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Abstract

Digital video is rapidly becoming an important source for information, entertainment and a
host of multimedia applications. With the size of these collections growing to thousands of hours,
technology is needed to effectively browse segments in a short time without losing the content of
the video. We propose a method to extract the significant audio and video information and create
a “skim” video which represents a short synopsis of the original. The extraction of significant
information, such as specific objects, audio keywords and relevant video structure, is made possi-
ble through the integration of techniques in image and language understanding. The resulting
skim is much smaller, and retains the essential content of the original segment.

This research is sponsored by the National Science Foundation under grant no. IRI-
9411299, the National Space and Aeronautics Administration, and the Advanced Research
Projects Agency. The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing official policies or endorsements, either
expressed or implied, of the United States Government.
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1 Introduction

With increased computing power and electronic storage capacity, the potential for large
digital video libraries is growing rapidly. These libraries, such as the Informedia ™ project at Car-
negie Mellon University [9], will consist of thousands of hours of video made available to a user
upon request. To access the library the information embedded within the digital video must be
easy to locate, manage and display. Even with intelligent content-based search algorithms being
developed [6], [15], multiple segments will be returned to insure retrieval of pertinent information
and the users will often need to view them to obtain final selections.

For many users, a query of interest is not always a full-length film. Unlike video-on-
demand, video libraries will provide informational access in the form of brief, content-specific
segments as well as full-featured videos. These segments will act as “video paragraphs” for the
entire broadcast, allowing the user to view the complete video by moving from one segment to the
next. In video libraries, the user will want to “skim” the relevant portions of video for the seg-
ments that are related in content to their query. To avoid time consuming searches, there must
exist technology to organize these collections so users can effectively retrieve and browse the
video data for specific content.

Browsing Digital Video

For the purpose of browsing, techniques such as increasing the video playback speed and
displaying video at fixed intervals offer little to convey content. Speeding up the video rate elimi-
nates the majority of the audio information and distorts much of the image information[3], while
showing separate video sections at fixed intervals merely gives a random estimate of the overall
content. Recently, techniques have proposed browsing representations based on information
within the video [12], [13], [14], [16]. These systems are primarily based on the motion of the
video, placement of individual scenes changes, and image statistics such as color and shape. Pres-
ently, no system automatically utilizes the specific contents of video, such as audio information,
specific types of objects in video, or areas of significance from camera structure. Browsing must
entail not only decreased viewing time, but also must preserve the essential message of the video.

An ideal browser would display only the video pertaining to a scene’s content, suppress-
ing irrelevant data. A separate video, containing only the images pertinent to content, would be
considerably smaller than the original source and could be used to skim the video in browsing. To
extract the significant images from a video would result in a smaller, content-specific version of
the original. The audio portion of this video should also consist of the significant audio or spoken
words, instead of simply using the synchronized portion of the audio corresponding to the
selected images.

The compacted video of the original could be used to view several segments or an entire
broadcast in much less time without losing the content and could be called during playback. The
user could sample many segments without actually viewing each in it’s entirety. The level of
compaction should be adjustable so a user could view sections with as much or as little content as
needed. To view a full-length feature, the user could watch at the lowest level of compression to
maintain content, while still reducing the viewing time from hours to minutes.

Video Skims
We describe a method to create a short synopsis of a video segment, a skimmed video.

Using various techniques in image and language understanding, we can extract the significant



words and images from a segment, and produce a skimmed video. Figure 1 illustrates the concept
of extracting the most representative information to create the skim.
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Figure 1: Skim video for drastic reduction in viewing time with-
out loss in content. The most significant frames from
a select scene are chosen for browsing. A single frame
is selected from the skim for iconic representation.
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The critical aspect of compressing a video is context understanding, which is the key to
choosing the “significant images and words” that should be included in the skim video. We can
characterize the significance of video through the integration of image and language understand-
ing. Segment breaks produced by image processing can be examined along with boundaries of
topics identified by the language processing of the transcript. The relative importance of each
scene can be evaluated by the objects that appear in it, the associated words and the structure of
the video scene. The skim is the smallest comprehensible video representation of the original seg-
ment. The lowest level of compaction is a single icon which could naturally be extracted from the
skim video frames since they contain the most significant information.

In the sections that follow, we describe the technology involved in video characterization
from audio and images embedded within the video, and the process of integrating this information
for skim creation. The results from this system will show the utility of the video skim as an effec-

tive means of browsing.



