The Paraperspective and Projective Factorization
Methods for Recovering Shape and Motion

Conrad J. Poelman

12 July 1995
CMU-CS-95-173

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Takeo Kanade, Chair
Steven Shafer
. Paul Heckbert
Joseph Mundy, GE Corporate Research

Copyright © 1995 by Conrad J. Poelman

This research was sponsored by the Department of the Army, Army Research Office under grant
number DA AH04-94-G-0006.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the Department of the
Army or the United States Government.

Keywords: Computer vision, motion, shape, time-varying imagery, iterative minimization

School of Computer Science

DOCTORAL THESIS
in the field of
Computer Science

The Paraperspective and Projective Factorization Methods
for Recovering Shape and Motion

CONRAD J. POELMAN

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:
78{24/_@&(.«@—-—-* \Iuﬁj_ (<, 1975
THESIS COMMITTEE CHAIR I DATE
/> Norw 7/ 24 / 75—
DEPARTMENT HEAD DATE
APPROVED:

DEAN DATE

T2 oM 7/25/75
g

page 3
Abstract

Sensing the shape and motion of an object from an image sequence is a central problem in
computer vision, having applications in such diverse fields as autonomous navigation, car-
tography, and virtual reality systems. When an observer moves relative to an object, shape
information is revealed through changes in the appearance of the object. In theory, the shape
of an object and motion of the observer can be recovered by matching as few as eight points
between two images. In practice, existing methods fail to work reliably in many noisy, real-
world situations.

This thesis presents two novel techniques for recovering the shape and motion of a rigid
object from a multi-image sequence. The paraperspective and projective factorization meth-
ods share a common approach with the orthographic factorization method developed by
Tomasi and Kanade. The paraperspective factorization method is based on a closer approxi-
mation to image projection than orthography, enabling it to account for several important
aspects of image projection that the original method could not. The projective factorization
method is based on a more accurate model of image projection which not only accounts for
standard perspective effects such as foreshortening, but can also model radial distortion, an
important effect rarely considered in the shape from motion literature. The non-linear nature
of the projection equations makes the projective factorization method more computationally
intensive than the paraperspective method; however, its more accurate projection model
allows its application to sequences in which the object is close to the camera or contains
large depth disparities.

This thesis also addresses other issues vital to accurate shape recovery, such as robust track-
ing of features in sequences with large motions between images. Both methods are formu-
lated to allow shape and motion recovery from sequences in which features become
occluded or leave the field of view, and to account for the varying confidences of the feature
tracking results.

The methods have been extensively tested and their behaviors systematically explored by
controlled experimentation on over four thousand synthetically generated images. They
have further been shown to successfully recover object shapes from real-world image
sequences recorded using unsteady hand-held consumer-quality cameras, demonstrating
their robustness to image noise and non-smooth camera motion.

page 4

page 5

Acknowledgments

Dedicated to my parents, Charlotte I. and R. Conrad Poelman, who always had enough con-
fidence in me to support me unreservedly no matter where my interests led.

Thanks to my thesis committee: Takeo Kanade, who first instructed me the many arts of
research; Steve Shafer, who sincerely tries to bring out the real scientist in all of us; Paul
Heckbert, who read my thesis even more carefully than I did and offered countless helpful
suggestions; and Joe Mundy, who always had a unique perspective to offer.

Thanks to my most recent officemates Jennifer Kay and Justin Boyan for putting up with my
odd hours and strange habits during my thesis rush. Thanks to Denis Dancanet, Yalin Xiong,
and Mark Maimone for helping me out of various last-minute emergencies. Thanks to Jim
Rehg and Harry Shum for listening and helping me out with ideas at various stages of my
research career.

Finally, thanks to Kay Reardon, without whose patience and love of teaching mathematics
to high school students I could not have come this far.

page 6

Contents

Abstract 3
Acknowledgments 5
Contents 7

List of Figures 11
List of Tables 13

1. Introduction 15
1.1. Related Work 16
1.2. Contributions 18
1.3. Geometry and Notation 19
1.4. Imaging Effects and Projection Models 21
1.5. Thesis Overview 23

2. Paraperspective Factorization 25

2.1. The Orthographic Factorization Method 26
2.1.1. Orthographic Projection 26
2.1.2. Decomposition 27
2.1.3. Normalization 28

2.2. The Scaled Orthographic Factorization Method 29
2.2.1. Scaled Orthographic Projection 29
2.2.2. Decomposition 30
2.2.3. Normalization 30
2.2.4. Shape and Motion Recovery 31

2.3. The Paraperspective Factorization Method 31
2.3.1. Paraperspective Projection 32
2.3.2. Relation of Paraperspective and Affine Models 34
2.3.3. Paraperspective as a Perspective Approximation 36
2.3.4. Decomposition 38
2.3.5. Normalization 39
2.3.6. Shape and Motion Recovery 40
2.3.7. Normalization Failure 41
2.3.8. Solution Ambiguity Removal 43
2.3.9. Camera Calibration Requirements 44

2.4. Separate Perspective Refinement Method 46
2.4.1. Perspective Projection 46
2.4.2. Review of Levenberg-Marquardt Minimization 47
2.4.3. Tterative Solution Method 49

2.5. Comparison 51
2.5.1. Data Generation 51
2.5.2. Error Measurement 52

page 7

page 8

2.5.3. Discussion of Results 53
2.6. Analysis of Paraperspective Method using Synthetic Data 55
2.7. Paraperspective Factorization Applied to Laboratory Image Sequence 55

3. Confidence-Weighted Tracking and Shape Recovery 61

3.1. Image Motion Estimation 61

3.2. Feature Selection and Image Motion Confidence Estimation 63

3.3. Tracking Despite Large Image Motion 65
3.3.1. Hierarchical Confidence-Weighted Sparse Optical Flow Estimation 65
3.3.2. Sparse Optical Flow Results 68

3.4. Factorization Despite Occluded and Uncertain Tracking Data 74
3.4.1. Confidence-Weighted Formulation 74
3.4.2. Iterative Solution Method 75

3.4.3. Analysis of Weighted Factorization using Synthetic Data 77
3.4.4. Discussion 79

3.5. Application to Aerial Image Sequence 80

4. Projective Factorization 83
4.1. Projective Factorization 84
4.1.1. Least Squares Formulation 84
4.1.2. Levenberg-Marquardt Solution Method 86
4.1.3. Depth-shape Formulation 90
4.1.4. Projective Normalization 93
4.1.5. Projective Normalization for Distant Objects 96
4.2. Non-Linear Euclidean Optimization for Shape and Motion Recovery 98
4.3. Shape and Motion Recovery under Radial Projection 101
4.3.1. Standard “2D” Radial Distortion Model 102
4.3.2. “3D” Radial Distortion Model 104
4.3.3. Depth-shape Formulation 106
4.3.4. Comparison of 3D and 2D Radial Distortion Models 107
4.4. Performance Analysis and Discussion 107
4.4.1. Analysis of Projective and Euclidean techniques 107
4.4.1.1. Euclidean Optimization versus Projective Factorization 108
4.4.1.2. Analysis of Projective Normalization for Distant Objects 111
4.4.1.3. Analysis of Depth-shape Formulation 111
4.4.1.4. Analysis of Radial Distortion Method 111
4.4.1.5. Analysis of Occlusion Handling 116
4.4.1.6. Failure of Auto-Camera Calibration 119
4.4.2. Outdoor Building Example 119
4.4.3. Indoor Kitchen Example 120
4.5. Direct Shape and Motion Recovery without Tracking 126
4.5.1. Least Squares Formulation 127
4.5.2. Levenberg Marquardt Solution 128
4.5.3. Multi-resolution Technique to Avoid Local Minima 130
4.5.4. Extension to Affine Warping Model 132
4.5.5. Direct Shape and Motion Recovery Example 132

5. Conclusions 135
5.1. Future work 136
5.1.1. Feature Tracking 136
5.1.2. Accommodating Long Sequences 137
5.1.3. Further Incorporating Image Data 138
5.1.4. Camera calibration 138
5.1.5. Multiple cameras 139

References 141

page 9

page 10

page 11

List of Figures

1. Coordinate system and Notation 20

2. Effects of perspective projection 25

3. Orthographic projection in two dimensions 26

4 Scaled Orthographic Projection in two dimensions 30
5. Paraperspective projection in two dimensions 32

6 Ambiguity of Solution 45

7. Perspective Projection in two dimensions 47

8. Sample Synthetic Image Sequences 52

9. Methods compared for a typical case 54

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
4].
42.
43,

Paraperspective shape and motion recovery by noise level 56

Hotel Model Image Sequence 57

Comparison of Orthographic and Paraperspective Shape Results 58

Hotel Model Rotation Results 60

Feature trackability of example image regions 64

Interpolation of Sparse Optical Flow 67

Unsmoothed optical flow for Aerial Sequence 69

Unsmoothed optical flow - Kitchen Sequence 70

Optical flow using inter-level confidence-based smoothing 71

Tracking Results for Kitchen Sequence 72

Tracking Results for Aerial Image Sequence 73

Confidence-Weighted Shape and Motion Recovery by Noise Level, Fill Fraction 78
Aerial Image Sequence 81

Reconstructed Terrain from Two Viewpoints 82

Affine Equivalence and Projective Equivalence 85

Hessian matrix for projective shape from motion recovery 89

Shape-depth formulation 91

Hessian matrix for Euclidean shape from motion recovery. 99

Illustration of Radial Distortion 102

Comparison of distortion models. 107

Total sum-of-squares error 109

Shape and Motion Recovery Error for Euclidean Method 110

Projective Factorization Shape and Motion Recovery Error 112

Projective Factorization Shape and Motion Recovery Error, Variable ¢ 113
Projective Shape and Motion Recovery Error Variable 6, Depth-shape Formulation 114
Non-radial Projective Factorization Method Applied to Radially Distorted Images 115
Projective Factorization with Variable Radial Distortion 117

Projective Shape and Motion Recovery with Occlusion 118

Hamburg Hall Sequence and Tracked Features 121

Recovered Projective Shape of Hamburg Hall Sequence 122

Euclidean Shape Recovered from Projective Factorization 123

Kitchen Image Sequence and Feature Tracking Results 124

Reconstructed Kitchen Shape 125

Similarity of Image Features 126

page 12

44. Image Pyramid 131
45. Shape estimates by image pyramid level 134

List of Tables

1. Description of Imaging Effects 22

2. Projection Models’ Equations and Effects 23

3. Running Time of Confidence-Weighted Factorization 79
4. Comparison of shape recovery techniques 136

page 13

page 14

page 15
1. Introduction

From a single image, little can be said for certain about the three-dimensional shape of the
object or scene. Numerous methods have been developed for recovering shape using cues
such as shading or defocus, or for recovering shape in limited domains where the images
contain only right angles or certain types of smooth curves, yet these methods cannot reli-
ably recover an object’s shape from single images taken in unconstrained real-world situa-
tions. However, as an observer moves relative to an object, the image of the object changes
in a way dependent on both the object’s three-dimensional shape and the motion of the
observer. In theory it is possible to recover both the shape of the object and the motion of the
observer by matching observed points between as few as three images taken from different
viewpoints. In practice, however, formulations based on a minimal number of observations
have proven very sensitive to noise, and therefore unsuitable for real-world use.

Tomasi and Kanade [42][43] developed a robust and efficient method for accurately recov-
ering the shape and motion of an object from a sequence of images, called the factorization
method. Like most traditional techniques, the method requires that the image positions of
point features (such as corners, bright spots, or surface markings) first be tracked throughout
the stream. It achieves its accuracy and robustness by taking advantage of the large stream
of redundant input by means of a well-understood numerical computation, the singular
value decomposition (SVD), to process feature measurements from all images simulta-
neously. However, the original Tomasi-Kanade factorization method’s applicability was
limited due to its use of an orthographic projection model. Orthographic projection cannot
account for several important effects of image projection, such as the scaling effect,
whereby an object appears larger in the image as it approaches the camera, and therefore its
application is restricted to certain ranges of motion. Furthermore it is unable to supply any
estimation of translation along the camera’s optical axis, which limits its usefulness for cer-
tain tasks.

This thesis describes two shape and motion recovery techniques which can be applied to a
much wider range of situations and produce more accurate results than previous techniques.
The first extends the factorization method to use a paraperspective projection model rather
than an orthographic one. Paraperspective projection, first introduced by Ohta [28] and
named by Aloimonos [2], models two effects of image projection that orthography.does not
model; the scaling effect, described above, and the position effect, whereby an object is
viewed from different angles as it translates across the field of view. It can be modeled by
bilinear equations similar to the orthographic equations, which allows for a factorization
formulation of the shape and motion recovery process.

The second technique is the projective factorization method, which is based on a perspective
projection model. By modeling the foreshortening effect of perspective projection in addi-
tion to the effects described above, this method can be applied to objects or scenes contain-
ing great depth disparities. While it shares a common approach and philosophy with the

page 16

orthographic and paraperspective factorization methods, the non-linearity of the perspective
projection equations necessitates the use of quite different techniques. The non-linear tech-
niques applied to solve this problem tend to require more storage space and more computa-
tion than the bilinear methods. Therefore projective factorization is advantageous only when
foreshortening effects make the use of the paraperspective method impossible.

Techniques are developed in this thesis to address several other practical issues vital to accu-
rate shape recovery. One such technique enables robust tracking of features in sequences
with large motions between images. Another extends the basic shape and motion recovery
techniques to accommodate missing and uncertain data, which occur when points become
occluded, leave the field of view, or for some other reason cannot be tracked throughout the
entire sequence. This technique also improves the accuracy of shape and motion recovery
by incorporating confidence measures for each feature measurement. The non-linear mini-
mization technique developed for recovering shape and motion under a perspective projec-
tion model is also extended to account for unknown radial distortion in the image sequence,
allowing the methods to be applied to a wider range of cameras and closer objects. The tech-
nique is also shown to enable the use of image intensities directly for shape and motion
recovery rather than depending feature tracking measurements. While the technique is still
“feature-based” in a sense, it allows the use of features which might not otherwise be
tracked correctly, and therefore helps provide fuller shape recovery.

Successful techniques for accomplishing shape and motion recovery from image sequences
could enable mobile robots to autonomously map and navigate through unknown environ-
ments, or aircraft to map terrain despite unknown and arbitrary, non-uniform motion, while
simultaneously obtaining information about their own movement. Structure recovery tech-
niques could be used in graphical simulation or virtual reality systems, replacing the cur-
rently painstaking task of defining 3D object models by hand with a system for
automatically generating them from raw video footage. Such techniques also could prove
powerful for image compression; once the three-dimensional scene geometry and image
texture are transmitted, subsequent images could be reconstructed by sending only camera
motion information.

Through extensive experiments on simulated, laboratory, and real video data, we demon-
strate the performance of our methods, the relationships between them, and the particular
advantages of each method. We show that the paraperspective and projective factorization
methods can be used for shape and motion recovery in many practical scenarios.

1.1. Related Work

The problem of computing shape and motion from image streams finds its earliest roots in
stereo vision research. In the stereo problem, two or more cameras image the same scene.
The position and orientation of the second camera relative to the first is fixed, determined
once through advance calibration. The depths of various points in the scene are generally

page 17

computed by matching corresponding points in the two images, and triangulating to com-
pute the depth.

Early structure from motion work by Longuet-Higgins and Tsai and Huang showed that it
was possible to recover the depths of the points and the relative orientations of two cameras
from two perspective views provided at least 8 point correspondences were known [23][45].
The solution put forth in [45], first solving for a set of essential parameters which can further
be analyzed to reveal the camera motion, requires only solving a system of linear equations
and computing the SVD of a small matrix. Faugeras, Lustman, and Toscani, as well as Spet-
sakis and Aloimonis developed similar approaches for recovering the positions of three-
dimensional lines viewed in three images, the minimum necessary to provide a unique solu-
tion [16][35]. Demey, Zisserman, and Beardsley, Faugeras, and Shashua have developed
numerous other techniques for recovering shape and motion from a small number of images
and feature points [11][14][33], based on more recent insights into projective and affine
geometry. However, without the advantage of data redundancy, these methods are highly
sensitive to even low levels of image noise, and therefore frequently fail on sequences taken
outside of a controlled laboratory environment.

Improved shape recovery can be achieved by restricting the range of allowable motions, by
requiring that the motion be known a priori, as was done by Matthies, Kanade, and Szeliski
[24], assuming the motion to be smooth, or by allowing only translational or only rotational
motion, as was done by Horn and Weldon [22]. In the case of general motion, however,
many reports have admitted that traditional methods have failed to produce reliable results
in many situations [8][13]. Since methods using the minimal number of features or the min-
imal number of images tended to be highly sensitive to image noise, researchers began to
look to longer sequences containing more points for methods that could provide improved
robustness.

Soatto, Perona, and Frezza applied Kalman filtering techniques to combine a sequence of
two-frame solutions to produce a single, more robust estimate [36], as did Azerbayejani and
Pentland [3], Harris [19], Thomas, Hansen, and Oliensis [40], and many others. Xiong and
Shafer have developed a efficient techniques for recovering a dense depth map as well as the
motion from an image sequence using Kalman filter integration of two-frame depth esti-
mates derived from optical flow values, in some ways an extension of the approach of Mat-
thies, Kanade, and Szeliski [24] to the case of unknown motion [47].

The factorization method developed by Tomasi and Kanade [42][43] is a “batch” method
which processes data from all frames simultaneously. It achieved its robustness by process-
ing large numbers of orthographically projected images with many points tracked through-
out the sequence. Basing the method on orthographic projection allowed them to avoid
complicated non-linear solution methods. In a sense, their work parallels the “essential
parameter” approach of Tsai and Huang [45]. In the decomposition stage, they use the SVD
to solve for a set of “essential motion parameters” and an affine shape estimate. In the nor-
malization stage, they solve for the affine transformation which transforms the affine shape

page 18

into a Euclidean shape, by constraining the form of the essential motion parameter matrix.
Finally in the motion recovery stage, they compute the camera motion from the essential
parameters. In order to make use of many points and frames under a of perspective projec-
tion model, others have used non-linear optimization techniques. Taylor, Kriegman, and
Anandan [39] developed a solution method for the case of 1D images which involved sepa-
rately refining the shape and motion parameters. Szeliski and Kang [38] used Levenberg-
Marquardt iteration to find a least-squares solution to the large system of non-linear perspec-
tive projection equations, using sparse matrix techniques to efficiently represent and invert
the Hessian matrix.

Although methods based on projective geometry and projective invariants have recently
become popular, many of these methods still address only the two-frame problem. Mohr,
Veillon, and Quan put forth an iterative non-linear method inspired by projective geometry
which simultaneously uses the information from all images and all frames [25]. They solve
for the projective shape and motion, and in [6] Boufama, Mohr, and Veillon show how to
convert this solution to Euclidean shape when additional scene knowledge is available.
Ponce, Marimont, and Cass present an analogous method which requires the selection of
five points to use as the basis for the projective coordinates and then reduces the problem to
a minimization involving only polynomial functions [30]. Szeliski and Kang [38] also
extend their framework to address projective shape and motion recovery, though they don’t
address the problem of Euclidean reconstruction from projective shape and motion.

Faugeras, Luong, and Maybank developed a method for recovering intrinsic and extrinsic
camera calibration parameters from three images [15]. The epipolar geometry is estimated
between pairs of images, and constraints on the form of the computed fundamental matrices
are used to recover the camera parameters. They use the continuation method to solve a set
of non-linear equations which is known to have many local minima. Since the epipolar
geometry is only computed from pairs of images, scene rigidity throughout the three images
is not strictly enforced. The metliod was shown to be extremely sensitive to noise, and was
not demonstrated on real images. Hartley’s method [18] involves first computing the projec-
tive shape and motion, and then converting them to a Euclidean solution using a series of
steps including linear programming, Choleski decomposition, and Levenberg-Marquardt
iteration.

1.2. Contributions

» The scaled orthographic factorization method for shape and motion recovery,
which accounts for the scaling effect of the image projection.

» The paraperspective factorization method, which accounts for the scaling and posi-
tion effects of image projection.

» The separate refinement method, which iteratively improves a shape and motion

page 19

estimate using a perspective projection model to accurately account for the fore-
shortening effect.

* A clarification of the relationships between the paraperspective projection model,
the general affine camera model, and the “fixed-intrinsic” affine camera model.

* A derivation of paraperspective projection as an mathematical first-order approxi-
mation to perspective projection.

* A robust hierarchical feature tracker which can track large feature motions.

* A method for accommodating occluded, missing, and uncertain feature tracking
data within the factorization methods.

* The projective factorization method, which accounts for foreshortening and radial
distortion effects, and has better convergence properties than the separate refine-
ment method.

 Convincing experimental evidence that solving for projective shape and motion
has superior convergence properties to directly solving for shape and motion using
a Euclidean formulation.

» Introduction of the notion of fill fraction as an important measure which effects the
accuracy and computational efficiency of shape and motion recovery in the pres-
ence of occlusion or missing data.

* A direct method for recovering shape and motion from an image sequence without
first tracking feature points.

* Detailed examination of the behaviors of the paraperspective and projective factor-
ization methods as functions of distance, noise level, fill fraction.

* Verification of the practicality of the factorization methods by demonstrating suc-
cessful shape recovery from noisy sequences taken with consumer-quality hand-
held video cameras.

1.3. Geometry and Notation

In a shape-from-motion 'problem, we are given a sequence of F images taken from a camera
that is moving relative to an object. Imagine that we locate P prominent feature points in the
first image. Each feature point corresponds to a single world point, located at position s, in
some fixed world coordinate system. This point will appear at varying positions in each of
the following images, depending on the position and orientation of the camera in that image.
We write the observed image position of point p in frame f as the two-vector u, containing
its image x- and y-coordinates, which we will sometimes write as (u oV) - These image

page 20

positions are measured by tracking the feature from frame to frame using the tracking tech-
niques describe in chapter 3.

The camera position and orientation in each frame is described by a rotation matrix R ¢ and a
translation vector t . representing the transformation from world coordinates to camera coor-
dinates in each frame. We can physically interpret the rows of R ¢ as giving the orientation of
the camera axes in each frame - the first row, i L, gives the orientation of the camera’s x-axis,
the second row, j £ gives the orientation of the camera’s y-axis, and the third row, k s gives
the orientation of the camera’s optical axis, which points along the camera’s line of sight.
The vector t . indicates the position of the camera in each frame by pointing from the world

origin to the camera’s focal point. This formulation is illustrated in Figure 1.

Image
Plane
- Y Ve
i P(f, p)
i i s
/J imaging ray
Camera kf

tf S,

world | i

focal
origin length [

Figure 1. Coordinate system and Notation

The process of projecting a three-dimensional point onto the image plane in a given frame is
referred to as projection. This process models the physical process by which light from a
point in the world is focused on the camera’s image plane, and mathematical projection
models of various degrees of sophistication can be used to compute the expected or pre-
dicted image positions P(f, p) as a function of s 0 Ry and t. In fact, this process depends
not only on the position of a point and the position and orientation of the camera, but also on
the complex lens optics and image digitization characteristics. In this paper, at various
points we use the orthographic projection model P _(f, p) , the scaled orthographic projection
model P_(f, p) , the paraperspective projection model Ppp(f, p) , the perspective projection
model Pp(f, p), and the radial projection model P (f,p). These models have varying
degrees of mathematical sophistication and complexity, and account for the actual physics

page 21

of image formation to increasingly accurate degrees. These projection models will be
defined in Chapter 2, with the exception of the radial projection model which is introduced
in Section 4.3, and are summarize for the reader’s convenience in the section following this
one.

Certain camera and digitizer parameters effect the way that images are transmitted from the
world onto the image plane and into their final digital form. These parameters are the focal
length /, the aspect ratio a, the image center (o, o)) and the radial distortion k. Some
projection models use only a subset of these parameters. In some cases we simplify our
equations by assuming “standard camera parameters”, which means / = a =1 and
o, = o, =k = 0. When the camera parameters are known, we can use them to transform

X
the image feature point measurements into images taken with this “standard camera.”

The shape from motion problem can be essentially stated as, given a sequence of images,
recover the camera position in every frame f and the three-dimensional position of every
point p. These values are computed so as to align the predicted position of each point in
each frame P(f,p) as closely as possible with the observed position u,. We sometimes
write our final estimated shape and motion, which of course due to noise may differ from the
actual shape and motion, as §, for each object point, and i, iy, k; and i, for each frame in
the sequence.

1.4. Imaging Effects and Projection Models

In the course of this thesis a number of different projection models are introduced, each
modeling various effects of real image projection. The projection models will be described
geometrically and derived mathematically as they are introduced. However, to help acquaint
the reader with the terms and projection models, the following two tables summarize the
effects of image projection and the various projection models used in this paper.

page 22

Table 1: Description of Imaging Effects

Effect

Description

scaling effect

An object appears larger when it is close to the cam-
era than when it is far from the camera.

position effect

An object positioned away from the center of the
image appears to be slightly rotated so that the rear
of the object is closer to the image center.

foreshortening effect

The back of an object appears smaller than the front
of the object.

radial distortion effect

Points far from the image center appear closer to
the center that they would absent this effect.
Straight lines not passing through the image center
appear as curves, with the ends farthest from the
image center bent towards the image center.

Table 2: Projection Models’ Equations and Effects

page 23

prgggtello " projection ¢quations rr?cf)f;eclf q
orthographic i (s —t) +0
P(fpy=| T P S
© laj,- (s —t) +o0
f e 7y
scaled M., y scaling
orthographic lp- (s, - t) o,
PP = £l
laj,.- (s_—t)
f e F .,
LY d
paraperspec- “l - 7 scaling,
tive L S Hl . ‘ osition
zf{ ['f+ > kf] (& 'f)} *o, P
P, fip) = e
la ¥ :
;f{[f.'- Z_fkfjl 'Sp—- (tf"f)} +0)’
perspective e (s —t) 7 scaling,
VN i 0 position,
P (fp) = ke (s,~t) % foreshortening
- i (s,- 1)
al 2 F i,
kf- (s —tf) y
radial r 1 scaling,
P, (p) vo position,
[1+x P _(f,p)?+ %P, (f p)2J v . foreshortening,
P(fip) = ’ g radial
laPp ()]
2 2] %
(L+K,P, (P + %P, (f,p)) _

a. Radial projection first involves perspective projection using the “standard camera parameters” de-
fined in section 1.3.

1.5. Thesis Overview

Chapter 2 reviews the original factorization method, which was based on orthography, and
then extends the method to scaled orthography, and then to paraperspective. The chapter
includes a comparison of paraperspective to the standard perspective projection model, and
to the affine camera model. We show that the paraperspective results can be refined to
account for perspective effects using a non-linear refinement step. We conclude with the

page 24

results of numerous synthetic and real experiments demonstrating the paraperspective fac-
torization method.

Chapter 3 addresses two practical issues of importance in applying the method to real image
sequences: reliable feature tracking despite non-smooth motion and accommodating miss-
ing observations. The two techniques are related in the way they make use of image confi-
dence information to weight different observations. Feature tracking is made robust by
using a hierarchical method which weights motion estimates from different levels of the
image pyramid. Missing observations, such as occur when features become occluded or
enter or leave the field of view, are handled by extending the decomposition stage of the fac-
torization method to allow an arbitrary confidence value to be assigned to each measure-
ment. We demonstrate the performance of the feature tracker on two sequences, and explore
the performance of the confidence-weighted factorization method as a function of the num-
ber of missing observations. We finally demonstrate the combined system on a real experi-
ment using aerial image data.

