the weights and the states on an equal basis. This solves the
dilema of teacher forcing: that if the “true output” units are extra added units whose
values are directly copied from those of the old output units, teacher forcing fails to
maintain synchronization between the network and its teacher. The EKF does not
have this problem, in that it would adjust the new extra and the old output units on
an equal basis.

Another way of attempting to rationalize teacher forcing is to note that gradient
descent itself generates dE/dy in addition to dE/dw terms. One might think this
would make it natural to use ∆y = −ηdE/dy, thus treating the states on an equal
basis with the weights. The problem with this, as pointed out by Ron Williams
(personal communication) is that it is difficult to determine exactly what this means.
Should the derivative be taken just with respect to the current states, or to their
histories too? One way alleviate this dilema is to note that, when we change the
weights, we wish we had changed them earlier. To this end, it would be natural to
change the states to what they would have been had we changed the weights earlier.
This gives

∆y =
dy

dw
∆w. (3.59)

The involved matrix, dy/dw, is already available as γ in RTRL.

3.7 Learning with Scale Parameters

The parameters usually modified by neural network learning algorithms are the
weights. There are no a priori restrictions on these values; they can be positive,
negative, or zero, and the behavior of a network is continuous with respect to changes
in its weights. These factors, along with the tractable shape of the error surface,
make simple gradient descent algorithms, ∆w = −ηdE/dw, surprisingly effective.

The error term E being used generally contains one term which has to do with
how well the network’s outputs meet some criterion. Frequently another term is
added as an expression of some a priori known probability distribtion of the weights.
For instance, adding

∑
i w

2
i is equivalent to assuming that the weights are Gaussian

distributed. Not adding such a term is equivalent to assuming that the a priori

distribution on what the weights will turn out to be is flat—not a totally unreasonable
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prior (Weigend et al., 1991; Nowlan and Hinton, 1992).

However, we have added some new sorts of parameters, namely time constants
and time delays, here represented generically by the vector T . These are scale pa-

rameters, which differ from positional parameters in a number of ways. The most
telling property of a scale parameter is that the dynamics of the system are affected
about as much by multiplying a scale parameter by some constant, irrespective of
the scale parameter’s value. For instance, changing a time constant from 2 seconds
to 2.2 seconds can be expected to have about the same qualitative effect as chang-
ing it from 200 to 220. Other properties of scale parameters is that they must not
become negative, and that as they approach zero, the dynamics of the associated sys-
tem becomes more and more sensitive to small changes. This means that in practive
one must add machinery to enforce the constraint of positiveness, and that gradient
descent will become increasingly unstable as a scale parameter approaches zero, due
to the system’s growing sensitivity to its value. Also, the flat prior is no longer the
appropriate zero-knowledge prior.

All these problems can be solved in a single stroke by noting that the correct zero-
knowledge hypothesis for scale parameters is not flat in their values, but rather flat
in their log values (Skilling, 1989b). In practice, This corresponds to doing gradient
descent in LT = log T rather than in T itself; in other words, to not manipulating T
directly but rather using ∆LT = −ηdE/dLT . Such a policy also solves the practical
problems with scale parameters noted above, as it makes the gradient descent process
stiffer as T approaches zero, compensating for the system’s increased sensitivity in
that region, and it naturally enforces T > 0 since T = expLT > 0, which enforces
this constraint without any additional mechanism. This last property led to the
independent invention and use of this technique by Rowat and Selverston (1991).

In addition, weight decay of scale parameters becomes simpler, as decaying LT

towards zero corresponds to decaying T towards one, which is a reasonable target.
Of course, a constant factor can be inserted to make the decay towards some other a
priori most likely value. Note, however, that the force exerted by the decay term will
scale with the log parameter, which is more appropriate, since the additional force
exerted should correspond to the change’s effect on the dynamics of the system, in
order to pass dimensional analysis.

3.8 Summary and Conclusion

3.8.1 Complexity Comparison

Consider a network with n units and m weights which is run for s time steps (variable
grid methods (Blom, Sanz-Serna, and Verwer, 1986) would reduce s by dynamically
varying ∆t) where s = (t1 − t0)/∆t. Additionally, assume that the computation of
each ei(t) is O(1) and that the network is not partitioned.
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technique time/∆t space online stable local exact

BPTT, storing y O(m) O(sn+m) no yes yes yes
RTRL O(n2m) O(nm) yes yes no yes
BPTT, only h steps O(hm) O(hn+m) yes yes yes no
Williams-Peng, h steps O(m) O(hn+m) yes yes yes no
hybrid BPTT/RTRL O(nm) O(nm) yes yes no yes
Sun-Chen-Lee O(nm) O(n2 +m) yes yes no yes
BPTT, recalc. y O(m) O(m) no no yes yes

Table 3.1: A summary of the complexity of some learning procedures for recurrent
networks. In the “storing y” technique we store y as time is run forwards and replay it
as we run time backwards computing z. In “y backwards” we do not store y, instead
recomputing it as time is run backwards. “Forward propagation” 1 and 2 are the
online techniques described in section 3.3.2. The times given are for computing the
gradient with respect to one pattern.

Under these conditions, simulating the y system takes O(m + n) = O(m) time
for each time step, as does simulating the z system. This means that using the
technique described in section 3.4, the entire simulation takes O(m) time per time
step, the best that could be hoped for. Storing the activations and weights takes
O(n + m) = O(m) space, and storing y during the forward simulation to replay
while simulating z backwards takes O(sn) space, so if we use this technique the entire
computation takes O(sn+m) space. If we simulate y backwards during the backwards
simulation of z, the simulation requires O(n+m) space, again the best that could be
hoped for. This later technique, however, is susceptible to numeric stability problems.

The online technique of RTRL described in section 3.3.2 requires O(n2m) time
each time step, and O(nm) space. The other techniques discussed in that section
require less time and space, and retain all of the advantages of being online (with
the possible exception of simplicity of implementation), so it would appear that these
new online methods dominate RTRL. These time complexity results are for sequential
machines, and are summarized in table 3.1.

Note that in this section we are concerning ourselves with how much computation
it takes to obtain the gradient information. This is generally just the inner loop of a
more complex algorithm to adjust the weights, which uses the gradient information,
such as a stochatic gradient descent algorithm.

3.8.2 Speeding the Optimization

Experience has shown that learning in these networks tends to be “stiff” in the sense
that the Hessian of the error with respect to the weights (the matrix of second deriva-



CHAPTER 3. RECURRENT NETWORKS 55

tives) tends to have a wide eigenvalue spread. One technique that has proven useful
in this particular situation is that of Jacobs (1988) which was applied by Fang and
Sejnowski (1990) to the single figure eight problem described in section 3.4.3 with
great success. It was also used in the leech simulations of Lockery et al. described
in section 3.4.5, again leading to much faster training. For a modern variant of this
technique which is suitable to online pattern presentation, see Sutton (1992b, 1992a),
Gluck, Glauthier, and Sutton (1992).

For details on how to analyze the speed of gradient descent, and techniques to
accelerate its convergence, see chapter 4.

3.8.3 Prospects and Future Work

Control domains are the most natural application for continous time recurrent net-
works, but signal processing and speech generation (and recognition using generative
techniques) are also domains to which this type of network might be naturally ap-
plied. Such domains may lead us to complex architectures like those discussed in
section 3.3.5. For control domains, it seems important to have ways to force the
learning towards solutions that are stable in the control sense of the term.

On the other hand, we can turn the logic of section 3.5 around. Consider a difficult
constraint satisfaction task of the sort that neural networks are sometimes applied to,
such as the traveling salesman problem (Hopfield and Tank, 1985). Two competing
techniques for such problems are simulated annealing (Kirkpatrick, Gelatt, and Vec-
chi, 1983; Ackley et al., 1985) and mean field theory (Peterson and Anderson, 1987b).
By providing a network with a noise source which can be modulated (by second order
connections, say) we could see if the learning algorithm constructs a network that
makes use of the noise to generate networks that do simulated annealing, or if pure
gradient descent techniques are evolved. If a hybrid network evolves, its structure
may give us insight into the relative advantages of these two different optimization
techniques, and into the best ways to structure annealing schedules.

3.8.4 Conclusions

Recurrent networks are often avoided because of a fear of inordinate learning times
and incomprehensible algorithms and mathematics. It should be clear from the above
that such fears are unjustified. Certainly there is no reason to use a recurrent network
when a feedforward layered architecture suffices; but on the other hand, if recurrence
is needed, there are a plethora of learning algorithms available across the spectrum
of quiescence vs. dynamics and across the spectrum of accuracy vs. complexity and
across the spectrum of space vs. time. These new learning algorithms, and experi-
ence with recurrent and temporally continuous networks, has made them much more
tractable and practical than they seemed only a few years ago.



Chapter 4

Gradient Descent: Second-Order

Momentum and Saturating Error

Capsule: Batch gradient descent, ∆w(t) = −ηdE/dw(t), converges
to a minimum of quadratic form with a time constant no better than
1
4
λmax/λmin where λmin and λmax are the minimum and maximum eigen-

values of the Hessian matrix of E with respect to w. It was recently shown
that adding a momentum term ∆w(t) = −ηdE/dw(t) + α∆w(t− 1) im-

proves this to 1
4

√
λmax/λmin, although only in the batch case. Here we

show that second-order momentum, ∆w(t) = −ηdE/dw(t) + α∆w(t −
1) + β∆w(t− 2), can lower this time constant no further.

We then regard gradient descent with momentum as a dynamic system
and explore the effect of a nonquadratic error surface, showing that a
simple model of nonlinearity, namely saturation of the error, accounts for
a variety of effects observed in our simulations, and justifies heuristics that
have been popular in the backpropagation community.

Portions of this chapter were published in abbreviated form in Pearl-
mutter (1992a).

4.1 Introduction

Tesauro, He, and Ahmad (1989) calculate the asymptotic convergence rate of gradient
descent optimization of a backpropagation network under the assumption that the
output units are asymptotically approaching saturation. Since it is necessary for the
weights to grow without bound if units are to approach saturation, their results apply
only when the network is not converging to a proper local optimum, but instead the
error can always be lowered by enlarging the weights.

56
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Here we address the more conventional case, where the total error does not neces-
sarily approach zero and the gradient descent converges to a proper local optimum at
which all weights are bounded. Bounded weights seem desirable in principle, and can
be guaranteed by any of a number of well known techniques, such as non-saturated
targets, or any of the variants of weight decay.

We also assume that (a) the error has quadratic form at the minimum, an assump-
tion borne out by our simulations, and (b) the problem is hard, in other words, the
constraints on the weights are stiff. This latter assumption is used when analyzing
convergence rates and deriving optimal values for the learning parameters, we can
neglect the easy terms of the error and assume that all effort should be concentrated
on the hardest term.

The tight bounds derived for the convergence of gradient descent assume that
the learning parameters are set optimally. Finding these optimal values in practice
is beyond our scope here, but some techniques for achieving nearly optimal learning
rates, although not momentum terms, are surveyed below. The analysis here may
itself lead to algorithms that automatically adjust the learning rate and momentum,
by providing signatures of optimality and suboptimality. This approach is in contrast
to approaches that attempt to accelerate the convergence by going outside of the
simple gradient descent method itself (Parker, 1987; Watrous, 1987; Fahlman, 1988).

