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Abstract

In order to support rapid prototyping and efficient construction of user interface software, the Amulet user
interface development environment uses a prototype-instance object model integrated with a constraint
solver. The important innovations in the Amulet object and constraint systems are the automatic
management of a part-owner hierarchy in addition to the prototype instance hierarchy, the support for
multiple constraint solvers at the same time, control over slot inheritance, flexible demons, and a
convenient integration of the models with C++ without requiring a pre-processor.
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1. Introduction

Amulet is a new user interface development environment in C++ which supports the development of
user interface software. As part of Amulet, we have developed a dynamic and flexible prototype-instance
object system embedded in C++. In a prototype-instance object system, there is no distinction between
classes and instances: every object can serve as a prototype for other objects, and any values (called
“*slots’” in Amulet) that are not declared locally in an object are inherited from.the prototype. Another
important feature of Amulet’s o‘bject system is that there is no distinction between methods and data: any
object can override an inherited method as easily as inherited data. The object system is dynamic in that
slots in objects can be created, set, and destroyed at run time, and the types of values in slots can also

change (for example, the value in a slot can change from being a string to being a float).

The Amulet object system also supports a part-owner hierarchy, by which objects can be grouped
together. A common use for part-owner in Amulet is to group graphical objects into a collection or

aggregate. For instance, the graphics in a window are added as parts of the window.

Amulet also provides constraints which are relations that are declared once and then maintained by the
system. Constraints in Amulet can be arbitrary C++ code. Any slot of any object can contain a
constraint, rather than a regular value. In addition to writing constraints, programmers can write their
own constraint solvers and use them concurrently with the constraint solvers that Amulet provides by
default. This can be a potential boon to constraint researchers who have heretofore been expected to write

their own constraint systems from scratch or modify the source code of existing constraint solvers.

The Amulet object and constraint models are based on the designs of the Garnet system [Myers
90] which has proven useful for quickly prototyping, designing, and implementing user interface
software. For Amulet, we took the opportunity to fix a number of problems we experienced with Garnet,
and Amulet also contains a number of important innovations, including the automatic management of a
part-owner hierarchy along with the prototype instance hierarchy, control over the inheritance of slots, the
support for multiple constraint solvers, and a flexible demon mechanism. In addition, Amulet’s default
constraint solver is more flexible than other one-way systems. Finally, it is interesting how we were able
to provide dynamic slot typing, a dynamic prototype-instance system, and constraints in C++ without

using a pre-processor or a scripting language.

2. Amulet
The Amulet user interface development environment aims to make -the design, prototyping,
implementation, and evaluation of user interfaces significantly easier, while supporting flexible

experimentation with new styles of interaction. Amulet will include a number of design and
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implementation innovations including new constraint and object models (described in this paper), new
input-and- output models, and new forms of interactive tools. In addition, it will support the creation of
mnovative user interfaces that incorporate features such as speech and gesture recognition, 3-D,
animations, visualizations, world-wide web (WWW) access and editing, and multiple people operating at
the same time. Amulet, which stands for Automatic Manufacture of Usable and Learnable Editors and
Toolkits, is currently working (see Figure 1) and has been released for alpha testers.! The current version
contains the object and constraint system, a retained-object model for output graphics so the system
automatically handles refresh, an input model based on Garnet’s “interactors’; where high-level behavior
objects can be attached to graphics to handle input, built-in objects that provide UNDO, and a full set of
widgets. Amulet works as a “‘virtual toolkit’’ since appli'cations written using Amulet will work without

change on either Unix X/11 or Microsoft Windows.

As a research system, we have three main goals for Amulet. First, Amulet should be very flexible and
effective for user interface researchers, so parts can be replaced and new technologies and widgets can be
easily created and evaluated. Thus, we have made it easy to investigate new constraint solvers and to
build new kinds of widgets and new kinds of interactive tools. The second goal is to be useful for
students, which means that Amulet must be easy to learn. Finally, the system should provide sufficient

performance, robustness and documentation so it will be useful for general user interface developers.

3. Why Build an Object System in C++?
C++ is already object-oriented; so why write an object system in it? If C++ objects could be used to
provide the ease of programming that we desire for Amulet, we would have used them. Regrettably, C++

objects do not perform all the duties that we need; so we created the Amulet object system to solve the

problems.

Qualities that are desirable in a good graphical object system include dynamic creation of objects and
object types, dynamic typing, and constraints. Furthermore, the environment should be able to query
objects about their structure, types, and properties at runtime. With these dynamic properties, one can
easily accommodate features such as scripting languages, interactive ‘‘inspectors’” for debugging objects,
and dynamic editors (like Interface Builders) where one can edit a program while it runs. Even when
using a compiler, building one’s programs using constraints. and other declarative features can greatly

ease the programming task.

lAmulet is in the public domain and is available by anonymous FTP or World-Wide-Web. To get it, FTP to
ftp.cs.cmu.edu and retrieve /usr0/anon/project/amulet/amuletREADME, or go to the WWW page
http://www.cs.cmu.edu/~amulet
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Figure 1: A sample program created using Amulet. The ships and widgets are instances created from
prototypes, and constraints are used ubiquitously to keep the lines connected to the ships,
compute the widget sizes, keep the window positioned appropriately based on the scroll
bars, etc.