2 Video Characterization
Through techniques in image and language understanding, we can characterize scenes,

segments, and individual frames in video. Figure 2 illustrates an example of analyzing a video
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Figure 2: Characterization Technology for Skim Creation. The video is
segmented into scenes. Camera motions are detected along with
significant objects (faces and text). Bars indicate frames with pos-
itive results. Word relevance is evaluated in the transcript.

clip by various speech, language and image understanding techniques. For language understand-
ing, this entails identifying the most significant words in a given scene. For image understanding,
we identify frames which contain objects of importance as well as segmenting and identifying the
structual motion of the scene.

2.1 Keyword Selection

Language analysis works on the audio transcript to identify keywords in it. We use the
well-known technique of TF-IDF (Term Frequency Inverse Document Frequency) to identify crit-
ical words and their relative importance for the video document [6], [8]. The TF-IDF of a word is

f

IDF = — D
TF-IDF = 7

s

the frequency of a word in a given scene, f;, divided by the frequency of its appearance in a stan-



dard corpus, f.. A high TF-IDF signifies relative importance. Words that appear often in a particu-
lar segment, but appear relatively infrequently in the standard corpus receive the highest weights.
An example of the keyword selection results is shown in figure 3.

While we plan to automate the transcript creation process through speech recognition, we
currently rely on manual transcription and closed captions. Techniques in speech recognition will
also be used to segment video based on transitions between speakers and topics which are usually
marked by silence or low energy areas in the acoustic signal[2].
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Figure 3: keywords isolated from transcript through TF-IDF weights.
Words of highest relevance are indicated in bold.

2.2 Scene Segmentation

To analyze each segment as individual scenes, we must first identify frames where scene
changes occur. Several techniques have been developed for detecting scene breaks [11], [4], [13].
We choose to segment video through the use of a comparative histogram difference measure. For
our purpose we have found that this technique is simple, and yet robust enough to maintain high
levels of accuracy. By detecting significant changes in the weighted color histogram of each suc-
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cessive frame, image sequences can be separated into scenes. In the difference, D(¢), peaks are
detected and an empirical threshold is used to select scene breaks. Using only the histogram dif-
ference, we have achieved 90% accuracy on a test set of roughly 200,000 images (2 hours). An
example of the scene detection result is shown in figure 4.
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Figure 4: Histogram difference analysis for scene changes.
Icons represent the first frame of each scene.

2.3 Camera Motion Analysis

One important method of video characterization is based on interpreting camera motion.
Video contains a high level of redundancy in terms of visual information. Many scenes have
beautiful poses and visual effects, but offer little in the description of a particular segment. A static
scene may appear for several seconds when in fact less than 2 seconds is necessary for mere visual
comprehension. Since the skim scene will consist of a small number of frames, we avoid frames in
scenes with excess camera motion and visual redundancy to insure comprehension in a short time.
We can interpret camera motion as a pan or zoom by examining the geometric properties of the
optical flow vectors[1]. Using the Lucas-Kanade gradient descent method for optical flow[5], we
can track individual regions from one frame to the next and create a vector representation for all
associative camera motion. / and J represent features in successive images. A feature in 7, displaced
by d = (Ax, Ay) , will be approximately equivalent to the same feature in J. An L, norm
difference is used as the basis for region comparison. When assuming small feature motion Ax, Ay

E = Z [I(x+Ax,y+Ay) —J(x,y)]12 3)
x,yeWw

between frames, minimizing this difference with respect to d reduces to solving the following
equation:
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A multi-resolution structure is used to accurately track regions over large areas and reduce
the time needed for computation. A motion representation of the scene is created by measuring the
velocity that individual regions show over time. Velocity vectors for pans and zooms have distinct
statistical characteristics for vector directions. Figure 5 describes the characterization of camera
motion through statistics of the optical flow vectors. The angular distribution of the pan will peak
at a single region, whereas the distribution of a zoom sequence is relatively flat.

Global motion analysis distinguishes between object motion and actual camera motion.
Object motion typically exhibits flow fields in specific regions of the image. Camera motion is
characterized by flow throughout the entire image. Frames with minimal camera motion are often
suitable for descriptive representation.

For object motion description, trackable features must be identified. They must be features
of an object, such as corners, or areas rich in texture, so that they do not show ambiguities in
tracking. Such trackable features can be identified as the regions with large, well conditioned
eigenvalues in the 2x2 gradient derivative matrix, G, that appears on the left side of equation (4)

[10].
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Since we are primarily interested in distinguishing static frames from motion frames, it was
sufficient to track only the top 30 features. Examples of the motion analysis are shown in figure 6.
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Figure 5: Flow diagram and angular distributions for motion analysis.
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Figure 6: Camera motion analysis using optical flow: (a) Zoom distribution; (b)
Downward pan with subtle object motion; (c) Static frames; (d) Signifi-
cant object and panning motion; (e) Subtle pan with significant object
motion. Flow vectors are amplified for visibility.

