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4. Projective Factorization

The results of the paraperspective factorization method have been shown to be quite good
up to fairly close distances, and can be further refined to account for perspective foreshort-
ening effects with a separate iterative refinement step. However, for images containing
severe foreshortening, such as a rigid scene with both near and distant points, the separate
iterative refinement step proceeds very slowly. Worse yet, if noise levels are high and fore-
shortening effects severe, the normalization step of the paraperspective factorization method
may fail, providing no initial value for perspective refinement. Clearly a method is needed
which models perspective distortion more directly.

This chapter details the projective factorization method, which applies the basic approach of
the factorization method to a perspective camera model. In the decomposition step, image
measurements are decomposed into a projective shape and a projective motion, rather than
an affine shape and motion as in the previous factorization methods. The non-linearity of the
perspective projection step makes the use of SVD or bilinear methods impossible for this
decomposition step, so general non-linear least-squares techniques are used. Following
decomposition, normalization constraints are subsequently applied to the projective motion
to convert the projective solution to a Euclidean one. The method is able to compute the cor-
rect shape and motion by refining shape and motion parameters simultaneously, unlike the
separate perspective refinement method of section 2.4.

The projective decomposition approach is quite similar to the methods Ponce, Marimont,
and Cass [30], Szeliski and Kang [38], and Hartley [18] use for recovering projective shape
and motion. Our normalization constraints which convert the projective solution into a
Euclidean one is novel, and requires only linear operations. Faugeras, Luong, and Maybank
[15] and Hartley [18] have put forth methods for converting epipolar geometries or projec-
tive motions into Euclidean motions, but their approaches require continuation or other
complex methods.

We also describe a technique for recovering Euclidean shape and motion without first per-
forming projective decomposition, similar to the method of Szeliski and Kang [38]. By con-
straining the shape and motion to follow a Euclidean form, the method can potentially
achieve greater accuracy than projective factorization. However, we show that when fore-
shortening effects are significant, this method fails to converge to the correct minimum
when a simplistic initial value is used. Its usefulness therefore is limited to relatively distant
objects, or to refining the results produced by other methods.

Finally we show that the non-linear minimization framework developed for projective fac-
torization and Euclidean optimization can be extended to incorporate image data directly
rather than relying solely on tracked features. The shape from motion problem is reformu-
lated in terms of minimizing differences in image intensity rather than minimizing errors
between predicted and tracked feature point positions. While the method could in theory
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obviate the need for feature tracking altogether, in practice it is primarily useful for refining
results in which some of the initially tracked features were poorly tracked, thus allowing a

more dense shape recovery.

4.1. Projective Factorization

The orthographic, scaled orthographic, and paraperspective projection models all can be
modeled by bilinear equations. This enables them to be solved by first separating the shape
and motion components using Singular Value Decomposition or, in the case of occluded or
missing data, using an iterative bilinear solution technique. Perspective projection, however,
involves division, which cannot be modeled by these bilinear equations. In order to extend
shape and motion recovery to sequences containing foreshortening effects, we turn to the
realm of general non-linear equation solution techniques.

In this section, we first show how to recover the projective shape and projective motion
from an image sequence. A projective shape is a shape which is known only up to an arbi-
trary rotation, scaling or skewing of the axes, and scaling of each point on the object by the
distance to any given point, as illustrated in Figure 24. There exists a projective transforma-
tion which will transform a projective shape into the actual Euclidean shape of the object
(i.e. with the axes correctly scaled unskewed and the projective deformation removed),
though the correct transformation is not always known. The problem of recovering projec-
tive shape and motion from an image sequence has been addressed by several researchers in
the past few years [4][7][25][30][38]. Many produce only the projective shape and motion
as their answer. Others compute the transformation which converts the projective solution
into a Euclidean solution by requiring the direct measurement of the Euclidean world posi-
tions of five of the points, or by assuming coplanarity of certain points. We present a method
for converting a projective shape and motion into a Euclidean one by applying normaliza-
tion constraints to the motion, in a manner analogous to the way an affine shape and motion
were converted to a Euclidean one in the factorization method.

4.1.1. Least Squares Formulation

Recall from equation (64) that the perspective projection of a point s, onto the image plane
in frame f is

( if~sp+xf
PR | s vt
e = Pp(fp) T dps vy o
Yo la——f L f+o
kf-sp+zf

This can be rewritten in the form
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Figure 24. Affine Equivalence and Projective Equivalence
The objects (a), (b), and (c) are all affinely equivalent, since each is the result
of arbitrarily scaling the axes or changing the angles between the axes of
another. (a), (b), (¢), (d), (), and (f) are projectively equivalent, since each is
the result of scaling the positions of the points of another based on the dis-
tance to some arbitrary point.
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The projective formulation of these equations simply collects all of the motion and camera
variables into a three vectors mg , mp,, and m ., similar to the way the motion parameters
were collected into m, and n, in the previous methods. Using this notation, the perspective
projection equations that predict the x- and y- positions of point p in frame f become
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Here the s_ vectors are written in homogeneous coordinates, where each s_ is augmented to
be a 4-vector whose fourth element is set to 1. The 4 x P matrix whose columns are the s,
vectors is called the projective shape matrix. The 3 x4 projective motion matrix M ¢ for
each frame is defined by collecting the three m, 4-vectors, whose values in terms of the
camera motion and camera parameters can be determined from equation (97) as

m, Mepy My Mg Moy l(if+ Oxkf) le+ 0,2
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The projective shape and motion recovery problem is posed as, given a set of observed
points u »» compute the projective shape and motion which minimize the error

P
> (P -u ) (PP -u )Y,
' (100)

[( Px,,(f' p) - “fp)2 + (Py,,(f’ p) - vfp)z] ip

Here Yy, are the confidence values assigned to each observation.
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We will use the Levenberg-Marquardt optimization technique described in the next section
to find the projective shape and motion which minimize the error €. Note that due to the
division, both the numerator and the denominator of the projection function can be multi-
plied by any arbitrary non-zero constant, and the resulting predicted image positions would
be unchanged. Therefore each projective shape vector s, can be scaled by an arbitrary non-
zero constant, and each projective shape matrix M - can similarly be multiplied by a non-
zero constant, without changing resulting the error measure €. To eliminate redundant
degrees of freedom in the model, we fix the 4/ element of each s at 1 and setm 34 = 1.

4.1.2. Levenberg-Marquardt Solution Method

A review of the Levenberg-Marquardt technique for non-linear optimization was given in
section 2.4.2. In the projective shape and motion recovery problem, the variable vector a
consists of all of the projective motion and projective shape variables M and S, (not
including those whose values have been fixed to 1.) The observed y, values are simply the
measured feature point positions u o and v i while the predicted Y, values are the functions
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P (f,p) and Py(f, p) given by equation (100) for the case of perspective projection using a
projective shape and motion formulation, and 1/ oiz = Y- Equations (68) and (70) for the
projective shape and motion recovery problem can be written as

F P

0 d d d
Oy = le ZlYfp[(ga—kPx(ﬁ P))(ga—lpx(f’ P)) + (—a-CTku(ﬂ P))(églpy(fa P))] (101)
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F P
B2 T 3 v, [ Gy, P D S P+ (= P )P (£, p) (102)
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Notice that each P (f, p) or Py(f, p) is a function only of the shape variables for point p and
the motion variables for frame f. Therefore many of the partial derivatives are zero, which
in turn causes many of the terms of the summation to be zero. Rather than requiring the
summation of 2FP terms, each element of the vector P requires the summation of 2P or
2F terms.

(P
d d
zlvf,,[ (= P P3P+ O = PGP 3P0 p)]
p =
ifa, isa motion variable for frame f
Be=1 F ; ; (103)
le Y, [ (= PGP 3P0+ Oy = Py P 3 Pl p>]
L if a, is a shape variable for point p

Similarly many terms of the o matrix have zero values, while others require the summation
of a smaller number of terms.
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. 0 ifa ¢ and a, are shape variables from different points
0 if a, and a ; are motion variables from different frames
0 if a, is a shape variable for point p, a ; is a motion variable for frame f,

and Yo = 0

vf,,[( P(fp>)( P(f,m)( P(fp))( P(f,p))]

if a; shape variable for point p, a ; motion variable for frame f, Y, # 0

Oy = 1 (104)
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We order the variables in a to take advantage of the sparseness of «. The 11 motion vari-
ables for the first frame comprise the first 11 elements of a, the 11 motion variables for the
second frame are the next 11 elements of a, and so on, so that altogether the motion vari-
ables comprise the first 11F elements of a. The shape variables are ordered similarly, three
variables per feature point, so that a has a total of 11F + 3P elements. This places the ele-
ments with generally large magnitudes along a block diagonal portion of the Hessian matrix
o as shown in Figure 25.

The block-diagonal dominance of the matrix allows us to use the preconditioned conjugate
gradient method described in [31] to efficiently solve equation (71), which is required at
every step of the minimization. The preconditioned conjugate gradient method is itself an
iterative technique which is well-suited to solving sparse linear systems. To solve the linear
system oda = P for 8a, we are not required to supply the matrix o in any specific represen-
tation. Rather we supply the conjugate gradient routine with three functions. The first com-
putes the product of o with an arbitrary vector, and the second computes the product of a
with an arbitrary vector. Since o is symmetric in our problem, the same function performs
both of these operations. The third function must provide a solution to linear systems of the
form a*x = b, where o* is a preconditioner matrix which approximates o and which we
can invert easily. We use the block diagonal portion of o as the preconditioner o* . Since the
elements of o with the largest magnitudes lie along the block diagonal portion of «, a* is a
good approximation to a. Furthermore we can solve systems of the form o*x = b effi-
ciently by inverting each of the small matrices lying along the diagonal individually.

Since we do not need to provide the matrix o but only three functions, the conjugate gradi-
ent method frees us to use any efficient form of storage for o.. Many elements of this
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Figure 25. Hessian matrix for projective shape from motion recovery
The diagonal blocks are 11x11 for the motion variables and 3x3 for the shape
variables. The actt»! shape of the shaded area is determined by the fill pat-
tern of feature « ility for the particular sequence.

(11F +3P) x (11F +3P; .uatrix are zero, so we reduce storage requirements by using a
sparse matrix representation that stores only potentially non-zero elements of the matrix.
Our representation stores each column independently as a sequence of non-zero strips of
elements. This representation enables the product of oT with a vector to be computed very
efficiently. The product of a with a vector is computed using the same method, since a is
symmetric. We could have further halved the storage requirements for o by taking advan-
tage of its symmetry, but that would have increased the complexity and computation
required to multiply the matrix by a vector.