4.1.1 Asymptotic convergence and choice of learning rate

First, let us derive the well known bound on the convergence rate of simple gra-
dient descent without momentum (Widrow, McCool, Larimore, and Johnson, 1976;
Alexander, 1986; Widrow and Stearns, 1985). The same analysis technique will then
be applied to more sophisticated variants of gradient descent, giving our main results.

We can analyze the asymptotic convergence rate of the discrete time weight change
equation

∆w = −η dE
dw

(4.1)

where ∆f(t) ≡ f(t+ 1)− f(t).

Let us assume that the network is near the local optimum w∗ and expand w about
w∗, defining x = w −w∗. Let H = d2E/dw2(w∗) and λi, vi be the eigenvalues and
eigenvectors of H . These eigenvectors are orthogonal because H is symmetric, and
each λi > 0 because w∗ is a local minimum.1 Expressing x in terms of this eigenvector
basis as c we get

ci(t+ 1) ≈ ci(t)− ηci(t)λi = (1− ηλi)ci(t).

1Even if some eigenvalues are degenerate, we can still find an orthogonal set of unit basis vectors
which are eigenvectors. If the assumption of a local minimum is relaxed slightly and we allow some
zero-valued eigenvalues of H , the analysis still holds if we project out the kernel of H .
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This is stable and convergent when |1 − ηλi| < 1, which is strictest for the largest
eigenvalue, so the well known

0 < η <
2

λmax
(4.2)

of Widrow et al. (1976) is necessary and sufficient for asymptotic stability and con-
vergence. We can substitute η = 2/λmax into the weight change equation to ob-
tain cmin(t + 1) = (1 − 2s)cmin(t), which gives convergence that tightly bounds any
achievable in practice, getting a time constant of convergence of −1/ log(1 − 2s) =
(2s)−1 +O(1), or

E −E∗ ≻ exp(−4st) (4.3)

where we use s = λmin/λmax for the inverse eigenvalues spread of H and ≻ is read
“asymptotically converges to zero more slowly than.” This is the result of Widrow
et al. (1976) for LMS, except that here the eigenvalues cannot be determined from
the input autocorrelation matrix.

4.1.2 Asymptotic convergence with momentum

Sometimes a momentum term is used, the weight update (4.1) being modified to
incorporate a momentum term α < 1 (Rumelhart et al., 1986b, equation 16).

∆w(t) = −η dE
dw

(t) + α∆w(t− 1). (4.4)

This is sometimes called the “method of acceleration” in the neural network literature,
a bit of a misnomer, as the method of acceleration uses line searches (Wilde and
Beightler, 1967, page 304). The confusion is understandable, as both rely on the
intuition that it might be a good idea to continue to move in the direction the system
has been moving, despite local information to the contrary.

The Momentum LMS algorithm, MLMS, has been analyzed by Shynk and Roy
(1988), who have shown that the momentum term cannot speed convergence in the
online, or stochastic gradient, case. In the batch case, which we consider here, Tuǧay
and Tanik (1989) have shown that momentum can speed convergence by a square
root factor, a result we rederive now.

Consider the matrix

Mi =

(
0 1
−α 1 + α− ηλi

)

since (4.4) can be approximated by (ci(t) ci(t+ 1))T ≈ Mi(ci(t− 1) ci(t))
T . Iterated

application of Mi converges to zero if and only if the absolute values of both eigen-
values of Mi are less than 1, which holds iff α < 1 and 0 < η < 2(α + 1)/λi. This
is strictest for the largest eigenvalue, so the condition for convergence of gradient
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η λmax

4

2

1-1 0 α

Figure 4.1: Gradient descent with momentum converges if the learning parameters
are within the shaded region.

descent with momentum is

α < 1 and 0 < η <
2(α + 1)

λmax

(4.5)

which is the region shown in figure 4.1. We see that η < 0 and |α| > 1 are both
prohibited, which agrees with physical intuition about the situation, and (4.2) falls
out as a special case when α = 0.

It was conjectured in Watrous (1987) that momentum serves both to stabilize
learning against oscillations and to accelerate learning along “ravines”. We have
shown above that α > 0 can have a stabilizing effect, allowing the system to converge
when it would otherwise diverge, and have precisely calculated the magnitude of this
effect: momentum can give no more than a factor of 2 increase in the allowable η. We
show below that this minor constant factor is overshadowed by a more pronounced
reduction of the time constant of convergence given by the direct effect upon conver-
gence of α, rather than by this indirect stabilizing effect, which appears unimportant
in practice.

4.1.3 Choice of both α and η

Proceeding as before, we plug in η = 2(1 + α)/λmax to get convergence bounding
that actually possible for any particular α. Slowest convergence is along the direc-
tion of the eigenvector corresponding to the smallest eigenvalue, and convergence
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Figure 4.2: Optimal value of α (left) and time constant of convergence with optimal
η and α = 0 vs. optimal (right).

in this direction is maximized by critical damping, given when the roots of Mmin’s
characteristic polynomial converge. This has only one solution with α < 1,

α∗ =
2− 4

√
s(1− s)

(1− 2s)2
− 1 = 1− 4

√
s +O(s) (4.6)

which is expressed to take notation advange of the fact that s < 1. Substituting in,
we get eigenvalues of Mmin of

1− 2
√
s(1− s)

1− 2s

giving a time constant of convergence of w of

1

2
√
s
+O(1)

or
E −E∗ ≻ exp(−(4

√
s+O(s)) t) (4.7)

We have seen that momentum can give a substantial improvement in the asymp-
totic convergence rate, as shown in figure 4.2, and that the advantages of momentum
become more pronounced as the eigenvalue spread of d2E/dw2 becomes wider, cor-
responding to a “stiffer” set of constraints on the weights. Such eigenvalue spreads
have proven typical of neural networks with many weights or substantial feedback.

On the other hand, the speedup we have derived is less than the backpropagation
folk theorem of a speedup of 1/(1 − α) (Watrous, 1987, section 3.2). The reason
this folk theorem fails is that it assumes the gradient to be constant as the system
evolves, giving an acceleration of

∑
i α

i = 1/(1−α). But the gradient is not constant
in the neighborhood of a minimum. In the stochastic gradient terminology, the folk
theorem applies in the initial “fast convergence” phase and the analysis here applies
to the later “slow convergence” regime of Tuǧay and Tanik (1989).
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Figure 4.3: Second-order momentum converges if ηλmax is less than the value plotted
as “eta,” as a function of α and β. The region of convergence is bounded by four
smooth surfaces: three planes and one hyperbola. One of the planes is parallel to the
η axis, even though the sampling of the plotting program makes it appear slightly
sloped. Another is at η = 0 and thus hidden. The peak is at 4.

4.2 Second-order momentum

We have shown that the time constant of asymptotic convergence can be changed from

O(λmax/λmin) to O(
√
λmax/λmin) by going from a first-order system, (4.1), to a second-

order system, (4.4). Making a physical analogy, the first-order system corresponds
to a circuit with a resistor, and the second-order system adds a capacitor to make
an RC oscillator. One might ask whether further gains can be had by going to a
third-order system, like adding an inductor, as claimed in Watanabe, Nagata, and
Asakawa (1988),

∆w(t) = −η dE
dw

+ α∆w(t− 1) + β∆w(t− 2). (4.8)

For convergence, all the eigenvalues of the matrix

Mi =




0 1 0
0 0 1
−β −α + β 1− ηλi + α
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in (ci(t− 1) ci(t) ci(t+ 1))T ≈Mi(ci(t− 2) ci(t− 1) ci(t))
T must have absolute value

less than or equal to 1, which occurs precisely when

−1 ≤ β ≤ 1
0 ≤ η ≤ 4(β + 1)/λi

ηλi/2− (1− β) ≤ α ≤ βηλi/2 + (1− β).

For β ≤ 0 this is most restrictive for λmax, but when β > 0 then λmin also comes
into play. Taking the limit as λmin → 0, this gives convergence conditions for gradient
descent with second-order momentum of

−1 ≤ β

β − 1 ≤ α ≤ 1− β

when α ≤ 3β + 1 : (4.9)

0 ≤ η ≤ 2

λmax
(1 + α− β)

when α ≥ 3β + 1 :

0 ≤ η ≤ β + 1

λmaxβ
(α + β − 1)

a region shown in figure 4.3.

Fastest convergence for λmin within this region lies along the ridge, α = 3β + 1
with η = 2(1 + α − β)/λmax. Unfortunately, although convergence is slightly faster
than with first-order momentum, the relative advantage tends to zero as s→ 0, giving
no asymptotic speedup when λmax ≫ λmin. For small s, the optimal settings of the
parameters are

α∗∗ = 1− 9

4

√
s+O(s)

β∗∗ = −3
4

√
s+O(s) (4.10)

η∗∗ = 4(1−
√
s) +O(s).

4.3 Simulations

We constructed a standard three layer backpropagation network with 10 input units,
3 sigmoidal hidden units, and 10 sigmoidal output units. 15 associations between
random 10 bit binary input and output vectors were constructed, and the weights
were initialized to uniformly chosen random values between −1 and +1. Training
was performed with a square error measure, batch weight updates, targets of 0 and
1, and a weight decay coefficient of 0.01.

To get past the initial transients, the network was run at η = 0.45, α = 0 for 150
epochs, and at η = 0.3, α = 0.9 for another 200 epochs. The progress of the error
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in this initial regime is shown in figure 4.4. Figure 4.5 shows that momentum can
accelerate convergence quite substantially in practice thereafter.

At this point experiments to test the theory in this chapter were carried out: the
network was run for 200 epochs for η ranging from 0 to 0.5 and α ranging from 0 to
1.

Figure 4.8 shows that the parameter setting that give the most rapid convergence
in practice are the settings predicted by the theory. It is interesting to note that,
within the region that does not converge to the minimum, there appear to be two
regimes: one that is characterized by apparently chaotic fluctuations of the error, and
one which slopes up gradually from the global minimum. In figure 4.6 it can be seen
that this sloping region is actually the first period doubling in a transit to chaos, as
the single attractor (the minimal error) bifurcates into a binary limit cycle, which
gradually rises up until more complex limit cycles, and finally chaotic attractors, are
reached.

Figure 4.9 shows that the region of convergence has the qualitative shape predicted
in figure 4.1. Calculation of the eigenvalues of d2E/dw2 confirms that the location of
the dividing line conforms to the theory quantitatively as well.

Since this phenomenon is so atypical of a quadratic minimum in a linear system,
which either converges or diverges, and this phenomenon seems important in practice,
we decided to investigate a simple system to see if this behavior could be replicated
and understood. This is the subject of the next section.

4.4 Nonquadratic error surfaces

The analysis of the sections above may be objected to on the grounds that it assumes
the minimum to have quadratic form and then performs an analysis in the neighbor-
hood of that minimum, which is equivalent to analyzing a linear unit. Surely our
nonlinear backpropagation networks are richer than that.

A clue that this might be the case was shown in figure 4.8. The region where the
system converges to the minimum is of the expected shape, but rather than simply
diverging outside of this region, as would a linear system, more complex phenomena
are observed, in particular a sloping region.