Looking at C++, we sce that objects are meant to have static classes that are defined at compile time.
The only means for querying the contents of a class are to read the documentation or to actually read the
code. In terms of extending a class definition, it is quite impossible to add new variables or methods to a
C++ class without rewriting the code and recompiling. Though one could argue that modifying the code
and recompiling can be done automatically, this still does not support querying, and a better solution is to

implement what one needs in the first place.

Another important motivation is to provide a constraint system integrated with the object system.
Although it is possible to add constraints directly to C++ objects, most systems that do this have required
the use of pre-processors or special-purpose constraint languages. In Amulet, arbitrary C++ code can be

used in constraints, and no pre-processor is required.
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4. The Basics - Objects, Slots, and Inheritance

Amulet defines an objé'ct as a collection of dynamically typed slozs. Each slot in an object has a name
called its key. A given key refers to a unique slot in a given object but can be reused in other objects.
This makes objects into a name space for slot keys; each object represents a dictionary of the slots it
contains. In Amulet, the keys are implemented as integers, and there is a hash table for mapping between
strings and the integer keys and for generating unique keys for new slot names. However, this hash-table
is only needed for debugging and when programs define new slot names (typically at load time), and not

for slot access at run time, since programs use the integer keys.

The Amulet object system uses the prototype-instance model. To make a new object, one takes an
existing object and makes a new instance of it. The behavior of instancing is very much like copying,
except that when the programmer modifies a slot of the prototype object, all of the instances of that object

which do not have a local value for that slot will reflect the same change.

Method slots are treated exactly the same as data slots--any object can inherit or override a method. In
C++ terms, a method slot simply contains a pointer to a function. In a conventional class-instance model,
instances can have different data, but only sub-classes can have different methods. Thus, in cases where
each instance needs a unique method in conventional system, a different mechanism from the regular
method invocation must be used. For example, a widget might use a regular C++ method for drawing,
but would have to use a different mechanism for a call-back procedure, since each instance of the widget
needs a different call-back. Another advantage of treating methods the same as data in Amulet is that the
actual method to use could even be computed by a constraint which returns a pointer to the appropriate

function.

Having no distinction in Amulet between classes and instances, or between methods and data, means

that there are fewer concepts for the programmer to learn and a consistent mechanism can be used

everywhere.

Amulet’s model for objects and slots is borrowed strongly from Garnet. Amulet departs from Garnet,
though, in that the inheritance style of Amulet slots is not fixed. Garnet supports only one kind of
inheritance. We found in Garnet that the use of slots is normally task-related and that different tasks
require different kinds of inheritance. In Amulet, the object system allows each slot to be defined with

one of four kinds of inheritance rules.

The default style in Amulet is inherited, which means that the slot value of the prototype is used unless
overridden, and changes to the prototype are seen by instances that do not override the slot. Another

inheritance style is copy which means that the instance’s value is not affected by later modifications to the
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prototype. In order to save memory, a copied slot is not actually copied until the prototype actually does
get changed. The copy style is used whenever the values of objects must be kept separate from the
prototype. The third kind of inheritance style is local which means that the value is never available to the
instances, and each instance must define their own value. The local style is useful for slots that hold some
state that is particular to the object. For instance, the window object has a slot that holds the low-level
X/11 or MS Windows window which is used for doing the actual drawing. Since two Amulet windows
should not share the same window-manager window, this slot is defined as local. The final inheritance
style is shared, which is similar to a ‘‘static variable’’ in C. A shared slot can never be made local in an
instance. Setting the value in one instance produces the same change in all instances. Shared slots are

useful for global data that all the instances need to gain access.

Since the inheritance style is associated with slots, a single object could have some slots that are
inherited and represent the data that programmers are meant to modify, while other slots are local to hold

the object’s private data.

Garnet supported multiple inheritance, but we found it was not useful or necessary. In Amulet, we
instead use the constraint mechanism to copy values around, which provides complete flexibility and
control. Omitting multiple-inheritance has simplified much of Amulet’s implementation leading to an
easier to understand object creation procedure and better efficiency for searching for slots. It also

eliminates the ambiguity and complexity for the programmer of what to do when slot names collide from

multiple prototypes (super-classes).

5. Part-Owner Hierarchy

The part-owner relationship is designed to support the typical graphical grouping which programmers
use to put objects into windows and assign groups of objects to move together. For example, Figure 2
shows how a graphical object is part of both a prototype-instance hierarchy and a part-owner hierarchy.
The part-owner hierarchy is a simplification and generalization of Garnet’s aggregate, aggregadget,
aggrelist and aggregraph objects. While Garnet defined the part mechanism as part of the graphics
system, Amulet builds the part mechanism directly into the object system as a primitive capability, related
to the approach in Katie [Kosbie 95]. The result is that the implementation is much cleaner and simpler,

and we have found many other uses for it besides graphical containment, such as attaching behaviors and

commands to objects.