Using the conjugate gradient method to solve the system oda = B has an additional benefit,
which is that a solution is provided even when a is not of full rank. This frees us from hav-
ing to arbitrarily fix certain parameters to bring the system to a minimal parameterization,
such as fixing the first frame’s motion or choosing four points as a projective basis whose
positions will remain fixed.

The expressions for computing o and B in equations (103) and (104) still require the com-
putation of the derivatives of the predicted position P (f, p) with respect to each variable a,,
where each a, corresponds to either a single shape variable Sy ora motion variable m i
First, we define

X, = Mg oS, Yp, S MpoS, g = Mpcs, (105)
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The derivatives with respect to each of the shape and motion variables are then given by
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Our solution should be restricted so that zfp>0 for all observed f and p. This merely
requires than all 3D points lie in front of the camera when they are imaged. Hopefully, as
long as the z i computed using the initial value are all positive, we should never encounter a
negative Zg, since as we approach this region of the search space 24 approaches zero,
which causes the error to go to infinity. However, occasionally the solution takes a large
“step” in which is crosses over a z, = 0 boundary and reaches a part of the search space
where a z, is negative. These steps should be rejected regardless of whether the total error
e at those points is larger or smaller than the previous position, because they clearly indicate
that too large a step was taken, that the current region of the search space is not well mod-
eled by a quadratic, and that we should try smaller steps. Rejecting them causes A to
increase so that the method will take smaller steps towards the minimum.

4.1.3. Depth-shape Formulation

The above formulation represents each feature point by three variables, the feature point’s
coordinates in the world coordinate system. However, in a sense a feature is defined by the
position at which it was detected in the first image. Therefore a feature’s position in the first
frame is not corrupted by noise, because its position in the first frame defines the feature.
Therefore we can reduce the number of unknowns per feature point by one-third by defining
each feature by a single unknown, the depth of the feature in the first frame, like the stan-
dard formulation of the stereo problem. Changing this distance variable will cause the
point’s predicted position in subsequent images to change accordingly, but its position in the
first image will always remain fixed to the position at which it was originally detected. This
formulation not only ensures that the features do not drift from their originally defined posi-
tions, but significantly reduces the size of the matrix o, thereby speeding the computation.
This constraint is illustrated in Figure 26.

As long as all features are visible in the first frame of the sequence, this change requires only



page 91

world
origin

frame 1
,\4
. "
- /
u, ,v /_—_/ /
flp f|l’ /
/
\ / frame f
Mg P, p)

Figure 26. Shape-depth formulation
Given a point’s position in the first frame, it is constrained to lie along the ray
connecting the camera focus in the first frame to the position of the point on
the image plane in the first frame and extending to the 3D point itself. This
reduces it to a single unknown, th e distance along that ray at which the
actual 3D point is located.

a minor change to the previously described method. The first and second elements of each
shape vector s, are no longer variables, but are replaced with functions of the third element,

S,3 and the first frame’s motion variables. These functions are determined by solving the

“inverse projection” problem -- projecting the known position in the first image away from
the camera by the given depth. We solve the system
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for s, and s, as functions of s, . Multiplying through by the denominator turns this into lin-
ear system of 2 equations in the two unknowns Sp1 and St

M3, =M | | Mr32% = Me12 )| |5 Me 3381, = Mp13 |5p3 | M 3a%1p = M 14

Me33Vip = M3 |Sp3 +| Mp3aV1p = M 24
(109)

Me31Vip =M1 | | ™32%1p = ™r22 || Sp2
This is easily solved to find s, , s ,, and their derivatives asp,/ asp3 and 8sp2/ asp3. This
gives the derivative of the predicted feature position with respect to the single shape vari-
able per point, Sp30 a8
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Since s | and 5, are now varied such that the feature’s position in the first frame is fixed,
changing the first frame’s camera parameters will no longer have any effect on the total
error. Therefore we leave them fixed at their initial value rather than solving for them as
unknowns.

This single variable “depth-shape” formulation can only be used when all of the feature
points are visible in the first image of the sequence. Since Sp1 and 5,y are in fact functions
not only of Sp30 but also of the motion parameters in the first frame in which the point was
seen, if that frame’s motion parameters were variables and not constants, then we would
need to update the Hessian matrix to account for this. Error terms for the observation for
point p and f would not only depend on the shape variables for point p and the motion vari-
ables for frame f, but would also depend on the motion variables for some frame f°, the
frame in which point p was first seen. Although this could be easily accommodated within
the Levenberg-Marquardt minimization framework, it would alter the pattern of the Hessian
matrix. The upper-left block of the matrix would no longer be block diagonal, but would
contain smaller blocks scattered throughout the currently unfilled areas. This could destroy
its block-diagonal dominance and significantly increase the number of iterations of the gra-
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dient descent method required to solve the large system. However, this increase might be
offset by the reduction of the number of variables from 6F + 3P to 6F + P. We have not
implemented a system capable of applying the depth-shape formulation to sequences in
which some of the points are not seen in the first image, so currently such sequences must be
solved using three variables per point.

4.1.4. Projective Normalization

It is well-known that a projective motion matrix M ¢ defined by equation (99) can be written
as the product of two matrices: a matrix of intrinsic parameters representing the properties
of the camera which remain constant for all frames, and a matrix of motion parameters
which varies with each frame.

10 o, if X
My=101lao, §p| =K[Rf| t/] (111)
00 1j|kel 2

Here K is the intrinsic camera parameter matrix, R f collects i, j s and k . into a 3 x 3 rota-
tion matrix, and t. collects the Xes Vpo and z ¢ terms. The intrinsic camera parameter matrix
includes the focal length [, the aspect ratio a, and the center of projection (o, oy) .

Unfortunately, the recovered projective shape and motion are unknown up to an arbitrary
4 x 4 matrix. That is, we have solved for the Mf and 8 which minimize the error between
the observed and predicted image positions, but in fact we could multiply all of the motion
matrices by an arbitrary 4 x4 matrix A and multiply the projective shape vectors by A-l
and the resulting predicted feature points and total error € would be exactly the same. Fur-
thermore we can scale each of the projective motion matrices and each of the shape vectors
independently by arbitrary scaling factors without changing the resulting point positions or
total error. Because of this unknown 4 x4 matrix and unknown scaling factors, the recov-
ered projective motion matrices Mf are not likely to be expressible in the form shown in
equation (111), which requires that the first three columns of all of the projective motion
matrices be simple rotations of a single, constant matrix K. In order to find the actual
Euclidean shape and motion, we must first find the 4 x4 matrix A which rotates each Mf
into a matrix of that form.

M.=M
f {i‘ (112)
SI’=A Sp

where = indicates equivalence up to a scaling factor. Just as with the previous factoriza-

tion methods, we find A by applying constraints to the form of the motion matrices based on
the orthonormality of the camera axes i, j o and k . in each frame.

Introducing an unknown scale factor d; for each frame, we can rewrite the = relation
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M= K[R, |t) = [kR| K] = a1 (113)

Since M, contains twelve elements, equation (113) gives twelve equations for each frame.
The first three columns of M, can be constrained to be the product of an intrinsic camera
matrix K, constant for all frames, and a rotation matrix. However, the translation component
of the motion for each frame is arbitrary, so equating the fourth columns provides no con-
straints on A . Therefore we use only the first three columns to provide constraints.

KR, = | d I = d MA 114
f ( foA)lcolumns 1-3 '/MfA W
where

A
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Multiplying each side of equation (114) by its transpose, and taking advantage of the fact
that the transpose of a rotation matrix is also its inverse, we derive

_ —1 K7 A
R, = d KM A
— —1 {7 A 157 4 |\T
RRT = d X MfA(de MfA) (116)
I = df?K“MfiAT(K“'Mf)T

Here we assume that the camera calibration matrix K 1s known, and we introduce the cali-
brated projective motion matrix #; = K='#;. Introducing @ = AAT, we see that

-1 -
—00
2
d
0 (715 0f = M,QM}' (117)
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0 0 —
2
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Since we do not know the scale factors d s the diagonal elements can only be constrained to
have equal magnitudes. Furthermore the product A IQM' fT is guaranteed to be symmetric, so
the lower triangular elements provide redundant constraints. Therefore there are six con-
straints on Q per frame.
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Of course, the third constraint is actually redundant since it follows by transitivity of the first
two. However, choosing only the first two constraints would make the solution of the system
more sensitive to errors in (MIQMJ»'T) ,, than to the other terms. So in the interests of
robustness and not favoring any one term over another, we retain the redundant constraint.
These constraints are linear in the 10 unique elements of the 4 x4 symmetric matrix Q, so
they can be solved efficiently. They are homogeneous constraints, to we add the arbitrary
constraint that

(fr0irf) | =1 (119)
to avoid the solution Q = 0.

The Q matrix is decomposed to determine A in a manner very similar to that of section
2.2.3. Since Q is the product of a 3 x4 matrix A and its transpose, we expect that Q will
have one zero eigenvalue. Indeed, when we use Jacobi Transformation to compute the
eigenvalue decomposition @ = LALT we generally find that the last eigenvalue in the diag-
onal matrix A is much smaller than the others. The first three columns of LA!/2 become our
answer for A , the first three columns of A.

There are no constraints with which to determine the fourth column of 4, which effects the
translational component of the motion result in each frame. This portion of the transforma-
tion is indeed arbitrary, because up to this point we have not done anything to fix the world
origin. We choose the fourth column to be [0 00 1]T, and later, after the conversion to a
Euclidean solution is complete, we will transform the camera translation and object shape
results to affix the origin to the object’s mass center, for consistency with previous formula-
tions.

Once the 4 x 4 matrix A has been computed, the camera motion for each frame and position
of each point are determined by equation (112). After multiplication by A~!, the fourth ele-
ment of s_ may no longer equal one. However, we know that each shape vector can be mul-
tiplied by a scalar multiple without changing the results, so we scale each shape vector so
that the fourth element is 1, to achieve a shape vector consistent with the Euclidean formula-
tion of equation (96). The first three elements of each resulting vector are the Euclidean
point positions.
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Since each motion matrix M ¢ is still defined only up to a scaling factor, each is scaled so that
IiA = |j A = |k /| = 1. The first three columns of the resulting matrices contain the Euclidean
orientation of the camera in each frame, while the last column contains the position of the
camera in every frame. As with the previous factorization methods, the resulting i s Jps and
k. are not guaranteed to be orthonormal, so we compute the orthonormal vectors closest to
those given values.