In this section we will find that this phenomenon, which is at odds with the be-
havior in the quadratic case, occurs in two cases: when the error surface is saturating,
i.e. subquadratic; and when the error surface is superquadratic in a particular way
which amounts to a ravine whose sides grow progressively steeper.
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Figure 4.4: The learning curve of the network from epoch 0 to epoch 350, at which
point the network was close enough to the minimum to test the theoretical predictions
concerning the asymptotic convergence of gradient descent with momentum. To get
past the initial transients shown, the network was run at η = 0.45, α = 0 for 150
epochs, and at η = 0.3, α = 0.9 for another 200 epochs. Note that the transients
appear to be characterized by an asymptotic falling off of the error, followed by a
sudden drop which asymptotes in turn. Each of these asymptotic regions is susceptible
to the analysis here, if the next dropping off is properly recognized and the learning
parameters shifted to the next appropriate regime.

4.4.1 Saturating error surfaces

Acting on the hypothesis that this region is caused by λmax being maximal at the
minimum, and gradually decreasing away from it (it must decrease to zero in the limit,
since the hidden units saturate and the squared error is thus bounded) we decided to
perform a dynamic systems analysis of the convergence of gradient descent on a one
dimensional nonquadratic error surface. We chose

E = 1− 1

1 + w2
(4.11)

which is shown in figure 4.10, as this results in a bounded E.

Letting

f(w) = w − ηE ′(w) =
w(1− 2η + 2w2 + w4)

(1 + w2)2
(4.12)
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Figure 4.5: Error plotted as a function of time, under two sets of learning parameter
settings. In one, α = 0 and η is chosen to yield minimal error at the end of the run.
In the other, both α and η are chosen to minimize the final error. Both of these were
determined empirically rather than theoretically. There exists slightly less aggressive
setting of the parameters that suppresses the oscillations but yields a terminal error
almost as low.

be our transfer function, a local analysis at the minimum gives λmax = E ′′(0) = 2
which limits convergence to η < 1. Since the gradient towards the minimum is always
less than predicted by a second-order series at the minimum, such η are in fact globally
convergent. As η passes 1 the fixpoint bifurcates into the limit cycle

w = ±
√√

η − 1, (4.13)

which remains stable until η → 16/9 = 1.77777 . . . from below, at which point the
single symmetric binary limit cycle splits into two asymmetric limit cycles, each still
of period two. These in turn remain stable until η → 2.0732261475 from below, at
which point repeated period doubling to chaos occurs. This progression is shown in
figure 4.13.

As usual in a bifurcation, w rises sharply as η passes 1. But recall that figure 4.8,
with the smooth sloping region, plotted the error E rather than the weights. The
analogous graph here is shown in figure 4.12 where we see the same qualitative fea-
ture of a smooth gradual rise, which first begins to jitter as the limit cycle becomes
asymmetric, and then becomes more and more jagged as the period doubles its way
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Figure 4.6: Error plotted as a function of time for various values of α as η is held
constant at η = 0.30. Note that for all α below a certain value, about 0.8, the system
settles to a limit cycle instead of the minimum.

to chaos. From figure 4.13 it is clear that for higher η the peak error of the attractor
will continue to rise gently until it saturates.

Next, we add momentum to the system. This simple one dimensional system du-
plicates the phenomena we found earlier, as can be seen by comparing figure 4.8 with
figure 4.11. We see that momentum delays the bifurcation of the fixed point attractor
at the minimum by the amount predicted by (4.5), namely until η approaches 1 + α.
At this point the fixpoint bifurcates into a symmetric limit cycle of period 2 at

w = ±
√√√√
√

η

1 + α
− 1, (4.14)

a formula of which (4.13) is a special case. This limit cycle is stable for

η <
16

9
(1 + α), (4.15)
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Figure 4.7: The error at epoch 550 as a function of the learning regime, for the network
described in section 4.3. Shading is based on the height, but most of the vertical scale
is devoted to nonconvergent networks in order to show the mysterious nonconvergent
sloping region. The minimum, corresponding to the most darkly shaded point, is on
the plateau of convergence at the location predicted by the theory.

but as η reaches this limit, which happens at the same time that w reaches ±1/
√
3

(the inflection point of E where E = 1/4) the limit cycle becomes unstable. However,
for α near 1 the cycle breaks down more quickly in practice, as it becomes haloed
by more complex attractors which make it progressively less likely that a sequence
of iterations will actually converge to the limit cycle in question. Both boundaries of
this strip, η = 1 + α and η = 16

9
(1 + α), are visible in figure 4.11, particularly since

in the region between them E obeys

E = 1−
√
1 + α

η
(4.16)

The bifurcation and subsequent transition to chaos with momentum is shown for
α = 0.8 in figure 4.13. This α is high enough that the limit cycle fails to be reached
by the iteration procedure long before it actually becomes unstable. Note that this
diagram was made with w started near the minimum. If it had been started far from
it, the system would usually not reach the attractor at w = 0 but instead enter a halo
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Figure 4.8: The region of parameter space in which the network of section 4.3 is
convergent, as measured by a strictly monotonically decreasing error. Learning pa-
rameter settings for which the error was strictly decreasing have a low value while
those for which it was not have a high one. The lip at η = 0 has a value of 0, given
where the error did not change. The rim at α = 1, absent in figure 4.1, corresponds
to damped oscillation caused by η > 4αλ/(1− α)2.

attractor. This accounts for the policy of backpropagation experts, who gradually
raise momentum as the optimization proceeds.

4.4.2 Superquadratic error surfaces

The above phenomenon, in which a saturating error surface leads to stable oscilla-
tions with a learning rate which is above the threshold required for convergence at
the bottom of the minimum, but low enough for convergence farther away from the
minimum, matches our intuition, in that the system settles into a state of bouncing
around about as close to the minimum as it could be without violating the conver-
gence limitations. We might say that it settles into a state where, on average, the
learning rate is about critical, in that it sometime rises above the neighborhood of
criticality, and sometimes falls below it, but in general lurks on the threshold.

Here we consider a more counterintuitive situation: a two dimensional ill condi-
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Figure 4.9: Contour plot of the convergent plateau of figure 4.8 shows that the regions
of equal error have linear boundaries in the nonoscillatory region in the center, as
predicted by the linear theory.

0

1

-3 0 3

E

w

Figure 4.10: A one dimensional tulip-shaped nonlinear error surface E = 1 − (1 +
w2)−1.

tioned minimum which is steeper than quadratic, but which, rather than leading to
what might be expected, runaway divergence, leads instead to a chaotic orbit near
the minimum, qualitatively similar to the subquadratic situation!

In particular, we consider a situation typical of backpropagation networks, in
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Figure 4.11: E after 50 iterations from a starting point of 0.05, as a function of η and
α.

which we are descending a long narrow ravine whose walls grow steeper as we proceed
down it. Our simulations are conducted in a toy two dimensional system, namely
Rosenbrock’s function E(w1, w2) = 100(w2 − w2

1)
2 + (1 − w1)

2 which has a banana-
shaped trough w2 = w2

1 with a minimum at w1 = w2 = 1. It qualitatively matches
the common situation in backpropagation networks in which the error function is
characterized by a ravine whose sides narrow as the optimization proceeds.2

At the minimum, the Hessian of Rosenbrock’s function has eigenvalues λ = 501±√
250601 ≈ {0.4, 1000}, for an inverse eigenvalues spread of s ≈ 1/2500. The region

of asymptotic stability near the minimum is η < 0.0019968(1 + α). For α near 1 this
comes to η < 0.004.

Since in the quadratic situation standard gradient descent with momentum ei-
ther converges or diverges, in the superquadratic situation here one might expect
that when convergence is not attained, the divergence would simply be more violent.
However, the simulations of figure 4.17–4.27 show that this is not the case. In fact,
as the phase diagram of figure 4.16 shows, there is a considerable region in which the

2An intuitive explanation for why this must be so is that, as pointed out by Yann le Cun, in a
standard backpropagation network the error is flat to third order at w = 0. In other words, both
the gradient and the Hessian are zero at w = 0.
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Figure 4.12: E as a function of η with α = 0. When convergent, the final value is
shown; otherwise E after 100 iterations from a starting point of w = 1.0. This a more
detailed graph of a slice of figure 4.11 at α = 0.
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Figure 4.13: The attractor in w as a function of η is shown, with the progression from
a single attractor at the minimum of E to a limit cycle of period two, which bifurcates
and then doubles to chaos. The x axis is η and the y axis is the corresponding terminal
w. On the left α = 0 and on the right α = 0.8. For the numerical simulations portions
of the graphs, iterations 100 through 150 from a starting point of w = 1 or w = 0.05
are shown.

system repeatedly travels down the ravine until the ravine has gotten steep enough
(the increasing steepness is plotted in figure 4.14) to cause divergence, but as the
system bounces up the walls of the ravine, the gradient pushes it back towards the
mouth, where it can once again converge to the bottom of the ravine, and agains
begins its journey along the ravine towards the minimum. This process is illustrated
diagrammatically in figure 4.15.
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Figure 4.14: The principal eigenvalue λmax of the Hessian of Rosenbrock’s function
as a function of w1, measured along the ravine w2 = w2

1.

Within the ravine w2 = w2
1, the largest eigenvalue

λmax = 101 + 400w2
1 +

√
9801 + 80800w2

1 + 160000w4
1

as plotted in figure 4.14

In figures 4.17–4.27, we show carefully selected attractors representative of the
evolution of the system as η is increased, for a range of momenta: α = 0, α = 0.25,
α = 0.3333333, α = 0.5, α = 0.8, α = 0.9. Note the evolution from convergence
to periodicity, the period doubling to chaos, and finally divergence. The behavior is
relatively more complex for higher values of momentum, and the phase space appears
to be richer with periodic islands in chaotic regions. Recall that the phase space of
the system corresponds to the weights along with their velocities, so when α 6= 0 the
scatterplots actually show R4 → R2 projections. For α = 0.95 the momentum is high
enough that the initial point of w1 = w2 = 0 is too far from the minimum, and is
generally ejected from the neighborhood of the minimum. By starting closer to the
minimum at w1 = w2 = 1, convergence to compact orbits could be attained.

4.5 Alternate formulations of momentum

Assuming that η is held constant, the paired first-order difference equations

v(t) = −dE

dw
(t) + αv(t− 1)

∆w(t) = ηv(t) (4.17)
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Figure 4.15: An illustration of the process by which a supercritical learning rate and
a superquadratic error surface can arrest progress towards the minimum, but lead to
oscillations or chaos rather than divergence.

are equivalent to the second-order difference equation formulation above (4.4), as can
be shown by some simple algebra. In practice the paired first-order equations here
are preferred, as fewer transients are introduced by changes to η.

Analogously, second-order momentum is simulated in practice not by a third-order
difference equation (4.8) but by three coupled first-order equations,

a(t) = α1a(t− 1)− dE

dw
(t)

v(t) = a(t) + α0v(t− 1)

∆w(t) = ηv(t)

implementing

∆w(t) = −η dE
dw

+ α0(∆w(t− 1) + α1∆
2w(t− 2))
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Figure 4.16: Phase diagram. Behavior of the system (optimization of Rosenbrock’s
function using gradient descent with momentum started at w1 = w2 = 0) as a function
of learning parameters. The system may converge, have period 2, show regular period
behavior, exhibit chaos, or diverge, as shown. The convergent region predicted by
the principal eigenvalue of the Hessian at the minimum is show as the area below the
straight line, which gives the highest theoretically convergent (at the minimum) η as
a function of α.

which is related to (4.8) by a simple transformation.

