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Abstract

Writing parallel programs for distributed multi-user computing environments
is a difficult task. The Distributed object migration environment (Dome) ad-
dresses three major issues of parallel computing in an architecture independent
manner: ease of programming, dynamic load balancing, and fault tolerance.
Dome programmers, with modest effort, can write parallel programs that are
automatically distributed over a heterogeneous network, dynamically load bal-
anced as the program runs, and able to survive compute node and network
failures. This paper provides the motivation for and an overview of Dome,
including a preliminary performance evaluation of dynamic load balancing for
distributed vectors. Dome programs are shorter and easier to write than the
equivalent programs written with message passing primitives. The performance
overhead of Dome is characterized, and it is shown that this overhead can be
recouped by dynamic load balancing in imbalanced systems. Finally, we show
that a parallel program can be made failure resilient through Dome’s architec-
ture independent checkpoint and restart mechanisms.






1 Introduction

A collection of workstations can be the computational equivalent of a super-
computer. Similarly, a collection of supercomputers can provide an even more
powerful computing resource than any single machine. These ideas are not new;
parallel computing has long been an active area of research. The fact that net-
works of computers are commonly being used in this fashion is new. Software
tools like PVM [1, 13, 14], P4 [5], Linda [6], Isis [2], Express [12], and MPI [16]
allow a programmer to treat a heterogeneous network of computers as a parallel
machine. These tools allow the programmer to partition a program into pieces
which may then execute in parallel, occasionally synchronizing and exchanging
data. Heterogeneity is supported through data conversion from one machine’s
format into another. These tools are useful, but there are further issues to be
addressed. Namely, load balancing and fault tolerance mechanisms must be
developed that will work well in a heterogeneous multi-user environment.

There are a wide variety of issues that a parallel programmer must deal with.
When using most conventional parallel programming methods, one needs to par-
tition the program into parallel tasks and manually distribute the data among
those parallel tasks — a difficult procedure in itself. To further complicate mat-
ters, in most cases the target network of machines is composed of multi-user
computers connected by shared networks. Not only do the capacities of the
machines differ because of heterogeneity but their usable capacities also vary
from moment to moment according to the load imposed upon them by multiple
users. Heterogeneity is also evident in the underlying network. For instance,
typical bandwidths in local area networks vary from 10 Mbit Ethernet to 800
Mbit HiPPI. Message latency can also vary greatly, particularly as ATM-based
L ANs [30] become commonplace. System failure is yet another consideration. If
an application is using a large number of machines to execute for a long period
of time, failures during program execution are likely. Processor heterogeneity
complicates support for fault tolerance. The Distributed object migration en-
vironment (Dome) presented here addresses these parallel programming issues
for heterogeneous multi-user distributed environments.

Dome provides a library of distributed objects for parallel programming that
perform dynamic load balancing and support fault tolerance. Dome program-
mers, with modest effort, can write parallel programs that are automatically
distributed over a heterogeneous network, dynamically load balanced as the
program runs, and able to survive compute node and network failures. Thus,
we provide both the objects and the tools needed to make it simple to write
efficient distributed programs.

This paper provides the motivation for and an overview of Dome, including a
preliminary performance evaluation of dynamic load balancing for vectors. We
show that Dome programs are shorter and easier to write than the equivalent
programs written with message passing primitives. The performance overhead
of Dome is characterized, and it is shown that this overhead can be recouped by



dynamic load balancing in imbalanced systems. Finally, we show that a parallel
programn can be made failure resilient through Dome’s architecture independent
checkpoint and restart mechanisms.

2 Related Work

Dome shares attributes with many other research projects. pC++ [3, 20] ex-
tends C++ to a parallel programming language. High Performance Fortran [18]
is an emerging standard for writing distributed memory parallel Fortran pro-
grams. While language based mechanisms for expressing parallelism and data
mapping in distributed memory machines are important, we are most interested
in using existing languages and exploring object oriented mechanisms for paral-
lel and distributed computing. Dome is written in C++. The flexibility of this
language malkes it easy to add parallel objects and operators to the language,
giving us the ability to prototype ideas rapidly. Building these mechanisms into
a compiler would be a much more difficult task. However, knowledge gained in
developing Dome can be used in compilers that target heterogeneous networks.