4.1.5. Projective Normalization for Distant Objects

The above-described method works quite well for objects which are near the camera. How-
ever, in image sequences in which the object is very distant from the camera and foreshort-
ening effects are small, it performs poorly. Due to the large distance Zf the magnitudes of
the actual Euclidean M Meys and me; are very small compared to the magnitude of
Mey- In computing the projective shape and motion, large errors in these quantities have
only a minimal impact on the error sum €. In short, the relative errors in these quantities are
much larger than the errors in the distance m 34 OF in the other rows of M - Yet in the projec-
tive metric constraints (118), the constraints using these elements are weighed equally with
other constraints. We therefore introduce a weighting factor o which specifies the weights
to use for the constraints in (118) involving the third row of M - The version of equation
(118) for distant objects becomes

(BT QR || = (B1,QBF) 5,
(M1 00]) 0 = (MQI]) 330

(M) 30 = (B QM) 0
(W18 ), = 0
(i1 08r) 36 = 0
(#1081]) 30

The weighting factor ¢ needs to be adjusted depending on the distance of the object from
the camera for the particular problem. If the actual shape and motion were known rather
than just a projective transformation of the shape and motion, we could estimate o based on
the amount of foreshortening present in the images. The term in denominator of the projec-
tion function Pp(f, p) is thc? sum Mp31Sp1 +mf32sp2-+mf33jvp3 +m13‘,t. The sum of the first
three terms of this summation varies with each point, while the third term is constant for
each frame. If the sum of the first three terms is small relative to the fourth term m g0 then
there is very little foreshortening in the scene. In fact, the projection may be accurately mod-
eled by scaled orthographic projection, and we have little confidence in My Moy and
My and should use a small value of o. If the sum of the first three terms is large relative to
Moy then foreshortening effects are significant and we should use a large value of o. In
fact, the average ratio of |m 315y My3gSpy + ﬂ3sp3l to Mey should provide an excellent
estimate of . We compute ¢ as

(120)

0
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The problem is that the above reasoning assumes a Euclidean interpretation of the motion
matrix, that is, that m 34 TEpresents “depth” and s_ represents the Euclidean object shape. If
these are projective values, then the shape contains an arbitrary projective deformation, so
the ratio will describe a total amount of foreshortening necessary to remove the object’s
arbitrary foreshortening deformation before applying additional foreshortening to project
the shape into the particular frame. Therefore we need to convert the projective solution to a
Euclidean one in order to estimate o, yet without ¢ we cannot convert the projective solu-
tion into a Euclidean one!

The method of the previous section performs too poorly for distant objects to consider using
it to estimate o, so another way is necessary. The key to our procedure is to realize that
when the object is distant, its Euclidean motion matrix will be well-approximated by a
scaled orthographic projection matrix. A scaled orthographic matrix will have zero-valued
Meys Mg and m 330 since that will cause the denominator of the perspective projection
function P (f, p) to be constant for each frame f, independent of the point p. Such a matrix
still has the same form as shown in equation (113), except that the lowest row of the rotation
matrix is replaced with zeros.

We first find a transformation Q_, which best transforms the projective motion matrices into
motion matrices with a scaled orthographic form. Repeating the derivation of the previous
section with the new definition of R produces the following constraints.

v oT) = [ fr orT
(MstoMf)ll - LMJQsoM'f )22
0 orT
(MstoMf )12 0
y orT
(MstaMf )13
" o T
(MstoMf )23
( or T
(MstoMf )33
We use these constraints to compute Q_ and then compute A , from Q_, in the same man-
ner as described in the previous section. This matrix is the matrix which best transforms the
projective motion into a projective motion matrix having scaled orthographic form. This
transformation will only be satisfied perfectly if the object is indeed very distant and fore-
shortening effects are negligible, yet in any case, the transformation provides us with an

estimate of the actual shape and motion by multiplying Mf by A, and A;ol by S‘p. We use
this shape and motion solution to estimate ¢ from equation (121).

(122)

0
0
0
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Once ¢ has been computed, we find Q using equation (120), and compute A from Q
exactly as before. To avoid reliance on possibly noisy entries in the denominator of M -, We
scale the resulting motion matrices so that |i f| = |j A = 1, and compute k = X e

Finally note that when the depth is so extreme that foreshortening effects are completely
overcome by noise, using Q. may provide a better solution than using the @ computed
using equation (120). However, in such cases using the scaled orthographic or paraperspec-
tive factorization method can be expected to produce better results. Using Q_ = will enforce
the scaled orthographic nature of the projection to remove affine or projective deformations
from the projective shape, but small errors in @ will still cause small affine or projective
deformations to remain. The previous factorization methods do not allow projective defor-
mations to enter the solution during decomposition, so no projective deformations will exist
in the result.

4.2. Non-Linear Euclidean Optimization for Shape and Motion Recovery

The projective shape and motion recovery step of the projective factorization actually uses a
higher number of variables than there are degrees of freedom in the original problem.
Eleven motion parameters per frame are used, when in fact each camera position has only
three rotational and three translational degrees of freedom. In the presence of noise, there is
no guarantee that the computed projective motion can be transformed by any 4 x 4 matrix
into a motion of the correct Euclidean form, in which the camera axes are orthonormal and
the camera calibration parameters constant from frame to frame. In essence, we merely
cross our fingers and hope that we can transform the recovered motion into something close
to Euclidean form. If we can transform it into something “close” to the right form, we hope
that the computed camera orientations and translations will be “close” to the correct answer.
When the feature measurements are very noisy, this may not be true. Even when feature
measurements are fairly accurate, more accurate shape and motion results can be expected if
we impose all of the constraints the problem has to offer.

In this section we introduce a method which ensures that the solution is of a valid Euclidean
form with orthonormal camera axes and time-invariant calibration parameters throughout
the minimization rather than imposing these constraints as a post-processing step. Applying
these constraints should ensure more accurate shape and motion reconstruction. Further-
more, this method allows us to treat the camera parameters as additional variables to solve
for, reducing the burden of camera calibration.

The problem is actually not so different from the projective factorization step. We still use
Levenberg-Marquardt optimization to find the shape and motion which minimize the error
sum defined in equation (100), and still use the perspective projection equations defined in
(97). However, we now minimize the errors in the perspective projection equations using
the Euclidean shape, motion, and camera parameters directly as the variables to be refined,
rather than using the projective motion variables m i We write the rotation in terms of the
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three rotation angles 6., ¢ o and ® > introduced in equations (74), so that each frame’s i ) j 1

and k - vectors are guaranteed to be orthonormal.

if cosefcoquf sintCOS(pf —sin(pf
= jf = (cosefsin(pfsinwf-sin(-)fcosmf) (sinefsin(pfsinu)f+ costcoscof) coscpfsin(b )
k (costsinwfcosmf+ sinefsinwf) (sinf)fsin(pjcosu)f— cosefsinmf) COS QoS

We order our variables in a manner similar to that of the projective factorization. The three
rotational variables for each frame (6., ¢,, and (of) are followed by the three translational
variables (x o Vo and zf), for a total of six variables per frame. Following that are the three
shape variables per point, representing the Euclidean three-dimensional position of each
point. Finally, we add the four camera variables; the focal length, the aspect ratio, and the
image center x- and y- coordinates. These variables are solved for simultaneously with the
recovery of shape and motion. The reasoning that produced equations (103) and (104) in the
projective case still holds in the Euclidean case, giving the Hessian matrix the form shown
in Figure 27.

) , shape P camera variables
| motion variables | varighles

frame 1

B Entries computed by
summing many error terms

frame 2

frame 3 . Entries computed from
' a single error term

- Zero-valued entries

frame F

point T
point 2
point 3

point P
Figure 27. Hessian matrix for Euclidean shape from motion recovery.
The diagonal blocks are 6x6 for the motion variables and 3x3 for the shape
variables, while there are 4 camera variables.

Our experience shows that the focal length [ trades off very easily with the depth to the
object z which makes their precise recovery difficult and slows the rate of the system’s
convergence. Since the scaling factor of M [ is arbitrary, we divide it by / and introduce a
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perspective distortion factor p = 1// and a relative depth factor df = zf/ l. Solving for
these variables is more numerically stable than solving for / and z ” In cases in which the
object is far from the camera and foreshortening effects are overcome by noise, the best
solution may be one with infinite focal length, i.e. a scaled orthographic solution. Using the
p and d c formulation allows a graceful change to scaled orthography by letting p approach
zero, while a method explicitly representing the focal length would need the focal length to
approach infinity in order to model scaled orthography. The motion matrix is defined in
terms of these parameters as

if1 +0x”kf1 if2+0x“kfz ij3 +oxukf3 X+ oxdf
Mf = ajﬂ +oyukf1 ajﬂ+oyukf2 ajﬁ +oyukf3 ayp+ oyd (124)
ukf] ukﬂ ukﬂ df

Even with this formulation, experience shows that precise recovery of camera parameters is
difficult unless the initial values are accurate. When reliable initial estimates of the camera
calibration parameters are unavailable, it may be preferable to use the projective shape
recovery method to recover the projective shape and motion, and then use other information
such as the known positions of a few “beacon” points or the knowledge that several points
lie on a plane, to convert the solution into a Euclidean one.