The part-owner relationship goes beyond simple grouping in two ways. First, if an owner has parts,
and a copy or instance is made of the owner, new parts are automatically created for the new owner.

Thus, if the programmer makes an instance or copy of the Node in Figure 2-a, instances will also be made
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Figure 2: The rectangle object which serves as the shadow of the Node is both in a part-owner
hierarchy up to the screen, and a prototype-instance hierarchy up to Graphical_Object.

of all the rectangle and string parts of the node. Secondly, objects use the part-owner hierarchy to name

objects so the references will be correct even if copies are made.

Like inheritance, we restrict part-owner relationships to be trees. That is to say that an object is
restricted to have only one owner. This restriction makes objects more efficient and easier to understand

as the programmer assembles them.

In Amulet, we define two kinds of part-owner connections. The first is a bi-directional connection. A
part is assigned to an owner and it is given a name in the form of a slot key. An owner can refer to its
parts by using the key. Each named part should have a unique key. This is not a problem because there
are usually very few parts that have a special purpose. For example, the Node in Figure 2-a may have
parts called SHADOW, BACKGROUND and LABEL. The parts can refer to their owner by using a pre-
defined slot key called Am_OWNER.

The other part-owner connection omits the slot key for the part. Unnamed parts are used mostly for
grouping objects together, such as to hold dynamically created objects in a graphical editor. It is quite
reasonable to mix named parts with unnamed parts in a single owner. Consider a scrolling window
gadget which contains two scrollbars as named parts, and a collection of unnamed objects which are
drawn in scrolling area. The distinction between unnamed and named parts was quite fuzzy in Garnet,

and is much easier to understand and simpler in Amulet.

The semantics of adding parts to objects can be decided by either the owner or the part and is based on

the types of the each. Take, for instance, when a graphical object is added to a window, a special ‘‘demon
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method’’ (described below) of the window is invoked which tests the type of the object. If it is a
graphical object, it is added to the window’s display- list so that when the window gets drawn it will
recursively call the draw method on the graphical part. However, when interactor objects are added to a

window, they cause different internal data structures to be set up.

Some systems, such as FormsVBT [Avrahami 89] have hard-wired some slots to inherit from their
prototypes and others to inherit from their owners. Because the constraint mechanism is so easy to use
and flexible in Amulet, we felt that it was sufficient to use constraints whenever slots should get their
values from their owners rather than from their prototypes. However, we might in the future provide a
means to directly link slots between owners and parts. Either the part could inherit slots from its owner or
vice versa. This will likely help with both size and speed efficiency since the extra memory associated

with constraints and the constraint’s evaluation of the code will not be needed.

When an object is instanced, the named parts of that object will be instanced as well. The result is that
the programmer can simply make instances or copies of objects without knowing whether the object is a
primitive or a complex structured group, and the system will automatically make sure that all parts are

reproduced appropriately.

Amulet also provides a special form of group called an Am_Map that computes the parts dynamically.
The Am_Map object uses a fancy constraint that builds a list of parts dynamically based on the contents of
slots that control the activity.  Typically, there will be a prototype object stored in the
Am_TTEM_PROTOTYPE slot, and a list of strings, objects, commands, or whatever in the Am_ITEMS
slot, and the Am_Map creates an instance of the item prototype for each value in the Am_ ITEMS list. For
example, programmers can build a button panel by providing a single button prototype and using the map

object to replicate the button where it is needed.

Since the keys used to name parts are the same keys used to name slots, parts and slots have some
commonality of function. One can fetch the value of a part identically as one fetches the value of a slot so
programmers (and constraints) do not necessarily need to know whether an object is stored as a part or a
slot. The main difference is that if the object is stored as a named part, instancing the owner object
creates an instance of the part. If the object is stored as a slot, an instance of the owner will have a slot
that points to the original object (so the same object will be shared by the prototype and the instance). For
example, for an Am_Map, sometimes the programmer wants to be able to modify a slot in the prototype
and have all the maps that use that prototype see the same change. For this case,
Am_ITEM_PROTOTYPE can be made a regular slot so that all the instance maps will share the same
object. However, sometimes the programmer will want to make modifications in instances of the map

that only change the item prototype object locally. For this case, the programmer assigns
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Am_ITEM_PROTOTYPE to be a named part. Then, the item prototype object will be instanced for each

instance of the map and the programmer can modify each instance individually.

6. An Extensible Constraint Solver

The Amulet object system uses constraints ubiquitously for defining relationships. The standard
constraint system is a conventional, one-way propagation solver, where a slot can contain a formula
which contains a method (in arbitrary C++ code) to calculate the value. Like Garnet, the dependencies of
formulas are dynamically determined through the use of a special slot accessor that in addition to
returning the slot’s value, also sets up a dependency. Also like Garnet, cycles are handled by returning
the old, cached value.