Chapter 4 introduces the projective factorization method. While the projective decomposi-
tion step is not original to this work, we clearly explain how our implementation takes
advantage of the sparsity of certain matrices to enable the method to be applied to problems
with hundreds of points and images. The normalization step makes use of metric constraints
very similar to the original factorization method to convert the projective shape and motion
into a Euclidean solution. We experimentally compare this method to a method which
directly computes the Euclidean shape and motion without first computing projective shape
and motion. Finally we show that the general non-linear framework developed in the chap-
ter can be extended to directly minimize image intensity errors to reduce reliance on tracked
feature points.

Chapter 5 summarizes the contributions of the thesis and outlines directions for future
research.

page 25
2. Paraperspective Factorization

The factorization method, developed by Tomasi and Kanade, assumes that world points are
projected onto the image plane using orthographic projection. Orthographic projection is
considered an appropriate model for use in many common imaging situations in which the
object is very distant from the camera, precisely the situations in which traditional triangula-
tion-based methods fail. Furthermore, it can be modeled by bilinear equations, which enable
an efficient and robust solution.

The method was shown to perform extremely well in situations in which the orthographic
assumption was valid. However, orthography cannot model several perspective effects such
as the scaling, position, and foreshortening effects, which are illustrated in Figure 2. The
scaling effect is apparent even in sequences in which the object is very distant from the cam-
era, but in which the object translates significantly toward or away from the camera. The
orthographic factorization method was unable to explain these scale changes, and therefore
either failed to produce a result or produced a deformed shape, in which deformities in the
object had been crafted to attempt to account for the scale change.

(a) (b) (c)

Figure 2. Effects of perspective projection

(a) the initial image (b) the image after translating the camera towards the
object, demonstrating the scaling effect (c) the image after translating the cam-
era vertically. Notice that in (c) the top of the object in has become visible; due
to the position effect, the box is being effectively viewing from an angle. (c)
also demonstrates the foreshortening effect, which causes the rear of the box to
appear smaller than the front. This is the only effect of perspective projection
that is not modeled by paraperspective projection.

In this chapter, we extend the factorization method to model some of the effects of perspec-
tive projection which are not modeled by orthography. The scaled orthographic factorization
method accounts for the scaling effect and allows shape recovery from sequences containing
depth translation. The paraperspective factorization method accounts for the scaling and
position effects, allowing shape recovery from sequences in which the object is closer to the

page 26

camera and not always centered in the image. Finally we present the separate refinement
method, an iterative method which refines the results of paraperspective projection using a
perspective model to account for the foreshortening effect.

2.1. The Orthographic Factorization Method

This section presents a summary of the orthographic factorization method developed by
Tomasi and Kanade. A more detailed description of the method can be found in [43].

2.1.1. Orthographic Projection

The orthographic projection model assumes that rays are projected from an object point
along the direction parallel to the camera’s optical axis, so that they strike the image plane
orthogonally, as illustrated in Figure 3.

Image
Plane

P, (. p)

Figure 3. Orthographic projection in two dimensions
Dotted lines indicate perspective projection

A point p whose location is s, will be observed in frame f at image coordinates P (f, p),
where

page 27

P (fp) = PP _ | By (s,=t) +o,
° P_(fp) laj; (s,~t) +o,

Y

Simplifying using standard camera parameters, these equations can be rewritten as

ng(f,p) = mf'sp+xf Pya(ﬁp) = nf'sp+yf 2)

where
xf = _(tf' lf) yf = —(tfjf) (3)
mp =i, me=p “

2.1.2. Decomposition

All of the feature point coordinates (u Y fp) are entered in a 2F X P measurement matrix W.

“ip - Mp
U .. U
w= |“F1 FP s
Vit - Vip
|YF1 -+ VFP|

Each column of the measurement matrix contains the observations for a single point, while
each row contains the observed u-coordinates or v-coordinates for a single frame. Setting
the observed positions equal to the predicted positions, equation (2) for all points and frames
can now be combined into the single matrix equation

W=MS+T[1 ... 1] (6)

where M is the 2F x 3 motion matrix whose rows are the m, and n_ vectors, S is the 3 x P
shape matrix whose columns are the s, vectors, and T is the 2F x 1 translation vector whose

elements are the X and y -

Up to this point, Tomasi and Kanade placed no restrictions on the location of the world ori-
gin, except that it be stationary with respect to the object. Without loss of generality, they
position the world origin at the center of mass of the object, denoted by ¢, so that

P
1
c=5 s, =0 9
p=1

page 28

Because the sum of any row of § is zero, the sum of any row i of W is PT,. This enables
them to compute the i element of the translation vector T directly from W, simply by
averaging the i"" row of the measurement matrix. The translation is then subtracted from
W, leaving a “registered” measurement matrix W* = W- T[l 1] .

W* is bilinear in the motion variables M and the shape variables S because it equals a sum
of products of them. The term “bilinear” refers to a problem whose variables can be parti-
tioned into two sets such that the problem is linear with respect to one set of variables when
the other set is held constant. Tomasi and Kanade pointed out that, since W* is the product
of a2F x 3 motion matrix M and a 3 x P shape matrix S, its rank should be at most 3. When
noise is present in the input, W* is not exactly of rank 3. Tomasi and Kanade used the Sin-
gular Value Decomposition (SVD) to compute W* = UZVT, where X is a diagonal matrix
containing the singular values of the matrix [42]. In general, only three of these values are
large, and the rest are extremely small, and are due primarily to noise in the measurement
data. Therefore they use only the three largest singular values and their associated singular
vectors to factor W* into the product

w* = MS (8)
Using the SVD in this manner to perform the decomposition ensures that the product i3 is
the best possible rank 3 approximation to the full measurement matrix W".

2.1.3. Normalization

The decomposition of equation (8) is only determined up to a linear transformation. In gen-
eral, if the world origin had not been fixed at the mass center of the object, # and § would
be determined up to an affine transformation, so for compatibility with standard terminology
M and § may be referred to as the affine motion and affine shape. Any non-singular 3 x 3
matrix A and its inverse could be inserted between A7 and S, and their product would still
equal W*. Thus the actual motion and shape are given by

M = MA S = A-18)

with the appropriate 3 x 3 invertible matrix A selected. The correct A can be determined
using the fact that the rows of the motion matrix M (which are the m ; and n r vectors) repre-
sent the camera axes, and therefore they must be of a certain form. Since i x and j - are unit
vectors, we see from equation (4) that

2 = 2 -
‘mfi =1 |nfi =1 (10)
and because they are orthogonal,
mf nf =0 (11)

Equations (10) and (11) give us 3F equations which we call the metric constraints. Using

page 29

these constraints, we solve for the 3 x 3 matrix A which, when multiplied by #, produces
the motion matrix M that best satisfies these constraints. Once the matrix A has been found,
the shape and motion are computed from equation (9).

2.2, The Scaled Orthographic Factorization Method

Scaled orthographic projection, also known as “weak perspective” [26], is a closer approxi-
mation to perspective projection than orthographic projection, yet not as accurate as parap-
erspective projection. It models the scaling effect of perspective projection, but not the
position effect. The scaled orthographic factorization method can be used when the object
remains centered in the image, or when the distance to the object is large enough relative to
the size of the object that the position effect is negligible.

2.2.1. Scaled Orthographic Projection

Under scaled orthographic projection, object points are orthographically projected onto a
hypothetical image plane parallel to the actual image plane but passing through the object’s
center of mass ¢. This image is then projected onto the image plane using perspective pro-
jection, as shown in Figure 4.

Since the perspectively projected points all lic on a plane parallel to the image plane, they all
lie at the same depth

Zf = (c_tf) ' kf (12)

The scaled orthographic projection equations are very similar to the orthographic projection
equations, except that the image plane coordinates are scaled by the ratio of the focal length
to the depth 2

: lif' (sp—tf) o
P (hip) 2 &
P ip=|"" =1 (13)
PP ey (5,-t)
%

To simplify the equations we assume the standard camera parameters / = 1, a = 1, and
(0, oy) = (0,0) . The world origin is arbitrary, so we fix it at the object’s center of mass,
so that ¢ = 0, and rewrite the above equations as

wa(f, p) = m, sp+xf wa(f, p) = n. sp+yf (14)
where
Zp = —tfv kf (15)

page 30

Hypothetical
Image Image
Plane Plane

ﬁ..

world

origin

Figure 4 Scaled Orthographic Projection in two dimensions

Dotted lines indicate true perspective projection

t,i t,:j
%__ff W__ff
i 4
i j
%=I %=I
N i

2.2.2. Decomposition

(16)

a7

Because equation (14) is identical to equation (2), the measurement matrix W can still be
written as W = MS + T just as in orthographic and paraperspective cases. We still compute
X and y 0 immediately from the image data by subtracting the center of gravity, and use sin-
gular value decomposition to factor the registered measurement matrix W* into the product

of M and §.

2.2.3. Normalization

Again, the decomposition is not unique and we must determine the 3 x3 matrix A which
produces the actual motion matrix M = MA and the shape matrix § = A™'3. From equation

page 31
(17),

a_ 1 21
URERNVEE W

The depth z . is unknown, so we cannot impose individual constraints on m y and n - A5 We did
in the orthographic case. Instead, we combine the two equations to impose the constraint

|mf|2 = lnfi2. (19)
Because m y and n are just scalar multiples of i y and j » We can still use the constraint that
m.-n, = 0. (20)

Equations (19) and (20) are homogeneous constraints, which could be trivially satisfied by
the solution M = 0, so to avoid this solution we add the constraint that

|m1| =1. 2D

Equations (19), (20), and (21) are the scaled orthographic version of the metric constraints.
We can compute the 3 x 3 matrix A which best satisfies them very easily, because the con-
straints are linear in the 6 unique elements of the symmetric 3 x 3 matrix Q = ATA.

2.2.4. Shape and Motion Recovery

Once the matrix A has been found, the shape is computed as § = A~1§. We compute the
motion parameters as

i= L
7 g
‘Unlike the orthographic case, we can now compute z ~ the component of translation along
the camera’s optical axis, from equation (18).

n
s - _f

2.3. The Paraperspective Factorization Method

Scaled orthography accurately models the scaling effect, and can therefore represents a sig-
nificant improvement over the original factorization method. The method can successfully
recover shape and motion from image sequences in which the object is relatively distant
from the camera translates towards or away from the camera. In such cases, the foreshorten-
ing and position effects are small and induce only minor errors in the recovered shape and
motion. Experiments indicate, however, that we must model the position effect in order to
successfully recover shape and motion in sequences in which an object is closer to the cam-
era and does not remain centered in the image. Paraperspective projection, introduced by
Ohta [28] in order to solve a shape from texture problem, more closely approximates per-

page 32

spective projection by modeling both the scaling effect and the position effect, while retain-
ing the bilinear algebraic properties of orthography. Based on this model, in this section we
present a paraperspective factorization method similar to the original Tomasi-Kanade fac-
torization method.

2.3.1. Paraperspective Projection

The paraperspective projection of an object onto an image, illustrated in Figure 5, involves
two steps.

1. An object point is projected along a direction parallel to the line connecting the focal
point of the camera to the object’s center of mass, onto a hypothetical image plane par-
allel to the real image plane and passing through the object’s center of mass.

2. The point is then projected onto the real image plane using perspective projection.
Because the hypothetical plane is parallel to the real image plane, this is equivalent to
simply scaling the point coordinates by the ratio of the camera focal length and the dis-
tance between the two planes.

Hypothetical
Image Image
Plane Plane

world
origin

Figure 5. Paraperspective projection in two dimensions
Dotted lines indicate perspective projection
> indicates parallel lines

page 33

In general, the projection of a point p along direction r, onto the plane defined by normal
vector n and distance from the origin d, is given by the equation

p-n—d
r-n

P =P r. (23)
In frame £, each object point s, is projected along the direction ¢ ~ t, (the direction from the
camera’s focal point to the object’s center of mass) onto the plane defined by normal k o and
distance from the origin c - k = The result s'fp of this projection is

(s, k) - (c-k)
o« P f e
Sm =8, (c-1) T3 (e-t) (24)

The perspective projection of this point onto the image plane is given by subtracting t, from
s', to give the position of the point in the camera’s coordinate system, and then scaling the
result by the ratio of the camera’s focal length ! to the depth to the object’s center of mass
Zp This yields the coordinates of the projection in the image plane,

(G (s, -t) |
f e F
P. (f,p) o
P ip)=| " = , where z; = (c-t) - ke (25)
P)’pp(f’ P) lan’ (sfp - tf) ‘o
L% d
Substituting (24) into (25) gives the general paraperspective equations.
L[, i ety .
Pxpp(f’P) = z—f{ [lf_z—fkf : (sp—c) + (c—tf) i o,
(26)

ier (e—t)
Py 0P = l}i{['f‘%kf} (spme) +(e-t) 'jf} o,

Here we assume standard camera parameters / = 1, a = 1, and (0, Oy) = (0,0). The
consequences of this action are discussed in section 2.3.9.

Without loss of generality we can simplify our equations by placing the world origin at the
object’s center of mass so that by definition

c =

Nl

P .
lep = 0. (27)
p=

This reduces (26) to

page 34

it
Fapl) = zl{[if‘“ %kf] S Uy if)}

f . ft (28)
vl el .
Pypp(fa P) = z‘ [:']f+ T’kfj' .SP_ (tf‘lf)
f f
These equations can be rewritten as
Pxpp(f, p) = m, sp+xf Py,,,,(f’ p) = n sp+yf (29)
where
Zf = —tf' kf - 30
t.-1 t.-])
xp = _%’ vy = _%’ G31)
f f
i—x =y
ke R o/ 32)

f f

Zf Zf

2.3.2. Relation of Paraperspective and Affine Models

The affine camera model has become popular among vision researchers because, like parap-
erspective projection, it can be described by linear equations. Many researchers have begun
referring to the paraperspective model as “a special case of the affine camera model,” since
both can be described by bilinear equations. This statement can be true or false depending
on what is meant by “the affine camera model”. When only a single image is considered,
one can use the phrase “the affine camera model” unambiguously. However, when multiple
images are considered simultaneously one must be careful to distinguish between two varia-
tions of the affine camera model commonly in use; the unrestricted affine camera model, and
the fixed-intrinsic affine camera model. This section examines both models and their rela-
tions to the paraperspective projection model. It points out that by modeling the position
effect and enforcing the constraint that camera calibration parameters do not change
throughout the sequence, paraperspective is a better model than affine for shape and motion
applications.

In an unrestricted affine camera, the image coordinates are given by

S
pl
m m m X
P () = 11 ™12 M3 e 33)
My Myp Mas y
53

where the m,; are free to take on any values. In motion applications, this matrix is com-

page 35

monly decomposed into a scaling factor, a 2 x 2 intrinsic parameter matrix, and a 2 x 3 rota-
tion matrix. The intrinsic parameters matrix contains camera calibration parameters which
are considered to remain constant throughout the sequence, while the rotation matrix and
scaling factor are allowed to vary with each image. This fixed-intrinsic affine camera is
given by

A
. . . pl
1 P B i x
Pﬂ-a(f,p) = _l:l 0} ﬂ fz f3 Spo| + (34)
zf § a Jﬂ Jﬂ Jf3 s y
p3

These parameters have the following physical interpretations: the i, and j ; vectors represent
the camera orientation in each frame, x,, y o and z, represent the object translation (z, is
scaled by the camera focal length, x. and y ¢ are offset by the image center), a is the pixel
aspect ratio, and s is a skew parameter. The skew parameter is non-zero only if the projec-
tion rays, while still parallel, do not strike the image plane orthogonally.

The fixed-intrinsic affine model simply assumes that the parameters s and a correspond to
intrinsic camera characteristics which do not change throughout the sequence. The other
variables are considered to correspond to actual rotation and translation between the object
and the camera, and are free to vary from one image to the next, provided i - and j y remain
orthogonal unit vectors.

The paraperspective projection equations can be rewritten, retaining the camera parameters,
as

, 10—(0xl_xf) i | [5] T,
Ppp(ﬁp) = z_f (oy—yf) Jf] Jf2 Jf3 sz + . (35)
0a =L |k Ky kgl |5,
. _ ox—xf _ Oy—yf
ordeﬁmngbf- ; Cf_T’aS

i i iq||s

P llObf-ﬂ-ﬂ-ﬂpl+x (36)

P = 210 g ae) I I 0| 52| * |
ket ko kg3l |Sp3

In [37] Quan shows that this can be reduced to a form identical to that of the fixed-intrinsic
affine camera by Householder transformation.

page 36

1 0 s
l 1+b2 i' l-v l-v pl x
_ L [2. .2/ A1 2°f
Ppp(f, p) = > : bfcf ; 1+bf+cf i Sp2 + , (37)
L+ 1+b2 L2 R $)3

Here i‘f and j' [are orthonormal unit vectors not necessarily equal to i r and j =

Both the fixed-intrinsic-parameter affine camera and the paraperspective models are special-
izations of the unrestricted affine camera model, yet they are different from each other. The
former has a constant skew parameter s, and thus projects all rays onto the image plane at
the same angle throughout the sequence. This can be an accurate model if the object does
not translate in the image or if the angle is non-perpendicular due to a lens misalignment.
Under paraperspective, equation (37) shows that the skew parameter and aspect ratio can
vary with each image, meaning that the direction of the image projection varies from image
to image. This projection direction depends in a physically realistic manner on the transla-
tion of the object in the image relative to the image center. This allows paraperspective to
accurately model the position effect, which the fixed-intrinsic affine camera cannot do,
while enforcing the constraint that the intrinsic camera calibration parameters remain con-
stant in all images, which the unrestricted affine camera cannot do.

2.3.3. Paraperspective as a Perspective Approximation

Perspective projection is a common model of image projection in use by shape and motion
researchers. It models the foreshortening effect as well as the scaling and position effects.
However, the equations describing it are non-linear and therefore much more cumbersome.
We show in this section that paraperspective projection can be derived mathematically as a
linear approximation to the standard perspective projection model.

In Section 2.3.1., we defined paraperspective projection geometrically. We can derive the
same equations mathematically as a first-order approximation to the perspective projection
equations. The perspective projection of point p onto the image plane in frame f is given by

PP 1 i (s,-t)

PP e o) T e 6,1 .
where
Yp = Kpr (5,= 1) 39)
For simplicity we assume unit focal length, [= 1.
We define the term
-tk (40)

page 37

and then compute the Taylor series expansion of the above equations about the point

przzf 41
yielding
i (s —t) i, (s —t) i (s —t)
S "o F _fF b F _ S Vp F)
Pxp(f, p) = 2 z}? (zfp zf) +——z; (zfp zf) + ...
(42)
Jer (s —t) . (s —t) Jer (s —t)
- p F °f “p F _ f p)
Pyp(f,p) = > zf (zfp zf) +_—_Zj§ (zfp zf) +...

We combine equations (39) and (40) to determine that 2,2 = Kk 8 s and substitute this
into equation (42) to produce

i (s —t) i (s —t) i (s —t)
Pp =2 L T b Fas)y+l b Lk s)2+.
» z z p 73 foop
4 ! f (43)
ie (s —t) o (s —t) Jp (s —t)
- Yp f _f p F _ S p F Le)2
Pyp(f,p) = - 5 (kf sp)+ 3 (kf sp) + ...

Ignoring all but the first term of the Taylor series yields the equations for scaled ortho-
graphic projection (See 2.2.) However, instead of arbitrarily stopping at the first term, we
eliminate higher order terms based on the approximation that |s |2/z2 = 0, which will be
accurate when the size of the object is smaller than the distance of the object from the cam-
era. Eliminating these terms reduces the equation (43) to

e (s, mt) e ()
P, p)= Zp) (kg s,)
£
B (s —t) b (~t) @
_f A Y _
P, (f.p) = Z’; 2 (k)

Factoring out the 1/ % and expanding the dot-products i L (sp - tf) and j - (sp ~t f) gives

it

1], ot .
Pxp(f,p)~z—/(lf-sp+——zf— (kf-sp) - (lf' tf)J
45)

P Gp=Y5s + L0 0y G0
y, PP E 1Sy g P T

These equations are equivalent to the paraperspective projection equations given by equa-
tion (28).

The approximation that |s 2/z% = 0 preserves the portion of the second term of the Taylor
series expansion of order (IsP“tA) / zfz, while ignoring the portion of the second term of

page 38

order |sp|2/ z]? and all higher order terms. Clearly if the translation that the object undergoes
is also small, then there is little justification for preserving this portion of the second term
and not the other. In such cases, the entire second term can be safely ignored, leaving only
the equations for scaled orthographic projection.

Note that we did not explicitly set the world origin at the object’s center of mass, as we did
in Section 2.3.1. However, the assumption that |sp|2/ zf = 0 will be most accurate when the
magnitudes of the s, are smallest. Since the s_ vectors represent the vectors from the world
origin to the object points, their magnitudes will be smaller when the world origin is located
near the object’s center of mass.

2.3.4. Decomposition

Notice that equation (29) has a form identical to its counterpart for orthographic projection,
equation (2), although the corresponding definitions of Xpr Ypr My, and n . differ. This
enables us to perform the basic decomposition of the matrix in the same manner that Tomasi
and Kanade did for the orthographic case. Equating the predicted positions with the
observed positions, we combine equation (29), for all points p from 1 to P, and all frames

f from 1 to F, into the single matrix equation

“11 Uip m, *1
U oo U m X
Fi FPl o |TF I:s1 sé|+ il [1 1], (46)
Vit - Vie o, Y1
‘vFl .. VFP _nF_ hde
or in short
w=ms+T[1 . 1], 47)

where W is the 2F x P measurement matrix, M is the 2F x 3 motion matrix, S is the 3x P
shape matrix, and T is the 2F x 1 translation vector.

Using equations (27) and (29) we can write

P P P

Z Ug, = 2 (mf-sp+xf) = m, Z sp+Pxf= Pxf
p:l p:l p=l (48)
P P P

2 Ve, = Z (nf sp+yf) = Z sp+ny= Py,

p= p:l p:l

Therefore we can compute X and y o which are the elements of the translation vector T,

page 39

immediately from the image data as

gl

P P
1
YEpXlp V=R X (49)
p=1 p=1

Once we know the translation vector T, we subtract it from W, giving the registered mea-

surement matrix

W' =Ww-T[.. 1] = MS (50)

Since W* is the product of two matrices each of rank at most 3, W* has rank at most 3, just
as it did in the orthographic projection case. When noise is present, the rank of W* will not
be exactly 3, but by computing the SVD of W* and only retaining the largest 3 singular val-
ues, we can factor it into

w* = m8§, (51)

where M is a 2F x 3 matrix and S is a 3 x P matrix. Using the SVD to perform this factor-
ization guarantees that the product #3 is the best possible rank 3 approximation to W*, in
the sense that it minimizes the sum of squared differences between corresponding elements
of W* and MS.

2.3.5. Normalization

Just as in the orthographic case, the decomposition of W* into tHe product of M and § by
equation (51) is only determined up to a linear transformation matrix A. Again, we deter-
mine this matrix A by observing that the rows of the motion matrix M (the m y and n - vec-
tors) must be of a certain form. Taking advantage of the fact that i s s and k ;- are unit
vectors, from equation (32) we observe that :

2 2
1+xf 1+yf

Img* =

The values of X and y,. were computed directly from the image measurement data using
equation (49), but we do not know the value of the depth z ” Thus we cannot impose indi-
vidual constraints on the magnitudes of m, and n, as was done in the orthographic factoriza-
tion method. Instead we adopt the following constraint on the magnitudes of m > and n y

mf _ Jnf
1+x2 1+y2 69
1 f

|m 2 = (52)
2 2
Z_f zf

In the case of orthographic projection, one constraint on m, and n . Was that they each have
unit magnitude, as required by equation (10). In the above paraperspective case, we simply
require that their magnitudes be in a certain ratio.

page 40

There is also a constraint on the angle relationship of m, and n.. From equation (32), and

f
the knowledge that i, j > and k [are orthogonal unit vectors,

_ YR ke Xy

m s nf 54)
The problem with this constraint is that, again, Z 1s unknown. We could use either of the
two values given in equation (53) for 1/ zj? , but in the presence of noisy input data the two
will not be exactly equal, so we use the average of the two quantities. We choose the arith-

metic mean over the geometric mean or some other measure in order to keep the solution of
these constraints linear. Thus our second constraint becomes

S M_J
m-n, = xfyf2[1+x]2+ " +ng (55)

This is the paraperspective version of the orthographic constraint given by equation (11),

which required that the dot product of m . and n . be zero.

Equations (53) and (55) are homogeneous constraints, which could be trivially satisfied by
the solution Vf m = m, = 0, or M = 0. To avoid this solution, we impose the additional
constraint

|m1| =1 (56)
This does not effect the final solution except by a scaling factor.

Equations (53), (55), and (56) gives us 2F + 1 equations, which are the paraperspective ver-
sion of the metric constraints. We compute the 3 x 3 matrix A such that M = #A best satis-
fies these metric constraints in the least sum-of-squares error sense. This is a simple problem
because the constraints are linear in the 6 unique elements of the symmetric 3 x 3 matrix
Q = ATA. We use the metric constraints to compute Q, compute its Jacobi Transformation
Q = LALT, where A is the diagonal eigenvalue matrix, and as long as Q is positive defi-
nite, A = (LAY2)T The case of non-positive definite Q is discussed in section 2.3.7.

2.3.6. Shape and Motion Recovery

Once the matrix A has been determined, we compute the shape matrix S = A~!§ and the
motion matrix M = MA . For each frame #, we now need to recover the camera orientation
vectors if, jf, and Rf from the vectors m ’ and n s which are the rows of the matrix M. From
equation (32) we see that

if = mef+ xfﬁf jf = anf"' yff(f (57)
From this and the knowledge that if, jf, and f(f must be orthonormal, we determine that

page 41

ipxr = [zamerxie) x (zap+ i) = K
i = [egmy 5 = 1 59
g = fempeyd = 1
Again, we do not know a value for z ” but using the relations specified in equation (53) and
the additional knowledge that |l“(f{ =1, equation (58) can be reduced to

where
(m xn) 1
Ge=| M He = |7 (60)
flf ',Vf

_ my P P R
= 1+xf@ n = 1+y}§m 61)

mg

We compute f(f simply as

ke = G7lH, (62)
and then compute

There is no guarantee that the if and jf given by this equation will be orthonormal, because
m, and n, may not have exactly satisfied the metric constraints. Therefore we actually use
the orthonormals which are closest to the if and jf vectors given by equation (63). We fur-
ther refine these values using a non-linear optimization step to find the orthonormal if and
jf, as well as depth z ’ which provide the best fit to equation (63). Due to the arbitrary world
coordinate orientation, to obtain a unique solution we then rotate the computed shap; and
motion to align the world axes with the first frame’s camera axes, so that i = [1 0 0] and

hi=Jo1q -

All that remain to be computed are the translations for each frame. We calculate the depth Z¢
from equation (53). Since we know x,, Yps Zps if, jf, and ﬁf, we can calculate if using equa-
tions (30) and (31).

2.3.7. Normalization Failure

In image sequences containing very high levels of noise, sometimes the normalization step
fails. Solving the metric constraints in the manner described in section 2.3.5. produces a

page 42

matrix Q which has negative eigenvalues. In this case the recovered Q cannot be written as
a product ATA for any A . This indicates a serious degeneracy in the tracking data, and how
to handle such situations remains an open research question.

The problem of finding the matrix A which best satisfies the metric constraints was sepa-
rated into two steps, first computing Q and then computing A from Q, primarily because
that solution technique involved only linear operations. However, we should have added the
constraint that, in order to be a valid solution, Q must have no negative eigenvalues, since a
Q with negative eigenvalues does not correspond to a valid solution to the problem at hand.