LaPack++ [7] is an object oriented interface to the LaPack routines for
parallel linear algebra. Like LaPack++, Dome provides a library of parallel
objects. However, Dome does not focus on linear algebra but on objects which
are of general use for many types of parallel programming. As a complete
distributed programming system, Dome also provides features, such as dynamic
load balancing and fault tolerance, which are not addressed by packages like
LaPack++.

2.1 Related Load Balancing Work

In general, load balancing consists of effectively matching task requirements to
the resources of a distributed computing system. There has been a consider-
able amount of theoretical work on the assignment problem for parallel and
distributed computing. Most of this work addresses the problems of mapping
tasks to processors, given a set of tasks whose requirements are known a priors
and a compute system whose resources are also well known [4]. Most distributed
multi-user systems have unpredictable loads, making these approaches imprac-
tical for general use.

Load balancing research in operating systems focuses on the similar mapping
problems but where little is known about the tasks or the target system’s capac-
ities. Thus, heuristics play a large role. For instance, Eager et al. [10] compare
heuristics for task placement and migration under various system loads. It is
generally agreed upon that simple heuristics are best when scheduling indepen-
dent tasks in multi-user distributed system [9]. In this case no assumptions are
made about inter-task relationships. I'or parallel computing, inter-task relation-
ships are very important when making load balancing decisions. As Wikstrom



et al. point out, it is difficult to make load balancing of parallel programs pay
off (31). This reiterates Eager’s thesis that simple strategies win and extends
that idea to load balancing of parallel algorithms.

For parallel programs the source of load imbalances can be both internal and
external. Internal imbalances occur because the work distribution among the
parallel tasks changes as the program executes. Iterative algorithms are a good
example of this phenomenon [25]. External load imbalances are the result of
sharing CPU and network resources. Dome uses simple load balancing strategies
to address both internal and external load imbalance. This work differs from
operating systems approaches to load balancing in that the tasks have intricate
intercommunication dependencies and tend to be long running. It also differs
from most parallel computing load balancing techniques in that external system
load is a major consideration.

2.2 Related Checkpointing Work

Most checkpointing libraries for distributed systems focus on checkpointing in
a homogeneous environment, using system-specific techniques to efficiently cap-
ture consistent memory images from each process. Among the recent ones are
Li, Naughton, and Plank’s [22, 23, 26], which is designed to minimize the check-
pointing overhead on multicomputers; Silva and Silva’s [28], which takes into
account the latency between failure occurrence and detection; and Leon, Fisher,
and Steenkiste’s [21], which is designed specifically for programs written in
PVM. In most work on checkpointing for distributed systems, the primary focus
is on attempting to minimize the cost of each checkpoint. In [11], however, El-
nozahy, Johnson, and Zwaenepoel have suggested that checkpointing is generally
an inexpensive operation. Thus, performance of the checkpointing mechanism
is not our focus. Rather, maximizing user-transparency and architecture inde-
pendence is of much greater concern. Dome uses an object-oriented paradigm
and an implementation in non-machine-dependent C++ code to achieve these
objectives even in the face of heterogeneity.

An architecture independent package has also been developed by Silva, Veer,
and Silva [29], who have created a purely library based system where the user
is responsible for inserting calls to specify the data to be saved and perform the
checkpoints. Another system related to ours was developed by Hofmeister and
Purtilo [19].” As in Dome, they use a preprocessing mechanism for saving the
state of distributed programs. While their main concern is dynamic program
reconfiguration rather than checkpoint and restart, their preprocessing method
is similar to the one we are using.

Finally, Duda [8] has analyzed the expected runtime of a distributed program
with checkpointing, assuming failures are a Poisson process. Since the main
purpose of checkpointing is to reduce the total expected runtime in the presence
of failures, we have tried to relate our performance observations to his analysis,
rather than merely reporting the overhead of the individual checkpoints.



3 Dome Architecture

Dome was designed to provide application programmers a simple and intuitive
interface for parallel programming. It is implemented as a library of C++
classes which uses PVM for its process control and communication. When an
object of one of these classes is instantiated, it is automatically partitioned and
apportioned within the distributed environment. Therefore, computations using
this object are performed in parallel across the nodes of the current PVM virtual
machine.

The Dome library uses operator overloading to allow the application pro-
grammer simple manipulation of Dome objects and to hide the details of par-
allelism. In designing the interfaces to Dome objects, care has been taken to
provide a simple and intuitive programming paradigm for the application pro-
grammer.