An innovation in this solver is that a slot can contain multiple formulas, and the most recent one to
become invalidated is used to recalculate the slot value. We find this very useful for situations where an
inherited formula is necessary for the correct operation of an object, but the programmer wants an
additional formula so values can flow in multiple directions. For example, a scroll bar widget might have
a constraint in the exported Am_VALUE slot that updates the value when the user moves the indicator, but
the programmer might install a constraint in the same slot to update the indicator if the user scrolls the

window another way (such as using a keyboard accelerator).

The slot accessor for constraints is a form of Get that takes an extra parameter: the constraint context.
The constraint context is passed to the constraint method and represents the state of the constraint’s
evaluation. The GV macro expands to Get with the extra constraint context parameter, cc. A constraint
context is defined as a C++ virtual class, and can do whatever the constraint solver needs. The formula
constraint solver stores a pointer to the formula which is used to set up a dependency between the formula
and the slot being retrieved. The cc for formulas also holds the current state of the ‘‘depends-on’” list
which is used to prevent stale dependencies. Having a cc parameter allows Amulet code for constraint
solving to be completely reentrant because the cc holds the variables that we had to make global in

Garnet. To use GV in other C++ procedures, one can simply pass the cc as a parameter.

A major way Amulet differs from Gamet is that Amulet formulas are re-evaluated whenever the
programmer accesses the value of any slot. This means that all slots are always up to date whenever any
slot is accessed. We made Amulet ‘‘eager’’ because our expéi’ience with Garnet, which used lazy
evaluation, showed that there were very few constraints that were correctly never evaluated, and Garnet
users were often annoyed that constraints were not evaluated if they were not accessed. Usually, this was
because they wanted to put side-effects into the formulas. Therefore, in Amulet, we also allow arbitrary

side-effects in the formula procedure, including setting other slots and creating and destroying objects.
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Formulas can have the effect of multiple-outputs by simply setting some slots, and returning a value for
its “‘main’’ slot. It is even possible to have a side effect of creating or destroying objects in a constraint.
One use for this is the Am_Map constraint discussed above. Another example is if the programmer wants
multiple views, one can use constraints to create and delete the objects in the views based on the main

“‘model’’ objects.

Side effects are permissible in Amulet constraints because we store any new constraints that need to be
evaluated in the demon queue (discussed in a later section). Likewise, when slots and objects are
destroyed, any demon that has been queued for them will be removed. Unlike Rendezvous [Hill 94], we
have no need to delay side effects because their effects on the constraint solver is delayed by the demon
queue. New constraints get stored at the end of the queue to be seen later and demons for deleted
constraints get removed. In terms of dependencies, the order that constraints are stored in the demon
queue is not crucial because the formula constraint solver uses a lazy evaluation strategy to cause
dependent constraints to be evaluated when they are called by the formula. The slot caches the result of

the formula so it will not be re-evaluated unless necessary.

For side-effects, the order of constraint evaluation could be made important. Amulet only guarantees
that slots will be valid and side-effects complete when slots are accessed from outside of constraints.
Inside constraints, no guarantees are made because we cannot predict which constraints will produce
side-effects or where the effects will be. Formulas are permitted to rely on side-effects with the caveat
that one cannot make divergent cycles. For instance, a map object may have a width formula that
depends on the objects created by another formula. It is possible through side-effects to set up a situation
where a loop of formulas will constantly invalidate each other. Presently, formula design with side-
effects must be handled carefully in Amulet because we cannot detect these kinds of infinite loops. In

practical code, though, these situations do not arise and would be easy to code differently if they did.

Amulet formulas use a new technique for keeping dependencies from going stale. Most constraint
solvers do not have this problem because they do not even support ‘‘pointer variables’’ [Vander Zanden
94] in constraints. Some of those that do support these do not clean up unused dependencies when a
formula changes from using one set of slots to another. Consider the following formula:

Am_Define Formula (int, width_of_parts)
{
Am_ Value_ List parts = self.GV (Am_GRAPHICAL_PARTS) ;
int width = 0;
for (parts.Start (); !parts.Last (); parts.Next ())
/ / get the current part, type-cast to an object, get that object’s '
/ /width and type-case that to an integer, and add to the current width
width += (int)Am_Object (parts.Get()) .GV{(Am WIDTH) ;
return width;
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The formula reads a list of objects and builds a dependency on each. When the list of objects changes
(a very common occurrence), the dependencies of the formula change. We want to make sure that stale
dependencies are removed from the formula. Since the order in the list of dependencies rarely changes,
we can use that order to our advantage. Amulet saves the list of dependencies for a formula in the order
that they were generated. When the formula is re-evaluated, the dependencies are followed in the list. If
a dependency stays the same (has the same object and slot key), .then the slot can be retrieved directly
from the list without searching the object. This can save a good bit of time from formula calculation. If
the dependency changes, the old dependency is removed and the list replaces the list item with the new
dependency. This algorithm has the merits that it never requires any lists to be s'earched, but simply
traverses a single list as the formula is evaluated. Since, the dependencies are always kept up to date,
efficiency is further improved because formulas never get false invalidations from the unused slots.
Another benefit is that our debugging tools can show ‘the programmer the correct dependency
information. One drawback is that a dependency that is requested multiple times is stored multiple times.
This problem occurs rarely in practice, however, because programmers will use temporary variables to

hold values of dependencies that are used multiple times.