A somewhat common formulation of momentum (Yann le Cun, personal commu-



CHAPTER 4. THE CONVERGENCE OF GRADIENT DESCENT 75

nication, or Jacobs (Jacobs, 1988, equation 2)) is

∆w(t) = −(1− α)η′
dE

dw
+ α∆w(t− 1)

which differs from (4.4) by the factor of (1−α). In effect, the learning rate is reduced
for α near one, η = (1−α)η′. The motivation for this formulation is apparently that
without this scaling the “effective learning rate” is (1 − α)−1η so canceling out this
effect is necessary in order to maintain stability over a range of values of α without
changing other parameters.

But as we have seen above, multiplying the learning rate by 1−α is unnecessary;
in fact, α > 0 allows the use of a slightly higher η, rather than necessitating a lower
one, so if anything η = (1 + α)η′ should be used to control for this stabilizing effect.
One possible consequence of η = (1 − α)η′ would be to poison comparative studies
of momentum in which η′ is controlled and α varied, as under these circumstances
α > 0 could not give any asymptotic speedup.

4.6 Transient behavior

In the analyses above, we used

∑

i

ci(0) exp(−f(λi)t) ∼ exp(−f(λmin)t).

where f was positive and nondecreasing in λi. Certainly this is true asymptotically.
However, sometimes we must turn our attention to the transients. In practice, ci(0)
tends to be larger when λi is larger and smaller when λi is smaller. This implies
that, as learning proceeds, E − E∗ will be dominated by the decaying exponentials
associated with successively smaller eigenvalues of d2E/dw2.

From this perspective, given that the minimal error E∗ is unknown, that time is
limited, and that the components of the error associated with some of the smallest
eigenvalues might start out with such small magnitudes that one can ignore them, a
good online strategy is to set the learning parameters as if the currently dominant
component is λmin. Once this component has decayed enough that it is no longer
dominant, the learning parameters can be tuned to the next smaller eigenvalue.

Fortunately, our analyses above apply without change in this case, by simply
letting λmin denote the eigenvalue of the currently dominant component of the error.
Using the above result, this procedure can be easily shown to be “competitive,” in
that it will always turn its attention to the real smallest eigenvalue after some amount
of time, and that in the interim it will take less than a factor of two extra iterations
to reach any given error level.
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4.7 Automatic adjustment of η

The maximum convergence rates we calculate assume that the learning rates are
set optimally. Were the problem of finding optimal values for the learning rate an
intractable problem, this work would be of purely theoretical interest. Fortunately, a
number of techniques for automatically adjusting the learning rate are now available.
These techniques can do no better than adjusting the parameters optimally, and it
appears that in fact they do keep the learning rate near its optimal value.

Vogl, Mangis, Zigler, Zink, and Alkon (1988) report their experiences with a
method they developed for accelerating gradient descent. Their technique detects
divergence of the error, E(t+1) > 1.01E(t), and reduces the learning rate in response,
multiplying η by a number less than one. In the absence of divergence, it raises η
slightly, multiplying it by a number slightly greater than 1. They claim that their
technique maintains η within a small constant factor of optimal, and verify their claim
with some simulations. They do this in the context of momentum, but their use of
momentum is very simple: they clear the accumulated velocity when divergence is
detected, and otherwise use a constant α = 0.9. It is interesting to note their figure
plotting learning time T as a function of η, without automatic adjustment of η. The
curve exactly follows the power law Tη = k predicted by (4.3), except that the curve
suddenly diverges for η greater than a critical value, presumably 2(1 + α)/λmax.

Tollenaere (1990) reports similar results at tracking the optimal η during gradient
descent with his SuperSAB algorithm, which appears identical to the technique of
Vogl et al. (1988) except that divergence is detected by dE/dw(t+1) · dE/dw(t) < 0
and no momentum term is included. He also reports the same phenomenon of better
performance for larger η, below a critical value at which point divergence appears.
A nearly identical algorithm was also developed, again independently, by Silva and
Almeida (1990), Du, Hou, and Li (1992), and doubtless others.

An earlier but more sophisticated variant of this idea is the Jacobs (1988) delta-
bar-delta rule. It is essentially the same as those above, except that each weight has its
own learning rate ηi. The delta-bar-delta rule is a simple heuristic: raise ηi by a small
amount κ if ∂E/∂wi(t) ∂E/∂wi(t− 1) > 0, and multiply it by a constant slightly less
than one (typically .8) otherwise. It has proven quite useful, giving massive speedups
for very stiff problems with little effort (Fang and Sejnowski, 1990).

The delta-bar-delta approach has been generalized to the online situation and put
on more formal grounds by Sutton (1992b).

We are attempting to extend the analysis in this chapter to the case where each
weight has its own learning rate, each of which is set optimally, but we do not yet
have any concrete results, except that the convergence is limited by the eigenvalues
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spread of Λ1/2HΛ1/2, where

Λ =




η0 0
. . .

0 ηn−1




is a diagonal matrix of the individual learning rates.

In the the Pseudo-Newton technique of Becker and LeCun (1989) it is assumed
that d2E/dw2 is diagonal, and an algorithm is presented to efficiently compute the
diagonal terms and (to use terminology which puts their technique in the framework
here) they use these to set individual learning rates ηi = ǫ/(|∂2E/∂w2

i |+ µ) where ǫ
and µ respectively compensate for bounded relative and absolute errors of the estimate
of the best value for ηi. It would be interesting to see if, by viewing the algorithm in
these terms and filtering the ηi, convergence or stability could be improved.

4.8 Why assume optimal α

The previous section argues that assuming η to be set optimally is reasonable. One
might object that this does not justify assuming the momentum term α to be set
optimally as well. But although there are no published algorithms for automatically
adjusting α, there is good reason to believe that it should be easier to control than η.

One reason is that this work was motivated by the author’s observation that, under
continuous hand-tuning of the learning parameters, based on only a small amount
of feedback (E, cos( 6 v(t),v(t − 1)), |v|(1 − α)/|dE/dw|) substantial speedups were
achieved. The author’s η was typically kept quite close to the point of divergence, and
α was adjusted to a value where slow oscillations of the angle between dE/dw and
v were barely detectable. From the analysis above, this is nearly the optimal value
for α, as it is near critical damping. It was much easier to keep α properly adjusted
than to keep η properly adjusted, perhaps because λmax tends to change more rapidly
than λmin.

Another is that the current techniques, which appear successful at keeping the
learning parameters nearly optimal during the gradient descent, are quite crude, and
there seems to be room for further developments in this area. Since η can be controlled
properly with so little feedback (just the most recent two values of the error, for
instance, in Vogl et al.’s method) using more feedback terms, and looking at a window
of values stretching back a bit in time, should provide more than enough information
to adjust a couple of more slowly changing, and less potentially divergent, learning
parameters.

Dabis and Moir (1991) take such an approach to online LMS learning, a related
problem. They view LMS as a control system and attempt to design a good controller
to minimize the error by using a sliding window and considering frequency response,
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span ratios, and phase advance compensation. The result is a robust system with
good convergence properties.

To summarize, the problem of controlling η to keep it at a nearly optimal value
appears to have been repeatedly solved. Since α is easier to control than η, and has
been controlled in related systems, there is good reason to believe that it too can be
automatically maintained at a nearly optimal value. There is anecdotal evidence that
this is the case, as a number of unpublished “learning rate autopilots” adjust both η
and α, and seem to converge to near optimal values of these learning parameters.

4.9 Weight precision

A question of some practical significance, particularly to the design of special purpose
hardware, is determining the number of bits of precision required to adequately repre-
sent the weights. A simple application of this theory relates the maximum convergent
learning rate to the required weight precision.

Assuming that we are using learning parameters that are nearly optimal, we can
plug their values into (4.5) to estimate λmax ≈ 2(α + 1)/η.

If we consider each weight wi to be perturbed by a zero mean Gaussian with vari-
ance σ2, then the perturbation along the direction of the eigenvector corresponding to
λmax is also zero mean and also has variance σ2. A zero-mean perturbation has a zero
expected effect on the first-order term of the Taylor expansion of E, so let us consider
its effect on the second-order term. This effect is to increase E by

∑
i λir

2/2 where r
is a zero mean σ2 variance Gaussian. The expected value of this sum is σ2∑

i λi/2,
which must be between σ2nλmax/2 and σ2λmax/2, depending on the distribution of
eigenvalues. From empirical studies of the eigenvalue distribution of d2E/dw2, both
in this work and as reported by Becker and LeCun (1989) (assuming that the unit
values are zero mean as given by a tanh activation function instead of a sigmoid to
avoid spurious large eigenvalues (LeCun et al., 1991)), a good estimate of the eigen-
values distribution appears to be a uniform distribution. This gives us an expected
rise in the error resulting from noise on the weights of standard deviation σ of about

σ2nλmax/4 ≈ σ2n(α + 1)/η/2

which can be used to give a bound on σ required for a given error tolerance.

4.10 Changes of variables

In the sections above, we computed tight bounds on the possible convergence rates of
some variants of gradient descent. The convergence rate of an optimization technique
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is one criterion by which we might judge it, but another is its robustness to changes
of variables, which we will consider in this section.

If we change the adjustable parameters from w to y, y = f(w), f one-to-one, and
optimize E(w) by modifying y rather than w, a very robust optimization algorithm
would display the same behavior as if it had been used to adjust w directly. Of course
this is impossible in general, but if we restrict our attention to linear transformations
f(w) = Tw with |T | 6= 0, we can gain some insights into the robustness of various
gradient based techniques. We could admit translations as well, but since all gradient
based techniques are insensitive to translations we omit this detail.

The only current gradient based algorithms that are totally insensitive to all linear
transformations are full second-order methods. In most such techniques (eg. New-
ton’s method, or the optimal method of Parker (1987)) the entire matrix d2E/dw2 is
computed. In others it is gradually approximated, as in the BFGS algorithm of Den-
nis and Schnabel (1983) found, e.g., in the popular IMSL package’s duminf routine.
Although BFGS is rumored to be the best currently available technique for problems
with “small to medium” dimensionality (Watrous, 1987), no fully second-order tech-
nique can be practical in a space of high dimension, as all such techniques require
storage and computation at least on the order of the number of adjustable parameters
squared.

In contrast, consider simple gradient descent, without momentum. This is invari-
ant to the basis used for w, as long as the basis is orthonormal, so gradient descent is
therefore insensitive to rigid transformations T . Assuming that the optimal learning
rate η is used, then the optimization will also be insensitive to scalings T = kI. How-
ever, simple gradient descent is not invariant to any T which is not a simple scaling
combined with a rigid transformation. An instance of this is a diagonal T where the
elements along the diagonal are not all equal.

Gradient descent remains insensitive to rigid transformations and to scaling when
momentum is added.

In fact, if we make the odd assumptions that the learning parameters are held
constant, not varied to suit current circumstances, and that all the eigenvectors of
d2E/dw2 are less than (1 − α)2/(4η), and the same for the eigenvalues of d2E/dy2,
then the time constant of asymptotic convergence of gradient descent with momentum
will be 2/(1−α) regardless of T (except that T must have the property listed above).
However, these assumptions are strong and unnatural, and preclude anything near
an optimal rate of convergence.

First-order techniques that use a separate learning rate for each adjustable pa-
rameter, such as Jacob’s delta-bar-delta rule described above, give up insensitivity to
arbitrary rigid transformations, but have the potential to gain insensitivity to arbi-
trary non-rigid diagonal transformations. Jacob’s delta-bar-delta rule does not quite
achieve this, because the “small constant” κ determines a preferred scale. But were
this changed to, say, a slow exponential increase, as in Vogl et al., the delta-bar-delta
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rule would be insensitive to diagonal transformations.