Since the metric constraints are linear in the elements of Q, the sum of the squares of the
error in the metric constraints as a function of the six elements of @ is quadratic in the ele-
ments of Q. A quadratic error surface has a single minimum, which can be computed using
standard linear least squares techniques. Suppose we turn the problem into a constrained lin-
ear least squares problem by adding the constraint that 0 have no negative eigenvalues.
This would have the effect of marking some regions of the error surface as “off limits”,
since those portions of the error surface represent solutions which do not satisfy the addi-
tional constraint. If the absolute minimum of the quadratic error surface happens to lie in
one of these regions, then the minimum subject to the additional constraint that Q have no
negative eigenvalues must lie along the border of that constraint, since there are no other
points on the error surface which could be the minimum. Solutions lying along the border of
that constraint are solutions with one or more zero-valued eigenvalues.

To test this theory, we developed a system to solve the metric constraints directly for A
rather than first solving for Q. This approach guarantees that all solutions are valid solu-
tions, since there are no additional constraints on the members of A . Since these equations
are non-linear, we solved them using Levenberg-Marquardt iteration and a random initial
value. In cases where the original method produced a Q with non-negative eigenvalues, the
nonlinear method produced exactly the same result. However, when the original method
produced a Q with one or more negative eigenvalues, in every case the nonlinear method
produced a matrix A with one or more zero eigenvalues. This shows that the occurrence of a
Q matrix with negative eigenvalues is not an shortcoming in our linear approach to solving
the metric constraints, but is fundamentally tied to the metric constraints themselves.

When A has one or more zero eigenvalues, the resulting motion matrix M becomes degen-
erate, having rank one or two instead of rank three. The physical interpretation of such a
motion is a pure rotation of the camera about its optical axis. When the motion matrix has
degenerate rank, then the corresponding shape matrix is under-determined; a variety of
shape matrices will result in the same observation matrix W since they are being multiplied
by a rank two matrix. This corresponds to our expectations, since such degenerate motions
provide no shape information at all. In fact, images produced from a rotation about the cam-
era’s optical axis will all be simple two-dimensional rotations of each other, so the shape’s
depth values cannot be determined. In other words, a @ with one or more negative eigenval-
ues indicates that the best motion solution available is one that is insufficient to compute the

page 43
object shape.

In practice, this occurs when the third column of the unnormalized motion matrix 7, which
is the singular vector corresponding to the third largest singular values of the measurement
matrix W, is so corrupted by noise that the normalization step can achieve the best fit by
ignoring that column. In other words, the combination of image noise and insufficient cam-
era rotation was large enough to make accurate shape recovery impossible. This also corre-
sponds to our intuition. In the complete absence of noise, even a tiny rotation should suffice
to recover the object’s shape. When the tracking results are high contaminated by noise, the
feature motion caused by a small rotation is indistinguishable from motion due to noise, so
accurate shape and motion recovery cannot be expected.

Another possibility is that the object shape is a flat surface or a line. In this case, the shape
matrix S will have a rank of 2 or 1, respectively. Even if the rank of the motion matrix M is
3, the measurement matrix, which is the product of M and S, will be of rank of 2 or 1.
Therefore the unnormalized motion matrix M will also have a reduced rank, and the nor-
malization step may produce a Q matrix with negative eigenvalues. The third component of
M. has been irretrievably lost by multiplying it by a degenerate matrix. At this point we
should simply admit that information has been lost, assume the object is planar, and solve
fora 2x2 Q matrix to rotate # into the correct form.

An examination of the singular values of the measurement matrix should provide some
insight as to the source of the problem. If the third and fourth singular values are near the
same magnitude as the second singular value, then noise or perspective distortion have cor-
rupted the matrix and made shape and motion recovery impossible. If they are far smaller
than the second singular value, then a flat object shape or insufficient rotation have made
shape and motion recovery impossible.

This explanation coincides with observations by other researchers, who reported frequently
recovering Q matrices with negative eigenvalues when applying the paraperspective factor-
ization method to sequences with insufficient rotational motion [10]. They also applied non-
linear techniques to solve for the elements of A which best satisfy the metric constraints
directly, without first solving for Q. They used Lagrange’s method of indeterminate multi-
plier to replace the last constraint, which fixed the magnitude of |m1| = 1, with the con-
straint that det(4) = 1, and reported acceptable results. However, their failure to get
accurate results using the linear versions of the constraints even in noiseless images with
adequate motion makes it impossible to judge whether their method is actually an improve-
ment over the linear approach.

2.3.8. Solution Ambiguity Removal

In order to solve for the shape and motion at the end of Section 2.3.5., we computed the

matrix Q = ATA that best satisfied the metric constraints, and then computed A from Q.

page 44

+
There is a sign ambiguity in this process, since any matrix of the form A _0 iOI
0 0 £
duces the same matrix Q when multiplied by its transpose. Thus there are actually several
equally plausible motion and shape matrices, since changing the sign of a column of M and
the corresponding row of § still produces a solution that satisfies the metric constraints

[Sniry

0
0| pro-

p—

equally well. This sign ambiguity in the first two columns of M was removed when we
aligned the world coordinate axes with the first frame’s camera axes, at the end of Section
2.3.6. However, the ambiguity in the third column of M and the third row of S is a genuine

ambiguity. There are two equally valid solutions, whose shapes differ only by a reflection
about the z-axis.

This is a genuine ambiguity due to the nature of paraperspective projection, not merely a
mathematical one. This can be seen by looking at the motion sequence of a rotating cube
shown in the first column of Figure 6. The reader can imagine that the thick square is the
front square of a cube rotating clockwise when viewed from above, or that the thick square
is the back of a cube rotating counterclockwise when viewed from above; both interpreta-
tions are plausible. However, in general real image sequences will contain additional queues
which should clearly define which of the two solutions is the correct solution. For example,
in real images some points will become occluded so the images will actually be either as
shown in Figure 6(b), in which the thick square is clearly at the back of the cube, or as in
Figure 6(c), in which the thick square is clearly at the front of the cube. By examining the
pattern of occlusion in the image sequence, it should be possible to determine which of the
two solutions provided by the paraperspective method is the correct solution. Alternatively,
perspective foreshortening effects which were ignored during factorization could be used to
determine which solution is correct. For example, if the actual images are as shown in Fig-
ure 6(d), clearly the thick square is at the front of the object, while if they are as shown in
Figure 6(e), then the thick square is at the back of the object. (This cannot be determined by
looking at a single image, since clearly the object could be a strangely shaped frustum, but if
foreshortening effects are present, one of the two solutions will be more consistent with the
feature measurements over entire sequence.) It should be a simple matter to analyze the fill
pattern to determine which points are near and which points are far, or to determine which of
the two possible solutions is most consistent with the measurement data using a perspective
projection model.

2.3.9. Camera Calibration Requirements

When the paraperspective equations were derived in section 2.3.1, standard camera parame-
ters were assumed. The scaling effect of perspective projection depends on the camera focal
length, and the position effect of perspective projection depends significantly on the position
of the object in the image relative to the center of projection, as well as the focal length.
Since paraperspective projection models both of these effects, camera calibration data is

page 45

O ©
BC

@ (b) © @ ©

Figure 6 Ambiguity of Solution
(a) Sequence of images with two valid motion and shape interpretations.
(b), (c) Ambiguity removed due to occlusion information.
(d), (¢) Ambiguity removed due to perspective distortion of the object.

needed for the paraperspective factorization method to work properly. The image data must
be preprocessed by shifting the image so that the center of projection is at (0,0) and by
scaling the measurements to have unit focal length and aspect ratio.

The scaled orthographic factorization method does not model the position effect, and there-
fore does not require that the center of projection be known. It does model the scaling effect,
for which the focal length is required. However, the focal length enters the equations only
multiplied by the depth z - Therefore an incorrect focal length does not effect the quality of
the shape or rotation recovery; its only effect is to scale the recovered depth translation val-
ues by a constant factor. Thus the focal length is needed only to evaluate the magnitude of
the depth translation relative to the other translations and the object size. The aspect ratio.
however, must be known for both the orthographic and scaled orthographic factorization
methods, since the i y and j vectors will not have equal magnitudes if the aspect ratio is not

unity.

As the focal length is increased, the magnitude of the position effect is diminished, and
paraperspective projection gradually approaches scaled orthographic projection. Thus if the

page 46

focal length is not precisely known, using an overestimate of the focal length with the parap-
erspective method will produce results no worse than using the scaled orthographic method.

2.4. Separate Perspective Refinement Method

This section presents an iterative method used to recover the shape and motion using a per-
spective projection model. The method requires accurate initial shape and motion estimates,
as can be provided by paraperspective factorization, and then refines those estimates to
remove distortion caused by unmodeled foreshortening. Shape and motion are refined sepa-
rately, hence we call it “separate perspective refinement.” First the motion is held fixed
while the shape is refined, and subsequently the refined shape is held constant while the
motion is refined. When the initial approximation is fairly accurate, this is a simpler and
more efficient solution than [38], in which all parameters are refined simultaneously. How-
ever, it converges more slowly or even fails to definitively converge when the initial values
are inaccurate. Although our algorithm was developed independently and handles the full
three dimensional case, this method is quite similar to a two dimensional algorithm reported
in [39].

2.4.1. Perspective Projection

Under perspective projection, often referred to as the pinhole camera model, object points
are projected directly towards the focal point of the camera. An object point’s image coordi-
nates are determined by the position at which the line connecting the object point with the
camera’s focal point intersects the image plane, as illustrated in Figure 7.

Simple geometry using similar triangles produces the perspective projection equations

#i-(s -t)]
f Yp F
P_(f,p) ko (s,-t) ¥
Pp) = | =| (64)
Py (f’P) Jf' (Sp—tf)
4 lak——.(—t)+0
L5 ST

Assuming standard camera parameters, we rewrite the equations in the form

i.rs +x joos_ +y
f p °f _ S p f
P y = P s - 65
where
Xp= ety ye=clpte = ket (66)

page 47

Image
Plane

world

origin

Figure 7. Perspective Projection in two dimensions

2.4.2. Review of Levenberg-Marquardt Minimization

In general, a non-linear least-squares minimization problem is formulated as finding the
vector of unknowns a that minimizes differences between a set of observed values y;» and
the values Y (a) predicted by the model and a. The total error € is measured by summing
the squares of the differences between these values, possibly weighting each error term by
an uncertainty measure o,, so that

N [2
y i Yl(a)]
£ = Z T (67)
i=1 i

The goal is to find the set of variable values a which minimizes this total error sum. Except
for global search techniques, which exhaustively search for an absolute minimum, most
non-linear minimization methods require an initial value for the variables a, and then itera-
tively adjust or refine that set of values to reduce the error €.

Perhaps the most common technique for performing this error minimization is the gradient
descent method. From the initial set of values, the derivative of the error with respect to
each variable a; is computed to form the gradient vector. The method then adjusts a by

page 48

moving some distance in the direction of the gradient, so that the solution is adjusted in a
“downhill” direction which reduces the error. Sometimes a constant step size is used, while
more often it is varied over time. No matter how non-linear an error surface is, as long as the
step size is made small enough, the error can always be decreased by moving in the direc-
tion of the gradient, until a minimum or point of zero gradient is reached.

A more complicated technique is the inverse-Hessian method, which approximates the local
shape of the error surface as a multi-dimensional quadratic bowl. Given a point on the error
surface, the slope of the surface in all directions, and the second derivatives, the method
moves to the point on the surface which, if the surface were actually a quadratic bowl,
would represent the minimum point of that bowl. This enables much quicker convergence
than the gradient descent method, since as long as the error surface is accurately modeled by
a quadratic, it can “jump” directly to the minimum point rather than wander towards the
minimum through a series of steps. However, if the error surface in the vicinity of the cur-
rent point is not accurately modeled by a quadratic bowl, using this method can cause very
large jumps and instabilities.

Levenberg-Marquardt combines the two methods. When the solution is far from the mini-
mum, in areas not well-modeled by the quadratic assumption, gradient descent is used to
keep moving towards the minimum. As the minimum is approached, however, the quadratic
approximation should become more accurate, so the inverse Hessian method is used. Mar-
quardt’s insight was that a smooth weighting between the two methods can be achieved sim-
ply by multiplying the diagonal elements of the Hessian matrix by 1+ A, where the A
parameter is varied dynamically. High values of A cause the method to behave mostly like
the gradient descent method, while low values of A cause the method to approach the
inverse Hessian method.

Press, et al. [31] recommends using the approximate Hessian matrix o, defined by

2 N
_loe. laYiaYi

ki 20a,0a,

< 1()-l_2aazkaa ;
rather than the full Hessian matrix. The full Hessian matrix includes the second derivatives
of ¥, with respect to the a, . Inclusion of these terms can sometimes improve the method’s
convergence rate, but can also lead to unstable behavior. The weighting between the gradi-
ent descent method and the inverse Hessian method is performed by introducing the

weighted Hessian matrix

1+ -
kz'E{ (1+1) [=k)

oy, [k

The vector P is defined by

page 49

1de oY,
Bk = _iaa 2 - Yl(a)) a_ak (70)
i=1 l
At each iteration of the algorithm, the vector containing the variable values a is updated by
solving a linear system of equations for the step vector da.

o'da = B (71)

The step vector is added to the parameter set a to determine the new position. If the value of
¢ at the new position a + da is lower than the prior value, then a + 8a is accepted as the new
estimate and the parameter A is decreased, so that the next step will more closely follow the
inverse Hessian method. If the error at a + 3a is greater than the error at a, then the step is
rejected and A is increased, so that the next step will be more steeply downhill. This process
is repeated until convergence is achieved, defined as consecutive iterations producing little
or no reduction in €.

A more thorough review of the Levenberg-Marquardt method, as well as gradient descent
and inverse Hessian methods, can be found.in [31] or [12].

2.4.3. Iterative Solution Method

The perspective projection equations are non-linear in the shape and motion variables, We
formulate the problem as an non-linear least squares problem in the motion and shape vari-
ables, in which we seek to minimize the error

F P
=3y {(~B, G0 P+ (v =P, G2))
f= —4
or equivalently
_ F P . lf s +xf 2 Jf sp+yf
_ZZ kas+z+vaks+z 7
f=1p= f f f f.
If each i e § kf, Xes Yoo and z, were allowed to vary arbitrarily, there would be 12 motion

variables for each frame, since each of the camera axis vectors contains three elements.
However, we can enforce the constraint that i, j., and k. are orthogonal unit vectors by
writing them as functions of three independent rotational parameters 6, ¢ e and ® -

cosefcos(pf (cosefsin(pfsin(of— sin(-)fcos) (cosB sm(pfcosa) + smesmmf)
I:ifjf kj] = sinefcos(pf (sinefsin(pfsin(of+ cos(-)fcosmf) (smefsln(pfcoswf— cosefsmwf)
—sin(pf costpfsin(uf COSPCOs W,
’ 74

This gives six motion parameters for each frame (x,, Yps Zps 0 > s and ®) and three shape

page 50

parameters for each point (Sp = [spl Sp2 sP3j]) for a total of 6F + 3P variables.

We could apply any one of a number of non-linear techniques to minimize the error € as a
function of these 6 F + 3P variables. Such methods begin with a set of initial variable values,
and iteratively refine those values to reduce the error. If there are many points and many
frames, however, this can become a huge optimization problem. Our method takes advan-
tage of the particular structure of the equations by separately refining the shape and motion
parameters. First the shape is held constant while solving for the motion parameters which
minimize the error. Then the motion is held constant while solving for the shape parameters
which minimize the error. This process is repeated until an iteration produces no significant
reduction in the total error €.

While holding the shape constant, the minimization with respect to the motion variables can
be performed independently for each frame. Each of these minimizations requires solving
an overconstrained system of six variables in P equations. Likewise while holding the
motion constant, we can solve for the shape separately for each point by solving a system of
2F equations in three variables. This not only reduces the problem to manageable complex-
ity, but as pointed out by Szeliski and Kang in [39], it lends itself well to parallel implemen-
tation.

We perform the individual minimizations, fitting six motion variables to P equations or fit-
ting three shape variables to 2F equations, using the Levenberg-Marquardt method
described in the previous section. Since we know the mathematical form of the expression
of ¢, the Hessian matrix is easily computed by taking derivatives of € with respect to each
variable.

A single iteration of the Levenberg-Marquardt method requires a single inversion of a 6 x 6
matrix when refining a single frame of motion, or a single inversion of a 3 x 3 matrix when
refining the position of a single point. Generally about six iterations were required for con-
vergence of a single point or frame refinement, so a complete refinement step requires 6P
inversions of 3 x 3 matrices and 6F inversions of 6 x 6 matrices.

In theory we do not actually need to vary all 6F + 3P variables, since the solution is only
determined up to a scaling factor, the world origin is arbitrary, and the world coordinate ori-
entation is arbitrary. We could choose to arbitrarily fix each of the first frame’s rotation vari-
ables at zero degrees, and similarly fix some shape or translation parameters to reduce the
problem to 6F + 3P —7 variables. However, it was experimentally confirmed that the algo-
rithm converged significantly faster when all shape and motion parameters are all allowed to
vary. The final shape and translation are then adjusted to place the origin at the object’s cen-
ter of mass and scale the solution so that the depth }n the first frame isT1. This shape and the
final motion are then rotated so that i, = [1 9 o] and j; = [0 1 ¢ . or equivalently, so
that 6, = ¢; = w; = 0.

A common drawback of iterative methods on complex non-linear error surfaces is that they

page 51

do not find the global minimum, and therefore the final result can be highly dependent on
the initial value. Taylor, Kriegman, and Anandan [39] require some basic odometry mea-
surements as might be produced by a navigation system to use as initial values for their
motion parameters, and use the 2D shape of the object in the first image frame, assuming
constant depth, as their initial shape. To avoid the requirement for odometry measurements,
which will not be available in many situations, we use the paraperspective factorization
method to supply initial values to the iterative perspective refinement process.

2.5. Comparison

In this section we compare the performance of our new paraperspective factorization and
perspective refinement methods with the previous orthographic factorization method. The
comparison also includes the scaled orthographic projection in order to demonstrate the
importance of modeling the position effect for objects at close range. Our results show that
the paraperspective factorization method is a vast improvement over the orthographic
method, and underscore the importance of modeling both the scaling and position effects.
We also show the results of perspectively refining the paraperspective solution. This demon-
strates that modeling of perspective distortion is important primarily for accurate shape
recovery of objects at close range.

2.5.1. Data Generation

The synthetic feature point sequences used for comparison were created by moving a known
“object” - a set of 3D points - through a known motion sequence. We tested three different
object shapes, each containing approximately 60 points. Each test run consisted of 60 image
frames of an object rotating through a total of 30 degrees each of roll, pitch, and yaw. The
“object depth” - the distance from the camera’s focal point to the front of the object - in the
first frame was varied from 3 to 60 times the object size. In the sequences whose graphs are
shown in the following sections, the object also translated across the field of view by a dis-
tance of one object size horizontally and vertically, and translated away from the camera by
half its initial distance from the camera. For example, when the object’s depth in the first
frame was 3.0, its depth in the last frame was 4.5. Each “image” was created by perspec-
tively projecting the 3D points onto the image plane, for each sequence choosing the largest
focal length that would keep the object in the field of view throughout the sequence. The
coordinates in the image plane were perturbed by adding gaussian noise, to model tracking
imprecision. The standard deviation of the noise was 2 pixels (assuming a 512x512 pixel
image), which we consider to be a rather high noise level from our experience processing
real image sequences. For each combination of object, depth, and noise, we performed three
tests, using different random noise each time. Two sample synthetic image sequences are
shown in Figure 8.

page 52

frame 1 ~ frame 30 frame 60

L

L) i *u))
frame | frame 30 — frame 60

Figure 8. Sample Synthetic Image Sequences

The object used to generate these images consisted of the edges three sides of
a cube of unit size. The far side was given a “notch” in one corner to make it
easier to visually distinguish the front of the object from the back. In the top
sequence, the depth (distance from the camera to the object) in the first frame
was 3 and the depth in the last frame was 4.5. In the bottom sequence, the
depth in the first frame was 30 and the depth in the last frame was 45. Gauss-
ian noise with a standard deviation of 2 pixels was added to each image posi-
tion.

2.5.2. Error Measurement

We ran each of the three factorization methods on each synthetic sequence and measured the
rotation error, shape error, X-Y offset error, and Z offset (depth) error. The rotation error is
the root-mean-square (RMS) of the size in radians of the angle by which the computed cam-
era coordinate frame must be rotated about some axis to produce the known camera orienta-
tion. The shape error is the RMS error between the known and computed 3D point
coordinates. Since the shape and translations are only determined up to scaling factor, we
first scaled the computed shape by the factor which minimizes this RMS error. The term

page 53

“offset” refers to the translational component of the motion as measured in the camera’s
coordinate frame rather than in world coordinates; the X offset is if~ if, the Y offset is if- jf,
and the Z offset is i Rf. These error measures are used directly rather than using them tc
first solve for t - SO that errors reported in the translation are not also influenced by the errors
in the recovered orientation variables. The X-Y offset error and Z offset error are the RMS
error between the known and computed offset; like the shape error, we first scaled the com-
puted offset by the scale factor that minimized the RMS error. Note that the orthographic
factorization method supplies no estimation of translation along the camera’s optical axis, so
the Z offset error cannot be computed for that method.

2.5.3. Discussion of Results

Figure 9 shows the average errors in the solutions computed by the various methods, as a
functions of object depth in the first frame. We see that the paraperspective method performs
significantly better than the orthographic factorization method regardless of depth, because
orthography cannot model the scaling effect, which occurs due to the motion along the cam-
era’s optical axis. The figure also shows that the paraperspective method performs substan-
tially better than scaled orthographic method at close range, while the errors from the two
methods are nearly the same when the object is distant. This confirms the importance of
modeling the position effect when objects are near the camera. Perspective refinement of the
paraperspective results only marginally improves the recovered camera motion, while it sig-
nificantly improves the accuracy of the computed shape, even up to fairly distant ranges.
This implies that unmodeled perspective distortion in the images effects primarily the shape
portion of the paraperspective factorization method’s solution, and that the effects are sig-
nificant only when the object is within a certain distance of the camera.

The separate refinement method often did not converge to a clear minimum. Instead, after
significantly improving the solution, it began reducing the error by increasingly tiny incre-
ments, at which point iteration was halted. Unfortunately “refinement” of the true shape and
motion values, also shown in Figure 9, is not an alternative in real systems. However, start-
ing at the correct solution shows what is essentially the best we can hope for using the cur-
rent least squares error formulation. Its closeness to the results of perspectively refining the
paraperspective solution shows that the latter method approaches the best results that can be
expected without taking additional knowledge into account. The fact that the two lines of
the graph are not identical could indicate that the error surface contains local minima, or it
could simply be the result of our halting refinement when the error reduction slows drasti-

cally.

In other experiments, whose graphs are not shown, translation in the image plane was elimi-
nated and the object was kept centered in the image. In these experiments, the paraperspec-
tive method and the scaled orthographic method performed equally well, as we would
expect since such image sequences contain no position effects. In still other experiments, the
depth translation was eliminated as well, so that the object remained at a fixed distance from
the camera. The orthographic factorization method performed very well in these experi-

o
&

4o]
[¢]
(9]
N

Shape Error x 10e-3

X and Y Ofttset BError X LUe-3

35.00 - " S 35.00 -
\ =
. >
30.00 1 \ E 30.00 |
AN o :
>~ g i
25.00 - T T = § 25.00 F 3
— -- — Orthographic FM !
--------- Scaled Orthographic FM p
20.00 - Paraperspective FM 20.00 + \
— — - Perspective Ref. (Para.) P
— - — Perspective Ref. (True) |
15.00 | 1500
N
10.00 | 1000 T
5.00 -
= o — __ """""""" —
L i ! ool —— — i o T T TS
0 10 20 30 40 50 60 0 10 20 30 40 50 6
Depth in 1st Frame Depth in 1st Frame
9.00-/___ —_———— e — o= T 35,00
(=]
8.00 | s
£ 30.00
54|
7.00 - 2
&
O 2500
6.00 |- N
5.00 F 20.00 -
4.00 15.00 L
3.00 |-
10.00 |
2.00
1.00 500 .
S
0.00 1 1 1 L L J 0.00 1 1 1 1 1 J
0 10 20 30 40 S0 60 0 10 20 30 40 50 e
Depth in 1st Frame Depth in 1st Frame

Figure 9. Methods compared for a typical case
noise standard deviation = 2 pixels

page 55

ments, and the paraperspective factorization method provided no significant improvement
since such sequences contain neither scaling effects nor position effects.

When the object was placed extremely close to the camera, i.e. when the depth is one or two
times the object size, normalization failure occasionally became a problem. Even when the
paraperspective normalization succeeded, separate refinement was unable to remove the dis-
tortions in the object.

The methods were all implemented in C using double floating point precision versions of
the Numerical Recipes in C routines for most of the numerical processing. The factorization
methods each required about 4 seconds to solve the systems of 60 frames and 60 points on a
Sparc 5/85 workstation, with most of the time spent computing the SVD of the measurement
matrix. The separate refinement method required about 85 seconds to solve the same sys-
tem.

2.6. Analysis of Paraperspective Method using Synthetic Data

Now that we have shown the advantages of the paraperspective factorization method over
the previous orthographic factorization method, we further analyze the performance of the
paraperspective method to determine its behavior at various depths and its robustness with
respect to noise. The synthetic sequences used in these experiments were created in the
same manner as in the previous section, except that the standard deviation of the noise was
varied from O to 4.0 pixels.

In Figure 10, we see that at high depth values, the error in the solution is roughly propor-
tional to the level of noise in the input, while at low depths the error is inversely related to
the depth. This occurs because at low depths, perspective distortion of the object’s shape is
the primary source of error in the computed results. At higher depths, perspective distortion
of the object’s shape is negligible, and noise becomes the dominant cause of error in the
results. For example, at a noise level of 1 pixel, the rotation and XY-offset errors are nearly
invariant to the depth once the object is farther from the camera than 10 times the object
size. The shape results, however, appear sensitive to perspective distortion even at depths of
30 or 60 times the object size.

2.7. Paraperspective Factorization Applied to Laboratory Image
Sequence

A hotel model was imaged by a camera mounted on a computer-controlled movable plat-
form. The camera motion included substantial translation away from the camera and across
the field of view, as shown in Figure 11. The feature tracker (described in [42], essentially a
non-hierarchical version of the tracker described in Chapter 3) automatically identified and
tracked 197 points throughout the sequence of 181 images.

o]
o

aQ
[¢]
W
[@))

Shape Error x 10e-3

X and Y Offset Error x 10e-6

8.00 - T 400~
— -~ — Noise sigma=4 pixels § — -- — Noise sigma=4 pixels
--------- Noise sigma=3 pixels = --------- Noise sigma=3 pixels
7.00 - ——— Noise sigma=2 pixels S 3.50 } ‘\/\ Noise sigma=2 pixels
— — - Noise sigma=1.5 pixelsr_E [~.— — — Noise sigma=1.5 pixe
— « — Noise sigma=1 pixels ¢ He —"-~___Noise sigma=1 pixels
6.00 L — — - Noise sigma=0.5 pixels-3 300 L jro. T “Noise sigma=0.5 pixe
——— Noise sigma=0 pixels g Lo Noise signa=0 pixels
=4 ..
5.00 + 2.50
4.00 - 2.00
3.00 | 1.50
2.00 | 1.00
1.00 050F o~ _ -
0.00 1 1 1 1 1] 0.00 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Depth in 1st Frame Depth in 1st Frame
800.00 - S 70.00 -
. . § — -- — Noise sigma=4 pixels
\ - gg}:g :igxzﬂg gii:{: I IREEEEEEEEE Noise sigma=3 pixels
700004 ;¢ s1gma=2 pi 8 ——— Noise sigma=2 pixels |
L\ — Noise sigma=2 pixels LE 6000 _ _ _ Noise sigma=1.5 pixels/
- Noise s!gmafl.S pixels - — - — Noise sigma=1 pixels.-
600.00 | T e e el — — - Noise sigma=0.> pixels
" o er o} 00 b — Noise sigma=0 pix¢ls
'._‘ —— Noise sigma=0 pixels g 50.00 5 ‘ /
500.00 | /
40.00 - ' ya
30.00 |-
20.00
1000f 0
0.00 L L : L L ! 0.00 é . v h A i
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Depth in 1st Frame Depth in 1st Frame

Figure 10. Paraperspective shape and motion recovery by noise level

page 57

Frame 1 Frame 61

Frame 121 Frame 151
Figure 11. Hotel Model Image Sequence

Both the paraperspective factorization method and the orthographic factorization method
were tested with this sequence. The shape recovered by the orthographic factorization
method was rather deformed (see Figure 12) and the recovered motion incorrect, because
the method could not account for the scaling and position effects which are prominent in the
sequence. The paraperspective factorization method, however, models these effects of per-
spective projection, and therefore was able to determine the correct Euclidean shape and

motion.