Pointer variables can be troublesome when the object stored as a pointer is not initialized. When a
programmer references a part that does not exist, the system will return a “‘null’’ object. Trying to fetch a
slot from the null object would normally cause a runtime error. In a formula, though, the programmer
often wants write dependencies as a long chain of pointer referencing that terminates with the final GV.
For example, GV_Owner () .GV (OBJ_OVER) .GV(LEFT). Cluttering the formula with checks to see
if parts are initialized is annoying and error-prone. Often, all ‘‘real’’ uses of the formula will have valid
values, and the only time it will be invalid is when the formula is defined in a prototype object which may

never be used except for creating other objects.

Normally, we would use exception handling to remedy this problem, as was done in Rendezvous [Hill
94]. When an error is detected in a formula, the system would cause a throw to force the call state out of
the function code. The C++ compilers used by our group, however, do not implement exception
handling. This forced us to work around the problem in another way. In Amulet, we intend to use the
constraint context to allow programmers to write formulas with broken links. When GV is called on a nulil
object, the cc is marked as ‘‘uninitialized’’ and a special uninitialized slot is returned to the function.
The uninitialized slot will return zero as its value for any type requested so the formula is unlikely to fail
due to receiving an unusable type. When the formula completes, the system will put the special
uninitialized type into the slot and ignore the value returned from the function. Likewise, when a formula
retrieves an uninitialized slot value from an object, it too will be marked as uninitialized, so there will be

no runtime error. However, as soon as the programmer tries to use an uninitialized slot outside of a
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formula, a runtime error does occur, since this usually signifies a programmer bug. The error message
will describe precisely which pointer is broken so that programmers will be more able to correct the bug

quickly.

The most important innovation in the Amulet constraint system is that the programmer can use multiple
constraint solvers at the same time, even in the same slot. Many researchers have investigated new kinds
of solvers, like multi-way [Sannella 94] or incremental [Gleicher 93] and each of these has useful
applications. Therefore, we wanted to allow a programmer to use the appropriate solver for different
aspects of a design. Also, researchers want to investigate new solver technologies without having to build
the other parts of a system. Amulet is the first system with an architecture that supports the integration of

multiple solvers.

This is provided through a meta-level that deals with slots and the kinds of messages that slots can
produce and receive. Every slot can contain two lists of constraints: the set of constraints that depend on
the value of the slot, and the set of constraints on which the slot depends. Note that a single slot can
depend on multiple constraints. The constraint lists are not maintained in any particular order. A single
constraint can be stored in multiple slots and even multiply in a single slot. A constraint can even be
stored in both the depended upon list and the dependency list. For example, an incremental constraint
solver like Bramble [Gleicher 93] might want to use a single constraint object for a whole collection of

slots.

A slot has three basic messages that can be sent to a constraint. One is for when the value of the slot
changes. The second message is ‘‘invalidated”’ which is used by constraint solvers to mark slots that
need to be recalculated. For example, the invalidation message is sent by formula constraints to all the
dependent slots. The slot will respond by invalidating its dependent constraints which recursively repeats
the invalidation process for any dependent formula constraints and so on. Other constraint solvers may
choose to withhold propagating an invalidation signal until it knows whether the value of the slot is going

to change or not.

The third message is used when a value is requested from an invalid slot. The slot sends the ‘‘get’’
message to the constraint, and the constraint is expected to generate a response. A constraint always has
the option of refusing to return a value, in which case the slot sends the get message to a different

constraint. If no constraints return a value, then the slot will quietly keep its original value and consider

itself valid.

The main item of contention in this scheme is what order will constraints be sent the get message? The
policy implemented for Amulet is straight-forward. The last constraint invalidated is the first constraint

to be queried. Since practical constraints used for graphics do not usually compete, this policy has proven
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adequate. As we develop more constraint solvers, we will continue to investigate this issue.

Permitting a constraint to disregard a get message prevents a certain kind of circularity. For instance, in
a multi-output constraint, it is possible for a get message to be called on its other output slots before it
finishes computing the response for the get message on the slot which was originally invalidated.
Assuming the constraint does not want to recurse or use a co-routine calling style, the constraint has the
ability to disregard the get messages on its other slots, finish computing the value for the first message

and later re-invalidate the slots that it missed earlier, this time being able to produce the desired response.

The other messages that an object sends to constraints are for bookkeeping purposes. The slot can tell
the constraint that it has been added or removed. Likewise, it can tell the constraint that the slot has been

instanced or copied so that a new constraint will be needed for the new slot.