Similarly, the Pseudo-Newton technique of Becker and le Cun, also described
above, is nearly insensitive to diagonal transformations, except that µ determines a
preferred scale.

4.11 Conclusions and speculations

In analyzing the asymptotic convergence of gradient descent with momentum under
the assumption that the learning rate and momentum are set optimally, we have found
that momentum can provide significant acceleration. However, the convergence rate
is still limited by the eigenvalues spread of d2E/dw2, getting arbitrarily worse as the
spread widens. From a neural networks perspective, the challenge here is to produce
a local gradient based optimization algorithm that overcomes this barrier, or to show
that changes based purely on local information are intrinsically incapable of doing so.

Finally, note that our analysis uses no special properties of backpropagation, and
applies to the general case of asymptotic convergence of gradient descent optimization
to a local minimum of quadratic form, except insofar as the particular nonlinearities
analyzed are typical of feedforward neural networks.
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Figure 4.17: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = 0, η = .003, . . . , .0078x.
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Figure 4.18: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = .25, η = .003, . . . , .006.
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Figure 4.19: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = .3333333, η = .003, . . . , .006.
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Figure 4.20: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = .5, η = .00314, . . . , .0065.
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Figure 4.21: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = .8, η = .0037, . . . , .003795.
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Figure 4.22: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = .8, η = .0038, . . . , .005.
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Figure 4.23: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = .9, η = .0037965, . . . , .003805.
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Figure 4.24: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = .9, η = .003806, . . . , .00382.
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Figure 4.25: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = .9, η = .003822, . . . , .0038249.



CHAPTER 4. THE CONVERGENCE OF GRADIENT DESCENT 90

iterations 5000-8000   eta=.003825   mom=.9

0.97 0.98 0.99 1 1.01

0.95

0.96

0.97

0.98

0.99

1
iterations 5000-8000   eta=.00383   mom=.9

0.96 0.97 0.98 0.99 1 1.01

0.94

0.95

0.96

0.97

0.98

0.99

iterations 5000-8000   eta=.003835   mom=.9

0.96 0.98 1 1.02

0.94

0.96

0.98

iterations 5000-8000   eta=.00384   mom=.9

0.96 0.98 1 1.02

0.92

0.94

0.96

0.98

iterations 5000-8000   eta=.00386   mom=.9

0.9 0.95 1

0.85

0.9

0.95

1
iterations 5000-8000   eta=.0039   mom=.9

0.85 0.9 0.95 1 1.05

0.8

0.85

0.9

0.95

Figure 4.26: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = .9, η = .003825, . . . , .0039.
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Figure 4.27: Attractors for gradient descent with momentum on Rosenbrock’s func-
tion started at w1 = w2 = 0. Learning parameters: α = .9, η = .004, . . . , .0045.



Chapter 5

Fast Exact Multiplication by the

Hessian

Capsule: Compute Hv = ( ∂
∂r
) ∇

w
(w + rv)|r=0 by forward propagation

through whatever process is normally used to calculate ∇
w
. This provides

a numerically well conditioned technique for computing Hv with about
the same amount of computation as required for a gradient calculation.
It can be applied in both deterministic and stochastic gradient situations,
to most any system which computes a gradient, and allows the Hessian,
which is not in general sparse, to be treated using numerical techniques
suitable for generalized sparse matrices.

Much of this chapter appeared as Pearlmutter (1994).

5.1 Introduction

Efficiently extracting second-order information from large neural networks is an im-
portant problem, because properties of the Hessian appear frequently—for instance,
in the analysis of the convergence of learning algorithms (see chapter 4); in some
techniques for predicting generalization rates in neural networks (MacKay, 1991;
Moody, 1992); in techniques for enhancing generalization by weight elimination (Le-
Cun, Denker, and Solla, 1990; Hassibi and Stork, 1993) or adjustment (Hochreiter
and Schmidhuber, 1995); and in full second-order optimization methods (Watrous,
1987). As shown graphically in figure 5.1, the gradient gives little information about
the local shape of the error surface, while the Hessian gives a great deal.

Bishop (1992), Werbos (1992), Buntine and Weigend (1994) calculate the full
Hessian H (the matrix of second derivative terms ∂2E/∂wi∂wj of the error E with

92
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respect to the weights w) of a backpropagation network, and MacKay (1991) calcu-
lates a reasonable estimate thereof—but even storing the full Hessian is impractical
for large networks. Becker and LeCun (1989), LeCun et al. (1990) efficiently com-
pute just the diagonal of the Hessian. This is useful when the trace of the Hessian
is needed, or when a diagonal approximation is being made—but there is no reason
to believe that the diagonal approximation is good in general, and it is reasonable to
suppose that, as the system grows, the diagonal elements of the Hessian become less
and less dominant. Further, the inverse of the diagonal approximation of the Hessian
is known to be a poor approximation to the diagonal of the inverse Hessian.

Here we derive an efficient technique for calculating the product of an arbitrary
vector v with the Hessian H. This allows information to be extracted from the
Hessian without ever calculating or storing the Hessian itself. A common use for an
estimate of the Hessian is to take its product with various vectors. This takes O(n2)
time when there are n weights. The technique we derive here finds this product in
O(n) time and space,1 and does not make any approximations.

We first operate in a very general framework, to develop the basic technique.
We then apply it to a series of more and more complicated systems, starting with a
typical non-iterative gradient calculation algorithm, in particular a backpropagation
network, and proceeding to some deterministic relaxation systems, and then to some
stochastic systems, in particular a Boltzmann Machine and a weight perturbation
system. Finally, we experiment with a technique for accelerating convergence by
stiffening the principal eigenspace.

5.2 The Relation Between the Gradient and the

Hessian

The basic technique is to note that the Hessian matrix appears in the Taylor expansion
of the gradient about a point in weight space,

∇
w
(w +∆w) = ∇

w
(w) +H∆w +O(||∆w||2)

where w is a point in weight space, ∆w is a perturbation of w, ∇
w

is the gradient,
the vector of partial derivatives ∂E/∂wi, and H is the Hessian, the matrix of second
derivatives of E with respect to each pair of elements of w (shown geometrically in
figure 5.2.) In chapter 4 this equation was used to analyze the convergence properties
of some variants of gradient descent (Widrow et al., 1976; LeCun et al., 1991; Pearl-
mutter, 1992a), and to approximate the effect of deleting a weight from the network
(LeCun et al., 1990; Hassibi and Stork, 1993). Here we instead use it by choosing
∆w = rv, where v is a vector and r is a small number. We wish to compute Hv.

1Or O(pn) time when, as is typical for supervised neural networks, the full gradient is the sum
of p gradients, each for one single exemplar.
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bowl ravine

pit saddle

Figure 5.1: The gradient is the same; the difference is in the second-order structure.

Now we note that

H(rv) = rHv = ∇
w
(w + rv)−∇

w
(w) +O(r2)

or, dividing by r,

Hv =
∇
w
(w + rv)−∇

w
(w)

r
+O(r). (5.1)

w

∆(w)

w∆

w+ w∆

∆w+ w∆( )

∆(w)∆w+ w∆( )−
H w∆ =

∆w+ w∆( )
w∆

Figure 5.2: A geometric interpretation of the relation between the Hessian and the
gradient.
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This equation provides a simple approximation algorithm for finding Hv for any
system whose gradient can be efficiently computed, in time about that required to
compute the gradient (assuming that the gradient at w has already been computed.)
Also, applying the technique requires minimal programming effort. This approxi-
mation was used to good effect in LeCun, Simard, and Pearlmutter (1993) and in
many numerical analysis optimization routines, which use it to gradually build up an
approximation to the inverse Hessian.

Unfortunately, this formula is succeptible to numeric and roundoff problems. The
constant r must be small enough that the O(r) term is insignificant. But as r becomes
small, large numbers are added to tiny ones in w+rv, causing a loss of precision of v.
A similar loss of precision occurs in the subtraction of the original gradient from the
perturbed one, because two nearly identical vectors are being subtracted to obtain
the tiny difference between them.

5.3 The R{·} Technique

Fortunately, there is a way to make an algorithm which exactly computes Hv, rather
than just approximating it, and simultaneously rid ourselves of these numeric diffi-
culties. To do this, we first take the limit of equation (5.1) as r → 0. The left hand
side stays Hv, while the right hand side matches the definition of a derivative, and
thus

Hv = lim
r→0

∇
w
(w + rv)−∇

w
(w)

r
=

∂

∂r
∇
w
(w + rv)

∣∣∣∣∣
r=0

(5.2)

As we shall see, there is a simple transformation to convert an algorithm that
computes the gradient of the system into one that computes this new quantity. The
key to this transformation is to define the operator

R
v
{f(w)} ≡ ∂

∂r
f(w + rv)

∣∣∣∣∣
r=0

(5.3)

so Hv = R
v
{∇

w
(w)}. (To avoid clutter we will usually write R{·} instead of R

v
{·}.)

We can then take all the equations of a procedure that calculates a gradient, e.g.
the backpropagation procedure, and we can apply the R

v
{·} operator to each equa-

tion. Because R{·} is a differential operator, it obeys the usual rules for differential
operators, such as:

R{cf(w)} = cR{f(w)} (5.4)

R{f(w) + g(w)} = R{f(w)}+R{g(w)}
R{f(w)g(w)} = R{f(w)} g(w) + f(w)R{g(w)}
R{f(g(w))} = f ′(g(w))R{g(w)}

R
{
df(w)

dt

}
=

dR{f(w)}
dt
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Also note that
R{w} = v. (5.5)

These rules are sufficient to derive, from the equations normally used to compute
the gradient, a new set of equations about a new set of R-variables. These new
equations make use of variables from the original gradient calculation on their right
hand sides. This can be thought of as an adjoint system to the gradient calculation,
just as the gradient calculation of backpropagation can be thought of as an adjoint
system to the forward calculation of the error measure. This new adjoint system
computes the vector R{∇

w
}, which is precisely the vector Hv which we desire.

5.4 Application of the R{·} Technique to Various

Networks

Let us utilize this new technique for transforming the equations that compute the
gradient into equations that compute Hv, the product of a vector v with the Hessian
H. We will, rather mechanically, derive appropriate algorithms for some standard
sorts of neural networks that typify three broad classes of gradient calculation al-
gorithms. These examples are intended to be illustrative, as the technique applies
equally well to most other gradient calculation procedures, such as networks with
weight sharing, weight decay, Sigma-Pi networks (Durbin and Rumelhart, 1989; Mel
and Koch, 1990), RTRL (Robinson and Fallside, 1988; Williams and Zipser, 1989)
and see section 3.3.2, the extended Kalman filter (Matthews, 1990; Williams, 1992),
or even the linearity-based recurrent network gradient calculation technique of (Sun
et al., 1992).

Usually the error E is the sum of the errors for many patterns, E =
∑

pEp. There-
fore ∇

w
and H are sums over all the patterns, H =

∑
pHp, and Hv =

∑
pHpv. As is

usual, for clarity this outer sum over patterns is not shown except where necessary,
and the gradient and Hv procedures are shown for only a single exemplar.