We proceed with the Levenberg-Marquardt solution in the same manner as in the previous
chapter, using equations (103) and (104) to compute o and B at each step of the minimiza-
tion. The derivative of the projection function with respect to the shape variables is the same
as for the projective method, given in (106). The equations for the derivatives of the projec-
tion function with respect to the variables, however, are defined differently, because M ¢ is
defined as a function of the rotational and translational motion variables as well as the
intrinsic camera parameters. Still using the expressions x 00 Vs and Zg, defined for simplic-
ity in equation (105), these derivatives are

oi dk
f f
2ol v S ) el oo S
2
— d - fp
forv = Of, ®p or W, %Pp(f,p) = o (125)
ip akf
pl3v Sp ) 2wl o S
2
. fp J
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Analytic expressions for the derivatives ==, —=, and =— are computed as functions of @,
. 08, do LI f
@ and o, from equation (123). fof f

The derivatives of the projection function with respect to the camera calibration variables
are

fp (rf3 ] sp) 0
d 2 J
ggpp(fyp)= P E—Pp(ﬁp)‘ Tpyos,+Yy
Vg (73 8,) .
—'—22—'— fp (127)
L fr

d _ d _|o
3—0;1’ o0 p) = [0] §_o—yp hp) = l:l]

In the Euclidean case, no normalization or post-processing is necessary once convergence is
achieved. The final rotation, translation, and shape variables values are the answer, with the
exception of scaling the normalized depth values d, by the final focal length pu to compute
that actual depth translation 2

4.3. Shape and Motion Recovery under Radial Projection

Telephoto lenses used for viewing distant scenes are generally very well modeled by the
pinhole camera model used in the standard perspective projection formulation. However,
when viewing scenes much closer to the camera, generally lenses with much shorter focal
lengths and wider fields of view are used. These lenses generally display lens distortion
effects not modeled by the pinhole camera model. The most visible of these unmodeled
effects is radial distortion. Radial distortion is caused by the variance in the thickness of the
camera lens at the center and the thickness near its edge, which causes points far from the
image center to be magnified less than points near the image center. This difference in mag-
nification causes points to be moved towards the center, along the direction of a radius of a
circle centered at the image center. Straight lines in the world can be transformed into curves
in the image. These effects are illustrated in Figure 28. They are also evidenced in the real
images shown in Figure 19, by the curves in the edges of the doorway and refrigerator near
the outer portions of the kitchen sequence.

In this section we introduce a model of radial distortion which differs slightly from the pro-
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Figure 28. Illustration of Radial Distortion
This figure shows two noise-free versions of the first synthetic sequence
shown in Figure 8. The point positions computed using simple perspective
projection are shown in gray, while the point positions after radial distortion
are shown in black. The upper sequence uses a moderate radial distortion
parameter of k = 0.3, while the lower sequence uses k = 1, simulating the
magnitude of radial distortion that might be expected with a very wide-angle,
fish-eye lens. Notice the curves added to straight lines, and that the line con-
necting any undistorted point to its distorted point points to the image center.

jection model used by photogrammetrists and camera calibration researchers, and first show
that our model and the standard model are nearly equivalent. We then show how our shape
and motion reconstruction formulation can be extended to account for radial distortion by
adding a fifth camera parameter which determines the magnitude of the radial distortion in
the image.

4.3.1. Standard ‘2D’ Radial Distortion Model

Many camera calibration techniques are based on a radial camera model [41][44][46]. This
camera model relates the perspectively projected but non-radially-distorted position of a
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point (X, ¥,) to the distorted position (X, ¥ ;) by the equations [41]

X, =X\ 1+x,p2+Kxp%+ ...
. % (128)
Y, =Y, L+ K pe+K,p% + ..

Here the radial distance p? = Xg + Yg and the x; are the radial distortion coefficients. Tsai
reported that using a single-term radial projection model is generally sufficient for machine
vision applications [44]. Note that the radial distance p , which determines the amount that a
particular point is radially distorted, depends on the final distorted position in the image. In
calibration applications, the position of a point in the image is generally known, and the
model is used to determine the undistorted position of the point. However, in order to deter-
mine a projection function P, (f, p) which can predict the final distorted position of a point
from the motion data for frame f and the shape data for frame p, we must solve the two
third order polynomials

_ 2 2

Xu—Xd 1+K]Xd+Kle 129
— 9 2

Yu = Yd 1+K1Xd+Kle

for X, and Y, as functions of the undistorted position determined by perspective projection
(X, Y ) where X, P (f p,Y, P (f p), and unit camera calibration parameters are
used in the perspectlve prOJectlon These equations have exactly one real solution, given by
equation (130), which is derived by reducing (129) to a single third degree polynomial in ¥,
orX,.

1/3 1/3 3 -1/3
(‘-2?) (1+ 1+54) ——‘é—id2/3(l+ 1+4—d) d defined

7= 27 27
1 d undefined
) (130)
where d =
KI‘ X2+v2 l

u u

Yd = Yue

Xd = Xue

Accounting for other camera and digitization parameters, the projection function becomes

P, (P IX,+o0x
p i) = | 0 =|" (131)
Prsz(f, P) laY ;+ oy

Although the model has proven quite adequate for photogrammetry and camera calibration
problems, we can see that the above formulation suffers from several significant drawbacks
when used in 3D vision scenarios where the forward projection must be computed. The
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expressions are ill-formed when either the radial distortion parameter x, or the distance
from the image center X& + Yg are zero. In these cases e approaches unity, but in practical
terms it must be computed as the difference of two large numbers, making it sensitive to
truncation and roundoff errors. We expect that in many cases the radial distortion parameter
will be very small, since many image sequences contain little or no radial distortion, and
some feature points are likely to be located near the center of the image, so this will cause
significant numerical problems. Additionally, computation of the distorted position is very
complicated, and the expressions for the derivative of the projection function with respect to
the motion and shape variables, required for Levenberg-Marquardt minimization, would be
hideous.

4.3.2. 3D’ Radial Distortion Model

The numerical and computational shortcomings of the standard “2D” model when applied to
three-dimensional problems forced us to use a slightly different model, which we will show
to be very similar to the standard model but has simpler mathematics for our purposes.
Instead of basing the amount of distortion on the distorted image position of a point, we base
it on its undistorted image position, which is far more easily calculated from the shape and
motion variables.

- 2 2 — 2 2
X, =X 1eeXiexy2) ¥, =V 1r X0 w 12 (132)

The distorted image position of a point is

P, (f, p)
= +0
r i P, (. p) (1+x,P,,(ﬁp)2+x,Pp(ﬁp)2) g .
,p e X = x y
’ P, (f, p) laP, (£, p)
y - +0
2 2
_(1+K1pr(f,p) +K]Ppy(f,p)) !

Since the camera calibration parameters are applied after the radial distortion, unit camera
calibration parameters should be used in the perspective projection. However, to prevent the
focal length and depth from trading off against each other, we use p = 1// and de = z/l as
in the perspective case, and the radial distortion parameter «, similarly becomes scaled by

u2.

Unlike the previous formulation, the forward projection equations for our radial distortion
model are perfectly well-behaved when k, approaches zero as well as when the point is
located near the image center. Furthermore, the expression is far simpler, and its evaluation
requires only multiplication, addition, and division.

We can now solve for shape and motion under a radial distortion model using the same for-
mulation used in the previous sections. The derivative of the projection function with
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respect to any shape and motion variable v is computed by applying the chain rule to the
derivative of the perspective projection function.

ax 8Yu
ap | (I—KX +1cY)a 21<1YuXua
) A (1 +K1X3+K1Y5J
] )¢ (=
Y
(1 +x,X2-x Y‘)a -2x Xuyuau“
an P, (fp) =

(1 +K1X3+K1Y3J

X, oY
Here for simplicity we’ve used X, P (f p)and Y, = P (f, p) , so the =— 5 “ and 33“ are the
expressions given for perspectlve pro;ectmn in equatxon (9é)

The derivatives with respect to the camera parameters are

2
ax,, X, X, ax, ax2+ax,y,]
%! %t m Y x“T Trx 72
o, oy 1 (1 + K, X0+ K, Yu) _—
2
o, o, N {2r2+2x,y,
do_ Jdo_ da 2 2 - 2 22
do, do,, da Ll +x, X2+ KlYu) oK, (1 +%, X2+ KIYu)

Note that either the Euclidean or projective formulation can be used for X, P (f, p) and
Y,=Pp, (f p). Even when a projective formulation is used, camera cahbratxon “variables
must be used to account for the aspect ratio and image center in addition to the radial distor-
tion parameter. These parameters effect the projection in a manner distinct from the projec-
tive motion variables, because they are applied after the radial projection part of the
projection. When using a projective formulation, the focal length variable is not used
because it would trade off directly with the scaling factors of the projective motion matrices
and the radial distortion parameter x,. When radial distortion effects are small, the aspect
ratio and image center will trade off freely with other scaling and translation aspects of the
projective motion matrices.

It may seem unusual to use camera calibration parameters in addition to a projective formu-
lation since projective formulations are generally used specifically to avoid modeling cam-
era calibration parameters. However, as will be shown in the experimental section, a
formulation in terms of projective shape and motion variables has far better convergence
characteristics than a Euclidean formulation. Therefore using a projective formulation of
perspective projection followed by a radial distortion step allows our method to model
radial distortion and retain the beneficial convergence characteristics of the projective for-
mulation.

Note that the value of x used in equation (133) alone does not give any indication of the
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overall magnitude of radial distortion likely to be seen in an image produced by the lens
unless the camera’s field of view is also known. For example, if a 2 unit wide object is 10
units from the camera and it completely fills the field of view of the lens, then a value of
Kk = 1 will cause a point at the center of the left edge of the image to move ~1% closer to
the image center. The value of Pp at the left edge of the image will be 0.1, so the distortion
factor 1/ Sil + K(Pz + Plf ) will'be 1/1.01 or about 1%. However, if a 2 unit wide object
only half fills the ﬁeﬁd of Viéw, then points at the left edge of the image will have P . = 0.2,
so the point’s position will deform by 1/1.04 or about 4%. The second lens will produce
images with substantially more radial distortion, yet both of them have x = 1. Therefore
whenever we refer to a radial distortion parameter value we will give the value for the nor-
malized radial distortion parameter, which is just x times the square of the field of view in
pixels. Using this definition, the amount of radial distortion visible in an image can be char-
acterized by a single number. So for example, for any lens with a normalized radial distor-
tion parameter value k = 1, the center point of the left edge will be distorted by
1/(1+1(05)%) = 0.8 or a reduction of 20%.

4.3.3. Depth-shape Formulation

3D radial projection is modeled by much simpler forward projection equations than 2D
radial projection. However, in order to apply the shape-depth formulation to this projection
model, the inverse projection model needs to be solved. That is, given a point’s image posi-
tion in the first image, its depth, the estimated motion in the first image, and calibration
parameters, we need to be able to compute its three-dimensional position, in order to predict
where the point will appear in the other images.

Solving the inverse projection problem for our 3D radial projection model is very similar to
solving the forward projection problem for the 2D radial projection model. We solve the
radial projection equations for (X, Y), given (X » Yo and the camera calibration parame-
ters. We can then solve for Sh1 and Sp2 the x- and y-components of the shape vectors, from
(X,, Y,) using the Euclidean or projective equations.