As a first order test of Amulet’s multiple constraint solver’s ability, we implemented a second
constraint solver called a “‘web.”” The web constraint is a multi-output, multi-way solver that performs
planning on demand. Web constraints are built somewhat like formulas except that instead of returning a
result through the return value, the web calls the setting equivalent of GV called SV. SV is Set with a
constraint context parameter just like GV is Get with a context. The web can generate dependencies
using GV and set up output slots using SV. The same slot can be referenced both by SV and GV in the
same web which allows for multi-way constraints. The number of either kind of dependency is not fixed
and constraints can change dependencies freely to different slots as the needs of the constraint changes.

This is in direct contrast to the formula constraint which is directly tied to the value of a specific slot.

The web constraint also has some other advanced features over formulas. A web will keep track of
which dependencies are invalid and will verify that the slot’s value has changed before re-evaluating.
The web also tracks the order that dependencies change. When a dependencies invalidate, they are stored
in a list in the order that the invalidations occur. This list is accessible in the constraint’s method. Being
able to tell the history of slot modification is useful because it allows the constraint to apply consistent
semantics across multiple slots. This is why we use web constraints to implement the slots of the line and
polygon objects. The line object has two sets of input slots. One set is point based and has slots called
X1, Y1, X2, and Y2 which are used when the user creates a new line by rubber-banding. The other set is
rectangle-based and has slots called LEFT, TOP, WIDTH, and HEIGHT which are set wht;,n the line is
moved without changing its orientation. However, if the the slots X1, TOP, and WIDTH were set in some
random order, our normal one-way formula mechanism would not allow us to get the semantics correct.

With the web constraint history mechanism we can handle this case with relative ease.

The reason we can use web and formula constraints together in the same system is that neither webs nor

formulas try to exert full control over the value of a slot. If two constraints on the same slot both try to
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maintain a slot at a different value, then the system could cycle and never know when to stop. Just having
a cycle is permissible in Amulet because the constraint solver will only use the value of one of the
constraints to set the value of a slot. It is when the constraint watches the slot value and forces it to
become a certain value (by sending the invalidate message and responding to the get message) that
trouble can happen. A *‘good neighbor’ policy is currently required for Amulet constraints though we

are experimenting with ideas that can relax this requirement.

There is an interesting relationship between constraints and inheritance. Since the constraints in
Amulet can contain variables [Vander Zanden 94], the same constraint expression may evaluate to a
different value in different objects. Therefore, when a constraint is inherited, we must copy the constraint
expression and re-evaluate it in the context of the instance. Often the inherited constraints are required
for the correct operation of the object. For example, the value slot of most widgets contain formulas that
compute the appropriate output based on the user’s actions. Other times, constraints act as defaults that
can be overridden. For example, the default width of a button might be a constraint depending on the
label. If the programmers explicitly sets the width of the button, then the constraint should be removed.
In Garnet, this was often troublesome, so Amulet lets the programmer declare whether a constraint should

be replaced when a slot is set.

7. Connecting Objects to the Rest of the Environment - Demons

Although constraints can be used for many tasks, Amulet also provides a flexible ‘‘demon’’ mechanism
whereby methods can be associated with specific operations on objects. For example, the window’s
add-part demon was mentioned earlier. Commonly, the demons perform low-level, internal maintenance
tasks, but they are also available for use by advanced Amulet programmers. Although Garnet had a

demon mechanism internally, it was quite inflexible and not available to programmers.

Demons can either be associated with an object or a slot. Object demons are available for creation,
destruction and adding of parts to objects. We did not provide a demon for every kind of operation that
can be done to an object or slot for efficiency. For instance, we do not provide a demon when a slot’s
value is fetched. Slot access is the most commonly used operation in the system, and adding a single bit
check to this operation can slow the whole system down by 10% or more depending on how it is done.

Having a user’s demon called on every slot fetch could slow the system down by an order of magnitude.

Slot demons are used to control how an object responds to data manipulation. Slot demons can be
configured to respond to one of two messages: invalidation or value-changed. An invalidation demon can
be used in lieu of a constraint because invalidation is the same message that is used to trigger the

constraint solver. It is more common to have a demon respond to the value-changed method, however.
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For example, value-changed demons are used in Amulet to handle redrawing of the changed graphical
objects. A demon is attached to each slot that affects the object’s appearance. This demon queues the

object for later redrawing.

Amulet does not cause a demon to be invoked immediately. An Amulet application usually consists of
bursts of activity where a great many objects are suddenly created and slots are set. In order to prevent
demons from being called more often than needed, demons are put onto a queue to be invoked when the
queue is read. If a slot changes multiple times, the demon is only enqueued once. Furthermore, a demon
can be marked so it is enqueued only once per object, even if multiple slots in that object change. For
example, the redrawing demon is only enqueued once for an object even if both the left and top change.
Invoking the demon queue occurs in Amulet during the event loop processing and when slot values are
queried. We are searching for techniques to even further reduce the number of demons that get called and

the number of times the qﬁeue is invoked.

Amulet uses the slot demon mechanism to make slots eager. A system-defined validation demon is
automatically assigned to every object. The validation demon gets enqueued on the invalidation message,
and it works on a per slot basis. The validation demon is a simple, one-line procedure that calls the
Validate method on its slot. Since the demon queue is invoked on every Get call, the system acts as

though it were eager. To turn off eagerness in a given slot, one can simply turn off the demon.