2.4 Object Detection

We identify significant objects by searching and matching known templates to individual
regions in the frame. For the time being, we have chosen to deal with two of the more interesting
objects in video, human faces and text (caption characters).

Face Detection

The “talking head” image is common in interviews and news clips, and illustrates a clear
example of video production focussing on an individual of interest. A human interacting within
an environment is also a common theme in video. The human-face detection system used for our
experiments was developed by Rowley, et al [7], at the Vision and Autonomous Systems Center



in Carnegie Mellon. Its current performance level is to detect over 90% of more than 300 faces
contained in 70 images, while producing approximately 60 false detections. While much
improvement is needed, the system can detect faces of varying sizes and is especially reliable
with frontal faces such as talking-head images. Figure 7 shows an example of its output, illustrat-
ing the range of face sizes that can be detected.

Figure 7: Detection of human-faces.

Text Detection

Text in the video provides significant information as to the content of a scene. For exam-
ple, statistical numbers are not usually spoken but are included in the captions for viewer inspec-
tion. Names and titles are attached to close-ups of people. A text region is a horizontal rectangular
structure of clustered sharp edges, due to characters with high contrast color or intensity, against
the background. By detecting these properties we can extract regions from video frames that con-
tain textual information. Figure 8 illustrates the process. We first apply a 3x3 horizontal differen-
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Figure 8: OQutput at various stages for text detection algorithm.

tial filter and appropriate binary thresholding to the entire image to extract vertical edge features.
Then smoothing is applied to eliminate extraneous fragments, and connect edge elements that
may have been detached. Individual regions are identified by cluster detection and bounding rect-



angles are computed. We now extract clusters with bounding regions that satisfy the following
constraints:

| | Bounding Aspect Ratio > 0.75

@ Cluster Fill Factor > 0.45
m Cluster Size > 70pixels

A cluster’s bounding region must have a small vertical-to-horizontal aspect ratio as well as satis-
fying various limits in height and width. The fill factor of the region should be high to insure
dense clusters. The cluster size should also be relatively large to avoid small fragments. Finally,
we examine the intensity histogram of each region to test for high contrast. This is because certain
textures and shapes are similar to text but exhibit low contrast when examined in a bounded
region. This method works best with horizontal titles and captions. Table 1 shows the statistics for

Table 1: Text Detection Results

Data Images Text 'I.’ext Fals?
Detected | Missed | Detection
Newsl 20 11 1 4
News2 23 7 0 3
Species 20 12 | 0

detection on various sets of images. Figure 9 shows several detection examples of words and sub-
sets of a word.
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Figure 9: Text detection results with various images.
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Figure 10: Skim creation from original video incorporating word relevance in the transcript, objects in video (humans and
text), and camera motion. The examples above illustrates: (a) For the word “doomed”, the portion of the scene with
little or no motion is selected, since typically the static region is the focus of the scene; (b) The narrator uses 1.13 sec-
onds (34 frames) to utter the word “dinosaur” so a portion of the next scene is included for more content; (¢) With
no significant motion or object, we use the initial portion of the scene for the word “changing”; (d) For the word
“replacing” the latter portion of the scene which contains both text and humans is chosen.
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3 Skim Creation:

We have segmented and characterized the video by camera motion, object appearance and
keywords. In order to create the video skim, we attempt to interpret the intent of the video seg-
ments using the characterization results to extract and order the significant video frames and
audio. Figure 10 illustrates a few examples of applying these results and the resultant video skim.
The sections below describe the steps involved in skim creation.

3.1 Keywords and Skim Audio

The first level of analysis for the skim is creating the compressed audio track, which is
based on the selected keywords. We create the skim audio track by simply appending each succes-
sive keyword. By varying the number of keywords we can control the size of the skim. The actual
word length of audio for each keyword is isolated from the audio track to form the skimmed audio
as shown in figure 11. Since the audio length is fixed, we will need to choose the corresponding
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Figure 11: The word length for “rhinoceros” is 1.10 seconds which allows for
33 frames; the word “sixty’” uses 19 video frames for 0.63 seconds
of audio. Keywords are added until the audio skim length is filled.

number of video frames to fill the image skim. The frames for the image skim will not necessarily
align to the words of the audio skim, as seen in figure 10.