Y

Y,-o0.)2 1-J1-4d

d —N_ =

4= 55092+ (222)) a4
1 d=0

(136)

Y, -o
_ | _d y)
Yu—( - e

X, = (X,~0)e

u

In the case of points near the center of the image or of zero radial distortion, this expression
involves the ratio of two numbers whose values go to zero, but this is far more numerically
stable than the difference of two numbers approaching infinity. Furthermore these equations
are only used for fixed, measured values of X, and Y, (the measured positions of points in
the first frame), so we never need to compute derivatives of these expressions.
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4.3.4. Comparison of 3D and 2D Radial Distortion Models

Figure 29 is a plot of the number of pixels by which a feature point is distorted from its pro-
jectively projected position for a typical radial distortion parameter. The distortion parame-
ters were chosen so points at the edge of a 512x512 image would be distorted by
approximately 30 pixels, which is a rather high level of radial distortion. At this distortion
level, the two radial distortion models differ by only a few pixels. The bottom curve shows
that the two models can be brought into even closer alignment by adjusting the radial distor-
tion constant used in the 3D radial distortion model. This shows that the 3D radial distortion
model closely approximates the standard model.
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Figure 29. Comparison of distortion models.

4.4. Performance Analysis and Discussion

4.4.1. Analysis of Projective and Euclidean techniques

We performed extensive testing using synthetically-generated data to quantitatively analyze
the performance of these non-linear methods as functions of the camera motion and noise
level. The methodology of the synthetic data generation and error measurement is the same
as that of section 2.5. Using synthetic data, we were able to observe the methods’ perfor-
mances at a variety of distances and noise levels.

The initial motion used for all of these experiments consisted of assigning each frame the
same camera orientation and position, i.e. assuming no camera motion at all. The initial
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nario more closely matched the actual scenario. In fact, we supplied the exact distance from
the camera to the object in the first frame, and positioned the “flat” object at this correct
depth. This approach failed for slightly different reasons. When the object is very close to
the camera, relatively small changes to shape or motion parameters can cause a feature point
to move behind the camera, which causes the hypothesized shape to be rejected. When this
occurs repeatedly, the A parameter of the Levenberg-Marquardt minimization is increased,
and the method is forced to take only tiny steps towards the minimum. In our experiments,
using this “closer initialization” approach the minimization failed to converge to the correct
answer after 100 iterations. It appears that for close objects, the Euclidean method requires
even more accurate initial values than were provided here.

4.4.1.2. Analysis of Projective Normalization for Distant Objects

We show the errors in the shape and motion given by the projective factorization method
using three different types of normalization. Figure 32 shows the results using the projective
factorization method for ¢ = 1, i.e. without using the weighting method described in sec-
tion 4.1.5. For this method, the results are good for very close objects, in which significant
foreshortening is observable. Unfortunately the accuracy decreases very rapidly as the dis-
tance to the object is increased. Since the sum of squares error in the decomposition step
remains independent of depth, this suggests that the problem is in the normalization step of
the method rather than in the projective decomposition.

Using the method described in section 4.1.5. to automatically estimate the weighting value
o to use for the constraints involving k, produces the results shown in Figure 33. While the
accuracy still degrades as a function of distance, it degrades much more gradually. Particu-
larly, for noise levels as high as 3 pixels it behaves well up to depths of 10 or more. While an
ideal method would recover shape and motion accurately in both near and distant scenarios,
this performance is satisfactory since above that range, paraperspective factorization or the
Euclidean optimization method work well.

4.4.1.3. Analysis of Depth-shape Formulation

Figure 34 shows the results of the projective factorization method using the shape-depth for-
mulation, whereby éach unknown point is represented by a single variable, the depth of the
point in object-center coordinates. This method requires substantially less computation due
to the reduced number of variables. The performance is slightly worse at low noise levels
and low depths, but appears slightly better at high noise levels and high depths. Its worse
performance can be explained by the fact that it assumes the point positions in the first
frame to be perfectly correct, when in fact our simulations added noise to those values as
well.

4.4.1.4. Analysis of Radial Distortion Method

Figure 35 demonstrates the results of projective factorization applied to radially distorted



=]
8

)}
[¢]
—
—
[\

Shape Error x 10e-3

X and Y Offset Error x 10e-3

1 1 ]

10 20 30 40 50 60
Depth in 1st Frame

L 1 1

20.00 § 40.00
>
18.00 E 35.00
16.00 Lg
g 30.00
14.00 S
12.00 25.00
10.00 j 20.00
8O0 | 15.00
6.00 -5 ’ ——— Noise sigma=4 pixels
I;? — — - Noise sigma=3 pixels 10.00
4.00 I | —-— Noise sigma=2 pixels
i j e Noise sigma=1 pixels :
. —--— Noise sigma=0.5 pixels 5.00 L
2.00 J':/' ——— Noise sigma=0 pixels
ool o 0.00
0 10 20 30 40 50 60 0
Depth in 1st Frame
5.00 | , , ) E 0.08
[ / g
450 H ; 3
l ' £ 0.
| ! | 5 0.07
400 M : N
/ 0.06
350 | /'
3,00 J j ; 0.05
250 HI / 0.04
I
200 "u' |i 0.03
Lsohyl ¢ oy
_ﬂl N 0.02
e/
1.00 1‘! Y
0.00 1 1 1 L L ] 0.00
0 10 20 30 40 50 60 0

Depth in 1st Frame

1 J
20 30 40 50 60
Depth in 1st Frame

Figure 32. Projective Factorization Shape and Motion Recovery Error,

c =1



Shape Error x 10e-3

X and Y Offset Error x 10e-3

20.00 - y
[ .
18.00 |- I/
I ,
16.00 |- INoi!e sigma=4 pixels
— — 7 | Nojse sigma=3 pixels -
- Noise sigma=2 pixels.’
14.00 | o e P
------- - | Ndise sigma=1 pixels
| Noise sigma=0.5 pixels
12.00 Nbise sigma=0 pix€ls
10.00 -I
/
8.00 '
6.00 /
4.00 N/
2.00 A~
0.00 V—.. ..... =T _1'_.|
0 10 20 30 40 50 60
Depth in 1st Frame
ol | ]
|
4.00 H ’, ,
3.50 | Il |
soof| |1
: |
2.50 f ” ,‘
2.00 | // I
! /o
Lso i, ;
!
osoff ...
e
0.00 1 1 1 1 1 J
0 10 20 30 40 S0 60

Depth in 1st Frame

Rotation Error x 10e-3

Z Offset Error

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

page 113

0.00

0.08 -
0.07 |-
0.06 |-
0.05 H
0.04 |

0.03 i

0.02 p}‘

0.01

30 40 50 60
Depth in 1st Frame

0.00

30 40 50 60
Depth in 1st Frame

Figure 33. Projective Factorization Shape and Motion Recovery Error,
Variable o



=
)}
[¢)
—
—
H

E 20.00 / Y
= 18.00} / '
: /
@ / /
2 16.00 Noise sigma=4 pixels
s Eoise sigma=3 pixels
n oisesigma=2 pixels
14.00 | IR e .
-------- Noise sigma=1 pixels
-- —/ Noige sigma=0.5 pixels
12.00 - Nc}ise sigma=0 pixels .-
10.00 | /
8.00 | !
/
6.00 |- '
\I ./ '.'
400f_ —/
land
200 ..._...-
N T
0 10 20 30 40 50 60
Depth in 1st Frame
o
5 5.00 .
8 )
p P!
5 4.50 |- / /
& ey
3 4.00 - i |
b= / /
O N
—~ 3.50 - / /
% am) |1
< T -
I /
2.50 | I /
2.00 -\,J,’ /
A /
1.50 -\/ ’ :
\ /
LOON__ /
0.50 e
~— i —
0.00 1 1 1 1 1 1
0 10 20 30 40 50 60

Depth in 1st Frame

Rotation Error x 10e-3

Z Offset Error

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

0.08

0.07 |-

0.06 |-

0.05 |-

0.04 |-

0.03

0.02

0.01

1 1
30 40 S0 60
Depth in 1st Frame

1 1 1 ]

0.00 L

30 40 50 6C
Depth in 1st Frame

Figure 34. Projective Shape and Motion Recovery Error

Variable o, Depth-shape Formulation



Decomposition Error x 10e-3

Rotation Error x 10e-3

200.00
180.00
160.00
140.00
120.00
100.00
80.00
60.00
40.00

20.00
0

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00
0

1

DR

T

1 1
10 20 30 40 50 60
Depth in 1st Frame

]
10 20 30 40 S0 60
Depth in Ist Frame

Shape Error x 10e-3

X and Y Offset Error x 10e-3

20.00

18.00 |-

16.00 |-

14.00

12.00 |-

10.00

8.00

page 115

Noise=1, kappa=0
Noise=1, kappa=0.01
Noise=1, kappa=0.03
Noise=1, kgppa=0.1
Noise=1, kappa=0.3
Noise=1, kappa=1

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

r?.::__'i__l_. R ) F—— S SR W map |

1 ]
30 40 S0 60
Depth in 1st Frame

\

......

0.00

30 40 50 60
Depth in 1st Frame

Figure 35. Non-radial Projective Factorization Method Applied to

Radially Distorted Images



page 116

images when such distortion is not explicitly modeled. Lenses with high radial distortion
causes a substantial increase in the errors of the recovered structure and motion. The reason
that the decomposition error increases with distance is not an accurate reflection of the
behavior of the decomposition method. Rather, it is a reflection of the fact that when an
object is very close to the camera, foreshortening effects push a larger portion of its 3D
points towards the center of the image, causing a net reduction in the overall magnitude of
radial distortion in the images. In real image sequences, however, we expect that an object’s
closeness to the camera will have no effect on the distribution of feature points in the image
and the total decomposition error will remain independent of depth regardless of the amount
of radial distortion present in the sequence.

Figure 36 shows the results the projective factorization method when radial distortion is
explicitly modeled as described in the previous section. The radial distortion parameter x is
given an initial value of zero, and is allowed to vary simultaneously with the projective
shape and motion parameters. The aspect ratio and image center were kept fixed at their
known correct values during this process. We first performed several iterations of the Lev-
enberg-Marquardt optimization holding k fixed at zero, and only when this optimization
seemed to converge was k allowed to vary. When all were allowed to vary from the outset,
often x would move to some large or negative value to try to achieve rapid reduction in the
error, but eventually led to a local minimum. Figure 36 show that the error in the shape and
motion recovery is virtually independent of «, indicating that we have successfully modeled
the radial distortion.