Several features in the sequence were poorly tracked, and as a result their recovered 3D
positions were incorrect. While they did not disrupt the overall solution greatly, we found

L]] v =
a " s "a o - * s ° = T)
: a s . * . a @ L]
L] . - . a " a a " L}
a - L ¥ n
a B -.-: l-l.l L] l.
Le " " . ¢ Len @ L ... " . . = " g e "
a u - - L e u ¥ n @ a
. s . [' lll. .I. [. : Y .]
- .
a l|. »] -.. - - [] * [] -.I [] . l-- a a - B
. " . .
" . @ " . " L] s ® L] LI
. . . L . .: .
s :- h . Il..=. « " " :. :. ® . ll.l= *
- = s " - s .y as Y a s «s a o - g "]
""as ang a w m a1 & e an, - o a n *
L] «e " " 8 & [me us® . = s 5 a . s YL as
. -.. .-l - . a® .-. ., -.l . as a® --
u ., ® a® " (] . s ® “a . " L | .«
a
e =g L LI . = a n 8 s . " . " . . aan LI
= [}
" a s w8 (I} e n o ®
N .

Front View of Orthographic Solution Front View of Paraperspective Solution

7

Top View of Orthographic Solution Top View of Paraperspective Solution
Figure 12. Comparison of Orthographic and Paraperspective Shape Results

that we could achieve improved results by automatically removing these features in the fol-
lowing manner. Using the recovered shape and motion, we computed the reconstructed mea-
surement matrix W ', and then eliminated from W those features for which the average
error between the elements of W and W °“°" was more than twice the average such error.
We then ran the shape and motion recovery again, using only the remaining 179 features.
Eliminating the poorly tracked features decreased errors in the recovered rotation about the

page 59

camera’s x-axis in each frame by an average of 0.5 degrees, while the errors in the other
rotation parameters were also slightly improved. The final rotation values are shown in Fig-
ure 13, along with the values we measured using the camera platform. The computed rota-
tion about the camera x-axis, y-axis, and z-axis was always within 0.29 degrees, 1.78
degrees, and 0.45 degrees of the measured rotation, respectively.

The system of 181 frames and 197 points required 42 seconds to solve on a Sparc 5/85. This
is in addition to the feature tracking, which required 16 seconds to automatically detect the
features and 6 seconds per image to perform the tracking, for a total of 100 seconds or over
18 minutes.

page 60

camera rotation about y-axis (degrees) camera rotation about x-axis (degrees

camera rotation about z-axis (degrees)

6.00

5.00

4.00

3.00

2.00

1.00

0.00

-1.00

-2.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00
0.50
0.40
0.30
0.20
0.10

0.00 =

-0.10
-0.20
-0.30
-0.40
-0.50

.‘ measured
SR computed

100 120 140 160 180
frame number

e measured
......... Computed

20 40 60 80 100 120 N© 160 180
frame number

................

......... computed

20 40 60 80 100 120 140 160 180
frame number

.....

Figure 13. Hotel Model Rotation Results

page 61
3. Confidence-Weighted Tracking and Shape Recovery

This chapter shows how the addition of confidence information to the factorization method
can be used to improve both the tracking and the shape recovery aspects of the factorization
method. We first explain our basic tracking method, and show how to estimate the “track-
ability” of a region of the image to determine whether it would be a good feature. This track-
ability estimate is combined with the tracking residue to provide confidence estimates for
our tracking measures. We then show how these confidence values are used to provide com-
putationally inexpensive inter-level smoothing in our multi-resolution tracking approach.
Finally, we generalize the decomposition step of the factorization method to incorporate
confidence measures for each feature. This extension allows the method to be applied to
sequences in which features become occluded or leave the field of view, and improves the
accuracy of the shape recovery by weighting the measurements of precisely tracked features
more heavily than those for poorly tracked features.

3.1. Image Motion Estimation

We use the tracking method developed by Lucas and Kanade [17]. This method assumes a
translational model of image feature motion, so that the intensity values of any given region
of an image do not change, but merely shift from one position to another. Given an intensity
feature template F defined over some region R, and an intensity image /, we wish to find the
translation h which minimizes the tracking residue E defined as

E= ¥ [I(x+h)-F(x)]? (75)

XER

The minimum error occurs when the derivative of E with respect to h is zero, or

d . _ 0 _
E = erRZ [7(x+h) ~F(x)]l (x+h) = 0 (76)

Making the linear approximation that 7 (x +h) =7(x) + hg—xl (x) , we can solve for the trans-

lation h as

@ e s@@T -

€R xXe R

Because a linear approximation for / (x + h) was used, the above formula provides only an
approximate solution for h. However, by iteratively applying this step, the method quickly
converges to the h which yields the minimum error E, using the following formulation.

ol \I 81) BI)T -1
b, =h,+ [> (5;) (X (5; 7®)
X X+ x+h

€R

[F (x) —1(x+h,,)1M D
h’l

XeR

page 62

Here h, the initial estimate, can be taken as zero if only small displacements are involved.

This method is computationally simple. At each iteration, five quantities are computed by
summation over the image region.

e T
P 2L Fm-ieeny)
{ell X€R 1x+h
e = = " 19)
[
43 (Fm -Ixehy)
_xeR 2x+h" |

G1 G ng(axl h ng axl ax2
G = 1 V12| _ x+h, x+h, (80)
G, G ol J(al] [8] J2
1292 ¥ [_ ol ol
_XER axl ax2 x+h, XE‘R ax2 x+h, |

Since G is a symmetric 2 X 2 matrix, we compute its inverse simply as

G-l = 1 Gy On 81
3
G116 -G |-G, G,

and the image motion is then given by

h = hn+eG‘1 (82)

n+

The image intensity data /(x) is generally defined only for integer values of x, yet the
above equations require calculation of /(x +h,) , where h_ is not generally an integer. We
use simple bilinear interpolation to estimate the image intensities at non-integral values.

io= >
iy = | %]

i ii+1
I(x) = (x;—i)) (xy—iy) 1([. }) + (i +1=x)) (xy—ip) 1([r]) + ®3)
') ’2
. R il R . il +1
=i Gy + 1=)| 1 D+ (i +1-x) G+ 1-x)I| "
i +1 ip+1
Here the function | r | represents the greatest integer of ». The same scheme is used to inter-
polate derivatives d//dx|__ ~at non-integer positions.

page 63
3.2. Feature Selection and Image Motion Confidence Estimation

Tomasi and Kanade pointed out in [43] that tise 2 x 2 matrix

ol \(o1 \T

)
can be used as a measure of a region’s “trackability”. To determine whether a region of the
image constitutes a trackable feature point, they examine the two eigenvalues of G. Figure
14 shows the eigenvalues of G for four sample image regions. Relatively textureless
regions, such as the region shown in Figure 14(a), are difficult to track and have very low
image derivatives. Therefore their corresponding G matrices have much smaller magni-
tudes than G matrices calculated over equal-sized region with greater amounts of texture
and brightness variation. However, simply examining the magnitudes of the G matrices is
not sufficient for determining trackability. Regions containing high spatial derivatives can
be line or edge features, which can only be localized in one direction. If the x- and y- gradi-
ents are highly correlated, as is the case of oriented features, then the G matrix will have
one large eigenvalue and one small eigenvalue, as illustrated in Figure 14(b), (c). When both
eigenvalues are large, the region has high spatial gradient in two orthogonal directions, and
therefore can be localized in the image.

The criteria of choosing features whose G matrices have two large eigenvalues can also be
seen from a purely mathematical point of view. If G has one or more small eigenvalues,
then it is nearly singular, so computing its inverse, as required for equation (81), becomes an
ill-conditioned problem. When both eigenvalues are large, the matrix is invertible, so equa-
tion (81) is well-conditioned.

While the basic feature detection an tracking approach is valid for any type of region R, in
our implementation we have restricted R to square windows of a fixed size. In order to
choose features, we compute the 2 x2 matrix G for all square regions of the given size in
the image. We then choose as features those regions with the largest values of the smaller
eigenvalue of G, A . . This generally results in many overlapping features containing
largely the same regions, so among overlapping regions we choose only the single region
with the highest A_. .

The feature window size must be large enough to include sufficient texture, while small
enough that the feature planarity assumption is not drastically violated. Clearly larger win-
dows will require more computation to perform feature defection and tracking. On the
images we have typically tested, 11 x 11, 13x 13, and 15 x 15 feature windows generally
work well for both feature detection and tracking.

Once features have been selected, the value Xmin can still be used to provide an estimate of
the relative confidence with which a particular feature can be tracked. Features with high

A, contain high-frequency texture patterns and can be localized very precisely even in the

page 64

(2)

(b)

©)

(d)

! Ix I\-‘ le’}“2
olofoJolo] [olololo]Jo
0(0(0]0]|O ololololo
00000 00000{00]0’0
ofololojo| [ofololojo] 00
olofofofo] |oloolo]o
ofofoJoJo| [ofofoJoTo
00000 T{T[T1][1

—00000 00000{00}10’0
olofo]fo]o 1[-1]-1|-1[-1] (O 10
ololololo| |[o]o]o]o]o
ol-1foJoJo] [o[t[oo]o
To[-1jolo| [ifol1]o 0
01 [0][-1]0 0-1010[3-3}16,0
010 0|-1 olo[-1]o[1|L8 8
oloo]1]o ol-1]0
of1lo[-1]o] [ololoo o
0110]-1|0 oli1l1o01l110
L[ofojoj-1f f1jo]-1j0[1 {81}8.62,6.38
ol-1/tlofo| [o[-1lofofo| 17
0|01]0|[O -1]0 010

Figure 14. Feature trackability of example image regions
These simple binary images are used to illustrate the trackability of various
image regions. (a) contains no image texture so it would make a poor feature.
(b) and (c) have high gradients, but because the x- and y- gradients are highly
correlated with each other, they also are not trackable. Only feature (d) can
be used as a trackable feature.

page 65

presence of image noise. Features with lower values of A~ contain smoother texture, so
image noise is more likely to cause shifts in the computed position of the points. We can
estimate the confidence in the tracking results of a feature as

‘min

logn

Yp = (85)
where n is the noise intensity in the given region of the image. We estimate the amount of
noise using the tracking residue E, which is an indicator of the total level of noise and other
deviation from the “translational patch” assumption. Therefore our confidence measure is

Tr = logE (86)

Clearly the scaling factor of these confidence values is arbitrary, as they have units of
(intensity)2/log (intensity) . Therefore they should only be used to estimate the confi-
dence of feature measurements relative to each other.

3.3. Tracking Despite Large Image Motion

Typical image sequences may contain large inter-frame image motions due to unsteady or
rapid camera motion. Traditional correlation-based tracking techniques using exhaustive
search over a large region of the image are computationally expensive, and gradient-based
techniques cannot follow large image motions due to local minima in the search space. Hier-
archical methods have been studied to address these problems in the optical flow domain
[1][5]. A “pyramid” of reduced resolution or spatially smoothed copies of each original
image is produced, and flow computation proceeds from the lowest resolution or lowest fre-
quency levels of the pyramid to the highest. Eliminating the image’s high-frequency spatial
components enables gradient descent methods to avoid local minima in the search for the
optimal feature displacement values, and allows them to search over a larger region of the
image.

We apply these techniques to the feature tracking domain. Our approach is to first compute a
sparse optical flow map using a novel hierarchical method that incorporates image-based
confidence measures. We then interpolate this map to determine an initial estimate for the
feature tracking stage. The final feature tracking is then performed using the gradient
descent technique described in section 3.1.

3.3.1. Hierarchical Confidence-Weighted Sparse Optical Flow Estimation

The iterative tracking method outlined above produces feature translation results accurate to
within sub-pixel resolution, provided that the initial flow estimate h, transforms the feature
to within a few pixels of the correct minimum. (The actual range in which the method will
converge to the correct solution depends on the spatial frequency of the image in the track-

page 66

ing region.) However, image sequences taken from unsteady platforms, or sequences with
low temporal sampling frequency often contain motions of 50 pixels or more.

Multi-resolution techniques could be applied to this problem by tracking each feature
throughout the levels of the image pyramid, using windows centered on our initial features,
using the results of tracking this larger version of the feature in one level of the pyramid as a
starting value for tracking in the next higher resolution level of the pyramid. However, there
is no certainty that features identified based on their trackability in the highest resolution
images will still be trackable in low-resolution versions of the same images. This technique
would encounter difficulty when feature points lie near the image borders, and would result
in redundant computation at the highest levels of the pyramid, where all features would
largely overlap.

We use a multi-resolution method to compute a sparse optical flow map between pairs of
consecutive images, which we then interpolate to initially estimate each feature’s transla-
tion. Unfortunately, a major drawback of optical flow is that many regions of typical images
do not contain sufficient texture to produce reliable optical flow estimates. Optical flow
researchers have developed a variety of methods for post-smoothing flow results. However,
all of these methods are computationally expensive, some require very dense optical flow
computation, and some smooth optical flow results even in regions where sufficient texture
information to compute the flow is available, thereby “smoothing over” already accurate
flow results [20][21]{27][34]. Extremely accurate flow results are not required for our pur-
poses, since our flow field will simply be interpolated to determine initial values for the fea-
ture tracking, so instead we propose an inexpensive method similar to the method put forth
by Nagel [27].

Rather than post-smoothing the optical flow estimates, we incorporate confidence-weighted
smoothing between the levels of the pyramid into the optical flow computation itself. We
perform the basic optical flow computation using the Lucas-Kanade method described in
section 3.1., expressing our confidence in each flow measurement using the y measure
described in section 3.2. However, at each iteration of the flow computation, the effective
flow estimate is computed by combining the current flow estimate and the flow estimate
from the previous level, weighting each by their respective confidences. The resulting flow
will take advantage of the texture in the current image whenever possible, and inherit the
flow of the larger region from the previous level of the pyramid when insufficient texture
exists in the current image. Since there is no expensive post-smoothing step, and no reliance
on dense flow estimates, this method requires very little additional computation.

To compute the flow at some position (x,y) in pyramid level !, we interpolate from the
flow estimates computed at pyramid level /- 1. The optical flow estimates are sparse, and
have only been computed at certain image positions. Let (x,,y,), (x,¥,), (x,.¥,), and
(xp ¥p) > be the four points surrounding (x,y) at which flow estimates have been computed.
These four points form a rectangle which (x, y) lies within, as shown in Figure 15. Let the
flow estimates for these four points be w, s U, U, and u,, and their associated confi-

page 67

(53 | (%4 3,)
| \

Yoa (%)

(X Yy (xp: yp)

~h _r"iuab Rum) ¥

Figure 15. Interpolation of Sparse Optical Flow
The flow at the point (x,y) is interpolated from the computed flow values at
the four nearest points where flow has been computed, (x_,), (x,5,),
(x, ¥,) > and (xp,y,).

dences be Yoas Yab® Yoo and Yop respectively. We interpolate between these four measure-
ments to estimate the flow and confidence for (x,y) from level /-1. We first adjust the
confidences to account for the interpolation, by defining

Yoa = (X,=%) (0, = ¥)Y,,
Yo = (p=3) G-)Y
You = (x=2) (=9, 7
Yo = (1-%) G-)Y,

These four measurements with associated confidences are combined in the manner sug-
gested by the information fusion theorem [1] to compute the optimal flow estimate and its
associated confidence value.

Yl— 1 (x, y) = [Yaa + Yab + Yba + Ybb]
(88)
w_ (5Y) = o IV g, + Y aptap + Y pallpa * ¥ W)

We now modify the standard image motion computation described in section 3.1 to use
u_ (%) and y;,_, (xy) in the computation of the image motion in level I. We use
u, ,(xy) asthe initial value h,, for iteratively computing the flow at level /. At each iter-
ation, we compute a flow estimate h, using equation (82) and compute the corresponding
confidence v, of the estimate using equation (86). We weight this estimate with the estimate
from the previous level of the pyramid to obtain the actual flow estimate for iteration ».

page 68

’Y[n(x:}’) = (1—k)Y+k'Yl_1(X,y)
(39)
u’,. (x,y) = YZ;I [(1-k) (YRhn) +kY[_1 (x,y) h[_ 1 (x,y)]

Here k is a constant weighting factor between 0 and 1 that determines how much confidence
to attach to estimates from lower levels of the pyramid. A weighting factor k¥ = 1 will cause
all flow estimates to be strictly inherited from the previous level without regard to the image
or flow estimates computed at the current level. Using k = 0 causes each level’s computa-
tion to use the previous level’s flow estimate only as an initial value, but it is does not influ-
ence the flow computation beyond the initialization.

3.3.2. Sparse Optical Flow Results

Our initial hierarchical implementation did not incorporate any confidence-based weighting
from one level to the next. Rather, each level of the pyramid simply interpolated the flow
estimates from the previous level and used that flow estimate as its initial motion estimate
h,, equivalent to the k = O case in the above formulation. This system successfully tracked
feature motions over pixel motions as large as 100 pixels, and worked well for images con-
taining sufficient texture information at all points in the image, such as the aerial image
sequence shown in Figure 16. However, in image sequences containing large, homoge-
neous, textureless regions, the flow results were very poor. Therefore the initial feature posi-
tion estimates of any features near those regions were incorrect, and the feature tracker was
unable to find the correct minimum. The flow computation of this method on a pair of
images from one such sequence is shown in Figure 17. Note that the flow estimates in the
highly textured parts of the image, such as the stovetop, the sink, the calendar, and the upper
portion of the refrigerator, are correct.

Figure 18 shows the results on the same pair of images using an inter-level weighting con-
stant of k = 0.5, though we observed roughly equivalent behavior with k& ranging from 0.3
to 0.7. The flow results were substantially improved in portions of the image which lacked
significant image texture, enabling the correct tracking results shown in Figure 19. Notice
that in many cases the correct position of a feature in the second image did not overlap the
feature’s position in the first image at all, so clearly a non-hierarchical method which uses
initial position estimates based on the previous frame would fail. Figure 20 shows the track-
ing results for the aerial sequences, demonstrating that the tracker successfully tracked fea-
ture motions of over 30 pixels.

Level 3 image and flow Level 4 image and flow

Figure 16. Unsmoothed optical flow for Aerial Sequence

In this sequence, there was sufficient texture throughout the image, so even
without the addition of confidence-based smoothing, the sparse optical flow
map could be computed reliably. The box in the upper-left comner of each
image indicates the size of the regions used for flow computation. Each point
at which a flow value has been computed is indicated with a small white cir-
cle, while the white line extending from each point indicates the direction and
magnitude of the optical flow at that point.

page 70

Level 3 image and flow Level 4 image and flow

Figure 17. Unsmoothed optical flow - Kitchen Sequence
While the flow results are correct in highly textured regions of the image, the
flow results are very poor in regions containing insufficient texture. The box
in the upper-left corner of each image indicates the size of the region used for
flow computation.

page 71

Level 3 imég and flow Level 4 irr{ae and flow
Figure 18. Optical flow using inter-level confidence-based smoothing
In regions containing little or no image texture, the flow at the high-resolu-
tion level of the image pyramid is primarily inherited from the flow in the
previous level of the pyramid, yielding better flow estimates in those regions.

page 72

(a) Image 1 (b) Image 2

Figure 19. Tracking Results for Kitchen Sequence
(a) The features for this sequence were automatically chosen from the first
image according to their A . values. (b) The tracked position of each fea-
ture in the second image is shown in black, while white squares mark the
same coordinates at which each feature was detected in the first frame.

Figure 20. Tracking Results for Aerial Image Sequence
This pair of images was chosen for the large inter-frame displacement. The
right image shows the feature positions in the 73rd image of the sequence,

with lines pointing to the positions in the previous image. Many of the fea-
tures are displaced by 30 or more pixels.

page 74

3.4. Factorization Despite Occluded and Uncertain Tracking Data

So far, our formulation of the factorization method has assumed that all of the entries of the
measurement matrix are known and are equally reliable. In real image sequences, this is not
generally the case. Some feature points are not tracked throughout the entire sequence
because they leave the field of view, become occluded, or change their appearance signifi-
cantly enough that the feature tracker can no longer track them. As the object moves, new
feature points can be detected on parts of the object which were not visible in the initial
image. Thus the measurement matrix W is not entirely filled; there are some pairs (f, p) for
which (u Y fp) was not observed.

Not all observed position measurements are known with the same confidence. Some feature
windows contain sharp, trackable features, enabling exact localization, while others may
have significantly less texture information. Some matchings are very exact, while others are
less exact due to unmodeled change in the appearance of a feature. Previously, using some
arbitrary criteria, each measurement was either accepted or rejected as too unreliable, and
then all accepted observations were treated equally throughout the method.

We address both of these issues by assigning a confidence value to each measurement using
equation (86), and modify the shape and motion recovery to weight each measurement by its
corresponding confidence value. If a feature is not observed in some frames, the confidence
values for the measurements corresponding to those frames are set to zero.

3.4.1. Confidence-Weighted Formulation

We can view the decomposition step of Section 2.3.4 as a way, given the measurement
matrix W, to compute an M, S, and T that satisfy the equation

w=#3+T[y . 1 (90)

There, our first step was to compute T directly from W. We then used the SVD to factor the
matrix W* = W- T[l 1] into the product of M and §. In fact, using the SVD to perform
this factorization produced an M and § that, given W and the T just computed from W,
minimized the error

2F P 2

= 3 3 (W, (#1181, + 8,58, 4 81,335, + T) o1
r=1p=1
In our new confidence-weighted formulation, we associate each element of the measure-
ment matrix W, with a confidence value y p* We incorporate these confidences into the
factorization method by reformulating the decomposition step as a standard weighted least
squares problem where each measurement er has a standard deviation inversely propor-
tional to Yrp We seek the i, §, and T which minimize the error

page 75

2F P [er—[MrlSlp+M,2S2p+Mr3S3p+TrJJz o

€= Z Z 1/ Y

r=1p=1 rp
Note that the scale of the Vrp is arbitrary, as is the constant of proportionality relating these
confidence values to the standard deviations of the feature measurements. However, this
effects & only by a constant factor, and will not effect the values of the final 41, §, and T
chosen to minimize &. Once we have solved this minimization problem for #, §, and T, we
will proceed with the normalization step and the rest of the shape and motion recovery pro-
cess precisely as before.

3.4.2. Iterative Solution Method

There is sufficient mathematical constraint to compute #, §, and 7, provided the number of
known elements of W, i.e. elements of W for which v, >0, exceeds the total number of
variables (8F + 3P). The minimization of equation (91) is a nonlinear least squares problem
because each term contains products of the variables Mrj and Sjp. However, it is separable;
the set of variables can be partitioned into two subsets, the motion variables and the shape
variables, so that the problem becomes a simple linear least squares problem with respect to
one subset when the other is known. Unfortunately there does not appear to be any exten-
sion of the SVD method to address the problem of weighted decomposition. Instead, we use
a variant of an algorithm suggested by Ruhe and Wedin [32] for solving such problems - one
that is equivalent to alternately refining the two sets of variables. In other words, we hold §
fixed at some value and solve for the # and 7 which minimize €. Then holding & and T
fixed, we solve for the § which minimizes €. Each step of the iteration is simple and fast
since, as we will show shortly, it is a series of linear least squares problems. We repeat the
process until a step of the iteration produces no significant reduction in the error €.

To compute M and T for a given §, we first rewrite the minimization of equation (91) as

2F P
e= Ye, whre =Y yzrp(W,,- (1\71,131], + 8,585, + M,385, + Tr))z. (93)
r=1 =1

For a fixed §, the total error £ can be minimized by independently minimizing each error
€., since no motion variable appears in more than one ¢, equation. Each ¢_ describes a
weighted linear least squares problem in the variables #,,, M,,, M,3, and T,. For every
row r, the four variables are computed by finding the least squares solution to the overcon-
strained linear system of 4 variables and P equations

page 76

" n N Mrl
St SaYe S3¥ Yo ir WoiTh
Y (94)
81pY.p S0p¥.p § Ml W, ey
1PY,p 92PY,p 93PY,p Yrp T retrp
i

Many of the Y,, may be zero, so we only include those rows of the above equation which
are not zero.

Similarly, for a fixed # and T, each p'* column of § can be computed independently of the
other columns, by finding the least squares solution to the linear system of 3 variables and
2F equations

My, Moy, M13Y1p Sip Wi,=TP1y,
= (95)

1 Wag, = Tap) Yar,

S2p
Myr 1\ Yar, p MaF, 2YaF, , MaF, 3Y2F,) §3p

As in any iterative method, an initial value is needed to begin the process. Our initial exper-
iments showed, however, that when the confidence matrix contained few zero values, the
method consistently converged to the correct solution in a small number of iterations, even
beginning with a random initial value. For example, in the special case of Y = 1.0 (which
corresponds to the case in which all features are tracked throughout the entire sequence and
are known with equal confidence), the method always converged in 5 or fewer iterations,
requiring even less time than computing the singular value decomposition of W; when the
Y,, were randomly given values ranging from 1 to 10, the method generally converged in 10
or fewer iterations; and with a y whose fill fraction (fraction of non-zero entries) was 0.8,
the method converged in 20 or fewer iterations. However, when the fill fraction decreased to
0.6, the method occasionally failed to converge even after 100 iterations.

In order to apply the method to sequences with lower fill fractions, it is critical that we
obtain a reasonable initial value before proceeding with the iteration. We developed an
approach analogous to the propagation method described in [43]. We first find some subset
of the rows and some subset of the columns of W for which all of the confidences of mea-
surements belonging to both subsets are non-zero. A simple choice would be to select all of
the features which are visible in the first frame, and all of the frames from the first frame to
the first frame in which one of those features disappears. These subsets could be enlarged by
a simple greedy algorithm in which points with short feature tracks are discarded, enabling
more features to be included in the subset, until the total number of measurements included
in the subset reaches a maximum. The method we actually use improves over this approach
slightly. We first choosing the point which was seen in the largest number of frames and
place it in the subset. We then consider other points to add in descending order of the total
number of frames in which they were observed, and use the simple greedy heuristic

page 77
described above. In practice, it seems to work well for realistic fill patterns.

Once we have chosen our initial subset, we solve for the corresponding rows of # and T
and columns of § for the subset by running the iterative method starting with a random ini-
tial value. As indicated above, since this subset has a fill fraction of 1, this converges
quickly, producing estimated values for this subset of #, §, and T. We can solve for one
additional row of M and T by solving the linear least squares problem of equation (94)
using only the known columns of §. We can solve for one additional column of § by solv-
ing the linear least squares problem of equation (95) using only the known rows of #7 and
T. We continue solving for additional rows of M and T or columns of § until #, §, and T
are completely known. Using this as the initial value allows the iterative method to converge
in far fewer iterations.