When a program using the Dome library is run, a Dome environment is
created. Initially, the Dome environment controls the creation of the multiple
processes which constitute the distributed program. Dome uses a single program
multiple data (SPMD) model to perform the parallelization of the program. In
the SPMD model the user program is replicated in the virtual machine, and
each copy of the program, executing in parallel, perforins its computations on a
subset of the data in each Dome object. The number of copies of the program
that are spawned by the Dome environment defaults to one per node in the
virtual machine but can be controlled by the user with a parameter passed to
the Dome environment on initialization. The Dome environment then keeps
track of these Dome processes and the existence and distribution of all Dome
variables in the program. Global checkpointing and load balancing information
is also maintained within the Dome environment and can be controlled by the
user through input parameters.

A Dome class generally represents a large collection of similar and related
data elements, a vector for example. When a Dome object is created, the
elements of that object are partitioned and distributed among the processes
of the distributed program. Dome offers a few different possibilities for the
method of data partitioning. The whole directive indicates that all elements
of the given object are replicated at all of the distributed processes. Block
distribution indicates that the data elements of the Dome abject are to be evenly
divided among the processes in contiguous blocks. Finally, dynamic indicates
that the initial distribution is the same as in the block distribution, but the
data is reapportioned among the processors periodically based on dynamic load
balancing performed at given intervals. This dynamic redistribution of data is
discussed further in Section 5. The user may indicate the particular method
for partitioning a given Dome object when that object is declared. The default
partitioning is dynamic. Figure 1 illustrates the data distribution of a program
using Dome over a virtual machine consisting of four nodes.

It is useful to discuss the concept of a Dome operation. A Dome operation



Node 1

Inner_product:

vector1[1..2560]
vector2[1..2560]
prodf1..2560]
vector_size = 10240
dp =32153.6

N

Node 2

Inner_product:

vector1[2561..5120]
l/ vector2[2561..5120]
prod[2561..5120]
vector_size = 10240
dp =32153.6

Node 3

Inner_product:

vector1[5121..7680]
vector2[5121..7680]
prod[5121..7680]
vector_size = 10240
dp = 32153.6

Node 4

Inner_product:

vector1[7681..10240]
vector2[7681..10240]
prod[7681..10240]
vector_size = 10240
dp = 32153.6

Figure 1: SPMD model of the Dome program Inner_product executing on four
nodes in a PVM virtual machine. The contents of the distributed vectors vec-
torl, vector?, and prod have been divided evenly among the processes in the
distributed program. The scalar variables, vector_size and dp, are replicated at
each process. The code for this program is given in Figure 2.



is a function performed on one or more Dome objects. A single Dome operation
usually causes a function to be applied in parallel to all of the eclements of
that object. Some Dome operations involve a synchronization of the processes
of the distributed program, but most do not. Consider the term vector! +
vector? in which vector! and vector?2 have been declared as Dome distributed
vectors (dVectors) of the same dimension. The + operation on vectors causes
an elementwise addition of the contents of the two distributed vectors to be
performed in parallel. No communication is necessary between the processes
of the distributed program to perform this operation. The concept of a Dome
operation is important for load balancing because the intervals at which a load
balancing phase is performed are determined by a given number of completed
Dome operations. This is discussed fully in Section 5.

4 Dome Programming

To illustrate the simplicity of programming with Dome objects, consider the
example program in Figure 2. This program performs a standard inner product
operation on a pair of vectors.

The program includes header files for two of the Dome classes, distributed
vectors and distributed scalars (the dVector and dScalar classes). The entry
point to main accepts the standard argc and argv parameters. These arguments
are passed to the dome_init routine because they can contain user parameters
to the Dome environment such as the number of copies of this program to
run in parallel, the method and frequency of load balancing, and checkpointing
information. It also allows the Dome environment to spawn remote copies of
the program with the same argument list that the user specified originally.

Next, several Dome variables are declared. Two dScalar objects, vector_size
and dp, are declared and initialized. The dScalar class replicates the variables
at all of the processes of this distributed program. dScalar variables differ from
normal C++ variables solely in that when the dScalar variable is declared it is
registered with the Dome environment. It can then be included in a Dome check-
point whereas normal C++ variables will not be checkpointed. Three dVector
objects, vectori, vector2, and prod, are also declared in the example program.
Each vector is composed of 10240 double precision floating point numbers. By
default the vectors will be distributed among the processes using the dynamic
distribution. Each of the processes in the distributed program will initially be
assigned n/p elements of each vector, where n is the total number of elements
in the vector and p is the total number of processes.