We performed these experiments for several noise values, although only the results for 1
pixel noise case are shown. When no noise was added to the images, the method dependably
produced the correct answer with zero error. With a noise level of 2 pixels, the errors were
still independent of the radial distortion parameter and resembled the graphs in which the
images were perspectively projected as shown in Figure 34.

4.4.1.5. Analysis of Occlusion Handling

Figure 37 shows the performance of the projective method when occlusions or missing data
are present in the image sequence. The fill pattern for a give fill fraction was created in the
manner described in 2.5.1. The behavior is very similar to that for the confidence weight
paraperspective factorization method. Initially solution accuracy decreases slowly as the fill
fraction decreases. However, as the fill fraction drops below 0.5 or 0.6, the errors increase
dramatically. Below these fill fractions, the solution generally is not even qualitatively cor-
rect, and the feature point positions predicted by the final solution are very far from the
observed position, indicating that the iterative method has apparently become stuck in a
local minimum.

Interestingly, the separate refinement method discussed in section 2.4 essentially amounts to
using only the block diagonal portion of the matrix. When the off-diagonal elements are
ignored, the method is unable to modify both shape and motion to pull various parts of the
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solution together. The full Levenberg-Marquardt method can modify both shape and motion
simultaneously. Its use of a quadratic model of the error surface enables it to converge
quickly to the minimum after approaching the minimum by gradient descent.

4.4.1.6. Failure of Auto-Camera Calibration

As was shown in section 4.2, the non-linear Euclidean optimization method is theoretically
able to refine camera parameters simultaneously with the recovery of shape and motion. We
did not fully explore the usefulness of this technique after some initial experiments proved
disappointing. If camera calibration parameters were allowed to vary throughout the optimi-
zation, invariably even if given the correct calibration parameters as an initial value, the first
step of the optimization changed them drastically, often to absurd solutions such as aspect
ratios which differed from unity by orders of magnitude, negative focal lengths, and nega-
tive radial distortion parameters. These values were clearly incorrect, but since the errors in
the initial value overall were large because of our simplistic “flat-plate” initialization, such
absurd camera parameters could for the time being reduce the total error. Unfortunately such
camera parameters also often led the optimization method inescapably into local minima.

Our next approach was to keep the camera parameters constant until the shape and motion
had been substantially refined. When the initial camera parameters were very close to cor-
rect, the final refinement did produce the correct camera parameters as well as the correct
shape and motion. However, if the initial camera parameters were incorrect, then often the
shape and motion recovered while keeping the camera parameters fixed at their initial values
would produce projectively or radially deformed shapes. Even once the camera parameters
were allowed to vary, the solution remained trapped in a minimum with incorrect camera
parameters and a deformed object shape. Depending on the noise level of the images and
other effects, this sometimes happened with errors in the initial camera estimates as small as
20%. Perhaps a method which limits the change in the camera parameters at first, and then
gradually allows them to change by larger steps over the course of the optimization would
be able to accommodate less correct initial camera parameter estimates.

When only the radial distortion parameter is varied, and the aspect ratio and image center
are fixed to their correct values, the projective factorization method is able to model the
radial distortion in the images and recover a reasonably accurate radial distortion parameter.
(Again, for these experiments we first held x = 0 and refined the projective shape and
motion, and then allowed x to vary.) Further research should investigate whether other
parameters can be recovered in isolation when the remaining parameters are fixed. Since
aspect ratio and image center are generally easy to roughly guess, one approach might be to
recover the focal length and radial distortion parameter first while keeping the aspect ratio
and image center fixed, and then to refine them all as a last step.

4.4.2. Outdoor Building Example

A building at Carnegie Mellon University was imaged using a hand-held portable cam-
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corder. Two hundred features were automatically identified in the first image and tracked
from image to image. While many of the features were tracked throughout the entire
sequence, some features left the field of view or became occluded. When the number of
remaining features fell below 160, new features were detected and tracked. After discarding
all features that were tracked for fewer than 8 frames, a total of 207 features were used for
this 58 image sequence. The images, with tracked features overlaid, and the tracking fill pat-
tern are shown in Figure 38.

The camera was very roughly calibrated using a simple technique. A flat rectangle of known
size was placed at a known distance from the camera, and a single image was taken. From
the image, the coordinates of the four corners of the rectangle were manually observed. The
focal length in pixels was calculated as the product of the distance to the rectangle in meters
and the observed width of the rectangle in image pixels, divided by the known width of the
rectangle in meters. The center pixel of the digitized image was used as the image center.
This very rough technique is simple enough to enable quick calibration in real applications,
and seemed to work sufficient well for use with factorization method.

The projective factorization method was used to recover the shape and motion. The projec-
tive shape recovered from the factorization step is shown in Figure 39. This shape clearly
contains both projective and affine distortions. For example, the object narrows towards the
rear, and the wall is at approximately a 60 degree angle to the car rooftops rather than 90
degrees. Furthermore the shape exhibited an extreme scaling of the depth axis, as discussed
in the previous section, requiring us to scale the shape’s depth axis by a factor of 0.01 before
displaying it.

The final shape computed after normalization has correctly removed these artifacts, as
shown in Figure 40. The walls have been brought into a roughly 90 degree alignment with
the car rooftops, and the windows are now all properly aligned and scaled. Even the position
of the upper left corner of the window marked *“1” was recovered correctly even though it
was lost after the 17th image, in which it briefly left the field of view due to the unsteady
motion. Also note that the window at the rear is installed on a wall which curves away from
the observer, so its actual angle relative to the other three windows is indeed greater than 90
degrees.

4.4.3. Indoor Kitchen Example

In this example, kitchen was imaged using the same hand-help portable camcorder. The
camcorder had a variable zoom, which was set at the widest angle setting in order to view
the entire kitchen from fairly close range. At this setting radial distortion effects, as can be
seen by noticing the curved appearance of the straight doors at the entrance to the kitchen.

One hundred and twelve features were tracked through the 40 image sequence. Due to rela-
tively large textureless regions in the image, an inter-level weighting constant of 0.5 was
used in computing the optical flow estimates. After performing the projective decomposi-
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Figure 38. Hamburg Hall Sequence and Tracked Features
Four windows have been outlined and numbered manually for later reference.
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Figure 39. Recovered Projective Shape of Hamburg Hall Sequence
The images shown here are orthographic projections of the projective shape
recovered from the decomposition step of the projective factorization
method; therefore all apparent perspective effects are projective deforma-
tions present in the shape itself. The z-axis of the shape has been manually
scaled by a factor of 0.01 to facilitate viewing. The four windows have been
marked by hand to show that their sizes vary, and their edges are not orthog-
onal or parallel.
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Figure 40. Euclidean Shape Recovered from Projective Factorization
The windows have been marked by hand using rectangles of equal size, to
demonstrate that the recovered window shapes are equal-sized rectangles.
The figures on the right show the results of mapping image texture onto the
recovered shape, from approximately the same viewpoints as the images on

the left.
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Figure 41. Kitchen Image Sequence and Feature Tracking Results
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tion, ten poorly tracked points were automatically removed in a manner similar to that
described in section 2.7; points showing a large discrepancy between the tracked feature
positions and the positions computed by reprojecting the computed projective shape and
motion were discarded. The projective shape and motion were then recomputed and projec-
tive normalization was applied. to recover the Euclidean shape. Finally, this Euclidean
shape was refined using the radial projection model to produce the final shape shown in Fig-
ure 42. A surface was mapped onto the shape to more effectively demonstrate the shape
reconstruction. This surface was created by computing the Delauney triangulation of the
points in the first frame, and was then edited by hand to remove or refine incorrect surfaces
such as those spanning large depth discontinuities.

Figure 42. Reconstructed Kitchen Shape
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4.5. Direct Shape and Motion Recovery without Tracking

Consider the most common failure modes of typical shape from motion systems. In noisy
image sequences, tracking results often have a high error. Certainly sensor noise and quanti-
zation effects cause small errors in the feature localization. However, other factors can cause
more troublesome problems. For example, a quick motion of the camera can cause the esti-
mated position of a feature to “jump” from the correct region of the image to a nearby
region with a similar appearance. Sometimes this may simply be a local minimum; the
actual feature position would be a better match, but the tracker has moved the estimated fea-
ture position to a new region of the image where it is stuck in a local minimum. Alterna-
tively if the images are noisy or contain repeated texture, both the “true” feature position in
the image and the false position may have roughly equal error measurements - there may be
no image-level way to differentiate the two positions, as illustrated in Figure 43.

Figure 43. Similarity of Image Features
In the sample image on the left, two nearly identical features are marked.
These features are expanded in the center and right images. Because the two
windows are so similar, the feature tracker cannot distinguish one from the
other.

Of course, when the entire sequence is taken into consideration, the correct feature positions
will move in a manner consistent with that of a rigid body, while incorrect feature positions
are less likely to move in a rigid manner. We found that in the aerial and kitchen examples
that many such improperly-tracked points could detected and removed by careful post-pro-
cessing. In some cases, such points may cause the shape and motion recovery method to
produce an incorrect motion to account for the observed feature motion, making it difficult
to assign blame for a poor solution to any one point or set of points. The overall shape and
motion recovery error € will surely be higher if incorrect feature tracks are chosen, but in
the tracking stage there is no way to determine this since three-dimensional information is
unavailable. Furthermore if such points are simply removed, the recovered shape will be
“sparse”, since important key points have no recovered shape. This will make it difficult to
map a surface onto the recovered 3D points, a post-processing step that is required for many
applications.
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In this section, we alleviate these problems by presenting a method for structure and motion
recovery which incorporates image-level information directly in the shape and motion
recovery process. We enforce the rigidity constraint throughout the process by combining
the tracking and structure and motion recovery stages into a single hypothesis-based system.
Features are detected in the first image just as before. Rather than tracking the features from
frame to frame, we formulate the problem as a single minimization problem in which we
seek to find the shape and motion which directly minimizes image errors. The advantage of
this approach is that solutions which do not correspond to a single rigid object undergoing
motion are never considered. The rigidity constraint is applied throughout the process rather
than only at the end, and the image data is used directly to compute shape and motion with-
out tracking features as an intermediate step.

Unfortunately, this can also be the method’s main disadvantage. The method cannot con-
sider any solutions incompatible with the method’s basic model of rigidity, radially pro-
jected planar patches whose change in the images can be approximated as purely
translational. Of course, most methods state these or similar assumptions, but for a method
to be practical it must degrade gracefully when there are a few minor violations of the
method’s basic assumptions. This method can potentially be more fragile than most,
because any error which causes the estimated feature positions to differ from the actual posi-
tions by more than a few pixels can lead the method into a local minimum. Therefore we
need to be careful to model as many aspects of real projection as possible, and to use robust
hierarchical methods to try to avoid the traps of local minima.