3.4.3. Analysis of Weighted Factorization using Synthetic Data

We tested the confidence-weighted parz;perspective factorization method with artificially
generated measurement matrices and confidence matrices whose fill fraction (fraction of
non-zero entries) was varied from 1.0 down to 0.2. Creating a confidence matrix that has a
given fill fraction and a fairly realistic fill pattern (the arrangement of zero and non-zero
confidence values) is a non-trivial task. First, a surface was manually created to connect the
three dimensional points of the synthetic object. This allowed us to automatically determine
at what point in a motion sequence any given point would become occluded, and when it
would become visible again, producing a synthetic fill pattern. These feature tracks are then
extended or shortened until the desired fill fraction is achieved. In the case of lengthening
the feature tracks, this is not a strictly realistic fill pattern since it is assuming that a point
remains visible for a few frames after some occluding surface has passed in front of it. How-
ever, it was an effective way to test the shape reconstruction using the same object for a vari-
ety of fill fractions.

Figure 21 shows how the performance degrades as the noise level increases and fill fraction
decreases. The synthetic sequences were of a single object consisting of 99 points, initially
located 60 times the object size from the camera. Each data point represents the average
solution error over S runs, using a different seed for the random noise. The motion, method
of generating the sequences, and error measures are as described in Section 2.5.

Errors in the recovered motion only increase slightly as the fill fraction decreases from 1.0
to 0.5. At a very low noise level, such as 0.1 pixels, this behavior continues down to a fill
fraction of 0.3. When the fill fraction is decreased below this range, however, the error in the
recovered motion increases very sharply. The shape results appear more sensitive to
decreased fill fractions; as the fill fraction drops to 0.8 or lower, the shape error increases
sharply, and then increases dramatically when the fill fraction reaches 0.6 or 0.5. While the
system of equations defined by equation (91) is still overconstrained at these lower fill frac-
tions, apparently there is insufficient redundancy to overcome the effects of the noise in the
data.

=]
o0
a9
(¢
~)
[e 2]

Rotation Error x 10e-3

X and Y Offset Error x 10e-3

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

— '\. - —
1 1 I e TN e W M |

0.00
02 03 04 05 06 07 08 09 10

10.00

9.00

8.00

7.00

6.00 |-

5.00 |

4.00 |-

3.00

200+

1.00

Fill Fraction

— -- — Noise sigma=2 pixels
—— Noise sigma=1.5 pixels
--------- Noise sigma=1 pixels
— - — Noise sigma=0.5 pixels
— — - Noise sigma=0.1 pixels
~—— Noise sigma=0 pixels

0'00 1 1 1 L 1 1 1]
02 03 04 05 06 0.7 08 09 1.0

Fill Fraction

Shape Error x 10e-3

Z Offset Error

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

L - i L 1 I]

0.00 .
02 03 04 05 06 0.7 0.8 09 1.
Fill Fraction

0.20
0.18 |- |

0.16

0.14
0.2}

0.10

|
|
|
0.08 } |
|
006} |
|

004 |
|
002+ |

0.00
02 03 04 05 06 07 08 09 1.C
Fill Fraction

Figure 21. Confidence-Weighted Shape and Motion Recovery
by Noise Level, Fill Fraction

page 79

The methods were implemented in C using the Numerical Recipes in C routines for matrix
operations and numerical methods. The time required to solve the system of 60 frames and
99 points depends on the number of iterations required for convergence, which seemed to
vary significantly even for scenarios with the same parameters. Typical numbers of itera-
tions and running times on a Sparc 5/85 workstation are summarized in the following table.

Table 3: Running Time of Confidence-Weighted Factorization

Fill Fraction Number of Iterations | Total Solution Time
0.7-1.0 4-7 5-7.5 seconds
0.6 5-11 6-12
0.5 10-25 9-14
04 20-50 16-24
0.3 50-100 38-45
0.2 100+ . 38-40%

a. For the case of a 0.2 fill fraction, each iteration requires examining on av-
erage 33% fewer measurements than for the 0.3 fill fraction case, so its typ-
ical solution time is the same or lower even when it executes more iterations.

3.4.4. Discussion

The weighted factorization method is able to handle moderate amounts of occlusion quite
effectively and account for varying feature confidences at nearly the same computational
cost as the unweighted version of the factorization method. It’s behavior degrades gracefully
up to a certain point at which it tends to fail catastrophically, even though theoretically in
those situations the problem is still overconstrained. For problems with low fill fractions, the
initial value is determined by first solving a very small system and then extending the solu-
tion one row or column at a time while keeping estimates for all previous rows or columns
fixed. Small errors at any step of the process can have large effects on the values subse-
quently. Additionally the refinement method is limited to refining the affine shape and
motion separately. In some cases, the error could be reduced significantly by rotating a por-
tion of the shape and motion by some rotation matrix so that it better aligns with other parts
of the solution. However, the shape and motion cannot be updated simultaneously, and rotat-
ing only the shape or only the motion is likely to cause large increases in the error rather
than reductions. Therefore the method must proceed in tiny steps, rotating the motion by a
small amount, subsequently rotating the shape by that amount, and so on. This explains the
observed behavior of the method at low fill fractions; rather than clearly converge, reduction
of the error slows drastically, improving by tiny amounts until the limit of 100 iterations is
reached. The limitation of this method is nearly the same as that of the separate refinement
method - inability to refine shape and motion simultaneously.

page 80

While we have detailed our experimental results as functions of the fill fraction, the errors in
fact seem to depend on more than simply the fill fraction. Smaller sized problems than the
ones used here tend to experience failure at higher fill fractions, while for larger sized prob-
lems the methods seem to work even at lower fill fractions (see next section). This may be
attributable to the fact that a given fill fraction indicates less redundancy in the information
for a smaller problem than for a larger problem. The performance may be more closely
related to the number of non-zero confidences per row or column, or to some measure which
also accounts for the overall length of the sequence or total number of points in addition to
the fill fraction. Even for problems of the same size and fill fraction, the performance of the
method seems to vary according depending on the particular fill pattern of observed and
unobserved measurements.

3.5. Application to Aerial Image Sequence

An aerial image sequence was taken from a small airplane overflying a suburban Pittsburgh
residential area adjacent to a steep, snowy valley, using a small hand-held video camera.
The plane altered its altitude during the sequence and also varied its roll, pitch, and yaw
slightly. Several images from the sequence are shown in Figure 22.

Due to the bumpy motion of the plane and the instability of the hand-held camera, features
often moved by as much as 30 pixels from one image to the next, but the multi-resolution
feature tracker was able to accurately track these motions accurately. The sequence covered
a long sweep of terrain, so none of the features were visible throughout the entire sequence.
As some features left the field of view, new features were automatically detected and added
to the set of features being tracked. A vertical bar in the fill pattern (shown in Figure 22)
indicates the range of frames through which a feature was successfully tracked. Each
observed data measurement was assigned a confidence value based on the gradient of the
feature and the tracking residue. A total of 1026 points were tracked in the 108 image
sequence with each point being visible for an average of 30 frames of the sequence, for an
overall fill fraction of 28%.

Feature detection required 22 seconds to detect the initial 300 features, and tracking
between frames required about 7 seconds per frame on a Sparc 5/85 workstation. New fea-
tures were detected 26 times during the course of the sequence, whenever the number of vis-
ible features dropped below 250. These feature detections took only 12-16 seconds, since
much of the image was “blocked out” by the existing features. The total time spent in the
feature detection and tracking stage was 1068 seconds, or just under 18 minutes.

The confidence-weighted paraperspective factorization method was used to recover the
shape of the terrain and the motion of the airplane. An initial block was chosen in which 36
points were seen in the same 57 frames. Solving this 144 x 36 system converged in only 7
iterations. The solution was extended one row or column at a time and then all variables
were iteratively refined. The entire solution required an additional 48 iterations to converge

4 Sl L

Frame 70

A e ! Il Sl
| E?!’] !'h’ “‘ wl‘l z' ”

A PP e T
| L “ E‘!t“’! ’

[y
1l
It :fﬁf‘r'!'“u !

1l | ‘ V,A’HM l|“| I [‘”\ !’!I JH,

—<=—frame —» .

A

feature number: » 1026
Fill pattern indicating points visible in each frame

Figure 22. Aerial Image Sequence

page 82

to a solution. Total computation to compute the shape and motion of the 1026 point object
over 108 frames was 460 seconds, or 7 minutes and 40 seconds. Two views of the recon-
structed terrain map are shown in Figure 23, While no ground-truth was available for the

Figure 23. Reconstructed Terrain from Two Viewpoints

shape or the motion, we observed that the terrain was qualitatively correct, capturing the flat
residential area and the steep hillside as well, and that the recovered positions of features on
buildings were elevated from the surrounding terrain.

page 83
4. Projective Factorization

The results of the paraperspective factorization method have been shown to be quite good
up to fairly close distances, and can be further refined to account for perspective foreshort-
ening effects with a separate iterative refinement step. However, for images containing
severe foreshortening, such as a rigid scene with both near and distant points, the separate
iterative refinement step proceeds very slowly. Worse yet, if noise levels are high and fore-
shortening effects severe, the normalization step of the paraperspective factorization method
may fail, providing no initial value for perspective refinement. Clearly a method is needed
which models perspective distortion more directly.

This chapter details the projective factorization method, which applies the basic approach of
the factorization method to a perspective camera model. In the decomposition step, image
measurements are decomposed into a projective shape and a projective motion, rather than
an affine shape and motion as in the previous factorization methods. The non-linearity of the
perspective projection step makes the use of SVD or bilinear methods impossible for this
decomposition step, so general non-linear least-squares techniques are used. Following
decomposition, normalization constraints are subsequently applied to the projective motion
to convert the projective solution to a Euclidean one. The method is able to compute the cor-
rect shape and motion by refining shape and motion parameters simultaneously, unlike the
separate perspective refinement method of section 2.4.

The projective decomposition approach is quite similar to the methods Ponce, Marimont,
and Cass [30], Szeliski and Kang [38], and Hartley [18] use for recovering projective shape
and motion. Our normalization constraints which convert the projective solution into a
Euclidean one is novel, and requires only linear operations. Faugeras, Luong, and Maybank
[15] and Hartley [18] have put forth methods for converting epipolar geometries or projec-
tive motions into Euclidean motions, but their approaches require continuation or other
complex methods.

We also describe a technique for recovering Euclidean shape and motion without first per-
forming projective decomposition, similar to the method of Szeliski and Kang [38]. By con-
straining the shape and motion to follow a Euclidean form, the method can potentially
achieve greater accuracy than projective factorization. However, we show that when fore-
shortening effects are significant, this method fails to converge to the correct minimum
when a simplistic initial value is used. Its usefulness therefore is limited to relatively distant
objects, or to refining the results produced by other methods.

Finally we show that the non-linear minimization framework developed for projective fac-
torization and Euclidean optimization can be extended to incorporate image data directly
rather than relying solely on tracked features. The shape from motion problem is reformu-
lated in terms of minimizing differences in image intensity rather than minimizing errors
between predicted and tracked feature point positions. While the method could in theory

page 84

obviate the need for feature tracking altogether, in practice it is primarily useful for refining
results in which some of the initially tracked features were poorly tracked, thus allowing a
more dense shape recovery.

4.1. Projective Factorization

The orthographic, scaled orthographic, and paraperspective projection models all can be
modeled by bilinear equations. This enables them to be solved by first separating the shape
and motion components using Singular Value Decomposition or, in the case of occluded or
missing data, using an iterative bilinear solution technique. Perspective projection, however,
involves division, which cannot be modeled by these bilinear equations. In order to extend
shape and motion recovery to sequences containing foreshortening effects, we turn to the
realm of general non-linear equation solution techniques.

In this section, we first show how to recover the projective shape and projective motion
from an image sequence. A projective shape is a shape which is known only up to an arbi-
trary rotation, scaling or skewing of the axes, and scaling of each point on the object by the
distance to any given point, as illustrated in Figure 24. There exists a projective transforma-
tion which will transform a projective shape into the actual Euclidean shape of the object
(i.e. with the axes correctly scaled unskewed and the projective deformation removed),
though the correct transformation is not always known. The problem of recovering projec-
tive shape and motion from an image sequence has been addressed by several researchers in
the past few years [4][7]1[25][30][38]. Many produce only the projective shape and motion
as their answer. Others compute the transformation which converts the projective solution
into a Euclidean solution by requiring the direct measurement of the Euclidean world posi-
tions of five of the points, or by assuming coplanarity of certain points. We present a method
for converting a projective shape and motion into a Euclidean one by applying normaliza-
tion constraints to the motion, in a manner analogous to the way an affine shape and motion
were converted to a Euclidean one in the factorization method.

4.1.1. Least Squares Formulation

Recall from equation (64) that the perspective projection of a point s, onto the image plane
in frame f is

i,-s +=x
lf 4 f+

o

P_(,

xp(fp))
Pyp(ﬁp) / Jf.sp+yf+0
kf-sp+zf y

-

Pp fip) = = (96)

This can be rewritten in the form

page 85

(a) (b)

(©)

(d) (e)

t)

Figure 24. Affine Equivalence and Projective Equivalence
The objects (a), (b), and (c) are all affinely equivalent, since each is the result
of arbitrarily scaling the axes or changing the angles between the axes of
another. (a), (b), (c), (d), (e), and (f) are projectively equivalent, since each is
the result of scaling the positions of the points of another based on the dis-
tance to some arbitrary point.

'l (if+ oxkf) s, + le+ 0,2

kf-sp+zf

la (jf+ oykf) . sp + layf+ 0,2

P,(fip) = 7

ke s+

The projective formulation of these equations simply collects all of the motion and camera
variables into a three vectors m s Mg and m 30 similar to the way the motion parameters
were collected into m, and n, in the previous methods. Using this notation, the perspective
projection equations that predict the x- and y- positions of point p in frame f become

page 86

e o Me - Sp

» P mg - S8
P,(,p) = Px" =| fr (98)

y,,(f’p) Mo S

™37 5p)

Here the s, vectors are written in homogeneous coordinates, where each s, is augmented to
be a 4-vector whose fourth element is set to 1. The 4 x P matrix whose columns are the s,
vectors is called the projective shape matrix. The 3 x4 projective motion matrix M L for
each frame is defined by collecting the three m 4-vectors, whose values in terms of the
camera motion and camera parameters can be determined from equation (97) as

m Moy Mepp Mpg My l(if+ oxkf) le+ 0.2

Mf= Mo = \Mey Moy My Myl = la(jf+oykf) layf+oyz 99
mf3 _mf31 My Mz My kf Zf

The projective shape and motion recovery problem is posed as, given a set of observed
points u ,» compute the projective shape and motion which minimize the error

F P
e= 3 3 P En-u) (PER-u)Y,
: (100)

= § g.[(Pxp(f’p)—“fp)2+(Py,,(ﬁp)—vfp)2:|Yfp

Here Yy, are the confidence values assigned to each observation.

We will use the Levenberg-Marquardt optimization technique described in the next section
to find the projective shape and motion which minimize the error €. Note that due to the
division, both the numerator and the denominator of the projection function can be multi-
plied by any arbitrary non-zero constant, and the resulting predicted image positions would
be unchanged. Therefore each projective shape vector s_ can be scaled by an arbitrary non-
zero constant, and each projective shape matrix M - can similarly be multiplied by a non-
zero constant, without changing resulting the error measure €. To eliminate redundant
degrees of freedom in the model, we fix the 4** element of each s, at 1 and setm 34 = L.

4.1.2. Levenberg-Marquardt Solution Method

A review of the Levenberg-Marquardt technique for non-linear optimization was given in
section 2.4.2. In the projective shape and motion recovery problem, the variable vector a
consists of all of the projective motion and projective shape variables m ik and Spi (not
including those whose values have been fixed to 1.) The observed y, values are simply the

measured feature point positions u £ and v - while the predicted Y, values are the functions

page 87

P (f,p) and P (f p) given by. equation (100) for the case of perspective projection using a
projective shape and motion formulation, and 1/ 02 = Y, Equations (68) and (70) for the
projective shape and motion recovery problem can be written as

Cp =f=§ éY [(P(fp))(P(fp)) (a P(fp))(=P (fp)):l (101)

F P

=33 vf,,[(ufp P.(F,) oo Pp)+ (v~ Py(fp)) - P(fp)} (102)
f=1lp=1

Notice that each P (f, p) or Py(f, p) 1s a function only of the shape variables for point p and

the motion variables for frame f. Therefore many of the partial derivatives are zero, which

in turn causes many of the terms of the summation to be zero. Rather than requiring the

summation of 2FP terms, each element of the vector B requires the summation of 2P or
2F terms.

P
va,,[(u -P(p) 5 P(fp)+<vf,, P(f,) 5 P(fp)}
p=1

if a; is a motion variable for frame f

w
=
Il

v . ; (103)
le vf,,[(= P P) g 5 20+ (4 = P) 3P p)]

if a % is a shape variable for point p

Similarly many terms of the o matrix have zero values, while others require the summation
of a smaller number of terms.

page 88

0 if a, and a; are shape variables from different points
0 if @, and a; are motion variables from different frames
0 if @, is a shape variable for point p, a, is a motion variable for frame fs
and Y B 0
vf,,[(Zp p))(3o PP)+ (2P (f p))(Zp (fp))]
if a; shape varlable for point p, @; motion varlable for frame f, Vg, * 0
oy, = (104)

Z ([(P(f,p))(P(fp)) (P(fp))(P(fp))])

ifa k and a ! shape variables from same point

szmvf,,([(P<fp>)(P(fp))(P(fp))(P(fp))D

if a L and a I motion variables from same frame

We order the variables in a to take advantage of the sparseness of . The 11 motion vari-
ables for the first frame comprise the first 11 elements of a, the 11 motion variables for the
second frame are the next 11 elements of a, and so on, so that altogether the motion vari-
ables comprise the first 11F elements of a. The shape variables are ordered similarly, three
variables per feature point, so that a has a total of 11F + 3P elements. This places the ele-
ments with generally large magnitudes along a block diagonal portion of the Hessian matrix
o as shown in Figure 25.

The block-diagonal dominance of the matrix allows us to use the preconditioned conjugate
gradient method described in [31] to efficiently solve equation (71), which is required at
every step of the minimization. The preconditioned conjugate gradient method is itself an
iterative technique which is well-suited to solving sparse linear systems. To solve the linear
system ada = B for 8a, we are not required to supply the matrix o. in any specific represen-
tation. Rather we supply the conjugate gradient routine with three functions. The first com-
putes the product of o with an arbitrary vector, and the second computes the product of o?
with an arbitrary vector. Since o is symmetric in our problem, the same function performs
both of these operations. The third function must provide a solution to linear systems of the
form o*x = b, where o* is a preconditioner matrix which approximates o and which we
can invert easily. We use the block diagonal portion of a as the preconditioner o . Since the
elements of o with the largest magnitudes lie along the block diagonal portion of o, a* is a
good approximation to o.. Furthermore we can solve systems of the form a*x = b effi-
ciently by inverting each of the small matrices lying along the diagonal individually.

Since we do not need to provide the matrix o but only three functions, the conjugate gradi-
ent method frees us to use any efficient form of storage for o. Many elements of this

page 89

. . shape
| motion variables | variables

frame 1 B Entries computed by

. 5 summing many error terms

rame

frame 3 Entries computed from
a single error term
Zero-valued entries

frame F

pointT |

point 2

point 3 .

point P. .-

Figure 25. Hessian matrix for projective shape from motion recovery
The diagonal blocks are 11x11 for the motion variables and 3x3 for the shape
variables. The actual shape of the shaded area is determined by the fill pat-
tern of feature observability for the particular sequence.

(11F +3P) x (11F + 3P) matrix are zero, so we reduce storage requirements by using a
sparse matrix representation that stores only potentially non-zero elements of the matrix.
Our representation stores each column independently as a sequence of non-zero strips of
elements. This representation enables the product of a” with a vector to be computed very
efficiently. The product of o with a vector is computed using the same method, since ¢ is
symmetric. We could have further halved the storage requirements for a by taking advan-
tage of its symmetry, but that would have increased the complexity and computation
required to multiply the matrix by a vector. ’

Using the conjugate gradient method to solve the system a:6a = B has an additional benefit,
which is that a solution is provided even when o is not of full rank. This frees us from hav-
ing to arbitrarily fix certain parameters to bring the system to a minimal parameterization,
such as fixing the first frame’s motion or choosing four points as a projective basis whose
positions will remain fixed.

The expressions for computing o and B in equations (103) and (104) still require the com-
putation of the derivatives of the predicted position P (f, p) with respect to each variable a,,
where each a, corresponds to either a single shape variable s i Ora motion variable m i
First, we define

P (105)

page 90

The derivatives with respect to each of the shape and motion variables are then given by

"1~ "
2
0 F4
a—Pp(ﬁ p) = fr (106)
spi M2, —Ma Y
2i%fp TRV
)
fp
Spixfp
s 0 = Jp
0 _ P J _ b _ Z]Zp
_amﬂ,-P”(ﬁ p) = z5, —amﬁl_Pp(f, p) = Spi am—ﬂiPp(ﬁ p) = s (107)
0 Zp P¥ fp
2
L % |

Our solution should be restricted so that zfp>0 for all observed f and p. This merely
requires than all 3D points lie in front of the camera when they are imaged. Hopefulily, as
long as the z o computed using the initial value are all positive, we should never encounter a
negative z o since as we approach this region of the search space z o approaches zero,
which causes the error to go to infinity. However, occasionally the solution takes a large
“step” in which 1is crosses over a 20, = 0 boundary and reaches a part of the search space
where a z ” is negative. These steps should be rejected regardless of whether the total error
e at those points is larger or smaller than the previous position, because they clearly indicate
that too large a step was taken, that the current region of the search space is not well mod-
eled by a quadratic, and that we should try smaller steps. Rejecting them causes A to
increase so that the method will take smaller steps towards the minimum.

4.1.3. Depth-shape Formulation

The above formulation represents each feature point by three variables, the feature point’s
coordinates in the world coordinate system. However, in a sense a feature is defined by the
position at which it was detected in the first image. Therefore a feature’s position in the first
frame is not corrupted by noise, because its position in the first frame defines the feature.
Therefore we can reduce the number of unknowns per feature point by one-third by defining
each feature by a single unknown, the depth of the feature in the first frame, like the stan-
dard formulation of the stereo problem. Changing this distance variable will cause the
point’s predicted position in subsequent images to change accordingly, but its position in the
first image will always remain fixed to the position at which it was originally detected. This
formulation not only ensures that the features do not drift from their originally defined posi-
tions, but significantly reduces the size of the matrix o, thereby speeding the computation.
This constraint is illustrated in Figure 26.

As long as all features are visible in the first frame of the sequence, this change requires only

page 91

Figure 26. Shape-depth formulation
Given a point’s position in the first frame, it is constrained to lie along the ray
connecting the camera focus in the first frame to the position of the point on
the image plane in the first frame and extending to the 3D point itself. This
reduces it to a single unknown, th e distance along that ray at which the
actual 3D point is located.

a minor change to the previously described method. The first and second elements of each
shape vector s, are no longer variables, but are replaced with functions of the third element,

Sp3 and the first frame’s motion variables. These functions are determined by solving the

“inverse projection” problem -- projecting the known position in the first image away from
the camera by the given depth. We solve the system

page 92

Mr 11551 ¥ 12592 My 135p3 ¥ Mg 14

m
Us p £315p1 T 132550 T Mg 335 p3 + My 34

Vv
fip

(108)
Mea15p1 T Mf225p2 ¥ 523553 F My oy

3151 T M 305p2 ¥ 3353 T M)

for s, and s, as functions of s, . Multiplying through by the denominator turns this into lin-
ear system of 2 equations in the two unknowns SH1 and Spa-

M3ty T M) M2k, T2)| |5 =_(mf133u1p_mf,13 Spat ’"f134“1p‘mf114_]

(73319 =123 3+ (a1, mf124)
(109)

"3 1p a1 |\ 32V 1p T 22)| [Sp2

This is easily solved to find Sp1s Spo and their derivatives aspl/ asp3 and aspz/ asp3. This
gives the derivative of the predicted feature position with respect to the single shape vari-
able per point, 5,338

0s 052] (ds ds J
pl p2 pl p2
m +m +m o — | Mpy=——+m +m X
(f“asp3 ﬂlas;3 f13 |fp ﬁlasp3 3295 ;" A3 i
2
S . P
p3 [asp 1 asp2] [asp ! asp2 J
My s——+Mpyys——+m 2y —| Mpis——F Mpo=——+ M, |y
ﬂlasp3 ﬂ2asp3 123 [°fp ﬁlasp3 ﬁzasp3 £33 o
2
L fr |

Since s)1 and S, are now varied such that the feature’s position in the first frame is fixed,
changing the first frame’s camera parameters will no longer have any effect on the total
error. Therefore we leave them fixed at their initial value rather than solving for them as
unknowns.

This single variable *“depth-shape” formulation can only be used when all of the feature
points are visible in the first image of the sequence. Since s, and s _, are in fact functions
not only of $p3> but also of the motion parameters in the first frame in which the point was
seen, if that frame’s motion parameters were variables and not constants, then we would
need to update the Hessian matrix to account for this. Error terms for the observation for
point p and f would not only depend on the shape variables for point p and the motion vari-
ables for frame f, but would also depend on the motion variables for some frame f*, the
frame in which point p was first seen. Although this could be easily accommodated within
the Levenberg-Marquardt minimization framework, it would alter the pattern of the Hessian
matrix. The upper-left block of the matrix would no longer be block diagonal, but would
contain smaller blocks scattered throughout the currently unfilled areas. This could destroy
its block-diagonal dominance and significantly increase the number of iterations of the gra-

page 93

dient descent method required to solve the large system. However, this increase might be
offset by the reduction of the number of variables from 6F + 3P to 6F + P. We have not
implemented a system capable of applying the depth-shape formulation to sequences in
which some of the points are not seen in the first image, so currently such sequences must be
solved using three variables per point.

4.1.4. Projective Normalization

It is well-known that a projective motion matrix M i defined by equation (99) can be written
as the product of two matrices: a matrix of intrinsic parameters representing the properties
of the camera which remain constant for all frames, and a matrix of motion parameters
which varies with each frame.

10 o, if X
My =10 la o, | ¥4 = K[Rf l tj (111)
001 kf Z

Here K is the intrinsic camera parameter matrix, R . collects i P P and k . into a 3 x 3 rota-
tion matrix, and t 2 collects the x,, y,, and Zf terms. The intrinsic camera parameter matrix
includes the focal length /, the aspect ratio a, and the center of projection (0,,0,) .

Unfortunately, the recovered projective shape and motion are unknown up to an arbitrary
4 x 4 matrix. That is, we have solved for the Mf. and § which minimize the error between
the observed and predicted image positions, but in fact we could multiply all of the motion
matrices by an arbitrary 4 x4 matrix A and multiply the projective shape vectors by A~!
and the resulting predicted feature points and total error ¢ would be exactly the same. Fur-
thermore we can scale each of the projective motion matrices and each of the shape vectors
independently by arbitrary scaling factors without changing the resulting point positions or
total error. Because of this unknown 4 x 4 matrix and unknown scaling factors, the recov-
ered projective motion matrices Mf are not likely to be expressible in the form shown in
equation (111), which requires that the first three columns of all of the projective motion
matrices be simple rotations of a single, constant matrix K. In order to find the actual
Euclidean shape and motion, we must first find the 4 x4 matrix A which rotates each Mf
into a matrix of that form.

M, =M
f lfA (112)
sp':’A sp

where = indicates equivalence up to a scaling factor. Just as with the previous factoriza-

tion methods, we find A by applying constraints to the form of the motion matrices based on
the orthonormality of the camera axes i s j > and k ¢ in each frame.