The example program next assigns the values 1.0 and 3.14 to each of the
elements of the vectors vectoril and vector2 respectively. These assignments
are done in parallel in the distributed program, each process making the scalar
assignment to the vector elements which have been assigned to that processor.
The statement which follows, prod = vectorl * vector2, performs two Dome



operations, the vector multiplication and the vector assignment. Each of these
operations, like the scalar assignment just described, is performed in parallel on
the elements of the distributed vectors assigned to each processor. An element-
wise multiplication of the vectors vectorl and vector2 is performed and then
the values are assigned to the distributed vector prod.

The elements of the entire distributed vector prod must now be added to
complete the standard inner product calculation. The gsum method is used to
perform this addition. This method causes each processor in the distributed
program to calculate a local sum of the elements assigned to that processor. It
then forces a synchronization of all of the processes to exchange the local sums.
These are added to reach the final result which is assigned to the scalar value
dp.

Automatic load balancing and architecture independent checkpointing can
be performed on the distributed data objects declared. Although not necessary
or particularly useful in a small program like the example given, these features
offer powerful advantages to complex distributed programs, as will be discussed
in Sections 5 and 6 respectively.

This simple program demonstrates the power of Dome. Distributed pro-
grams are easy to write using Dome objects. Most of the details of program
parallelism, load balancing, and architecture independent checkpointing are hid-
den from the programmer. An equivalent program to perform a distributed
standard inner product operation using PVM primitives would be much more
complicated to write and would be several pages in length. If similar load bal-
ancing and checkpointing were added to the PVM program it would be even
longer.

As seen in the example program in Figure 2 the Dome library uses templated
C++ classes. This allows for a wide range of user extensibility and customiza-
tion. In the example program scalar values of integers and doubles as well as
vectors of doubles were declared, but user defined classes can also be used in
the templated Dome classes.

5 Load Balancing

The ohject oriented architecture of Dome hides data placement and communi-
cation from the programmer. This makes it possible for Dome to alter data
mappings and communication patterns dynamically during program execution
in response to changes in the execution environment. This section addresses load
balancing based on observed processor speed and briefly describes an approach
to load balancing based on observed communication performance.



// Simple Dome program to compute the standard inner product of two vectors.

#include <stdlib.h> //
#include <stream.h>

#include "dScalar.h” //
#include "dVector.h"

int main(int argc, char *argv[])

{
dome_init(argc, argv); //
dScalar<int> vector_size = 10240; //
dScalar<double> dp = 0.0; //
dVector<double> vectorl(vector_size); //
dVector<double> vector2(vector_size); //
dVector<double> prod(vector_size); //
vectorl = 1.0; vector2 = 3,14; //
prod = vectorl * vector?2; //
//
dp = prod.gsum(); //
cout << "The dot product is " << dp << ’\n’; //

}

C++ includes

Dome includes

Initialize the Dome environment.

These scalars will be replicated
at all processes.

These vectors will be
distributed across
all processes.

Assign values to the vectors.

Compute product using overloaded
vector product operator.

Compute sum of all elements of prod.

Print the result.

Figure 2: Program to find the standard inner product of two vectors written

using Dome.



5.1 Processor Based Load Balancing

Load balancing involves mapping work to processors such that all the work is
completed in the shortest amount of time. In a multi-user system, processor
loads can change frequently; therefore, prediction of actual execution speeds is
an integral part of load balancing. One could utilize any number of metrics when
attempting to capture and predict the performance of a particular processor:
processor speed, amount of available memory, length of the current run queue,
percentage of idle time in the recent past, number of recent network interrupts,
and others. Indeed, various authors have utilized some of these parameters to
characterize the performance of processors, deriving load indices that are used
to make decisions on scheduling and the distribution of work among the nodes
of a network. Rather than using metrics of this kind to predict the performance
of a Dome program, we simply use the actual rate at which the processors have
been executing the Dome program. The recent past performance in executing
a Dome program is assumed to indicate near term future performance for that
same progran.