We first present the basic least-squares formulation, and then show how we use the basic
framework of Levenberg-Marquardt minimization developed in this chapter to find the opti-
mal solution. We then extend the method to a multi-resolution framework in order to enable
success even with a poor initial value. We finally show an example of using the method to
directly recover the shape and motion without performing feature tracking.

4.5.1. Least Squares Formulation

Consider the method we used to track in image / ' the position of a single feature p, whose
image template Fp is defined by the image intensities over the region of interest R (gener-
ally a square region of a certain size) in the first image. We solved for the vector h o which
minimized the error

- _ 2
Eg,= 3 [(x+hp)—F, (x)]% (137)
X€R
In the past, we computed each of the h p independently from the others. Now we extend this
minimization to simultaneously minimize the error for all points p and all frames f. Thus we
minimize
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P

F
e= > 3y ¥ [If(x+hfp)—Fp(x)]2 (138)
f=1p=1x€e R,

Rather than allowing the h, to vary independently, we write each as a function of the
unknowns in the problem, the structure and motion variables, using the perspective projec-
tion equations, so that

F P

Chre = X 2 2 O ULPE P+ -F )7 (139)
f=1p=1X€RF)

Here o is a gaussian defined over the region whose purpose it to emphasize the pixels near
the center of the window. Our goal is to find the structure and motion variables which mini-
mize the total error €. Since our solution is a set of structure and motion values, it automati-
cally satisfies the rigidity constraint.

4.5.2. Levenberg Marquardt Solution

Equation (139) is just a sum of squares error measurement in terms of the shape and motion
variables. The number of data points to which the model is being fit has increased to
|R(F p)l FP (where |R(Fp)| is the number of pixels in the feature window) instead of 2FP, but
we can apply essentially the same technique as for the feature-based non-linear minimiza-
tion. We use the same variables and the same form for the Hessian matrix as for any of the
previous methods, depending on whether a projective or Euclidean solution is sought. The
difference is that the expected y; values are intensity values taken from the feature template,
defined by the position of the feature in the first frame, and the predicted values Y, are the
intensity values of the image at the position predicted by the shape and motion variables.
For each variable v, the derivative of this projective position is

aY,

i 3 9
5= = TP P +%) = SI(P(,p) +X) - 5=P(f, p) (140)

The expression a—ax-l j(P(f, p) +x) is a 2-vector giving the x- and y-gradients of the image at

the predicted position. The aa—uP(f, p) terms are the derivative of the predicted position with

respect to each of the variables, which are given by equations (106) and (107) for the projec-
tive case, (106) (125) (126) and (127) for the Euclidean case, or (134) and (135) if a radial
model is used.

The 0 and B, entries still follow the pattern of equations (103) and (104) but are extended
to sum the pixel errors over the region R(F ) as well. This involves summing |R(Fp)| times
as many terms as in the point-based method; for 15 x 15 windows, this is more than two
orders of magnitude more computation. Indeed in the point-based methods, the majority of
the computation was spent solving the linear system in o at each iteration, but using the
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image-based method computing o becomes the primary computational burden. We can
reduce the computational requirements considerably by precomputing five terms summa-
tions over each window. These values are independent of the particular variable v and can
be used to compute the entries of o and P for all variables for the given point or frame. The
summations to compute 0 and B, are reduced to the same number of terms as for the point
based method, and that additional computational load of over the point-based method is
only the computation of these five terms for each feature point and each frame.

The B, entries are computed using the following summation.

av,
z OJ(X)()’,'—Yi) a—uk =

X€e R(F,,)

S 00 (Fyx) = [P, p)+ ) (521 (PGP +)- a%kP(f, »)

X € R(Fp)

N 141
T 51 (141)

J
‘a"'{)';Px(f» p) a_xl
3 Z (O(X)(Fp(x)—lf(f’(ﬁ p) +x)) 3
9 R(F,) I
dv ku(f’ p)| € L
- Clp¢p) +x

Note that the 2-vector computed by summation over R(F ) is the same as the vector e com-
puted from the image data for tracking in equation (79), where the current translation esti-
mate h_has been replaced by P(f,p), the projection of the current shape and motion
estimates.

The 0y, entries are computed by summing

ar, \(av,
Z (x) a‘\)k 33}' =

X€ R(F)

3
w00 Z1(P( )+ %) - PG, ) Ll (P ) + ) =P )
XG%FP) (54 3o, &Y v )
i . _ -

dP_|(oP, al, |?

Fo, )\ 30, 3, s

- {ﬂ (a_P.v] > o (a’ J[a_’_j
a‘l)k ‘l)j Xe R(FP) )

(6 e
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Here the 3-vector computed by summation over R(F ) contains the three unique values of
the 2 x 2 matrix G defined in equation (80), again evaluated at P(f, p) + x rather than h +x.
These variables are the equivalent of e and G in the tracking section.

The image intensities /. and their derivatives oI I4 dx must be evaluated at the position
P(f, p) + x. Since P(f, p) will not in general have an integer value, we compute these intensi-
ties by bilinearly interpolating between the four closest pixels as described in section 3.3.1.

4.5.3. Multi-resolution Technique to Avoid Local Minima

Levenberg-Marquardet iteration is an effective tool for solving non-linear equations when an
initial values can be supplied which is sufficiently close to the true, global minimum. How-
ever, when doing a gradient-based search in image space, initial estimates which cause the
predicted position to differ from the actual position by as little as a few pixels can cause the
algorithm to converge to a non-globally optimal local minimum. This is especially true in
highly textured regions, where the image derivative at one pixel may bear no relation at all
to the derivative at an adjacent pixel. A priori smoothing of the images would make these
derivatives more uniform, but this would also smooth out the very information that we
depend on for shape recovery. Even smoothing would not help if the initial value predicts
features more than one window size away from the correct value.

These problems can be addressed by both widening the feature windows and smoothing,
using a hierarchical approach. The problem is solved repeatedly using images of gradually
increasing resolution. The image at each level of the pyramid is produced by averaging
intensities over some region of the first image. Interpolating to compute intensities at non-
integer pixels positions allows an arbitrary reduction between levels of the pyramid, rather
than the standard “factor of 2” reduction. The sample pyramid shown in Figure 44 was com-
puted using an inter-level reduction factor of 1.5. Each pixel in the level 1 image represents
the average of 2.25 pixels in the original image. Images in the 10th level of the pyramid
have been reduced from the first image by a total factor of 1.510= 58, so each pixel repre-
sents the average intensity value of 1.519x 1.510= 3325 pixels.

The feature window size is kept fixed in terms of the number of pixels, so that in the lower
resolution images, a larger portion of the image is matched. Our sum of squares error func-
tion defined in equation (139) still implicitly assumes a purely translational model of image
texture, so when we solve for the shape and motion at the lowest resolution levels, only
rough values for the shape over entire region are computed; the entire region around a fea-
ture is being modeled as a single planar surface. These estimates will be refined and local-
ized as more detailed and narrowly focused windows are used in the higher resolution
images. A sample feature, identified based on its appearance in the first image, is shown
with white squares overlaid on the image pyramid of Figure 44.

Occasionally, features which contain significant texture in the highest resolution image do
not contain significant texture in the reduced resolution images, since the detail has been
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level 8

Figure 44. Image

Pyramid
An 1l-level image pyra-
mid was created from the
original 480 x 512 image,
using a reduction factor of
1.5 between pyramid lev-
els. The entire level 10
image is 8 pixels by 8 pix-
els.
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smoothed away. This will cause the solution for the shape of that feature to wander from the
actual feature. By the time the method uses the high resolution images' where the feature is
clearly trackable, the solution has wandered too far away from the actual minimum, making
it impossible to find the correct solution. To address this problem, we widen the feature win-
dows in any level of the pyramid in which the feature contains insufficient texture. A feature
is deemed to have insufficient texture when its A . is below a set threshold.

4.5.4. Extension to Affine Warping Model

The above formulation maintains the implicit translational motion assumption of most pre-
vious feature tracking methods. Even if the underlying features are indeed planar, as the
object rotates the orientation of the small patches relative to the viewer changes, causing
visible warping and scaling effects. For small motions, the translational assumption is rea-
sonable, but as rotations or optical-axis translations become larger, these effects become
noticeable in the imagery.

While the image itself may contain perspective deformation, we model each individual fea-
ture using an affine warping model. We could allow perspective deformation of the patches
as well, but using an affine model allows the system to be solved with reasonable computa-
tional power.

Similar to the method used for the translational model, we reduce error by limiting the affine
motion of each patch to that which can be explained by the motion of a single rigid object.
We represent an affine patch in 3D by the depth to each of its vertices.

2
UL, (hp) =Py (R (Pyfp) =Py (i ))&+ Py (i) = F o0}
(143)

Here P (f, p) is the projection of the upper-right corner of the affine patch, P, (f, p) is the
projection of the upper-left corner of the patch, and P, (f, p) is the projection of the lower-
left corner of the patch. The 2-vector % is simply the x vector normalized to range from

oo o[ 1"
4.5.5. Direct Shape and Motion Recovery Example

The same image sequence used in section 2.7 is tested here using the direct shape and
motion recovery method. The features are identified in the first image, but are not tracked
from frame to frame. Only the first 20 images of the sequence are used here. This keeps the
total object rotation small, which allows the translational patch assumption to effectively
model the image motion.
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The shape was recovered using a Euclidean formulation without varying the camera param-
eters. Since no initial values were provided, a total of ten levels of the image pyramid were
used. A reduction factor of 1.5 was used as we found that using the standard factor of 2
reduction did not provide sufficiently smooth transition between levels of the pyramid.
Using a reduction factor of 2, sometimes the best shape and motion found at one level still
predicted positions with pixel errors of more than one pixel when transformed into the sec-
ond level, causing the method to become trapped in a local minimum. The initial value used
for the shape estimate, as well as the shape estimates at the end of each level of the pyramid,
are shown in Figure 45. In the lowest resolution level of the pyramid, each feature covers a
large portion of the image. Therefore the recovered shape is a shape estimate for a large por-
tion of the image. For example, features near the corner of the house include image texture
from both sides of the house as they slope away from the camera. The depth estimates in
those areas tended to be further back, causing a “rounding” of the corner of the house. As
higher resolutions and smaller windows are used, these estimates are localized to the spe-
cific feature, causing the corner to form a sharp right angle.