5.4.1 Simple Backpropagation Networks

Let us apply the above procedure to a simple backpropagation network, to derive the
R{backprop} algorithm, a set of equations that can be used to efficiently calculate Hv

for a backpropagation network. In press, I found that the R{backprop} algorithm
was independently discovered a number of times. Werbos (1988a, eq. 14) derived
it as a backpropagation process to calculate Hv = ∇

w
(v · ∇

w
E), where ∇

w
E is

also calculated by backpropagation. That derivation is dual to the one given here,
in that the direction of the equations is reversed, the backwards pass of the ∇

w
E

algorithm becoming a forward pass in the Hv algorithm, while here the direction of
the equations is unchanged. Another derivation is given in Møller (1993a). Also, the
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procedure is known to the automatic differentiation community (Christianson, 1992;
Kim, Nesterov, and Cherkassky, 1985).

For convenience, we will now change our notation for indexing the weights w. Let
w be the weights, now doubly indexed by their source and destination units’ indices,
as in wij, the weight from unit i to unit j. Because v is of the same dimension asw, its
elements will be similarly indexed. All sums over indices are limited to weights that
exist in the network topology. As is usual, quantities which occur on the left sides of
the equations are treated computationally as variables, and calculated in topological
order, which is assumed to exist because the weights, regarded as a connection matrix,
is zero-diagonal and can be put into triangular form (Werbos, 1974).

The forward computation of the network is2

xi =
∑

j

wjiyj (5.6)

yi = σi(xi) + Ii

where σi(·) is the nonlinearity of the ith unit, xi is the total input to the ith unit, yi
is the output of the ith unit, and Ii is the external input (from outside the network)
to the ith unit.

Let the error measure be E = E(y), and its simple direct derivative with respect
to yi be ei = dE/dyi. We assume that ei depends only on yi, and not on any yj for
j 6= i. This is true of most common error measures, such as squared error or cross
entropy (Hinton, 1987).3 We can thus write ei(yi) as a simple function. The backward
pass is then

∂E

∂yi
= ei(yi) +

∑

j

wij
∂E

∂xj

(5.7)

∂E

∂xi
= σ′

i(xi)
∂E

∂yi
∂E

∂wij
= yi

∂E

∂xj

Applying R{·} to the above equations gives

R{xi} =
∑

j

(wjiR{yj}+ vjiyj) (5.8)

R{yi} = R{xi} σ′
i(xi)

2This compact form of the backpropagation equations, due to Fernando Pineda, unifies the special
cases of input units, hidden units, and output units. In the case of a unit i with no incoming weights,
i.e. an input unit, it simplifies to yi = σi(0)+ Ii, allowing the value to be set entirely externally. For
a hidden unit or output i, the term Ii = 0. In the corresponding equations for the backward pass
(5.7) only the output units have nonzero direct error terms ei, and since such output units have no
outgoing weights, the situation for an output unit i simplifies to ∂E/∂yi = ei(yi).

3If this assumption is violated then in equation (5.9) the e′i(yi)R{yi} term generalizes to∑
j(∂ei/∂yj)R{yj}.
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for the forward pass, and, for the backward pass,

R
{
∂E

∂yi

}
= e′i(yi)R{yi}+

∑

j

(
wijR

{
∂E

∂xj

}
+ vij

∂E

∂xj

)
(5.9)

R
{
∂E

∂xi

}
= σ′

i(xi)R
{
∂E

∂yi

}
+R{xi} σ′′

i (xi)
∂E

∂yi

R
{

∂E

∂wij

}
= yiR

{
∂E

∂xj

}
+R{yi}

∂E

∂xj

The vector whose elements are R{∂E/∂wij} is just R{∇
w
} = Hv, the quantity we

wish to compute.

For sum squared error ei(yi) = yi− di where di is the desired output for unit i, so
e′i(yi) = 1. This simplifies (5.9) for simple output units to R{∂E/∂yi} = R{yi}. Note
that, in the above equations, the topology of the neural network sometimes results in
some R-variables being guaranteed to be zero when v is sparse—in particular when
v = (0 · · · 0 1 0 · · · 0), which can be used to compute a single desired column of the
Hessian. In this situation, some of the computation is also shared between various
columns.

5.4.2 Recurrent Backpropagation Networks

The recurrent backpropagation algorithm discussed in section 3.2.3 consists of a set
of forward equations which relax to a solution for the gradient,

xi =
∑

j

wjiyj (5.10)

dyi
dt

∝ −yi + σi(xi) + Ii

dzi
dt
∝ −zi + σ′

i(xi)
∑

j

(wijzj) + ei(yi)

∂E

∂wij

= yizj |t=∞

Adjoint equations for the calculation of Hv are obtained by applying the R{·} oper-
ator, yielding

R{xi} =
∑

j

(wjiR{yi}+ vjiyj) (5.11)

dR{yi}
dt

∝ −R{yi}+ σ′
i(xi)R{xi}

dR{zi}
dt

∝ −R{zi}+ σ′
i(xi)

∑

j

(vijzj + wijR{zj}) + σ′′
i (xi)R{xi}

∑

j

(wijzj) + e′i(yi)R{yi}

R
{

∂E

∂wij

}
= yiR{zj}+R{yi} zj |t=∞
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These equations specify a relaxation process for computing Hv. Just as the relaxation
equations for computing ∇

w
are linear even though those for computing y and E are

not, these new relaxation equations are linear.

5.4.3 Deterministic Boltzmann Machines

Deterministic (or Mean Field) Boltzmann Machines (reviewed in section 3.2.4) have
relaxation equations, similar in spirit to those of recurrent backpropagation networks,
so application of the R{·} technique to them is precisely analogous to the procedure
above. The gradient is calculated by

yi = σ(xi/T ) (5.12)

xi =
∑

j

wjiyj

pij = 〈yiyj〉 =
∑

α

P (α)y
(α)
i y

(α)
j

∂G

∂wij

= (p+ij − p−ij)/T

where the weight matrix is symmetric, wij = wji and zero diagonal, wii = 0, T is
the temperature, G is the same error term used in stochastic Boltzmann Machines
as described below, the + and − superscripts denote different environmental distri-
butions, and P (α) is the probability of the pattern α over the visible units occurring
in the environment, typically implicitly computed by summing over samples drawn
from the environment.

We apply R{·} and get

R{yi} = σ′(xi/T )R{xi} /T (5.13)

R{xi} =
∑

j

(wjiR{yj}+ vjiyj)

R{pij} =
∑

α

P (α)
(
R
{
y
(α)
i

}
y
(α)
j + y

(α)
i R

{
y
(α)
j

})

R
{

∂G

∂wij

}
=

(
R
{
p+ij
}
−R

{
p−ij
})

/T.

where P (α), the environmental probability of pattern α over the visible units is a
constant because it is independent of the network.

5.4.4 Stochastic Boltzmann Machines

One might ask whether this technique can be used to derive a Hessian multiplication
algorithm for a classic Boltzmann Machine (Ackley et al., 1985), which is discrete
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and stochastic, unlike its continuous and deterministic cousin to which application of
R{·} is simple. A classic Boltzmann Machine operates stochastically, with its binary
unit states si taking on random values according to the probability

P (si = 1) = pi = σ(xi/T ) (5.14)

xi =
∑

j

wjisj

At equilibrium, the probability of a state α of all the units (not just the visible units)
is related to its energy

Eα =
∑

i<j

sαi s
α
jwij (5.15)

by P (α) = Z−1 exp−Eα/T , where the partition function is Z =
∑

α exp−Eα/T . The
system’s equilibrium statistics are sampled because, at equilibrium,

∂G

∂wij
=
(
p+ij − p−ij

)
/T (5.16)

where pij = 〈sisj〉, G is the asymmetric divergence, an information theoretic measure
of the difference between the environmental distribution over the output units and
that of the network, as used in Ackley et al. (1985), T is the temperature, and the +
and − superscripts indicate the environmental distribution, + for waking and − for
hallucinating.

Applying the R{·} operator, we obtain

R
{

∂G

∂wij

}
=
(
R
{
p+ij
}
−R

{
p−ij
})

/T. (5.17)

We shall soon find it useful if we define

Dα = R{Eα} =
∑

i<j

sαi s
α
j vij (5.18)

qij = 〈sisjD〉 (5.19)

(with the letter D chosen because it has the same relation to v that E has to w) and
to note that

〈D〉 =
∑

i<j

pijvij . (5.20)

With some calculus, we find R{exp−Eα/T} = −P (α) Z Dα/T , and thus R{Z} =
−Z 〈D〉 /T . Using these and the relation between the probability of a state and its
energy, we have

R{P (α)} = P (α) (〈D〉 −Dα) /T (5.21)

where the expression P (α) can not be treated as a constant because it is defined over
all the units, not just the visible ones, and therefore depends on the weights. This
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can be used to calculate

R{pij} =
∑

α

R{P (α)} sαi sαj

=
∑

α

P (α) (〈D〉 −Dα) s
α
i s

α
j /T

= (〈sisj〉 〈D〉 − 〈sisjD〉) /T
= (pij 〈D〉 − qij) /T. (5.22)

This beautiful formula4 gives an efficient way to compute Hv for a Boltzmann Ma-
chine, or at least as efficient a way as is used to compute the gradient, simply by using
sampling to estimate qij. This requires the additional calculation and broadcast of
the single global quantity D, but is otherwise local.

The collection of statistics for the gradient is sometimes accelerated by using the
equation

pij = 〈si〉 〈sj|si = 1〉 = 〈pi〉 〈pj |si = 1〉 . (5.23)

The analogous identity for accelerating the computation of qij is

qij = 〈pi〉 〈sjD|si = 1〉 (5.24)

or
qij = 〈pi〉 〈pj(D + (1− sj)∆Dj)|si = 1〉 (5.25)

where ∆Di =
∑

j sjvji is defined by analogy with ∆Ei = E|si=1 − E|si=0 =
∑

j sjwji.

The derivation here was for the simplest sort of Boltzmann Machine, with binary
units and only pairwise connections between the units. However, the technique is
immediately applicable to higher-order Boltzmann Machines (Sejnowski, 1986), as
well as to Boltzmann Machines with non-binary units (Movellan and McClelland,
1991).

5.4.5 Weight Perturbation

In weight perturbation (Jabri and Flower, 1991; Alspector, Meir, Yuhas, and Jayaku-
mar, 1993; Flower and Jabri, 1993; Kirk, Kerns, Fleischer, and Barr, 1993; Cauwen-
berghs, 1993) the gradient ∇

w
is approximated using only the globally broadcast

result of the computation of E(w). This is done by adding a random zero-mean
perturbation vector ∆w to w repeatedly and approximating the resulting change in
error by

E(w +∆w) = E(w) + ∆E = E(w) +∇
w
·∆w.

4Equation (5.22) is similar in form to that of the gradient of the entropy (Geoff Hinton, personal
communication.)
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From the viewpoint of each individual weight wi

∆E = ∆wi
∂E

∂wi
+ noise. (5.26)

Because of the central limit theorem it is reasonable to make a least-squares estimate
of ∂E/∂wi, which is ∂E/∂wi = 〈∆wi∆E〉/〈∆w2

i 〉. The numerator is estimated from
corresponding samples of ∆wi and ∆E, and the denominator from prior knowledge
of the distribution of ∆wi. This requires only the global broadcast of ∆E, while each
∆wi can be generated and used locally.