When a program begins execution in the parallel virtual machine, Dome
makes no assumptions about the current loads at each node. All dynamically
distributed Dome objects are initially distributed evenly among all participating
processors. Dome operations are instrumented with timers, which measure the
amount of time each processor spends doing computation. During the load bal-
ancing phase the Dome program synchronizes, and these times are compared.
The load balancing is performed by remapping data based on the time taken by
each task during the last computational phase. The synchronization is straight-
forward given the SPMD structure of Dome applications. Thus, Dome load
balancing does not require a complicated interrupt scheme. Presently, an ini-
tial load balancing phase is performed after the first few Dome operations of
program execution. This early load balancing phase captures the initial load
conditions of the participating processors. Our experiments have shown that
the absence of this initial phase can increase total running time by a factor
from 1.25 to 1.50 on imbalanced systems. This happens because the fastest
machines have to wait for the first synchronization point, remaining idle for a
long time. The experiments also have shown that the very short initial period
of timing is a good predictor of the load distribution in the machines. After
this initial redistribution of work, the load balance phases are triggered upon
the completion of a predetermined number of Dome operations. This count is
fixed for the duration of the program execution, and it can be set by the user.
Future Dome implementations may vary this parameter based on the results of a
load balancing phase; if several load balancing phases have shown the workload
to be evenly balanced then it is reasonable to increase the time between load
balancing phases.

For load balancing purposes Dome considers that the participating machines
are interconnected in a virtual topology, either linear or ring. The reason to use



these simple topologies is twofold: first, it greatly simplifies the management of
the objects that are distributed among the machines; second, by allowing data
movement to occur only between neighbors, it avoids arbitrary data traffic that
may overload the network.

Another major issue is whether the load balancing decision should be done
locally or globally. In a global remapping the final data layout will exactly
reflect the most recent performance measurements. In this scheme all tasks
send their most recent computational times to a designated master task that
calculates the ideal data distribution. Then the master broadcasts the new
distribution mapping, and the tasks begin to exchange data. Note that the
global communication involves only control information; the real data movement
is done only between neighbors. Although the control information exchanged is
small, this remapping may be costly because it may result in a large amount of
data movement. Also, a central point of control prevents this scheme to scale
well with a large number of machines. Another option is to have processors
simply exchange control data locally, i.e., with their neighbors in a ring. This
local load balancing option will not result in a globally optimal data mapping
after each load balancing phase, but it is scalable to a large number of processors
and requires less data remapping. Dome currently implements both of these
methods. There is, in fact, an entire spectrum of choices for load balancing
between the two extremes described here, and future versions of Dome will
include more points along this continuum. Actual measurements made on a
virtual machine of less than ten processors show that global load balancing
performs better than local. Therefore, scalability is not an issue for networks of
this size.

We have built a tool which shows the changes in the distribution of dVectors
over time. Figure 3 reproduces this tool’s display. The upper window in Figure
3 shows the dVector mapping while the lower window shows the loads of the
processors over the same time period. Notice that vectors can be load balanced
“off the ends” where data at the ends of the vector can move around to the
process handling the other end of the vector. The loads are indicated by the
amount of time spent computing on dVectors. Thus, it is an indication of how
fast the processors perform dVector computations.

5.2 Initial Timing Results

In order to evaluate the Dome approach to load balancing we have written a
matrix multiply program using dVectors (mmdome). This implementation was
compared with three other versions of matrix multiply: a sequential version
(mmseq), a version written in PVM that uses the same algorithm of the Dome
program {mmpum), and another version using PVM that takes advantage of
its lower level primitives to produce better register usage by the compiler and
fewer cache misses (mmpumopt). Since Dome is implemented using PVM, this
comparison allows us to measure the overheads involved in the Dome implemen-
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Figure 3: dVector mappings and machine loads over time.
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tation, as well as the overhead for load balancing. It is also worth mentioning
the difference in complexity and size of the source code between the Dome im-
plementation and the two PVM implementations. While the Dome program
has roughly the same size as the sequential version, the PVM implementations
are almost double that size and have to deal explicitly with data distribution,
gathering and synchronization.

All results shown here were obtained for 240 matrix multiplies, C = A x B,
where A and B are of size 786432 double precision elements. Three experiments
were performed.

1. Unloaded, balanced system: using 6 DEC Alpha workstations intercon-
nected by an Ethernet at the School of Computer Science at CMU. The
experiment had exclusive use of the machines.

2. Imbalanced, stable system: same environment as before, but one of the
machines was artificially loaded, while the others remained unloaded for
the duration of the experiment.

3. Production system (loaded, unstable): using 6 DEC Alpha workstations
of the Pittsburgh Supercomputer Center SuperCluster (also DEC Alpha,
workstations) interconnected by a DEC Gigaswitch (FDDI point-to-point
connection between workstations). These experiments were run under
normal production conditions at various hours of the day and different
days of the week. A total of 45 runs for each experimental data point was
performed.