8. Implementation Issues

8.1 Making an Object System Programmable in C++

One of the major hurdles in designing an object system is making the code easy to read and write.
Most object systems have created a whole new language. In Amulet, we have instead extended an
existing, popular language, C++, so that Amulet will be easier to adopt and so it will integrate well with
other code. Fortunately, C++ provides features that we were able to use to simplify the syntax of Amulet
and allow the programmer to use normal C operations for primitive types like integers and strings. To do
this, we make strong use of the C++ features of overloading and casting operators. For setting a slot, we
have a single C++ method Set which has different, overloaded choices for the various built-in types.
Thus, the programmer can simply write:

obj.Set (Am_LEFT, 33);

obj.Set (Am_TEXT, "my string");
obj.Set (Am_OTHER_OBJ, obj2);
obj.Set (Am_DRAW, my_draw_function);
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C++ does not allow functions to be discriminated based on the return type, but we were able to get
around this by returning a special slot object, which then has type conversion routines into the various

primitive types, so you can write code like:

int i = obj.Get(Am _LEFT);

Am_String s = obj.Get (Am_TEXT) ;
Am_Object obj2 = obj.Get (Am_OTHER_ORJ) ;
Am_Value v;

obj.Get(slot, Vv);

In the last line we use the special Am_Value type to retrieve the value of a slot. The Am_Value type is

essentially a union type that permits programmers to dynamically access and set the type and value.

We also permit the same kind of dynamic typing in the constraint system. The common situation is for
the programmer to know what type a formula will always return. For example, a formula stored in the
left slot of a graphical object will always return an integer because the slot cannot accept anything else.
But for some slots, the type returned can vary from time to time. To allow this, we use the special

Am_Value type as a return parameter as one choice for building formulas.

One of our chief concerns was the amount of excess syntax needed in C++ expressions. The main
syntax burden comes when one declares a new object because at that point, the programmer changes the
value of a great many slots all-at once. In Common Lisp, we were able to define complicated macros
which could interpret a potentially very long, variable length parameter list. In C++, we could have used
a variable length parameter list as well but the C++ varArgs mechanism does not provide any type-
checking. We decided to use simple methods that use the return value to pass back the object being set.
This makes it possible to chain a long list of slot setting and part adding calls into what amounts to a
single line of C++ code:

/ / Define a formula called my_int_formula that returns an int
Am_Define_Formula(int, my_int_formula) {
return self.GV_Part (OTHER_OBJ) .GV (Am_WIDTH) - 10;

}

Am_Object obj = Am _Rectangle.Create()
.Set (Am_LEFT, 33) //note no semi-colon
.Set (Am_TEXT, "my string")
.Add_Part (OTHER_OBJ, MyProto.Create())
.Set (Am_WIDTH, Am_Formula::Create(my_int_formula));

One of the supported types is void* which allows a pointer to anything to be stored into a slot, but we
wanted to have a more type-safe way to store application-specific data structures. Therefore, we provide
a C++ class called Am_Wrapper type to ‘‘wrap’’ arbitrary C++ objects. In addition to type-checking,
wrappers also help with memory management. Amulet uses wrappers internally to implement graphical

styles, fonts, point-lists, etc.
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Fundamentally, every wrapper contains a reference counter. When a slot is copied, due to inheritance
or other means, the value in the slot is sent a note-reference message to indicate that it is being referenced
in some other place. Likewise there is the release message that will be sent when the slot is destroyed.
To handle reference counting outside the context of a slot, wrapper objects are given special constructors,
destructors, and assignment operators. When the programmer modifies the value of the wrapper object,
the object will automatically create a unique copy of itself by calling the make-unique message. In this
way, modifying the data of the wrapper will not erroneously change the value that is still stored in an
object’s slot or in other slots that share the wrapper. For advanced programmers, there are also

techniques for destructively modifying wrapper data directly within slots.

Making a new wrapper type is relatively easy because Amulet defines two macros that the programmer
can use. The programmer essentially writes his object as a normal C++ class, and adds the Amulet
macros at the appropriate places to make it into a wrapper. The macros add a dynamic type id-tag to the
class so that it can be distinguished from other wrapper classes, and define standard methods that provide

convenient services and make wrapper classes consistent.

8.2 Efficiency

Since Amulet has just been released, we would like to be able to better understand the use patterns of
Amulet before we spend much effort on improving the efficiency. However, having created the earlier
Garnet system with a similar design, we have some notion of where the important concerns are.
Therefore, Amulet is reasonably efficient, but not as good as its going to be after a couple more iterations.

The current version runs acceptably on 486 PCs and Sun SPARCStation 2s.

8.2.1 Size
A serious problem with Garnet is the size of objects, so in Amulet we have taken pains to keep the size
small. The largest contribution to memory size in Amulét is the slots. Slots hold the data of objects so

naturally the brunt of the memory cost goes into the structures that hold the memory of the application.