Introducing an unknown scale factor df for each frame, we can rewrite the = relation

page 94

using equality.

M= K[R, |t] = [kR,| Kt] = d it (113)
Since M, contains twelve elements, equation (113) gives twelve equations for each frame.
The first three columns of M, can be constrained to be the product of an intrinsic camera
matrix K, constant for all frames, and a rotation matrix. However, the translation component

of the motion for each frame is arbitrary, so equating the fourth columns provides no con-
straints on A . Therefore we use only the first three columns to provide constraints.

KR, = (de?IfAJI = d 1 (114)

columns 1-3

where

A=A (115)

|columns 1-3

Multiplying each side of equation (114) by its transpose, and taking advantage of the fact
that the transpose of a rotation matrix is also its inverse, we derive

R
Re = dX-'M1A
= ~147 .4 -1614 |T
RRI = dK MfA(de MfA) (116)
_ - ~ A\AT - I T
I= d}K 1MfAA (K le)

Here we assume that the camera calibration matrix K is known, and we introduce the cali-
brated projective motion matrix i = K-!#;. Introducing @ = AAT, we see that

1
— 0 0
2
df
OIO-MMT 117
d_f2 =MOM; 117
1
0 0 —
2
L 9

Since we do not know the scale factors d e the diagonal elements can only be constrained to
have equal magnitudes. Furthermore the product # (Qif] is guaranteed to be symmetric, so
the lower triangular elements provide redundant constraints. Therefore there are six con-
straints on Q per frame.

page 95

(Mf), = (M 081]) 4,

(MfQMf'T)zz = (MfQMfT)%
(MM 55 = (SO0

(rQirf) 1, = 0 o
fl12

(M‘fQMfT) 3=0
(MJQMJ’T)B 0

Of course, the third constraint is actually redundant since it follows by transitivity of the first
two. However, choosing only the first two constraints would make the solution of the system
more sensitive to errors in (A, Q#;T),, than to the other terms. So in the interests of
robustness and not favoring any one term over another, we retain the redundant constraint.
These constraints are linear in the 10 unique elements of the 4 x4 symmetric matrix Q, so
they can be solved efficiently. They are homogeneous constraints, to we add the arbitrary
constraint that

(Jt‘foMfT)11 =1 (119)
to avoid the solution @ = 0.

The Q matrix is decomposed to determine A in a manner very similar to that of section
2.2.3. Since @ is the product of a 3 x4 matrix A and its transpose, we expect that Q will
have one zero eigenvalue. Indeed, when we use Jacobi Transformation to-compute the
eigenvalue decomposition Q = LALT we generally find that the last eigenvalue in the diag-
onal matrix A is much smaller than the others. The first three columns of LA!/2 become our
answer for A, the first three columns of A .

There are no constraints with which to determine the fourth column of A, which effects the
translational component of the motion result in each frame. This portion of the transforma-
tion is indeed arbitrary, because up to this point we have not done anything to fix the world
origin. We choose the fourth column to be [0 0 1:| T and later, after the conversion to a
Euclidean solution is complete, we will transform the camera translation and object shape
results to affix the origin to the object’s mass center, for consistency with previous formula-
tions.

Once the 4 x 4 matrix A has been computed, the camera motion for each frame and position
of each point are determined by equation (112). After multiplication by A~!, the fourth ele-
ment of s may no longer equal one. However, we know that each shape vector can be mul-
tiplied by a scalar multiple without changing the results, so we scale each shape vector so
that the fourth element is 1, to achieve a shape vector consistent with the Euclidean formula-
tion of equation (96). The first three elements of each resulting vector are the Euclidean
point positions.

page 96

Since each motion matrix M, is still defined only up to a scaling factor, each is scaled so that
|i f| = lj A = |kfi = 1. The first three columns of the resulting matrices contain the Euclidean
orientation of the camera in each frame, while the last column contains the position of the
camera in every frame. As with the previous factorization methods, the resulting i s j > and
k are not guaranteed to be orthonormal, so we compute the orthonormal vectors closest to
those given values.

4.1.5. Projective Normalization for Distant Objects

The above-described method works quite well for objects which are near the camera. How-
ever, in image sequences in which the object is very distant from the camera and foreshort-
ening effects are small, it performs poorly. Due to the large distance z¢, the magnitudes of
the actual Euclidean Meyy> Mps and Mgy, are very small compared to the magnitude of
Mpy- In computing the projective shape and motion, large errors in these quantities have
only a minimal impact on the error sum €. In short, the relative errors in these quantities are
much larger than the errors in the distance m 34 OF in the other rows of M. Yet in the projec-
tive metric constraints (118), the constraints using these elements are weighed equally with
other constraints. We therefore introduce a weighting factor ¢ which specifies the weights
to use for the constraints in (118) involving the third row of M - The version of equation
(118) for distant objects becomes

(M1 Q8f) |\ = (BQMf)
(#1081]) yy0 = (M, QM f) 30
(MQM]) 30 = (MQI]) | 0
(MfQMfT) 2=0 =
(M QM) 30 = 0
(M QM) 50 =0

The weighting factor ¢ needs to be adjusted depending on the distance of the object from
the camera for the particular problem. If the actual shape and motion were known rather
than just a projective transformation of the shape and motion, we could estimate ¢ based on
the amount of foreshortening present in the images. The term in denominator of the projec-
tion function Pp(f, p) is the sum M8, +mf323p2_+ 33853 +mf34_' The su.m of the first
three terms of this summation varies with each point, while the third term is constant for
each frame. If the sum of the first three terms is small relative to the fourth term m 345 then
there is very little foreshortening in the scene. In fact, the projection may be accurately mod-
eled by scaled orthographic projection, and we have little confidence in m 31> Mo and
Mas and should use a small value of ¢. If the sum of the first three terms is large relative to
m, , then foreshortening effects are significant and we should use a large value of 6. In
fact, the average ratio of |m 3151 + My3pSpo + 1M f33sp3| to mq, should provide an excellent
estimate of . We compute 6 as

page 97

IIM&,

P
Z |mf31spl +Mp3pSpn + Mess
[=1p=1

G = (121)

F P

2 2 M
f=1p=1
The problem is that the above reasoning assumes a Euclidean interpretation of the motion
matrix, that is, that m 34 TEpresents “depth” and s represents the Euclidean object shape. If
these are projective values, then the shape contains an arbitrary projective deformation, so
the ratio will describe a total amount of foreshortening necessary to remove the object’s
arbitrary foreshortening deformation before applying additional foreshortening to project
the shape into the particular frame. Therefore we need to convert the projective solution to a
Euclidean one in order to estimate ¢, yet without ¢ we cannot convert the projective solu-
tion into a Euclidean one!

The method of the previous section performs too poorly for distant objects to consider using
it to estimate ¢, so another way is necessary. The key to our procedure is to realize that
when the object is distant, its Euclidean motion matrix will be well-approximated by a
scaled orthographic projection matrix. A scaled orthographic matrix will have zero-valued
Meys Mg s and m 330 since that will cause the denominator of the perspective projection
function Pp(f, p) to be constant for each frame f, independent of the point p. Such a matrix
still has the same form as shown in equation (113), except that the lowest row of the rotation
matrix is replaced with zeros.

We first find a transformation @~ which best transforms the projective motion matrices into
motion matrices with a scaled orthographic form. Repeating the derivation of the previous
section with the new definition of R produces the following constraints.

(M‘IQSOMJ‘TJII = LM‘stoM‘fT)ZZ
(M'stoM‘f 12 = 0

A A T _

(stoMf)13 =0 (122)
~ A T _

(MstoMf)23 =0
¥y T =

(M‘stoM'f)33 =0

We use these constraints to compute Q_ and then compute A, from Q_ in the same man-
ner as described in the previous section. This matrix is the matrix which best transforms the
projective motion into a projective motion matrix having scaled orthographic form. This
transformation will only be satisfied perfectly if the object is indeed very distant and fore-
shortening effects are negligible, yet in any case, the transformation provides us with an
estimate of the actual shape and motion by multiplying Mf by A,, and As‘o1 by S‘p. We use
this shape and motion solution to estimate o from equation (121).

page 98

Once ¢ has been computed, we find Q using equation (120), and compute A from Q
exactly as before. To avoid reliance on possibly noisy entries in the denominator of M > We
scale the resulting motion matrices so that Ii fi = lj f{ = 1, and compute kf =i X j -

Finally note that when the depth is so extreme that foreshortening effects are completely
overcome by noise, using @ may provide a better solution than using the Q computed
using equation (120). However, in such cases using the scaled orthographic or paraperspec-
tive factorization method can be expected to produce better results. Using @ will enforce
the scaled orthographic nature of the projection to remove affine or projective deformations
from the projective shape, but small errors in Q_ will still cause small affine or projective
deformations to remain. The previous factorization methods do not allow projective defor-
mations to enter the solution during decomposition, so no projective deformations will exist
in the result.

4.2. Non-Linear Euclidean Optimization for Shape and Motion Recovery

The projective shape and motion recovery step of the projective factorization actually uses a
higher number of variables than there are degrees of freedom in the original problem.
Eleven motion parameters per frame are used, when in fact each camera position has only
three rotational and three translational degrees of freedom. In the presence of noise, there is
no guarantee that the computed projective motion can be transformed by any 4 x 4 matrix
into a motion of the correct Euclidean form, in which the camera axes are orthonormal and
the camera calibration parameters constant from frame to frame. In essence, we merely
cross our fingers and hope that we can transform the recovered motion into something close
to Euclidean form. If we can transform it into something “close” to the right form, we hope
that the computed camera orientations and translations will be “close” to the correct answer.
When the feature measurements are very noisy, this may not be true. Even when feature
measurements are fairly accurate, more accurate shape and motion results can be expected if
we impose all of the constraints the problem has to offer.

In this section we introduce a method which ensures that the solution is of a valid Euclidean
form with orthonormal camera axes and time-invariant calibration parameters throughout
the minimization rather than imposing these constraints as a post-processing step. Applying
these constraints should ensure more accurate shape and motion reconstruction. Further-
more, this method allows us to treat the camera parameters as additional variables to solve
for, reducing the burden of camera calibration.

The problem is actually not so different from the projective factorization step. We still use
Levenberg-Marquardt optimization to find the shape and motion which minimize the error
sum defined in equation (100), and still use the perspective projection equations defined in
(97). However, we now minimize the errors in the perspective projection equations using
the Euclidean shape, motion, and camera parameters directly as the variables to be refined,
rather than using the projective motion variables m i We write the rotation in terms of the

page 99

three rotation angles Bf, ¢.,.and o, introduced in equations (74), so that each frame’s i, j £
and k - vectors are guaranteed to be orthonormal.

if cosefcosq)f sinefcostpf —sin(pf
Rf= jf = (cosefsin(pfsinmf—sinefcosmf) (sinefsin(pfsinwf+ cosefcoscof) cos<pfsin0}’)
k. (cosefsin(pfcosmf+ sinefsin(of) (sinefsin(pfcosmf— costsina)f) cosQcosw,

We order our variables in a manner similar to that of the projective factorization. The three
rotational variables for each frame (6 s O and w.) are followed by the three translational
variables (xf, Yps and zf), for a total of six variables per frame. Following that are the three
shape variables per point, representing the Euclidean three-dimensional position of each
point. Finally, we add the four camera variables; the focal length, the aspect ratio, and the
image center x- and y- coordinates. These variables are solved for simultaneously with the
recovery of shape and motion. The reasoning that produced equations (103) and (104) in the
projective case still holds in the Euclidean case, giving the Hessian matrix the form shown
in Figure 27.

. . shape JF camera variables
| motion variables | variables

B Entries computed by

frame 1 -
summing many error terms

frame 2
Entries computed from

frame 3 .
' a single error term

... Zero-valued entries

frame F

point T
point 2
point 3

point P

Figure 27. Hessian matrix for Euclidean shape from motion recovery.
The diagonal blocks are 6x6 for the motion variables and 3x3 for the shape
variables, while there are 4 camera variables.

Our experience shows that the focal length [trades off very easily with the depth to the
object z,. which makes their precise recovery difficult and slows the rate of the system’s
convergence. Since the scaling factor of M ¢ is arbitrary, we divide it by / and introduce a

page 100

perspective distortion factor p .= 1/{ and a relative depth factor df = /1. Solving for
these variables is more numerically stable than solving for / and 2 In cases in which the
object is far from the camera and foreshortening effects are overcome by noise, the best
solution may be one with infinite focal length, i.e. a scaled orthographic solution. Using the
p and d e formulation allows a graceful change to scaled orthography by letting u approach
zero, while a method explicitly representing the focal length would need the focal length to
approach infinity in order to model scaled orthography. The motion matrix is defined in
terms of these parameters as

if1 +oxukﬂ iﬂ+oxukf2 iﬂ+0x“‘kf3 Xpt oxdf
Mf = ajf1 +0y|.l,kf1 ajﬂ+0y}1kf2 ajf._,’+0y].1kf3 ayf+oyd (124)
ukﬂ ukﬂ pkﬂ df

Even with this formulation, experience shows that precise recovery of camera parameters is
difficult unless the initial values are accurate. When reliable initial estimates of the camera
calibration parameters are unavailable, it may be preferable to use the projective shape
recovery method to recover the projective shape and motion, and then use other information
such as the known positions of a few “beacon” points or the knowledge that several points
lie on a plane, to convert the solution into a Euclidean one.

We proceed with the Levenberg-Marquardt solution in the same manner as in the previous
chapter, using equations (103) and (104) to compute o and [at each step of the minimiza-
tion. The derivative of the projection function with respect to the shape variables is the same
as for the projective method, given in (106). The equations for the derivatives of the projec-
tion function with respect to the variables, however, are defined differently, because M A is
defined as a function of the rotational and translational motion variables as well as the
intrinsic camera parameters. Still using the expressions x o Voo and 24, defined for simplic-
ity in equation (105), these derivatives are

od Z
forv = 8, ¢, or w, —P (f,p) = fr (125)

ov P 3 ok
Z —f-s _y —f-s
folov P Plov P

page 101

—xfp-‘
1 0 3
2p =z 2P fp) = aP(f)— . 126
ox, pV'P fo Sy PSP = a 3d; n= (126)
f 0 f z Yt
fr —=
)
L/]
aRf aRf oR R,
Analytic expressions for the derivatives —= , and —= are computed as functions of 0,
89 a 0w,
@, and @, from equation (123). f

The derivatives of the projection function with respect to the camera calibration variables
are

_xfp(rﬁ sp)
22 p) 0
P (f,p) = fp =—P (ip) = |rn's +Y
aB 14 _yfp(rﬂ sp) aa p(fp M_{
— %fp (127)
L fp

d 1
a—oxPp(f, p) = u ao P (fp) = H

In the Euclidean case, no normalization or post-processing is necessary once convergence is
achieved. The final rotation, translation, and shape variables values are the answer, with the
exception of scaling the normalized depth values d ” by the final focal length p to compute
that actual depth translation z ”

4.3. Shape and Motion Recovery under Radial Projection

Telephoto lenses used for viewing distant scenes are generally very well modeled by the
pinhole camera model used in the standard perspective projection formulation. However,
when viewing scenes much closer to the camera, generally lenses with much shorter focal
lengths and wider fields of view are used. These lenses generally display lens distortion
effects not modeled by the pinhole camera model. The most visible of these unmodeled
effects is radial distortion. Radial distortion is caused by the variance in the thickness of the
camera lens at the center and the thickness near its edge, which causes points far from the
image center to be magnified less than points near the image center. This difference in mag-
nification causes points to be moved towards the center, along the direction of a radius of a
circle centered at the image center. Straight lines in the world can be transformed into curves
in the image. These effects are illustrated in Figure 28. They are also evidenced in the real
images shown in Figure 19, by the curves in the edges of the doorway and refrigerator near
the outer portions of the kitchen sequence.

In this section we introduce a model of radial distortion which differs slightly from the pro-

. s |
|
L B o ||
frame 1 frame 30 frame 60
-'.\ !
[- 3 "
| . | - N | -
- ot |
| |
frame 1 frame 30 frame 60

Figure 28. Illustration of Radial Distortion
This figure shows two noise-free versions of the first synthetic sequence
shown in Figure 8. The point positions computed using simple perspective
projection are shown in gray, while the point positions after radial distortion
are shown in black. The upper sequence uses a moderate radial distortion
parameter of x = 0.3, while the lower sequence uses x = 1, simulating the
magnitude of radial distortion that might be expected with a very wide-angle,
fish-eye lens. Notice the curves added to straight lines, and that the line con-
necting any undistorted point to its distorted point points to the image center.

jection model used by photogrammetrists and camera calibration researchers, and first show
that our model and the standard model are nearly equivalent. We then show how our shape
and motion reconstruction formulation can be extended to account for radial distortion by
adding a fifth camera parameter which determines the magnitude of the radial distortion in
the image.

4.3.1. Standard “2D”’ Radial Distortion Model

Many camera calibration techniques are based on a radial camera model [41]{44][46]. This
camera model relates the perspectively projected but non-radially-distorted position of a

page 103
point (X, Y,) to the distorted position (X , Y ,) by the equations [41]

X, = Xd[“1+1c1p7+1c2p4+...

(128)

Y

u

Yd[1+x,p2 +x,p% +

Here the radial distance p? = Xﬁ + Yg- and the x; are the radial distortion coefficients. Tsai
reported that using a single-term radial projection model is generally sufficient for machine
vision applications [44]. Note that the radial distance p, which determines the amount that a
particular point is radially distorted, depends on the final distorted position in the image. In
calibration applications, the position of a point in the image is generally known, and the
model is used to determine the undistorted position of the point. However, in order to deter-
mine a projection function P, (f, p) which can predict the final distorted position of a point
from the motion data for frame f and the shape data for frame p, we must solve the two
third order polynomials

X

2 2
u Xd[1+K1Xd+1cle
p (129)

Y

u

(2 2
YdL1+K1Xd+K1Yd

for X, and Y, as functions of the undistorted position determined by perspective projection

(X, Y P where X, = P (f p,Y, = P (f p), and unit camera calibration parameters are
used in the perspectlve pIOJGCtlon These equations have exactly one real solution, given by
equation (130), which is derived by reducing (129) to a single third degree polynomial in ¥,
orX,.

1/3 1/3 -1/3
(‘-’) (1+ 1+ 4) ﬁd2/3(1+4—d) d defined

e = 2 27 3 27
1 d undefined
1 (130)
where d = 5 3
xli Xu + Yu |
Yd = Yue
Xd = Xue

Accounting for other camera and digitization parameters, the projection function becomes

P,n (D) IX +ox
2D
Py =| =74 (131)
Pr2Dy(f’ D) laY,+ oy

Although the model has proven quite adequate for photogrammetry and camera calibration
problems, we can see that the above formulation suffers from several significant drawbacks
when used in 3D vision scenarios where the forward projection must be computed. The

page 104

expressions are ill-formed when either the radial distortion parameter x, or the distance
from the image center Xz + Y& are zero. In these cases e approaches unity, but in practical
terms it must be computed as the difference of two large numbers, making it sensitive to
truncation and roundoff errors. We expect that in many cases the radial distortion parameter
will be very small, since many image sequences contain little or no radial distortion, and
some feature points are likely to be located near the center of the image, so this will cause
significant numerical problems. Additionally, computation of the distorted position is very
complicated, and the expressions for the derivative of the projection function with respect to
the motion and shape variables, required for Levenberg-Marquardt minimization, would be
hideous.

4.3.2. “3D” Radial Distortion Model

The numerical and computational shortcomings of the standard “2D” model when applied to
three-dimensional problems forced us to use a slightly different model, which we will show
to be very similar to the standard model but has simpler mathematics for our purposes.
Instead of basing the amount of distortion on the distorted image position of a point, we base
it on its undistorted image position, which is far more easily calculated from the shape and
motion variables.

= 2 2 = 2 2
X, = XdLI +K1Xu+K1Yu) Y, = YdLI +K1Xu+K1Yu) (132)
The distorted image position of a point is

- -

P, .p)
"2 RS
|PEp| |1 P, G P, ()2
Gy =]] = * , (133)
P, ¢ p) laP, (f, P)
= +0
L L+x,P, (02 +%,P, p)2) ¢

Since the camera calibration parameters are applied after the radial distortion, unit camera
calibration parameters should be used in the perspective projection. However, to prevent the
focal length and depth from trading off against each other, we use p = 1/1/ and de = z/1 as
in the perspective case, and the radial distortion parameter x, similarly becomes scaled by

2.

Unlike the previous formulation, the forward projection equations for our radial distortion
model are perfectly well-behaved when k, approaches zero as well as when the point is
located near the image center. Furthermore, the expression is far simpler, and its evaluation
requires only multiplication, addition, and division.

We can now solve for shape and motion under a radial distortion model using the same for-
mulation used in the previous sections. The derivative of the projection function with

page 105
respect to any shape and.motion variable v is computed by applying the chain rule to the

derivative of the perspective projection function.

8X aY
(I—KX +1cY)a ZKIYuXua

) =
au PP L1+K1X2+K Y2J
u 17 u
- (134)
oY, oxX,
(1 +K1X -x, Y)8 -2x XuYua
81) P hp)=a (1+KX2+KY2J
17 17u
oX, aY
Here for simplicity we’ve used X, = P (f p)and ¥, P (f, p), so the — 35 and %“ are the
expressions given for perspectlve prOJectlon in equatlon (9%)
The derivatives with respect to the camera parameters are
ox,, ax,, X, ox, {2x2+2xy,)
3 ! Fralal - PRl 2 22
o, 9, a Ky [1+K1Xu+K1YuJ
’) (135)
2 2
do, do,, da L1+K1Xu +K1YuJ oK, (1 +K1X3+K1Y3J2

Note that either the Euclidean or projective formulation can be used for X, =P, (f p) and
Y, =P (f,p). Even when a projective formulation is used, camera cahbrat1on variables
must be used to account for the aspect ratio and i image center in addition to the radial distor-
tion parameter. These parameters effect the projection in a manner distinct from the projec-
tive motion variables, because they are applied after the radial projection part of the
projection. When using a projective formulation, the focal length variable is not used
because it would trade off directly with the scaling factors of the projective motion matrices
and the radial distortion parameter k,. When radial distortion effects are small, the aspect
ratio and image center will trade off frecly with other scaling and translation aspects of the
projective motion matrices.

It may seem unusual to use camera calibration parameters in addition to a projective formu-
lation since projective formulations are generally used specifically to avoid modeling cam-
era calibration parameters. However, as will be shown in the experimental section, a
formulation in terms of projective shape and motion variables has far better convergence
characteristics than a Euclidean formulation. Therefore using a projective formulation of
perspective projection followed by a radial distortion step allows our method to model
radial distortion and retain the beneficial convergence characteristics of the projective for-
mulation.

Note that the value of x used in equation (133) alone does not give any indication of the

page 106

overall magnitude of radial distortion likely to be seen in an image produced by the lens
unless the camera’s field of view is also known. For example, if a 2 unit wide object is 10
units from the camera and it completely fills the field of view of the lens, then a value of
Kk = 1 will cause a point at the center of the left edge of the image to move ~1% closer to
the image center. The value of P, at the left edge of the image will be 0.1, so the distortion
factor 1/ gil +K Pﬁx + Pg' will'be 1/1.01 or about 1%. However, if a 2 unit wide object
only half fills the field of Viéw, then points at the left edge of the image will have pr = 0.2,
so the point’s position will deform by 1/1.04 or about 4%. The second lens will produce
images with substantially more radial distortion, yet both of them have x = 1. Therefore
whenever we refer to a radial distortion parameter value we will give the value for the nor-
malized radial distortion parameter, which is just k times the square of the field of view in
pixels. Using this definition, the amount of radial distortion visible in an image can be char-
acterized by a single number. So for example, for any lens with a normalized radial distor-
tion parameter value x = 1, the center point of the left edge will be distorted by
1/(1+1(0.5)%) = 0.8 or areduction of 20%.

4.3.3. Depth-shape Formulation

3D radial projection is modeled by much simpler forward projection equations than 2D
radial projection. However, in order to apply the shape-depth formulation to this projection
model, the inverse projection model needs to be solved. That is, given a point’s image posi-
tion in the first image, its depth, the estimated motion in the first image, and calibration
parameters, we need to be able to compute its three-dimensional position, in order to predict
where the point will appear in the other images.

Solving the inverse projection problem for our 3D radial projection model is very similar to
solving the forward projection problem for the 2D radial projection model. We solve the
radial projection equations for (X, ¥,), given (X, ¥,) and the camera calibration parame-
ters. We can then solve for Sp1 and s 027 the x- and y-components of the shape vectors, from
(X, Y,) using the Euclidean or projective equations.

Y, -0)2 1-.1-4d
d =
d = Kl((Xd—ox)2+(Tz)) €= 2 470

1 d=0
Y, -0
_|Zd "y
u (a)e

Y
X (X;,—0)e

u

(136)

In the case of points near the center of the image or of zero radial distortion, this expression
involves the ratio of two numbers whose values go to zero, but this is far more numerically
stable than the difference of two numbers approaching infinity. Furthermore these equations
are only used for fixed, measured values of X, and ¥, (the measured positions of points in
the first frame), so we never need to compute derivatives of these expressions.

page 107
4.3.4. Comparison of 3D.and 2D Radial Distortion Models

Figure 29 is a plot of the number of pixels by which a feature point is distorted from its pro-
jectively projected position for a typical radial distortion parameter. The distortion parame-
ters were chosen so points at the edge of a 512x 512 image would be distorted by
approximately 30 pixels, which is a rather high level of radial distortion. At this distortion
level, the two radial distortion models differ by only a few pixels. The bottom curve shows
that the two models can be brought into even closer alignment by adjusting the radial distor-
tion constant used in the 3D radial distortion model. This shows that the 3D radial distortion
model closely approximates the standard model.

30.0
_ Rt 3D Radial, k = 0.131
B *-==-- 3D Radial, k = 0.118
2
&
.g 20.0
i3]
[}
Q.
14
2 L
o
£
e
_'é 100
€
o
@
D -

0.0 /5= 100.0 . I 100

. 200.0 3
Distance from Image Center (pixels)

Figure 29. Comparison of distortion models.

4.4. Performance Analysis and Discussion

4.4.1. Analysis of Projective and Euclidean techniques

We performed extensive testing using synthetically-generated data to quantitatively analyze
the performance of these non-linear methods as functions of the camera motion and noise
level. The methodology of the synthetic data generation and error measurement is the same
as that of section 2.5. Using synthetic data, we were able to observe the methods’ perfor-
mances at a variety of distances and noise levels.

The initial motion used for all of these experiments consisted of assigning each frame the
same camera orientation and position, i.e. assuming no camera motion at all. The initial

page 108

object shape consisted of placing each feature point on a plane located far from the camera,
with its position on that plane given by the position of the point in the first image.

4.4.1.1. Euclidean Optimization versus Projective Factorization

Figure 30 compares the total sum of squares error € between (u o Vi) and P (f, p) for the
Euclidean optimization method and the projective factorization methods. When the object is
far from the camera, both methods are able to minimize the error correctly, without becom-
ing trapped in local minima. However, when the object is near the camera, the Euclidean
method often converges to an incorrect result.

The actual shape and motion errors of the Euclidean method are shown in Figure 31. For
these experiments, the camera parameters were kept fixed at the actual values used to gener-
ate the synthetic data. When the method succeeds, the errors are lower than for the factoriza-
tion method and virtually invariant to object depth. However, when the object is very close
to the camera, the method fails to converge to the proper minimum. Qualitative analysis of
the results in these cases demonstrated that the recovered object generally displayed notice-
able projective deformations and huge scaling of the shape in the depth axis.