The Dome program (mmdome) was executed without any load balancing (no_1b),
and with 1, 2 and 3 load balancing phases (b1, b2, 1b3, respectively). Other
experiments were also performed for a different number of machines (from 4 to
8), various sizes of the matrices and various numbers of load balancing phases
(i.e., different intervals between load balancing phases). The results presented
here for the case of six machines are representative of the overall behavior of
the programs.

Figure 4 shows a comparison of the times obtained for the imbalanced, stable
experiment (experiment 2). We can see that the load balanced cases perform
well, being 35% faster than the mmpuvm version and 13% faster than the opti-
mized PVM version (mmpuvmopt). The figure also shows that the overhead of
Dome without load balancing is quite high (mmdome-no_lb) in this case. Fi-
nally, as expected, there is not much difference between doing one and more
than one load balancing phases, since the system is stable.

Figure 5 shows the results in the SuperCluster at PSC under production
conditions. In this case, Dome with load balancing is only 10% slower than
the hand-optimized PVM implementation. On the other hand, Dome with load
balancing presents a significant gain of 44% over the equivalent PVM imple-
mentation (mmpum).

12
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Figure 4: Times for imbalanced, stable system

The table shown in Figure 6 summarizes the results of the three sets of ex-
periments. 'The numbers for the first experiment indicate that the overhead of
unnecessary load balancing is around 6%, as is the case in an unloaded, balanced
system. Future versions of Dome will recognize the stability of the system and
will not perform load balancing under these conditions, virtually eliminating
this overhead. The other two experiments show the advantage of load bal-
ancing. In the second experiment, mmdome outperforms even the optimized
implementation of the PVM version (mmpvmopt).

5.3 Network Load Balancing

In addition to balancing the workload based on the characteristics of the pro-
cessors, it is equally important to consider the characteristics and topology of
the interconnection network. Although this can have a large impact on overall
performance, it is typically overlooked, in part because it is difficult to measure
network characteristics in a system independent manner.

Dome attempts to deal with the issue of network load balancing using a three
stage process. The first step is to characterize the network in a platform inde-
pendent manner. The second step is to use this information in assigning Dome
objects to processors in such a way that the remapping overhead is minimized.
The third step is to choose specific communication patterns for collective com-
munication operations which make efficient use of the interconnection network.

13
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Characterization of the network is done by measuring the round-trip time
for message exchanges between processors. All exchanges are done with the
recipient having a blocking receive posted for the message prior to its arrival,
so that the resulting times include as little overhead as possible, given the mes-
sage passing interface. Messages are exchanged in both an application-induced
congested pattern, where as many exchanges as possible are occurring simulta-
neously, and an uncongested pattern, with one exchange occurring at a time.
The data from these measurements is used to approximate the bandwidth of
the network and whether it is shared or switched. This information is then used
to divide the network into clusters of machines which are mutually closer to
each other than any other machine on the network. Generally, these clusters

Matrix Multiply — Mean time in seconds

Experiment || mmseq | mmpvmopt | mmpvm | mmdome-nolb | mmdome-1b3
1 655 109 171 174 184
2 1964 380 451 671 335
3 498 179 | 287 276 199

Figure 6: Comparison of results for the 3 experiments
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correspond to machines on a single Ethernet strand or on a single switch.

A number of simplifying assumptions are made which allow the network
characterization problem to be solved off line. It is assumed that the user runs
the characterization program on all accessible machines, so that the proces-
sors used in computation are always a subset of those machines. The ambient
network load, i.e., the network traffic not caused by Dome, is assumed to be rel-
atively similar on all portions of the network. Therefore, while it may alter the
available bandwidths, it will not change the relative bandwidths of the network
components. While this second assumption may not be accurate in practice, it
has proven to be a reliable heuristic.

Since load balancing communication in Dome is routed using a ring, the opti-
mal assignment of tasks to nodes is ordered along the minimum communication
time circuit, which corresponds to the solution of the travelling salesperson
problem. Since this problem is NP-complete, an exact solution is not feasible
for large numbers of processors, but observation leads one to the simple heuris-
tic that the nodes in the closely connected clusters should be linked together,
followed by those in network-wise nearby clusters.

Due to its SPMD model, the communication used in Dome is collective;
a typical program requires several operations, including reduction, all-to-all
broadcast, one-to-all broadcast, and scatter/gather. The information obtained
through network characterization is used to choose the optimal local and global
communication patterns. To allow for general use of this technique, a collec-
tive communication library is being developed. This library will be modeled
after the MPI collective communication specification and will be used in the
implementation of Dome classes.