When an object inherits slots from its prototype, Amulet tries to continue using the prototype’s slots
and not allocate memory for the instance. (Garnet always copied all slots down to optimize speed of
access.) Only when the instance has a different slot value do we want to allocate local memory. This
practice has resulted in a significant savings in memory size. A typical Amulet object has about 30 slots
defined in its prototype. Most of these slots are for default values like methods and the visible slot. On
average, about 10 slots are made local. Around four of the local slots for graphical objects contain
Amulet’s state structures holding information like the bounding box and the window in which the object

is contained. Another two or three of the slots are made local by constraints. The other local slots are
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parameters that the programmer sets directly. The largest objects are the widgets with around 40 to 50
potential slots, but only about 20 are ever made local, mostly due to slots that contain constraints that
determine the widget’s layout and color. Had we copied down all slots from the prototypes, the number

of slots allocated would easily double or triple.

In principle, the size of a slot should be no larger than the data it contains, which is usually one word.
However, other data is needed for each slot, including the slot key, the slot type, constraints and demons
in the slot, and dependency pointers for constraints that use this slot. Accounting for just the slot key, the
value, and some state bits, the realistic minimum size of an Amulet slot is three words. When the slot
contains dependency pointers and constraints, the size needed increases to about seven words. Judging
from some of our early applications, we see that about half of all local slots do contain constraints. This
works out to about 10 to 20 slots with constraints for widgets and only two or three slots with constraints
for primitive graphical objects. In the future, we will make two different sizes for slots, which would

further reduce memory use by about one quarter.

Another idea worth exploring is using ‘‘virtual objects’’ [Myers 94]. Virtual objects replace lists of
objects that share many common features with a single prototype object that acts like many objects at

once. This is related to glyphs [Calder 90] from InterViews.

8.2.2 Speed
We expected that moving to C++ from CommonLisp would increase our speed performance by a large
factor. In fact, we have seen a factor of three improvement in speed even though we spent years

optimizing the performance of Garnet and we have not yet worked on Amulet’s.

Naturally, we want the system to perform even better, though. Presently, we use a basic sequential

search to look up slots, so switching to hash tables for slot lookup and caching prior results are expected

to be big wins.

9. Future Work

In addition to the performance enhancements, there are a number of interesting additions we plan to
make to the object and constraint systems in Amulet. We expect to add a preprocessor in order to
improve the syntax. For example, it might allow references like obj.SLOT instead of
obj .Get (SLOT) and allow the expressions of formulas to be defined in-line without requiring an extra
function name to be declared, possibly like:

obj.LEFT = {{return owner.LEFT + 10}};
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We also plan to add a number of new and existing constraint solvers to Amulet, including a multi-way
solver based on SkyBlue [Sannella 94], a new multi-way solver by Brad Vander Zanden [Vander Zanden

95], and an incremental solver based on Bramble [Gleicher 93].

There are alsg a large number of additions that will be made to other parts of Amulet, including new

widgets, interaction techniques, and interactive tools.

10. Related Work

Of course, Amulet is most like Garnet. The differences between Amulet and Garnet’s objects [Myers
92] and constraints {Vander Zanden 94] were discussed above. The primary other research project
investigating the prototype-instance model is the SELF [Chambers 89] group. There are many
differences between the SELF and Amulet models, however. SELF is its own language, so it does not
have to integrate with an existing language. SELF uses a pure copy-down semantics, so after an instance

is created, changes to the prototype are not reflected in the instances. Finally, SELF does not support

constraints.

There are many research systems which support constraints. The EVAL/vite system [Hudson
93] integrates constraints with C++ by using a preprocessor and a special sub-language for the
constraints. Like Amulet, EVAL/vite is a ‘‘one-way’’ solver. CONSTRAINT [Vander Zanden 88] and
its follow-on algorithm QuickPlan [Vander Zanden 95] are ‘‘multi-way’’ solvers that allow constrajnts to
be expressed over arbitrary types (e.g., integers, strings, colors, etc). MultiGarnet [Sannella 94], which is
an implementation of the SkyBlue multi-way solver, was integrated with Garnet. This was the first
attempt at combining two constraint solvers in a single system, and inspired Amulet’s goal for making it
easy to integrate multiple solvers. Rendezvous [Hill 93] was designed to help create multi-user
applications in Lisp. Like Amulet, Rendezvous allows multiple one-way constraints to be attached to a
variable. However, Rendezvous requires that variables be explicitly declared and uses a different

implementation algorithm. Also, Rendezvous requires that all side-effects from constraints be deferred.

11. Conclusion

Amulet contains an effective and efficient implementation of the prototype-instance object model and
constraint solving integrated into a powerful user interface development environment. These features
have contributed to the ease of use of previous systems, so we are excited that they can be conveniently
provided in C++ without the need for a pre-processor. The innovations reported here which solve
problems shown by experience with previous systems, along with future enhancements, will help make

Amulet an attractive environment for researchers, students and user interface developers.
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