This behavior can be understood by considering the initial value we have chosen. The object
is initialized as being very far away, so that perspective effects are minimal. The most rapid
way for the method to decrease the total sum of squares error is to deform the object shape
by some projective transformation so that it matches the observations more closely. The
method hypothesizes that the part of the object that looks larger actually is larger, rather than
hypothesizing that that part of the object is closer to the camera. This causes a substantial
reduction in the total sum of squares error, but it unfortunately leads the solution towards a
highly distorted shape rather than the correct shape. The Euclidean optimization method
evidently becomes “trapped” in a local minimum, stuck with an elongated and projectively
deformed shape, such that any change to the motion or object shape increases the error
rather than decreases it. It cannot recover to reach the true minimum.

The projective factorization method in fact exhibits strikingly similar behavior; the shape is
initially improved by producing a shape with projective deformations which is highly elon-
gated in the depth direction. However, this is not such a problem for the projective method,
because the final answer is allowed to contain an arbitrary projective deformation, which
includes arbitrary scaling of axes. The method does not need to remove the projective defor-
mations and asymmetric scaling factors that were introduced to decrease the error as quickly
as possible in the early iterations, it merely has to fine-tune the other parameters to obtain a
consistent solution.

This suggests that if the initial value is closer to the correct solution, so that large scaling
factors and projective deformations do not have to be introduced into the shape to achieve
rapid error reduction, the Euclidean optimization method may perform better. We investi-
gated positioning the “flat” initial shape much closer to the camera so that the initial sce-

Decomposition Error

Decomposition Error

1.80 -
|
1.60 -l

1.40 T
|

1.00
0.80
0.60

0.40

1.20

0.20

0.00

Noise sigma=4 pixels
Noise sigma=3 pixels
Noise sigma=2 pixels
Noise sigma=1 pixels
Noise sigma=0.5 pixels
Noise sigma=0 pixels

1.80

1.60 |-

1.40

1.20 -

1.00 |-

0.80 |-

0.60 |-

0.40 |-

0.20 -

0.00

50 60
. Depth in 1st Frame
Euclidean method

———— —— — T

[—
30 40 50 60
Depth in 1st Frame

Euclidean, depth-shape method

Decomposition Error x 10e-3

Decomposition Error x 10e-3

page 109
1800.00 ~

1600.00

1400.00

1200.00

1000.00

800.00

600.00

400.00

200.00 |-

0.00 :
0 20 30 40

L. .. Depth in 1st Frame
Projective factorization method

1800.00 -

1600.00

1400.00

1200.00

1000.00

800.00

600.00 |-

400.00 +

200.00 p—

60
Depth in 1st Frame

0.00

Projective, depth-shape factorization method

Figure 30. Total sum-of-squares error ¢

o]
1)

[1)=]
o
—
—
<o

Shape Error x 10e-3

X and Y Offset Error x 10e-3

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

1

Noise sigma=4 pixels
Noise sigma=3 pixels
Noise sigma=2 pixels
Noise sigma=1 pixels
Noise sigma=0.5 pixels
Noise sigma=0 pixels

T

| E———

0 10 20 30 40 50 60

Depth in 1st Frame

0.00
0

¢ mm . — o = w = c

e ottt —

30 40 50 60
Depth in 1st Frame

Rotation Error x 10e-3

Z Offset Error x 10e-3

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0 10 20 30 40 50 6C
Depth in 1st Frame
0 10 20 30 40 50 60

Depth in 1st Frame

Figure 31. Shape and Motion Recovery Error for Euclidean Method

page 111

nario more closely matched the actual scenario. In fact, we supplied the exact distance from
the camera to the object in the first frame, and positioned the “flat” object at this correct
depth. This approach failed for slightly different reasons. When the object is very close to
the camera, relatively small changes to shape or motion parameters can cause a feature point
to move behind the camera, which causes the hypothesized shape to be rejected. When this
occurs repeatedly, the A parameter of the Levenberg-Marquardt minimization is increased,
and the method is forced to take only tiny steps towards the minimum. In our experiments,
using this “closer initialization” approach the minimization failed to converge to the correct
answer after 100 iterations. It appears that for close objects, the Euclidean method requires
even more accurate initial values than were provided here.

4.4.1.2. Analysis of Projective Normalization for Distant Objects

We show the errors in the shape and motion given by the projective factorization method
using three different types of normalization. Figure 32 shows the results using the projective
factorization method for o = 1, i.e. without using the weighting method described in sec-
tion 4.1.5. For this method, the results are good for very close objects, in which significant
foreshortening is observable. Unfortunately the accuracy decreases very rapidly as the dis-
tance to the object is increased. Since the sum of squares error in the decomposition step
remains independent of depth, this suggests that the problem is in the normalization step of
the method rather than in the projective decomposition.

Using the method described in section 4.1.5. to automatically estimate the weighting value
o to use for the constraints involving k. produces the results shown in Figure 33. While the
accuracy still degrades as a function of distance, it degrades much more gradually. Particu-
larly, for noise levels as high as 3 pixels it behaves well up to depths of 10 or more. While an
ideal method would recover shape and motion accurately in both near and distant scenarios,
this performance is satisfactory since above that range, paraperspective factorization or the
Euclidean optimization method work well.

4.4.1.3. Analysis of Depth-shape Formulation

Figure 34 shows the results of the projective factorization method using the shape-depth for-
mulation, whereby ¢ach unknown point is represented by a single variable, the depth of the
point in object-center coordinates. This method requires substantially less computation due
to the reduced number of variables. The performance is slightly worse at low noise levels
and low depths, but appears slightly better at high noise levels and high depths. Its worse
performance can be explained by the fact that it assumes the point positions in the first
frame to be perfectly correct, when in fact our simulations added noise to those values as

well.
4.4.1.4. Analysis of Radial Distortion Method

Figure 35 demonstrates the results of projective factorization applied to radially distorted

=]
1

ag
o
—
—
[\

Shape Error x 10e-3

X and Y Offset Error x 10e-3

20.00 - P
S
18.00 - =
- :
1600 ~ R , S
: =
do s
14.00 |- | : /' ‘g
12.00 | / i
1:
10.00 Hfk i
J#f /
8.00 i:: |
6.00 Hi | —— Noise sigma=4 pixels
;7 — — - Noise sigma=3 pixels
4.00 1:: | —-— Noise sigma=2 pixels
B I B Noise sigma=1 pixels
. — - — Noise sigma=0.5 pixels
2.00 l:' — Noise sigma=0 pixels
0.00 J 1 1 1 Il 1]
0 10 20 30 40 50 60
Depth in 1st Frame
5.00 g
I : E
: 53
l | ' ; / g
4.50 " I l ..' N ’_ﬂ
. 7 | S
4.00 4 | N
.'I. l
350 | /"
3.00 - J P
[;
2.50 HI , S/
[/
2000 § 0,
i
1.50 ﬂ,l .
E' ',-..' /
1.00 -1} i,
0.50 1 /
O_OO / - 1 1 i 1]
0 10 20 30 40 50 60

Depth in 1st Frame

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

/ ~.
" f h ™~
A
i 1 1 1 1 1 J
0 10 20 30 40 50 60
Depth in 1st Frame

1

30 40 50 60
Depth in 1st Frame

Figure 32. Projective Factorization Shape and Motion Recovery Error,

c=1

Shape Error x 10e-3

X and Y Offset Error x 10e-3

20.00 -

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

| .

INois[e sigma=4 pixels .
lNoi/se sigma=3 pixels
Noise sigma=2 pixels.’

-, Ndise sigma=1 pixels
| Noise sigma=0.5 pixels
Nbise sigma=0 pixéls

5.00
4.50
4.00
3.50

3.00

250 |

30 40 50 60
Depth in 1st Frame

1.50

1.00

0.50 |

2.00

0.00
0

30 40 50
Depth in 1st Frame

]
60

Rotation Error x 10e-3

Z Offset Error

40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00 -

OOO e ttu,n

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

page 113

30 40 50 60
Depth in 1st Frame

1 1 L 1 1

]
20 30 40 50 o0
Depth in 1st Frame

Figure 33. Projective Factorization Shape and Motion Recovery Error,
Variable ¢

o]
)

aq
[¢]
—_
—
S

Shape Error x 10e-3

X and Y Offset Error x 10e-3

20.00 / /
/ /
18.00 + / y;
/ ya
16.00 |- Noise sigrpa=4 pixels
Eoise sigma=3 pixels
| oiseAigma=2 pixels
400 . / Noise sigma=1 pixels
.- —1 Noige sigma=0.5 pixels
12.00 N(;ise sigma=0 pixels .-
10.00 - /
8.00 |- ./
/
6.00 |- ' P
v !
400F_ ~/
200 F,. ...
o —— - —— s e— — e mmmm ae m— e m—
0.00 L v L v ” .
0 10 20 30 40 50 60
Depth in 1st Frame
5.00 - ! '
| /
4.50 / /
I .
400 / /
! /
3.50 / /
~
3.00 |- | .
| /
2.50 ’ /
2.00 -\,J,’ /
A /
1.50 -\/ ! -
\ /
LOOFA___/
0.50 e
~—— e e
0.00 L v v . : !
0 10 20 30 40 50 60

Depth in 1st Frame

Rotation Error x 10e-3

Z Offset Error

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

0.08

0.07

0.06

0.05

0.04

0.03 -
0.02 -

0.01 //

0.00

1 L
30 40 50 6C
Depth in 1st Frame

1]
30 40 50 60
Depth in 1st Frame

Figure 34. Projective Shape and Motion Recovery Error
Variable ¢, Depth-shape Formulation

Decomposition Error x 10e-3

Rotation Error x 10e-3

200.00

—

180.00

T

160.00

140.00

T

120.00 -

100.00

T

80.00 |-

60.00

000 — T T

Shape Error x 10e-3

20.00
0

40.00

35.00

30.00 |-

25.00 -

20.00

Depth in 1st Frame

X and Y Offset Error x 10e-3

15.00 —/J

10.00 |-

5000k
N

0.00 L
0

Depth in 1st Frame

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

0.00

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

/
2.00 F

page 115

——— Noise=1, kappa=0
— = - Noise=1, kappa=0.01
—: — Noise=1, kappa=0.03
B B Noise=1, kgppa=0.1
-~ — Noise=1, kappa=0.3
N — Noise=1, kappa=1

L]

I SN J SN S S—S——— -

20 30 40 50 60
Depth in 1st Frame

i' |

0

1 1
20 30 40 50 60
Depth in 1st Frame

Figure 35. Non-radial Projective Factorization Method Applied to

Radially Distorted Images

page 116

images when such distortion is not explicitly modeled. Lenses with high radial distortion
causes a substantial increase in the errors of the recovered structure and motion. The reason
that the decomposition error increases with distance is not an accurate reflection of the
behavior of the decomposition method. Rather, it is a reflection of the fact that when an
object is very close to the camera, foreshortening effects push a larger portion of its 3D
points towards the center of the image, causing a net reduction in the overall magnitude of
radial distortion in the images. In real image sequences, however, we expect that an object’s
closeness to the camera will have no effect on the distribution of feature points in the image
and the total decomposition error will remain independent of depth regardless of the amount
of radial distortion present in the sequence.

Figure 36 shows the results the projective factorization method when radial distortion is
explicitly modeled as described in the previous section. The radial distortion parameter x is
given an initial value of zero, and is allowed to vary simultaneously with the projective
shape and motion parameters. The aspect ratio and image center were kept fixed at their
known correct values during this process. We first performed several iterations of the Lev-
enberg-Marquardt optimization holding x fixed at zero, and only when this optimization
seemed to converge was k allowed to vary. When all were allowed to vary from the outset,
often x would move to some large or negative value to try to achieve rapid reduction in the
error, but eventually led to a local minimum. Figure 36 show that the error in the shape and
motion recovery is virtually independent of x, indicating that we have successfully modeled
the radial distortion.

We performed these experiments for several noise values, although only the results for 1
pixel noise case are shown. When no noise was added to the images, the method dependably
produced the correct answer with zero error. With a noise level of 2 pixels, the errors were
still independent of the radial distortion parameter and resembled the graphs in which the
images were perspectively projected as shown in Figure 34,

4.4.1.5. Analysis of Occlusion Handling

Figure 37 shows the performance of the projective method when occlusions or missing data
are present in the image sequence. The fill pattern for a give fill fraction was created in the
manner described in 2.5.1. The behavior is very similar to that for the confidence weight
paraperspective factorization method. Initially solution accuracy decreases slowly as the fill
fraction decreases. However, as the fill fraction drops below 0.5 or 0.6, the errors increase
dramatically. Below these fill fractions, the solution generally is not even qualitatively cor-
rect, and the feature point positions predicted by the final solution are very far from the
observed position, indicating that the iterative method has apparently become stuck in a
local minimum.

Interestingly, the separate refinement method discussed in section 2.4 essentially amounts to
using only the block diagonal portion of the matrix. When the off-diagonal elements are
ignored, the method is unable to modify both shape and motion to pull various parts of the

Decomposition Error x 10e-3

Rotation Error x 10e-3

page 117

200.00 - o 20.00 -
=
>
«180.00 - 5 18.00 -
&
160.00 @ 1600 ——— Noise=1, kappa=0
= — — - Noise=1, kappa=0.01
“ 400k — Noise=1, kappa=0.03
14000 T e Noise=1, kappa=0.1
— -- — Noise=1, kappa=0.2
1200} ——— Noise=1, kappa=1
120.00 |-
10.00 |-
100.00 |
8.00 |-
80.00
6.00
60.00 |- 4.00 L
40.00 2.00 -
--—da_gr.#.E_:
20.00 i L 1 1 i | 0.00 1 L 1 1 1 J
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Depth in 1st Frame Depth in 1st Frame
o
40.00 P 5.00 i
» -
35.00 | 5 4.50 4
g 4.00 J
30.00 - £ |
S 350
-]
25.00 - 5 100 |
“
20.00 | 2.50 -I
15.00 2001
1.50 H
10.00 -I
1.00 —I
5.00 0.50 _H
OOO 1 1 1 1 1 J O'OO 1 i (] 1 1]
0 10 20 30 40 SO0 60 0 10 20 30 40 50 6C

Depth in 1st Frame

Depth in 1st Frame

Figure 36. Projective Factorization with Variable Radial Distortion

=
&

[9)2]
[¢]
—
p—
oC

Shape Error x 10e-3

X and Y Offset Error x 10e-3

20.00 - N
I Noise=4, depth=2
18.00 Noise=3, depth=2
— Noise=2, depth=2
------- Noise=1, depth=2
16.00 Noise=0.5, depth=2
Noise=0, depth=2
14.00 -
12.00 |-
10.00 |-
8.00 |-
6.00 |-
4.00 -
200 el
_____ S
0.00 1 1 1 : 1 i
0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Fill Fraction
5.00
4.50
4.00 -
3.50
3.00 |
2.50 +
2.00
1.50
1.00 |-
0.50 ¢
1 1 1] 1

0.00 .
0.30 0.40 0.

50 0.60 0.70 0.80 0.90 1.00

Fill Fraction

Rotation Error x 10e-3

Z Offset Error x 10e-3

40.00

35.00 |

30.00

25.00

20.00

15.00 -

10.00 |-

5.00

0.00
0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

Fill Fraction

Fill Fraction
Figure 37. Projective Shape and Motion Recovery with Occlusion

page 119

solution together. The full Eevenberg-Marquardt method can modify both shape and motion
simultaneously. Its use of a quadratic model of the error surface enables it to converge
quickly to the minimum after approaching the minimum by gradient descent.

4.4.1.6. Failure of Auto-Camera Calibration

As was shown in section 4.2, the non-linear Euclidean optimization method is theoretically
able to refine camera parameters simultaneously with the recovery of shape and motion. We
did not fully explore the usefulness of this technique after some initial experiments proved
disappointing. If camera calibration parameters were allowed to vary throughout the optimi-
zation, invariably even if given the correct calibration parameters as an initial value, the first
step of the optimization changed them drastically, often to absurd solutions such as aspect
ratios which differed from unity by orders of magnitude, negative focal lengths, and nega-
tive radial distortion parameters. These values were clearly incorrect, but since the errors in
the initial value overall were large because of our simplistic “flat-plate” initialization, such
absurd camera parameters could for the time being reduce the total error. Unfortunately such
camera parameters also often led the optimization method inescapably into local minima.

Our next approach was to keep the camera parameters constant until the shape and motion
had been substantially refined. When the initial camera parameters were very close to cor-
rect, the final refinement did produce the correct camera parameters as well as the correct
shape and motion. However, if the initial camera parameters were incorrect, then often the
shape and motion recovered while keeping the camera parameters fixed at their initial values
would produce projectively or radially deformed shapes. Even once the camera parameters
were allowed to vary, the solution remained trapped in a minimum with incorrect camera
parameters and a deformed object shape. Depending on the noise level of the images and
other effects, this sometimes happened with errors in the initial camera estimates as small as
20%. Perhaps a method which limits the change in the camera parameters at first, and then
gradually allows them to change by larger steps over the course of the optimization would
be able to accommodate less correct initial camera parameter estimates.

When only the radial distortion parameter is varied, and the aspect ratio and image center
are fixed to their correct values, the projective factorization method is able to model the
radial distortion in the images and recover a reasonably accurate radial distortion parameter.
(Again, for these experiments we first held x = 0 and refined the projective shape and
motion, and then allowed x to vary.) Further research should investigate whether other
parameters can be recovered in isolation when the remaining parameters are fixed. Since
aspect ratio and image center are generally easy to roughly guess, one approach might be to
recover the focal length and radial distortion parameter first while keeping the aspect ratio
and image center fixed, and then to refine them all as a last step.

4.4.2. Outdoor Building Example

A building at Carnegie Mellon University was imaged using a hand-held portable cam-

page 120

corder. Two hundred features were automatically identified in the first image and tracked
from image to image. While many of the features were tracked throughout the entire
sequence, some features left the field of view or became occluded. When the number of
remaining features fell below 160, new features were detected and tracked. After discarding
all features that were tracked for fewer than 8 frames, a total of 207 features were used for
this 58 image sequence. The images, with tracked features overlaid, and the tracking fill pat-
tern are shown in Figure 38.

The camera was very roughly calibrated using a simple technique. A flat rectangle of known
size was placed at a known distance from the camera, and a single image was taken. From
the image, the coordinates of the four corners of the rectangle were manually observed. The
focal length in pixels was calculated as the product of the distance to the rectangle in meters
and the observed width of the rectangle in image pixels, divided by the known width of the
rectangle in meters. The center pixel of the digitized image was used as the image center.
This very rough technique is simple enough to enable quick calibration in real applications,
and seemed to work sufficient well for use with factorization method.

The projective factorization method was used to recover the shape and motion. The projec-
tive shape recovered from the factorization step is shown in Figure 39. This shape clearly
contains both projective and affine distortions. For example, the object narrows towards the
rear, and the wall is at approximately a 60 degree angle to the car rooftops rather than 90
degrees. Furthermore the shape exhibited an extreme scaling of the depth axis, as discussed
in the previous section, requiring us to scale the shape’s depth axis by a factor of 0.01 before
displaying it.

The final shape computed after normalization has correctly removed these artifacts, as
shown in Figure 40. The walls have been brought into a roughly 90 degree alignment with
the car rooftops, and the windows are now all properly aligned and scaled. Even the position
of the upper left corner of the window marked “1” was recovered correctly even though it
was lost after the 17th image, in which it briefly left the field of view due to the unsteady
motion. Also note that the window at the rear is installed on a wall which curves away from
the observer, so its actual ahgle relative to the other three windows is indeed greater than 90
degrees.

4.4.3. Indoor Kitchen Example

In this example, kitchen was imaged using the same hand-help portable camcorder. The
camcorder had a variable zoom, which was set at the widest angle setting in order to view
the entire kitchen from fairly close range. At this setting radial distortion effects, as can be
seen by noticing the curved appearance of the straight doors at the entrance to the kitchen.

One hundred and twelve features were tracked through the 40 image sequence. Due to rela-
tively large textureless regions in the image, an inter-level weighting constant of 0.5 was
used in computing the optical flow estimates. After performing the projective decomposi-

Frame 40 FrameS8

Feature fill pattern

(black indicates feature
visible in a given frame,
white indicates not visible.)

H=— frame —p ,

| <«—— feature number ——» 207

Figure 38. Hamburg Hall Sequence and Tracked Features
Four windows have been outlined and numbered manually for later reference.

page 122

Projective Shape - top view

Projective Shape - side view

Projective Shape - end view

Figure 39. Recovered Projective Shape of Hamburg Hall Sequence
The images shown here are orthographic projections of the projective shape
recovered from the decomposition step of the projective factorization
method; therefore all apparent perspective effects are projective deforma-
tions present in the shape itself. The z-axis of the shape has been manually
scaled by a factor of 0.01 to facilitate viewing. The four windows have been
marked by hand to show that their sizes vary, and their edges are not orthog-

onal or parallel.

page 123

[. L] [L] - - . - ,
e R Y DXL

Euclidean Shape - side view

4

""P

A Biasrtire e

Euclidean Shape - end view

Figure 40. Euclidean Shape Recovered from Projective Factorization
The windows have been marked by hand using rectangles of equal size, to
demonstrate that the recovered window shapes are equal-sized rectangles.
The figures on the right show the results of mapping image texture onto the

recovered shape, from approximately the same viewpoints as the images on
the left.

Frame 40

Figure 41. Kitchen Image Sequence and Feature Tracking Results

page 125

tion, ten poorly tracked peints were automatically removed in a manner similar to that
described in section 2.7; points showing a large discrepancy between the tracked feature
positions and the positions computed by reprojecting the computed projective shape and
motion were discarded. The projective shape and motion were then recomputed and projec-
tive normalization was applied. to recover the Euclidean shape. Finally, this Euclidean
shape was refined using the radial projection model to produce the final shape shown in Fig-
ure 42. A surface was mapped onto the shape to more effectively demonstrate the shape
reconstruction. This surface was created by computing the Delauney triangulation of the
points in the first frame, and was then edited by hand to remove or refine incorrect surfaces
such as those spanning large depth discontinuities.

Figure 42. Reconstructed Kitchen Shape

page 126

4.5. Direct Shape and Motion Recovery without Tracking

Consider the most common failure modes of typical shape from motion systems. In noisy
image sequences, tracking results often have a high error. Certainly sensor noise and quanti-
zation effects cause small errors in the feature localization. However, other factors can cause
more troublesome problems. For example, a quick motion of the camera can cause the esti-
mated position of a feature to “jump” from the correct region of the image to a nearby
region with a similar appearance. Sometimes this may simply be a local minimum; the
actual feature position would be a better match, but the tracker has moved the estimated fea-
ture position to a new region of the image where it is stuck in a local minimum. Alterna-
tively if the images are noisy or contain repeated texture, both the “true” feature position in
the image and the false position may have roughly equal error measurements - there may be
no image-level way to differentiate the two positions, as illustrated in Figure 43.

Figure 43. Similarity of Image Features
In the sample image on the left, two nearly identical features are marked.
These features are expanded in the center and right images. Because the two
windows are so similar, the feature tracker cannot distinguish one from the
other.

Of course, when the entire sequence is taken into consideration, the correct feature positions
will move in a manner consistent with that of a rigid body, while incorrect feature positions
are less likely to move in a rigid manner. We found that in the aerial and kitchen examples
that many such improperly-tracked points could detected and removed by careful post-pro-
cessing. In some cases, such points may cause the shape and motion recovery method to
produce an incorrect motion to account for the observed feature motion, making it difficult
to assign blame for a poor solution to any one point or set of points. The overall shape and
motion recovery error € will surely be higher if incorrect feature tracks are chosen, but in
the tracking stage there is no way to determine this since three-dimensional information is
unavailable. Furthermore if such points are simply removed, the recovered shape will be
“sparse”, since important key points have no recovered shape. This will make it difficult to
map a surface onto the recovered 3D points, a post-processing step that is required for many
applications.

page 127

In this section, we alleviate these problems by presenting a method for structure and motion
recovery which incorporates image-level information directly in the shape and motion
recovery process. We enforce the rigidity constraint throughout the process by combining
the tracking and structure and motion recovery stages into a single hypothesis-based system.
Features are detected in the first image just as before. Rather than tracking the features from
frame to frame, we formulate the problem as a single minimization problem in which we
seek to find the shape and motion which directly minimizes image errors. The advantage of
this approach is that solutions which do not correspond to a single rigid object undergoing
motion are never considered. The rigidity constraint is applied throughout the process rather
than only at the end, and the image data is used directly to compute shape and motion with-
out tracking features as an intermediate step.

Unfortunately, this can also be the method’s main disadvantage. The method cannot con-
sider any solutions incompatible with the method’s basic model of rigidity, radially pro-
jected planar patches whose change in the images can be approximated as purely
translational. Of course, most methods state these or similar assumptions, but for a method
to be practical it must degrade gracefully when there are a few minor violations of the
method’s basic assumptions. This method can potentially be more fragile than most,
because any error which causes the estimated feature positions to differ from the actual posi-
tions by more than a few pixels can lead the method into a local minimum. Therefore we
need to be careful to model as many aspects of real projection as possible, and to use robust
hierarchical methods to try to avoid the traps of local minima.

We first present the basic least-squares formulation, and then show how we use the basic
framework of Levenberg-Marquardt minimization developed in this chapter to find the opti-
mal solution. We then extend the method to a multi-resolution framework in order to enable
success even with a poor initial value. We finally show an example of using the method to
directly recover the shape and motion without performing feature tracking.

4.5.1. Least Squares Formulation

Consider the method we used to track in image / ¢ the position of a single feature p, whose
image template F is defined by the image intensities over the region of interest R (gener-
ally a square region of a certain size) in the first image. We solved for the vector hfp which
minimized the error

E;, = Y Up(x+h)-F (x)]2. (137)

XeR
In the past, we computed each of the h » independently from the others. Now we extend this
minimization to simultaneously minimize the error for all points p and all frames f. Thus we
minimize

page 128

F P
=3 2 2 [If(X+hfp)—F,,(x)]2 (138)
=lp=1xeRP

Rather than allowing the h, to vary independently, we write each as a function of the
unknowns in the problem, the structure and motion variables, using the perspective projec-
tion equations, so that

F P

Caireet = 2 2 X O ULPEP)+x) - F (x)? (139)

f=1p=1X€ R(F)

Here o is a gaussian defined over the region whose purpose it to emphasize the pixels near
the center of the window. Our goal is to find the structure and motion variables which mini-
mize the total error €. Since our solution is a set of structure and motion values, it automati-
cally satisfies the rigidity constraint.

4.5.2. Levenberg Marquardt Solution

Equation (139) is just a sum of squares error measurement in terms of the shape and motion
variables. The number of data points to which the model is being fit has increased to
IR(FP)|F P (where |R(Fp)| is the number of pixels in the feature window) instead of 2FP, but
we can apply essentially the same technique as for the feature-based non-linear minimiza-
tion. We use the same variables and the same form for the Hessian matrix as for any of the
previous methods, depending on whether a projective or Euclidean solution is sought. The
difference is that the expected y; values are intensity values taken from the feature template,
defined by the position of the feature in the first frame, and the predicted values Y; are the
intensity values of the image at the position predicted by the shape and motion variables.
For each variable v, the derivative of this projective position is

s _ 3 phpyan) = L1 p) 40 P) (140)
5 = 3o AP 3o ¢

The expression 58;1 AP(f, p) +x) is a 2-vector giving the x- and y-gradients of the image at

the predicted position. The aa_\)P(f’ p) terms are the derivative of the predicted position with

respect to each of the variables, which are given by equations (106) and (107) for the projec-
tive case, (106) (125) (126) and (127) for the Euclidean case, or (134) and (135) if a radial
model is used.