6 Checkpointing

While performing large computations on a network of workstations offers many
advantages, it also introduces some new problems, including the possibility of
failure on some subset of the nodes. As the number of workstations in a cluster
increases, the chance that one of them will fail during a particular computation
increases exponentially. For example, if we have a workstation with a mean time
between failures of 16 days, a one day computation may have a 94% chance of a
successful run, but on a cluster of ten such machines, there is only a 54% (.9419)
chance that the computation will be complete before one of them fails. Thus,
it is vital that some kind of fault tolerance mechanism be incorporated into any
system designed for extended execution on a workstation cluster.

6.1 Abstraction Levels for Checkpointing

There are several levels of programming abstraction at which one could imple-
ment a fault tolerance package in Dome. At the highest level, we have provided
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main(argc,argv)

{
// dome_init decides if we are starting the program from
// scratch or restarting from a saved checkpoint, based on argv.
dome_init(argc,argv);

// declare variables
dScalar<int> integer_variable;
dScalar<float> float_variable;
dVector<int> vector_of_ints;
dVector<float> vector_of_floats;

// etc.

// initialization code-- user must skip if in restart mode.
if (!dome_env.is_restarting())
execute_user’s_initialization_code(...);

// main loop

while (!loop_done(...)) { // loop_done is a function of dome vars
do_computation(...);
dome_env.checkpoint();

}

Figure 7: Program structure needed for high level checkpointing without pre-
processing.
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a set of C++4 methods which can be called to checkpoint the program’s data
structures. The user is responsible for writing a program with a simple enough
structure, such as in Figure 7, that the program counter and stack do not need
to be saved. Another method we have developed is to do the checkpointing
with C4++ code, but to have a preprocessor insert calls to save and restore the
stack and program counter, saving the user some work. Figure 8 shows a sample
program fragment before and after preprocessing, illustrating how the stack and
program counter can be saved and restored in high level code. The expansion
in code size will in general be small and linear. Finally, we could use a general,
truly transparent low level checkpointing package such as the one described in
[21], so the user has little work to do. The system would save a memory image
periodically upon interrupt, from which it could restore the state later. In this
case, determining a consistent state is a major issue since messages may be in
transit, while in the higher level methods the knowledge of the program struc-
ture makes this problem much simpler. The advantages and disadvantages of
each level of checkpointing are described in Figure 9.

While high level fault tolerance tends to require more work from the users,
it is an important feature in Dome, since one of our major goals is for Dome to
be easily portable to any system that supports PVM and C++. Furthermore, it
1s vital that checkpoints created on one architecture be usable on others. Thus,
we have concentrated on developing usable high level checkpointing features for
Dome.

6.2 Checkpointing Results

We have completed an implementation of high level checkpointing. It has been
tested on md, a molecular dynamics application we have written based on a CM-
Fortran program developed at the Pittsburgh Supercomputing Center. Qur tim-
ings show that even in the case of frequent failures, our checkpointing overhead
is low enough to provide a good expected run time for this application, assuming
a Poisson failure model. This result is plotted in Figure 10, which shows the
expected runtime we calculate for various mean times between failures based
on the checkpointing times we observed, in an approximately 26 minute run,
and the expected runtime formula calculated in [8]. It is interesting to note
that if we put in so many checkpoints that a failure every 3 minutes will not
even double our expected runtime, rather than incurring the thousands-of-times
expected cost without checkpointing, we only suffer a 3% cost to our runtime
in the failure free case.

Of course, the next question one should ask is what are realistic values for
the mean time between failures. In a run as small as our experiment, we do not
expect a failure at all, but it should be noted that our results would scale up,
since we found the cost per checkpoint to be a constant for a given problem size.
Actually, for md, the computation complexity grows faster than the data size,
so the checkpoint cost compared to the total run time will go down. Therefore,
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£0 { £0 {

dScalar<int> i; dScalar<int> i;
do_£f_stuff;
g(i); * if (dome_env.is_restarting()) {
next_statement; * next_call=dome_env.get_next_call();
: * if (next_call == ‘‘gl’’) goto gl;
¥ *
* }
g(dScalar<int> i) { do_f_stuff;
do_g_stuff_1;
dome_env.checkpoint(); * dome_env.push(‘‘gl’?’);
do_g_stuff_2; * g1:
} g(i);