It is hard to see a way to mechanically apply R{·} to this procedure, but we can
nonetheless derive a suitable procedure for estimating Hv. We note that a better
approximation for the change in error would be

E(w +∆w) = E(w) +∇
w
·∆w + 1

2
∆wT Ĥ∆w (5.27)

where Ĥ is an estimate of the Hessian H. We wish to include in Ĥ only those
properties of H which are relevent. Let us define z = Hv. If Ĥ is to be small
in the least squares sense, but also Ĥv = z, then the best choice would then be
Ĥ = zvT/||v||2, except that then Ĥ would not be symmetric, and therefore the error
surface would not be well defined. Adding the symmetry requirement, which amounts
to the added constraint vT Ĥ = zT , the least squares Ĥ becomes

Ĥ =
1

||v||2
(
zvT + vzT − v · z

||v||2vv
T

)
. (5.28)

Substituting this in and rearranging the terms, we find that, from the perspective of
each weight,

∆E = ∆wi
∂E

∂wi

+
∆w · v
||v||2

(
∆wi −

∆w · v
2||v||2 vi

)
zi + noise. (5.29)

This allows both ∂E/∂wi and zi to be estimated in the same least-squares fashion
as above, using only locally available values, vi and ∆wi, and the globally broadcast
∆E, plus a new quantity which must be computed and globally broadcast, ∆w · v.
The same technique applies equally well to other perturbative procedures, such as
the unit perturbation of Flower and Jabri (1993), and a similar derivation can be
used to find the diagonal elements of H, without the need for any additional globally
broadcast values.

5.5 Practical Applications

The R{·} technique makes it possible to calculate Hv efficiently. This can be used
in the center of many different iterative algorithms, in order to extract particular
properties of H. In essence, it allows H to be treated as a generalized sparse matrix.
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5.5.1 Finding Eigenvalues and Eigenvectors

Standard variants of the power method allow one to

• Find the largest few eigenvalues of H, and their eigenvectors.

• Find the smallest few eigenvalues of H, and their eigenvectors.

• Sample H’s eigenvalue spectrum, along with the corresponding eigenvectors.

The clever Skilling (1989a) algorithm estimates the eigenvalue spectrum of a gener-
alized sparse matrix. It starts by choosing a random vector v0, calculating vi = Hiv0

for i = 1, . . . , m, using the dot products vi · vj as estimates of the moments of the
eigenvalue spectrum, and using these moments to recover the shape of the eigenvalue
spectrum. This algorithm is made applicable to the Hessian by the R{·} technique,
in both deterministic and, with minor modifications, stochastic gradient settings.

5.5.2 Multiplication by the Inverse Hessian

It is frequently necessary to find x = H−1b, which is the key calculation of all
Newton’s-method second-order numerical optimization techniques, and is also used
in the Optimal Brain Surgeon technique, and in some techniques for predicting the
generalization rate. The R{·} technique does not directly solve this problem, but
instead one can solve Hx = b for x by minimizing ||Hx− b||2 using the conjugate-
gradient method, thus exactly computing x = H−1b in n iterations without calcu-
lating or storing H−1. This squares the condition number, but if H is known to be
positive definite, one can instead minimize xTHx/2 + x · b, which does not square
the condition number (Press et al., 1988, page 78). This application of fast exact
multiplication by the Hessian, in particular R{backprop}, was independently noted
in Werbos (1988a).

5.5.3 Step Size and Line Search

Many optimization techniques repeatedly choose a direction v, and then proceed
along that direction some distance µ, which takes the system to the constrained
minimum of E(w + µv). Finding the value for µ which minimizes E is called a line
search, because it searches only along the line w + µv. There are many techniques
for performing a line search. Some are approximate while others attempt to find an
exact constrained minimum, and some use only the value of the error, while others
also make use of the gradient.

In particular, the line search used within the Scaled Conjugate Gradient (SCG) op-
timization procedure, in both its deterministic (Møller, 1993b) and stochastic (Møller,
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Figure 5.3: Geometric interpretation of approximate line search along direction v.

1993c) incarnations, makes use of both first- and second-order information at w to
determine how far to move. The first order information used is simply ∇

w
(w), while

the second-order information is precisely Hv, calculated with the one-sided finite dif-
ference approximation of equation (5.1). It can thus benefit immediately from the
exact calculation of Hv. In fact, the R{backprop} procedure was independently dis-
covered for that application by Møller (1993a), and reviewed in comparitive studies
by Jervis and Fitzgerald (1993).

The SCG line search proceeds as follows. Assuming that the error E is well
approximated by a quadratic, then the product Hv and the gradient ∇

w
(w) predicts

of the gradient at any point along the line w + µv by

∇
w
(w + µv) = ∇

w
(w) + µHv +O(µ2). (5.30)

Disregarding the O(µ2) term, if we wish to choose µ to minimize the error, we take
the dot product of ∇

w
(w+µv) with v and set it equal to zero, as the gradient at the

constrained minimum must be orthogonal to the space under consideration, as shown
in figure fig:linesearch. This gives v · ∇

w
(w) + µvTHv = 0 or

µ = −v · ∇w(w)

vTHv
. (5.31)

Equation (5.30) then gives a prediction of the gradient at w + µv. To access the ac-
curacy of the quadratic approximation we might wish to compare this with a gradient
measurement taken at that point, or we might even preemptively take a step in that
direction.

Divorced from the SCG algorithm, another application for this way of calculating
µ is to eliminate the step size η of conventional gradient descent, which uses

wt+1 = wt − η∇
w
(wt)

to gradually minimize E. Gradient descent suffers not only from a poor convergence
rate, but also from the need to constantly tune η for rapid convergence as the mini-
mization proceeds. The above simple line search suggests the use of η = −µ at each
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step, or

wt+1 = wt −
||∇

w
(wt)||2

∇
w
(wt)TH∇w(wt)

∇
w
(wt). (5.32)

The necessary modifications for gradient descent with momentum are trivial, as are
the appropriate modifications for a stochastic gradient setting. Of course, this simple
procedure needs to be augmented by mechanisms to check that vTHv > 0, and that
the quadratic assumption is not inaccurate enough to cause failure to reduce E at
each step.

5.5.4 Optimization of Stochastic Gradient Descent

The technique descibed in the previous section is, at least as stated, suitable only for
deterministic gradient descent. In many systems, particularly large ones, determinis-
tic gradient descent is impractical; only noisy estimates of the gradient are available.
In joint work with colleagues at AT&T Bell Labs (LeCun et al., 1993), the approx-
imation technique of equation (5.1) enabled H to be treated as a generalized sparse
matrix, and properties of H were extracted in order to accelerate the convergence of
stochastic gradient descent.

Information accumulated online, in particular eigenvalues and eigenvectors of the
principal eigenspace, was used to linearly transform the weight space in such a way
that the ill-conditioned off-axis long narrow valleys in weight space, which slow down
gradient descent, become well-conditioned circular bowls, as shown in figure 5.4. This
work did not use an exact value for Hv, but rather a stochastic unbiased estimate
of the Hessian based on just a single exemplar at a time. Computations of the form
x(t) = H(t)v were replaced with relaxations of the form x(t) = (1−α)x(t−1)+αĤ(t)v,
where 0 < α ≪ 1 determines the trade-off between steady-state noise and speed of
convergence.

The key technique was to use the power method to compute the principal eigen-
vector with

v← (1− a)v +
a

||v||Ĥv (5.33)

where a is a small constant and Ĥ an unbiased estimate of the Hessian H. The vector
v will converge to the princpal eigenvector of the true Hessian, and its length to the
corresponding eigenvalue, at a rate determined jointly by a and the ratio between
the principal and the next largest eigenvalues, and with a noise level determined by
a. In practice the convergence has been found to be extremely rapid for networks of
interest.

Different learning rates were then used in the space spanned by this principal
eigenvector, and in the orthogonal remainder of the weight space.5 The efficacy of this

5The technique could be generalized by maintaining not just one principal eigenvector, which
evolves according to the above equation, but several of them, continuously orthogonalized, which
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Figure 5.4: In the coordinate system defined by the weights, gradient descent is slow.
By stretching the space in the direction of the principal eigenvector, gradient descent
is accelerated. In the new coordinate system, the weights are no longer orthogonal,
but become coupled.

approach was measured through experimentation on a very difficult two-dimensional
problem, optimization of Rosenbrock’s function from a starting point of (w1, w2) =
(−1.5, 1). Figure 5.5 shows that the global learning rate can be increased when
the principal eigenspace is stiffened. This problem is ideal for the technique being
considered, so if it cannot outperform the competition here, it certainly will not be
able to do so elsewhere. Figure 5.6 shows the behavior of gradient descent with
momentum on this problem. Figure 5.7 shows that, in the crucial regime of following
a curving ravine, the new technique seems slightly superior to conjugate gradient.
Note how conjugate gradient expends a great deal of effort keeping to the precise
floor of the ravine, while the gradient-based technique is content to ride up the bank
as the ravine curves.

In practice, although this technique seems to perform about as well as conjugate
grdient methods on small low-dimensional problems particularly suited for it, it does

span a higher-dimensional principal eigenspace. Examination of the eiganvalue spectrum for our
benchmark problems showed no large gaps, so there is no reason to believe that the speedup per
tracked eigenvector would rise with the number of tracked eigenvectors. In fact, the measured spectra
predict the reverse.
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not appear to be competitive with the Sutton (1992a) incremental delta-bar-delta
technique for adapting per-weight learning rates. When per-weight learning rate
adaptation is employed, the principal eigenvalue of the Hessian is not much larger
than the second largest eigenvalue, and so on. Such small separations obviously bode
ill for the eigenstiffening technique in concert with incremental delta-bar-delta. Even
without incremental delta-bar-delta, some simple experiments on the the NETtalk

dataset using vanilla three-layer networks, with symmetric sigmoids and zero-mean in-
puts, the spread between the principal eigenvalue and its nearest competitor averaged
about 20%—a small enough separation to make the overhead of the eigenstiffening
technique outweigh its benefits.

Another way to view this is that the eigenstiffening technique proposed here can
give a speedup of at most λmax/λmax−1. Typically this is not a very large number;
perhaps two or three under exceptionally fortunate circumstances. Other advanced
stochastic gradient methods can also obtain speedups in this ballpark, and with con-
siderably less overhead and tuning. So we conclude that, at least without further
advances in stochastic optimization algorithms, this technique is deserving of further
research, but is not a serious alternative to current methods for production use.

In all fairness, it must also be pointed out that the basic idea upon which this
stochastic gradient descent optimization scheme is based, namely that the direction
of the principal eigenvector of the Hessian is the most difficult to optimize, is ques-
tionable. Although true in the batch setting, in the stochastic setting, in the terminal
convergence regime, convergence is also limited by the noise. If the covariance matrix
of the noise is nonspherical then the initial transients can be sped up by transforming
the space to make the noise spherical, but this does not help with asymptotic con-
vergence. It is sometimes conjectured that, in practice, stochastic gradient systems
typically are run in the transient regime (that is, where the limitation on the learning
rate η imposed by the principal eigenvalue of the Hessian is below the η dictated
solely by the ratio between the distance to the minimum and the standard deviation
of the noise). This of course makes assessing or comparing the performance of dif-
ferent optimization techniques very difficult, because their transient performance is
(a) difficult to define, and (b) quite susceptible to tuning, initial conditions, and the
initial values of automatically adjusted parameters of the optimization algorithm.