The oy and B, entries still follow the pattern of equations (103) and (104) but are extended
to sum the p1xe1 errors over the region R(F)) as well. This involves summing |R(F)| times
as many terms as in the point-based method; for 15 x 15 windows, this is more than two
orders of magnitude more computation. Indeed in the point-based methods, the majority of
the computation was spent solving the linear system in a at each iteration, but using the

page 129

image-based method computing o becomes the primary computational burden. We can
reduce the computational requirements considerably by precomputing five terms summa-
tions over each window. These values are independent of the particular variable v and can
be used to compute the entries of a and B for all variables for the given point or frame. The
summations to compute ¢;; and B, are reduced to the same number of terms as for the point
based method, and that additional computational load of over the point-based method is
only the computation of these five terms for each feature point and each frame.

The B, entries are computed using the following summation.

37,
Z (O(X)(}’,-—Y,-) a_,ok =

X€ R(F)

9 d
o(x) (F (x) = I(P(f, p) + X)) | 5-1(P(f, p) +x) - =—P(f, p)
XE%F,,) ¢ f((BXf(IV)

T . (141)
J alf
Fo A P) Fr

¢ Y, oM (F,& - 1P p) +)
d P (f, p)| X€ R(F) alf

P(f,p)+X

Note that the 2-vector computed by summation over R(F) is the same as the vector e com-
puted from the image data for tracking in equation (79), where the current translation esti-
mate h, has been replaced by P(f,p), the projection of the current shape and motion
estimates.

The a, y entries are computed by summing

)
o(x =
x < K(F) dv,)\ v

3, o PGP+ 5 P(f P (3Rl PEP) +2) -5 P(f)

xeR(F)
T = =

(apxjf P,) [alf]2
N L (142)
dv, ox,
\
aU Xe R(Fp) 0 1 x2

x, \ 0
P, (ap (azf 2
a'ok a_x2

. IR p)+x

page 130

Here the 3-vector computed by summation over R(F) contains the three unique values of
the 2 x 2 matrix G defined in equation (80), again evaluated at P(f, p) + x rather than h_ +x.
These variables are the equivalent of e and G in the tracking section.

The image intensities / [and their derivatives alj/ax must be evaluated at the position
P(f, p) + x. Since P(f, p) will not in general have an integer value, we compute these intensi-
ties by bilinearly interpolating between the four closest pixels as described in section 3.3.1.

4.5.3. Multi-resolution Technique to Avoid Local Minima

Levenberg-Marquardt iteration is an effective tool for solving non-linear equations when an
initial values can be supplied which is sufficiently close to the true, global minimum. How-
ever, when doing a gradient-based search in image space, initial estimates which cause the
predicted position to differ from the actual position by as little as a few pixels can cause the
algorithm to converge to a non-globally optimal local minimum. This is especially true in
highly textured regions, where the image derivative at one pixel may bear no relation at all
to the derivative at an adjacent pixel. A priori smoothing of the images would make these
derivatives more uniform, but this would also smooth out the very information that we
depend on for shape recovery. Even smoothing would not help if the initial value predicts
features more than one window size away from the correct value.

These problems can be addressed by both widening the feature windows and smoothing,
using a hierarchical approach. The problem is solved repeatedly using images of gradually
increasing resolution. The image at each level of the pyramid is produced by averaging
intensities over some region of the first image. Interpolating to compute intensities at non-
integer pixels positions allows an arbitrary reduction between levels of the pyramid, rather
than the standard “factor of 2” reduction. The sample pyramid shown in Figure 44 was com-
puted using an inter-level reduction factor of 1.5. Each pixel in the level 1 image represents
the average of 2.25 pixels in the original image. Images in the 10th level of the pyramid
have been reduced from the first image by a total factor of 1.510= 58, so each pixel repre-
sents the average intensity value of 1.510x 1.510 = 3325 pixels.

The feature window size is kept fixed in terms of the number of pixels, so that in the lower
resolution images, a larger portion of the image is matched. Our sum of squares error func-
tion defined in equation (139) still implicitly assumes a purely translational model of image
texture, so when we solve for the shape and motion at the lowest resolution levels, only
rough values for the shape over entire region are computed; the entire region around a fea-
ture is being modeled as a single planar surface. These estimates will be refined and local-
ized as more detailed and narrowly focused windows are used in the higher resolution
images. A sample feature, identified based on its appearance in the first image, is shown
with white squares overlaid on the image pyramid of Figure 44.

Occasionally, features which contain significant texture in the highest resolution image do
not contain significant texture in the reduced resolution images, since the detail has been

page 131

level 3

level 8

Figure 44. Image

Pyramid
An 1l-level image pyra-
mid was created from the
original 480 x 512 image,
using a reduction factor of
1.5 between pyramid lev-
els. The entire level 10
image is 8 pixels by 8 pix-
els.

page 132

smoothed away. This will cause the solution for the shape of that feature to wander from the
actual feature. By the time the method uses the high resolution images' where the feature is
clearly trackable, the solution has wandered too far away from the actual minimum, making
it impossible to find the correct solution. To address this problem, we widen the feature win-
dows in any level of the pyramid in which the feature contains insufficient texture. A feature
is deemed to have insufficient texture when its A is below a set threshold.

4.5.4. Extension to Affine Warping Model

The above formulation maintains the implicit translational motion assumption of most pre-
vious feature tracking methods. Even if the underlying features are indeed planar, as the
object rotates the orientation of the small patches relative to the viewer changes, causing
visible warping and scaling effects. For small motions, the translational assumption is rea-
sonable, but as rotations or optical-axis translations become larger, these effects become
noticeable in the imagery.

While the image itself may contain perspective deformation, we model each individual fea-
ture using an affine warping model. We could allow perspective deformation of the patches
as well, but using an affine model allows the system to be solved with reasonable computa-
tional power.

Similar to the method used for the translational model, we reduce error by limiting the affine
motion of each patch to that which can be explained by the motion of a single rigid object.
We represent an affine patch in 3D by the depth to each of its vertices.

2
[P, 2 =Py () (Py(fip) - Py (i) |34 Py () - F 0}
(143)

Here P (f, p) is the projection of the upper-right corner of the affine patch, P, (£, p) is the
projection of the upper-left corner of the patch, and P, (f, p) is the projection of the lower-
left corner of the patch. The 2-vector % is simply the x vector normalized to range from

oo w1 1"
4.5.5. Direct Shape and Motion Recovery Example

The same image sequence used in section 2.7 is tested here using the direct shape and
motion recovery method. The features are identified in the first image, but are not tracked
from frame to frame. Only the first 20 images of the sequence are used here. This keeps the
total object rotation small, which allows the translational patch assumption to effectively
model the image motion.

page 133

The shape was recovered using a Euclidean formulation without varying the camera param-
eters. Since no initial values were provided, a total of ten levels of the image pyramid were
used. A reduction factor of 1.5 was used as we found that using the standard factor of 2
reduction did not provide sufficiently smooth transition between levels of the pyramid.
Using a reduction factor of 2, sometimes the best shape and motion found at one level still
predicted positions with pixel errors of more than one pixel when transformed into the sec-
ond level, causing the method to become trapped in a local minimum. The initial value used
for the shape estimate, as well as the shape estimates at the end of each level of the pyramid,
are shown in Figure 45. In the lowest resolution level of the pyramid, each feature covers a
large portion of the image. Therefore the recovered shape is a shape estimate for a large por-
tion of the image. For example, features near the corner of the house include image texture
from both sides of the house as they slope away from the camera. The depth estimates in
those areas tended to be further back, causing a “rounding” of the corner of the house. As
higher resolutions and smaller windows are used, these estimates are localized to the spe-
cific feature, causing the corner to form a sharp right angle.

Unlike the feature-based example shown in Figure 12, in which several features near the
windows were tracked incorrectly, using this method there were no incorrectly tracked fea-
tures. Every feature remained “attached” to the correct portion of the image throughout the
sequence.

page 134

|
l .
SR, ||
S V- o C
o it 1o e e o e e L E T ’ ' R ORT PrE ‘
AT gy gy T
r -\-\'-i ." : |
~ . L) |
top view of initial shape || top view at end of level 9 level 8
L
| |
| |
v,
. AT T Ty e 2t PR
"":'Z":,". g A R ? ."""'m. "0'-.:5. a Yl <. PR
. LTI T i i sl _“'- et wat, s
Moo, '*‘:'-.'_'""-. p LT T -a.,,,.“‘:._.“:;{f .
level 7 level 6 level 5
1} -8
M - .-'._‘-"i -.. ." -ﬁ;‘ Y] : .:'I‘}.‘
® \.: .) . - .'-.-". M .'a_ . r.. - .‘.' . L
Ty o e A o e
"o, "y - -. :..,“ -k‘ . '?'_,;h 1&) '_".‘..:'
-.{_\ ., L :ll. . ¢ ‘_‘-.. :;i:
level 4 level 3 level 2
1]
n ." A
- N ha. oiga
“te . ! 2 e
- V2R . - g
“ote o b <
.:l.‘.‘ o % ..ﬂ_h .:--\.'
e et AT
_.-=: ¢ '--'.“-'".
level 1 level O (final shape estimate) Ter e s e e
; . front view, level 0

Figure 45. Shape estimates by image pyramid level
The initial object shape was consisted of each point at a location determined
by the point’s position in the first frame located on a flat plane far from the
camera. The front view of the shape changed very little over the course of the
iteration. Every point was “tracked” correctly.

page 135
5. Conclusions

This research has addressed the problem of recovering shape and motion from noisy image
sequences. We have developed methods for robust feature tracking, accommodating missing
observations, and shape recovery under a variety of imaging scenarios. We have demon-
strated the effectiveness of these techniques on a variety of synthetic and real image
sequences.

This research has carefully addressed the problem of shape and motion recovery in the pres-
ence of occlusion and missing observations, and has detailed the method’s performance as a
function of the fill fraction, the fraction of all potential observations for which data is actu-
ally available. We furthermore show how to assign confidences to a point based on the
tracking results, and how these confidences can be incorporated into the problem formula-
tion.

We have presented a range of methods for recovering shape and motion from image
sequences and shown their performance in relation to each other. When the object is far
from the camera, bilinear camera models such as scaled orthography and paraperspective
can be used to describe the image projection process. The scaled orthographic factorization
method requires little knowledge of the camera calibration parameters; only the aspect ratio
need be known. When more camera information is available, better results can be obtained
by accurately modeling the position effect using the paraperspective factorization method.

These bilinear models are not sufficient for all cases. When the object being imaged is closer
to the camera, unmodeled foreshortening effects cause errors in the results of the factoriza-
tion. The results of the factorization method can be improved considerably using a separate
iterative refinement step. While substantial shape improvement can be obtained in just a few
iterations of this method, it can take hundreds of iterations to adjust both the shape and
motion to the correct minimum-error result. Furthermore, when the object is very close to
the camera, unmodeled foreshortening effects can cause the normalization step of the parap-
erspective factorization method to fail, supplying no initialization for projective refinement.

In such cases in which foreshortening effects are dominant, the projective factorization
method works well. This research has demonstrated that projective factorization can pro-
duce accurate results when the object is relatively close to the camera, or when noise levels
are low, although the factorization is more computationally intensive than the for the bilin-
ear camera models. In addition, we have shown through extensive experimentation that the
‘projective formulation has better convergence properties than direct optimization using a
Euclidean formulation.

When a simple initial value is used, the Euclidean optimization method works well only in
the same sorts of situations in which paraperspective also works well. By modeling perspec-
tive projection completely it avoids the need for a separate refinement step to remove per-
spective distortion, and is able to converge in a substantially smaller number of iterations

page 136

than the separate refinement method. The Euclidean optimization method can also be used
to refine the results of either the projective or paraperspective factorization method. It can
also accommodate radial distortion, as can the projective factorization method. The primary
differences between paraperspective factorization, projective factorization, and Euclidean
optimization are summarized in Table 4.

Table 4: Comparison of shape recovery techniques

J

paraperspective projective Euclidean
factorization factorization optimization
method method method
models foreshortening? X

J

insensitive to initial value? ! J X
accurate for distant objects? (X r

approximate running time? 4 sec 120 sec 400 sec?
for 60 points / 60 frames on

Sparc 5/85

shape-depth running time N/A 60 sec 110 sec?

a. Does not include zero-noise cases, which often required more iterations than usual since the
convergence criteria was not satisfied until machine floating point precision limits were reached.
b. Does not include low-depth sequences in which the method converged to local minima, often
after an unusually large number of iterations.

Finally, this thesis has investigated extending the point-based non-linear optimization
framework to recover shape and motion directly from image sequences without a separate
tracking stage. This enforces object rigidity throughout the entire process, preventing fea-
tures from following non-rigid trajectories. This method is by far the most computationally
expensive, requiring hours to solve a typical image sequence, and still requires modification
to address issues such as occlusion and unmodeled image patch changes in order to become
a practically useful method.

5.1. Future work

5.1.1. Feature Tracking

When the camera is extremely unsteady or the camera operator pans back and forth across
the field of view, the same feature points may enter and leave the field of view several times
within a short period of time. The current feature tracker considers a point “lost” when it

page 137

leaves the field of view; after many features have been lost, the system searches for new fea-
tures. Sometimes a point leaves the field of view for a single frame, and then reappears. The
current tracker cannot recognize when a previous feature has re-entered the field of view,
and therefore any point which leaves for even a frame is considered permanently lost. It may
detect the feature as a new feature, and continue to track it for future frames, without recog-
nizing it as the same as a previously seen feature. By not recognizing that the two are the
same feature, significant information is lost.

The tracking scheme should be extended to try to detect when previous features re-enter the
field of view. This is hindered by the fact that no estimate for the points motion is available
once it has left the field of view. Searching the image in the area where the feature left would
be expensive and would be susceptible to finding false matches, yet in the tracking stage the
three-dimensional information that would fix the point’s motion even when it is unobserved
is unavailable. One possibility is to use projective invariants. A point’s position in the cur-
rent frame could be estimated by requiring that its cross-ratios with respect to some subset
of other tracked points be the same as in those frames in which the point was observed. If
there are no features in the current frame which were observed simultaneously with the
given point, or if the position estimate lies outside the field of view, the point is still consid-
ered to be unobserved. However, if the position estimate lies within the field of view, that
estimate is used as an initial value for feature tracking, the feature point is tracked, and if the
total sum of squares error for that point passes a simple threshold test, the point is consid-
ered to be rediscovered.

Additionally, the feature detection method described in this thesis could be extended to
allow varying feature sizes. During the feature detection stage, each potential feature win-
dow could be expanded until the window contains sufficient texture to enable tracking. This
would enable large, relatively textureless regions to be tracked as features, on the assump-
tion that such regions are planar. Similarly, if one eigenvalue of the G matrix is small, the
window could be extended in the direction of the corresponding eigenvector until the win-
dow contains enough information to precisely track the feature in both directions. This
would enable edge-like features to be used by extending them to include the edges’ end-
points.

5.1.2. Accommodating Long Sequences

Both the perspective and projective factorization methods have been shown to work in the
presence of occlusion and missing data. However, both have the same limitations; as the fill
percentage drops, the errors increase, finally reaching a point where local minima in the
search space prevent even qualitatively correct solutions. Long sequences in which the cam-
era views several distinct parts of an object, room, or scene may often have fill fractions of
ten percent or even less. The methods we have addressed for occlusion handling clearly do
not gernally converge at such low fill fractions unless given very accurate initial values.

An obvious solution is to separate the sequence into several smaller sequences which will

page 138

have larger fill fractions. If the sequences are slightly overlapped so that they share some
points or share some images, the final solutions can be “pasted” together to for a single
shape and object by scaling, rotating, and translating the solutions so that the common
points or common motion parameters coincide. Thus a single motion and single object
shape could be produced for the sequence. This solution could be further refined using the
Euclidean optimization method.

5.1.3. Further Incorporating Image Data

The direct shape and motion recovery method can work well when used to refine shape and
motion estimates provided by traditional techniques. However, it is still based on the trans-
lational patch assumption, which may not always be a valid assumption. We have shown in
this paper that the approach can be extended to an affine warping model, but in practice this
requires reasonable initial estimates of the orientation of each patch. One could imagine
even more complex formulation, in which each patch is defined by a number of control
points whose depths vary independently. However, this would also require initialization and
poor initial values may prevent solution.

Adding even more degrees of freedom without adding information makes the system very
sensitive to noise. The primary goal of extending the patch model to an affine model was to
recover surface normals, which are necessary to build three-dimensional surface models
using point interpolation techniques. A better idea might be to introduce a surface model at
the time of the shape and motion reconstruction. The surface model and current shape and
motion estimate would be used to predict the appearance of the object in each frame. The
shape and motion values would be refined to bring the predicted appearance into correspon-
dence with the actual observed appearance.

For example, we might detect a few hundred feature points in the first image and compute a
2D triangulation of those points. The actual image intensities of each triangle would be used
instead of just the intensities of the feature points themselves. As the shape estimates for a
particular point are changed, the predicted appearances of all of the surface triangles con-
taining that point as a vertex change. This allows shape and motion recovery to make use of
all image information rather than just using image intensity information at the feature
points. The basic non-linear formulation described in this thesis could be extended to handle
this case, though the block-diagonal nature of the shape portion of the Hessian matrix would
be destroyed. Still, with an appropriately chosen preconditioner matrix, the conjugate gradi-
ent method should be able to invert the Hessian matrix in a reasonable amount of computa-
tion. Such a method would resemble the recent method of Szeliski and Coughlan, but would
be a true multi-frame formulation producing shape and motion as a result rather than image
motions.

5.1.4. Camera calibration

The framework developed in this paper allows recovery of the camera focal length, aspect

page 139

ratio, image center, and first order radial distortion parameter. However, our experience indi-
cates that allowing these variables can wander far from their correct values if not further
constrained. Our solution is generally to fix the camera parameters until shape and motion
estimation is almost complete, and then to allow them all to vary. This requires accurate ini-
tial estimates of the camera parameters, however. This dependence should be experimen-
tally quantified to determine precisely how accurate camera estimates need to be, and in
what circumstances camera calibration parameters can be recovered simultaneously with
shape and motion recovery.

Ideally, camera calibration requirements should be eliminated from both the paraperspective
and projective factorization methods. It is possible in theory, since the addition of 4
unknowns (focal length, aspect ratio, and image center) still leaves the metric constraints
overconstrained. However, straightforward implementation of non-linear solution tech-
niques to solve for these parameters as well as the matrix A failed except when the initially
provided camera calibration parameters were very accurate.

5.1.5. Multiple cameras

This formulation could easily extended to allow multiple cameras. If the cameras are fixed
relative to each other, each camera’s set of parameters would include both its intrinsic
parameters, and its orientation relative to the first camera. Computation of the expected
image position of any point would the require an additional transformation from the “frame”
coordinate system to the coordinate system of the particular camera from which the scene is
being viewed. If the cameras are allowed to move independently, then images from addi-
tional cameras would be treated in much the same way as additional images are currently
treated. However, there would be multiple sets of camera parameters, and each observation
would specify the particular frame, point, and camera to which the observation corresponds.

page 140

page 141
References

[1] Ajit Singh, Optic Flow Computation: A Unified Perspective, IEEE Computer
Society Press, Los Alamitos, California, 1991.

[2] John Y. Aloimonos, Perspective Approximations, Image and Vision Computing,
8(3):177-192, August 1990.

[3] A. Azerbayejani and A. Pentland, Recursive Estimation of Motion, Structure, and
Focal Length, MIT Media Laboratory, Perceptual Computing Technical Report
#243, October 15, 1993,

[4] P. Beardsley, A. Zisserman, and D. Murray, Navigation Using Affine Structure
from Motion, European Conference on Computer Vision, 1994, pp. 85-96.

[S] J. R. Bergen and E. H. Adelson, Hierarchical, computationally efficient motion
estimation algorithms, Journal of the Optical Society of America, 4:35, 1987.

[6] B. Boufama, R. Mohr, and F. Veillon, Euclidean Constraints for Uncalibrated
Reconstruction, International Conference on Computer Vision, 1993.

[7]1 B. Boufama, D. Weinshall, and M. Werman, Shape from motion algorithms: a
comparative analysis of scaled orthography and perspective, European Confer-
ence on Computer Vision, 1994, pp. 199-204.

[8] T. Broida, S. Chandrashekhar, and R. Chellappa, Recursive 3-D Motion Estimation
from a Monocular Image Sequence, IEEE Transactions on Aerospace and Elec-
tronic Systems, 26(4):639-656, July 1990.

[91 Joao Costiera, Progress Report on Occlusion Detection, Unpublished, May 6,
1994.

[10] K. Deguchi, T. Sasano, H. Arai, and Y. Yoshikawa, Feasibility Study of the Factor-
ization Method to Reconstruct Shape from Image Sequences, Technical Report
Meip7-93017-02, Department of Mathematical Engineering and Information
Physics, University of Tokyo, March 1994.

[11] S. Demey, A. Zisserman, P. Beardsley, Affine and Projective Structure from
Motion, Proceedings of the British Machine Vision Conference, September 1992,

pp. 49-58.

[12] J. E. Dennis Jr, and Robert B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall Inc., Englewood Cliffs, New

Jersey, 1983.

page 142

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. Dutta and M. A. Snyder, Robustness of Correspondence-Based Structure from

Motion, International Conference on Computer Vision, December 1990, pp. 299-
306.

O. D. Faugeras, What can be seen in three-dimensions with an uncalibrated stereo
rig?, European Conference on Computer Vision (ECCV), May 1992, pp. 563-578.

O. D. Faugeras, Q.-T. Luong, and S. J. Maybank, Camera self-calibration: theory
and experiments, Proceedings of the European Conference on Computer Vision,
pp. 321-334, 1992.

O. D. Faugeras, F. Lustman, G. Toscani, Motion and Structure from point and line
matches, International Conference of Computer Vision (ICCV), June 1987, pp. 25-
34

Bruce D. Lucas and Takeo Kanade, An Iterative Image Registration Technique
with an Application to Stereo Vision, Proceedings of the 7th International Joint
Conference on Artificial Intelligence, 1981.

Richard I. Hartley, Euclidean Reconstruction from Uncalibrated Views, In Appli-
cations of Invariance in Computer Vision, pp. 237-356, 1993.

C. G. Harris, DROID Analysis of the NASA Helicopter Images, Proceedings of the
IEEE Special Workshop on Passive Ranging, 10 October 1991.,

E. C. Hildreth, The Measurement of Visual Motion, MIT Press, Cambridge Mass.,
1983.

B. K. P. Horn and B. Schunck, Determining Optical Flow, Artificial Intelligence,
17:185-203, 1981.

B. K. P. Horn and E.J. Weldon Jr., Direct Methods for Recovering Motion, Interna-
tional Journal of Computer Vision, volume 2, pp. 51-76, 1988.

H. C. Longuet-Higgins, A Computer Algorithm for Reconstructing a Scene from
two Projections, Nature 293, 1981, pp. 133-135.

Larry Matthies, Takeo Kanade, and R_ichard Szeliski, Kalman Filter-based Algo-
rithms for Estimating Depth from Image Sequences, International Journal of Com-
puter Vision, vol. 3, pp. 209-239, 1989.

R. Mohr, F. Veillon, J. Quan, Relative 3D Reconstruction Using Multiple Uncali-
brated Images, Computer Vision and Pattern Recognition, June 1993, pp. 543-548.

Joseph L. Mundy and Andrew Zisserman, Geometric Invariance in Computer
Vision, The MIT Press, 1992, p. 512.

page 143

[27] H. H. Nagel, On the estimation of dense displacement maps from image sequences,
Proc. ACM Motion Workshop, Toronto, pp. 59-65, 1983.

[28] Yu-ichi Ohta, Kiyoshi Maenobu, and Toshiyuki Sakai, Obtaining Surface Orienta-
tion from Texels Under Perspective Projection, Proceedings of the 7th International Joint
Conference on Artificial Intelligence, pp. 746-751, August 1981.

[29] Conrad J. Poelman and Takeo Kanade, A Paraperspective Factorization Method
for Shape and Motion Recovery, Technical Report CMU-CS-93-219, Carnegie
Mellon University, Pittsburgh, PA, December 1993.

[30] Jean Ponce, David Marimont, and Todd Cass, Analytical Methods for Uncali-
brated Stereo and Motion Reconstruction, Tech. Report AI-RCV-93-07, Beckman
Institute, Univ. of Illinois, 1993.

[31] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computing, Cambridge University
Press, 1988.

[32] Axel Ruhe and Per Ake Wedin, Algorithms for Separable Nonlinear Least Squares
Problems, SIAM Review, Vol. 22, No. 3, July 1980.

[33] Amnon Shashua, Projective Structure from two Uncalibrated Images: Structure
from Motion and Recognition, MIT Al Laboratory A.I. Memo No. 1363, Septem-
ber 1992.

[34] Ajit Singh, Optic Flow Computation: A Unified Perspective, IEEE Computer Soci-
ety Press, Los Alamitos, California, 1991.

[35] M. E. Spetsakis and J. Y. Aloimonos, Structure from motion using line correspon-
dences, International Journal of Computer Vision, 4(3):171-185, June 1990.

[36] S. Soatto, P. Perona, R. Frezza, G. Picci, Recursive Motion and Structure Estima-
tions with Complete Error Characterization, Computer Vision and Pattern Recog-
nition proceedings, June 1993, pp. 428-433.

[37] Long Quan, Self-calibration of an Affine Camera from Multiple Views, Technical
Report R.T. Imag-Lifia 26, LIFIA-CNRS-INRIA, Grenoble, France, November

1994.

[38] Richard Szeliski and Sing Bing Kang, Recovering 3D Shape and Motion from
Image Streams using Non-Linear Least Squares, Technical Report 93/3, Digital
Equipment Corporation, Cambridge Research Lab, March 1993.

[39] Camillo Taylor, David Kriegman, and P. Anandan, Structure and Motion From
Multiple Images: A Least Squares Approach, IEEE Workshop on Visual Motion,

page 144

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

pp. 242-248, October 1991.

J. I. Thomas, A. Hansen, J. Oliensis, Understanding Noise: The Critical Role of

Motion error in Scene Reconstruction, International Conference of Computer
Vision, June 1993, pp. 325-329.

Morris M. Thompson, ed., Manual of Photogrammetry, Third Edition, American
Society of Photogrammetry, Falls Church, VA., 1966.

Carlo Tomasi and Takeo Kanade, Shape and Motion from Image Streams: a Fac-
torization Method - 2. Point Features in 3D Motion, Technical Report CMU-CS-
91-105, Carnegie Mellon University, Pittsburgh, PA, January 1991.

Carlo Tomasi and Takeo Kanade, Shape and Motion from Image Streams: a Fac-
torization Method, Technical Report CMU-CS-91-172, Carnegie Mellon Univer-
sity, Pittsburgh, PA, September 1991.

Roger Tsai, A Versatile Camera Calibration Technique for High-accuracy 3D
Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses, IEEE
Journal or Robotics and Automation, Vol. RA-3, No. 4, August 1987, pp. 323-344.

Roger Tsai and Thomas Huang, Uniqueness and Estimation of Three-Dimensional
Motion Parameters of Rigid Objects with Curved Surfaces, IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-6(1):13-27, January 1984.

Reg Willson and Steve Shafer, A Perspective Projection Camera Model for Zoom
Lenses, Proceedings of Second Conference on Optical 3-D Measurement Tech-
niques, Institute of Geodesy and Photogrammetry, Federal Institute of Technology,
Zurich, October 1993,

Yalin Xiong and Steven A. Shafer, Dense Structure From a Dense Optical Flow
Structure, Technical Report CMU-RI-TR-95-10, Carnegie Mellon University,
Pittsburgh, PA, April 1995.