*  dome_env.pop();
next_statement;
; ces
g(dScalar<int>& i) {

if (dome_env.is_restarting())
goto restart_done;

* *

do_g_stuff_1;
dome_env. checkpoint();

* restart_done:

do_g_stuff_2;
by

Figure 8: Program fragment before and after preprocessing. Lines added by the
preprocessor are marked with a *’.
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Figure 10: Expected runtime for md vs. mean time between failures.
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we would expect the graph in Figure 10 to remain valid for longer runs, so the
units couid be hours or days rather than minutes. In fact, the figure would
overestimate the cost of checkpointing in runs with larger data sets.

In an experiment on the Internet measuring typical failure rates, Long, Car-
roll, and Park [24] found that, depending on the system, the mean time between
failures tended to be between 12 and 20 days. If we take 16 days as a rough
estimate, a cluster of five machines is likely to have a failure an average of every
3.2 days. Looking at the graph as if the units were days rather than minutes,
realistic for some large simulations, and estimating for a cluster of five machines,
we can see that a properly chosen checkpoint interval can result in less than a
25% increase in expected runtime over its ideal value. Without checkpointing
such a program would take several millenia to run to completion.

We have demonstrated the portability of our checkpointing code by running
md with checkpointing on both DEC Alpha and on SGI workstations. In ad-
dition, the portability of the checkpoints themselves has been demonstrated by
restarting md on the Alphas from checkpoints created on the SGIs. Our exper-
iments will continue to demonstrate the portability of our system on additional
architectures, though we do not expect this to be much of an issue since our
checkpointing methods use only high level code and generate checkpoint files in
an architecture independent format.

We have also completed a preliminary implementation of the preprocessor
and demonstrated that it works on Dome programs. We are currently in the
process of developing more complex applications for use in performance tests.
For more detailed information on Dome’s checkpointing methods, see [27].

7 Future Work

The Dome system is undergoing very active development. We are adding new
classes and developing more Dome applications. We are collaborating with both
computer science and computational science researchers to develop production
quality Dome applications, allowing us to demonstrate Dome in several domains.
This is an important step to showing that Dome is general enough to express
a wide array of parallel algorithms. We also plan to add parallel programming
structures to Dome, such as general task parallelism, futures [17], and pipelining.

With respect to load balancing, there is still much work to do. Adaptation of
the load balancing frequency based on runtime characteristics may be fruitful.
Also, a further exploration of the spectrum of choices between local and global
load balancing is important. This work will mesh well with the automatic
network partitioning described in Section 5.3. It is also possible that runtime
metrics of communication performance can be used to develop a virtual topology
for load balancing and collective communication operations.

There are several ways in which we plan to make the fault tolerance pre-
processor more powerful. We will give it the ability to automatically transform
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C++ variables that will be in scope at the time of a checkpoint into Dome
variables, so they will be saved without any special effort from the user. In ad-
dition, we plan to experiment with techniques for inserting the checkpoint calls
automatically, again saving the user additional effort. These and other improve-
ments will help to make the preprocessing method nearly as user transparent as
low level checkpointing, while maintaining architecture independence.

Finally, we have implemented a prototype parallel I/O system for use in
Dome programs. This prototype has been demonstrated in the context of con-
ventional files systems and with the Scotch parallel file system [15]. There are
many issues related to parallel file systems and parallel program 1/0O that can
be addressed by Dome.

8 Concluding Remarks

This paper shows that Dome provides mechanisms that effectively address three
critical issues of parallel programming in a distributed computing system: ease
of programming, dynamic load balancing, and architecture independent check-
pointing. Because Dome’s mechanisms are at the language level they allow the
system to be very portable. In fact, to date Dome has been ported to seven
platforms: DEC Alpha OSF/1, HP HPUX, Intel Paragon, Sparc SunOS, SGI
Irix, DEC Ultrix, and Cray C90. The code changes among these ports is mini-
mal, on the order of several lines of code, demonstrating that the system’s goals
can be achieved while portability is maintained.

Preliminary measurements show that the runtime overhead of Dome pro-
grams is reasonable. Furthermore, this overhead can be recouped by load bal-
ancing in an imbalanced system. Dome’s approach to checkpointing allows
programs to achieve good runtimes even when failures are present. Dome’s
combination of solutions make it uniquely suited for parallel programming in a
heterogeneous multi-user distributed environment.
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