5.5.5 Second-Order Optimization Techniques

Optimization techniques like Levenberg-Marquart, Broyden-Fletcher-Goldfarb-Shan-
no, and SQB use approximations to the inverse Hessian. Many techniques for ana-
lyzing, estimating, and enhancing generalization in neural networks also make use of
the Hessian or its inverse.

The conjugate gradient optimization takes n iterations, where one iteration in-
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Figure 5.5: The depression parameter, which controls the extra stiffness of the system
in the direction of the estimated principal eigenvector, allows the automatic controller
to raise the learning rate η significantly. Note that the y axis is plotted on a loga-
rithmic scale. The domain is a two dimensional optimization problem: minimization
of Rosenbrocks function.

volves one multiplication by the Hessian, and is thus O(n).6 This gives an O(n2)-

6In actuality, when we are not too concerned with having an exact solution, it is possible to
make do with many fewer iterations, and it is also sometimes possible to make do with stochastic
techniques. Also, when the problem is quadratic, the exact solution (rather than an approximation)
is obtained in exactly n steps.
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Figure 5.6: This graph illustrates the oscillatory effect of near-optimal values of mo-
mentum (α = 0.9, 0.91, 0.92) on gradient descent with momentum optimization of
Rosenbrock’s function. Lower values of α would supress the oscillations, but con-
vergence would be slower. Higher values of momentum would lead to even wilder
oscillations, enough to slow or even halt convergence, or to escape from the basin of
attraction.

time, O(n)-space technique for multiplying an arbitrary vector by the inverse Hessian.
The same order of time that would be required even if the inverse Hessian itself were
available for free, except that just storing the inverse Hessian requires O(n2)-space.

5.6 Summary and Conclusion

Second-order information about the error is of great practical and theoretical im-
portance. It allows sophisticated optimization techniques to be applied, appears in
many theories of generalization, and is used in sophisticated weight pruning proce-
dures. Unfortunately, the Hessian matrixH, whose elements are the second derivative
terms ∂2E/∂wi∂wj , is unwieldy. We have derived the R{·} technique, which directly
computes Hv, the product of the Hessian with a vector. The technique is

• exact: no approximations are made.
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Figure 5.7: The weight-space trajectory of a standard tuned conjugate gradient tech-
nique vs. gradient descent with automatic stiffening of the principal eigenspace on
Rosenbrock’s function. Top panel: conjugate gradient technique. Bottom two panels:
gradient descent with automatic stiffening of the principal eigenspace. No momentum
was used. The global learning rate η was adjusted automatically, by a standard vari-
ant of the delta-bar-delta rule. The learning rate η was initialized with a value five
orders of magnitude below the optimal, which accounts for the slow startup times.
Each point in the graphs represents a gradient evaluation. Note that more evalua-
tions are made by conjugate gradient in the critical regime along the bottom curve
of the ravine. This regime is typical of most of the time spent in optimization of
backpropagation networks.

• numerically accurate: there is no drastic loss of precision.
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• efficient: it takes about the same amount of computation as a gradient calcu-
lation.

• flexible: it applies to all existing gradient calculation procedures.

• robust: if the gradient calculation gives an unbiased estimate of ∇
w
, then our

procedure gives an analogous unbiased estimate of Hv.

Procedures that result from the applications of the R{·} technique are about as
local, parallel, and efficient as the original untransformed gradient calculation. The
technique applies naturally to backpropagation networks, recurrent networks, relax-
ation networks, Boltzmann Machines, and perturbative methods. This new class of
algorithms for efficiently multiplying vectors by the Hessian can facilitate the con-
struction of stochastic optimization and pruning algorithms that make explicit use of
second-order structure, but are nonetheless efficient in both space and time.



Chapter 6

Final Words

6.1 Potential Applications: Recurrent and Tem-

porally Continuous Networks

In this thesis we have only touched on a few of many possible applications of the the-
oretical results and algorithms. Most chapters contain their own sections discussing
potential applications and directions for future research. We will not repeat that
material here. Instead, we will tie up, or at least describe, some loose ends. In partic-
ular, this chapter will discuss some potential application for the networks described in
chapter 3 in control domains, or using control architectures applied to other domains.

These musings will concentrate on temporally continuous domains, because the
networks of chapter 3 are temporally continuous, which makes it difficult for them to
represent clocked phenomena. This can be thought of as a bias in the a priori expec-
tations of the learning algorithm, and insofar as this bias is correct it should speed
learning and enhance generalization. For an example of this effect, Williams and
Zipser report difficulty in training a clocked recurrent network to exhibit sinusoidal
motion without teacher forcing (Williams and Zipser, 1988). In contrast, an other-
wise architecturally similar, but temporally continuous, network was easily trained to
exhibit sinusoidal motion (see chapter 3).

These applications are different in character from the straightforward way in which
neural networks are typically applied to real-world domains, in that they involve using
the basic network architecture as components of larger systems, rather than as black
boxes that solve a problem in isolation.

6.1.1 Generative Continuous Backpropagation

Generative techniques (Levin, 1991) are a way to run a connectionist network back-
wards, generating inputs that are locally optimal for producing the observed output.

112
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It is analogous to the way a hidden Markov model is run in performance mode to pro-
duce the input that most probably produced the observed output, and philosophically
in the vein of the motor theory of speech recognition (Lane, 1965; Studdert-Kennedy,
Liberman, Harris, and Cooper, 1970; Mattingly and Studdert-Kennedy, 1991).

Consider a network of the sort discussed in chapter 3. The network has initial
states yi(t0) and driving inputs Ii(t). Let the set of cases we wish to teach the network
be indexed by α, where each case consists of initial values and driving inputs for a
subset of the nodes in the network, along with desired outputs for some of the nodes.
Further, let the inputs for all the cases be divided into two disjoint sets, A and B,
where the inputs to the units in case A are given by the task, but the inputs from set
B are permitted to change as learning occurs.

Learning a generative model involves doing gradient descent not only in the in-
ternal parameters of the network, but also on Iαi and yαi (t0) for i ∈ B. But Iαi is
a function, so in order to use gradient descent to optimize it we use a variational
expression,

∆Ii = −ǫ
δE

δIi
.

If we follow this naive procedure, we would expect the learning to use the driving
inputs to pull the units up and down quickly in order to perform the task, making
the magnitudes of both Ii and its derivative large. (This is because optimal control
under these circumstances is bang-bang control, and therefore this holds regardless of
the relative dimensionalities of the input and output.) In order to prevent the network
from encapsulating so much information in Ii it is natural to use a regularization term,
so we add a term like ∫ ∑

i∈B

(
dIi(t)

dt

)2

dt

to the original E. The precise form of this term depends on the task, and details on
appropriate regularizers are readily found in the computer vision literature. (In gen-
eral, it would seem appropriate for the regularizer to penalize a function I according
to how much information it carries.) A comprehensive bibliography is available from
Szeliski (1988).

In performance mode, we have only the output and neither the A nor the B
components of the input. Therefore, we do gradient descent on all the inputs while
holding the network’s internal parameters constant. Because we are doing gradient
descent on the A portion of the inputs, we will require an additional regularization
term to prevent these from becoming too choppy. In general, the regularization term
for the A subset of the inputs need bear no relationship to that for the B subset.
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6.1.2 Signal Processing and Sensor Integration

Signal processing is a very natural domain from an architectural viewpoint; a network
receives inputs from sensors and its outputs are trained to be the values of the under-
lying variables. Gradient descent is used to optimize the network’s transfer function
into a (locally) optimal filter. The catch is that the values of the underlying variables
must be known in order to train a network to generate them. The straightforward way
to accomplish this is to simply measure them with accurate sensors, as in figure 6.1.

This same architecture can also do sensor integration, since sensor integration can
simply be regarded as having more inputs, each of which is related to the desired
output in a more subtle and noisy fashion.

There are two problems with this architecture. First, the underlying variables
are not always known. Second, there is a distinction between training mode and
performance mode, since there would be no point in using such a network if the more
accurate sensors were always available. As new sorts of sensors became available, or
as the sensors in use degraded, costly off-line retraining would be required.

One approach to overcoming these problems is to use a different set of target
values for the network. The reason that the underlying variables are important is
presumably that they contain all the information relevent to the future and none of
the transient noise which will soon dissipate. In order to learn underlying variables,
we can require the network to predict its input values for some time in the future, as
in figure 6.2.

The major free variable in this architecture is the amount of time in the future
that the network is to predict. This value should be long enough that any transient
sensor noise has washed out of the signal, but short enough that even the smallest
actual signal in the input is relevent. Of course, without detailed knowledge of the
sensor and process characteristics, it is impossible to determine if these constraints
can be met simultaniously.

Rather than using a fixed prediction period, we could have the network predict the
sensor readings at a number of times in the future, at the expense of more computation
resulting from a larger network.

If the nonlinear networks of figure 6.2 are replaced by simple linear networks, then
the result of the optimization process is a factor analysis—which could be computed
directly using standard techniques. It might be a good idea to use factor analysis
to extract all the available linear structure, and preloading the network with ini-
tial weights encapsulating this information, before attempting to discover nonlinear
structure in the time series.

The squared prediction error being minimized in either the linear or nonlinear
predictors discussed above can be viewed as giving lower bounds on the mutual in-
formation given by the structure extracted from the history about the future. It
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Figure 6.1: A network being trained to perform signal processing. The dashed line
indicates propagation of error signals, used during training. The network’s inputs are
readings from inexpensive but inaccurate sensors. The output is trained to estimate
the corresponding readings from expensive sensors, which are available at training
time, but not in the field. An instance where this would be appropriate is in moni-
toring a wastewater treatment plant, where variables like opacity, conductivity, and
pH are readily available, but the underlying variables, like bacteria concentration,
biological oxygen levels, and the like, are quite expensive to monitor, and hence are
available only in pilot or research plants.

would therefore be tempting to extend this approach, to enable very high level fea-
tures to be extracted, by instead learning to extract features from the time series
that act as low-dimensional witnesses to mutual information between the past and
the future, as encapsulated by these features themselves having high entropy but also
being predicatable (having high conditional information from) both the past and the
future. Architectures of this sort have been explored both in the temporal domain
(Schmidhuber, 1992c, 1992a) and in the spatial domain (Becker and Hinton, 1992,



CHAPTER 6. FINAL WORDS 116

cheap
inaccurate

sensors

NN

process
physical

NN −

Z−n

underlying
variables

estimate of
low−dimensional

1

2

Figure 6.2: A network being trained to perform signal processing. Dashed lines
indicate propagation of error signals, used during training. The network’s task is to
use current sensor readings to produce a low-dimensional description of the current
state, where this description is valuable for predicting future sensor reading. The
value of the description for predicting future sensor readings (the Z−n indicates a
delay of n time steps) is assayed by training a second network to use the reduced
description for prediction.

1993).

6.2 Potential Applications: Fast Exact Multiplica-

tion by the Hessian

The R{·} family of techniques described in chapter 5 allows the calculation of the
product of the Hessian with a vector in about the same amount of time as a gradient
calculation. The gradient gives the slope of the error surface at a point, but the
combination of the gradient and the product Hv predicts the values of the gradient
along the line spanned by v. As described in the chapter, there are many potential
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applications of this technique, ranging from diagnosis, the simple characterization
of the local properties of the error surface, to faster optimization techniques, to ap-
plication to predicting and enhancing generalization. Preliminary experiments seem
to indicate that faster optimization will not be easily achieved using this family of
techniques. However, applications to generalization are being explored by a number
of groups, with apparent success.
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