Unlike the feature-based example shown in Figure 12, in which several features near the
windows were tracked incorrectly, using this method there were no incorrectly tracked fea-
tures. Every feature remained “attached” to the correct portion of the image throughout the
sequence.
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top view of initial shape
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Figure 45. Shape estimates by image pyramid level
The initial object shape was consisted of each point at a location determined
by the point’s position in the first frame located on a flat plane far from the
camera. The front view of the shape changed very little over the course of the
iteration. Every point was “tracked” correctly.
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5. Conclusions

This research has addressed the problem of recovering shape and motion from noisy image
sequences. We have developed methods for robust feature tracking, accommodating missing
observations, and shape recovery under a variety of imaging scenarios. We have demon-
strated the effectiveness of these techniques on a variety of synthetic and real image
sequences.

This research has carefully addressed the problem of shape and motion recovery in the pres-
ence of occlusion and missing observations, and has detailed the method’s performance as a
function of the fill fraction, the fraction of all potential observations for which data is actu-
ally available. We furthermore show how to assign confidences to a point based on the
tracking results, and how these confidences can be incorporated into the problem formula-
tion.

We have presented a range of methods for recovering shape and motion from image
sequences and shown their performance in relation to each other. When the object is far
from the camera, bilinear camera models such as scaled orthography and paraperspective
can be used to describe the image projection process. The scaled orthographic factorization
method requires little knowledge of the camera calibration parameters; only the aspect ratio
need be known. When more camera information is available, better results can be obtained
by accurately modeling the position effect using the paraperspective factorization method.

These bilinear models are not sufficient for all cases. When the object being imaged is closer
to the camera, unmodeled foreshortening effects cause errors in the results of the factoriza-
tion. The results of the factorization method can be improved considerably using a separate
iterative refinement step. While substantial shape improvement can be obtained in just a few
iterations of this method, it can take hundreds of iterations to adjust both the shape and
motion to the correct minimum-error result. Furthermore, when the object is very close to
the camera, unmodeled foreshortening effects can cause the normalization step of the parap-
erspective factorization method to fail, supplying no initialization for projective refinement.

In such cases in which foreshortening effects are dominant, the projective factorization
method works well. This research has demonstrated that projective factorization can pro-
duce accurate results when the object is relatively close to the camera, or when noise levels
are low, although the factorization is more computationally intensive than the for the bilin-
ear camera models. In addition, we have shown through extensive experimentation that the
projective formulation has better convergence properties than direct optimization using a
Euclidean formulation.

When a simple initial value is used, the Euclidean optimization method works well only in
the same sorts of situations in which paraperspective also works well. By modeling perspec-
tive projection completely it avoids the need for a separate refinement step to remove per-
spective distortion, and is able to converge in a substantially smaller number of iterations
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than the separate refinement method. The Euclidean optimization method can also be used
to refine the results of either the projective or paraperspective factorization method. It can
also accommodate radial distortion, as can the projective factorization method. The primary
differences between paraperspective factorization, projective factorization, and Euclidean
optimization are summarized in Table 4.

Table 4: Comparison of shape recovery techniques

paraperspective projective Euclidean
factorization factorization optimization
method method method

models foreshortening? X ! !
insensitive to initial value? ! ! X
accurate for distant objects? ! X !

approximate running time? 4 sec 120 sec 400 sec?
for 60 points / 60 frames on

Sparc 5/85

shape-depth running time N/A 60 sec 110 sec?

a. Does not include zero-noise cases, which often required more iterations than usual since the
convergence criteria was not satisfied until machine floating point precision limits were reached.
b. Does not include low-depth sequences in which the method converged to local minima, often
after an unusually large number of iterations.

Finally, this thesis has investigated extending the point-based non-linear optimization
framework to recover shape and motion directly from image sequences without a separate
tracking stage. This enforces object rigidity throughout the entire process, preventing fea-
tures from following non-rigid trajectories. This method is by far the most computationally
expensive, requiring hours to solve a typical image sequence, and still requires modification
to address issues such as occlusion and unmodeled image patch changes in order to become
a practically useful method.

5.1. Future work

5.1.1. Feature Tracking

When the camera is extremely unsteady or the camera operator pans back and forth across
the field of view, the same feature points may enter and leave the field of view several times
within a short period of time. The current feature tracker considers a point “lost” when it
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leaves the field of view; after many features have been lost, the system searches for new fea-
tures. Sometimes a point leaves the field of view for a single frame, and then reappears. The
current tracker cannot recognize when a previous feature has re-entered the field of view,
and therefore any point which leaves for even a frame is considered permanently lost. It may
detect the feature as a new feature, and continue to track it for future frames, without recog-
nizing it as the same as a previously seen feature. By not recognizing that the two are the
same feature, significant information is lost.

The tracking scheme should be extended to try to detect when previous features re-enter the
field of view. This is hindered by the fact that no estimate for the points motion is available
once it has left the field of view. Searching the image in the area where the feature left would
be expensive and would be susceptible to finding false matches, yet in the tracking stage the
three-dimensional information that would fix the point’s motion even when it is unobserved
is unavailable. One possibility is to use projective invariants. A point’s position in the cur-
rent frame could be estimated by requiring that its cross-ratios with respect to some subset
of other tracked points be the same as in those frames in which the point was observed. If
there are no features in the current frame which were observed simultaneously with the
given point, or if the position estimate lies outside the field of view, the point is still consid-
ered to be unobserved. However, if the position estimate lies within the field of view, that
estimate is used as an initial value for feature tracking, the feature point is tracked, and if the
total sum of squares error for that point passes a simple threshold test, the point is consid-
ered to be rediscovered.

Additionally, the feature detection method described in this thesis could be extended to
allow varying feature sizes. During the feature detection stage, each potential feature win-
dow could be expanded until the window contains sufficient texture to enable tracking. This
would enable large, relatively textureless regions to be tracked as features, on the assump-
tion that such regions are planar. Similarly, if one eigenvalue of the G matrix is small, the
window could be extended in the direction of the corresponding eigenvector until the win-
dow contains enough information to precisely track the feature in both directions. This
would enable edge-like features to be used by extending them to include the edges’ end-
points.

5.1.2. Accommodating Long Sequences

Both the perspective and projective factorization methods have been shown to work in the
presence of occlusion and missing data. However, both have the same limitations; as the fill
percentage drops, the errors increase, finally reaching a point where local minima in the
search space prevent even qualitatively correct solutions. Long sequences in which the cam-
era views several distinct parts of an object, room, or scene may often have fill fractions of
ten percent or even less. The methods we have addressed for occlusion handling clearly do
not gernally converge at such low fill fractions unless given very accurate initial values.

An obvious solution is to separate the sequence into several smaller sequences which will
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have larger fill fractions. If the sequences are slightly overlapped so that they share some
points or share some images, the final solutions can be “pasted” together to for a single
shape and object by scaling, rotating, and translating the solutions so that the common
points or common motion parameters coincide. Thus a single motion and single object
shape could be produced for the sequence. This solution could be further refined using the
Euclidean optimization method.

5.1.3. Further Incorporating Image Data

The direct shape and motion recovery method can work well when used to refine shape and
motion estimates provided by traditional techniques. However, it is still based on the trans-
lational patch assumption, which may not always be a valid assumption. We have shown in
this paper that the approach can be extended to an affine warping model, but in practice this
requires reasonable initial estimates of the orientation of each patch. One could imagine
even more complex formulation, in which each patch is defined by a number of control
points whose depths vary independently. However, this would also require initialization and
poor initial values may prevent solution.

Adding even more degrees of freedom without adding information makes the system very
sensitive to noise. The primary goal of extending the patch model to an affine model was to
recover surface normals, which are necessary to build three-dimensional surface models
using point interpolation techniques. A better idea might be to introduce a surface model at
the time of the shape and motion reconstruction. The surface model and current shape and
motion estimate would be used to predict the appearance of the object in each frame. The
shape and motion values would be refined to bring the predicted appearance into correspon-
dence with the actual observed appearance.

For example, we might detect a few hundred feature points in the first image and compute a
2D triangulation of those points. The actual image intensities of each triangle would be used
instead of just the intensities of the feature points themselves. As the shape estimates for a
particular point are changed, the predicted appearances of all of the surface triangles con-
taining that point as a vertex change. This allows shape and motion recovery to make use of
all image information rather than just using image intensity information at the feature
points. The basic non-linear formulation described in this thesis could be extended to handle
this case, though the block-diagonal nature of the shape portion of the Hessian matrix would
be destroyed. Still, with an appropriately chosen preconditioner matrix, the conjugate gradi-
ent method should be able to invert the Hessian matrix in a reasonable amount of computa-
tion. Such a method would resemble the recent method of Szeliski and Coughlan, but would
be a true multi-frame formulation producing shape and motion as a result rather than image
motions.

5.1.4. Camera calibration

The framework developed in this paper allows recovery of the camera focal length, aspect
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ratio, image center, and first order radial distortion parameter. However, our experience indi-
cates that allowing these variables can wander far from their correct values if not further
constrained. Our solution is generally to fix the camera parameters until shape and motion
estimation is almost complete, and then to allow them all to vary. This requires accurate ini-
tial estimates of the camera parameters, however. This dependence should be experimen-
tally quantified to determine precisely how accurate camera estimates need to be, and in
what circumstances camera calibration parameters can be recovered simultaneously with
shape and motion recovery.

Ideally, camera calibration requirements should be eliminated from both the paraperspective
and projective factorization methods. It is possible in theory, since the addition of 4
unknowns (focal length, aspect ratio, and image center) still leaves the metric constraints
overconstrained. However, straightforward implementation of non-linear solution tech-
niques to solve for these parameters as well as the matrix A failed except when the initially
provided camera calibration parameters were very accurate.

5.1.5. Multiple cameras

This formulation could easily extended to allow multiple cameras. If the cameras are fixed
relative to each other, each camera’s set of parameters would include both its intrinsic
parameters, and its orientation relative to the first camera. Computation of the expected
image position of any point would the require an additional transformation from the “frame”
coordinate system to the coordinate system of the particular camera from which the scene is
being viewed. If the cameras are allowed to move independently, then images from addi-
tional cameras would be treated in much the same way as additional images are currently
treated. However, there would be multiple sets of camera parameters, and each observation
would specify the particular frame, point, and camera to which the observation corresponds.
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