3.2 Prioritizing Image Frames

We now select the image portion to combine with the skim audio for the complete video
skim. For each scene we analyze the characterization results of every frame and select a set of
frames most appropriate for skimming. Priority for each set of frames is based on the following

ranking system:

Frames with faces or text

Static frames following camera motion

Frames with camera motion and human faces or text
Frames at the beginning of the scene (Default)

2L
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With the extraction of frames from each scene, we now have a suitable representation for
the image skim. We place particular importance on frames with captions and human faces (Exam-
ple d) in Figure 10). For many scenes, camera motion will preceed frames of importance (Exam-
ple a) in Figure 10). This example of desirable static frames and frames that follow excessive

dooniled

Figure 12: Skim frame selection based on minimal camera motion for the key-
word “doomed’’. The static region is typically the focus of the scene.
In this example, the initial frames offer little information as to the
content of the scene.

camera motion is shown in detail in figure 12. The process of ordering the image and audio skims
for the final skim video is described in the next section.

3.3 Skim Selection and Creation:

The final skim scenes are selected by analyzing word relevance and the structure of the
prioritized audio and image skims. Several heuristic rules have been developed for the final selec-
tion and ordering of the video skim depending on various conditions, such as the duration of the
words, scene contents and previously selected frames. The number of scenes used in the final
skim depends on the compression rate. These scenes are selected according to the following con-

straints:

1: Final skim length, [, is computed from the skim compression
rate, r,, and the original video length, /.

ls = rcxlv (6)

2: We select as many skim scenes needed to fill [, by appropriately
setting the threshold for allowable keywords.

3. The number of skim scenes with consecutive talking heads is
limited to three.

4. We avoid keywords that repeat or appear in close proximity.

To avoid redundancy in the skim playback we reduce the number of sections with similar
characteristics. For example, we only allow a fixed number of consecutive “talking-heads” in a
skim. We include frames from other scenes when words are longer than 1.1 seconds, 33 frames
(Example b) in Figure 10). For visual clarity, we display at least 18 frames per skim scene. Key-
words that appear in close proximity or repeat throughout the transcript may create redundant
skims and offer little insight to the global content of a scene. We avoid this by maintaining a min-
imum of 70 frames between keywords and limiting repetition for each word. For scenes contain-
ing no keywords we extract keywords from adjacent scenes.

12



By limiting the number of keywords, we select which scenes to include in the skim. The
level of compression determines the number of words in the audio skim, and thus, the number of
scenes included. This level is typically set to 10:1, although levels as high as 20:1 have shown to
offer sufficient comprehension.

3.4 Example Results
We have tested the automated skim on various videos. The results of two examples are

shown below. Although the detection technology is extremely accurate, the face and text detec-
tion results have been corrected for these skims.

Figure 13a shows the process of selecting skim frames for each scene from the “K’nex
toy” video, CNN Headline News. The number of frames selected for each scene correspond to the
word length of the keyword selected from that scene. Frames with human-faces, text, and static
frames are the most significant. The frames which contain faces and text have higher priority than
frames with only faces, as seen in example (a), of figure 13a. Figure 13b shows the complete
skim, with frames from all scenes, and the associated keyword. Although we limit the repetition
of keywords in a skim, there is often a need to display a word more than once, as seen in Figure
13a with the word “toy”. The subject of the segment is a new toy and thus the word appears quite
often in the transcript creating an extremely high TF-IDF weight.

Figure 14a shows the process of selecting skim frames for each scene from the “Destruc-
tion of Species” video, WQED Pittsburgh. Although many of the frames contain captions, frames
with the most text in a given scene received the highest priority. In the rhinoceros, elephant, and
primate scenes, we see that frames with full captions have higher priority than the previous
frames which contain only limited text. Even though our detection is limited to text and humans,
we see a clear need for other methods of detection, such as animals and land structures. Figure
14b shows the complete skim for this video. Although the keyword “dinosaur” appears twice in
the transcript, it’s relative TF-IDF weight is not high enough to allow its presence in multiple
scenes. The word “changing” actually appears at a false scene break. Although segmentation may
fail with abrupt movement, the change is usually so significant that the visual information dis-
played is not similar to the previous frames. There is constant motion and no recognizable objects
throughout the scenes which contain the words “protected” and “mankind”. This is the default
case so we simply use the initial frames of the scene for the skim. Since the skims in figures 13b
and 14b are displayed at a relatively low number of frames per second, no additional frames from
adjacent scenes are used with long words, such as “unusual” and “dinosaur”.

The compaction results of several automatic and manual skims are shown in Table 2. We
manually created skims for 5 hours of video in the initial stages of the experiment to test for visual
clarity and comprehension. For some of the examples below, the pre-set compaction ratio is as

high as 20:1.

13



Table 2: Skim Compaction Results

Video Segments Original Video Skim with Skim with
Length (seconds) All Scenes Select Scenes
K’nex Toy 61.0 11.33 7.13
Species Destruction(short) 68.65 9.83 6.40
* Species Destruction(full) 123.23 NA 12.43
* Space University 166.20 NA 28.13
* Rain Forest 107.13 NA 5.36
* Peru Forest Destruction 58.13 NA 5.30
* Underwater Exploration 119.50 NA 5.67

* Manual Skims

14
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Figure 13a: Scene breaks with skim regions for each scene: (a) The highest level
indicates human presence, captions and no camera motion; (b) The sec-
ond level is for humans or captions in static frames or frames following
camera motion; (c) The third level indicates static frames only. The
number of frames for a skim scene correspond to the length of the corre-
sponding keyword. Frames are displayed 1.5 fps.
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Figure 13b: Skim video frames and audio keywords for the test set, “K’nex Toy”.
The word “toy” appears often in this segment and thus has a high TF-
IDF weight. Frames with faces and captions have the highest priority.
Frames are displayed at 6.0 fps. The length of this skim is 11.33 seconds
with the original segment consisting of 61 seconds.
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Figure 14a: Skim frame selection. Many frames contain captions, however, extraction
peaks when the text content is at its highest. This can be seen in the rhinoceros
(frames 400 - 510) and elephant (frames 810-930) scenes which contain titles.

The first scene is primarily a panning sequence except for the final frame (125)
which is somewhat static and used for skimming. Frames are displayed 1.0 fps.
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Figure 14a (cont.): Skim frame selection continued from figure 14b. Note the frames
selected from the polar bear scene follow camera motion. Some
scenes for this set contain no interesting motion or objects so we
select the initial frames of the scene for the skim.
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Figure 14b: Skim for the test set, “Destruction of Species”. Frames are dis-
played at 7.5 fps. The length of the above skim is 9.6 seconds.
Total time of corresponding original segment is 56.35 seconds.
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4 Discussion

The skims have shown to provide adequate descriptions of full-length video segments in a
relatively short time span without losing the essential content. Without any prior knowledge of the
scenes, most users can interpret the content of figures 13b, and 14b. The actual video skim is even
more informative during playback.

The final length of the skim is completely dependent on the user. The compaction level
can be set to include information from as many or as few of the selected scenes as needed. For
browsing of multiple segments, the amount of video needed to capture the content is typically
very small.

The first testbed for the video skim will be a local K-12 school and the undergraduate
community at Carnegie Mellon during the first release of the Informedia Library. From this, we
hope to gain practical knowledge as to the effectiveness of the video skim as a browsing tool.

All video is processed with images digitized from VHS quality data. We are currently
modifying the system to work with MPEG compressed data. It has been shown that some image
analysis on encoded data can be more efficient and just as accurate as still image analysis [12],
[13]. With the use of MPEG video, we can eliminate much of the overhead used in detecting
scene breaks and camera motion. Monitoring the DCT coefficient can serve as an effective means
to detect scene breaks. During encoding, subregions within each image are tracked over time. The
resulting vectors accurately depict optical flow. This information is embedded in the compressed
video and can be accessed with little computation. With extended work in optical flow analysis
we will eliminate unnecessary computation by analyzing only the foreground objects of interest.

Audio segmentation is currently a manual process which will be automated. Since we only
use individual words, the audio is fragmented and somewhat incomprehensible for some speak-
ers. We will extend the language analysis to improve the audio skim segments.

We will broaden our scope of object detection to include outdoor and indoor scenes, syn-
thetic and natural objects, and other items of interest such as automobiles, buildings, and animals.
The ultimate goal of the detection technology is true semantic characterization of video images.

At present our selection rules are based purely on empirical tests. A film producer will
often follow a set pattern in deciding which frames to use as the focus. Scene selection rules based
on actual production standards may be a more accurate method to select significant video.

5 Conclusion

The emergence of high volume video libraries has shown a clear need for content specific
video browsing technology. We have described an algorithm to automatically create video brows-
ing data that incorporates content specific audio and video information. By viewing only the
skimmed video segments, the content of hours of video is reduced into minutes. While this gener-
ation of content-based skims is still primitive and much room remains for improvement, it illus-
trates the potential power of integrated speech, language, and image information for
characterization in video retrieval and browsing applications.
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